

ABSTRACT

This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculun. The SET Curriculun was developed for the purpose of training tecinicians in the use of electronic instruments and their applications. It integrates elenents from the disciplines of chemistry. physics, mathematics, nechanical technology, and electronic technology. This guide provides basic infornation relited to the following topics: lettering and use of equipment: (2) geonetricai construction: (3) sketching and shape description; (4) ultiview projection; (5) auxiliary vieus: (6) sectional vieus: (7) drauing; and (8) charts and graphs. (Author/SK)

[^0]THIS DOCUMENT HAS BEEN REPF DUCED EXACTIV AS RECEIVED FRC THE PERSON OR ORGANIZATION ORIG ATINGIT POINTS OF VIEW OR OPINIO STATED DO NOT NECESSARILY REPF SENT OFFICIAL NATIONAL INSTITUTE EQUCATION POSITION OR POLICY

Science and

Astirty illute inf the ?rite

14. SEDR Subprogram
15. Abstract

This study guide is part of a program of studies entitled the science and Engireering Technician Curriculum. The SET curriculum was developed for the purpose of training technicians In the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technolOGY.

Science and Engineering Graphics I provides basic information related to the following topics: (1) lettering and use of equipment; (2) geometrical construction; (3) sketching and shape description; (4) multiview projection; (5) auxiliary views; (6) sectional views; (7) basic dimensions; (8) electrical and electronic drafting; (9) welding drawing; (1c) pipe drawing; and (11) charts and graphs.

1申. Descriptors

Study Guides
Instructional Materials
Associate Degrees
Science Curriculum

Engineering Technicians
Engineering Graphics
Drafting
Engineering Drawing

17. Identifiers

Sciense and Engineering Technician Curriculum (SET)

18. Field

19. Target Audlence
Two-Year College Students
20. Supplemental Notes

One copy

20. Avallablily

fimited number of copies available from St. ${ }^{1}$ RIC Omunity College at Florissant Valley
, 1 (18, MO 63135

SCIENCE AHD ENGINEERING

A Study Guide OF
 The Science and Engineering Techmician Curkiculur.

futhors: Jerry Craig
St. Louis Community College at Forest Park
Jerry Stapleton
St. Louis Communty College di Florissant Valley

Project Directors: Fill a. Aldridge
Dunalid R. Muweiry
1.awrence a. W, It

Study Guide Editor: Peggy Dixon
Montoonery Colieqe, Takoma "ark, MD

Address: SET Project
Sc. Louis Community Coliege at Florissant Valley St. Louis, Missouri 63135

Copyright C 1976 by S. Louis Community Collu; it florissant vallev. Printed in the United States of Nmrrara. All rigits resnivnl. This book or parts thereof may not be reproduced in any form without permission.

The materials contained herein were developer: under Grant Numbers HES74-2228S AO1. GZ-3378, and SED77-17935.
Page
1
CHAPTER I - INTRODUCTORY TOPICS 1
Snction 1.1 - Lettaring 1
section 1.2 - Uie of Equipment 4
MAFTEK II- DEMMFTRICAL CONSTRUCTION 11
Sertion $\therefore .1$ - Basio Applued Geometry 11
dharrt HI - sxETCHING AND SHAPE DESCRIPTION 17
. t1un 3.1 - sketching Materials and Lines Technique 17
re. inf i^{-2} - Isometric Sketching 19
HAFIER IV - MULTIVIEW PROJECTION 25
iection 4.l - Theory of Projection 25
Erction 4.2 - Instrument Drawing 29
GAPMCR V - AUXILIARY VIEWS 34
Srotion E.l - Prımary fuxilary Vaews 34
Chapmer vi - Sectional views 39
inction 6. 1 - Cuttang Planes, Section Lining, Full and Half Sections 39
swetion t. 2 - Other Types of Sectioned Views 42
AA: ZER VII - BASIC DIMEN. IONING 54
…tın 7.1 - Means for Specifying Dimensions 54
bection 1.2 - Standard Methods of Dimensioning Features 56
Cotion 7.3 - Special Dimensioning Notes and Symbols 62
:retion l.4 - Tolerancing 65
MAs TER VIII - ELECTRICAL AND ELFCTRONIC DRAFTING 78
Section 8.1 - Rlock Diagrams 78
section 8.2 - Connection Dlagrams and Interronnection Diagrams 80
Seretion 8. 3 - Schematic Diagrams 86
Section 8. 4 - Logic Diagrams, Integrated Circuits, Printed Circuits 849

TABLE OF CONTENTS (Cont)

Page
CHAPTER IX - WELDING DRAWING 104
Section 9.1 - Processes, Joints, and Synbols 1 C 4
CHAPTER X - PIPE DRAWING 108
Section 10.1 - Joints, Fittings, and Valves 108

- Section 10.2 - Single-Line and Double-IIne Drawing. 110
CHAPTER XI - CHARTS AND GRAPHS 112
Section 11.1 - Rectangular Line Graphs 112
Section 11.2 - Semi-Logarithmic Line Chart or Graph. 114
TABLES 125

CHAPTER I
Introductory Iopiss

SECTION 1-1 LETTERING

Lettering on technical drawings should be of the sinqle-stroke qothic style. and of such quality that a clear diazo print can be made without loss of clarity. The letters inay be vertical or inclined but should not be mixed on the drawing. Whil. lower-ase letters are used on some drawings, it is accepted practice to us. all datals on drawings related to mechanical or equipment industrios. sibe 'helghte of litters used should vary between the dperoximate values of $3 / 3, "$ and 9^{3} s." lur different applications but otherwise be uniform ond generally independent of drawing size. Fiqures 1.3 and 1.4 show the style and size lettering recommended by th. United States of America Standards Institute.

UIN:INFOXRM
 $A^{2} R$ REAA

Figure. 1.1 Background arna between letters should bu uniform.

Figure 1. 2 Always use guide Innes. ABCDEFGHIJKLMNOP ${ }^{r^{5 / 16}}$
QRSTUVWXYZ\&
$\left.1234567890-\frac{1}{2} \frac{3}{8}\right]_{1}^{1 / 2^{1}}$
TITLES \& DRAWING NUMBERS FOTR SUB-TITLES OR MAIN TITLES ${ }^{*}$ ON SMALL DRAWINGS

TPE 3 ABCDEFGHIJKL.MNOPQRSTUVW $\times Y Z \&_{-}^{-5}$ $1234567890 \cdot \frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{9}{32} 5^{9 / 32}$ FOR HEADINGS AND PROMINENT NOTES

MPE

$$
1=7.455: 890 \frac{1}{2} \frac{3}{4} \frac{23}{64}
$$

FOR EILLS OF MATERIAL DIMENSIONS \& GENERAL NOTEE trpe 5
Optional Type same as Type 4 but using Troe 3 for First letter of Principal Words. May be used for Sub-titlei and Notes on the Boov of Dramnes.
nTPE 6
abcdefghijklmnopqrstuvwxyz
Type 6 may be used in place of
Type 4 with capitals of Type 3.

Figure 1.3 (cont.)

TYPE:

ABCDEFGHIUKLMNOP/s QRSTUVWXYZ\&

 $1234567890 \frac{1}{2} \frac{3}{4} \frac{5}{8} \frac{7}{16}$
TO BE USED FOR MAIN TITLES
 \& DRAWING NUMBERS

rere $A B C D E F G H I J K L M N O P Q R$ STUVWXYZ\& $1234567890 \frac{13}{64} \frac{5}{8} \frac{1}{2}$ TO BE USED FOR SUB-TITLES
rres 3 ABCDEFGHIJKLMNOPQRSTUVWXYZ\& $1234567890 \frac{1}{2} \frac{3}{4} \frac{5}{8} \frac{7}{16}$. FOR HEADINGS AND PROMINENT NOTES
rupe 4 ABCDEFGHIJKLMNOPORSTUVWXYZ\& $1234567890 \frac{1}{2} \frac{1}{4} \frac{3}{1} \frac{5}{16} \frac{7}{32} \frac{1}{8}$
FOR BILLS OFMATERLAL. DIMENSIONS \& GENERAL NOTES

TrPE 5

Optional Type same as Trpe 4 but using Trpe 3 for Firpst Letter of Principal Words. May be used for Sub-titles \& notes on the booy of Drawings.

TYPE 6
abcdefghijkimnopgrsturwxyz Type 6 may be used in place of Type 4 with capitals of Type 3

Figure 1. 4 (cont.)

(EXTRACTED FRUM AMERICAN STANDARD DRAITING MANUAL,
LINE CONVENTIONS, SECTIONING AND LEITERING
(ASA Y14-2-1957), WITH PERMISSION OF THE PUBI,LSHER)

LABI RATH RY

1. The student should be able to do pencil lottering on tracing paper usind single-stroke gothic style. The work should include capitals, lower case, whole numbers, and fractions: A diazo reproduction should be cledr with no loss of clarity.
, ECTION ITYM:
SMDY bESTICN:
2. :how much sface should be left between words?
inat 15 the anqle of slant on an inclined letter?
3. When lettering a fractional number, what is the helght of the fraction rolative to the height of the whold number?
4. Lay out sheet, add guide lines (vertical or inclined), and fill in letters as indicated.

Figure 1.5

SECTION 1.2 USE OF EQUIPMENT

Proper use of equipment $1 s$ one of the determining factors in producing a quality technical drawing. Some of those instruments most difficult to mäster have been iisted.

1. Drafting machine - Thel proper use of a drafting machine can save many hours of drawing time. Its use is not covered here due to the different models available. Manuals giving detailed instructions on the use and care of the drafting machine are available through. the manufacturers.
2. Drafting pencil - Good line technique begins with the selcetion of the correct grade of lead and the proper sharpness on the point.

PENCIL GRADES
Figure 1.6
il:
PENCIL POTATS Figure 1.7

Figure 1.8 Drawing Horizontal Line.
Draw pencil along straight edge.
Rotate pencil to maintain uniform point.

Drawing a Vertical Lins

Figure 1.9
3. Scale - Some scales in common use today are the mechanical enginaers scale, civil engineers scale, architects scale, and to a lesser extent in this country, the metric scale. It is not uncommon to find triangular scales which incorporate several different types into one multi-purpose scale.
4. Dividers - Dividers are used for transferring measurements and occasionally for dividing lines or arcs into equal parts. Care must be taken when using the dividers so that the legs do not move between taking the measurement and laying it off.
5. Compass - The compass is probably the most important single item of all the drafting instruments other than the pencil and straight edge. The correct choice of lead and proper sharpening technique is essential to the successful use of a compass. Avoid those compasses which do not have a center wheel for adjustment.

Figure 1.10 Three different methods of sharpening a compass lead.
$2 \rightarrow \ldots-\ldots$

YIDDEN LINE

THIN
THIN

THIN
\qquad

Leader

CENTER LINE

THIN

THICK

THIN
IHN
12
PhiANTOM LINE 12 \qquad
\qquad
\qquad ;
".
WIDTH AND CHARACTER OF LINES
Figure 1.11
(EXTRACTED FROM AMERICAN STANDARD DRAFTING MANUAL, LINE CONVENTIONS, SECTIONING AND LETTTERING (ASA Y14-2-195\%), WITH PERMISSION OF THE PUBLISHER)
4. Fraser and eraser shield - These are relative !y inexpensive items by comparison but improper use can result in dark smudges on a vellum drawing. Make sure that the eraser is soft (not artgum) and the eraser shield 15 metal (plastic is too thick).
7. Irregular curve - These curves are used for the mechanical drawing of free curves and require some practice to use effectively.
8. Circle template - The circle template is particularly useful in drawing small circles (1" diameter or less) whens a large bow compass would be difficult to use. When drawing concent sc circles with a rile template it's best to lay out first with a small compass.

ABURATCKY

1. The student should be able to draw object lines, hidden lines, and renter lines using graphite lead for both straight lines and arcs. These lines should be sharp, black, and capable of being reproduced in co a diazo copy without appreciable loss of line density and sharpness.
2. The student should be able to draw a layout line to an accuracy of + $1,32^{\prime \prime}$ and to measure a previously drawn line to an accuracy of + 1/32".
3. The student should be able to take angular measurements within 10 minutes using the drafting machine.

SECTION ITEMS

QUESTIONS

1. What grades of leas are best suited for technical drawing?
2. Should a compass lead be she send into a conical point?
3. Given the following lead grades; $2 \mathrm{~B}, 2 \mathrm{H}, \mathrm{F}$, and 4H, which is the hardest? Which is the softest?

EXERCISES

1. Measure the following lines' to $t 1 / 32^{\prime \prime}$ on length and ${ }^{\prime \prime} 10^{\prime}$ on angles.

Use full scale

3. Mrasure the following lines to $\pm .80 \mathrm{~mm}$ on lergth and $+10^{\prime}$ on angles. Use full scale

4. Make a tull siale pencil mstrument drawing of the GusSET in fig. 1. la. Draw on a $9^{\prime \prime} \times 12^{\prime \prime}$ sheet of vellum with a $1 / 4^{\prime \prime}$ border and use title block as shown on Fig. 3.14. Make a diazo print of the finished drawing.

Figure 1. 12

EXERCISES

1. Make a full scal. pencil instrument drawing of the plate in fig. l. 13. Draw on a $9^{\prime \prime} \times 12^{\prime \prime}$ sheet of vellum with a $1 / 4^{\prime \prime}$ border and use title block is ahown in fiq. 3.14. Make a diazo print of the finished drawing.

Figure 1.13
\qquad \therefore arlo 1.1

TiDY UEOTINS

-1"'..1

i. Twi r height of whole number.

SEMTUN 1.

\therefore RUDY QUESTIONS

1. 6 H - HB. Many factors such as drafting media, humidity, drawing surface, and individual technique will play a part in lead selection but generally the following is recommended: $6 \mathrm{H}-5 \mathrm{H}$ for layout work. $4 \mathrm{H}-2 \mathrm{H}$ for thin lines (center lines, etc.), H - HB for thick lines and lettering
2. No. Compass leads should be sharpened into a chisel point or an elliptical point.
3. Of that given group of leads the hardest is 4 H and softest ic 2 B .

EXIPPCISC.S

1.

	length	angle
(a)	$23 / 32$	$29^{\circ} 35^{\prime}$
(b)	$29 / 16$	$25^{\circ} 40^{\prime}$
(c)	$23 / 3 ?$	$5^{\circ} 00^{\prime}$
(d)	$21 / 2$	$12^{\circ} 15^{\prime}$
(c)	$15 / 32$	$19^{\circ} 15^{\prime}$

2.

(a)
length \quad angle

CHAPTER II

Gtometrical Construction

SECTION 2-1 BASIC APPLIED GEOMETRY

Mpllal mrometr/ ls the basis for layout and construction in instrument iriwirg. Whald it 1 i. not necessary to write geometric proofs to solve problems
 eptifiples of plane qeometry. The practice of pure geometric construction is time consuming and does not utilize the many accurate instruments available to the, draftsman. The illustrations in this section will use the most expedient methods where accuracy permits.

Figure 2.1 Angles

eoullateral triangle

ISOSCELES' tRIANGLE

scalene triancle

RIGHT TRIANGLE

Flgure 2.3 The Regular Polygons

Figure 2.4 Elements of the Circle
Figure 2.5 To Bisect a Line

(a)

(b)

(c)

(d)

Pugre 2. 1 Fin divide a line into equal part:s. (d) Draw a line at any ample from one and of qiven line. (b) Divide angled line into required number (c) Draw parallel lines from each mark dividing given line into equal parts.

Circumscribing Circle -
Distance across corners given.

Inscribed Circle-
Distance across flats given.

Figure 2.8 To Draw a Hexagon

Figure 2.9 through three given points.

Figure 2.10 To draw a tangent and a circlo

CIRCLE

ELLIPSE

PARABOLA

HYPEREOLA

Figure 2.11 The Conic Sections

For all conic sections, a cutting-plane passes through a right circular cone in such a manner that one of the following is formed by the intersection of the surface of the cone and the cutting-plane. The angle between che center axis of the cone and the rutting-plane determines the curve.

Circle -	Cutting-plane is 90° to axis of cone.
Elipse -	Cutting-plans is inclined to axis of cone. The angle formed is greater than that between the axis of the cone and its elements.
Parabola - \quadCutting-plane makes the same angle with the axis of the cone as do the element:; of the cone.	
Cutting-plane makes an angle with the axis of the cone less than that formed between the elements and the axis.	

LABORATORY

1. The student should be able to perform bailc geometric construction such as besecting angles and lines, drawings tangents, dividing lines into equal spaces, etc.

SECTION ITEMS

STUDY QUESTIONS

1. slow many degroes are in a hexadeon?
2. What are complementary angles?
3. What conic section can be drawn with a compass?
4. What 15 the genera.l term for a plane four-sided figure?

b. (rmstrat a hexum whi h is 2 " across flats.
. Construct and bisect a 5° angle.
(1. Locate the tangent point between a line drawn at 30° and a $2^{\prime \prime}$ diameter circle.
```
2 a. Draw a right triangle with one leg 1-1/4" and the other
    1*3/4".. Construct a circle which will pass through
    these three points. (Fig. 2.9)
    Draw two circles 1' diameter and 2' diameter, respectively.
        Siace them 2-1/2" apari on a line inclined at 30'. Draw
        all iines which are tangent to both circles and mark
```



```
        Draw a triangle having sides 2.80, 3.25, 2.40. Find it:s
        center of gravity and draw the maximum diameter circle
        that does not fall outside the triangle. What did you
        discover? Driw a circle through the vertices of the
        triangle (fig. 2.9). Is this center the same as the center
        of gravity? What condition would cause the two centers to
        be the same? (Note: You will' need to consult resource
        material for this problem).
    d. Construct a hexagon which is 2.50 inches across corners.
```


EXIRCISES

1. Make a full size pencil drawing of the LINK in figure 2.12. Draw on a $9^{\prime \prime} \times 12^{\prime \prime}$ sheet of vellum with a $1 / 4^{\prime \prime}$ border. Use title block as shown in figure 3.14. Show all construction. Show all construction.

Figure 2.12 LINK

ANSWERS
SECTION 2-1
i. 720°
\therefore Two adjacent angles whose sum 1590°
3. A circle
4. Quadrilateral

EXERCISES

object line
inguen I ine
renter 1 inu

LABORATORY

1. The student should be able to demonstrate the proper line technique for sketching object lines, hidden lines, and center lines.
2. The student should be able to make a one view pencil sketch on grid paper showing a border, title block, and proper line techniques. This sketsh may bi trom a model or another drawint.
:achlon 1ms.
stury Musiluns:
3. Does a renter lina take precedence aver a hiden lime?
4. What type eraser is used to remove layout lines from a sketch?
5. How is a pencil sharpened to produce a sketch center line?
6. What grades of pencil lead are best suited for sketching? \quad
7. Where should you be looking when sketching a layout line between two points?
8. Does a visible line take precedence over a hidden line?
9. How is a pencil sharpened to produce a layout line?
10. Where should you be looking when sketching an object line between two points?
11. Is a sketch usually made to a specified scale?
12. Are "measuring aids" ever used to help keep a sketch proportional?

EXERCISES

1. Sketch the line technique exercise in Fig 3.5. Use 9×12 paper with 1/4" grid.
2. Sketch the two gaskets shown in Fig. 3.6. Use 9×12 paper with $1 / 4^{\prime \prime}$ grid and same format as given.

Fig. 3.5

Fig. 3.6

Section 2 ISOMETRIC SKETCHING

Pictorial sketching is an excellent way of conveying an idea to either technical or non-technical personnel. Isometric views have the advantage of a uniform foreshortening factor on all axes thereby simplifying the transition frof orthographic*drawing to pictorial. Isometric axes are 120° apart with one axis in the vertical position. Any two of these axes define a plane which can be used as a reference in locating points on the sketched object.

Fig. 3.7 Isometric Axes

Fig. 3.8 Isometric sketch of $l^{\prime \prime}$ cube.

(a)

(b)

(c)

Fig. 3.9 Reference planes defined by two isometric axes include (a) frontal, (b) profile, and (c) horizontal.

LABORATORY

1. The student should be able to make an isometric sketch on grid paper complete with border, title block, and proper line technique. The sketch may be made from a model or a drawing.

(a)

(c)

Fig. 3.10 Shows the steps in making an isometric sketch. The object to be sketched at
(a) reference box to exact size at (b) and finished at (c).

26

Fig. 3.11 Circles in isometric views usually appear as ellipses. Tt. end of the right circular cylinder is correctly shown a
(a) with minor axis along centerline.

SECTION ITEMS

STUDY QUESTIONS

1. What is the name of the reference plane which touches the side of the object being sketched?
2. What are the measurements made perpendicular to the horizontal plane called?
3. Lsometric axes are drawn 120° apart. What true angle is representec by this 120° angle?
4. Can angular measurement be rade in an isonetric viev?
5. Are measurements normally made other than parallel to one of the isometric axes in an isometric sketch?
6. What is the angle of an isometric ellipse?
7. Are hidden lines normally s.jown in an isometric sketch?
8. What measurements are made perpendicular to the profile plane?
9. Wron an isometric box is constructed, what is its height, width, and depth with respect to the object leing skotched?

ExERCISES

1. On a sheet of 9×12 isometric grid paper sketch an isometric view of the object shown in Fig. 3.12. The numbers represent units on the isometric grid. Border and title block will be as in Fig. 3.6.

Fig. 3.12

CHAPTER ITEMS

1. Sketch the isometric view of Fig. 3.13 on grid paper. Show border and title block as in Fig. 3.6.
2. Divide a sheet of rectangular grid paper into four equal areas and add border and title block as shown in Fig. 3.14.
(a) In space I, sketch the view that you would sec if looking perpendicular to the hoiszontal face of the reference box used to sketch the isometric of Fig. 3.13.
(b) In space III, sketch the view you would see if looking perpendicular to the frontal face of the reference box.
(c) In space IV, sketch the view you would see if looking perpendicular to the right profile face of the reference box.

ANSWERS

SECTION ITEMS

SECTION 3.1

1. No. Order of precedence is visible line, hid en line, center line.
2. Artgum.
3. Sharp conical point.
4. F, HB, and B.
5. At the point to which the line is being drawn.
6. Yes. (See answer No. 1)
7. Dull, blunt point.
8. At point of pencil.
9. No. Sketches are made to proportion.
10. Yes. A pencil or a strip of paper may de used to keep sketches proportion el.

SECTION 3.2

1. Profile reference plane.
2. Height measurement.
3. 90°
4. No. Angular measurements do not appear as true angles in an isometric view.

Arulten Provided beverac
5. No. Th:e only medsurements which rath be male true length are along the isometric axis.
6. $35^{\circ} 16^{\prime}$
7. No. Hidden lines are usually onitted from isomerric views since three surfaces are visible.
8. Width measurements.
9. The isometric "reference box" should have the same height, width, and depth measurements as the object.

EXERCISES

1.

CHAPTER ITEMS

EXERCISES

1.

2.

Section 4.1 Theory of Projection
Objects whose exact shape and size are to be conveyed to a machinist or other technical person are best defined through orthographic projection. There are six views in the American National Standard arrangement of views. Multi-view projection is the drawing or sketching of as many of these views as is required to completely describe the object showing all visibie and hidden" lines.

(a)

(c)

Figure 4.1 Shows (a) projection of object onto faces of glass box (b) unfolding of g? ass box (c) American National Standard arrangement of views.

Figure 4.2 Normally three views are sufficient to describe the shape of an object.

Figure 4. 3 Hidden lines are used to describe features that would otherwise not b: seen.

SECTION ITEMS

Study Questions

1. What is meant by orthographic dimension?
2. What orthographic dimensions can be seen in the front view?
3. What are adjacent views?

4: In the American Nationai Standard arrangement of views, what views are adjacent to the front view and what orthographic dimension do they have in common?

EXERCISES:

1. Sketch the two given views and add the top view of the objects in figure 4.4. Use the same format and title block as shown. Sheet size 9×12

(a)

(b)

Figure 4.4
32

LABORATORY

1. Student should be able to sketch three principal orthographic views showing all visible and hidden lines from model or isometric view.
2. student should be able to sketch third view from two given orthographic views.

SAMPLE PROBLEMS

1. Orthographic view drawn from isometric.

2. Orthographic views drawn from two given views.

Figure 4.6 (a) Given views

Figure 4.6 (b) Completed thixd view 3:

EECTION 4.2 Instrument Drawing

Views should be well balanced on the sheet with border lines and complete tle block. After the number of required views has been determined, then portant center lines and outlines are drawn with a sharp 6 H pencil. 'If aree or more views are required, one of the methods in Figures 4.8-4.10 pould be used to transfer measurements. Once the views are accurately drawn, pe finish lıne work is added with an H or 2 H lead.

Figure 4.7 Layout balanced drawing with 6 H lead.

Figure 4.9 Use of dividers to draw top view.

Figure 4.8 Use of mitre line to draw right side view.

Figure 4.10 Drawing front view from given top and right side view.

1. Student should be able to make an instrument drawing complete with border lines and title block from a model, pictorial view, or given orthographic views. Drawing should be made on tracing paper and of such quality that a clear diazo print can be made with no appreciable background color.

SECTION ITEMS

Study Questions

1. Are instrument dr, ings usually drawn to a specified scale?
2. Are three views always required in an instrument drawing?
3. What is the proper contrast between visible lines and center lines?
4. At what angle is a mitre line drawn?
5. Are hidden lines always shown?

EXERCISE:

1. Rearaw the given views in Fig. 4.ll on9" x l2"tracing pane and add missing view and isometric view. Use format and title block shown in Fig. 3. 14 _. Make a diazo copy of the finished drawing:

Figure 4.11

CHAPTER ITEMS

1. On a sheet of $9^{\prime \prime} \times 12^{\prime \prime}$ vellum, draw the front, top, and right-side views of the object in Fig. 4.12. Use border and title block as shown in Fig. 3.14.

Figure 4.12

ANSWERS

SECTION 4.1

Study Questions

1. Height, width, and depth are orthographic dimensions. They are made perpendicular to the horizontal, profile, and frontal planes, respectively.
2. Height and width.
3. Views which are separated by a folding line; ie., front and top views.
4. Views adjacent to the front view are the top front, left and right side views. They all show the orthographic dimension of depth.

Figure 4.13

SECTION 4.2

Study Questions

1. Yes. Some example are full size, $\frac{1}{2}$ size, $\frac{1}{4}$ size, etc.
2. No. Drawings require olly those views necessary to describe the object. That may be as few as one or more than three views.
3. Visible lines should be drawn twice as thick as center lines.
4. Mitre lines are always drawn at 45°.
5. No. When clarity is not lost by doing so, hidden lines may be omitted.

EXERCISES (solution)

1.

Figure 4.14

CHAPTER ITEMS

EXERCISES

1.

Figure 4.15

CHAPTER V

Auxiliary Views

SECTION r,-1. PRI:iAKY AUXILIARY VIEWS

All nbjacts cannot be completely described through the six regular views. In such cases it becomes necessary to "take another direction of sight" in order to describe the object more fully. Orthographic views which are not principal views are auxiliary views. When these auxiliaries are projected from principal views they are primary auxiliary views. Primary auxiliaries show a true orthographic dimension of height, width, or depth depending on the view from which : they were projected. Figure 5.1 shwws the modified "glass box" used in projecting an auxiliary view. The steps in projecting a primary, auxiliary view are as followst

1. Establish a direction of sight.
2. Project all points on the object parallel to the direction of sight.
3. Construct a folding line perpendicular to the direction of sight.
4. From a view which shows the same orthographic dimension as the auxiliary bejing drawn, transfer the measurement into the new auriliary view.
5. Connect points and aetermine visibility.

Figue 5. I Modified Giass Box

Figure 5.? Establish a direction of sight.

Figure 5.3 Project all points parallel to direction of si.

Figure 5. 4 Construct folding line perpendicular to direction ci sight..

Figure 5.6 Determine visibiiit! and connect 1 points.

Figure 5.5 Transfer measurements

ERIC

[^1]$\overline{\text { SaSİyaxa }}$
\[

$$
\begin{aligned}
& \text { ¿smata quəorfpe omz रue }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { ¿วuṬ 6uṭplof ənṭoods }
\end{aligned}
$$

SNOILSAn§ Xan山S

SWGLI NOILJaS

shorivargivi
2. Sketch a primary auxiliary view of the cables in Figure 5.9 which show their true lengths.

Figure 5.8

Figure 5.9

CHAPTER ITEMS

EXERCISES

1. Sketch the indicated auxiliary views showing all visible and hidden lines with correct visibility.
2.
3.

43

ANSWFRS - Section 5.1.

sTUDY GUESTIONS

1. Top view.
?. They are perpendicular.
i. The directions of sight are mithinlly perpendicular:
2. By taking a direction of sight ? mp rendicular to the share
3. BV taxing a direction of sight reperdictlar to the line.

EXERCISES

1.

2.

CHAPTER ITEMS

juctional views arc oftea ured on engineering drawings. The cover shect on a set of working drawings mizht be an "assembly section" view or cutaway showinf, hom the parts of a devict fit together. Reading a drawing of a part with many lid.en internal features 1 s complicated by the hidden lines in the views. . By sectioning or opening the part, the internai desion of the nart if more clearly
seen.
aig. iol mssembiy section. Inis view s.now: the assembly of yarts more cleariy.

Fig. 6.: juttint, Hance the bisi., lor showinf a section view i. to imaedine the part brink, cut :o l.ee intorior can be seen.
ris. 6.2 Aectio.. liaing. sfew of the materials are shown. direction of lining shouid change on adjacent parte.

CABT InOM

section lining on assembly drawings

rie. 6. 4 . wlf section. 'This type of viow is particularly useful wherc the fart is symmetrical and both exterior and interior features need to he shown.

$\operatorname{SanghatO} Y$
.. 'he stud-nt should be able to draw or aketch full and half usction views and use the correct sectior lining rerresentation.
$-\operatorname{NaCL}$ ITEMS

aivoy

1. that type of object is best shown in section view ?
?. when should a half section be shown in neference to a fuli section?
2. Is the spacing for cast iron rection lining alwavs $1 / 8$ inches ?
3. are cutting plane lines always shown in full and half sections:

. XPrxul

.jetcn the answers to the following problemi.

1. BASE BLOCK
man nem - 1

2. OPERATING LEVER

3. PLUNGER RETAINER

DAN - MIANT ERE VIE青 in
MALP Etction
netcinial im natp解 6190
wecial tipes, of sectioned views have been accertiod x i. iean of showing nart frature: more cteariy. Nather than draw an entore virw la eection, it is : O. able to break out, partial section, or pull out .ifeci:l areat of a fart.
offsei section

Ele. . 5 Uffset section, liere, tre outtan riane is bent or of iset to हetter . now rart features.

ALIGNED SECTION

 row tre section view, it is neces ary \because revolv the : oirts alone, the section cut back to the drection of projection.
: $\because . \quad \therefore$ removed section. The cuttins.
:ine inn indicut:, where the section
 w.ur convienient on tim nare. りows ar, a mentifiri by a-A, - B, C - \because etc.

evolved sections

\therefore. ... revolved section. If ermen j- ava. atse or tar art drawinta cet:on can terat ans revolvad irto tre view. inir aids the readine of tro drawint by addine a third ! 2 . nuion to the view.

riv. tog inantom....ction. Atlas view .how.. both internal and external art .surfaces. .eection lining is shown a: dashed line: and material tyr, i is not indicated.

machine elements not sectioned
Fig. 6.10 .hat not to section. Center shafts, bolts, pins, bills, keys etc. should not be sectioned.

1: The student shoddy be abl to draw or sketch section views similar to those shown.
3. The student should be able to choose the best type of section view to show a particular part.
S.CTICN ITEM

STUDY UEOTIGNS

1. .hat tyre of fist is best shown with the phantom suction?
2. Are the point z alongthe aligned section cut projected directly to the adjacent view?
i. what determines whether to use a revolved section :jew or a removed section view?
3. .hat do the arrows on the cut tins : lame lines man? .Wy use letters at the end of each arrow?

-X.RUSEBS

[^2]1. GUIDE SHOE

2. BRACKET

PArK

CHAPTER ITEMS
QUESTIONS

1. when should sectioned views be used?
v
. What is the importance of section lining?
2. linen would an offset section be preferable to a full section:
3. list the types of section views requiring cutting plane lines.
4. Why are arrows needed for cutting plane lines?

EXERCISES

Solve the following problems.

1. TAKE-UP BEARING

I + NOIItIF THP AND IEYT STISF VIEWS OF A TAKE-HF REARIVG,

-: HiNTVIFW IN HILL SECTON

- FHitor view in half sect tion (Show hidden Ines In vipaer Half)

, H\{H: VIEN IN PHANMIM SFi TKM

52

Given: Front and left side views Draw: Top view in full section Material - Steel
.

1. section vew are beit for narts t hat han man: hatornat foature: that would otherwi: have to be ahown ty hatim line.
 int renal and externai featire that nerd to be rapon. -
?. So. Sacin of section liles is haty oromortional to the overail size of the rawict. Simall drawiage chowl r ave rest on lines ッ"acod clocer.
\rightarrow No. juttin: fiane lines are ofton not. shown in fill and half section views. EXFRCTISSS
2. BASF

Block
2. OPERATING LEVER

ame metmial.
orave proint vey im
Pust stepiom.

$$
-50-
$$

3. Flunger Retainer

> Mumen mirainan mar'l-cms

3.vivar 22

1. Tne frantor seciicn is best for objecte wit'l large urcomplicated int,rmal cavat:-es.
2. No. 'he intersections along the angled portion of the section cut mist first be revolved until perpendicular to tr: line of signt between tre views.
3. Space availajle on the part drawing. removed section view choulx be weed when too crowded.
$\therefore \quad-$ arrows on the cutting plane lines indic to the direction of view. wetters are used to distinguish the various section oits.

EXERCISES

1. GUIDE SHOE

elvEw = comptiti frowt.
TOP ANO MIEMT SIBE

-ctron -
phaw mient biof im
onamrom atcrion
"
2. BRACKET

3. RACK

VIEW D- 0
Doubi: ste

Stirnity $=$

L. Jecticned vicw .hould be 1 sed when an object has many internal features that wonlt otherwine have to be chown by hidden inner.
2. -ection lining defines the solid areas on a part. Various materials an be shown and the durection of section lining cun be varisd to make parts in an asuembly section stand out more clearly.
2. n off.set iection foni allcw more part features to be shown than the fui: section view.
\rightarrow. . ll section views in not rofuire cittin nlane linew to be shown. ome companys do not how cuttunf nitane lines on the full any half etection viewe.
3. irrows on cuttia* wanes indlcat. the durection viow.

A.rarsm:

Section 7. 1 YEAS FOR SPECIFYING LIMENSICNS

Be mart arawirg shows the shape of the part. Dimensions must be specified to show the size of the part. Dimensions should conform to accented standards such as U.S.A.S.I. Y14.5 for style and placewert. Too many dimensions can lead to errors in production. Too :Cw dimensions can lead to lost tine. Proper form, location and sreatilcation are essential for quick interpretation of the drawing.

DIMENSIONING CONVENTIONS

ALIGNED

UNIDIRECTIONAL

Flu fat placement of dimensions. spacial: ion to proper size and loping, o dimension should be placed in the correct view. shape shows best. Avoid dimensioning to hidden lines. place the shortest dimensions closest to the part.

a DETAIL WOAKIMG DRAWING

Standard sizes. Many items used in producing parts and assambillies are available in standard sizes. Examples are: screws, nuts and bolts, bearings, pins. Machining stock is available in many materials preformed to accurate size in many shapes like: round, square, hexagon, rectangular etc. Thin metals are specified in gage thicknesses.

LABORATORY

1.. The student should be able to demonstrate the proper in e technique in sing extension, dimension, leader and lettering guide lines to a drawing for dimensioning. Form arrowheads.
2. The students should be able to choose the best placement of dimensions based on shape of part features.
3. The student should be able to convert dimensions between the fractional inch, decimal inch and metric systems maintaining the same relative accuracy.
4. The student should be able to locate tables specifing standard sizes for hardware 1 items, formed stock shapes and sheetmetal ganges.

SECTION ITEMS

STUDY QUESTIONS


```
        fractinn:
3. wh t is 'he corruct lire thicipmos, fo: exten:ion lino,?
```


Tiv. 7.c Angles. Angles are almersioned by giving the length of two sides or by giving one side and the angle in degrees.

$\because 15.7 .7$ Arcs. An arc is less than a full circle. The radius is generally specified. Important. radii should be dimensioned by locating the center and giving the radius from the center. For unimportant radii, rounded corners, etc., just snecl:y the radius.

Fig. 7.8 cylindrical holes and cylindrical harts. Holes are usually specified by dimension in the circular view. Cylindrical surfaces are dimensioned in the non-circular view. The diameter of the cylinder or hole should be given.
$\frac{3}{4} 3 \boldsymbol{x}: \frac{1}{2} \operatorname{zefo}$
 ${ }_{3}^{3} \times 4$.

\#ge. 7.9 Hole interns. The dimension to the center of the hole should be given. Centers car be located by angular or coo.dinate dimensions.

Fig. 7.10 Arrowless dimensioning. Complicated hole patterns in parts can sometimes be dimensioned by distances from a fixed location (datum). Hole sizes can be tabulated.

F1g. 7.11. Reliefs. Reliefs are undercut areas used to facilltate machining or assembly of parts.

D1g. 7.12 Chamf ers and rounded corners. These featurs are

 designed on parts to break sharp dangerous corners or to facilitate assembly or fabrication of parts.

Fig. 7.13 Slots. Machined slots should be dimensioned to center line locations.

F1g. 7.14 Irregular curves. Coordinate dimensions are located along the curve.

LABCRATORY

1. The student should be able to place dimensions on part features according to the examples listed.

SECTION ITEMS

STUDY QUESTIONS

2. Under what conditions should the center of an arc be located.

EXERCISES

Flace dimensions on the following part drawings.

IIMNS:ONING PRORIEN \#1
Fully dimencion tree part using
fractional inch dimensions.
Ise dividers and the scale at
the bottom of trie sheet to
determine lengths.

ADD ALL MISSING LINES

BRACKET

JI:
Fully dimension the part usine decimal inch dimensions.
scale $=1 / ?$ size.
(:Jasure to center of lines to Eet leneths.)

vale $=$ Fuil size.

ti.

 :or the e noter. followne are exampe. how min the urual note form and standard ytuol.

-xamtes arn shown were the actiki macmanim ; roce-u i. named. jome
mation prefer showing the 3izt a: ilia. (itameter) oniy wath no rat+rninew ic tre rrocs. .

```
"i=e.in pecameriso
    {ar'2 - rese aro ru-
    !arny tor |e wlth hoa!
    ti*-s on varlois tyEe
    ff tr, maer=.
```


TAPPED HOLES

-npmover tareais must be cut insite \rightarrow tole, the information for the
coln aze int threar note must be \cdots. r rom .tandard tabier.

THROUGH HOLE

* Deprnor conc mataos

NOT THROUCH MOLE

 ceif +oskint or eif retalnan of : art. 1. r aizr d.

TRG: AND REAM TOA NO

Eig. 7.19 जritical diameters. i imit $-6,3-$
dimenslone may be specified to rive the aliowabie ransi, ot inzet for a shat t or hole.
drill and counterbore sizes drill and countersink sizes
Ev..7.2U Jrill and counterbore sizes. -learance must be allowed sor the boly and heal sizess for common tastener ; jorract dimeter: and der ths can b. obtained from tacies or ly lookin: un twe fa-tener head ijze an! a!ilns smail clearance.

Fig. 7. 1 - xternal tnread. .hreal damoter an 1 numher of threado rer inch are rere tied. Intormation on stondard
 2 oftannai iro:l tabif...

ing. ㄱ. \therefore boys. neys at kryways are died to yrevent sileware hetween . a at and matine part. itmadars types a d aze are obtained from titules.

Fin. \quad murls. .triarat and dimoni shaper we common. rilout ca. orecify finn, Tullam or coar re

Fiz. . . . jymbole. .:.c1. ymbol: are leat to avoid lo:4 notes.

$$
-64-
$$

Luntanicrit

1. \therefore se student should be able to use standard notes ani iymhols on a dimensjoned irawinc.

- he student should be able to write standard threal notes from information in tables for internai and external threats.

3. The : tudent sho:il: bこ able to calculate rlea ance hole alzes for fasteners.

¿ninc: ITEWS

ZUUT NESIONS

2. when a drill depth is specified, is it the entire depth of the hole to the
irlil point?
3. .cW deer is a spotface? .hat is it used for?
4. what is the advantage of a woodruff key?

- "ry is a taper pin used in preference to , strai-ht dowel nin:

5. Can a "blind" hole be threaded ali the war to the bottom?

EXETME2ES

1. "rite a thread note for an external thread or a sinaft. iameter $=3 / 8$ in.
. Lentin of thread $=? 1 / 4$ in.

- "rite a tiread note for an internal threacied hole. Threads to nate with 1 above, role is threaded all the way throuph.
$\begin{aligned} & \text { 2. "rit" a iriil ant countorbore not" for a } \\ & \text { orw. } / i^{\prime \prime} \text { diz hexafon socket head car }\end{aligned}$
- irlte i irisi ind countersink note for a $F^{\prime \prime}$ dia countersunk here cap orrew.

vat: :

\qquad

$$
\begin{aligned}
& \text { "iolerances on :rational } \\
& \text { dimension }+1,54 \text { in." }
\end{aligned}
$$

TOLERANCES

$$
\begin{aligned}
& x= \pm 1 \\
& x X= \pm .03 \\
& X X X= \pm .010 \\
& \text { ANGULAR } \\
& \text { OTHER }
\end{aligned}
$$

```
F1g. '.
biock to.erunc*" "sit h.
    cl!1巴! : ."Mt tir.aio...
```


LIMIT DIMENSIONS

NOMINAL SIZE

a designation given to the subdivision of THE UHT OF LEMGTH HAVING NO SPECIFLED LIMITS OF ACCURACY EUT IMDKCATING A CLOSE APPROXXIMATION TO A STANDARD SIZE. - A SHAFT 2"IN DIAMETER.

BASIC SIZE

THE EXACT THEORETICAL SIZE FROM WHICH ALL LIMTING VARIATIONS ARE MADE, - 2.000^{*} IN DIA.

ALLOWANCE

AN INTE:TIIO:! DIFFERENCE IN THE DIMENSIONS OF MATING PARTS.

TOLERANCE

the amount of variation permitteo in the SIZE OF A PART.

Gg. 7. 4 , macina tolerancer.
it the machining process is known,
this tolerance can be arocified
ba, ed on the capabi+ity of a
'rrtin machine.

t’lles. ihese tuseranion are
diected to fit is evtain part Fhction. Folerance. are
$\therefore \cdot \sigma i b r d$ wit'odt resard to row
tus !art Eeatire is racnined.
 (nowinal itu' Usinf an ku-b + It.
 hetween .017 asd 1.97 inche.
\therefore - ook arrosis to find the plus ant rinis variation from the nominal size. iotice that these numbers are exreried in thousandthe of an inch.
\therefore arite down the nominal size twace tor the saft caiculatione and twace ior tif holo calcalataonc. atior rubtract the limit: from trit tatie to get the fuil lurit lumeraionce.

 apprae: tc tace whorl. r, weted to
 feat $\begin{aligned} \text { r... }\end{aligned}$

STUDY WEEMIONS

1. .What is a unilateral tolerance? a bilateral tolerance?
2. Upon the title block tolerance block in fig. 7.26 what is the implied tolerance on a dimension of 2. 338 inches?
Rewrite this as a limit dimension.

3. Calculate the limit dimensions for a $1 / 2^{\prime \prime}$ ia shaft using a RC-5 fit.
4. Convert the answer to prob. 5 into metric equivalents. Be sure to maintain the same relative accuracy.

CHAPTER ITEMS

Smile iUEDIONS

1. which dimensions are selected first?
2. Gan dimensions be placed on the object:
3. which dimensions ar placed cinisest to the object?
4. a hole should be dimensioned in which view?
5. are aligned or unidirectional dimensions prefered?

EKERCIEZS

Fully dimension the following drawing. Use decimal inch dimensions.

novaris

anvil汸 7.1

\therefore he totai hei hat for a fract sat dimension shoul be at least $1 /{ }^{\prime}$ in.
3. inne thacken. For 'xten.an an ines, sholld corrospond to "thin" or a ine fige c^{\prime} :rt.
ine ter, ity for exten icn li ien whold be shack.
't iont comparys prefer arrowhec is is blackened in especialy where the irswin as ire to be mirrofilmed.
\therefore ies.

- $3.477 \pm .03 \mathrm{~nm}=4.3 .10 \pm .76 \mathrm{~mm}$ rounded of: to consistent degree of accuracy.

$\therefore 29.96 .7 . ?$

1. maties can be dimensloaed by ivins the lenth of one lef and the ircluded anzle or ky givin the leneth of two lers of the ancie.
\because the center of an arc woutd b.. specifiad when thr radis, i.ja critical location froi. the center.
$\therefore \quad .0 \pm 3$ are usilably dimensioned in the circular view.
2. imensionine shart and cylunuers:

OR

- Asenczonir, ia commtur:

jimensio:an:; a rounded corner:

\cdots
jo

$$
r_{ \pm}^{2}
$$

$$
\therefore \cdots \quad \because \quad, \quad, \quad, \quad v: i!
$$

\qquad

$$
\cdot \quad-
$$

$$
\ldots \quad \ldots \quad-
$$

\square
$\therefore \ldots$

11 b

$$
\begin{aligned}
& \text { :i..ts. . " }
\end{aligned}
$$

MOTE: Rocker orm should pivot freely on "l"

(2)

Rocker Arm
assembly drawing all parts to scale
except ens noted

 lesion and shows sareal ficm throush $t \quad \because$ em. incu the tha or fuctions of

 - llest theot ic the et of drawlitio, and in instruction ath. reparir manuals. Mce tacrams comblie blocks with screnatiz or fletorial elearits to give a Hi=x graphle lipresion of the circuit.

Most olock imarars are druws arcor:3ng to these basio ruete:
\therefore Only two or taree different size 'rooxes'.
\therefore Space boxes jo aress are ejal. neep boxes $1 n$ rows or columns. . jrow shemi fiow with arrows. 4. abei ianction of eaca block.
\because inputs on trie left. Main curcuits in the madale. Outputs on the rahte. iuxa:iary circuits on tay bottom.

N.. U.: ? lit of biock. ochematic and intoriai plements.

i. The student should te able to layout a block diagram from a roing sketch. ae dolt shod: : reflect the proper block sizes, spacing and function loutorine.

OB.
\therefore.

2. .hat i.. tiv advanta eeo of a block cilasram over a pehematic diagram:

- "dst block: always be rectanriliar in shape?

3. int recluen the size of a block:
4. . Sow do you determine how many blocks to use:
\therefore :nd wiki a feedback circuits be shown on a block diagram:

 next tc the transitory, se sure to show the rout and out rat devices an: tie e row tr arrive.

junnection diasrams chow the wiring between parts of an assembly. These drawings show the actu: wirmo inside a particular unit. They are often ujed to instruct assemblers on how to wire a device and how the wires should be rolited.

Interconnection diagrams show the external wiring used to connect a series of individual inits. These drawints are often $u s e d$ for field assembly and installation purposes.

F1g. 8.3 wire coding. ines used in connection work are usually color coded. The color is eitier abbreviated on the draving or shown by code numibers. nires may also use a base color and one or more color stripes.

Note: A wre coded $2 / 3$ is red with an orange stripe.

Color	Abbreviation	Number
Black	BK	0
Brown	BR	1
Red	R	2
Orange	O	3
Yellow	Y	4
Green	GN	5
Blue	BL	6
Violet	V	7
Gray	GY	8
White	W	9

Fig. 6.4 Typical connectior drawing. all components are housed in the same enclosure or chassis.

FiE. *. 6 Tabular connection =hart, ompare th: viriat table wit: the connection dis, rar o: the follonint :rare.

I

Fig. 8.3 Feed line connection diagram. Wire destinations are given. This type of diagram avoids a maze of crossing lines.

Fig. 8.9 Slue, Jack, terminal board etc. pin identification system.

Fig. 8.10 'wire destinations are listed lon; with wire code. ":3?" ($\mathrm{B}=\# 22 \mathrm{ga} .2=\mathrm{rad}$) Letter identification per chart somewhere on the drawing.

$\xrightarrow{\text { YR:- }}$
$\xrightarrow[0]{182-3} 0$
TEA:

TB

1. The .student should be able to braw or sketch a connection irawine.
?. die student mould be able to real w id write warm iata or chartism.

3MOY ananc:iS

1. ion are wire colors denoted?
2. Is there a general rile regarding the color wire to use baser on the circuit, function of the connection:
3. Anat is the correct identification for terminal 7 or terminal board 3?
4. In color coding the coly method used for marisini; wires?
5. .rat is the difference in the feed line, base line and point to point type connection diagrams?

1. .rite a wiring list for parts 5 and 6 or the following drawing. (lot a: pin numbers can be shown due to drawing size limitation)
: ate: :artial, simplified table is shown.

$9 i$

10
Fig. 8.11 Drawing for exercise no. i.
dehematic' diacrams use symbols to jevjct the ejectrica connuctaon to every part i:l a device. ifferent tecnniquen are ised to iriw senematics 12 various fields; eiectronic, electrical and arcnitectural. norkins with schematics in each fieid involves knowing the symbols usec int the conventional methods of showin; the connectione.

. $C=:$: \therefore ex expase it in section $\because i$ for typicil electronic ochematic diasram.

Fig. 8. 13 Typical indus schematic. A.C. motor controller is shown.
$S=$ Switch
$S_{3}=$ Three-way switch
$\theta=$ Duplex convenience outlet (plugin)
$\geqslant=220 \mathrm{v}$ outlet (plugin range, etc.)
s.., $\boldsymbol{O}^{0}=$ Relay

O = Outlet (light)
$\boldsymbol{H}=$ Telephone
$F=$ Other outlets .- letter inside means type, as fan, heater, etc.
$R=$ Any letter by a symbol means something, as $R=$ range, Dim $=$ dimmer, $w p=$ weather proof.

EXAMPLE:

Fig. \quad. 14 Architectural symbols and :ketch of a floorplan with symbol.

LABCRALOLYY

1. The student should be able to sketch a schematic dias ram from a prototype or pictorial layout.
2. The student should be able to draw a schematic diagram from a rough sketch.
3. The student should be able to read, sketch and/or draw an architectural schematic.

GENIC. ITEMS

STUDY, VESTICNS

1. What is the basis for spacing symbols on schematic diagrams.
2. Mist schematic symbols always be placed vertically or horizontally?
3. What is meant by part "identity" on a schematic diagram. What are the rules?
4. In what ways are industrial schematics slightly different from electronic schematics?
-. In architectural schematics how are 220 V circuits shown differently from standard 115 V circuits?

EXERCISES

- . jketcin the schematic diagram of the unit shown.

2. Sketch the floorflan for a classroom, laboratory or shop area and snow the architectural electrical schematic for the wiring.

ニOCION 8.4 LO'STC DIAGRAMS, INIEGRATED CIRCUITS, YRINTED CIRCUITS.
Micro-circuits are fast becoming a standard item in industry. They can be lesigaed with many componente inside a common case. These componente are wired internally to perform a pre-determined function. Design of complex logic and electronics circuits is greatly simplified since the designer must only pick the proper building blocks. Charts, diagrams and drawings are needed to assure the correct connections, power inputs etc.

Most micro-circuits are wired and mounted to printed circuit boards. Special drawings are needed to produce printed circuits.

Fié. $\overline{3} .15$ Iypical symbols used in Icsic diagrams.

APPL:Cかll.: f. REIAII:' If '1 symits

1	1	1
0	1	0
i	0	1
0	1	1
1	1	0

Fis c. 17 Internal logic inside the package. Note the four separate circuits ant the input/output notations. To the right is a "Truth Table" showing how the circuit reacte to various inputs. " 1 " = yes or on, " 0 " - no or off. (2hi: notation can chane for come tyces of logic argument.)
-90-

Fig. 3.18 Component outline drawing. The designor must know the eloctrical and physical charactoristics of every part. Part3 manufacturers supply drawings sinilar to this one for design and purchasing purposes. Fig. 8.16 shows an outine drawing for an integrated circuit.

8 strip	Piryoc	Rechetences	Toterance	$\begin{aligned} & \text { rame } \\ & \text { (htions } \end{aligned}$	Oimenelone (Inotras)			
					A	-	c	0
ACROS	1/8 watt	27 ohms to 22 megohms	$\begin{gathered} \pm 5 \% \\ \pm 10 \% \end{gathered}$	150 V	0.145	0.062	10	0.015
ncmoz	1/4 watt			250 V	0.250	0.000	15	0.025
ACn20	1/2 watt			350 V	0375	0.140	15	0.033 .
ncm32	1 watt			500 V .	0.562	0.225	1.5	0.041
ACR42	2 watt	10 ohms to 22 megohms		500 V	0.688	0.312	15	0045

Fig. 8.19 Component outline drawing for resistors. larger wattage resistors require lareer case size. Resistors are available only in the sizes shown.

Fis. 8.20. Component outline drawing for one type of capacitor. Capacitors are available in many case styles and sizes.

Fig. 8.21 Component outline drawing for a transistor. Transistor case sizes are usually specified as a TO- number (Transistor Outline) : iote the connections, emitter, base, collector, pin orientation and spacing.

Fiz. 8.22 Component outline drawinf for a diode. DO - number (Diode Outline) Diodes must be oriented in the circuit correctly. Note the banded end on the
 ciode.

Fiz. 3.23 onnection drawing for an integrated circuit logic system. This trawing showe the external connections between loyic elements. It does not show the actual connections to the correct, pin numbers.

rin connections for IC-1

Pin connections
for IC-? to IC-5

IC-1	IV-?	$T \sim-3$	IC-4	IC-5
4	4	\cdots	4	$\rightarrow 4$
20	$\rightarrow 10$	10	10	-10
13	$\rightarrow 1$	1	1	-1
,	-13	13	13	-13
5	- 8	7	8	$\rightarrow 8$
9	-7		7	-7
	386	386	386	389

$\frac{\text { Fin. } 8.35}{\text { in slace }}$ on etched circuit board.
lus

STUDY qUESTIONS

1. Explain the logic functions of ; or, nor, and.
2. What can be done on a printed circuit board to avoid crossovers of circuit paths?
3. Where can you find information on the size and pin functions for integrated circuits:
4. Explain the process used in making a etched circuit board.
j. Look up the prices on some of the 7400 series integrated circuits. Would you classify them as expensive or inexpen: dive?

EXERCISES

1. From the connection diagram and pin connection information given, prepare a pin connection chart similar to fig. 8. 24.

8260

8261
$10 \ddot{ }$

- -94-

2. Usinf the data and component outlines in this scction, sketch a $2 \times$ layout for a printed circuit board for the circuit shown.

Note: Use $1 / 2$ watt resistors and can size 1 caracitors. Use TO-18 size traneistor case.

1. 'sketch a block diagram of the automotive electrical system shown below.

2. Sketch a schematic diasram of tne device shown below.
3. Using the component sizes given, sketch an etched circuit layout to replace the "perfboard" unit shown.

4. ririte a pin conmoction chart for th. connetion di:gram hown below.

8260
\therefore Jraw or sketch fis. 8.8 as a point to point wiring diagram.

SECTION ITEMS

SECTICN 8.1

1. The block diagram gives an overgll picture of the device without regard to the exact components or wiring. It allows much quicker interpretation than the schematic diagram particularly for persons not trained in electrical or electronic circuits.
2. io. blocks sometimes take on the shape of schematic elements.
3. slock size is determined by the wording that must be placed in the block.
4. There is no real answer for this question: Block diagrams can be as simple or complex as needed. Every electronic part has a function so the block diagram could be as complex as the schematic diagram.
5. The feedback circuit would usually be shown in the lower middle of the b' :k diagram and the arrows would point to the left toward the inputs.

EXERCISES
1.

2. Inputs could include: F.M. Tuner, A.M. Tuner; Tape decks for 8 track, Cassette, Reel to Reel; T.V. Tuner, Record player etc.

Pre- Amplifier, Video monitor
Puwer ${ }^{\text {mplifier }}$
Speaker systems and headphones.

SECTION 8.2

1. Wire cplors are denoted by a one or two letter abbreviation or by color code numbers.
2. Yes. High voltage for example is usually red. 115 V mains are usually gray.
3. TB3/7
4. No. Wires may be marked by adhesive labels, paint, and sometimes by hot etamping.
5. Feed line shows wire stubs with destination symbols.

Base line showe all wires in a commonsingle line.
Point to point shows exact connection of wires.

EXCRRCISES

NOTE: PARTIAL, SIMPLIFIED TABLE IS SHOWN.

ITEM NO.	FROM		IO		WIRE COLOR	GAGE
	COMP.	PIN	COMP.	PIN .		
15	5	1	4	2	R-EL	22
16	5	2	16	-	R-BL	1
17	5	2	6	1	R-W	
18	5	3	6	6	R-W	
19	5	4	26	-	R-0.	
20	6	1	10	2	R-0	
22	$\dot{0}$	2	5-1	2	$\overrightarrow{E X}$	
R-2	6	3	6	5	-	
22	6	4	11	1	R	
23	6	4	6	5	E03	
24	6	6	10	1	Y	
25	6	7	5-1	1	Ex-H	
26°	6	8	4	2.	I	
, 29	6	CAP	7	-	ER	
\bigcirc	.					7
\therefore						22

SECPION 3.3

1. Equal area concept.
 placed on an angle.
2. Parts must be identified on a schematic diagram. These identifications are related back to the parts list. Basic identifications are: R - 1, C - 15 $D-7$ etc. In addition the value, voltage, device number, etc., may be shown to make schematic interpretation easier.
3. Industrial schematics use the block format and variations on some of the symbols.
4. Different plug symbol and three wires instead of two wires.

EXERCISES

$$
J-4 \quad J-3 \quad J-2 \quad J-1
$$

1.

2. To be answered locally.

1. Trese symbols refer to the output conditions of a device based on the input conditions. One explanation might be: (positive logic)

OR if input A or R is on, output is on.
NOR if neither input is on, output is on.
AND if input A and input B is on, output is on.
2. Circuit paths can be routed under components - uaing the component $2 s$ a "bridge", double sided boerds can be used, jumpers are sometines noeded.
3. No standard reference is generally available. Usually the individual part. manufacturer's catalos unst be usod.
4. 'Artwork, photomaegative, circuit board exposure, develop circuit image, etch drill holes.
5. Very imexpenaive.

EDCPRCISTS

1. Connection diagran may vary depending on the IC-1, IC -2 etc. notation chosen.

$$
I C-1 \text { IC - 2 IC }-3 \text { IC }-4 \text { IC }-5 \text { IC }-6 \text { IC }-7 \text { IC }-8 \text { IC }-9
$$

 for a printea sercuit heract for the circhit shown.

Noto: ひ̈se $1 / 2$ wett resistors and can size 1 capacitors. Use 'u-1' 2\% tranultor cace.

CHAPTER ITEMS CHAPTER.VIII

1.

2.

TYPICAL

3. Jiagram may vary according to how IC's are labeled.

IC - 1	IC-2		IC - 3	IC - 4	$\begin{aligned} & (\operatorname{Ic}-1, \text { IC }-2= \\ & 8266) \end{aligned}$
16	16		24	24	
$8 \& 7$	$8 \& 7$	\cdots	12	12	(IC - 3, IC - $4=$
9	9			$3 \& 4$	8260)
182	1\&2	.			
586	586				
$10 \% 11$	$10 \& 11$				
14815	14815				
3			17		
4			19		
12			21		
13			23		
	3			17	
	4			19	
	12			21	
	13			23	

4.

The joining of two pieces of metal by gas, arc, or resistance welding is an economical means of fabrication especially in the early stages of design. A knowledge of the common welding processes, basic welded joints, and symbols used, to represent various welds is a necessity for the technician involved in preliminary design.

Figure 9-1 Basic types of welded joints.

FILLET

PLUG OR SLOT

SQUARE

$" J "$

Figure 9-2 Fundamental arc and gas welds with related symbols.

TYPE OF WELD				
Spot	Projection	Seam	Flash or Upset	
			$\\|$	

Figure 9-3 Resistance weld symbols.

SUPPLEMENTARY SYMBOLS							
Weld All Around	Field Weld	Melt-Thru	Contour				
				Flush	Convex		

Figure 9-4 Supplementary symbols.

Figure 9-5 Standard location of the elements of a welding symbol.

Due to the standardization of welding symbols, precise information can be placed on a drawing regarding the exact type, size, and number of welds required. The following illustrations show typical examples of various welds.

DESIRED
WELD
(b) SYMBOL
DESIRED
WELD
(a)
SYMBOL

SYMBOL
(c)

DESIRED WELD

SYMBOL

> Figure 9-6 Examples of welds.

1. The student should be able to translate ANSI* welding symbols from a typical cross section into a clear and complete statement describing the required widd.
2. The student should be able to draw the correct ANSI welding symbols and apnly them to a typical joint cross section from a word description.

$\therefore 1 \mathrm{CTON}$ ITYM:

1. What dnes a fuld weld symbol indicate?
\therefore is edqe i, peparation usudlly shown on a working symbol?
\therefore Why 15 welding usually freferred over casting or foraing in protorypr fabrication?

EXERCISES

1. Draw the symbol for a $1 / 2^{\prime \prime}$ weld on the other side of the joint at (a) and both sides at (b).

2. Describe the following weld.

CHAPTER ITEMS

1. Make a weld assembly drawing on an A size sheet of vellum using proper ANSI SYMBDLS.

ANSWERS

Section Items

1. Welds made after the initial fabrication.
2. No. With proper weld symbols and notation a picture of the edge preparation is not required.
3. Welding is usually preferred in prototype abrication because it is cheaper and faster.

EXERCISES (solutions)

1.

2. Field weld all around with $3 / 8^{\prime \prime}$ fillet weld.

SECTION 10-1 JOINTS, FITTINGS, AND VALVES

Pipes which carry a fluid must be joined together and routed in various directions to get the fluid from one point to another. The joints and fittings which are required must form a leak proof seal and, in the case of high pressure lines, must be structurally sound. The flow of the fluid usually requires some control and this is achieved through the use of valves. pipes are made from ferrous and nonferrous materials with various applications. The material from which the pipe is made and the condition of the fluid being transported are determining factors in the selection of fittings and joints.

Pipe Material

Pipe is available in steel, wrought-iron, cast-iron, seamless brass and copper, or plastic. Their selection depends to a large extent on their applecation.

Pie Joints and Fittings
Fittings may be used to join pipes together, change size or direction, or allow for branching. The type of joint and. fitting may be screwed, welded, flanged, or soldered depending upon material and application.

Valves

Valves are used to control the flow of fluids in a pipe. The more common types are gate valve, g lobe valve, and check valve.

LABORATORY

1. The student should be able to select the correct fittings and joints when given a pipe material, size, and application.

SECTION ITEMS

STUDY QUESTIONS

1. What is the purpose of a check valve?
2. Name one kind of joint that can be used in a high pressure steel line?
3. Of the two, which offers the most resistance to flow; a gate valve or globe valve?

$$
1 i
$$

1. Make a list of the pipe and fittings to be ordered for the system shown in figure 10.1. Arrange the list in tabular form under headings of size, pipe length, valves, fittings,etc. Use a scale of $1^{\prime \prime}=20^{\circ}$ for the length of pipe taken from the isometric. Use flanged cast-iron pipe. Pressure in the pipe will not exceed 200 lbs. psi.

$3^{\prime \prime}$ CAST IRON PIPE

Figure 10.1

SECTION 10-2 SINGLE-LINE AND DOUBLE-LINE DRAWINGS

Pipe drawings are made to show the size and location of pipes, fittings, and valves. A single-line drawing showing ANSI symbols is a fast and convenient way of making a drawing using orthographic or axonometric drawing. Double-line drawings aic used when more detail is required in the drawing.

Figure 10.2 single Line Drawing

IABORATORY

1. The student should be able to make a single-line orthographic or isometric drawing from either word description or double-line drawing.
2. The student should be able to make an orthographic or isometric double-line drawing from a single-line drawing.

SECTION ITEMS

EXERCISES

1. Make a single-line isometric drawing of figure 10.3.

CHAPTER ITEMS

EXERCISES

:. Make a double-line isometric drawing of figure 10.2.

ANSWERS

SECTION 10.1

1. The purpose of a check valve is to allow flow in only one direction.
2. Welded joints.
3. Globe valve. The fluid must go through the valve at right angle to the flow direction.

ChAPTER XI GRAPHS

SECTION 11.1 LINE GE:PHS

Line graphs are commonly used in the engineering field because of their visual appeal and ease of interpretation. Some of the more common line graphs are the Rectangular Coordinate Graph, Semilogarithmic Graph, Logarıthmic Graph, and the Polar Graph.

Fig. 11.1 Typıcal Line Graph

The manner in which a curve is drawn on a graph will depend upon its derivation. If the graph represents discrete values such as temperature or dates it will be made up of straight line segments and pass tarough all data points as in fig. 11.2 (a). For a curve that can be easily defined mathematically, it will be smooth and pass through all data points as in Fig. 11.2 (b). A graph representing experimental, data may be straight or curved and will take a mean path through the distrıbution of data points as in Fig. 11.2 (c).

Fig. 11.2

When constructing a line graph, the following suggestions should be conside red:

1. The horizontal scale should usually read from left to right and the vertical scale from bottom to top.
2. All lettering on the graph should read from the bottom or from the left-hand side.
3. The zero line should always be shown except for logarithmic graphs. The diagram should be broken if the scale is such that the zero line would not normally appear on the graph.
4. Important numerical data and formulas should be included on the graph.
5. The title should completely define the graph and be placed so that it is easily found.

LABORATORY

The student should be able to annotate a graph when given the grid, curve, and pertinent data.

SECTTION ITEMS

QUESTIONS

1. What four line graphs are most commonly used in the engineering field?
2. On which side of the vertical axis is the label usually placed?
3. Why does the zero line never appear on a logarithmic graph?
4. On which side of the horizontal axis shouid the label be placed?

EXERCISES

1. Complete the graph in Fig. 11.3 by adding the given information.

Title: STRESS-STRAIN DIAGRAM Soft Steel

Horizontal axis label: Strain in inches per inch Vertical axis label: Stress in pounds per sq. inch Scale on vertical axis: each sq. equals 1000 psi

Scale on horizontal axis: each sq. equals . 001 in.

FMg. 11.3
SECTION 11.2 RECTANGULAR LINE GRAPHS
Rectangular line graphs are usually drawn on preprinted grid paper whose horizontal and vertical lines form small rectangles which range in sizes of 1 mm , $1 / 10^{\prime \prime}$, or $1 / 20^{\prime \prime}$ on a side. The horizontal and vertical axes of the graph on which the independent and dependent variables are plotted, respectively, are drawn about $l^{\prime \prime}$ inside the grid to allow for lettering.

Fig. 11.4 Typical Rectangular Line Graph

IABORATORY

1. The student should be able to pick correct values from a ractimpulir linr. graph.

The student should be able to construct a rectangular line graph when given a set of data.

EXERCISES

1. PLOTTING GRAPHS

Look at the examples of plotted graphs. Notice how certain cizcled data are related to the iine graphs of examples 1 and 2. Now that you have observed how data is plotted to form a line graph choose other given data from the data tables and locate additional points on the graph.

Typical curves with written notations for you to compare. See if you can follow the written information on the graphs.

Fig. 11.5

2. RECTANGULAR LINE GRAPH

Looking at the following graph, complete the following unfinished material by providing the temperatures in degrees for the given times.

TIME	DEGREES	TIME	DEGREES
NOON	80	MIDNIGHT	
1:00		1:00	-
2:00		2:00	
3:00		3:00	
4:00		4:00	
5:00	'	5:00	
6:00		6:00	
7:00		7:00	
8:00		8:00	
9:00		9:00	
10:00		10:00	
11:00		11300	-

SECTION 17. 3 SEMILOGARITHMIC GRAPHS

A semilog line graph is one in which two variables are plotted on semilogarithmic coordinate paper to form. a continuous straight line or curve. Semilog paper contains uniformly spaced vertical lines and logarithmically spaced horizontal lines. Semilog graphs are useful when the dependent variable has a large range.

Fig. 11.6 Typical Semilog Craph

LABORATORY

1. The student should be able to pick correct. values from a semilog graph.
2. The student should be able to construct a semilog graph when given a set of data.

SECTION ITEMS

EXERCISES:

1. Using a sheet of semilog paper, plot the data in Fig. 11.7.

TEMPERATURE T, OF	STRESS S, Ib. per sq. in.
1,100	2,700
1,200	1,250
1,300	570
1,400	270

Fig. 11.7

SECTION 11.4 LOGARITHMIC GRAPHS

A logarithmic line graph has two variables plotted on logarithmic coordinate grid paper to form a continuous line or "smooth curve". Log grid paper contains logarit'vically spaced divisions on both the vertical and horizontal axes. Log and semilog graph paper can be obtained having as many as five cycles on an axis. Log graphs are used for comparison of large numbers of plotted values in a compact space and for comparing relative trends of several plotted curves on the same chart or graph. Log graphs are not the best form to present relatively few plotted values or for displaying absolute amounts -- but are very good for displaying an extensive range of values used in empirical equations.

Fig. 11.8 Typical Log Graph

LABORATORY

1. The student should be able to pick correct values from a log graph.
2. The student should be able to construct a $10 g$ graph when given a set of fata.

SECTION ITEMS

EXERCISES

1. Plot the given date on log paper. Choose the number of cycles each way to use most of the paper.

SPEED RPM	CU. CAPACITY
1.5	46
2.5	57
4	76
6	70
10	117
15	143
19	170
34	220
60	280
90	355

SECTION 11.5 POLAR GRAPHS

Polar graphs are often used when data is to be examined with respect to various angular positions. The polar graph is different from the previous graphs in that the independent variables are marked off in degrees around the border of the graph and the dependent variables are marked off on the horizontal or vertical radial lines.

Fig. 11.10 Typical Polar Graph

LABORATORY

1. The student should be able to ${ }^{60}$ pick correct values from a polar graph.
2. The student should be able to construct a polar graph when given a set of data.

SECTION ITEMS

EXERCISES

1. Construct a polar graph using the data in Fig. 11.11.

Orientation, degrees	Candle Power
0	130
10	200
20	300
30	310
40	300
50	300
60	
70	
80	
90	
100	
110	
120	290
130	
140	
150	
160	
170	
180	

Fig. 11.11 Candle Power Distribution in a Vertical Plane, of an Incandescent Lamp Suspended froil the Ceiling.

CHAPTER ITEMS

QUESTIOn

1. Why is a curve sometimes drawn between plotted points on a graph rather than through them?
2. What are the two axes of a graph called?
3. How are the values plotted on the X and Y axes?
4. What are the two varıables on a graph called?
5. In reading a graph, how accurate must one estimate?
6. Why are graphs used by scientists and engineers?
7. What is the difference betw en common rectangular graph paper and semilog graph paper?
8. Why is graph pàper printed in various colors; i.e., black, orange, green, purple?

EXERCISES

1. RECTANGULAR LINE GRAPH

- This is the frequency of the output of device " Y " as the temperature of the device is changed.

Temp. ${ }^{\circ} \mathrm{C}$	Frequency (MHz)
0	100.0500
2.5	100.0930
5.0	100.0200
7.5	100.0100
10.0	100.0060
12.5	99.9980
15.0	99.9970
17.5	99.9920
20.0	99.9930
22.5	99.9910
25.0	99.9900
27.5	99.9910
30.0	99.9915
32.5	99.9960
35.0	99.9965
37.5	100.0000
40.0	99.9980
42.5	99.9930
45.0	99.9875
47.5	99.9840
50.0	99.9820
52.5	99.9760
55.0	99.9765
57.5	99.9750
60.0	99.9740
62.5	99.9730
65.0	99.9720

13.

2. LOG GRAPH

Graph this data:

y	x
2.0	.1
5.2	.2
9.0	.3
13.0	.4
22.0	.6
30.0	.8
50.0	1.3
72.0	2.0

y	x
95.0	3.0
130.0	5.0
150.0	7.0
170.0	10.0
230.0	20.0
260.0	30.0
280.0	40.0
300.0	50.0

3. SEMILOG GRAPH

Here is some data on frequency response of an amplifier:

Notice that there are five general groups of frequencies; $1-10,10-100$, 100-1000, 1000-10,000, and 10,000-100,000 These are the 5 cycles and the reason you were to get 5 cycle paper. At other times, you may only need 2 or 3 cycles.

ANSWERS

Section 11.1

1. Rectangular line graph, semilog graph, log graph, polar graph.
2. Left side.
3. Because the logarithm of a number approaches infinity as the number approaches
4. Lower side.

ANSWERS TO EXERCISES

Section 11.1 (Engineering Graphs)

1.

Section 11.2 (Rectangular Line Graphs)

1.

ANSWERS TO QUESTIONS

1. Experimental data will always have some variation from the "true" values due to errors in reading instruments, slight changes in conditions, etc.
2. The vertical axis is called the Y-axis or ordinate and the horizontal axis is called the X-axis or abscissa.
3. Values along the X and. Y axes are positive up and to the right and negative down and to the left.
4. Most physical systems with two variables have one which can be varied, by the experimenter and a second variable which depends on the first. The first is called the independent variable and the second is called the dependent variable.
5. To the nearest half of the smallest scale division.
6. They are very descriptive and can be used to clearly show the results of an experiment, how a circuit or device behaves, to present data, and to show the relationship between variables in mathematical equations.
7. Rectangular graph paper has equally spaced linear divisions along the vertical and horizontal axes. Semi log graph paper has equally spaced linear divisions on the short axis and non-linear logarithmic spacing on the long axis.
8. Certain reproduction processes require special colors and sometimes the grid lines are intended to not print script lightly or to print out strong when reproduced for an engineering report.

ANSWERS TO EXERCISES

1. Rectangular Line Graph

2. Log Graph

[^0]:

 * Reproductions supplied by EDRS are the best that can be made * * fron the original document. *

[^1]:

[^2]: raw or 'keto: the answer: to the followner problems.

