INSTRUCTION MANUAL

FOR

OVERCURRENT PROTECTION SYSTEM

BE1-851

Publication: 9289900990
Revision: H 9/2003

INTRODUCTION

This instruction manual provides information about the operation and installation of the BE1-851 Overcurrent Protection System. A summary of the information provided is listed below:

- General information, specifications and a Quick Start guide.
- Functional description and setting parameters for the input/output functions, protection and control functions, metering functions, and reporting and alarm functions.
- BESTlogic programmable logic design and programming.
- Documentation of the preprogrammed logic schemes and application tips.
- Description of security and user interface setup including ASCII communication and the human-machine interface (HMI).
- Installation procedures, dimension drawings and connection diagrams.
- Description of the front panel HMI and the ASCII command interface with write access security procedures.
- A summary of setting, metering, reporting, control and miscellaneous commands.
- Testing and maintenance procedures.
- Description of BESTCOMS graphical user interface (GUI).
- Appendices containing characteristic curves, an ACCII command-HMI cross reference, relay settings record forms and terminal emulation guidelines.

A table of contents for the instruction manual is provided in this introduction. A detailed table of contents for each section is provided in the front of each section, if appropriate. Information about communication protocols such as Modbus ${ }^{\mathrm{TM}}$ or Distributed Network Protocol (DNP) 3.0 is covered in a separate manuals for each optional protocol.

CAUTION

Versions of BESTCOMS with version numbers below 1.31 .00 are incompatible with newer versions of BE1-851 firmware. If your relay contains version 2.42 firmware or higher (most relays made August1999), you MUST upgrade to BESTCOMS version 1.31.00 or higher (version 2.00 .00 and higher recommended) before connecting to the relay. Failure to upgrade BESTCOMS prior to connections will result in database corruption of all stored data in earlier versions of BESTCOMS.

WARNING!

TO AVOID PERSONAL INJURY OR EQUIPMENT DAMAGE, ONLY QUALIFIED PERSONNEL SHOULD PERFORM THE PROCEDURES PRESENTED IN THIS MANUAL.

CONFIDENTIAL INFORMATION

OF BASLER ELECTRIC COMPANY, HIGHLAND, IL. IT IS LOANED FOR CONFIDENTIAL USE, SUBJECT TO RETURN ON REQUEST, AND WITH THE MUTUAL UNDERSTANDING THAT IT WILL NOT BE USED IN ANY MANNER DETRIMENTAL TO THE INTEREST OF BASLER ELECTRIC.

It is not the intention of this manual to cover all details and variations in equipment, nor does this manual provide data for every possible contingency regarding installation or operation. The availability and design of all features and options are subject to modification without notice. Should further information be required, contact Basler Electric, Highland, Illinois.

BASLER ELECTRIC
 ROUTE 143, BOX 269
 HIGHLAND, IL 62249 USA
 http://www.basler.com, info@basler.com

PRODUCT REVISION

The following information provides a historical summary of the changes made to the software, embedded software (firmware) and hardware of this device. The corresponding revisions made to this instruction manual are also summarized. This revision history is separated into four categories: BESTCOMS Software Version, Application Program Firmware Version, Hardware Version and Manual Revision. All revisions are listed in chronological order by date with the latest on top.

BESTCOMS Software Version	Change
2.02 .00	Improved printing. 2.01 .01
Added an error message when virtual test switches, inputs and outputs are left blank. Initial release of 32-bit version. Added on-line metering screen. Added the ALMLGC variable to support version n.42.nn and higher. Added terminal mode to BESTCOMS.	
1.32 .01	Implemented new *.bst file format for settings. Added support for Version 3 hardware.
Initial release of 16-bit version.	

Application Program Firmware Version	Change		
$3.45 .00 / 06-03$			
$3.43 .09 / 03-03$		\quad	Enabled target reset through MODBUS.
:---			
Added capability of changing MODBUS Password Security with ASCII			
command.			
Adjusted range of $3^{\text {rd }}$ parameter (C) for the SP-CURVE command to 0.0 to			
+1.0.			
Improved year handling with IRIG - B connected.			
$3.45 .00 / 06-03$ and			
4.45 .00	\quad	Added digital event recording for oscillography events less than $1 / 2$ cycle.	
:---			

CONTENTS

SECTION 1 General Information. 1-1
SECTION 2 Quick Start 2-1
SECTION 3 Input And Output Functions 3-1
SECTION 4 Protection and Control 4-1
SECTION 5 Metering 5-1
SECTION 6 Reporting and Alarm Functions 6-1
SECTION 7 BESTlogic Programmable Logic 7-1
SECTION 8 Application 8-1
SECTION 9 Security 9-1
SECTION 10 Human-Machine Interface 10-1
SECTION 11 ASCII Command Interface 11-1
SECTION 12 Installation 12-1
SECTION 13 Testing and Maintenance 13-1
SECTION 14 BESTCOMS Software 14-1
APPENDIX A Time Overcurrent Characteristic Curves. A-1
APPENDIX B Command Cross-Reference B-1
APPENDIX C Relay Settings Record C-1
APPENDIX D Terminal Communication D-1

SECTION 1 • GENERAL INFORMATION

TABLE OF CONTENTS

SECTION 1 • GENERAL INFORMATION 1-1
General 1-1
FEATURES 1-1
I/O Functions (Section 3) 1-1
Power System Measurement Functions 1-1
Contact Sensing Inputs 1-2
Contact Outputs 1-2
Protection and Control Functions (Section 4) 1-2
Overcurrent Protection 1-2
Breaker Failure Protection 1-2
General Purpose Logic Timers 1-2
Setting Groups 1-2
Virtual Control Switches 1-3
Metering Functions (Section 5) 1-3
Reporting and Alarm Functions (Section 6) 1-3
Relay Identification 1-3
Clock 1-3
General Status Reporting 1-3
Demand Reporting 1-3
Breaker Monitoring 1-3
Trip Circuit Monitoring 1-3
Fault Reporting 1-4
Sequence of Events Recorder 1-4
Alarm Function 1-4
Version Report 1-4
BESTlogic Programmable Logic (Section 7) 1-4
Write Access Security (Section 9) (Section 12) 1-4
Human-Machine Interface (HMI) (Section 10) 1-5
Communication (Section 9) (Section 11) 1-5
BESTCOMS Software (Section 14) 1-5
PRIMARY APPLICATIONS 1-5
MODEL AND STYLE NUMBER DESCRIPTION 1-6
General 1-6
Sample Style Number 1-6
OPERATIONAL SPECIFICATIONS 1-7
Metered Current Values and Accuracy 1-7
Calculated Values and Accuracy 1-7
Real Time Clock 1-7
IRIG 1-8
Contact Inputs Recognition Time 1-8
Time Overcurrent Functions 1-8
Instantaneous Overcurrent Functions 1-9
Reclosing Timers (79) 1-9
Breaker Fail Timer (BF) 1-10
General Purpose Timers $(62,162)$ 1-10
Automatic Setting Group Characteristics 1-10
GENERAL SPECIFICATIONS 1-10
AC Current Inputs with 5 A CT 1-10
AC Current Inputs with 1 A CT 1-10
Analog to Digital Converter 1-11
Power Supply 1-11
Output Contacts 1-11
Control Inputs 1-11
Communication Ports 1-12
Display 1-12
Isolation 1-12
Surge Withstand Capability 1-12
Radio Frequency Interference (RFI) 1-12
Electrostatic Discharge (ESD) 1-12
U.L. Recognition 1-13
C.S.A. Certification 1-12
Environment 1-12
Shock 1-13
Vibration 1-13
Weight 1-13
Figures
Figure 1-1. Style Number Identification Chart. 1-7
Tables
Table 1-1. Burden 1-11

SECTION 1 • GENERAL INFORMATION

General

The BE1-851 Overcurrent Protection System is an economical, microprocessor based, multifunction system. It is available in S 1 (Basler/GE style), H1 (half-rack) and F1 (Westinghouse FT-11 size) configurations. BE1851 features include:

- Time \& Instantaneous Overcurrent Protection
- Control
- Automatic Reclosing
- Breaker Failure Protection
- Breaker Monitoring
- Metering Functions
- Communication

BE1-851 relays have four programmable contact sensing inputs, five programmable outputs and one alarm output. Outputs can be assigned to perform protection, control or indicator operations through logical programming. For example, protection functions could be programmed to cause a protective trip. Control functions could be programmed to cause a manual trip, manual close or automatic reclose. Indicators could be configured to annunciate relay failure, a settings group change and others.

Protection scheme designers may select from a number of pre-programmed logic schemes that perform the most common protection and control requirements. Alternately, a custom scheme can be created using BESTlogic.

A simplified "How To Get Started" procedure for BE1-851 users is provided in Section 2, Quick Start.

FEATURES

The BE1-851 relay includes many features for the protection, monitoring and control of power system equipment. These features include protection and control functions, metering functions, and reporting and alarm functions. A highly flexible programmable logic system called BESTlogic allows the user to apply the available functions with complete flexibility and customize the system to meet the requirements of the protected power system. Programmable I/O, extensive communication features and an advanced human machine interface (HMI) provide easy access to the features provided.

The following information summarizes the capabilities of this multifunction device. Each feature along with how to set it up and how to use its outputs is described in complete detail in the later sections of this manual.

I/O Functions (Section 3)

Input functions consist of power system measurement and contact sensing inputs. Programmable contact outputs make up the output functions. Input and output functions are described in the following paragraphs.

Power System Measurement Functions

BE1-851 relays are designed for operation on both 50 and 60 hertz systems and have four current inputs to measure phase and neutral currents. It is a numerical device that samples the analog current waveforms and uses mathematical algorithms to measure the operating quantities. One of three current measurement algorithms may be individually selected for phase and neutral. Those are:

- Fundamental
- Average
- Wideband RMS

The fundamental algorithm responds to the fundamental component of the current and rejects the harmonic components. The average algorithm emulates an RC measurement circuit and has a relatively flat response characteristic over a wide frequency range. The wideband RMS algorithm measures all components of the current up to the seventh harmonic.

In addition, the relay measures the magnitude of the negative sequence component of the fundamental phase current quantities. The negative sequence measurement has by definition a fundamental response characteristic.

Each current sensing circuit is low burden and isolated. Negative sequence current magnitudes are derived from the three-phase currents. Neutral current input is available for direct measurement of the current in a transformer neutral, tertiary winding or flux balancing current transformer.

Contact Sensing Inputs

Four programmable contact sensing inputs (IN1, IN2, IN3 and IN4) with programmable signal conditioning provide a binary logic interface to the protection and control system. Each input's function and labeling is programmable using BESTlogic. A user-meaningful name can be assigned to each input and to each state (open and closed) for use in reporting functions.

Contact Outputs

Five programmable general purpose contact outputs (OUT1, OUT2, OUT3, OUT4 and OUT5) provide a binary logic interface to the protection and control system. One programmable, fail-safe contact output (OUTA) provides an alarm output. Each output's function and labeling is programmable using BESTlogic. A user-meaningful name can be assigned to each output and to each state (open and closed) for use in reporting functions. Output logic can be overridden to open, close or pulse each output contact for testing or control purposes. All output contacts are trip rated.

Protection and Control Functions (Section 4)

Protection functions consist of overcurrent, breaker reclosing and breaker failure protection and general purpose logic timers. Setting groups and virtual control switches make up the control functions. The following paragraphs describe each protection and control function.

Overcurrent Protection

Overcurrent protection is provided by six instantaneous overcurrent functions and three time-overcurrent functions.

Each instantaneous overcurrent function has a settable time delay. Sensing input type G relays have two phase and four neutral elements. Sensing input type H relays have two phase, two neutral and two negative sequence elements. Phase elements include 50TP and 150TP. Neutral elements include 50TN, 150TN, 250 TN and 350TN. Negative sequence elements include 50TQ and 150TQ.
A 51P phase element, 51Q negative sequence element, and 51 N and 151 N neutral elements are provided for time-overcurrent functions. Sensing input type G relays have one phase and two neutral elements. And sensing input type H units have one phase, one neutral and one negative sequence element. Time-overcurrent functions employ a dynamic integrating timing algorithm covering a range from pickup to 40 times pickup with selectable instantaneous or integrated reset characteristics. Time-overcurrent curves conform to the IEEE C37.112 document and include seven curves similar to Westinghouse/ABB CO curves, five curves similar to GE IAC curves, IEC types A, B, C and G, a fixed time curve and a user programmable curve.

Breaker Failure Protection

One breaker failure protection block (BF) provides programmable breaker failure protection.

General Purpose Logic Timers

Two general purpose logic timers $(62,162)$ with six modes of operation are provided.

Setting Groups

Four setting groups allow adaptive relaying to be implemented to optimize BE1-851 settings for various operating conditions. Automatic and external logic can be employed to select the active setting group.

Virtual Control Switches

BE1-851 virtual control switches include one virtual breaker control switch and four virtual switches.
Trip and close control of a selected breaker can be controlled by the virtual breaker control switch (101). The virtual breaker control switch is accessed locally from the optional human machine interface (HMI) or remotely from the communication ports.

Additional control is provided by the four virtual switches: 43, 143, 243 and 343. These virtual switches are accessed locally from the optional HMI or remotely from the communication ports. Virtual switches can be used to trip and close additional switches or breakers, or enable and disable certain functions.

Metering Functions (Section 5)

Metering is provided for all measured currents, and all derived neutral and negative sequence currents. One percent meter accuracy is provided down to ten percent of nominal current.

Reporting and Alarm Functions (Section 6)

Several reporting and alarm functions provide fault reporting, demand, breaker and trip circuit monitoring as well as relay diagnostic and firmware information.

Relay Identification

Two free-form fields are provided for the user to enter information to identify the relay. These fields are used by many of the reporting functions to identify the relay that the report is from. Examples of relay identification field uses are station name, circuit number, relay system, purchase order and others.

Clock

A real-time clock is included with a capacitor backup and is available with an optional battery backup. Depending upon conditions, capacitor backup maintains timekeeping during an eight to 24 hour loss of operating power. Battery backup maintains timekeeping when operating power is removed for five years or longer.

A standard IRIG input is provided for receiving time synchronization signals from a master clock. Automatic daylight saving time compensation can be enabled. Time reporting is settable for 12 or 24 hour format. The date can be formatted as $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$ or $\mathrm{dd} / \mathrm{mm} / \mathrm{yy}$.

General Status Reporting

The BE1-851 provides extensive general status reporting for monitoring, commissioning and troubleshooting. Status reports are available from the HMI or communication ports.

Demand Reporting

Ampere demand registers monitor phase A, B, C, neutral and negative sequence values. The demand interval and demand calculation method are independently settable for phase, neutral and negative sequence measurements. Demand reporting records today's peak, yesterday's peak and peak since reset with time stamps for each register.

Breaker Monitoring

Breaker statistics are recorded for a single breaker. They include the number of operations, accumulated interrupted I or I2 and breaker time to trip. Each of these conditions can be set to trigger an alarm.

Trip Circuit Monitoring

A trip circuit monitor function is provided to monitor the trip circuit of a breaker or lockout relay for loss of voltage (fuse blown) or loss of continuity (trip coil open). The monitoring input is internally connected across

OUT1. Additional trip or close circuit monitors can be implemented in BESTlogic using additional inputs, logic timers and programmable logic alarms.

Fault Reporting

Fault reports consist of simple target information, fault summary reports, and detailed oscillography records to enable the user to retrieve information about disturbances in as much detail as is desired. The relay records and reports oscillography data in industry standard IEEE, COMTRADE format to allow using any fault analysis software.

Sequence of Events Recorder

A 255-event Sequence of Events Recorder (SER) is provided that records and time stamps all relay inputs and outputs as well as all alarm conditions monitored by the relay. Time stamp resolution is to the nearest quarter-cycle. I/O and alarm reports can be extracted from the records as well as reports of events recorded during the time span associated with a specific fault report.

Alarm Function

Extensive self diagnostics will trigger a fatal relay trouble alarm if any of the relay's core functions are adversely affected. Fatal relay trouble alarms are not programmable and are dedicated to the alarm output (OUTA) and the front panel Relay Trouble LED. Additional relay trouble alarms and all other alarm functions are programmable for major or minor priority. Programmed alarms are indicated by major and minor alarm LEDs on the front panel. Major and minor alarm points can also be programmed to any output contact including OUTA. Over 20 alarm conditions are available to be monitored including user definable logic conditions using BESTlogic.

Active alarms can be read and reset from the HMI or from the communication ports. A historical sequence of events report with time stamps lists when each alarm occurred and cleared. These reports are available through the communication ports.

Version Report

The version of the embedded software (firmware) is available from the optional HMI or the communication ports. The unit serial number and style number is also available through the communication port.

BESTlogic Programmable Logic (Section 7)

Each BE1-851 protection and control function is implemented in an independent function block. Every function block is equivalent to its single function, discrete device counterpart so it is immediately familiar to the protection engineer. Each independent function block has all of the inputs and outputs that the discrete component counterpart might have. Programming with BESTlogic is equivalent to choosing the devices required by your protection and control scheme and then drawing schematic diagrams to connect the inputs and outputs to obtain the desired operating logic.

Several preprogrammed logic schemes and a set of custom logic settings are provided. A preprogrammed scheme can be activated by merely selecting it. Custom logic settings allow you to tailor the relay functionality to match the needs of your operation's practices and power system requirements.

Write Access Security (Section 9 \& Section 12)

Security can be defined for three distinct functional access areas: Settings, reports and control. Each access area can be assigned its own password. A global password provides access to all three functional areas. Each of the four passwords can be unique or multiple access areas can share the same password.

A second dimension of security is provided by allowing the user to restrict access for any of the access areas to only specific communication ports. For example, you could set up security to deny access to control commands from the rear RS-232 port that is connected through a modem to a telephone line.

Security settings only affect write access. Read access is always available in any area through any port.

Human-Machine Interface (HMI) (Section 10)

Each BE1-851 comes with a front panel display with five LED indicators for Power Supply Status, Relay Trouble Alarm, Minor Alarm, Major Alarm and Trip. The lighted, liquid crystal display (LCD) allows the relay to replace local indication and control functions such as panel metering, alarm annunciation and control switches. The LCD has automatic priority logic to govern what is being displayed on the screen so that when an operator approaches, the information of most interest is automatically displayed without having to navigate the menu structure. The order of priorities are:
(1) Recloser active
(2) Targets
(3) Alarms
(4) Programmable automatic scrolling list

Up to 16 screens can be defined in the programmable, automatic scroll list.

Communication (Section 9) (Section 11)

Three independent, isolated communication ports provide access to all functions in the relay. COMO is a nine pin female RS-232 port located on the front of the case. COM1 is a nine pin female RS-232 port located on the back of the case. COM2 is a two wire RS-485 port located on the back of the case.

An ASCII command interface allows easy interaction with the relay using standard off the shelf communication software. The ASCII command interface is optimized to allow automating of the relay setting process. Settings files can be captured from the relay and edited using any software that supports the *.txt file format. These ASCII text files can then be used to set the relay using the send text file function of your communication software.
Modbus ${ }^{\text {TM }}$ and other common protocols are optionally available for the RS-485 communication port. A separate instruction manual is available for each available protocol. Consult the product bulletin or the factory for availability of these options and instruction manuals.

BESTCOMS Software (Section 14)

BESTCOMS is a Windows ${ }^{\circledR}$ based graphical user interface (GUI) that runs on IBM-compatible computers. The software is used to create settings files for protection, control, operating logic, breaker monitoring, metering and fault recording functionality. A primary advantage to BESTCOMS is that these setting files may be created while off line (not connected to a unit). This feature gives the engineer flexibility in developing, testing and replicating the settings before exporting them to a file and transmitting the file to technical personnel in the field.

The BESTCOMS GUI also includes the same preprogrammed logic schemes that are contained in the relay. This allows engineers the flexibility of developing setting files using a preprogrammed logic scheme, customizing a preprogramed logic scheme or building a scheme from scratch. Logic schemes are developed using the GUI Logic Builder. The logic builder uses basic boolean and/or constructs to develop logic schemes.

PRIMARY APPLICATIONS

The BE1-851 Overcurrent Protection System provides complete circuit protection with multiple overcurrent elements and is intended for use in any non-directional overcurrent application. It's unique capabilities make it ideally suited for applications where:

- Low burden is required to extend the linear range of CTs.
- One relay provides the flexibility of wide settings ranges, multiple settings groups and multiple coordination curves.
- A multifunction, multi-phase relay is desired for economical and space saving benefits. A single BE1851 provides all of the protection, local and remote indication, metering and control required on a typical circuit.
- Communication capability and protocol support is desired.
- Applications that require specific current response characteristics.
- The fundamental digital signal processing (DSP) algorithm provides rejection of harmonics and low transient overreach.
- The RMS DSP algorithm provides true wide band RMS measurement.
- The average DSP algorithm provides a flat response characteristic over a wide frequency range.
- Bus protection is provided by a high speed overcurrent blocking scheme on the transformer bus mains instead of a bus differential circuit.
- The capabilities of intelligent electronic devices (IEDs) are used to decrease relay and equipment maintenance costs.
- Applications where the optional case configurations facilitate retrofit in existing substations. One electromechanical overcurrent or reclosing relay can be replaced by a BE1-851 relay. The remaining relays can be removed or left in service as backup.
- Applications where the capabilities of a digital multifunction relay are required yet test paddles and/or drawout construction are also required.

MODEL AND STYLE NUMBER DESCRIPTION

General

The BE1-851 Relay electrical characteristics and operational features are defined by a combination of letters and numbers that make up the style number. The model number together with the style number, describe the options included in a specific device and appear in the clear window on the front panel and on a sticker located inside the case. Upon receipt of a relay, be sure to check the style number against the requisition and the packing list to ensure that they agree.

Sample Style Number

Style number identification chart (Figure 1-1) defines the electrical characteristics and operational features included in BE1-851 Overcurrent Protection System Relay. For example, if the style number were H5N1SON, the device would have the following:
(H) - 3 Phase, Negative Sequence and Neutral
(5) - 5 A phase and Neutral CTs
(N) - Future use
(1) - 48/125V power supply
(S) - S1 type case
(0) - ASCll protocol communication via RS-485
(N) - None

Figure 1-1. Style Number Identification Chart.

OPERATIONAL SPECIFICATIONS

BE1-851 relays have the following features and capabilities:

Metered Current Values and Accuracy

Current Range:
Accuracy (Phase and Neutral):
Accuracy (Negative Sequence):
Temperature Dependence:

Calculated Values and Accuracy

Demand
Range:
Type:
Accuracy:
Interval:

Real Time Clock

Accuracy:

Resolution:
Date and Time Setting Provisions:

Clock Power Supply Holdup Capacitor:
Clock Power Supply Holdup Battery:
Backup Battery (Optional):
0.1 to 1.5 nominal
$\pm 1 \%$ of reading, ± 1 least significant digit at $25^{\circ} \mathrm{C}$
$\pm 1.5 \%$ of reading, ± 1 least significant digit at $25^{\circ} \mathrm{C}$ $\leq \pm 0.02 \%$ per ${ }^{\circ} \mathrm{C}$

1 second per day at $25^{\circ} \mathrm{C}$ (free running) or ± 2 milliseconds (with IRIG synchronization) One millisecond
Front panel, communications port and IRIG.
Leap year correction provided.
8 to 24 hours, depending on conditions
Greater than 5 years
Lithium battery 3.6 Vdc, 0.95 AH (Basler p/n: 93187 00012 or Applied Power p/n: BM551902)

IRIG

Standard:
Input Signal:
Logic-High Voltage:
Logic-Low Voltage:
Input Voltage Range:
Resistance:

200-98, Format B002
Demodulated (dc level-shifted digital signal)
3.5 Vdc , minimum
0.5 Vdc , maximum
+10 to - 10 Vdc
Non-linear, approximately 4 IS at 3.5 Vdc , approximately $3 \mathrm{~K} \Omega$ at 20 Vdc

Programmable, 4 to 255 milliseconds

NOTE

All timing specifications are for the worst case response. This includes output contact operate times and standard BESTlogic operation timing but excludes input debounce timing and non standard logic configurations. If a non-standard logic scheme involves feedback, then one or more BESTlogic update rate delays must be included to calculate the worst case delay. An example of feedback is virtual outputs driving function block inputs. For more information, see Section 7, BESTlogic Programmable Logic.

Time Overcurrent Functions

Current Pickup, Phase and Neutral (51P, 51N, 151N)Dropout/pickup ratio: 95\%
Pickup Accuracy:

5 Ampere CT
1 Ampere CT
Current Pickup, Negative Sequence (51Q)
Pickup Accuracy:
5 Ampere CT
1 Ampere CT
Current Input All 51 Functions 5 Ampere CT:

Range
Increments
1 Ampere CT:
Range
Increments

Time-Current Characteristic Curves

Timing Accuracy (All 51 Functions):
$\pm 2 \%$ or $\pm 50 \mathrm{~mA}$
$\pm 2 \%$ or $\pm 10 \mathrm{~mA}$
Dropout/pickup ratio: 90\%
$\pm 3 \%$ or $\pm 75 \mathrm{~mA}$
$\pm 3 \%$ or $\pm 15 \mathrm{~mA}$
0.50 to 16.0 A
0.01 from 0.50 to $9.99,0.1$ from 10.0 to 16.0
0.10 to 3.20 A
0.01 A

Within $\pm 5 \%$ or $\pm 11 / 2$ cycles whichever is greater for time dial settings greater than 0.1 and multiples of 2 to 40 times the pickup setting but not over 150 A for $5 \mathrm{~A} C T$ units or 30 A for $1 \mathrm{~A} C T$ units.

See Appendix A, Time-Overcurrent Characteristic Curves, for information on available timing curves.

Instantaneous Overcurrent Functions

Current Pickup Accuracy, Phase and Neutral
(50TP, 50TN, 150TP, 150TN, 250TN, 350TN):
5 Ampere CT
1 Ampere CT
Current Pickup Accuracy, Negative Sequence (50TQ, 150TQ):

5 Ampere CT
1 Ampere CT
Current Pickup Ranges (50T, 150T):
5 Ampere CT
Range
Increments

1 Ampere CT
Range
Increments
Settable Time Delay Characteristics (50T, 150T):
Time Range
Time Increments

Timing Accuracy (50TP, 50TN, 150TP, 150TN

Timing Accuracy (50TQ, 150TQ)

Trip Time for 0.0 delay setting:
(50TP, 50TN, 150TP, 150TN, 250TN, 350TN):

Trip Time for 0.0 delay setting
(50TQ, 150TQ)

Reclosing Timers (79)

Delay (4), Reset (1), Max Cycle (1), Reclose Fail (1)
Range
Increments

Accuracy:

Dropout/pickup ratio: 90\% or higher
$\pm 2 \%$ or $\pm 50 \mathrm{~mA}$
$\pm 2 \%$ or $\pm 10 \mathrm{~mA}$

Dropout/pickup ratio: 90\% or higher
$\pm 3 \%$ or $\pm 75 \mathrm{~mA}$
$\pm 3 \%$ or $\pm 15 \mathrm{~mA}$

0.5 to 150.0 A

0.01 from 0.50 to $9.99 \mathrm{~A}, 0.1$ from 10.0 to 99.9 A , and 1.0 from 100 A to 150 A
0.1 to 30.0 A
0.01 from 0.01 to $9.99 \mathrm{~A}, 0.1$ from 10.0 to 30.0 A

Definite time for any current exceeding pickup 0.00 to 60.0 seconds

One millisecond from 0 to 999 milliseconds, 0.1 second from 1.0 to 9.9 seconds, 1 second from 10 to 60 seconds
$\pm 0.5 \%$ or $\pm 1 / 4$ cycle whichever is greater plus trip time 250 TN and 350TN) for instantaneous response (0.0 setting)
$\pm 0.5 \%$ or ± 1 cycle whichever is greater plus trip time for instantaneous response (0.0 setting)
$11 / 4$ cycles maximum for currents ≥ 5 times the pickup setting. Three cycles maximum for a current of 1.5 times pickup. Four cycles maximum for a current of 1.05 times the pickup setting
$21 / 4$ cycles maximum for currents ≥ 5 times the pickup setting. Three cycles maximum for a current of 1.5 times pickup. Five cycles maximum for a current of 1.05 times the pickup setting

100 milliseconds to 600 seconds
1 millisecond from 0 to 999 milliseconds; 0.1 second from 1.0 to 9.9 seconds; 1 second from 10 to 600 seconds
$\pm 5 \%$ or ($+1.75,-0$ cycles), whichever is greater

Breaker Fail Timer (BF)

Current Detector Pickup:
Current Detector Pickup Accuracy:
Delay Range:
Increments:
Reset Time (Fundamental):
Timer Accuracy:

General Purpose Timers $(62,162)$

PU.DO, Integrating, Retriggerable, Non-Retriggerable, Oscillator and Latch

Range:
Increments:

Accuracy:

Automatic Setting Group Characteristics

Number of Setting Groups:
Switch Level Range:
Switch Level Accuracy:
Switch Timer Range:

Switch Timer Accuracy:

Fixed at 0.5 A for 5 A unit, 0.1 A for 1 A unit $\pm 10 \%$
50 to 999 milliseconds
1 millisecond
Within $11 / 4$ cycles of the current being removed (excluding output contact operate time).
$\pm 5 \%$ or ($+11 / 4,-1 / 4$ cycles), whichever is greater

0 to 9,999 seconds
1 millisecond from 0 to 999 milliseconds; 0.1 second from 1.0 to 9.9 seconds; 1 second from 10 to 9,999 seconds
$\pm 5 \%$ or $\pm 3 / 4$ cycles, whichever is greater

Four

$0-150 \%$ of the setting group 0,51 phase pickup setting (S0-51P).
$\pm 2 \%$ or $\pm 50 \mathrm{~mA}(5 \mathrm{~A}), \pm 2 \%$ or $\pm 10 \mathrm{~mA}$ (1 A)
0 to 60 minutes with 1 minute increments.
($0=$ disabled)
$\pm 5 \%$ or ± 2 seconds, whichever is greater $1 / 4$ cycle

GENERAL SPECIFICATIONS

AC Current Inputs with 5 A CT

Continuous Rating:
One Second Rating:

Saturation Limit:
Burden

AC Current Inputs with 1 A CT
Continuous Rating:
One Second Rating:

Saturation Limit:
Burden:

Analog to Digital Converter

Type:
Sampling Rate:

Power Supply

Option 1
48, 110 and 125 Vdc
67, 110 and 120 Vac
Option 2
110, 125 and 250 Vdc
110, 120 and 240 Vac
Option 3
24 Vdc
Burden
(Options 1, 2 and 3)

Output Contacts

Resistive
120/240 Vac:

125/250 Vdc:

Inductive
120/240 Vac, 125/250 Vdc:

30 A
10 milliohms or less at 1 A

16 bit
24 samples per cycle

Range 35-150 Vdc
Range 55-135 Vac

Range 90-300 Vdc
Range 90-270 Vac

Range 17-32 Vdc

6 watts continuous, 8 watts maximum with all outputs energized

Make and carry 30 A for 0.2 seconds; carry 7 A continuously and break 7 A
Make and carry 30 A for 0.2 seconds; carry 7 A continuously and break 7 A

Make and carry 30 A for 0.2 seconds; carry 7 A continuously and break 0.3 A ($\mathrm{L} / \mathrm{R}=0.04$)

Same as control power
26-100 V
69-200 V
$5-8 \mathrm{Vdc}$
Burden per contact for sensing depends on the power supply model and the input voltage. Table 11 provides appropriate burden specifications.

Table 1-1. Burden		
Power Supply	Jumper Installed Burden	Jumper Not Installed Burden
$1(48 / 125 \mathrm{~V})$	$13 \mathrm{k} \Omega$	$25 \mathrm{k} \Omega$
$2(125 / 250 \mathrm{~V})$	$25 \mathrm{k} \Omega$	$54 \mathrm{k} \Omega$
$3(24 \mathrm{~V})$	$7 \mathrm{k} \Omega$	n / a

Communication Ports

Interface
Front RS-232:
Rear RS-232:
Rear RS-485:

Display

Type

Operating Temperature

Isolation

All Circuits to Ground:
(excludes communication ports)
Communication Ports to Ground Input Circuits to Output Circuits:

Surge Withstand Capability

Oscillatory

Fast Transient

300 to 19,200 baud, 8 N1, full duplex
300 to 19,200 baud, 8N1, full duplex
300 to 19,200 baud, 8 N 1 , half duplex

Two line, 16 character alphanumeric LCD (liquid crystal display) with LED (light emitting diode) backlight

$$
-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right) \text { to }+70^{\circ} \mathrm{C}\left(+158^{\circ} \mathrm{F}\right)
$$

Display contrast may be impaired at temperatures below $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right)$

Meets IEC $255-5$ and exceeds IEEE C37.90 one minute dielectric test as follows:

2,828 Vdc

500 Vdc
2,000 Vac or 2,828 Vdc

Qualified to IEEE C37.90.1-1989 Standard Surge Withstand Capability (SWC) Tests for Protective Relays and Relay Systems.
Qualified to IEEE C37.90.1-1989 Standard Surge Withstand Capability (SWC) Tests for Protective Relays and Relay Systems.

Type tested using a five watt, hand-held transceiver in the ranges of 144 and 440 MHz with the antenna placed within six inches of the relay. Meets IEEE C37.90.2.-1995

8 kilovolts contact discharges and 15 kilovolts air discharges applied in accordance with IEC EN61000-4-2 criterion.

> U.L. recognized per Standard 508 , U.L. File Number E97033. Note: Output contacts are not U.L. recognized for voltages greater than 250 V.

C.S.A. Certification

C.S.A. certified per Standard CAN/CSA-C22.2 Number 14-M91, C.S.A. File Number LR23131. Note: Output contacts are not C.S.A. certified for voltages greater than 250 V .

Environment

Operating Temperature Range
Storage Temperature Range Humidity
$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
Qualified to IEC 86-2-38, 1st Edition 1974, Basic Environmental Test ProceduresPart 2: Test Z/AD: Composite Temperature Humidity Cyclic Test

In standard tests, the relay has withstood 15 g in each of three mutually perpendicular planes Shock without structural damage or degradation of performance

In standard tests, the relay has withstood 2 g in each of three mutually perpendicular planes, swept over the range of 10 to 500 Hz for a total of six sweeps, 15 minutes each sweep, without structural damage or degradation of performance.

Maximum weight 12 pounds (5.44 kg)

SECTION $2 \cdot$ QUICK START

TABLE OF CONTENTS

SECTION $2 \cdot$ QUICK START 2-1
GENERAL 2-1
BESTLOGIC 2-1
Characteristics of Protection and Control Function Blocks 2-2
Function Block Logic Settings 2-2
Output Logic Settings 2-3
USER INTERFACES 2-3
Front Panel HMI 2-3
ASCII Command Communications 2-4
Command Structure. 2-4
Human-to-Machine ASCII Command Operations. 2-4
Batch Command Text File Operations 2-5
BESTCOMS for BE1-851, Graphical User Interface 2-5
GETTING STARTED 2-5
Entering General Settings 2-6
FAQ/TROUBLE SHOOTING 2-8
Frequently Asked Questions 2-8
Figures
Figure 2-1. 79 Recloser Function Block 2-2
Figure 2-2. Communications Pulldown Menu 2-6
Figure 2-3. File Properties Screen 2-6
Figure 2-4. Screens Menu 2-6
Figure 2-5. General Operation Screen - Power System Tab 2-7
Figure 2-6. Reporting and Alarms Screen, Demands Tab 2-7
Tables
Table 2-1. Trip LED Truth Table 2-8

SECTION $2 \cdot$ QUICK START

GENERAL

This section provides an overview of the BE1-851 Overcurrent Protection System. You should be familiar with the concepts behind the user interfaces and BESTLogic before you begin reading about the detailed BE1-851 functions. Sections 3 through 6 describe each function of the BE1-851 in detail.

The following information is intended to provide the reader with a basic understanding of the three user interfaces (front panel HMI, ASCII serial communications link and the BE1-851 BESTCOMS software) and the security features provided in the BE1-851 relay. Detailed information on the operation of the HMI (humanmachine interface) can be found in Section 10, Human-Machine Interface, and the ASCII command communications in Section 11, ASCII Command Interface.

Also covered in this section is an overview of BESTLogic which is fundamental to how each of the protection and control functions are set-up and used in the BE1-851 relay. Detailed information on using BESTLogic to design complete protection and control schemes for the protected circuit can be found in Section 7, BESTLogic, and Section 8, Application.

Sections 3 through 6 describe each function provided in the BE1-851 relay and include references to the following items. Note that NOT all items are appropriate for each function.

- HMI screens for setting the operational parameters.
- ASCII commands for setting the operational parameters.
- ASCII commands for setting up the BESTLogic required to use the function in your protection and control scheme.
- Outputs from the function such as alarm and BESTLogic variables or data reports.
- HMI screens for operation or interrogation of the outputs and reports provided by each function.
- ASCII commands for operation or interrogation of the outputs and reports provided by each function.

BESTLOGIC

Each of the protection and control functions in the BE1-851 is implemented as an independent function block that is equivalent to a single function, discrete device counterpart. Each independent function block has all of the inputs and outputs that the discrete component counterpart might have. Programming BESTLogic is equivalent to choosing the devices required by your protection and control scheme and drawing schematic diagrams to connect the inputs and outputs to obtain the desired operational logic. The concept is the same but the method is different in that you choose each function block by enabling it and use Boolean logic expressions to connect the inputs and outputs. The result is that in designing your system, you have even greater flexibility than you had using discrete devices. An added benefit is that you are not constrained by the flexibility limitations inherent in many multifunction relays.

One user programmable, custom logic scheme is in the user settings. To save you time, several preprogrammed logic schemes are also provided. Any of the preprogrammed schemes can be selected and used directly without having to make any BESTLogic settings. The logic scheme that is active is determined by a protection setting. Provisions have also been made to allow the protection engineer to copy one of the preprogrammed logic schemes into the user programmed custom logic settings so that it can simply be modified to fine tune it to the user's requirements.

There are two types of BESTLogic settings: function block logic settings and output logic settings. These are described briefly in the following paragraphs. Detailed information on using BESTLogic to design complete protection and control schemes for the protected circuit can be found in Section 7, BESTLogic Programmable Logic, and Section 8, Application.

Characteristics of Protection and Control Function Blocks

As stated before, each function block is equivalent to a discrete device counterpart. For example, the recloser function block in the BE1-851 has all of the characteristics of a version of the BE1-79M reclosing relay with similar functionality. See Figure 2-1. (Figure 4-7 illustrates the inputs and outputs for the 79 recloser function.)

Four inputs:

- RI (reclose initiate)
- STATUS (breaker position)
- WAIT
- DTL/BLK (drive to lockout/block 79 operation)

Five outputs:

- 79C (close)
- 79RNG (recloser running)
- 79F (reclose fail)
- 79LO (lockout)
- 79SCB (sequence controlled block signal)

Figure 2-1. 79 Recloser Function Block

One mode setting selected from three available settings:

- Disabled, power up to lockout mode, or power up to close

Eight operational settings:

- Four reclose times (1, 2, 3 \& 4)
- Reset time
- Reclose fail time
- Max cycle time
- Selected steps in the reclosing sequence that can be used to block tripping elements (same functions as the toggle switches on the BE1-79M relay).

Of the above characteristics, the operational settings are not included in the logic settings. They are contained in the protection settings. This is an important distinction. Since, changing logic settings is similar to rewiring a panel, the logic settings are separate and distinct from the operational settings such as pickups and time delays.

Function Block Logic Settings

To use a protection or control function block, there are two items that need to be set. The mode and the input logic. The mode is equivalent to deciding which devices you want to install in your protection and control scheme. You then must set the logic variables that will be connected to the inputs.

For example, the 51 N function block has two modes (disabled and enabled) and one input, block (torque control). To use this function block, the logic setting command might be SL-51N=1,/IN2 for Set Logic-51N to be mode 1 (enabled) with the function blocked when contact sensing $\underline{I N p u t} \underline{\underline{2}}$ is not (\mathbb{I}) energized. Contact sensing input 2 would be wired to a ground relay enable switch.

As noted before, the protection settings for this function block, pickup, time dial and curve, must be set separately in the setting group settings. The setting might be $\mathrm{S} 0-51 \mathrm{~N}=6.5,2.1, \mathrm{~S} 1 \mathrm{R}$ for Set in group $\underline{0}$-the 51 N function equal to pickup at $\underline{6.5} \mathrm{amps}$ with a time dial of $\underline{2.1}$ using curve $\underline{\mathrm{S} 1}$ with an integrating Reset characteristic.

The 51N function block has two logic output variables, 51 NT (Trip) and 51NPU (Picked Up). The combination of the logic settings and the operational settings for the function block govern how these variables respond to logic and current inputs.

Output Logic Settings

BESTlogic, as implemented in the BE1-851, supports up to 16 output expressions. The output expressions are called virtual outputs to distinguish them from the physical output relays. VOA and VO1 through VO5 drive physical outputs Out A (fail safe alarm output) and Out 1 through Out 5, respectively. The rest of the virtual outputs can be used for intermediate logic expressions.

For example, OUT 1 is wired to the trip bus of the circuit breaker. To set up the logic to trip the breaker, the BESTlogic setting command might be SL-VO1=VO11+101T+BFPU for Set Logic - Virtual Output $\underline{1}=$ to Virtual $\underline{\text { Output }} \underline{11}$ (which is the intermediate logic expression for all of the function block tripping outputs) or (\pm) 101T (the trip output of the virtual breaker control switch) or (\pm) BFPU (the pickup output of the breaker failure function block that indicates that breaker failure has been initiated).

USER INTERFACES

Three user interfaces are provided for interacting with the BE1-851 relay: The front panel HMI, ASCII communications and BESTCOMS communications software. The front panel HMI provides access to a subset of the total functionality of the device. ASCII communications provides access to all settings, controls, reports and metering functions of the system. BESTCOMS for BE1-851 software provides a, user friendly Windows ${ }^{\circledR}$ environment for editing settings files and uploading and downloading them from the relay.

Front Panel HMI

The front panel HMI consists of a two line by 16 character LCD (liquid crystal display) with four scrolling pushbuttons, an edit pushbutton and a reset pushbutton. The Edit pushbutton includes an LED to indicate when edit mode is active. There are five other LEDs for indicating power supply status, relay trouble alarm status, programmable major and minor alarm status, and a multipurpose trip LED that flashes to indicate that a protective element is picked up. The Trip LED lights continuously when the trip output is energized and seals in when a protective trip has occurred to indicate that target information is being displayed on the LCD. A complete description of the HMI is included in Section 10, Human-Machine Interface.

The BE1-851 HMI is menu driven and organized into a menu tree structure with six branches. A complete menu tree description with displays is also provided in Section 10. A list of the menu branches and a brief description for scrolling through the menu is in the following paragraphs.

1. REPORT STATUS. Display and resetting of general status information such as targets, alarms, recloser status.
2. CONTROL. Operation of manual controls such as virtual switches, selection of active setting group, etc.
3. METERING. Display of realtime metering values.
4. REPORTS. Display and resetting of report information such as time and date, demand registers, breaker duty statistics, etc.
5. PROTECTION. Display and setting of protective function setting parameters such as logic scheme, pickups, time delays, etc.
6. GENERAL SETTINGS. Display and setting of non-protective function setting parameters such as communication, LCD contrast and CT ratios.

Each screen in the menu tree displays the path in the upper left hand corner of the screen. Additionally, each screen is assigned a number in the HMI section. The number indicates the branch and level in the menu tree structure. Screen numbering helps you to keep track of where you are when you leave the menu tree top level. You view each branch of the menu tree by using the RIGHT and LEFT scrolling pushbuttons. To go to a level of greater detail, you use the DOWN scrolling pushbutton. Each time a lower level in a menu branch is reached, the screen number changes to reflect the lower level. The following paragraphs and Figure 2-1 illustrate how the display screens are numbered in the menu tree.

For example, to check or change the 51 N pickup setting in setting group 3, you would press the RIGHT or LEFT scrolling pushbuttons to get to Screen 5-PROTECTION LOGIC. You would then press the DOWN scrolling pushbutton to get to the next level of detail and the RIGHT or LEFT scrolling pushbutton to get to

Screen 5.4-SETTING GROUP 3. You would continue to press DOWN and RIGHT or LEFT scrolling pushbuttons to get to Screen 5.4.2-51 SETTINGS and then Screen 5.4.2.2-51N. On this screen, the pickup, time dial and curve settings for the 51 N function can be read and/or edited. To return to the top level from this location, you would press the UP scrolling pushbutton three times.

ASCII Command Communications

The BE1-851 relay has three independent communications ports for serial communications. A computer terminal or PC running a terminal emulation program such as Windows ${ }^{\circledR}$ HyperTerminal ${ }^{\circledR}$ can be connected to any of the three ports so that commands can be sent to the relay. Communication with the relay uses a simple ASCII command language. When a command is entered via a serial port, the relay responds with the appropriate action. ASCII command communication is designed for both human-to-machine interactions and batch download type operations. The following paragraphs briefly describe the command structure and discuss human-to-machine interactions and batch command text file operations. The operation of the ASCII commands is described in detail in Section 11, ASCII Command Interface.

Command Structure

An ASCII command consists of a command string made up of one or two letters followed by a hyphen and an object name. The first letter specifies the general command function and the second a sub-group. The object name is the specific function for which the command is intended. A command string entered by itself is a read command. A command string followed by an equal sign and one or more parameters, it is a write command. The general command groups are organized into five major groups plus several miscellaneous commands. These commands are as follows:

C CONTROL. Commands to perform select before operate control actions such as tripping and closing the circuit breaker, changing the active setting group, etc.. Subgroups include S for Select and O for Operate.

G GLOBAL. Perform global operations that do not fall into the other general groups such as password security. Subgroups include: S for security settings.

M METERING. Read all real time metering values. This general command group has no subgroups.
R REPORTS. Read and reset reporting functions such as time and date, demand registers, breaker duty statistics, etc. Subgroups include: A for Alarm functions, B for Breaker monitoring functions, D for Demand recording functions, F for Fault summary reporting functions, G for General information and S for Sequence of Events recorder functions.

S SETTINGS. Set all setting parameters that govern the functioning of the relay. Subgroups include: $0,1,2,3$ for settings in setting groups, A for alarm settings, B for breaker monitoring settings, G for general settings, L for logic settings.

MISCELLANEOUS. Miscellaneous commands include ACCESS, EXIT and HELP.
Examples of object names would be 51N for the neutral inverse time overcurrent function or PIA for the A phase, peak current demand register.

For example, to check the 51 N pickup setting in setting group 3, you would enter S3-51N for Set, Group $3-51 \mathrm{~N}$. The relay would respond with the current pickup, time dial and curve settings for the 51 N function. To edit these settings the same command would be used with an = followed by the new settings and the enter pushbutton. Note that its necessary to use the ACCESS and EXIT commands when using the write version of these commands.

Human-to-Machine ASCII Command Operations

Using ASCII commands, settings can be read and changed on a function by function basis. The mnemonic format of the commands helps you interact with the relay. It isn't necessary to remember all of the object names. Most commands don't require that you specify a complete object name. If the first two letters of a command are entered, the relay will respond with all applicable object names.

Example Obtain a breaker operations count by entering RB (Report Breaker). The BE1-851 responds with the operations counter value along with all other breaker report objects. If you know that the object name for the breaker operations counter is OPCNTR, you can enter RB-OPCNTR and read only the number of breaker operations.

Partial object names are also supported. This allows multiple objects to be read or reset at the same time.
Example Read all peak-since-reset demand registers. Entering RD-PI (Report Demand - Peak Current (I)) will return demand values and time stamps for phase A, B, C, Neutral and Negative Sequence current. To read only the Neutral demand value, the full object name (RD-PIN) is entered. Entering RD-PI=0 resets all five of the peak-since-reset demand registers.

Batch Command Text File Operations

With a few exceptions, each function of the relay uses one command to set it and each setting command operates on all of the parameters required by that function. See the example mentioned above in the paragraph titled Command Structure. This format results in a great many commands to fully set the relay. Also, the process of setting the relay does not use a prompting mode where the relay prompts you for each parameter in turn until you exit the setting process. For these reasons, a method for setting the relay using batch text files is recommended.
In batch download type operations, the user creates an ASCII text file of commands and sends it to the relay. To facilitate this process, the response from a multiple read command is output from the BE1-851 in command format. So the user need only enter S for Set (with no subgroup) and the relay responds with all of the setting commands and their associated parameters. If the user enters S2 for Set Group 2, the relay responds with all of the setting commands for setting group 2. The user can capture this response to a file, edit it using any ASCII text editor and then send the file back to the relay. See Section 11, ASCII Command Interface, for a more detailed discussion of how to use ASCII text files for setting the relay.

BESTCOMS for BE1-851, Graphical User Interface

Basler Electric's graphical user interface (GUI) software is an alternative method for quickly developing setting files in a user-friendly, Windows ${ }^{\circledR}$ based environment. Using the GUI, you may prepare setting files off-line (without being connected to the relay) and then upload the settings to the relay at your convenience. These settings include protection and control, operating and logic, breaker and transformer monitoring, metering and fault recording. Engineering personnel can develop, test and replicate the settings before exporting it to a file and transmitting the file to technical personnel in the field. On the field end, the technician simply imports the file into the BESTCOMS database and uploads the file to the relay where it is stored in nonvolatile memory.

The GUI also has the same preprogrammed logic schemes that are stored in the relay. This gives the engineer the option (off-line) of developing his setting file using a preprogrammed logic scheme, customizing a preprogrammed logic scheme or building a scheme from scratch. Files may be exported from the GUI to a text editor where they can be reviewed or modified. The modified text file may then be uploaded to the relay. After it is uploaded to the relay, it can be brought into the GUI but it cannot be brought directly into the GUI from the text file. The GUI logic builder uses basic AND/OR gate logic combined with point and click variables to build the logic expressions. This reduces the design time and increases dependability.

The GUI also allows for downloading industry standard COMTRADE files for analysis of stored oscillography data. Detailed analysis of the oscillography files may be accomplished using Basler Electric's BESTWAVE software. For more information on Basler Electric's Windows ${ }^{\circledR}$ based BESTCOMS (GUI) software or BESTWAVE, contact your local sales representative or Basler Electric Technical Support Services Department in Highland, Illinois.

GETTING STARTED

Refer to Section 12, Installation, for typical external connection diagrams. If your relay has power supply option 1 or 2 , it can be supplied by normal 120 Vac house power. These two power supply options (1 and 2) are the midrange and high range ac/dc power supplies. The contact sensing inputs are half-wave rectified,
opto-isolators. The default contact recognition and debounce settings enable their use on ac signals as well as dc signals.

The relay measures the A phase, B phase, and C phase current magnitudes directly from the three current sensing inputs on Circuit \#1 (this is dependent on style configuration). Circuit \#2 measures the A phase, B phase and C phase current magnitudes directly from the three current sensing inputs. The neutral and negative sequence magnitudes are calculated from the fundamental component of each of the three-phase currents. When evaluating the negative sequence functions, the relay can be tested using a two-phase current source. To fully evaluate the operation of the relay in the power system, it is desirable to use a three-phase current source.

Using a serial cable, connect a computer to the relays front RS-232 port. Install BE1-851 BESTCOMS according to the procedure given in Section 14, BESTCOMS Software. Once BESTCOMS is installed, apply power to the relay. From the Basler Electric program group on your windows Start menu, select BESTCOMS for BE1-851 to start BESTCOMS. From the Communication pull-down menu, select Configure and verify communication is configured correctly.

Once communication settings are correct, from the Communication pull-down menu select Download Settings from Device (Figure 2-2). This command will transfer the relays current settings to the BESTCOMS software, allowing the settings to be viewed easily in a windows environment. Before continuing, select the Save $\underline{A s}$ command from the File menu. The File Properties Screen for the file you are saving will appear. Refer to Figure 2-3. Type in any comments about the file and select OK. The Save As dialog box will appear. Give the file a unique name that you will recognize at a later date and select Save. This action does not send the settings to the relay but rather saves them in a BESTCOMS settings file with a .bst extension. Once saved, the settings file may be retrieved, modified and transmitted to the relay at any time.

Figure 2-3. File Properties Screen

Entering General Settings

Time and date format can be changed by selecting Reporting and Alarms from the Screens menu. Select the time and date format for your application. To change the time and date, use the HMI display buttons to scroll over to Screen 4.5. Select the Edit button. The red LED in the button will light when you are in edit mode. Use the LEFT and RIGHT arrows to move between hours, minutes, day, month and year settings. Use the UP and
 to take effect.

The BE1-851 relay requires information on the nominal system frequency, DSP filtering, Current Transformer (CT) ratio and phase rotation for proper current measurement to occur. These settings can be made using BESTCOMS. Select General Operation from the Screens pull down menu. Then select the tab labeled Power System. Refer to Figure 2-4.

Figure 2-4. Screens Menu

Figure 2-5. General Operation Screen, Power System Tab
Using the pull-down menus and buttons located on the Power System tab, select the appropriate phase and neutral CT ratios, the system's nominal frequency and the system's phase rotation. Refer to Figure 2-5.

From the Screens pull down men, select Reporting and Alarms and go to the Demands tab. Using the scrolling menus on the Demands tab, select the demand thresholds and their unit of measure. Refer to Figure 2-6. More detail on demands may be found in Section 6, Reporting and Alarms.

Using the remaining screens and associated tabs, make additional settings required for evaluation of the relay. Save the file. From the Communication pull-down menu, select Upload Settings to Device to send the settings to the relay. The relay's inputs and outputs as well as targets, alarms and current metering can be monitored from the Metering Screen. To open the Metering Screen select Metering from the Reports pull-down menu. To begin viewing the relays metered values, select the Start Polling button in the bottom right hand corner of the screen.

Figure 2-6. Reporting and Alarms Screen, Demands Tab

FAQ/TROUBLE SHOOTING

Frequently Asked Questions

1.) Why won't the trip LED reset when I press the Reset key on the front panel?

The Reset key is context sensitive. To reset the trip LED or the targets, the Target Screen must be displayed. To reset the alarms, the Alarm Screen must be displayed.
2.) Is the power supply polarity sensitive?

No, the power supply will accept either an ac or dc voltage input. However, the contact sensing for the programmable inputs is polarity sensitive. See Section 12, Installation, for a typical interconnection diagram.
3.) What voltage level is used to develop current flow through the contact sensing inputs?

Voltage level is dependent on the power supply option (BE1-851 style) and the position of the contact sensing jumper. See Section 12, Installation, for additional information.
4.) Does the BE1-851 trip output contact latch after a fault?

The answer to the question is Yes and No. In general, once the fault goes away the output contacts open. The BE1-851 does offer an option to ensure that the contact will stay closed for at least 200 milliseconds. See Section 3, Input And Output Functions, and Section8, Application, for additional information on that function. But, BESTlogic can latch the relay outputs. Refer to, Section 8, Application, Application Tips, for additional information.
5.) Why won't a function work when I put in settings such as the pickup and time delays?

Make sure that the protective element is enabled in BESTlogic.
6.) Can I make logic settings from the front panel?

No, the front panel can not program logic settings. Logic settings must be programmed using the ASCII command interface or BESTCOMS communication software.
7.) Does the BE1-851 have a battery installed as the back-up power source for the internal clock on loss of power?

No, the BE1-851 does not have a battery. You have to reset the time and date every time you lose power. You can use the IRIG to automatically reset the time and date.
8.) Why do I keep getting access conflict errors when I am communicating with the relay?

Access can be granted to only one communication port at a time. The HMI is considered to be the same port as the front RS-232 communication port. The unit has three different communication ports. The front HMI and front RS-232 (COM 0) is the first port. The rear RS-232 (COM 1) is the second and the rear RS-485 (COM 3) is the third port. If you have gained access at the front panel HMI and the 5 -minute time out has not ended, you can not gain access at another port. The front RS-232 can still be accessed because HMI and the front RS-232 are considered to be the same port. If you have tried to gain access to more than one port at a time, an access conflict results. Access only needs to be gained when a change of a setting is needed. To read data or to get any reports this can be done without gaining access. After gaining access though one of the ports a session can be ended with an "Exit" command. If access is gained, but the session is not ended, a 5 -minute time out will end the session and any changes that were not saved will be lost. If you are using the BESTcoms program, the gaining access and the exit commands are done for you.
9.) Why doesn't the trip LED behave as expected when the relay picks up and trips? Another closely related question would be, "Why don't the targets work?"

If the logic is setup to the point were the protective element is tripping at the desired current level, but the targets, Trip LED and fault records are not behaving as expected, then there are two commands that need to be checked for proper operation. The SG-TRIGGER command needs to have the PU trigger and TRIP trigger logic correctly programmed. This should initiate the fault record. The SG-TARGET command needs that protective element (function) enabled to log targets. Please refer Section 6, Reporting and Alarm Functions in the Instruction Manual under the section Fault Reporting to get further details on how to program these commands correctly. The Trip LED has two different functions in the relay. When the SG-TRIGGER PU expression is true, and the TRIP expression is false, the Trip LED flashes. When both the SG-TRIGGER TRIP and PU expression are true, the Trip LED lights solidly. When neither expression is true, the trip LED lights solidly if there are latched targets. A flashing LED means one of the protection elements is in a pickup state and timing towards trip. Once the trip occurs, the LED turns on solid. The LED will not change state until the target has been reset. If the fault has not cleared, the LED will turn on again.

Table 2-1. Trip LED Truth Table

SG-TRIGGER PU	SG-TRIGGER TRIP	Targets Latched	Trip LED
True	False	No	Flashes
True	True	No	Lights Solidly
False	False	Yes	Lights Solidly

10.) Is the IRIG signal modulated or demodulated?

The IRIG signal is demodulated (dc level-shifted digital signal). See Section 1, General Information, Operational Specifications, and Section 8, Application, for additional information.
11.) Can the IRIG signal be daisy-chained to multiple BE1-851 units?

Yes, multiple BE1-851 units can use the same IRIG-B input signal by daisy-chaining the BE1-851 inputs. The burden data is non-linear, approximately 4 kohms at 3.5 Vdc and 3 kohms at 20 Vdc . See, Section 8, Application, and Section 3, Input and Output Functions, for additional information.
12.) How can I find out what the version number is of my BE1-851?

The application version can be found in three different ways. One, use the HMI, Screen 4.6. Two, use the ASCII command interface with the RG-VER command. Three, use BE1-851 BESTCOMS (the version is located on the General Identification Screen).

SECTION $3 \cdot$ INPUT AND OUTPUT FUNCTIONS

TABLE OF CONTENTS

SECTION $3 \cdot$ INPUT AND OUTPUT FUNCTIONS 3-1
GENERAL 3-1
CURRENT INPUTS 3-1
Current Measurement Functions 3-1
Nominal Frequency 3-1
Digital Signal Processing 3-1
Negative Sequence Current 3-3
Neutral Current 3-3
Fast-Dropout Current Detector 3-3
Current Measurement Functions Setup 3-3
CONTACT SENSING INPUTS 3-4
Digital Input Conditioning Function 3-4
Setting Up the Digital Input Conditioning Function 3-5
Retrieving Input Status Information from the Relay 3-6
OUTPUTS 3-6
Hardware Outputs and Virtual Outputs 3-7
Retrieving Output Status 3-7
Relay Trouble Alarm Disable 3-7
Programmable Hold Timer 3-8
Output Logic Override Control 3-8
Enabling Logic Override Control 3-9
Pulsing an Output Contact 3-9
Holding an Output Contact Open or Closed 3-9
Returning an Output Contact to Logic Control 3-9
Retrieving Output Logic Override Status 3-10
Figures
Figure 3-1. Accuracy Characteristics, 55 to 65 Hz 3-2
Figure 3-2. Accuracy Characteristics, 20 to 100 Hz 3-2
Figure 3-3. General Operation Screen, Power System Tab 3-4
Figure 3-4. Digital Input Conditioning Diagram 3-5
Figure 3-5. Inputs and Outputs Screen, Inputs 1-4 Tab 3-6
Figure 3-6. Output Logic, General Purpose Output Contacts 3-7
Figure 3-7. Output Logic, Fail-Safe Alarm Output Contact 3-7
Figure 3-8. Inputs and Outputs Screen, Outputs 1-5, A Tab 3-8
Tables
Table 3-1. Current Measurement Function Settings 3-3
Table 3-2. Turn on Thresholds 3-4
Table 3-3. Digital Input Conditioning Settings 3-5

SECTION $3 \cdot \operatorname{INPUT}$ AND OUTPUT FUNCTIONS

GENERAL

BE1-851 inputs consist of three-phase current inputs, neutral current inputs and four contact sensing inputs. Five general purpose output contacts and one dedicated, fail-safe alarm output make up the BE1-851 outputs. Each input and output is isolated and terminated at separate terminal blocks. This section describes the function and setup of each input and output.

CURRENT INPUTS

Secondary current from power system equipment CT is applied to current transformers inside the relay. These internal transformers step down the monitored current to levels compatible with relay circuitry and provide isolation. Secondary current from each internal CT is converted to a voltage signal and then filtered by an analog, low-pass, anti-aliasing harmonic filter.

Current Measurement Functions

The power system analog quantities for phase, neutral and negative sequence currents are calculated and used by all of the current dependent functions of the relay. There is no separate positive or zero sequence value calculated. The filter response for phase and neutral calculations can be independently programmed. Operation of the current measurement function is governed by settings for nominal frequency, digital signal processing algorithm, current transformer ratio and normal phase rotation.

Nominal Frequency

Input waveforms are sampled by an analog-to-digital converter at 24 samples per cycle. A nominal frequency of either 50 or 60 Hz must be selected in order for the analog-to-digital converter to sample analog quantities at appropriate time intervals to achieve 24 samples per cycle.

Digital Signal Processing

The digital signal processing (DSP) setting governs how the phase and neutral operating quantities are measured. The negative sequence current is derived from the phase currents and is not independently settable. The three choices are Fundamental, RMS and Average. This is independently settable for the phase and neutral quantities. Each setting causes the relay to respond differently in the presence of significant harmonics and for operation at significantly off-nominal frequency. Accuracy characteristics for each algorithm (Fundamental, RMS and Average) are shown in Figure 3-1. This figure is for a 60 hertz nominal system with frequencies between 55 and 65 hertz. A 50 hertz nominal system would have similar characteristics.

The fundamental setting (F) uses a Fourier filter to extract the fundamental frequency component of the measured current and reject the harmonic frequency components. This setting is best suited for most protection purposes due to its superior transient overreach and fast dropout characteristics. It is also recommended for applications where harmonic rejection is desired. For example, in a neutral circuit where the third harmonic component is additive and can result in unwanted tripping.

The RMS setting uses a true RMS calculation to include harmonic components of the measured current. The presence of significant levels of harmonics can cause heating in protected equipment and increased sensitivity in electro-mechanical devices. This setting is recommended for equipment applications that require thermal overload protection. It is also recommended for applications where the transient overreach and sensitivity characteristics provide better coordination with induction disk type overcurrent relays.

Figure 3-1. Accuracy Characteristics, 55 to 65 Hz

The Average setting uses a digital measurement circuit. This circuit consists of a full wave rectifier with a two pole, low pass filter. A third digital filter tuned to the nominal frequency removes the ripple error that is inherent in this type of circuit. Due to the lowpass filter, this setting has slower pickup and dropout characteristics than the other two settings. This setting is recommended in applications where protection is desired at frequencies that deviate significantly from nominal. The characteristics of the three algorithms from 20 to 100 hertz is shown in Figure 3-2. This plot is based on a setting of 60 hertz nominal (20 to 100 hertz). This setting also provides good coordination with induction disk type overcurrent relays and provides superior transient overreach characteristics.

Figure 3-2. Accuracy Characteristics, 20 to 100 Hz

Negative Sequence Current

Negative sequence components are measured from the fundamental component of the three-phase current inputs. The relay can be set to accommodate ABC or ACB phase sequence when calculating the negative sequence component.

Neutral Current

The current entering "D7" and leaving "D8" will be understood by the relay to be the neutral current. If nothing is connected, the relay will understand the neutral current to be zero. No neutral current will be calculated from any phase imbalance.

Fast-Dropout Current Detector

A separate, fast-dropout current measurement algorithm is used by the breaker failure function and the breaker trip-speed monitoring function. This measurement algorithm has a sensitivity of 10 percent of nominal rating and detects current interruption in the circuit breaker much more quickly than the regular current measurement functions.

Current Measurement Functions Setup

Current Input Circuit Settings. The BE1-851 requires information on the nominal system frequency, DSP filtering, CT ratio and phase rotation. These settings are used by the metering and fault reporting functions to display measured quantities in primary units. These settings can be entered at the HMI, see Section 10, Human-Machine Interface, or through the communication ports using the SG-FREQ, SG-DSP, SG-CT, and SG-PHROT setting general commands. Settings relating to current measurement are summarized in Table 3-1.

Table 3-1. Current Measurement Function Settings

Settings	Password Access	Range	Default	Unit of Measure
Nominal Frequency	Privilege G or S	5060	60	hertz
Digital Signal Processing for Phase and Neutral Response	Privilege G or S	Average, Fundamental, RMS	fundamental	n / a
Normal Phase Rotation	None	ABC, ACB	ABC	n / a
CT Ratio, Phase and Nuetral	None	1 to 50,000 (Increment of 1)	1	turns

CT Ratio for phase and neutral, as shown in the table above, uses turns as its unit of measure. Note that the CT ratio can also be input as a ratio as in the example below (50:5). BESTCOMS will calculate either turns or primary amps depending on which value is entered. BESTCOMS does not calculate secondary amps.

To make the settings using BESTCOMS, select General Operation from the $\underline{S c}$ creens pull-down menu. Then select the Power System tab. Make selections for the above settings by using the appropriate pull-down menus and buttons on the Power System tab.

Example 1. Make the following settings in BESTCOMS (refer to Figure 3-3):

Nominal Frequency:	60 Hz
Digital Signal Processing, Phase Response:	RMS
Digital Signal Processing, Neutral Response:	Fundamental
Normal Phase Rotation:	ACB
CT Ratio, Phase:	$800: 5$
CT Ratio, Neutral:	$50: 5$

Figure 3-3. General Operation Screen, Power System Tab

CONTACT SENSING INPUTS

BE1-851 relays have four contact sensing inputs to initiate BE1-851 relay actions. These inputs are isolated and require an external wetting voltage. Nominal voltage(s) of the external dc source(s) must fall within the relay dc power supply input voltage range. To enhance user flexibility, the BE1-851 relay uses wide range $\mathrm{ac} / \mathrm{dc}$ power supplies that cover several common control voltage ratings. To further enhance flexibility, the input circuits are designed to respond to voltages at the lower end of the control voltage range while not overheating at the high end of the control voltage range.

Energizing levels for the contact sensing inputs are jumper selectable for a minimum of 5 Vdc for 24 Vdc nominal sensing voltages, 26 Vdc for 48 Vdc nominal sensing voltages or 69 Vdc for 125 Vdc nominal sensing voltages. See Table 3-2 for the control voltage ranges.

Each BE1-851 is delivered without the contact sensing jumpers connected for operation in the higher end of the control voltage range. If the contact sensing inputs are to be operated at the lower end of the control voltage range, the jumpers must be installed. See Section 12, Installation, for details on how to set the jumper positions in the contact sensing input circuits.

Table 3-2. Turn on Thresholds

Nominal Control Voltage	Turn-On Voltage Range	
	Jumper Installed	Jumper Removed
24 Vdc	$5-8 \mathrm{Vdc}$	n / a
$48 / 125 \mathrm{Vac} / \mathrm{Vdc}$	$26-38 \mathrm{~V}$	$69-100 \mathrm{~V}$
$125 / 250 \mathrm{Vac} / \mathrm{Vdc}$	$69-100 \mathrm{~V}$	$138-200 \mathrm{~V}$

Digital Input Conditioning Function

Status of the contact sensing inputs is checked 24 times per cycle. When operating on a 60 hertz power system, this results in the input status being sampled every 0.7 milliseconds (0.8 milliseconds on 50 hertz systems). User settable digital contact recognition and debounce timers condition the signals applied to the
inputs. These parameters can be adjusted to obtain the optimum compromise between speed and security for a specific application. Digital input conditioning is evaluated every quarter cycle.

If the sampled status of a monitored contact is detected to be closed for the recognition time, the logic variable changes from an open (logic 0 or FALSE) state to a closed (logic 1 or TRUE) state. Once contact closure is recognized, the logic variable remains in the closed state until the sampled status of the monitored contact is detected to be open for a period that is longer than the de-bounce time. At this point, the logic variable will change from a closed (logic 1 or TRUE) state to an open (logic 0 or FALSE) state.

Figure 3-4. Digital Input Conditioning Diagram

Setting Up the Digital Input Conditioning Function

The settings for the digital input signal conditioning function and related BESTCOMS features are shown in Table 3-3. Digital input conditioning settings can be entered using BESTCOMS. Alternately, the settings may be entered through the communication ports using the SG-IN ASCII command.

Table 3-3. Digital Input Conditioning Settings

Setting	Range	Increment	Unit of Measure	Default
Recognition Time	4 to 255	1^{*}	milliseconds	4
Debounce Time	4 to 255	1^{*}	milliseconds	16
Time Units	Pull-down menu that selects the unit of measure for Recognition Time and Debounce Time. Units of measure available are: Milliseconds (ms), seconds, minutes and cycles. The default is milliseconds.			
Name	User programmable label for the input contact. Used by the reporting function to give meaningful identification to the input contact. This label may be up to 10 characters long.			
Closed State	User programmable label for the contact's close state. It is used by the reporting function to give meaningful identification to the state of the input contact. This label may be up to seven characters long.			
Open State	User programmable label for the contact's open state. It is used by the reporting function to give meaningful identification to the state of the input contact. This label may be up to seven characters long.			

* Since the input conditioning function is evaluated every quarter cycle, the setting is internally rounded to the nearest multiple of 4.16 milliseconds (60 Hz systems) or 5 milliseconds (50 Hz systems).
If you are concerned about ac voltage being coupled into the contact sensing circuits, the recognition time can be set to greater than one-half of the power system cycle period. This will take advantage of the half-wave rectification provided by the input circuitry.

If an ac wetting voltage is used, the recognition time can be set to less than one-half of the power system cycle period and the debounce timer can be set to greater than one-half of the power system cycle period.

The extended debounce time will keep the input energized during the negative half-cycle. The default settings of 4 and 16 milliseconds are compatible with ac wetting voltages.

To make the settings using BESTCOMS, select Inputs and Outputs from the $\underline{\text { Screens pull-down menu. Then }}$ select the Inputs $1-4$ tab. Make selections for the above settings by using the appropriate pull-down menus, buttons and text boxes on the Power System tab.

Example 1. Make the following settings for Input 1 (refer to Figure 3-5):
Recognition Time: 6 ms
Debounce Time: 20 ms
Time Units: ms
Name: Breaker
Closed State: Open
Open State: Closed

Figure 3-5. Inputs and Outputs Screen, Inputs 1-4 Tab

Retrieving Input Status Information from the Relay

The relay's inputs can be monitored from the Metering Screen. To open the metering screen select Metering from the Reports pull-down menu. To begin viewing the relay's metered values, select the Start Polling button in the bottom right hand corner of the screen.

Alternately, input status is determined through HMI Screen 1.5.1 or through the communication ports using the RG-STAT (report general-status) command. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

OUTPUTS

BE1-851 relays have five general purpose output contacts (OUT1 through OUT5) and one fail-safe, normally closed (when de-energized), alarm output contact (OUTA). Each output is isolated and rated for tripping duty. OUT1 through OUT5 are Form A (normally open) and OUTA is Form B (normally closed).

Hardware Outputs and Virtual Outputs

Output contacts OUT1 through OUT5 and OUTA are driven by BESTLOGIC expressions for VO1 through VO5 (Virtual Outputs 1 through 5) and VOA (Virtual Output A). The use of each output contact is completely programmable so you can assign meaningful labels to each output and to the logic 0 and logic 1 states of each output. Section 7, BESTLOGIC Programmable Logic, has more information about programming output expressions in your programmable logic schemes.

A virtual output (VOn) exists only as a logical state inside the relay. A hardware output is a physical output relay contact. BESTLOGIC expressions for VO1 through VO5 (Virtual Outputs 1 through 5) and VOA (Virtual Output A) drive output contacts OUT1 through OUT5 and OUTA. The state of the output contacts can vary from the state of the output logic expressions for three reasons:

- The relay trouble alarm disables all hardware outputs
- The programmable hold timer is active
- The select-before-operate function overrides a virtual output

Figure 3-6 shows a diagram of the output contact logic for the general purpose output contacts. Figure 3-7 illustrates the output contact logic for the Fail-safe Alarm Output Contact.

Figure 3-6. Output Logic, General Purpose Output Contacts

Figure 3-7. Output Logic, Fail-Safe Alarm Output Contact

Retrieving Output Status

The relay's outputs can be monitored from the Metering Screen. To open the Metering Screen select Metering from the Reports pull-down menu. To begin viewing the relay's metered values, select the Start Polling button in the bottom right hand corner of the screen.

Alternately, status of output contacts can be assessed at HMI Screen 1.5.2 and through the communication ports using the RG-STAT (report general-status) command. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

Relay Trouble Alarm Disable

When the BE1-851 self-diagnostics function detects a relay problem, an internal alarm condition is set. This alarm condition disables the outputs and de-energizes the OUTA relay closing the OUTA contact. For more details about this function see Section 6, Reporting and Alarm Functions, Alarms Function.

Programmable Hold Timer

Historically, electromechanical relays have provided trip contact seal-in circuits. These seal-in circuits consisted of a dc coil in series with the relay trip contact and a seal-in contact in parallel with the trip contact. The seal-in feature serves several purposes for electromechanical relays. One purpose is to provide mechanical energy to drop the target. A second purpose is to carry the dc tripping current from the induction disk contact which may not have significant closing torque for a low resistance connection. A third purpose is to prevent the relay contact from dropping out until the current has been interrupted by the 52a contacts in series with the trip coil. If the tripping contact opens before the dc current is interrupted, the contact may be damaged. Of the three items, only item three is an issue for electronic relays like the BE1-851.

To prevent the output relay contacts from opening prematurely, a hold timer can hold the output contact closed for a minimum of 200 milliseconds. If seal-in logic with feedback from the breaker position logic is desired, the BESTlogic expression for the tripping output can be modified. This process is described in Section 7, BESTlogic Programmable Logic, Application Tips.

The hold timer can be enabled for each output using the SG-HOLD (setting general-hold) command. To enable the hold timer using BESTCOMS, select Inputs and Outputs from the Screens menu. To enable the hold timer for a desired output, check the box labeled Hold Attribute by clicking in the box with the mouse pointer. In Figure 3-8 the Hold Attribute for Out 1, Out 2 and Out 5 is enabled.

Figure 3-8. Inputs and Outputs Screen, Outputs 1-5, A Tab

Output Logic Override Control

Each output contact can be controlled directly using the select-before-operate output control function. The virtual output logic expression that normally controls the state of an output contact can be overridden and the contact pulsed, held open or held closed. This function is useful for testing purposes. An alarm point is available in the programmable alarm function for monitoring when the output logic has been overridden. See Section 6, Reporting and Alarm Functions, Alarm Functions, for more information about programmable alarms. Write access to control functions is required before using the select-before-operate control functions through the HMI or ASClI command interface.

Enabling Logic Override Control

By default, logic override control is disabled. Output logic override must be enabled before the control can be used. Enabling of the output logic override control is not possible at the front panel HMI or through BESTCOMS. It can only be enabled through a communication port using the CS/CO-OUT=ena/dis (control select/control operate-output override = enable/disable) command. The CS/CO-OUT command only enables or disables override control of the output logic; it doesn't enable or disable the outputs themselves.

Pulsing an Output Contact

Pulsing BE1-851 outputs provides the same function as the push-to-energize feature of other Basler Electric solid-state relays. This feature is useful when testing the protection and control system. When pulsed, an output contact changes from the current state (as determined by the virtual output logic expression) to the opposite state for 200 milliseconds. After 200 milliseconds, the output contact is returned automatically to logic control.

Pulse override control is accessed at Screen 2.4.1 of the HMI by entering a P in the field for the output contact to be pulsed. Pulse control is accessed through a communication port by using the CS/CO-OUTn=P (control select/control operate-output contact $\mathrm{n}=$ pulse) command.

Holding an Output Contact Open or Closed

Outputs can be forced to a closed (logic 1 or TRUE) state or to an open (logic 0 or FALSE) state. This feature can be used to disable a contact during testing. Open or close logic override control is accessed at Screen 2.4.1 of the HMI by entering a 0 for open or 1 for closed in the field for the output contact to be controlled. Outputs are forced open or closed through a communication port by using the CS/CO-OUTn=P0/1 (control select/control operate-output contact n-0/1) command.

Returning an Output Contact to Logic Control

When the output logic has been overridden and the contact is held in an open or closed state, it's necessary to manually return the output to logic control. Outputs are returned to logic control through Screen 2.4.1 of the HMI. An L is entered in the field of the contact that is to be returned to logic control. Outputs are returned to logic control through a communication port by using the CS/CO-OUTn=L (control select/control operateoutput contact $\mathrm{n}=$ logic control) command.

CS/CO-OUT Command

Purpose: Controls or reads output selection/operation.
Syntax: \quad CS/CO-OUT[n][=<mode>]
Comments: $\mathrm{n}=$ output number 1, 2, 3, 4, 5 or A
mode $=0,1, P, L$, ENA, or DIS
The output control commands require the use of select-before-operate logic. First, the command must be selected using the CS-OUT command. After the command is selected, there is a 30 second window during which the CO-OUT control command an be entered. The control selected and operation selected syntax must match exactly or the command will be blocked. If the operate command isn't entered within 30 seconds of the select command, the operate command will be blocked. An error message is returned when a control command is blocked.

Output control commands are acted on immediately except when the ENA and DIS modes are used. ENA and DIS output control command changes aren't executed until saved with the EXIT command. Output control status is saved in non-volatile memory and is maintained when relay operating power is lost.
Example 1. Enable the output control feature.
>CS-OUT=ENA
>OUT=ENA SELECTED
>CO-OUT=ENA
>OUT=ENA EXECUTED NOTE: It is not effective until EXIT with SAVE (Y).

Example 2. Test all outputs by pulsing momentarily.
>CS-OUT=P
>OUT=P SELECTED
>CO-OUT=P
>OUT=P EXECUTED
Example 3. Disable the trip output (OUT1) by holding it at logic 0.
>CS-OUT1=0
>OUT1=0 SELECTED
>CO-OUT1=0
>OUT1=0 EXECUTED
Example 4. Return OUT1 to logic control.
>CS-OUT1=L
>OUT1=L SELECTED
>CO-OUT1=0
>OUT1=L EXECUTED

Retrieving Output Logic Override Status

The status of the output contact logic override control can be viewed at HMI Screen 1.5.3. HMI Screen 2.4.1 is used for output control but can also display the current status. Output logic status can also be viewed using the RG-STAT (report general-status) command. An L indicates that the state of the output is controlled by logic. A 0 or 1 indicates that the logic has been overridden and the contact is held open (0) or closed (1) state. A P indicates that the contact is being pulsed and will return to logic control automatically. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

SECTION 4 • PROTECTION AND CONTROL

TABLE OF CONTENTS

SECTION 4 • PROTECTION AND CONTROL 4-1
INTRODUCTION 4-1
Using Protection and Control Functions 4-1
SETTING GROUPS 4-1
BESTlogic Settings for Setting Group Control Function 4-2
Operating Settings for Setting Group Control Function 4-5
Logic Override, Setting Group Control Function 4-8
Retrieving Setting Group Status Information from the Relay 4-9
OVERCURRENT PROTECTION 4-9
50T Instantaneous Overcurrent Protection with Settable Time Delay 4-9
BESTlogic Settings for Instantaneous Overcurrent Elements 4-10
Operating Settings for Instantaneous Overcurrent Elements 4-11
Retrieving Logic Output Status Information from the Relay 4-12
51 Time Overcurrent Element 4-12
BESTlogic Settings for Time Overcurrent Elements 4-13
Operating Settings for Time Overcurrent Elements 4-14
Setting Programmable Time Current Characteristic Curve Coefficients 4-15
Retrieving Logic Output Status Information from the Relay 4-16
Negative Sequence Overcurrent Protection 4-16
Negative Sequence Pickup Settings 4-16
Negative Sequence Coordination Settings 4-17
Delta/Wye Transformer Application. 4-18
BF BREAKER FAILURE PROTECTION 4-18
Breaker Failure Settings 4-19
BESTlogic Settings for Breaker Failure (BF) Element 4-19
Setting Operational Settings, BF (Breaker Failure) Function 4-20
Retrieving Logic Output Status Information from the Relay 4-21
RECLOSING 4-22
Reclose Initiate (RI) 4-22
STATUS (Breaker Status) 4-22
WAIT (Reclose Wait) 4-22
BLK/DTL (Drive to Lockout/Block Recloser) 4-22
79C (Close) 4-23
79RNG (Recloser Running) 4-23
79LO (Lockout) 4-23
79F (Reclose Failure) 4-23
79SCB (Recloser Sequence Control Block) 4-23
BESTlogic Settings for Recloser Elements 4-24
Recloser Operating Settings 4-25
Sequence Controlled Block 4-26
Zone Sequence Coordination 4-27
GENERAL PURPOSE LOGIC TIMERS 4-28
PU/DO (Pickup/Dropout Timer) 4-28
One-Shot Nonretrigerable Timer 4-29
One-Shot Retriggerable Timer 4-29
Oscillator 4-30
Integrating Timer 4-30
Latch 4-31
BESTlogic Settings for 62/162 General Purpose Logic Timers 4-31
Operating Settings for 62/162 General Purpose Logic Timers 4-32
Retrieving 62/162 Output Status Information from the Relay 4-33
VIRTUAL SWITCHES 4-33
43 Virtual Selector Switches 4-33
BESTlogic Settings for x43 Virtual Selector Switches 4-34
Select Before Operate Control of Virtual Selector Switches 4-34
Retrieving Virtual Selector Switch Status Information from the Relay 4-35
101 Virtual Breaker Control Switch 4-35
BESTlogic Settings for 101 Virtual Breaker Control Switch 4-36
Select Before Operate Control of Virtual Breaker Control Switches 4-37
Retrieving Virtual Selector Switch Status Information from the Relay 4-37
Figures
Figure 4-1. Setting Group Control Function Block. 4-1
Figure 4-2. BESTlogic Function Element Screen, Setting Group Selection 4-3
Figure 4-3. Input Control Discrete Inputs 4-4
Figure 4-4. Input Control Binary Inputs 4-5
Figure 4-5. Setting Group Selection Screen 4-5
Figure 4-5. Setting Group Selection Screen 4-5
Figure 4-6. Automatic Operation Based on Load Change 4-6
Figure 4-7. Setting Group Selection, Setting Group Selection 4-7
Figure 4-8. Automatic Based on Cold Load Pickup 4-7
Figure 4-9. Instantaneous Overcurrent Element 4-9
Figure 4-10. 50TP BESTlogic Function Element Screen 4-10
Figure 4-11. Overcurrent Screen, 50T Tab 4-11
Figure 4-12. Time Overcurrent Element 4-12
Figure 4-13. 51P BESTlogic Function Element Screen 4-13
Figure 4-14. Overcurrent Screen, 51 Tab 4-14
Figure 4-15. Curve Coefficients Screen 4-16
Figure 4-16. Phase-to-Phase Fault Magnitude 4-17
Figure 4-17. Sequence Components For An A-B Fault 4-17
Figure 4-18. BF Breaker Failure Element 4-18
Figure 4-19. Breaker Failure BESTlogic Function Element Screen 4-20
Figure 4-20. Breaker Failure Screen 4-21
Figure 4-21. 79 Function Block 4-22
Figure 4-22. Recognition Dropout and Timing 4-22
Figure 4-23. 79SCB Logic 4-23
Figure 4-24. 79 Reclosing Bestlogic Function Element Screen 4-24
Figure 4-25. Reclosing Screen 4-25
Figure 4-26. S\#-79SCB=1/2/3/4/5 Logic Timing Diagram 4-27
Figure 4-27. Reclosing BESTlogic Function Element Screen (Zone Sequence Coordination) 4-27
Figure 4-28. 62/162 Function Block 4-28
Figure 4-29. PU/DO (Pickup/Dropout Timer) 4-29
Figure 4-30. One Shot Nonretrigerable Timer 4-29
Figure 4-31. One Shot Retrig Timer 4-29
Figure 4-32. Oscillator 4-30
Figure 4-33. Integrating Timer 4-30
Figure 4-34. Latch 4-31
Figure 4-35. Logic Timer (62) BESTlogic Function Element Screen 4-31
Figure 4-36. Logic Timers Screen 4-32
Figure 4-37. 43 Element Block 4-33
Figure 4-38. Virtual Switch BESTlogic Function Element Screen 4-34
Figure 4-39. Element Block 4-35
Figure 4-40. 101 Control Switch State Diagram 4-36
Figure 4-41. Virtual Breaker Control 101 BESTlogic Function Element Screen 4-36
Tables
Table 4-1. Setting Group Control Function BESTlogic Settings 4-2
Table 4-2. Setting Group Binary Codes 4-3
Table 4-3. Setting Group Control Function Settings 4-3
Table 4-4. Instantaneous Overcurrent BESTlogic Settings 4-10
Table 4-5. Instantaneous Overcurrent Operating Settings 4-12
Table 4-6. Time Overcurrent Function BESTlogic Settings 4-13
Table 4-7. Time Overcurrent Function Operating Settings 4-15
Table 4-8. Definitions for Equations 4-1 and 4-2 4-15
Table 4-9. Programmable Time Current Characteristic Curve Coefficients 4-16
Table 4-10. Fault Type Multiplier 4-18
Table 4-11. BF Breaker Failure Function BESTlogic Settings 4-20
Table 4-12. BF Breaker Failure Function Operational Settings 4-21
Table 4-13. Recloser BESTLogic Settings 4-24
Table 4-14. Recloser Operational Settings 4-26
Table 4-15. Zone Sequence Coordination Settings 4-28
Table 4-16. 62/162 BESTlogic Settings 4-32
Table 4-17. 62/162 Operating Settings 4-33
Table 4-18. x43 Virtual Selector Switch BESTlogic Settings 4-34
Table 4-19. 101 Virtual Selector Switch BESTlogic Settings 4-36
Equations
Equation 4-2. Time OC Characteristics for Reset 4-15
Equation 4-1. Time OC Characteristics for Trip 4-15

SECTION 4 • PROTECTION AND CONTROL

INTRODUCTION

BE1-851 relays provide many functions that can be used to protect and control power system equipment in and around a protected zone.

BE1-851 type H protection functions include:

- Instantaneous Overcurrent with Settable Time Delay (50TP, 50TN, 50TQ, 150TP, 150TN, 150TQ)
- Time-Overcurrent (51P, 51N, 51Q)
- Breaker Failure (BF)
- General Purpose Logic Timers (62, 162)

BE1-851 type G protection functions include:

- Instantaneous Overcurrent with Settable Time Delay (50TP, 150TP, 50TN, 150TN, 250TN, 350TN)
- Time-Overcurrent (51P, 51N, 151N)
- Breaker Failure (BF)
- General Purpose Logic Timers $(62,162)$

BE1-851 control functions include:

- Virtual Selector Switches (43, 143, 243, 343)
- Virtual Breaker Control Switches (101)

Four settings groups allow coordination to be adapted for changes in operating conditions. Setting groups can be selected using automatic or programmable logic criteria.

Using Protection and Control Functions

Three steps must be taken before using a protection or control function block:

- The function block must be enabled in the active logic scheme by the SL-<function> command.
- Function inputs and outputs must be connected properly in a logic scheme.
- Function characteristics or settings must be programmed and based on the specific application requirements.
If a preprogrammed logic scheme is used in a typical application, the first two steps may be skipped. Most preprogrammed schemes are general in nature. Unneeded capabilities can be disabled by a setting of zero. For example, if the second negative sequence instantaneous overcurrent function is enabled but not needed, disable it by setting the 150TQ pickup setting at zero (S\#-150TQ=0).
More information about the individual function blocks of item 1 is provided in this section. Information pertaining to items 2 and 3 is available in Section 7, BESTlogic Programmable Logic, and Section 8, Application.

SETTING GROUPS

BE1-851 relays provide a normal setting group, SGO, and up to three auxiliary setting groups SG1, SG2 and SG3. Auxiliary setting groups allow adapting the coordination settings to optimize them for a predictable situation. Sensitivity and time coordination settings can be adjusted to optimize sensitivity or clearing time based upon source conditions or to improve security during overload conditions. The possibilities for improving protection by eliminating compromises in coordination settings with adaptive setting groups is endless. Figure 4-1 outlines the setting group control function block.

The group of settings that are active at any point in time is controlled by the setting group control function block. This function block allows for manual (logic) or automatic control.

Figure 4-1. Setting Group Control Function Block.

When manual control is enabled by the AUTOMATIC logic input not being asserted, the function block monitors logic inputs D0, D1, D2 and D3 and changes the active setting group according to the status of these inputs. These inputs can be connected to logic expressions such as contact sensing inputs. When automatic control is enabled by the AUTOMATIC logic input being asserted, the relay monitors loading or unbalance conditions and changes the active setting group according to the "switch to" and "return" criteria set. The change criteria for manual and automatic control is described in more detail later in this section.

The function block has four logic variable outputs, SG0, SG1, SG2 and SG3. The appropriate variable is asserted when each setting group is active. These logic variables can be used in programmable logic to modify the logic based upon which setting group is active. For example, it may be desired for the 51P to trip the low side breaker through OUT2 under normal conditions but to trip the 86T lockout relay through OUT1 only when in setting group 3. The logic for OUT1 would include the term 51PT*SG3 so that 51PT only actuates OUT1 when SG3 is asserted.

The setting group control function block also has an alarm output variable SGC (Setting Group Changed). This output is asserted whenever the relay switches from one setting group to another. The SGC alarm bit is asserted for the SGCON time setting. This output can be used in the programmable alarms function if it is desired to monitor when the relay changes to a new setting group. See Section 6, Reporting and Alarms Functions, Alarms Function, for more information on using alarm outputs.

The SGCON time setting also serves to provide anti-pump protection to prevent excessive changing between groups. Once a change in active group has been made, another change cannot take place for two times the SGCON setting.

The SGC ACTIVE alarm output is typically used to provide an external acknowledgment that a setting group change occurred. If SCADA is used to change the active group, then this signal could be monitored to verify that the operation occurred. The SGC ACTIVE alarm output ON time is user programmable and should be set greater than the SCADA scan rate. This can be set through the ASCII command interface by using the SG-SGCON (settings general-SGC Alarm on time) command.
When the relay switches to a new setting group, all functions are reset and initialized with the new operating parameters. The settings change occurs instantaneously so at no time is the relay off line. The active setting group is saved in non-volatile memory so that the relay will power up using the same setting group as it was using when it was powered down. To prevent the relay from changing settings while a fault condition is in process, setting group changes are blocked when the relay is in a picked-up state. Since the relay is completely programmable, the fault condition is defined by the pickup logic expression in the fault reporting functions. See Section 6, Reporting and Alarm Functions, Fault Reporting, for more information.

The selection of the active setting group provided by this function block can also be overridden. When the logic override is used, a setting group is made active and the relay stays in that group regardless of the state of the automatic or manual logic control conditions.

BESTIogic Settings for Setting Group Control Function

BESTlogic settings are made from the BESTlogic Function Element screen in BESTCOMS. Figure 4-2 (next page) illustrates the BESTCOMS screen used to select BESTlogic settings for the Setting Group Control function. To open the BESTlogic Function Element Screen for Setting Group Selection, select Setting Group Selection from the Screens pull-down menu. Then select the BESTlogic button in the lower left hand corner of the screen. Alternately, settings may be made through the ASCII command interface using the SL-GROUP (settings logic-group control) command.

At the top center of the BESTlogic Function Element screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User must be selected on this menu to allow changes to the mode and inputs of the function/element.

Enable the setting group control function by selecting its mode of operation from the Mode pull-down. To connect the setting group control functions inputs, select the button for the corresponding input in the BESTlogic Function Element Screen. The BESTlogic Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Done once the settings have been completely edited.

Figure 4-2. BESTlogic Function Element Screen, Setting Group Selection

Table 4-1 summarizes the setting group control functions mode of operation and the purpose of its inputs. These settings will determine how the function selects the active setting group when manual logic selection is enabled.

Table 4-1. Setting Group Control Function BESTlogic Settings

Function	Range/Purpose	Default
Mode	$0=$ disabled, $1=$ discrete inputs, 2 $=$ binary inputs (if Auto mode is desired, logic mode must be either 1 or 2)	discrete inputs
D0	Logic expression. Meaning is dependent upon the Mode setting.	0
D1	Logic expression. Meaning is dependent upon the Mode setting.	0
D2	Logic expression. Meaning is dependent upon the Mode setting.	0
D3	Logic expression. Meaning is dependent upon the Mode setting.	0
Automatic	Logic expression. When TRUE enables automatic control and when FALSE enables logic control.	$/ 0$

Manual (logic) control reads the status of the logic inputs to the setting group control function block to determine what setting group should be active. For the logic inputs to determine which setting group should be active, the AUTOMATIC input must be a logic 0 . The function block logic mode setting determines how it reads these logic inputs. There are three possible logic modes as shown in Table 4-1.

When the setting group control function block is enabled for Discrete Inputs, there is a direct correspondence between each discrete logic input and the setting group that will be selected. That is, when input DO is asserted, SG0 will be selected, and when input D1 is asserted SG1 will be selected, etc. The active setting group latches in after the input is read so they can be pulsed. It is not necessary that the input be maintained. If one or more input is asserted at the same time, the numerically higher setting group will be the one that is active. A pulse must be present for approximately one second for the setting group change to occur. After a setting group change occurs, no setting group change can occur within two times the SGC alarm-on time. Any pulses to the inputs will be ignored during that period.

Figure 4-3 shows an example of how the inputs are read when the setting group control function block is enabled for Discrete Inputs. Note that a pulse on the D3 input while D0 was also active does not cause a setting group change to SG3 because the AUTO input is active.

Figure 4-3. Input Control Discrete Inputs
When the setting group control function block is enabled for Binary Inputs, the inputs on D0 and D1 are read as binary encoded as shown in Table 4-2. Inputs D2 and D3 are ignored. A new coded input must be stable for approximately 1 second for the setting group change to occur. After a setting group change occurs, no setting group change can occur within two times the SGC alarm on time.

Table 4-2. Setting Group Binary Codes

Binary Code			
D1	D0	Decimal Equivalent	Setting Group
0	0	0	SG0
0	1	1	SG1
1	0	2	SG2
1	1	3	SG3

When using control mode 2 is when the active setting group is controlled by a binary signal applied to the discrete inputs D0-D1. This requires separate logic equations for only D0 and D1 if all setting groups are to be used. Figure 4-4 shows how the active setting group follows the binary sum of the D0 and D1 inputs except when blocked by the AUTO input. Note that a pulse on the D1 input while D0 was also active does not cause a setting group change to SG3 because the AUTO input is active.
Figure 4-4 shows an example of how the inputs are read when the setting group control function block is enabled for Binary Inputs. Note that a pulse on the D1 input while D0 was also active does not cause a setting group change to SG3 because the AUTO input is active.

Figure 4-4. Input Control Binary Inputs
Example: Make the following settings to the setting group control function. Set the setting group control such that automatic selection is overridden and emergency overload settings (SG3) are in place when transformer 2 is out of service. Contact Sensing Input 2 is TRUE when either the high side or low side breakers for Transformer 2 are open. Refer to Figure 4-2 for an example.
Mode: Binary Inputs
DO: \quad Connect to IN2
D1: \quad Connect to IN2
D2: \quad Connect to 0
D3: \quad Connect to 0
Automatic: Connected to /IN2

Operating Settings for Setting Group Control Function

Operating settings can be made using BESTCOMS. Figure 4-5 illustrates the BESTCOMS screen used to select operational settings for the Setting Group Control function. To open the Setting Group Selection screen, select Setting Group Selectionfrom the Screens pull-down menu. Alternately, operational settings can be set from the HMI using Screen 6.7, SETUP AUX_STGS and from the ASCII command interface using the SG-SGCON (settings general-SGC Alarm on time) command.

At the top left of the screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme.

Using the pull-down menus and buttons, make the applicationappropriate settings to the Setting Group Control function. Table 4-3 summarizes the function's mode of operation.

Figure 4-5. Setting Group Selection Screen

Table 4-3. Setting Group Control Function Settings

Setting	Range	Increment	Unit of Measure	Default
Switch Threshold	$0-150$	1	\% of SG0 51* Pickup	0
Switch Time	$0=$ disabled, $1-60$	1	minutes	0
Return Threshold	$0-150$	1	$\%$ of SG0 51* Pickup	0
Return Time	$0=$ disabled, $1-60$	1	minutes	0
Monitored Element	See Note	n/a	n/a	51 P
Setting Group Change (SGC) Alarm Timer	$0=$ disabled,1-10	1	seconds	5

NOTE
Monitored element for sensing input type H is any 51 element: $51 \mathrm{P}, 51 \mathrm{~N}, 51 \mathrm{Q}, 791,792$,
793, 794. Monitored element for sensing input type G is any 51 element: $51 \mathrm{P}, 51 \mathrm{~N}, 151 \mathrm{~N}$,
$791,792,793,794$.

The SGC alarm output (SGC ACTIVE) is typically used to provide an external acknowledgment that a setting group change occurred. If SCADA was used to change the active group, then this signal could be monitored to verify that the operation occurred. The SGC ACTIVE alarm output ON time is user programmable using the Setting Group Change (SGC) Alarm Timer (sec.) setting on the BESTCOMS Screen (refer to Figure 4-5). The setting should be set greater than the SCADA scan rate.

Example 1. Set the SGC alarm timer to 5 seconds. Refer to Figure 4-5. Setting Group Change (SGC) Alarm Timer (sec.): 5
Automatic control of the active setting group allows the relay to automatically change configuration for optimum protection based on the current system conditions. For example, in locations where seasonal variations can cause large variations in loading, the overcurrent protection can be set with sensitive settings during the majority of the time and switch to a setting group with lower sensitivity (higher pickups) during the few days of the year when the loading is at peak.

There are five settings for each group that are used for automatic control. Each group has a switch to threshold and time delay, a return threshold and time delay and a monitored element. The switch to and return thresholds are a percentage of the SGO pickup setting for the monitored element. The monitored element can be any of the 51 protective functions. Thus, if you wish to switch settings based upon loading, you could set it to monitor 51P. If you wish to switch settings based upon unbalance, you could set it to monitor 51 N or 51 Q . When the monitored element is 51P, any one phase must be above the switch to threshold for the switch

Figure 4-6. Automatic Operation Based on Load Change
to time delay for the criteria to be met. All phases must be below the return threshold for the return time delay for the return criteria to be met.

Figure 4-6 shows an example of using the automatic setting group selection settings to change settings groups based upon loading. Figure 4-5 illustrates the operating settings used in the diagram shown in Figure 4-6. Note that the AUTO input must be at a TRUE logic state in order to allow the automatic logic to operate. At time $=0$, current begins to increase. When current reaches 75 percent of pickup, setting group two begins timing (30 minutes). When current reaches 90 percent of pickup, setting group three begins timing (5 minutes).
After 5 minutes, at time $=37$, with the current still above setting group three threshold, setting group three becomes active and the setting group change output pulses. At time $=55$, setting group two timer times out but no setting group change occurs because a higher setting group takes precedence. The faint dashed line for SG2, between time $=55$ and 75 shows that setting group two would be active except for setting group three. Current decreases to 75 percent at time $=70$ and setting group three return timer begins timing. Current varies but stays below 75 percent for 5 minutes and at time $=75$, setting group two becomes active and the setting change output pulses. After 20 minutes, setting group zero becomes active and the setting change output pulses.

This function can also be used to automatically change the active setting group for cold load pickup conditions. If the switch to threshold for a group is set to 0%, the function will switch to that group when there is no current flow for the time delay period indicating that the breaker is open or the circuit source is out of service. The threshold for this is 10% nominal rating of the relay current input.

Figure 4-8 shows how the active setting group follows the load current and time delay settings. Figure 4-7 illustrates the operating settings used in the diagram shown in Figure 4-8. Note that the AUTO input must be at a TRUE (1) logic state for the automatic logic to operate.

Figure 4-7. Setting Group Selection, Setting Group Selection

Figure 4-8. Automatic Based on Cold Load Pickup

When the breaker opens, the load current falls to zero, time $=15$ minutes. After 10 minutes, setting group one becomes active and the setting group change output pulses TRUE. When the breaker is closed, time $=40$ minutes, load current increases to approximately 90 percent of pickup. As the load current decreases to 50 percent of pickup, the setting group one return timer begins timing. After ten minutes, setting group one output goes FALSE, the setting group returns to setting group zero and the setting group change output pulses TRUE.

When the switch to criteria is met for more than one setting group at a time, the function will use the numerically higher of the enabled settings groups. If the switch to time delay setting is set to 0 for a setting group, automatic control for that group is disabled. If the return time delay setting is set to 0 for a setting group, automatic return for that group is disabled and the relay will remain in that settings group until returned manually of by logic override control.

Logic Override, Setting Group Control Function

Control of the active setting group from the setting group control function can be overridden. This can be accomplished from the optional HMI from Screen 2.3, ICTRLISG or from the ASCII command interface using the select before operate CS/CO-GROUP (control select-setting group/control operate-setting group) command. This can not be done using BESTCOMS. A setting group change using logic override control is also blocked for two times the SGC on setting after a setting group change and when the fault reporting pickup expression is TRUE. The setting group change takes place immediately without having to execute an EXIT - SAVE settings command.

A group override alarm bit is set in the programmable alarm function when the logic has been overridden. This output can be used in the programmable alarms function if it is desired to monitor when the function has been overridden. See Section 6, Reporting and Alarms Functions, Alarms Function, for more information on using alarm outputs.

CS/CO-GROUP Command

Purpose: Read/change active setting group
Syntax: CS/CO-GROUP[=<n>/L]
Comments: <n> = new setting group number 0-3
$\mathrm{L}=$ returns group control to the setting group control function.
The group control commands require the use of Select Before Operate logic. First the command must be selected using the CS-GROUP command. After the command is selected there is a 30 second window during which the CO-GROUP control command can be entered. The control selected and operation selected must exactly match or the command is blocked. If the command is not entered within the 30 second window, the command is blocked. If the control command is blocked, an error message is output.
Example 1. Read the current status of setting group override which is overridden and held in SGO.
>CO-GROUP
0
$>$
Example 2. Override logic control and change the active setting group to SG3.
>CS-GROUP=3
GROUP=3 SELECTED
>CO-GROUP=3
GROUP=3 EXECUTED
$>$
Example 3. Return control of the active setting group to the setting group control function.
>CS-GROUP=L
GROUP=L SELECTED
>CO-GROUP=L
GROUP=L EXECUTED
$>$
Example 4. Group override error due to time out of select.
>CS-GROUP=3
GROUP=3 SELECTED
>CO-GROUP=3
ERROR:NO SELECT
?

Retrieving Setting Group Status Information from the Relay

The active setting group can be determined from the optional HMI from Screen 1.4.4, ISTAT\OPER\ACTIVEG. The setting group can be determined from the ASCII command interface using the RG-STAT or RG-GRPACTIVE commands. It can not be set using BESTCOMS. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

The status of logic override can be determined from the optional HMI from Screen 2.3, ICTRLISG. The status of logic override can be determined from the ASCII command interface using the RG-STAT or RG-GRPCNTRL commands. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

OVERCURRENT PROTECTION

BE1-851 overcurrent protection includes instantaneous elements for Phase, Neutral and Negative Sequence, as well as time-overcurrent elements for Phase, Neutral and Negative Sequence.

50T Instantaneous Overcurrent Protection with Settable Time Delay

There are two independent BESTlogic function blocks for phase (50TP, 150TP), two for neutral (50TN, 150TN) and two for negative sequence (50TQ, 150TQ) instantaneous overcurrent protection. Sensing input type G relays have four neutral elements and two phase elements. Sensing input type H units have two neutral, two phase and two negative sequence elements. Each function block can be connected to any of the CT input circuits by the BESTlogic mode setting. The instantaneous overcurrent functions are labeled 50T and 150 T because each function has an adjustable time delay. If a function block has a time delay setting of zero, then that function block will operate as an instantaneous overcurrent relay.

Each of the six independent function blocks has two logic outputs, pickup and trip. The trip output is indicated by a T at the end of its label and pickup is indicated by a $P U$. The first letter of the label indicates the element type where P is a phase element, N is a neutral element and Q is a negative sequence element. The 50T element illustrated in Figure 4-9 is a phase element.

Each function block has a BLOCK input that can be used to disable the function. A BESTlogic expression is used to define the BLOCK input. When this expression is TRUE, the function block is disabled by forcing the outputs to logic zero and

Figure 4-9. Instantaneous Overcurrent Element resetting the timers to zero. This feature functions in a similar way to the torque control contact of an electro-mechanical relay.

A logic mode input allows each instantaneous overcurrent function block to be enabled or disabled. More information about logic mode selection is provided in the following paragraph titled BESTlogic Settings for Instantaneous Overcurrent Elements paragraph.

Each instantaneous overcurrent function has a pickup and time delay setting. When the measured current increases above the pickup threshold, the pickup output (x50TPPU) becomes TRUE and the timer starts. If the current stays above pickup for the duration of the time delay setting, the trip output (x50TPT) becomes TRUE. If the current decreases below the dropout ratio which is 95 percent of pickup, the timer is reset to zero ($1 / 4$ to $1 / 2$ cycle later).

The phase overcurrent protective functions include three independent comparators and timers, one for each phase. If the current increases above the pickup setting for any one phase, the pickup output asserts. If the trip condition is TRUE for any one phase, the trip logic output asserts.

If the target is enabled for the function block, the target reporting function will record a target for the appropriate phase when the protective function trip output is TRUE and the fault recording function trip logic expression is TRUE. See Section 6, Reporting and Alarm Functions, Fault Reporting, for more information about target reporting.

BESTlogic Settings for Instantaneous Overcurrent Elements

BESTlogic settings are made from the BESTlogic Function Element Screen in BESTCOMS. Figure 4-10 illustrates the BESTCOMS Screen used to select BESTlogic settings for the Instantaneous Overcurrent element. To open the BESTlogic Function Element Screen for Instantaneous Overcurrent With Settable Time Delay, select Overcurrent from the Screens pull-down menu and select either the 50T or $150 T$ tab. Then select the the BESTlogic button for the element you wish to edit. Alternately, Logic settings for the 50T and 150T functions can be made using the SL-x50T ASCII command.

At the top center of the BESTlogic Function Element Screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to the mode and inputs of the function/element.

Enable the instantaneous overcurrent function by selecting its mode of operation from the Mode pull-down menu. When enabled, this element is connected to the CT input circuits.

To connect the elements inputs, select the button for the corresponding input in the

Figure 4-10. 50TP BESTlogic Function Element Screen BESTlogic Function Element Screen. The BESTlogic Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, See Section 7, BESTlogic Programmable Logic. Select Done when the BESTlogic settings have been completely edited.

Table 4-4 summarizes the instantaneous overcurrent element's modes of operation and inputs.
Table 4-4. Instantaneous Overcurrent BESTlogic Settings

Settings	Range/Purpose	Default
Mode	$0=$ disabled $1=$ enabled	disabled
BLOCK	Logic expression that disables function when TRUE.	0 (not connected)

Example 1. Make the following settings to the 50TP element. Refer to Figure 4-10
Mode: Enable BLOCK: Connect to IN1

Operating Settings for Instantaneous Overcurrent Elements

Operating settings are made using BESTCOMS. Figure 4-11 illustrates the BESTCOMS screen used to select operational settings for the instantaneous overcurrent element. To open the Overcurrent Screen, select Overcurrentfrom the Screens pull-down menu. Alternately, settings may be made using the S<g>-x50T ASCII command. Settings can also be made from the front panel HMI using Screens 5.x.3.1 through 5.x.3.6 where x equals 1 for setting group 0,2 for setting group 1, 3 for setting group 2 and 4 for setting group 3 .
At the top left of the screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to be made to the mode and inputs of the element. See Section 7, BESTlogic Programmable Logic, Logic Schemes.

Beneath the Logic pull-down menu is a pull-down menu labeled Settings. The Settings menu is used to select the setting group that the entered settings will apply to.

Operating settings for the 50T and 150T functions consist of Pickup and time delay (Time)

Figure 4-11. Overcurrent Screen, 50T Tab values. The Pickup value determines the level of current required for the function block to start timing toward a trip. Time delays (Time) can be set in milliseconds, seconds or cycles. The default is milliseconds if no unit of measure is specified. Minimum timing resolution is to the nearest quarter-cycle. A time delay setting of zero makes the element instantaneous with no intentional time delay

The default unit of measure for the Pickup setting is secondary amps. Primary amps (Pri Amps), per unit amps (Per $\cup \mathrm{Amps}$) and percent amps (\% Amps) can also be selected as the pickup setting unit of measure. The unit of measure for the Time setting that represents the element's time delay, defaults to milliseconds. It is also selectable for seconds, minutes and cycles.

If time delay settings are made in cycles, they are converted to seconds or milliseconds (per the nominal frequency setting stored in EEPROM) before being stored and rounded to the nearest whole millisecond. See Section 3, Input and Output Functions, Current Measurement Functions, for more information about this setting. If the nominal frequency setting is being changed from the default (60 hertz) and time delay settings are being set in cycles, the frequency setting should be entered and saved before making any time delay settings changes.

For setting up the negative sequence overcurrent protection, see Negative Sequence Overcurrent Protection later in this section.

Using the pull-down menus and buttons, make the application appropriate settings to the instantaneous overcurrent element. Table 4-5 summarizes the element's operating settings.

Table 4-5. Instantaneous Overcurrent Operating Settings

Settings	Range		Increment	Unit of Measure	Default
	1 A	5 A			
Pickup	$\begin{aligned} & 0=\text { disabled } \\ & 0.1 \text { to } 30 \end{aligned}$	$\begin{aligned} & 0=\text { disabled } \\ & 0.5 \text { to } 150 \end{aligned}$	0.01 for 0.01 to 9.99 0.1 for 10.0 to 99.9 1.0 for 100 to 150	secondary amps	0
Time	0 to 999 milliseconds		1	milliseconds	0
	0.1 to 60 seconds		0.1 for 0.1 to 9.9	seconds	
			1.0 for 10 to 60	seconds	
	0 to 3600 cycles (60 Hz)		*	cycles	
	0 to 2500 cycles (50 Hz)				

* Time delays less than 10 cycles can be entered to the nearest 0.1 cycle from the HMI. All time delays can be entered to the nearest 0.01 cycle from the ASCII command interface. Time delays entered in cycles are converted to milliseconds or seconds. Increment precision after conversion is limited to that appropriate for each of those units of measure.

Example 1. Make the following operational settings to the 50TP element. Refer to Figure 4-11.
Logic: User
Settings: Group 0
Pickpup: Set for 25 secondary amps
Time: Set for 10 seconds

Retrieving Logic Output Status Information from the Relay

The status of each logic variable can be determined through the ASCII command interface using the RG-STAT (report general-status) command. It can not be determined using BESTCOMS. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

51 Time Overcurrent Element

Sensing input type H relays have one function block for phase (51P), one for neutral (51N) and one for negative sequence (51Q) inverse time overcurrent protection. Sensing input type G relays have one function block for phase (51P) and two for neutral (51N, 151N).

Each of the four independent function blocks has two logic outputs, pickup and trip. The trip output is indicated by a T at the end of its label and pickup is indicated by a PU. The first letter of the label indicates the element type where P is a phase element, N is a neutral element and Q is a negative sequence element. The 51 element illustrated in Figure $4-12$ is a phase element.

A BLOCK logic input is provided to each function block that can be used to disable the function. When this expression is true, the function is disabled by forcing the outputs to logic zero and resetting the timers to zero. For example, this could be used

Figure 4-12. Time Overcurrent Element similar to a torque control contact on an electro-mechanical relay.

Each inverse time overcurrent function has a Pickup, a Time Dial and a Curve setting. See Appendix A, TimeOvercurrent Characteristic Curves, for details on each of the curves available. To make the protective element use integrated reset and emulate an electro-mechanical induction disk reset characteristic, the user can append an R to the selected time current characteristic curve. A programmable curve is available that can be used to create a custom curve by selecting coefficients in the inverse time characteristic equation.

When the measured current is above the pickup threshold, the pickup logic output, 51PPU (for example) = TRUE and inverse timing is started per the selected characteristic. If the current stays above pickup until the function times out, the trip logic output, 51PT (for example) = TRUE. If the current falls below the dropout ratio, which is 95% of pickup, the function will either reset instantaneously or begin timing to reset depending on the user's setting.

The phase overcurrent protective functions include three independent comparators and timers, one for each phase. If the current increases above the pickup setting for any one phase, the pickup output asserts. If the trip condition is TRUE for any one phase, the trip logic output asserts.

If the target is enabled for the function block, the target reporting function will record a target for all phases that are above pickup when the protective function trip output is TRUE and the fault recording function trip logic expression is TRUE. See Section 6, Reporting and Alarm Functions, Fault Reporting Functions, for more details on the target reporting function.

BESTlogic Settings for Time Overcurrent Elements

BESTlogic settings are made from the BESTlogic Function Element Screen in BESTCOMS. Figure 4-13 illustrates the BESTCOMS Screen used to select BESTlogic settings for the Time Overcurrent element. To open the BESTlogic Function Elementscreen for Time Overcurrent, select Overcurrentfrom the Screens pulldown menu and select the 51 tab . Then select the BESTlogic button for the element you wish to edit. Alternately, settings may be made using the SL-x51 ASCII command.

At the top center of the BESTlogic Function Element Screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to the mode and inputs of the element.

Enable the time overcurrent function by selecting its mode of operation from the Mode pulldown menu. When enabled, this element is connected to the CT input circuits.

To connect the blocking control, select the BLOCK button on the BESTlogic Function Element Screen. The BESTlogic

Figure 4-13. 51P BESTlogic Function Element Screen Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Done when the settings have been completely edited.

Table 4-6 summarizes the element's modes of operation.
Table 4-6. Time Overcurrent Function BESTlogic Settings

Function	Range/Purpose	Default
Mode	$0=$ disable, $1=$ enable	1
BLOCK	Logic expression that disables function when TRUE.	0

Example 1. Make the following BESTlogic settings to the 51P element. Refer to Figure 4-13.
Mode: Enable
BLOCK: Connected to IN1

Operating Settings for Time Overcurrent Elements

Operating settings are made using BESTCOMS. Figure 414 illustrates the BESTCOMS screen used to select operational settings for the time overcurrent element. To open the Overcurrent Screen for Time Overcurrent, select Overcurrentfrom the Screens pull-down menu and select the 51 tab. Alternately, operating settings can be made using the $\mathrm{S}<\mathrm{g}>-\mathrm{x} 51$ (setting group number51/151) ASCII command or from the front panel HMI using Screens 5.x.2. 1 through 5.x.2.3 where x equals 1 for setting group 0,2 for setting group 1, 3 for setting group 2 and 4 for setting group 3.

At the top left of the screen is

Figure 4-14. Overcurrent Screen, 51 Tab a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to be made to the mode and inputs of the element. See Section 7, BESTlogic Programmable Logic, Logic Schemes.
Beneath the Logic pull-down menu is a pull-down menu labeled Settings. The Settings menu is used to select the setting group that the element's settings apply to.

The pickup value determines the level of current required for the element to start timing toward a trip. Time Dial is used to select the time delay between pickup and trip based on the selected Curve. See Appendix A, Time-Overcurrent Characteristic Curves.

The unit of measure for the Pickup setting defaults to secondary amps though it is selectable for primary amps (Pri Amps), per unit amps (Per U Amps) and percent amps (\% Amps).

Using the pull-down menus and buttons, make the application appropriate settings to the time overcurrent element. Table 4-7 summarizes the element's modes of operation.

NOTE

Changing settings while the relay is in service will return an error message (PU CONDITION) if the new setting is within approximately 90 percent of the metered current level. This is intended to prevent the user from inadvertently causing a trip when changing a setting.

Table 4-7. Time Overcurrent Function Operating Settings

Setting	Range		Increment	Unit of Measure	Default
	1 A	5 A			
Pickup	$\begin{aligned} & 0=\text { disabled } \\ & 0.1 \text { to } 3.2 \end{aligned}$	$\begin{aligned} & 0=\text { disabled } \\ & 0.5 \text { to } 16 \end{aligned}$	0.01 for 0.50 to 9.99 0.1 for 10.0 to 16.0	secondary amps	0
Time Dial	0.0 to 9.9		0.1	n/a	0
Curve	See Appendix A		n/a	n/a	V2

Example 1. Make the following operating settings to the 51P element. Refer to Figure 4-14.

Logic:	User
Settings:	Group 0
Pickup:	10 secondary amps
Time Dial:	2.4
Curve:	S1R

Setting Programmable Time Current Characteristic Curve Coefficients

Time current characteristics for trip and reset are defined by Equation 4-1 and Equation 4-2 respectively. These equations comply with IEEE standard C37.112-1996. The curve specific coefficients are defined for the standard curves as listed in Appendix A, Time-Overcurrent Characteristic Curves. Standard curves can be selected for each 51 or 151 protection element by selecting them from the desired elements Curve pulldown menu. When time current characteristic curve P is selected, the coefficients used in the equation are those defined by the user. Definitions for these equations are provided in Table 4-8.

$$
\mathrm{T}_{\mathrm{T}}=\frac{\mathrm{AD}}{\mathrm{M}^{\mathrm{N}}-\mathrm{C}}+\mathrm{BD}+\mathrm{K}
$$

Equation 4-1. Time OC Characteristics for Trip

$$
\mathrm{T}_{\mathrm{R}}=\frac{\mathrm{RD}}{\left|\mathrm{M}^{2}-1\right|}
$$

Equation 4-2. Time OC
Characteristics for Reset

Table 4-8. Definitions for Equations 4-1 and 4-2

Parameter	Description	Explanation
T_{T}	Time to trip	Time that the 51 function will take to time out and trip.
D	Time dial setting	Time dial setting for the 51 function.
M	Multiple of pickup	Measured current in multiples of pickup. The timing algorithm has a dynamic range of 0 to 40 times pickup.
A	Coefficient specific to selected curve	Affects the effective range of the time dial.
B	Coefficient specific to selected curve	Affects a constant term in the timing equation. Has greatest effect on curve shape at high multiples of tap.
C	Coefficient specific to selected curve	Affects the multiple of PU where the curve would approach infinity if allowed to continue below pickup. Has greatest effect on curve shape near pickup.
N	Exponent specific to selected curve	Affects how inverse the characteristic is. Has greatest effect on curve shape at low to medium multiples of tap.
K	Constant	Characteristic minimum delay term.
$\mathrm{T}_{\text {R }}$	Time to reset	Relevant if 51 function is set for integrating reset.
R	Coefficient specific to selected curve	Affects the speed of reset when integrating reset is selected.

Curve coefficients can be entered using BESTCOMS. Alternately, curve coefficients can be entered using the SP-CURVE (Settings Protection-programmable curve) command. Table 4-9 lists the programmable curve settings.

Table 4-9. Programmable Time Current Characteristic Curve Coefficients

Setting	Range	Increment	Unit of Measure	Default
A Coefficient	0 to 600	0.0001	n / a	0.2663
B Coefficient	0 to 25	0.0001	n / a	0.034
C Coefficient	0.0000 to 1.0000	0.0001	n / a	1
N Coefficient	0.5 to 2.5	0.0001	n / a	1.2969
R Coefficient	0 to 30	0.0001	n / a	0.5

Curve coefficients are entered by selecting the Curve Coefficients button on the 51 or 151 tab in the Overcurrent Screen (refer to Figure 4-14). The Curve Coefficients Screen will appear. See Figure 4-15. Enter the calculated values for each constant and select Done.

Programmable curve coefficients can be entered regardless of the curve chosen for the protection element. However, the programmable curve will not be enabled until P is selected as the curve for the protective element.

Figure 4-15. Curve Coefficients Screen

Retrieving Logic Output Status Information from the Relay

The status of each logic variable cannot be determined in BESTCOMS. It can only be determined from the ASCII command interface using the RG-STAT (report general-status) command. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

Negative Sequence Overcurrent Protection

For years, protection engineers have enjoyed increased sensitivity to phase-to-ground unbalances with the application of ground relays. Ground relays can be set more sensitively than phase relays because a balanced load has no ground ($3 \mathrm{I}_{0}$) current component. The negative sequence elements can provide similar increased sensitivity to phase-to-phase faults because a balanced load has no negative sequence (l ${ }_{2}$) current component.

Negative Sequence Pickup Settings

A typical setting for the negative sequence elements might be one-half the phase pickup setting in order to achieve equal sensitivity to phase-to-phase faults as to three-phase faults. This number comes from the fact that the magnitude of the current for a phase-to-phase fault is $\sqrt{3} / 2(87 \%)$ of the three-phase fault at the same location. This is illustrated in Figure 4-16.

Figure 4-16. Phase-to-Phase Fault Magnitude

Phase-to-phase fault current is made up of both positive and negative sequence components as shown in Figure 4-17. For a phase-to-phase fault, the magnitude of the negative sequence component is $1 / \sqrt{3}$ (58%) of the magnitude of the total phase current. When these two factors ($\sqrt{3} / 2$ and $1 / \sqrt{3}$) are combined, the $\sqrt{3}$ factors cancel which leaves the one-half factor.

Pos. Seq. $\left(\mathrm{I}_{1}\right) \quad$ Neg. Seq. $\left(\mathrm{I}_{2}\right) \quad$ Phase Current
Figure 4-17. Sequence Components For An A-B Fault

Negative Sequence Coordination Settings

The 51Q settings should be checked for coordination with phase-only sensing devices such as downstream fuses and reclosers and/or ground relays. To plot the negative sequence time current characteristics on the same plot for the phase devices, you need to multiply the negative sequence element pickup value by the correct multiplier. The multiplier is the ratio of phase current to negative sequence current for the fault type
for which you are interested. To plot the negative sequence time current characteristics on the same plot for the ground devices, you need to multiply the pickup value by the multiplier for phase-to-ground faults. See Table 4-10.

Table 4-10. Fault Type Multiplier

Fault Type	Multiplier
Ph-Ph	$\mathrm{m}=1.732$
Ph-Ph-G	$\mathrm{m}>1.732$
Ph-G	$\mathrm{m}=3$
3-Phase	$\mathrm{m}=$ infinity

For example, a down-stream phase 51 element has a pickup of 150 amperes. The up-stream 51Q element has a pickup of 200 amperes. To check the coordination between these two elements for a phase-to-phase fault, the phase overcurrent element would be plotted normally with pickup at 150 amperes. The $51 Q$ element would be shifted to the right by the appropriate factor m . Thus, the characteristic would be plotted on the coordination graph with pickup at: (200 amperes) * $1.732=346$ amperes.

Generally, for coordination with down-stream phase overcurrent devices, phase-to-phase faults are the most critical to consider. All other fault types result in an equal or greater shift of the time current characteristic curve to the right on the plot.

Delta/Wye Transformer Application.

Often, the phase relays on the delta side of a delta/wye transformer must provide backup protection for faults on the wye side. For faults not involving ground, this is not a problem since the phase relays will see 1.0 per unit fault current for three-phase faults and $2 / \sqrt{3}$ (1.15) per unit fault current for phase-to-phase faults. However, for faults involving ground, the sensitivity is reduced because the zero sequence components are trapped in the delta and not seen by the delta-side phase relays. The phase relays will see only $1 / \sqrt{3}(0.577)$ per unit current for phase-to-ground faults.

Negative sequence overcurrent protection is immune to the effect caused by the zero sequence trap and 30° phase shift provided by the delta/wye transformer. For a phase-to-ground fault, the magnitude of the negative sequence components is $1 / 3$ the magnitude of the total fault current. On a per unit basis, this is true for the fault current on the delta side of the transformer as well. (The previous statement specifies per unit since the actual magnitudes will be adjusted by the inverse of the voltage ratio of the delta/wye transformer.) Thus, backup protection for phase-to-ground faults on the wye side of the transformer can be obtained by using negative sequence overcurrent protection on the delta side with the pickup sensitivity set at $1 / 3$ per unit of the magnitude of the phase-to-ground fault for which you wish to have backup protection.

BF BREAKER FAILURE PROTECTION

BE1-851 relays provide one function block for breaker failure protection. This function includes a timer and a current detector. Figure 4-18 shows the $B F$ function block. The function block has two outputs BFPU (breaker failure pickup) and BFT (breaker failure trip).

An INITIATE logic input is provided to start the breaker failure timer. When this expression is true and phase current is flowing in the assigned input circuit, the breaker failure timer is started. Supervision of the initiate signal can be designed in BESTlogic.

A BLOCK logic input is provided to block operation of the breaker

Figure 4-18. BF Breaker Failure Element failure protection. When this expression is true, the function is disabled. For example, this may be an input wired
to a test switch such that breaker failure protection is disabled when the primary protective elements are being tested to prevent inadvertent backup tripping during testing.

The breaker failure timer is stopped by the fast-dropout current detector function. See Section 3 Input and Output Functions, Current Measurement Functions, for more details on this function. The fast-dropout current detector is designed to directly determine when the current in the poles of the breaker has been interrupted without having to wait for the fault current samples to clear the one-cycle filter time used by the normal current measurement function. This function has less than one cycle dropout time. The timer can also be stopped by removal of the initiate signal or by the block logic input being asserted.

The current detector sensitivity is fixed at 10% nominal. A traditional breaker failure relay includes a fault detector function which serves two independent purposes: Current detector and fault detector. A current detector is generally included to determine that the current has been successfully interrupted in all poles of the breaker to stop breaker failure timing. The secondary function of a traditional fault detector is to provide an independent confirmation that a fault exists on the system to increase security from misoperation caused by an inadvertent initiate signal. To do this, a fault detector by definition must be set above load currentreducing its sensitivity as a current detector. Since this breaker failure timer is included in a multifunction protection system, fault detector supervision is not required.

If you are using external relays to initiate the breaker failure timer, it may be desirable to include fault detector supervision of the initiate signal using an instantaneous overcurrent function in BESTlogic. For example, if it is desired that certain initiate signals be supervised by a fault detector, it is possible to AND them with one of the 50T protective functions using a virtual output expression. In other applications, it may be desirable to have breaker failure timing with no current detector supervision. In this case, one of the general purpose logic timers (device 62) can be used as a breaker failure timer.

When the breaker failure timer is picked up, the BFPU logic output is TRUE. This output would typically be used as a re-trip signal to the protected breaker. This can provide an independent tripping signal to the breaker that may also open the breaker to prevent backup tripping.

If the initiate logic expression remains TRUE for the duration of the breaker failure delay time and the current detector is still picked up, the BFT output is asserted. This output would normally be used to trip an 86 F lockout relay which will trip and prevent closing of adjacent breakers and/or key transfer trip transmitters. If the target is enabled for the function block, the target reporting function will record a target when the protective function trip output is TRUE and the fault recording function trip logic expression is TRUE. See Section 6, Reporting and Alarm Functions, Fault Reporting Functions, for more details on the target reporting function.

An alarm variable is provided in the programmable alarms function that can be used to indicate an alarm condition when the breaker failure protection trips. See Section 6, Reporting and Alarm Functions, Alarms Function, for more details on the alarm reporting function.

Breaker Failure Settings

BESTIogic Settings for Breaker Failure (BF) Element

BESTlogic settings are made from the BESTlogic Function Element Screen in BESTCOMS. Figure 4-19 illustrates the BESTCOMS Screen used to select BESTlogic settings for the breaker failure element. To open the BESTlogic Function Element Screen for Breaker Failure, select Breaker Failure from the Screens pulldown menu. Then select the the BESTlogic button. Alternately, settings may be made using the SL-BF ASCII command.

At the top center of the BESTlogic Function Element Screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to the mode and inputs of the function/element.

Enable the setting group control function by selecting its mode of operation from the Mode pull-down menu. To connect the elements inputs, select the button for the corresponding input in the BESTlogic Function Element Screen. The BESTlogic Expression BuilderScreen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. These settings will enable the function block by attaching it to one of the CT input circuits and provide initiate and blocking control as determined by the logic expressions assigned to those inputs. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Done when the settings have been completely edited.

Figure 4-19. Breaker Failure BESTlogic Function Element Screen

Table 4-11 summarizes the element's modes of operation.

Table 4-11. BF Breaker Failure Function BESTlogic Settings

Setting	Range/Purpose	Default
Mode	$0=$ disabled $1=$ enabled	0
INITIATE	Logic expression. Enables function when TRUE.	0
BLOCK	Logic expression. Disables function when TRUE.	0

Example 1. Make the follow BESTlogic settings to the Breaker Failure element. Refer to Figure 4-19
Mode: Enable
INITIATE: VO1
BLOCK: IN4

Setting Operational Settings, BF (Breaker Failure) Function

Operating settings are made using BESTCOMS. Figure 4-20 illustrates the BESTCOMS Screen used to select operational settings for the Breaker Failure element. To open the Breaker Failure Screen, select Breaker
 BF ASCII command or from the HMI interface using Screen 5.5.1.

At the top left of the screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to be made to the mode and inputs of the element. See Section 7, BESTlogic Programmable Logic, Logic Schemes.

Beneath the Logic pull-down menu is a text box labeled Settings. The word "Global" appears in the text box, indicating the element is not assigned to any setting group. The operating settings for the Breaker Failure element consist of a single time delay (Time). The time delay can be set in milliseconds, seconds or cycles. The default is milliseconds if no unit of measure is specified. The minimum timing resolution is to the nearest quarter-cycle. A time delay setting of zero makes the element instantaneous with no intentional time delay.

If the time delay settings are made in cycles, they are converted to seconds or milliseconds before being stored. This conversion is based on the nominal frequency setting stored in EEPROM. See Section 3/nput and Output Functions, Current Measurement Functions, for more information on this setting. If the user is changing the nominal frequency setting from the default $(60 \mathrm{~Hz})$ and setting the time delays in cycles, the frequency setting should be entered and saved to EEPROM first by entering E; Y.

Figure 4-20. Breaker Failure Screen

Using the pull-down menus and buttons, make the application appropriate settings to the Breaker Failure element.

Table 4-12 summarizes the element's operating settings.
Table 4-12. BF Breaker Failure Function Operational Settings

Setting	Range	Increment	Unit of Measure	Default
Time	$0=$ disabled 50 to 999 ms 0.05 to 0.999 sec.	1 m 0 m	milliseconds seconds minutes cycles	0

NOTE: * Time delays less than 10 cycles can be entered to the nearest 0.1 cycle from the optional HMI. All time delays can be entered to the nearest 0.01 cycle from the ASCII command interface. Time delays entered in cycles are converted to milliseconds or seconds. Increment precision after conversion is limited to that appropriate for each of those units of measure.

Example 1. Make the following operational settings to the Breaker Failure element. Refer to Figure 4-20.

Logic:
Timer Setting, Time:

User
Set for 10.02 cycles

Retrieving Logic Output Status Information from the Relay

The status of each logic variable can be determined from the ASCII command interface using the RG-STAT (report general-status) or the RL (report logic) commands. Logic status can't be determined using BESTCOMS. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

RECLOSING

The BE1-851 reclosing function provides up to four reclosing attempts that can be initiated by a protective trip or by one of the contact sensing inputs. The recloser allows supervisory control and coordination of tripping and reclosing with other system devices. Any of the four recloser shots can be used to select a different setting group when the appropriate shot is reached in a reclosing sequence. For example, two fast 51 curves could be changed to two slow 51 curves. Detailed information about relay setting groups can be found earlier in this section under the heading of Setting Groups. Recloser function block inputs and outputs are shown in Figure 421 and are described in the following paragraphs.

Figure 4-21. 79 Function Block

Reclose Initiate (RI)

The $R I$ input is used with the STATUS input to start the reclose timers at each step of the reclosing sequence. To start the automatic reclose timers, the $R I$ input must be TRUE when the STATUS input indicates that the breaker has tripped. To ensure that the $R I$ input is recognized, a recognition dropout timer holds the $R I$ input TRUE for approximately 225 milliseconds after it goes to a FALSE state. This situation might occur if the RI is driven by the trip output of a protective function. As soon as the breaker opens, the protective function will drop out. The recognition dropout timer ensures that the $R I$ signal will be recognized as TRUE even if the STATUS input is slow in indicating breaker opening. Figure 4-22 illustrates the recognition dropout logic and timing relationship.

Figure 4-22. Recognition Dropout and Timing

STATUS (Breaker Status)

This input is used to indicate to the recloser function block that the breaker is closed. A TRUE signal at this input indicates a closed breaker.

WAIT (Reclose Wait)

A TRUE signal at this input disables the reclosing function. In this condition, recloser timing is interrupted. When this input returns to a FALSE state, reclosing is enabled and recloser timing resumes.

BLK/DTL (Drive to Lockout/Block Recloser)

When TRUE, this input forces the reclosing function into the Lockout position. Lockout persists for the period defined by the reset time after the Lockout input becomes FALSE and the breaker is closed.

79 C (Close)

The 79C output becomes TRUE at the end of each reclose time delay. Any of the following conditions will cause the 79C output to become FALSE:

- The STATUS input indicates that the breaker is closed.
- The reclose fail timer times out.
- The recloser goes to Lockout.
- The WAIT logic is asserted.

79RNG (Recloser Running)

The 79RNG output is TRUE when the reclose is running (i.e., not in Reset or Lockout). This output is available to block the operation of a load tap changer on a substation transformer or voltage regulator during the fault clearing and restoration process.

79LO (Lockout)

This output is TRUE when the recloser is in the lockout state. It remains TRUE until the recloser goes to the Reset state. The recloser will go to lockout if any of the following conditions exist:

- More than the maximum number of programmed recloses are initiated before the recloser returns to the reset state.
- The BLK/DTL input is TRUE.
- The 79F (Reclose Fail) output is TRUE.
- The maximum reclose cycle time is exceeded.

79F (Reclose Failure)

The 79F output is TRUE when the reclose fail timer times out. The reclose fail timer starts when the 79C output becomes TRUE and is reset when the breaker closes (STATUS input is TRUE). The reclose fail timer limits the duration of the 79C output signal. The 79F output remains TRUE until the recloser goes to the reset state.

79SCB (Recloser Sequence Control Block)

This output becomes TRUE when the sequence operation step matches one of the programmed steps and the 79C output is TRUE or the STATUS input is TRUE. Refer to Figure 4-23.

Figure 4-23. 79SCB Logic

BESTlogic settings are made from the BESTlogic Function Element Screen in BESTCOMS. Figure 4-24 illustrates the BESTCOMS Screen used to select BESTlogic settings for the Recloser element. To open the BESTlogic Function Element Screen for Reclosing, select Reclosing from the Screens pull-down menu. Then select the the BESTlogicbutton. Alternately, settings may be made using the SL-79 ASCII command. Additionally, one or more of the protection block outputs must be connected to external block(s) that are controlled by the SL-<func> or SL-VO ASCII command.

Figure 4-24. 79 Reclosing Bestlogic Function Element Screen

At the top center of the BESTlogic Function Element Screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. Useror custom logic must be selected on this menu in order to allow changes to the mode and inputs of the element.

Enable the reclosing function by selecting its mode of operation from the Mode pull-down menu.
To connect the element's inputs, select the button for the corresponding input in the BESTlogic Function ElementScreen. The BESTlogic Expression BuilderScreen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Done when the settings have been completely edited.

Table 4-13 summarizes the element's modes of operation and inputs.
Table 4-13. Recloser BESTLogic Settings

Setting	Range/Purpose	Default
	$\begin{aligned} 0 & =\text { disable: } \\ & \text { Disables the element in BESTlogic. } \end{aligned}$	disable
Mode	1 = Power Up To Lockout: Enables the element for this feature in BESTIogic. After power-up, the STATUS logic must be TRUE for the Reset time delay or the recloser automatically goes to Lockout. If the STATUS logic stays TRUE for reset time delay, the recloser goes to Reset.	
	2 = Power Up To Close: Enables the element for this feature in BESTlogic. If the recloser was in the Reset state when power was lost, and when power is restored the STATUS logic is FALSE (breaker open) and the Rl logic is TRUE, the recloser will initiate the first reclose operation. If the STATUS logic stays TRUE for the reset time delay, the recloser goes to Reset.	

Setting	Range/Purpose	Default
RI	OR logic term to initiate the operation of the reclosing function	0
STATUS	OR logic term to indicate breaker status. TRUE/1 = closed, FALSE/0 = open	0
WAIT	OR logic term to momentarily disable but not reset the recloser	0
BLK/DTL	OR logic term to disable the recloser (drive to Lockout/Block)	0

Example 1. Make the following settings to the Reclosing element. Refer to Figure 4-24.
Logic: User
Mode: Power Up To Lockout
RI: \quad Connect to VO1
STATUS: Connect to /IN2
WAIT: 0
BLK/DTL: IN3

Recloser Operating Settings

Operating settings are made using BESTCOMS. Figure 425 illustrates the BESTCOMS screen used to select operational settings for the Reclosing element. To open the Reclosing screen, select Reclosing from the Screens pull-down menu. Alternately, settings may be made using the $\mathrm{S}<\mathrm{g}>-79$ ASCII command, or through the HMI interface using Screens 5.x.4.1 through 5.x.4.5 where x equals 1 for setting group 0,2 for setting group 1, 3 for setting group 2 and 4 for setting group 3 .

At the top left of the screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme.

Figure 4-25. Reclosing Screen User or custom logic must be selected on this menu in order to allow changes to be made to the mode and inputs of the element. See Section 7, BESTlogic Programmable Logic, Logic Schemes.

Beneath the Logic pull-down menu is a pull-down menu labeled Settings. The Settings menu is used to select the setting group that the elements settings apply to.

Reclose Time 1, 2, 3 and 4, control the automatic reclose delay which defines how long the recloser waits before trying to reclose the breaker. The RI input logic must be TRUE and the STATUS input logic must indicate that the breaker is open before a reclose time delay is initiated.

Reset is the reset time delay. If the RI input logic stays TRUE for the reset time delay, the automatic reclose counter resets. Reset time provides a stabilizing period after a reclose has occurred before beginning another reclose sequence.

Fail, is the reclose fail time delay. If, after the reclose output is TRUE, the breaker fails to close before the reclose fail timer expires, the failure alarm asserts and the recloser goes to Lockout. The reclose fail timer
limits the duration of the closing signal to the breaker. If the fail timer is not desired, it can be disabled by setting it at zero.

Max Cycle is the reclose maximum operation time. If a reclose operation isn't completed before the maximum operate time expires, the recloser goes to lockout. This timer limits the total fault clearing and restoration sequence to a definable period. The timer starts when the first trip command is issued from a protective element of the relay. The Max Cycle timer stops when the recloser is reset. If not desired, the Max Cycle timer can be disabled by setting it at zero.

Using the pull-down menus and buttons, make the application appropriate settings to the Reclosing element. All time delay values can be entered in milliseconds, seconds, minutes or cycles by selecting the desired unit from the Time Units pull-down menu. Table 4-14 summarizes the time delay setting ranges.

Table 4-14. Recloser Operational Settings

Setting	Range/Increment	Unit of Measure	Default
Reclose Time	100 to 999 ms in 1 ms increments 1 to 9.9 seconds in 0.1 second increments 10 to 600 seconds in 1 second increments 6 to 36,000 cycles in 0.1 cycle incerements	milliseconds	0
Reset			
Max Cycle			
Fail			

Example 1. Make the following operational settings to the Reclosing element. Refer to Figure 4-25.

Logic:
Settings:
Time Units:
Reclose 1 Time: 0.100
Reclose 2 Time:
2.5

Reclose 3 Time: 0.000
Reclose 4 Time: 0.000
Reset. 30
Mac Cycle: 150
Fail: 120

Sequence Controlled Block

The 79SCB output is TRUE when the breaker is closed, the 79C (79 close output) is TRUE, and the Sequence Controlled Block is enabled. There are five Sequence Controlled Blocks that can be enabled by clicking the check box as shown in Figure 4-25. In the figure, Step 1 is enabled.

The reclose sequence steps are:

1. 79SCB TRUE during Reset and while timing to Reset after Lockout.
2. 79SCB TRUE when 79C is TRUE for first reclose and while timing to Reset after first reclose.
3. 79SCB TRUE when 79C is TRUE for second reclose and while timing to Reset after second reclose.
4. 79SCB TRUE when 79C is TRUE for third reclose and while timing to Reset after third reclose
5. 79SCB TRUE when 79C is TRUE for fourth reclose and while timing to Reset after fourth reclose.

Figure 4-26 is a logic timing diagram showing all possible sequence control blocks enabled (TRUE). In Figure $4-26,79 R T D$ is the reclose Resettime delay and 79\#TD is the Reclose Time delay where \# is the reclose shot number.

Figure 4-26. S\#-79SCB=1/2/3/4/5 Logic Timing Diagram

Zone Sequence Coordination

To coordinate tripping and reclosing sequences with downstream protective relays and reclosers, the BE1-851 senses fault current from downstream faults when a user programmable logic command picks up and then drops out without a trip output occurring. Typically, the low-set instantaneous pickup outputs (50TPT and 50TNT) or the time-overcurrent pickup outputs (51PPU and 51NPU) are used for the zone sequence settings.

If the upstream relay (BE1-851) senses that fault current has been interrupted by a downstream device, the BE1-851 will increment the trip/reclose sequence by one operation. This occurs because the BE1-851 recognizes that a non-blocked low set (50TP or 50 TN) element picked up and reset before timing out to trip. Table 4-15 summarizes the zone sequence coordination.

Bestlogic settings are made from the BESTlogic Function Element Screen in BESTCOMS. Figure 427 illustrates the BESTCOMS Screen used to select BESTlogic settings for zone sequence coordination.

To open the BESTlogic Function Element Screen for zone sequence coordination, select Reclosing from the Screens pull-down menu. Then select the Logic button in the Zone Sequence Logic box in the bottom right hand corner of the screen. Alternately, settings may be made using the SP-79ZONE ASCII command.

Enable the zone sequence coordination function by connecting its LOGIC input. Select the LOGIC button in the

Figure 4-27. Reclosing BESTlogic Function Element Screen (Zone Sequence Coordination) Zone Sequence Logic box. The BESTlogic Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Done when the settings have been completely edited.

Table 4-15 summarizes zone sequence coordination settings.
Table 4-15. Zone Sequence Coordination Settings

Function	Range/Purpose	Default
Zone Pickup Logic	The zone sequence pickup logic defines which logic elements should be considered zone sequence pickups. Only OR (+) logic can be used - no AND (*) variables.	0

Recloser zone sequence coordination detects when a fault has been cleared by a downstream recloser and increments the upstream 79 automatic reclose count to maintain a consistent count with the other recloser. A fault is presumed cleared downstream when one or more protective functions pickup and dropout with no trip occurring. The zone sequence pickup logic defines which logic elements should be considered zone sequence pickups. Only OR (+) logic can be used - no AND (*) variables. If the zone pickup logic becomes TRUE and then FALSE without a trip output operating, then the 79 automatic reclose counter should be incremented.

Example 1. Make following settings to the zone sequence logic. Refer to Figure 4-27.
LOGIC: 50TPPU+50TNPU+150TPPU+150TNPU

GENERAL PURPOSE LOGIC TIMERS

BE1-851 relays provide two general purpose logic timers which are extremely versatile. Each can be set for one of five modes of operation to emulate virtually any type of timer. Each function block has one output (62 or 162) that is asserted when the timing criteria has been met according to the BESTlogic mode setting. Figure $4-28$ shows the 62 function block as an example. Each mode of operation is described in detail in the following paragraphs.

An INITIATE logic input is provided to start the timing sequence.

A BLOCK logic input is provided to block operation of the timer. When this expression is TRUE, the function is disabled.

Figure 4-28. 62/162 Function Block

Each timer has a T1 time setting and a T2 time setting. The functioning of these settings is dependent upon the type of timer as specified by the mode setting in BESTlogic.

If the target is enabled for the function block, the target reporting function will record a target when the timer output is TRUE and the fault recording function trip logic expression is TRUE. See Section 6, Reporting and Alarm Functions, Fault Reporting Functions, for more details on the target reporting function.

PU/DO (Pickup/Dropout Timer)

The output will change to logic TRUE if the INITIATE input expression is TRUE for the duration of PICKUP time delay setting T1. If the initiate expression toggles to FALSE before time T1, the T1 timer is reset. Once the output of the timer toggles to TRUE, the INITIATE input expression must be FALSE for the duration of DROPOUT time delay setting T2. If the INITIATE input expression toggles to TRUE before time T2, the output stays TRUE and the T2 timer is reset.

Figure 4-29. PU/DO (Pickup/Dropout Timer)

One-Shot Nonretrigerable Timer

The one-shot nonretrigerable timer starts its timing sequence when the INITIATE input expression changes from FALSE to TRUE. The timer will time for DELAY time T1 and then the output will toggle to TRUE for DURATION time T2. Additional initiate input expression changes of state are ignored until the timing sequence has been completed. If the duration time (T2) is set to 0 , this timer will not function. The timer will return to FALSE if the BLOCK input becomes TRUE.

Figure 4-30. One Shot Nonretrigerable Timer

One-Shot Retriggerable Timer

This mode of operation is similar to the one shot nonretrigerable mode, except that if a new FALSE-to-TRUE transition occurs on the INITIATE input expression, the output is forced to logic FALSE and the timing sequence is restarted.

Figure 4-31. One Shot Retrig Timer

Oscillator

In this mode, the INITIATE input is ignored. If the BLOCK input is FALSE, the output, x62, oscillates with an ON time of T1 and an OFF time of T2. When the BLOCK input is held TRUE, the oscillator stops and the output is held OFF.

Figure 4-32. Oscillator

Integrating Timer

An integrating timer is similar to a pickup/dropout timer except that the PICKUP time T1 defines the rate that the timer integrates toward timing out and setting the output to TRUE. Conversely, the RESET time T2 defines the rate that the timer integrates toward dropout and resetting the output to FALSE. PICKUP time T1 defines the time delay for the output to change to TRUE if the initiate input becomes TRUE and stays TRUE. RESET time T2 defines the time delay for the output to change to FALSE if it is presently TRUE and the initiate input becomes FALSE and stays FALSE.
In the example shown in Figure 4-33, RESET time T2 is set to half of the PICKUP time T1 setting. The initiate input expression becomes TRUE and the timer starts integrating toward pickup. Prior to timing out, the initiate expression toggles to FALSE and the timer starts resetting at twice the rate as it was integrating toward time out. It stays FALSE long enough for the integrating timer to reset completely but then toggles back to TRUE and stays TRUE for the entire duration of time T1. At that point, the output of the timer is toggled to TRUE. Then at some time later, the initiate expression becomes FALSE and stays FALSE for the duration of RESET time T2. At that point, the output of the timer is toggled to FALSE.

Figure 4-33. Integrating Timer

This type of timer is useful in applications where a monitored signal may be hovering at its threshold between on and off. For example, it is desired to take some action when current is above a certain level for a certain period of time. A 50T function could be used to monitor the current level. Thus, if the current level is near the threshold so that the INITIATE input toggles between TRUE and FALSE from time to time, the function will still time out as long as the time that it is TRUE is longer than the time that it is FALSE. With a simple pickup/dropout timer, the timing function would reset to zero and start over each time the initiate expression became FALSE.

Latch

A one shot timer starts its timing sequence when the INITIATE input expression changes from FALSE to TRUE. The timer will time for DELAY time T1 and then the output will latch TRUE. Additional INITIATE input expression changes of state are ignored. Time (T2) is ignored. Refer to Figure 4-34.

Figure 4-34. Latch

BESTlogic Settings for 62/162 General Purpose Logic Timers

BESTlogic settings are made from the BESTlogic Function Element Screen in BESTCOMS. Figure 4-35 illustrates the BESTCOMS screen used to select BESTlogic settings for the Logic Timer elements. To open the BESTlogic Function Element Screen for Logic Timer, select Logic Timers from the Screens pull-down menu. Then select the the BESTLogic button for either the 62 or the 162 element. Alternately, settings may be made using the SL-x62 ASCII command.

At the top center of the BESTlogic Function Element Screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to the mode and inputs of the element. Enable the Logic Timer function by selecting its mode of operation from the Mode pull-down menu.

To connect the element's inputs, select the button for the corresponding input in the BESTlogic Function Element Screen. The BESTlogic

Figure 4-35. Logic Timer (62) BESTlogic Function Element Screen

Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Done when the settings have been completely edited.

Table 4-16 summarizes the logic settings for the 62/162 timer functions.
Table 4-16. 62/162 BESTlogic Settings

Setting	Range/Purpose	Default
Logic Mode	$0=$ Disabled $4=$ Oscillator $1=$ PU/DO $5=$ Integrating $2=$ One Shot Non-retrig $6=$ Latch $3=$ One Shot Retrig	disabled
initiate	Logic expression that initiates timing sequence.	0
BLOCK	Logic expression that disables function when TRUE.	0

Example 1. Make the following settings to the 62 Logic Timer. Figure 4-35 illustrates these settings.

Logic:	User
Mode:	One Shot Non-Retrig
INITIATE:	IN2
BLOCK:	0

Operating Settings for 62/162 General Purpose Logic Timers

Operating settings are made using BESTCOMS. Figure 4-36 illustrates the BESTCOMS screen used to select operational settings for the Logic Timers element. To open the Logic Timers screen, select Logic Timers from
 or through the HMI interface using Screens 5.1.3.1 and 5.1.3.2.

At the top left of the screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User or custom logic must be selected on this menu in order to allow changes to be made to the mode and inputs of the element.

Beneath the Logic pull-down menu is a pull-down menu labeled Settings. The Settings menu is used to select the setting group that the element's settings apply to. See Section 7, BESTlogic Programmable Logic, Logic Schemes.

Using the pull-down menus

Figure 4-36. Logic Timers Screen and buttons, make the application appropriate settings to the Logic Timers element. Table 4-17 summarizes the settings for the $62 / 162$ timer functions.

Table 4-17. 62/162 Operating Settings

Setting	Range	Increment	Unit of Measure	Default
T1 Time, T2 Time	0 to 999 ms	1	milliseconds	
	0.1 to 9999 sec	0.1 for 0.1 to 9.9 sec	seconds	0
		1.0 for 10 to 9999 sec		
	0 to $599,940(60 \mathrm{~Hz})$	cycles		

* Time delays less than 10 cycles can be entered to the nearest 0.1 cycle through the HMI. All time delays can be entered to the nearest 0.01 cycle from the ASCII command interface. Time delays entered in cycles are converted to milliseconds or seconds. Increment precision after conversion is limited to that appropriate for each of those units of measure.

Example 1. Make the following operating settings to the 62 element. Figure 4-36 illustrates these settings.
Logic: User
Setting: Group 0
Time Units: ms
T1 Time: 100
T2 Time: 0

Retrieving 62/162 Output Status Information from the Relay

The status of each logic variable can be determined from the ASCII command interface by using the RG-STAT (report general-status) or the RL (report logic) commands. Status can not bee determined using BESTCOMS. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

VIRTUAL SWITCHES

43 Virtual Selector Switches

BE1-851relays have four virtual selector switches that can provide manual control, locally and remotely, without using physical switches and/or interposing relays. Each virtual switch can be set for one of three modes of operation to emulate virtually any type of binary (two position) switch. An example would be an application that requires a recloser or 51 N ground cutoff. The traditional approach might be to install a switch on the panel and wire the output to a contact sensing input on the relay or in series with the differential trip output of the relay. Instead, a virtual switch can be used to reduce costs with the added benefit of being able to operate the switch both locally through the HMI and remotely from a substation computer or through a modem connection to a remote operator's console.

The state of the switches can be controlled from the optional HMI or ASCII command interface. Control actions can be set by the BESTlogic mode setting. When set for the On/Off/Pulse mode, each switch can be controlled to open (logic 0), close (logic 1) or pulse such that the output toggles from its current state to the opposite state and then returns. Additional modes allow the switch operation to be restricted. In the On/Off mode, the switch emulates a two position selector switch, and only open and close commands are accepted. In the Off/Momentary On mode, a momentary close, spring return switch is emulated and only the pulse command is accepted. Because switch status information is saved in nonvolatile memory, the relay powers up with the switches in the same state as when the relay was powered down.

Each virtual selector switch function block (see Figure 4-37) has one output: $43,143,243$ or 343 . The output is TRUE when the switch is in the closed state; the output is FALSE when the switch is the open state. Since both the output and the inverse of the output of these switches can be used as many times as desired in your programmable logic, they can emulate a switch with as many normally open and normally closed decks as desired.

Figure 4-37. 43 Element Block

User specified labels can be assigned to each virtual switch and to both states of each switch. In the previous differential cutoff switch example, you might enable one of the switches in BESTlogic as On/Off and connect the output of that switch to the BLOCK input of the 51P protection element block. This would disable the differential when the switch is closed (logic 1) and enable it when the switch is open (logic 0). For the application, you might set the switch label to be 51_CUTOFF (10 character maximum). The closed position on the switch might be labeled DISABLD (7 character maximum) and the open position might be labeled NORMAL. Section 7, BESTlogic Programmable Logic, has more details about setting user programmable names for programmable logic variables.

BESTlogic Settings for $x 43$ Virtual Selector Switches

BESTlogic settings are made from the BESTlogic Function Element screen in BESTCOMS. Figure 4-38 illustrates the BESTCOMS screen used to select BESTlogic settings for the Virtual Switch element. To open the BESTlogic Function ElementScreen for Virtual Switch, select Virtual Switches from the Screens pull-down menu. Then select the the BESTLogic button in the for either 43, 143, 243 or 343 element. Alternately, settings may be made using $\mathrm{SL}-<\mathrm{x}>43$ ASCII command.

At the top center of the BESTlogic Function Element Screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User must be selected on this menu in order to allow changes to the mode and inputs of the element.

Enable the Virtual Switch element by selecting its mode of operation from the Mode pull-down menu. Select Done when the settings have been completely edited.

Table 4-18 summarizes the element's modes of operation

Figure 4-38. Virtual Switch BESTlogic Function Element Screen

Table 4-18. x43 Virtual Selector Switch BESTlogic Settings

Setting	Range/Purpose		Default
Mode	$0=$ Disabled 	$2=$ On/Off $3=$ On/Off/Pulse	Offabled

Example 1. Make the following settings to the 43 Virtual Switch element. Figure $4-38$ illustrates these settings. Logic: User
Mode: Off/Momentary On

Select Before Operate Control of Virtual Selector Switches

The state of each virtual selector switch can be controlled at the HMI through Screens 2.1.1 through 2.1.4. Control is also possible through the ASCII command interface by using the select-before-operate command's

CS-x43 (control select-virtual switch) and CO-x43 (operate select-virtual switch). This is not possible through BESTCOMS. A state change takes place immediately without having to execute an EXIT - SAVE settings command.

CS/CO-x43 Command
Purpose: Select and operate the virtual selector switches.
Syntax: CS/CO-x43[=<action>]
Comments: $\mathrm{x}=$ no entry for 43,1 for 143, 2 for 243 or 3 for 343
action $=0$ to open the switch
1 to close the switch
P to pulse the switch to the opposite state for 200 milliseconds and then automatically return to starting state
The virtual switch control commands require the use of select-before-operate logic. First, the command must be selected using the CS-x43 command. After the select command is entered, there is a 30 second window during which the CO-x43 control command will be accepted. The control selected and the operation selected must match exactly or the operate command will be blocked. If the operate command is blocked an error message is output.

CS/CO-x43 Command Examples

Example 1. Read the current status of virtual switch 43.
$>\mathrm{CO}-43$
>0
Example 2. Momentarily toggle the state of switch 43 to closed.

```
>CS-43=P
>43=P SELECTED
>CO-43=P
>43=P EXECUTED
```

Example 3. An example of an operate command not matching the select command.

```
>CS-743=P
>743=P SELECTED
>CO-743=1
>ERROR:NO SELECT
```


Retrieving Virtual Selector Switch Status Information from the Relay

The state of each virtual selector switch can be determined from HMI Screen 1.5.4. This information is also available through the ASCII command interface by using the RG-STAT or RG-43STAT commands. This is not available through BESTCOMS. See Section 6,Reporting and Alarm Functions, General Status Reporting, for more information.

HMI Screens 2.1.1 through 2.1.4 provide switch control and can also display the current status of their respective switches. ASCII command CO-x43 returns the state of each virtual selector switch in a read-only mode. See the previous Example 1.

101 Virtual Breaker Control Switch

The virtual breaker control switch (see Figure 4-39) provides manual control of a circuit breaker or switch without using physical switches and/or interposing relays. Both local and remote control is possible. A virtual switch can be used instead of a physical switch to reduce costs with the added benefit that the virtual switch can be operated both locally from the HMI and remotely from a substation computer or modem connection to an operator's console.

Figure 4-39. Element Block

The breaker control switch emulates a typical breaker control switch with a momentary close, spring return, trip contact (Output 1017), a momentary close, spring return, close contact (Output 101C) and a slip contact (Output 101SC). The slip contact output retains the status of the last control action. That is, it is FALSE (open) in the after-trip state and TRUE (closed) in the after-close state. Figure 4-40 shows the state of the 101SC logic output with respect to the state of the 101 T and 101C Outputs.

When the virtual control switch is controlled to trip, the 101T output pulses TRUE (closed) for approximately 200 milliseconds and the 101SC output goes FALSE (open). When the virtual control switch is controlled to close, the 101SC output pulses TRUE (closed). The status of the slip contact output is saved to nonvolatile memory so that the relay will power up with the contact in the same state as when the relay was powered down.

Figure 4-40. 101 Control Switch State Diagram

BESTlogic Settings for 101 Virtual BreakerControl Switch

BESTlogic settings are made from the BESTlogic Function Element Screen in BESTCOMS. Figure 4-41 illustrates the BESTCOMS screen used to select BESTlogic settings for the Virtual Breaker Control 101 element. To open the BESTlogic Function Element screen for Virtual Breaker Control 101, select Virtual Switches from the Screens pull-down menu. Then select the the BESTLogic button in for the 101 element. Alternately, settings may be made using the SL-101 ASCII command.

At the top center of the BESTlogic Function Element Screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User must be selected on this menu in order to allow changes to the mode and inputs of the element.

Enable the Virtual Breaker Control 101 element by selecting its mode of operation from the Mode pull-down menu. Select Done when the settings have been completely edited.

Table 4-19 summarizes the element's logic settings.

Figure 4-41. Virtual Breaker Control 101 BESTlogic Function Element Screen

Table 4-19. 101 Virtual Selector Switch BESTlogic Settings

Setting	Range/Purpose	Default
Mode	$0=$ disable, $1=$ enable	disable

Example 1. Make the following BESTlogic settings to the Virtual Breaker Control 101 element. Figure 4-41 illustrates these settings.
Logic: User
Mode: Enable

Select Before Operate Control of Virtual Breaker Control Switches

The state of each virtual selector switch can be controlled at the HMI through Screen 2.2.1. Control is also possible through the ASCII command interface by using the select-before-operate commands CS-101 (control select-virtual control switch) and CO-101 (control operate-virtual controls switch). This cannot be done using BESTCOMS. A state change takes place immediately without having to execute an EXIT - SAVE settings command.

CS/CO-101Command
Purpose: Select and operate the virtual control switch.
Syntax: CS/CO-101[=<action>]
Comments: Action $=\mathrm{T}$ to pulse the 101T output C to pulse the 101C output
The virtual switch control commands require the use of select-before-operate logic. First, the command must be selected using the CS-101 command. After the select command is entered, there is a 30 second window during which the CO-101 control command will be accepted. The control selected and the operation selected must match exactly or the operate command will be blocked. If the operate command is blocked, and error message is output.

CS/CO-101 Command Examples

Example 1. Read the current status of the virtual control switch.
$>$ CO-101
$>C$
The returned setting indicates that the switch is in the after-close state.
Example 2. Trip the breaker by closing the trip output of the virtual control switch.

```
>CS-101=T
>101=T SELECTED
>CO-101=T
>101=T EXECUTED
```


Retrieving Virtual Selector Switch Status Information from the Relay

The virtual control switch state (after-trip or after-close) can be determined through the ASCII command interface by using the RG-STAT (reports general-status) command. This can not be done using BESTCOMS. See Section 6, Reporting and Alarm Functions, General Status Reporting, for more information.

HMI Screen 2.2.1 provides switch control and also displays the current status of the virtual control switches (after-trip or after-close). As the previous Example 1 demonstrated, the state of each virtual selector switch can be determined using the CO-101 command in a read-only mode.

SECTION 5•METERING

GENERAL

The BE1-851 relay measures current inputs, displays those values in real time, records those values every one-quarter second and calculates other quantities from the measured inputs.

METERING FUNCTIONS

Metered values are viewed through BESTCOMS Metering Screen. Figure 5-1 illustrates the Metering Screen. To open the Metering screen, select Metering from the Reports pull-down menu. To begin viewing metered values, select the Start Polling button in the bottom right of the screen. Alternately, metering can be accomplished through the communication port using using ASCII commands or at the front panel humanmachine interface (HMI). For assistance navigating the HMI, refer to Section 10, Human-Machine Interface, for details on navigating the HMI metering screens.

Figure 5-1. BE1-851 Metering Screen

SECTION $6 \cdot$ REPORTING AND ALARM FUNCTIONS

TABLE OF CONTENTS

SECTION $6 \cdot$ REPORTING AND ALARM 6-1
GENERAL 6-1
RELAY IDENTIFIER INFORMATION 6-1
CLOCK 6-1
IRIG Port 6-2
Setting the Clock Function 6-2
Reading and Setting the Clock 6-3
GENERAL STATUS REPORTING 6-3
General Status Report 6-3
Input (1234) 6-4
Output (A12345) 6-4
CO-OUT (A12345) 6-4
CO-43/143/243/343 6-4
CO-101 (101SC) 6-4
CO-Group 6-4
Active Logic 6-4
Recloser (79) 6-4
Logic Var (00-31), Logic Var (32-63) 6-4
Active Group 6-5
Breaker (52) 6-5
Diag/Alarm 6-6
Other RG Commands 6-6
DEMAND FUNCTIONS 6-6
Demand Reporting 6-6
Demand Calculation and Reporting 6-6
Setting Demand Reporting 6-7
Retrieving Demand Reporting Information 6-8
BREAKER MONITORING 6-9
Breaker Status Reporting 6-9
Programming the Breaker Status Reporting Function 6-9
Breaker Duty Monitoring 6-11
Setting the Breaker Duty Monitoring Function 6-11
Retrieving Breaker Duty Information 6-13
Breaker Clearing Time Monitoring 6-13
Breaker Alarms 6-13
TRIP CIRCUIT MONITOR 6-17
FAULT REPORTING 6-18
Logic Expressions for Fault Reporting 6-18
Tripped 6-18
Picked Up 6-18
Logic 6-18
Fault Reporting Trigger Settings 6-19
Targets 6-20
Setting the Targets Function 6-20
Retrieving Target Information 6-21
Fault Summary Reports 6-21
Fault Summary Report Example 6-22
Retrieving Fault Report Information from the Relay 6-24
Oscillographic Records 6-24
Retrieving Oscillographic Records 6-25
SEQUENCE OF EVENTS RECORDER 6-26
Points and Conditions Monitored 6-26
Retrieving SER Information 6-27
ALARMS FUNCTION 6-28
Relay Trouble Alarms 6-28
Major, Minor and Logic Programmable Alarms 6-29
Programming Alarm Priorities 6-30
Retrieving and Resetting Alarm Reports 6-31
Links between Programmable Alarms and BESTlogic 6-32
Programmable Alarms Controlled by BESTlogic Elements 6-32
Programmable Alarms Reset 6-32
BESTlogic Elements Controlled by Programmable Alarms 6-33
HARDWARE AND SOFTWARE VERSION 6-33
Figures
Figure 6-1. General Operation Screen, General Information Tab 6-1
Figure 6-2. Reporting and Alarms Screen, Clock Display Mode Tab 6-2
Figure 6-3. Reporting and Alarms Screen, Demands Tab 6-7
Figure 6-4. BESTlogic Function Element Screen, Breaker Status 6-10
Figure 6-5. Reporting and Alarms Screen, Breaker Monitoring Tab 6-12
Figure 6-6. BESTlogic Function Element Screen, Breaker Duty Monitoring 6-12
Figure 6-7. Reporting and Alarms Screen, Breaker Monitoring Tab 6-14
Figure 6-8. Protective Fault Analysis 6-15
Figure 6-9. Trip Circuit Voltage and Continuity Monitor 6-17
Figure 6-10. TCM with Other Devices 6-18
Figure 6-11. BESTlogic Function Element Screen, Fault Recording 6-19
Figure 6-12. Reporting and Alarms Screen, Fault Recording Tab 6-21
Figure 6-13. View/Download Relay Fault Files Screen 6-22
Figure 6-14. View/Download Relay Fault Files 6-25
Figure 6-16. Fault Record Filenames 6-26
Figure 6-15. Browse for Folder Screen 6-26
Figure 6-17. Reporting and Alarms Screen 6-31
Figure 6-18. Programmable Alarm Function 6-32
Figure 6-19. BESTlogic Function Element Screen, Alarm Reset Logic 6-33
Figure 6-20. General Operation Screen, General Information Tab 6-33
Tables
Table 6-1. SG-ID Command Parameters 6-1
Table 6-2. SG-CLK Command Settings 6-3
Table 6-3. Logic Variable Status Report Format For Sensing Input Type H Relays 6-5
Table 6-4. Logic Variable Status Report Format For Sensing Input Type G Relays 6-5
Table 6-5. SG-DI Command Settings 6-8
Table 6-6. SB-DUTY Command Settings 6-13
Table 6-7. SA-BKR Command Specifications 6-14
Table 6-8. Legend for Figure 6-8 6-16
Table 6-9. SG-TRIGGER Command Specifications 6-19
Table 6-10. Protective Functions with Targets 6-20
Table 6-11. Oscillographic Hardware Support 6-25
Table 6-12. Relay Trouble Alarms 6-29
Table 6-13. Programmable Alarms 6-29
Table 6-14. Programmable Alarm Settings 6-31
Equations
Equation 6-1. Demand Current Equation 6-6
Equation 6-2. Exponential Response Constant 6-6
Equation 6-3. Step Change Demand Calculation 6-7
Equation 6-4. Dmax Set by Number of Operations 6-11
Equation 6-5. Dmax Set Using Square Root Factor 6-11

SECTION $6 \cdot$ REPORTING AND ALARM FUNCTIONS

GENERAL

This section describes all of the reports that are available from the BE1-851 relay, how to set the reporting functions and how to retrieve these reports. This section also describes all of the alarm functions, how to set those functions and how to program (map) the major and minor alarms. In all instances in this section where reporting is concerned, the relay must be connected to a PC running BESTCOMS for reporting to be available through the BESTCOMS software. For help in connecting the relay, See Section 12, Installation.

RELAY IDENTIFIER INFORMATION

BE1-851 relays have two relay identification fields: Relay ID and Station ID. These fields are used in the header information lines of the Fault Reports, the Oscillograph Records and the Sequence of Events Records. Relay and station identification assignments are made from the General Operation Screen in BESTCOMS. To open the General Operation Screen, select General Operation from the Screens pull-down menu. Then select the General Information tab. The fields are located in the lower right hand corner of the screen. Alternately, these assignments can be made using the SG-ID ASCII command. Table 6-1 outlines the range and default for these two fields.

Figure 6-1. General Operation Screen, General Information Tab

Table 6-1. SG-ID Command Parameters

Identification Field	Range	Default
Relay ID	1 to 10 alphanumeric characters	BE1-851
Station ID	1 to 30 alphanumeric characters	SUBSTATION_1

Example 1. Make the following settings to the Identification fields. Refer to Figure 6-1.
Relay ID: FEEDER_3
Station ID: HIGHLAND_NORTH

CLOCK

The clock function is used by the demand reporting function, the fault reporting function, the oscillograph recording function, and the sequence of events recorder function to time-stamp events. The clock function
records the year in two digit format. None of the functions that use the clock perform any date math calculations or sorting of information by date so calendar year changes do not present a problem. The clock does not have a battery backup. Each time the relay powers up, the clock must be reset via the IRIG port, the human-machine interface (HMI) or ASCII command interface.

IRIG Port

IRIG time code signal connections are located on the rear panel. When a valid time code signal is detected at the IRIG port, it automatically synchronizes the internal clock to the time code signal. Note that the IRIG time code signal does not contain year information. For this reason, it is necessary to enter the date even when using an IRIG signal. Year information is stored in nonvolatile memory so that when operating power is restored after an outage and the clock is re-synchronized, the current year is restored. When the clock rolls over to a new year, the year is automatically incremented in nonvolatile memory. An alarm bit is included in the programmable alarm function for loss of IRIG signal. The alarm point begins monitoring for IRIG signal loss once a valid signal is detected at the IRIG port.

The IRIG input is fully isolated and accepts a demodulated (dc level-shifted) signal. The input signal must be 3.5 volts or higher to be recognized as a valid signal. Input signal range is $\pm 10 \mathrm{Vdc}$. Input resistance is nonlinear and rated at 4 kilo-ohms at 3.5 volts. Section 12, Installation, Communication Connectors and Settings, identifies the terminal connections for the IRIG function.

Setting the Clock Function

Time reporting can be displayed in 12 or 24 hour format. When operating in the 12 hour format, the A.M./P.M. parameter is placed between the minutes and seconds parameters (10:24P23.004 indicates 10:24 in the evening). The default time format is 24 hours. Date reporting format can display the date in $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$ or $\mathrm{dd} / \mathrm{mm} / \mathrm{yy}$ format. The default date format is $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$. The relay clock can also accommodate daylight saving time changes. Automatic daylight saving time adjustments are optional and are disabled by default. Time and date settings are made using BESTCOMS. Alternately, settings can be made using the SG-CLK ASCII command. The time and date can only be set using the RG-DATE and RG-TIME ASCII command or through the HMI interface.

Operating settings are made using BESTCOMS. Figure 6-2 illustrates the BESTCOMS screen used to select time and date format. To open the screen shown in Figure 6-2, select Reporting and Alarms from the Screens pull-down menu. Then select the Clock Display Mode tab. Alternately, settings may be made using the SGCLK ASCII command.

Using the pull-down menus and the check box, make the application appropriate settings to the time and date format.

Table 6-2 summarizes the clock command settings.

Figure 6-2. Reporting and Alarms Screen, Clock Display Mode Tab

Table 6-2. SG-CLK Command Settings

Parameter	Range	Default
Time Format	24 hour, 12 hour	24 hour
	Automatic daylight savings: Enabled when the box is checked.	disabled
Date Format	$\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$, dd-mm-yy	$\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$

Example 1. Make the following settings to the time and date format. Refer to Figure 6-2.

Time format.	12 hour
Automatic daylight savings:	enable
Date format:	$\mathrm{mm} / \mathrm{dd} / \mathrm{yy}$

Reading and Setting the Clock

Clock information can be read and set at the front panel HMI and through the communication ports. Write access to reports is required to set the clock at the HMI and communication ports. An alarm point is provided in the programmable alarms to detect when the relay has powered up and the clock has not been set. Time and date information is read and set at HMI Screen 4.5. Time and date information is read and programmed through the communication ports using the RG-DATE and RG-TIME commands. Time and date cannot be read or programmed using BESTCOMS.

RG-DATE Command

Purpose: Report or set the clock's date setting.
Syntax: RG-DATE[=<M/D/Y>] or RG-DATE[=<D-M-Y>]
Comments: Password access privilege G or R is required to change settings. D and M settings are based on SG-CLK setting. Command settings are defined in Table 6-2.

Example 1. Enter the date for December 31, 2003.
>RG-DATE=12/31/03 or RG-DATE=12-31-03

RG-TIME Command

Purpose: Report or set the clock's time setting.
Syntax: RG-TIME[=hr:mn:sc] or RG-TIME[=hr:mn<f>sc]
Comments: Password access privilege G or R is required to change settings. Default time setting on powerup is 00:00:00. Command settings are defined in Table 6-4.
Example1. Read the clock's current time setting (programmed in 12 hour format).
>RG-TIME
12:24P45
Example2. Set a new time in 12 hour format.
>RG-TIME=11:24P00

GENERAL STATUS REPORTING

BE1-851 relays have extensive capabilities for reporting relay status. This is important for determining the health and status of the system for diagnostics and troubleshooting. Throughout this manual, reference is made to the RG-STAT (report general, status) report and the appropriate HMI screens for determining the status of various functions.

General Status Report

A General Status report is available through the communication ports using the RG-STAT command. This report lists all of the information required to determine the status of the relay. An example of a typical general status report follows. In the explanation of what each line represents, cross-references are made to the corresponding HMI screens that contain that data.

INPUT (1234)	STATUS : 0000
OUTPUT (A12345)	STATUS : 000000

```
CO-OUT(A12345) STATUS : LLLLLL
CO-43/143/243/343 STATUS : 0000
CO-101(101SC) STATUS : AFTER CLOSE(1)
CO-GROUP STATUS : L
ACTIVE LOGIC STATUS : USER
LOGIC VAR(00-31) STATUS : 00000000 00000000 00000000 00000000
LOGIC VAR(32-63) STATUS : 00000000 00000000 00000010 00011000
RECLOSER(79) STATUS : OFF
ACTIVE GROUP STATUS : 0
BREAKER(52) STATUS : CLOSED
DIAG/ALARM STATUS : 2 RELAY, O LOGIC, O MAJOR, O MINOR
```


Input (1234)

This line reports the status of contact sensing inputs $\operatorname{IN} 1, \operatorname{IN} 2, \operatorname{IN} 3$ and $\operatorname{IN} 4$. Input information is available at HMI Screen 1.5.1. A 0 indicates a de-energized input and a 1 indicates an energized input. See Section 3, Input and Output Functions, for more information about contact sensing input operation.

Output (A12345)

Current output contact status is reported on this line. This information is also available at HMI Screen 1.5.2. A 0 indicates a de-energized output and a 1 indicates an energized output. More information about output contact operation is available in Section 3, Input and Output Functions.

CO-OUT (A12345)

This line reports the logic override of the output contacts. Logic override status is reported at HMI Screen 1.5.3 and through the CO-OUT command. Section 3, Input and Output Functions provides more information about output logic override control.

CO-43/143/243/343

Virtual switch function status is reported on this line. This information is also available at HMI Screen 1.5.4. See Section 4, Protection and Control Functions for more information about virtual switch operation.

CO-101 (101SC)

This line reports the current status of the virtual breaker control switch slip contact output. More information about the virtual breaker control switch is available in Section 4, Protection and Control Functions.

CO-Group

The logic override status of the setting group selection function is reported on this line. For more information about this function, refer to Section 4, Protection and Control Functions, Setting Groups.

Active Logic

This line reports the name of the active logic scheme. The active logic scheme name can also be viewed at HMI Screen 5 and through the SL-N command. See Section 7, BESTlogic Programmable Logic, Logic Scheme Names, for more information about this function.

Recloser (79)

The status of the recloser is reported on this line. HMI Screen 1.1 also reports this information. More information about the recloser function is available in Section 4, Protection and Control Functions.

Logic Var (00-31), Logic Var (32-63)

These three lines report the status of each BESTlogic variable. These lines can be entered into Table 6-3 and 6-4 to determine the status of each logic variable. Section 7, BESTlogic Programmable Logic, provides more information about BESTIogic variables.

Table 6-3. Logic Variable Status Report Format For Sensing Input Type H Relays

Table 6-4. Logic Variable Status Report Format For Sensing Input Type G Relays.

See Table 7-1 for a cross-references of each BESTlogic variable name with a brief description of the variable function.

Active Group

The active setting group is indicated on this line. HMI Screen 1.5.5 also provides this information. See Section 4, Protection and Control Functions, for more information about setting groups.

Breaker (52)

This line reports the state of the breaker. This information is also available at HMI Screen 1.5.6. More information about breaker status is provided in the Breaker Monitoring subsection.

Diag/Alarm

This line reports the status of the Relay Trouble Alarm, Major Alarm, Minor Alarm and Logic Alarm. The status of these alarms can be viewed at HMI Screen 1.3. Front panel LEDs also indicate the status of the Relay Trouble Alarm, Minor Alarm and Major Alarm. Alarm status is also available through the communication ports. The SA-MIN command repors the Minor Alarm status, the SA-MAJ command reports the Major Alarm status and the SA-LGC command reports the Logic Alarm status.

Other RG Commands

There are several other RG commands in addition to the RG-STAT command. These include RG-TIME, RG-DATE, RG-TARG and RG-VER. These commands are covered in detail in respective paragraphs in this section. As with other commands, a combination read command is available to read several items in a group. If the command RG is entered by itself, the relay reports the time, date, target information and other reports in the following example. RG-VER and RG-STAT commands have multiple line outputs and the e are not read at the RG command.

Example Read the general reports.
>RG
RG-DATE=12/31/02
RG-TIME=23:59:59
RG-TARG=NONE

DEMAND FUNCTIONS

Demand Reporting

The demand reporting function continuously calculates demand values for the three-phase currents, neutral current, and negative sequence current. Demand values are recorded with time stamps for Peak Since Reset, Yesterday's Peak and Today's Peak. Programmable alarm points can be set to alarm if thresholds are exceeded for overload and unbalanced loading conditions.

Demand Calculation and Reporting

An algorithm in the demand reporting function digitally simulates a thermal or exponential response. Demand values are computed by an exponential algorithm with the demand interval or response period defined as the time taken by the meter to reach 90 percent of the final value for a step change in the current being measured. Demand interval can be set independently for the phase, neutral and negative sequence demand calculations. The reactive power and power demand intervals always match the phase demand interval setting.

The following equation is used to calculate demand current:

Equation 6-1. Demand Current Equation

where

$\mathrm{DI}_{\mathrm{n}} \quad=$ demand current for sampling period n ($\mathrm{t}_{\mathrm{n}}=15$ seconds)
$\mathrm{MI}_{\mathrm{n}}=$ average metered current value for sampling period n
$\mathrm{K}=$ exponential response constant
The following equation is used for K.

Equation 6-2. Exponential Response Constant
where
$\mathrm{T}_{\mathrm{I}}=$ demand interval (programmed with SG-DI command)
$t_{n}=$ fixed demand update rate of 15 seconds

Demand is calculated for a step change in current by the following equation:

$$
\mathrm{DI}=\left(1-e^{-\frac{t_{n}}{0.434 T_{I}}}\right) \cdot \mathrm{MI}
$$

Equation 6-3. Step Change Demand Calculation

Demand calculation example for a step change in current:
If the current steps from 0 to 1,000 amperes, then the peak demand will change from 0 to 900 amperes after one demand interval $\left(t=T_{I}\right)$.

Each time that the value in the current demand register is updated, it is compared to the values stored in the Peak Since Reset and the Today's Peak registers. If the new demand is greater, the new value and time stamp is entered into the appropriate registers. In addition, the demand reporting function keeps an additional set of registers for Yesterday's Peak. Each day at midnight, the demand reporting function replaces the values and time stamps stored in Yesterday's Peak registers with the values and time stamps from Today's Peak registers. It then starts recording new information in Today's Peak registers. Demand registers are stored in volatile memory.

Today's Peak and Yesterday's Peak registers are read only. Values in the Peak Since Reset registers can be reset to zero or preset to a predetermined value. For example, if some loads will be switched to remove a feeder from service and you don't want the abnormal loading to affect the Peak Since Reset register values, these values can be read prior to switching the loads. Once the abnormal loading condition has passed, the registers can be reset to the original values.

Setting Demand Reporting

Demand settings include Interval (Minutes) and Current Threshold. Interval (Minutes) determines how often demand current is measured. Demand intervals can be set for Phase Neutral and Negative Sequencecurrent inputs. Demand current thresholds can also be set for each of these inputs. The Current Threshold is used to select the level of demand current needed to trigger a demand alarm for that input.

The programmable demand alarm includes alarm points for monitoring phase demand thresholds for phase overload alarms, and neutral and negative sequence demand thresholds for unbalanced loading alarms. Each time the current demand register is updated, the register value is compared to the corresponding demand alarm threshold. If a threshold is exceeded, the alarm point is set. The Alarm Functions subsection provides more information about using the programmable alarms reporting function.

Demand reporting settings are made using BESTCOMS. Figure 6-3 illustrates the BESTCOMS screen used to

Figure 6-3. Reporting and Alarms Screen, Demands Tab select demand reporting settings. To open the screen shown in Figure 6-3, select Reporting and Alarms from the Screens pull-down menu. Then select the Demands tab. Alternately, settings may be made using SG-ID ASCII command.

Using the pull-down menus and buttons, make the application appropriate demand settings. Table 6-5 summarizes the command settings. Demand alarm thresholds are for current is set using the SA-DI (setting alarm, demand current) command.

Table 6-5. SG-DI Command Settings

Setting		Range		Increment		
		5 A	1 A		Measure	Default
Current Threshold		$\begin{aligned} & 0=\text { disabled } \\ & 0.5-16.0 \end{aligned}$	$\begin{aligned} & 0=\text { disabled } \\ & 0.1-3.2 \end{aligned}$	0.01 for 0.1 to 9.99 0.1 for 10.0 to 16.0	sec. Amps pri. amps per U amps \% amps	0
Interval (minutes)	Phase	0 to 60		1	minutes	15
	Neutral			1	minutes	1
	Negative Sequence			1	minutes	1

Example 1. Make the following demand settings. See Figure 6-3. Interval Minutes Phase:
Interval Minutes Neutral: 1
Interval Minutes Negative Sequence: 1
Current Threshold (Sec. Amps) Phase: 0.00
Current Threshold (Sec. Amps) Neutral: $\quad 5.00$
Current Threshold (Sec. Amps) Neg. Seq.: 0.00

Retrieving Demand Reporting Information

Values and time stamps in the demand registers are reported in primary amperes. They can be read at the front panel HMI and through the communication ports.

Today's Peak, Yesterday's Peak and Peak Since Reset demand values are accessed through HMI Screen 4.4, DEMAND REPORTS. Demand values viewed at the HMI can be reset by pressing the Reset key. When the Reset key is pressed, the viewed register value is set to zero and then updated on the next processing loop with the currently calculated demand value. No write access is needed to reset demand register values at the HMI. Its also possible to preset a value into the Peak Since Demand registers. This can be done by pressing the Edit key. Write access to the Reports functional area is required to preset values at the HMI.

Values and time stamps in the demand registers can also be read through the communication ports by using the RD (report demands) command.

RD Command

Purpose: Report all demand data.
Syntax: RD
Comments: RD reports Today's Peak, Yesterday's Peak and Peak Since Reset demand data for all Phase current, Neutral current, Negative Sequence current, three-phase reactive power and three-phase power.

Example 1. Read all demand register data.
>RD
RD-TIA:0.00A
RD-TIC:0.00A
RD-

```
RD-TIB:0.00A 01:21 01/01/03
RD-TIN:0.00A 01:21 01/01/03
RD-YIB:0.00A 00:00 01/01/03
RD-YIN:0.00A 00:00 01/01/03
```

```
RD-PIA=0.00A 01:21 01/01/03;
RD-PIQ=0.02A 00:07 01/01/03
```

RD-PIB=0.00A 01:21 01/01/03
RD-PIC=0.00A 01:21 01/01/03; RD-PIN=0.00A 01:21 01/01/03

Demand information specific to current, can be obtained by including an object name with the command function (R) and subgroup (D). Today’s Peak, Yesterday's Peak and Peak Since Reset information for current is available using the RD-TI, RD-YI and RD-PI commands.

RD-TI/YI Command
Purpose: Reads Today's Peak (TI) or Yesterday's Peak (YI) Demand current values.
Syntax: RD-TI[<p>] or RD-YI[<p>]
Comments: $\mathrm{p}=\mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{N} / \mathrm{Q}$.

Example1. Read today's C phase ampere demand current. >RD-TIC 8.77A 16:44 06/30/03

Example2. Read all demand current values for yesterday. >RD-YI RD-YIA: 8.68A 17:15 01/01/03; $\begin{array}{ccc}\text { RD-YIB:8.66A } & 17: 15 & 01 / 01 / 03 \\ \text { RD-YIN:0.24A } & 17: 15 & 01 / 01 / 03\end{array}$ RD-YIC:8.67A 17:15 01/01/03; RD-YIQ:0.25A 17:15 01/01/03

RD-PI Command
Purpose: Read or reset peak demand current values.
Syntax: RD-PI[<p>[=0]]
Comments: $\mathrm{p}=\mathrm{A} / \mathrm{B} / \mathrm{C} / \mathrm{N} / \mathrm{Q}$.

Example1. Read the peak demand current for phase A.
>RD-PIA
9.08A 12:09 08/02/03

Example2. Read all peak demand current values.

$>R D-P I$		
$R D-P I A=9.08 A$	$14: 33$	$07 / 10 / 03 ;$
RD-PIC=9.08A	$14: 33$	$07 / 10 / 03 ;$
RD-PIQ=8.77A	$09: 28$	$06 / 15 / 03$

```
RD-PIB=9.09A 14:33 07/10/03
RD-PIN=9.77A 18:05 07/05/03
RD-PIN=9.77A 18:05 07/05/03
```

RD-PIQ=8.77A 09:28 06/15/03
Example3. Reset all peak demand current values.
$>$ RD-PI=0

BREAKER MONITORING

Breaker monitoring helps manage equipment inspection and maintenance expenses by providing extensive monitoring and alarms for the circuit breaker. Breaker monitoring functions include breaker status and operations counter reporting, fault current interruption duty monitoring and trip-speed monitoring. Each function can be set up as a programmable alarm. The Alarm Functions subsection has more information about the use of programmable alarms. The breaker trip circuit voltage and continuity monitor is a related function and is described in the Trip Circuit Monitor subsection.

Breaker Status Reporting

The breaker status monitoring function monitors the position of the breaker for reporting purposes. Opening breaker strokes are also counted and recorded in the breaker operations counter register. Circuit breaker status is also used by the breaker trip circuit voltage and continuity monitor. The Trip Circuit Monitor subsection provides more details.

Programming the Breaker Status Reporting Function

Since the relay is completely programmable, it's necessary to program which logic variable will monitor breaker status. Breaker status is programmed in BESTCOMS using the BESTlogic Function Element Screen. Figure 6-4 illustrates the this screen. To open theBESTlogic Function Element Screen for Breaker

Status, select Reporting and Alarms from the Screens pulldown menu. Then select the Logic button in the lower left hand corner of the screen and inside the box labeled, Breaker Status LogicAlternately, settings may be made using the SBLOGIC ASCII command.

To connect the Breaker Status's BLOCK input, select the BLOCK button. The BESTlogic Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. SelectSave when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic

Figure 6-4. BESTlogic Function Element Screen, Breaker Status Expression Builder, see Section 7, BESTIogic Programmable Logic. Select Done when the settings have been completely edited.

Example 1. Make the following logic settings to the Breaker Status, BLOCK logic input. Figure 6-4 illustrates these settings.

BLOCK: /IN3

Current breaker status can be read from HMI Screen 1.5.6 and through the communication ports using the RG-STAT command. The General Status Reporting subsection provides more information about this command.
The number of breaker operations can be read at HMI Screen 4.3.1. The counter value can be adjusted using the Edit key. This allows the relay counter value to be matched to an existing mechanical cyclometer on a breaker mechanism. Write access to the reports functions must be gained to edit this value at the HMI. Breaker operations can be read or set through the communication ports using the RB-OPCNTR (report breaker, operations counter) command.

RB-OPCNTR Command

Purpose: Read or set breaker operations counter.
Syntax: RB-OPCNTR[=<\#operations>]
Comments: \#operations = number of breaker operations recorded (0-99,999) If the counter exceeds 99,999 , the counter will wrap back to 0 .

Example 1. Read the number of breaker operations.
$>$ RB-OPCNTR
14
Example 2. Synchronize the relay breaker operations counter with an external counter reading of 65 operations. >RB-OPCNTR=65

The breaker operations counter can be monitored to give an alarm when the value exceeds a threshold. See Breaker Alarms in this section for more information about this feature.

Breaker Duty Monitoring

When the breaker opens, the current interrupted in each pole of the circuit breaker is accumulated by the breaker duty monitor. Breaker opening is defined by the breaker status monitoring function. Figure 6-8 illustrates breaker status during a fault and protective trip. Table 6-8 serves as a legend for the call-outs of Figure 6-8.

Each time the breaker trips, the breaker duty monitor updates two sets of registers for each pole of the breaker. In the Accumulated I Duty registers, the breaker duty monitor adds the measured current in primary amperes. In the Accumulated I ${ }^{2}$ Duty registers, the function adds the measured current squared in primary amperes. The user selects which of the two sets of duty registers are reported and monitored when setting up the breaker duty monitor.

Even though duty register values are calculated and stored in primary amperes or primary amperes-squared, the duty value is reported as a percent of maximum. The user sets the value that the relay will use for 100 percent duty (Dmax). The value set for maximum duty is used directly for reporting the accumulated I Duty. The square of the value set for maximum duty is used for reporting the accumulated I^{2} Duty.
If the breaker monitoring mode is set to sum I (not I^{2}), the relay sums the sum of the currents that are interrupted and will set the breaker duty alarm when the sum passes that breaker duty setting (Dmax). The approach to set $D \max$ is to select the maximum number of operations at some current level and enter a Dmax calculated by the equation:

$$
D \max =I_{\text {interrupt }} \text { \# of operations } \quad \text { Equation 6-4. Dmax Set by Number of Operations }
$$

The setting is in terms of primary amps (the relay multiples by the CT ratio before doing calculations).
If the breaker monitoring mode is set to sum I^{2}, the relay internally squares the setting that is entered for Dmax. The relay sums the square of the currents that are interrupted and will set the breaker duty alarm when the sum exceeds the square of the Dmax setting. The approach to set $D \max$ is to select the maximum number of operations at some current level and enter a Dmax calculated by the equation:

$$
\text { Dmax }=\left(I_{\text {interrupt }}{ }^{2 *} \# \text { of operations }\right)^{0.5} \quad \text { Equation 6-5. Dmax Set Using Square Root Factor }
$$

Again, the setting is in terms of primary amps. The 0.5 power (i.e., square root factor) shown above for the Dmax setting is to compensate for the fact that the relay internally squares the Dmax that is entered.
When testing the relay by injecting currents into the relay, the values in the duty registers should be read and recorded prior to the start of testing. Once testing is complete and the relay is returned to service, the registers should be reset to the original pre-test values. A block accumulation logic input may be used when testing so that simulated breaker duty is not added to the duty registers. The Block Accumulation Logic function is an OR logic term (e.g., IN1 or VO7) which blocks the breaker monitoring logic when TRUE (1). Block Accumulation Logic is set to zero to disable blocking. When breaker monitoring is blocked (logic expression equals 1), breaker duty is not accumulated.

Setting the Breaker Duty Monitoring Function

Breaker Duty Monitoring settings are made using BESTCOMS. Figure 6-5 (next page) illustrates the BESTCOMS screen used to select settings for the Breaker Duty Monitoring function. To open the Reporting and Alarms Screen, select Reporting and Alarms from the $\underline{S c r e e n s ~ p u l l-d o w n ~ m e n u . ~ T h e n ~ s e l e c t ~ t h e ~ B r e a k e r ~}$ Monitoring tab. Alternately, settings may be made using the SB-DUTY ASCII command.
At the top left of the screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each preprogramed logic scheme. User must be selected on this menu in order to allow changes to be made to the mode and inputs of the function/element.

Using the pull-down menus and buttons, make the application appropriate settings to the Breaker Duty Monitoring function. Table 6-6 summarizes SB-DUTY command settings.

Figure 6-5. Reporting and Alarms Screen, Breaker Monitoring Tab

To connect the functions BLOCK logic input. Select the Logic button in the Block Accumulation Logic box. The BESTlogic Function Element Screenfor Breaker Duty Monitoring will appear. See Figure 6-6, next page. Then select the BLOCK input button. The BESTlogic Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Donewhen the settings have been completely edited.

Figure 6-6. BESTlogic Function Element Screen, Breaker Duty Monitoring

Table 6-6. SB-DUTY Command Settings

Setting	Range/Purpose	Default
Mode	disabled enabled I enabled I2	disabled
100% Duty Maximum	0 to 4.2e+7 The Dmax parameter represents the maximum duty that the breaker contacts can withstand before needing service. Dmax is programmed in primary amperes using exponential floating point format.	0
Block Accumulation Logic	OR logic term (e.g., IN1 or VO7) that blocks the breaker monitoring logic when TRUE (1). A setting of 0 disables blocking (breaker operations are no longer counted).	0

Example 1. Make the following settings to the Breaker Duty Monitoring Function. Refer to Figures 6-5 and 6-6.

Mode:	Enabled I2
100\% Duty Maximum:	$2.000 \mathrm{e}+04$
Block Accumulation Logic:	IN3

Retrieving Breaker Duty Information

Breaker duty values can be read at HMI Screen 4.3.2. Duty values can be changed by using the front panel Edit key. Write access to reports is required to edit breaker duty values. Duty values can also be read or changed through the communication ports using the RB-DUTY command.

RB-DUTY Command

Purpose: Read or set the breaker contact duty log.
Syntax: RB-DUTY[<phase>[=<\%duty>]]
Comments: phase $=\mathrm{A}, \mathrm{B}$, or C . No entry for <phase> will read or write to all phases.
\%duty = accumulated duty expressed in percent of DMAX (set by SB-DUTY command)
Example 1. Read all contact duty values.
>RB-DUTY
RB-DUTYA $=92 \%$ R RB-DUTYB=23\%; RB-DUTYC $=28 \%$
Example 2. Reset the A-phase duty after maintenance was performed.
>RB-DUTYA=0

Breaker Clearing Time Monitoring

The breaker clearing time monitor tracks the time from when a trip output occurs (defined by the TRIP logic expression) to when the fast dropout current detector observes that current is zero in all three breaker poles. This time is reported as a line in the fault summary reports. See the Fault Reporting subsection for more information about the TRIP logic expression and Fault Summary Reports.

Breaker clearing time can be monitored to give an alarm when the value exceeds a threshold. The following Breaker Alarms subsection provides more information about this feature.

Breaker Alarms

Three alarm points are included in the programmable alarms for checking breaker monitoring functions. Each alarm point can be programmed to monitor any of the three breaker monitoring functions: operations counter, interruption duty or clearing time. An alarm threshold can be programmed to monitor each function.

Alternately, three different thresholds can be programmed to monitor one of the monitored functions.

Breaker Alarms settings are made using BESTCOMS. Figure 6-7 illustrates the BESTCOMS screen used to select settings for the Breaker Alarms function. To open the Reporting and Alarms Screen, select Reporting and Alarms from the Screens pull-down menu. Then select the Breaker Monitoring tab. Alternately, settings may be made using the SB-BKR ASCII command.

At the top left of the screen is a pull-down menu labeled Logic. This menu allows viewing of the BESTlogic settings for each

Figure 6-7. Reporting and Alarms Screen, Breaker Monitoring Tab preprogramed logic scheme. User must be selected on this menu in order to allow changes to be made to the mode and inputs of the function.

Using the pull-down menus and buttons, make the application appropriate settings to the Breaker Alarms function. Table 6-7 summarizes the SA-BKR command specifications.

Table 6-7. SA-BKR Command Specifications

Setting	Range/Purpose	Default
Mode	Disable, Duty = breaker alarm function enabled and set for percent duty, Operations = breaker alarm function enabled and set for operations counting, Clearing Time = breaker alarm function enabled and set for breaker operate time.	disabled
Alarm Threshold (in mode 1)	0 to 100\%; Increment=0.01; Measured in \% of Dmax which is programmed using the SB-DUTY command. The breaker to be monitored (CT1 or CT2) is also programmed using the SB-DUTY command.	0
Alarm Threshold (in mode 2)	0 to 99999, Increment=1; Number of operations counter value which when reached would cause an alarm.	0
Alarm Threshold (in		
mode 3)	Ranges are 20 to 1,000 milliseconds and 2 to 60 cycles. Setting is reported in milliseconds if less than 1 second but may be entered in milliseconds (m), seconds (s) or cycles (c).	0

Example 1. Make the following setting to the Breaker Alarms function. Refer to Figure 6-7.

Breaker Alarms Point 1, Mode:	Operations
Breaker Alarms Point 1, Threshold:	20
Breaker Alarms Point 2, Mode:	Duty
Breaker Alarms Point 2, Threshold:	50%
Breaker Alarms Point 3, Mode:	Clearing time
Breaker Alarms Point 3, Threshold:	12 m

Figure 6-8. Protective Fault Analysis

Table 6-8. Legend for Figure 6-8

Call-Out	Description
A	A fault summary report and an oscillograph record is triggered when either the SG-TRIGGER PICKUP or LOGIC expression becomes TRUE.
B	During the time that the SG-TRIGGER TRIP expression is TRUE, targets are logged from each of the protective functions that reach a TRIP state. If a protective function is not being used for tripping purposes, the associated target function can be disabled through the SGTARG setting.
C	Fault clearing time is calculated as the duration of the time that either the SG-TRIGGER PICKUP or LOGIC expression is TRUE.
D	Breaker operate time is calculated as the time from when the SG-TRIGGER TRIP expression becomes TRUE until the fast-dropout current detector senses that the breaker has successfully interrupted the current in all poles of the breaker.
E	A second oscillograph record is triggered to record the end of the fault if the SG-TRIGGER TRIP expression becomes FALSE. If the SG-TRIGGER TRIP expression does not become TRUE (as would occur if the fault were cleared by a down stream device), the fault current recorded in the fault summary report will be for the power system cycle ending two cycles before the end of the fault record. This is also the case if the fault record was triggered using the RF-TRIG command.
F	The fault currents are recorded in the fault summary report and on the Target Screen of the HMI for the power system cycle immediately following the SG-TRIGGER TRIP expression becoming TRUE. If the SG-TRIGGER TRIP expression does not become TRUE as would occur if the fault were cleared by a down stream device, the fault current recorded in the fault summary report will be for the power system cycle ending two cycles before the end of the fault record. This is also the case if the fault record was triggered through the ASCII command interface by the RF-Trig command.
G	During the time that the SG-TRIGGER PICKUP expression is TRUE, the red Trip LED on the front panel flashes indicating that the relay is picked up.
H	During the time the SG-TRIGGER TRIP expression is TRUE, the red Trip LED on the front panel lights steadily indicating that the relay is in a tripped state. If targets have been logged for the fault, the Trip LED is sealed in until the targets have been reset.
1	Breaker operations and interruption duty functions are driven by the breaker status function. The operations counter is incremented on breaker opening. The magnitude of the currents that are used for accumulating breaker duty are recorded for the power system cycle ending when the breaker status changes state. Thus, breaker duty is accumulated every time that the breaker opens even if it isn't opening under fault.
J	Setting group changes are blocked when the SG-TRIGGER PICKUP expression is TRUE to prevent protective functions from being reinitialized with new operating parameters while a fault is occurring.

TRIP CIRCUIT MONITOR

The trip circuit monitor continually monitors the circuit breaker trip circuit for voltage and continuity. A closed breaker with no voltage detected across the trip contacts can indicate that a trip circuit fuse is open or there is a loss of continuity in the trip coil circuit. Breaker status (open or closed) is obtained through the breaker status reporting function.

The detector circuit used by the trip circuit monitor is hardwired across the OUT1 contact. This contact is used in all of the preprogrammed logic schemes as the main trip output. The detector circuit draws less than 1 milliampere of current through the trip coil when the breaker is closed. Figure 6-9 illustrates typical trip circuit monitor connections for the BE1-851.
If the breaker status reporting function detects a closed breaker and no trip circuit voltage is sensed by the trip circuit monitor after the appropriate coordination time delay (about 500 milliseconds), an alarm bit in the programmable alarms function is set and the OUT1MON BESTlogic variable is set to TRUE.

Figure 6-9. Trip Circuit Voltage and Continuity Monitor

CAUTION

Applications that use other devices breaker trip circuit coils, may not perform as desired. The connection of other devices causes a voltage divider to occur when the breaker or trip circuit is open. This may cause false tripping of the other devices and prevent the BE1-851 trip circuit monitor from operating reliably. Contact Basler Electric for advice on using this application.

The circuit monitor sensing element has the same rating as the power supply voltage. If the trip circuit voltage is significantly greater than the power supply voltage (for example, when using a capacitor trip device), the user should program the BE1-851 to use one of the other output relays for tripping. In this situation, the trip circuit monitor function will not be available.

In Figure 6-10, a $62 x$ auxiliary relay is shown. In this case, the impedance of the $62 x$ coil is small compared to the impedance of the TCM circuit so the TCM is always at logic 1 . This prevents the TCM logic from working even if the trip coil is open. Normally, when redundant systems are used, each relay system is on an individual circuit and the sensing input for each relay system is isolated from the tripping circuit. The impedance of the TCM sensing circuit is the same as the contact sensing inputs. See Section 1, General Specifications, Control Inputs, for this information.

FAULT REPORTING

The fault reporting function records and reports information about faults that have been detected by the relay. The BE1-851 provides many fault reporting features. These features include Targets, Fault Summary Reports, Oscillographic Records and Sequence of Events Recorder Reports.

Logic Expressions for Fault Reporting

Logic expressions are used to define the three conditions for fault reporting. These conditions are TRIPPED, PICKED UP and LOGIC trigger. Figure 6-8 and Table 6-8 illustrate how each of these logic expressions are used by the various relay functions. Note that even though BESTlogic expressions are used to define these conditions, these expressions aren't included here. Section 7, BESTlogic Programmable Logic, provides information about using BESTlogic to program the relay.

Tripped

TRIPPED expressions are used by the fault reporting function to start logging targets for an event and to record the fault current magnitudes at the time of trip. The HMI uses the trip expression to seal-in the Trip LED. The breaker monitoring function uses the trip expression to start counting the breaker operate time.

Picked Up

PICKED UP expressions are used by the fault reporting function to time-stamp the fault summary record, time the length of the fault from pickup to dropout (fault clearing time), and to control the recording of oscillograph data. The HMI uses the pickup expression to control the flashing of the Trip LED. A pickup expression is also used by the setting group selection function to prevent a setting group change during a fault.

Logic

LOGIC trigger expressions allow the fault reporting function to be triggered even though the relay is not picked up. A logic trigger expression provides an input to the fault reporting function much as the pickup expression does. This logic expression is not used by the setting group selection or the HMI.

Fault Reporting Trigger Settings

Fault reporting trigger settings are made from the BESTlogic Function Element screen in BESTCOMS. Figure 6-11 illustrates the BESTCOMS screen used to select BESTlogic settings for the Fault Recording function. To open the BESTlogic Function Element Screen for Fault Recording, select Reportcing and Alarms from the Screens pull-down menu. Select the Fault Recording tab. Then select the Logic button in the Fault Recording box in the upper left hand corner of the screen. Alternately, settings may be made using SGTRIGGER ASCII command.

Fault Recording
Protection Tripped. Picked Up and Logic Triggers

Figure 6-11. BESTlogic Function Element Screen, Fault Recording inputs, select the button for the corresponding input in the BESTlogic Function Element Screen. The BESTlogic Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTlogic Programmable Logic. Select Done when the settings have been completely edited. Trigger settings for fault reports are made using the SG-TRIGGER (settings-general, trigger) command.

Table 6-9 provides the SG-TRIGGER command specifications.
Table 6-9. SG-TRIGGER Command Specifications

Setting	Purpose	Default
TRIPPED	Logic expression used to define Trip fault reporting condition. When this expression becomes TRUE (1), it triggers data recording.	VO11+ BFT
PICKED UP	Logic expression used to define Pickup fault reporting condition. When this expression becomes TRUE (1), it initiates the pickup timing sequence.	VO12 + BFPU
LOGIC	Logic expression used to define the trigger for fault reporting when relay is not picked up. When this expression is TRUE (1), fault reporting is triggered.	0

Example 1. Make the following settings to the fault reporting function. Refer to Figure 6-11.
TRIPPED: BFT+VO11
PICKED UP: VO12
LOGIC: 0

Targets

Each protective function logs target information to the fault reporting function when a trip condition occurs and the trip output of the function block becomes TRUE (refer to Figure 6-8 and Table 6-8, call-out B). Target information can be viewed and reset at the HMI and through the communication ports.

Target logging for a protective function can be disabled if the function is used in a supervisory or monitoring capacity. The following paragraphs describe how the relay is programmed to define which protective functions log targets. Table 6-10 lists the protective functions and the associated target names.

Table 6-10. Protective Functions with Targets

Protective Function	Name	Default
Phase instantaneous OC with settable time delay	$50 T A, B, C$	enabled
Neutral instantaneous OC with settable time delay	$50 T \mathrm{~N}$	enabled
Negative sequence instantaneous OC with settable time delay (Sensing Input type H, only)	$50 T \mathrm{~T}$	enabled
Second phase instantaneous OC with settable time delay	$150 \mathrm{TA}, \mathrm{B}, \mathrm{C}$	enabled
Second neutral instantaneous OC with settable time delay	150 TN	enabled
Second negative sequence instantaneous OC with settable time delay (Sensing Input type H, only)	150 TQ	enabled
Third neutral instantaneous OC with settable time delay (Sensing Input type G, only)	250 TN	enabled
Fourth neutral instantaneous OC with settable time delay (Sensing input type G only)	350 TN	enabled
Phase inverse time OC	$51 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$	enabled
Neutral inverse time OC	51 N	enabled
Negative sequence inverse time OC (Sensing Input type H, only)	51 Q	enabled
Second neutral time OC (Sensing Input type G, only)	151 N	enabled
General purpose logic timer	62	enabled
General purpose logic timer	162	enabled
Breaker Failure timer	BF	enabled

Setting the Targets Function

Targets are enabled using the BESTCOMS screen shown in Figure 6-12. You can select which protective elements trigger a target and what type of logic condition will reset the targets. To open the Reporting and Alarms, Fault Recording tab, select Reporting and Alarms from the Screens pull-down menu. Then select the Fault Recording tab. Enable the targets by checking the appropriate boxes. Alternately, targets can be enabled using the SG-TARG ASCII command.

Figure 6-12. Reporting and Alarms Screen, Fault Recording Tab

Retrieving Target Information

Targets can be viewed at HMI Screen 1.2 and through the communication ports using the RG-TARG (report general, targets) command. The relay provides target information from the most recent trip event. Target information is specific to an event; it is not cumulative. Targets for previous events are recorded in the fault summary reports which are described in the following subsection.

When a protective trip occurs and targets are logged, the HMI Trip LED seals-in and Screen 1.2 is automatically displayed. The LCD scrolls between the targets and the fault current magnitudes that were recorded during the fault. Pressing the HMI Reset key will clear these targets and the Trip LED. Password access isn't required to reset targets at the HMI.

The RG-TARG (report general-targets) command is used to read and reset targets through the communication ports.

RG-TARG Command
Purpose: Read or reset target status.
Syntax: RG-TARG[=0]
Comments: Entering RG-TARG returns the target information logged during the most recent trip event. Entering RG-TARG=0 clears the latched target data.

Example Read the targets. >RG-TARG 50A, 50N, 150A, 150N

Fault Summary Reports

The BE1-851 records information about faults and creates fault summary reports. A maximum of 16 fault summary reports are stored in the relay. The two most recent reports are stored in nonvolatile memory. When a new fault summary report is generated, the relay discards the oldest of the 16 fault records and replaces it with a new one. Each fault summary report is assigned a sequential number (from 1 to 255) by the relay. After event number 255 has been assigned, the numbering starts over at 1. To view fault reports using BESTCOMS, select Oscillography Download from the Reports pull-down menu. A screen such as the one
shown in Figure 6-13 will appear.

From this screen you can View Fault Details or View Fault Sequence of Events by selecting your choice at the top of the screen and then highlighting the fault to be displayed. In Figure 6-13, fault 18 is highlighted.

The Trigger button allows for a fault to be manually triggered. This can also be done using the SG-TRIGGER ASCII command.

The Refresh button is used to refresh the list of faults. The Download button will download the selected fault, storing it on the selected drive as either a binary or ASCII file, selected beneath the button.

Figure 6-13. View/Download Relay Fault Files Screen

Fault Summary Report Example

A fault summary report collects several items of information about a fault that can aid in determining why a fault occurred without having to sort through all of the detailed information available. The following example illustrates a typical fault summary report. Call-outs shown in the report are references to the legend of Table 6-8.

Example Fault Summary Report

Fault Date and Time. These lines report the date and time of the initial trigger of the event. This is based on either the pickup logic expression or the logic trigger expression becoming TRUE as defined by the SG-TRIGGER command. Refer to Figure 6-8 and Table 6-8, call-out A.
Station ID and Relay ID. These lines report station and device identifier information as defined by the SG-ID command.

Relay Address. This line reports the communications port address that the report was requested from. The relay address number is assigned using the SG-COM command, described in Section 11, ASCII Command Interface.

Fault Number. This line reports the sequential number (from 1 to 255) assigned to the report by the BE1-851.
Fault Trigger. This line reports the logic variables in the pickup or logic trigger expressions that became TRUE to trigger the recording of the event.

Event Type. This line reports the type of event that occurred. There are five fault event categories.

- Trip: A fault was detected as defined by the pickup expression and the relay tripped to clear the fault.
- Pickup: A fault was detected as defined by the pickup expression but the relay never tripped indicating that the fault was cleared by another device.
- Logic: A fault report was recorded by the logic trigger expression but no fault was detected as defined by the pickup expression.
- Breaker Failure: A fault was detected as defined by the pickup expression and the breaker failure trip became TRUE before the fault was cleared.
- RF=TRIG: A fault report was recorded by the ASCII command interface.

Active Group. This line reports what setting group was active at the time that the fault occurred.
Targets. This line reports the targets that were logged to the fault report between the time that the trip expression became TRUE until the end of the fault. Refer to Figure 6-8 andTable 6-8, call-out B.

Recloser State. This line reports the state of the recloser shot counter prior to the fault that triggered the report.

Fault Clearing Time. This line reports the time from when the relay detected the fault until the relay detected that the fault had cleared. Refer to Figure 6-8 and Table 6-8, call-out C.

If the fault report was triggered manually from the View/Download Relay Fault Files Screen, the recording of the report was terminated after 60 seconds and this line is reported as N/A.
If the pickup or logic expressions stay TRUE for more than 60 seconds, an alarm bit in the programmable alarm function is set and this line is reported as N/A. In this situation, the fault reporting functions (including targets) won't operate again until the pickup and logic trigger expressions return to a FALSE state to enable another trigger.
Breaker Operate Time. This line reports the breaker trip time from the breaker monitoring and alarm function. This is the time measured from when the breaker is tripped until the fast-dropout current detector function detects that the arc has been extinguished. Refer to Figure 6-8 and Table 6-8, call-out D.
Oscillographic Reports. This line reports the number of oscillographic records(1 or 2)that are stored in memory for this fault report. Refer to Figure 6-8 andTable 6-8, call-out E. Recording of oscillographic records is described in the Oscillographic Records subsection.
$I A, I B, I C, I N, I Q$. These lines report the current magnitudes measured for the power system cycle immediately following the trip. If the fault is cleared prior to the relay tripping, the recorded fault currents are for the power system cycle two cycles prior to the end of the fault. If the relay has been set to the average current measurement algorithm, these currents may not be representative due to the time constant inherent in the measurement algorithm. Refer to Figure 6-8 and Table 6-8, call-out F.

Retrieving Fault Report Information from the Relay

Fault Summary Directory Report. The fault reporting function provides a directory of fault summary reports that lists the number assigned to the fault summary report along with the date and time of the fault, the event type, and the total number of oscillography records stored in memory for that event. The event number is important because it is required to retrieve information about that event from the relay. This directory report can be accessed by using the RF command.

RF Command

Purpose: Read or reset fault report data.
Syntax: RF[-n/NEW][=0/TRIG]
Comments: Use of RF command syntax is summarized in.
Example 1. Fault summary Report

```
>RF
BE1-851 FAULT DIRECTORY
REPORT DATE : 01/01/03
REPORT TIME : 01:12:25
STATION ID : SUBSTATION_1
RELAY ID : BE1-851
RELAY ADDRESS : 0
NEW FAULTS : 3 (11:22:21 05/27/03-00:00:47 01/01/03)
TOTAL FAULTS : 3 (11:22:21 05/27/03-00:00:47 01/01/03)
    -#- --DATE-- --TIME-- --EVENT TYPE-- --OSC--
197 01/01/03 00:00:47 TRIP 2
196 05/27/03 11:22:30 TRIP 0
195 05/27/03 11:22:21 TRIP 0
```

New Faults Counter. One line of the fault summary directory report contains the new faults counter. The new faults counter tracks how many new fault reports have been recorded since the new faults counter was reset to 0 . This counter provides a way to check the fault information and then reset the new faults counter. Then, the next time that the relay is checked, it's easy to determine if any fault reports have been entered. Resetting the new faults counter is achieved using the RF-NEW=0 command. Write access to Reports must be gained to reset the new faults counter through the communication ports. The new faults counter can also be viewed at HMI Screen 4.1. The new faults counter cannot be reset at the HMI.

Fault Summary Reports. Individual fault summary reports can be retrieved using the RF-n command where n represents the number assigned to the fault summary report. To obtain the most recent report, use RF-NEW. If additional detail is desired, Sequence of Events Recorder data and oscillographic data can also be obtained for the faults. This is discussed in greater detail later in this section.

Oscillographic Records

The fault reporting function can record up to 16 IEEE Standard Common Format for Transient Data Exchange (COMTRADE) oscillographic records. Each record is 15 cycles long and records 24 samples per cycle for the $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and N current inputs. The relay uses 24 samples per cycles in its operation. Each time the fault reporting function starts recording a fault summary report, it freezes a 3 cycle pre-fault buffer and records for 12 post-trigger cycles. If the fault isn't cleared within that time, the fault reporting function records a second oscillographic record. If a second oscillographic record is required, the fault recording function will continue to record sample data in the second record with no gap. During this time, a 5 cycle buffer is being filled. If the fault is cleared within 5 cycles of the start of the second record, the record is terminated after it has recorded 15 cycles. If the fault doesn't clear in that period of time, the fault reporting function continues to save 5 cycles of sample data in its buffer until the fault is cleared. At that point, it freezes the 5 cycle buffer, providing 5 cycles of end of fault data and 10 cycles of post-fault data.

An oscillographic record is triggered when the PICKED UP or LOGIC Expressions defined by the FAULT RECORDING logic becomes TRUE. The oscillographic record will contain 3 cycles of pre-trigger data and 8 cycles of post-trigger data. Twelve samples will be stored every cycle. Each sample will contain 16-bit A/D values for all 4 analog channels (IA, IB, IC and IN) and a 1 or 0 for each of the 64 digital channels. The digital channels are updated every $1 / 4$ cycle but recorded every $1 / 24$ cycle. If the fault is not cleared by the end of the
record, then a second oscillographic report will be triggered as soon as the first ends. The first report will cover the initiation of the fault (start fault) and the second report will cover the breaker operate time (end fault).

Oscillographic records are stored in volatile memory. As additional faults are recorded, the oldest records are overwritten.

Table 6-11. Oscillographic Hardware Support

Feature	Version 2.xx	Version 3.xx
Number of Oscillographic Records	12	16
Length of Oscillographic Records	11 cycles each	15 cycles each
Sample Resolution	12 samples per cycle	24 samples per cycle

Retrieving Oscillographic Records

The fault summary directory and the fault summary reports list the numbers assigned to each fault record and the number of oscillographic records associated with each fault. Oscillographic records can be retrieved using using BESTCOMS. Alternately, oscillographic records can be retrieved using the RO ASCII command.

To download oscillographic records, select Oscillography Download from the Reports pull-down menu. Highlight the record to be downloaded and select either ASCII or binary as the file type for download. Select the Download button.

In Figure 6-14, record 019 is selected for a binary

Figure 6-14. View/Download Relay Fault Files download. When the
Download button is selected, the Browse for Folder Screen appears. See Figure 6-15. Select a location for the file to be stored, or create a New Folder and press OK. The Fault Record Filename Screen will appear. Type the base filename in the first row, the rest of the filenames will respond by changing to match the base filename. Select $O K$ to save the file.

Figure 6-15. Browse for Folder Screen

Figure 6-16. Fault Record Filenames

Only one oscillographic report file can be requested at a time. Reports are transmitted in COMTRADE format. Either a configuration file (CFG), a data file (DAT) or a header report(HDR) can be requested. Header files contain the fault summary report followed by all the pertinent settings that are associated with the requested fault record. These settings include the following:

- BESTlogic settings for User Programmable Logic Scheme.
- User Programmable Label settings, Global I/O settings.
- The protection setting group active during the fault.
- General protection settings.
- Fault reporting settings.
- Breaker Monitoring settings.
- Alarm settings.

Files can be requested in ASCII or binary format but both file transfers use the same format. Binary file transfer is much faster and consumes less disk space. ASCII format data is human readable and can be analyzed by standard text editing software. Software for IBM compatible computers is available from Basler Electric to convert binary files to ASCII format. The download protocol may be either XMODEM or XMODEM CRC format. For ease of reference the name of the downloaded file should be the same as the command.

Configuration and data files can be downloaded using any standard communications program.

SEQUENCE OF EVENTS RECORDER

A sequence of events recorder (SER) report is very useful in reconstructing the exact sequence and timing of events during a power disturbance or even normal system operations. The SER tracks over 100 data points by monitoring the internal and external status of the relay. Data points are scanned every quarter-cycle. All changes of state that occur during each scan are time tagged to a 1 millisecond resolution. A total of 255 changes are stored in volatile memory. When the SER memory becomes full, the oldest record is replaced by the latest one acquired.

Points and Conditions Monitored

The SER monitors the following points and conditions:

- Single-state events such as resetting demands or targets, changing settings, etc.
- Programmable logic variables
- Targets
- Relay trouble alarm variables
- Programmable alarm variables
- Output contact status
- Fault reporting trigger expressions

When a monitored event occurs or a monitored variable changes state, the SER logs the time and date of the event, the event or variable name and the state that the variable changed to. For user programmable logic variables (contact sensing inputs, virtual switches and virtual outputs), the user-programmed variable name and state names are logged in the SER report instead of the generic variable name and state names. For more information, refer to Section 3, Input and Output Functions.

Retrieving SER Information

SER information is retrieved through SER Directory Reports, the New Events Counter and by obtaining specific SER Reports.

SER Directory Report. A directory report lists the number of events currently in memory and the time span that the events cover. Directory reports are accessed using the RS (report SER) command.

New Events Counter. The new events counter tracks how many new entries have been logged to the SER since the new events counter was reset to zero. After SER information is checked, the new events counter can be reset. Then, the next time that the relay is checked, it's easy to determine if there are new events that haven't been evaluated. One line of an SER directory report contains the new events counter information. The new events counter is reset by obtaining write access to Reports and using the RS=0 command. The new events counter can be viewed but not reset at HMI Screen 4.2.

SER Report. A directory of SER reports can be obtained using the RS (report SER) command. Six sub-reports are available through the RS command: RS-n, RS-Fn, RS-ALM, RS-I/O, RS-LGC and RS-NEW. These subreports give specific types of data without confusing the user with every internal state change and event occurrence. Each sub-report is defined in the following paragraphs.
$R S-n$ (report SER, number of most recent events). Events are retrieved for the most recent entries. Entering RS-4 would view an SER report for the last four events.
$R S-F<n>$ (report SER, for Fault <event number>). Events are retrieved for the period of time specific to a fault event. The report includes all events within the time span of the fault plus one event before and after the fault. Entering RS-F9 views a SER report associated with fault record 9.

RS-ALM (report SER, alarm). This command retrieves all alarm events that exist since the last RS=0 command was issued. (RS=0 resets the new records counter to zero.) This information can also be obtained using the RA-SER command.
$R S-1 / O$ (report SER, input/output). This command reports all input and output events since the last RS=0 command was issued. (RS=0 resets the New Records counter to zero.)
RS-LGC (report SER, logic). A report is retrieved for all logic events since the last RS $=0$ command was issued. ($\mathrm{RS}=0$ resets the New Records counter to zero.)

RS-NEW (report SER, new events since RS=O reset). Events are retrieved for the period of time covered by the New Events Counter register.

RS Command
Purpose: Read or reset sequence of events record data.
Syntax: RS[-n/Fn/ALM/IO/LGC/NEW][=0]
Comments: $\mathrm{n}=$ number of events to be retrieved
$\mathrm{Fn}=$ fault record number to be retrieved
Example 1. Read the directory report of records.
>RS
BE1-851 SEQUENCE OF EVENTS DIRECTORY
REPORT DATE : 06/1/03
REPORT TIME : 08:28:47
STATION ID : SUBSTATION_1

```
RELAY ID : BE1-851
RELAY ADDRESS : 3
NEW RECORDS : 15 (10:05:05.152 05/27/03 - 10:05:40.676 05/27/03)
TOTAL RECORDS :255 (10:03:59.514 05/27/03 - 10:05:40.676 05/27/03)
```

Example 2. View fault record number 212.
>RS-F212
BE1-851 SEQUENCE OF EVENTS DIRECTORY
REPORT DATE : 06/1/03
REPORT TIME : 16:08:17
STATION ID : SUBSTATION 1
RELAY ID : BE1-851
RELAY ADDRESS : 3

ALARMS FUNCTION

The "alarms function" monitors internal relay systems, external relay interfaces and power system equipment. Alarm points are segregated into Relay Trouble Alarms and Programmable Alarms. Alarm point status is stored in nonvolatile memory and is retained when relay operating power is lost.

The ability to program the reporting and display of alarms along with the automatic display priority feature of the HMI gives the relay the functionality of a local and remote alarm annunciator. See Section 10, HumanMachine Interface, for more information on the automatic display priority logic.

Relay Trouble Alarms

All internal circuitry and software that affects how the relay functions is monitored by the continuous self-test diagnostics function of the relay trouble alarms. A detailed list of relay trouble alarms is provided in Table 6-8. If any one of these points asserts, the failsafe alarm output relay de-energizes allowing the OUTA contact to close, the HMI Relay Trouble LED lights, all output relays are disabled and the relay is taken offline. The relay trouble alarms function is not programmable. If power is lost to the relay, the OUTA contact will close.

If your application requires a normally closed contact that opens to indicate a relay trouble condition, use BESTlogic to program the output logic. One of the output relays with normally open contacts (OUT1 through OUT5) can be programmed to be held closed. For example, to open OUT5 for indication of relay trouble, set the VO5 logic expression at / 0 (SL-VO5=/0). A "not zero" setting is equal to logic 1 . When the relay is fully functional, the OUT5 output contact is closed. Since all output relays are disabled when a relay trouble alarm exists, OUT5 opens when relay trouble occurs.

Table 6-12. Relay Trouble Alarms

I.D. Number	Diagnostic	Description
1	RAM FAILURE	Static RAM read/write error
2	ROM FAILURE	EPROM program memory checksum error
3	uP FAILURE	Microprocessor exception or self-test error
4	EEPROM FATAL ERROR	EEPROM read/write error
5	ANALOG FAILURE	Analog to digital converter error
6	CALIBRATION ERR	Relay not calibrated or calibration checksum error
7	PWR SUPPLY ERR	Power supply out of tolerance
8	WATCHDOG FAILURE	Microprocessor watchdog circuit timed out
9	SET DFLTS LOADED	Relay using setting defaults
10	CAL DFLTS LOADED	Relay using calibration defaults

Relay trouble alarms, except for CALIBRATION ERR, EEPROM FATAL ERR, SET DFLTS LOADED and CALDFLTS LOADED indicate that the relay is not functional and causes the self-test diagnostics to force a microprocessor reset to try to correct the problem.

CALIBRATION ERR, EEPROM FATAL ERROR or DFLTS LOADED errors indicate that the relay is functional but needs re-calibration or the settings reprogrammed.

Any relay trouble alarm will disable the protection functions, light the Relay Trouble LED and place the output contacts in their normal, de-energized state. If a relay trouble (RA-REL) alarm is cleared by pressing the HMI Reset key while viewing Screen 1.3 or using the RA=0 or RA-REL=0 commands, then the relay will attempt to return back online by issuing a software reset. The relay resets by going through a full startup and initialization cycle. If no problems are detected, the relay returns online and enables protection.

Major, Minor and Logic Programmable Alarms

The programmable alarms function covers all circuits monitored by the continuous self-test diagnostics function that do not affect the relay core functions. Alarm functions used to monitor the power system and equipment are also part of the programmable alarms. Table 6-8 provides a detailed list of all programmable alarms. The programmable alarm points can be prioritized into Major and Minor alarms using the SA-MAJ (setting alarms, major) and SA-MIN (setting alarms, minor) commands. Major alarm points, when triggered, cause the HMI Major Alarm LED to light and the BESTlogic variable ALMMAJ to assert. Minor alarm points, when triggered, cause the HMI Minor Alarm LED to light and the BESTlogic variable ALMMIN to assert.

Table 6-13. Programmable Alarms

I.D. Number	Diagnostic	Description
1	OUT1 CKT OPEN ALARM $*$	Trip circuit continuity and voltage monitor
2	BKR FAIL ALARM	Breaker failure trip
3	RECLOSER FAIL ALARM $*$	Reclose fail timer timed out before breaker closed
4	RECLOSER LOCKOUT ALARM *	Recloser went through sequence without success
5	BREAKER ALARM 1	Breaker Alarm 1 threshold (SA-BKR1 setting) exceeded
6	BREAKER ALARM 2	Breaker Alarm 2 threshold (SA-BKR2 setting) exceeded

I.D. Number	Diagnostic	Description
7	BREAKER ALARM 3	Breaker Alarm 3 threshold (SA-BKR3 setting) exceeded
8	P DEMAND ALARM *	Phase demand
9	N DEMAND ALARM *	Neutral unbalance demand
10	Q DEMAND ALARM *	Negative Sequence unbalance demand
11	GROUP OVERRIDE ALARM *	Setting group control logic override
12	SYS I/O DELAY ALARM	Excessive delay in HMI or serial communication operation
13	COMM ERROR ALARM	Communication failure
14	CLOCK ERROR *	Real-time clock not set
15	uP RESET ALARM	Microprocessor has been reset
16	SETTING CHANGE ALARM	Settings change made by user
17	EE NONFATAL ERR ALARM	EEPROM nonfatal recoverable errot
18	OUTPUT OVERRIDE ALARM *	One or more output contacts have logic override condition
19	IRIG SYNC LOST ALARM	Loss of IRIG synchronization
20	SGC ACTIVE ALARM *	Active setting group changed
21	VO13 LOGIC ALRM *	VO13 logic is TRUE. (User programmable logic alarm)
22	VO14 LOGIC ALRM *	VO14 logic is TRUE. (User programmable logic alarm)
23	VO15 LOGIC ALRM *	VO15 logic is TRE. (User programmable logic alarm)
24	FLT RPT TIMEOUT ALARM	TRUE if fault event trigger lasts longer than 60 seconds
25	LOGIC=NONE ALARM	Active Logic = NONE
26	CHANGES LOST ALARM	Changes made on serial port not saved after 5 minutes.

Alarms with an asterisk ($*$) are non-latching. A non-latching alarm clears itself automatically when the alarm condition goes away. All other alarms are latching and must be manually reset by using the HMI Resetbutton or the $\mathrm{RA}=0$ command.

The output of any programmable alarm can also be used in programmable logic expressions without being programmed to be reported by the programmable alarm reporting function. The ALMLGC variable is provided for this purpose. Programmable alarm variables can be masked to drive BESTlogic variable ALMLGC by using the SA-LGC command.

Programming Alarm Priorities

Alarm settings include Major, Minor and Logic alarm priorities, Demand alarm points, and the Breaker alarm points. Programming details for Demand alarm points is available in the Demand Functions subsection. Refer to the Breaker Monitoring subsection for details about programming Breaker alarm points. Major, Minor and Logic programmable alarm settings are made using BESTCOMS. To select alarm priority, select Reporting and Alarms from the Reports pull-down menu. Select the Alarms tab (see Figure 6-17, next page). Set the alarm point priority by checking the box or boxes to its right. Table 6-8 summarizes major, minor and logic programmable alarm settings.

Figure 6-17. Reporting and Alarms Screen

Table 6-14. Programmable Alarm Settings

Setting	Range/Purpose	Default
Major alarm points (drives Major Alarm LED and ALMMAJ logic variable).	List of alarm functions per Table 6-12 Separated by forward slash (/)	25
Minor alarm points (drives Minor Alarm LED and ALMMIN logic variable).	List of alarm functions per Table 6-12 Separated by forward slash (/)	29
Logic alarm points (drives ALMLGC logic variable).	List of alarm functions per Table 6-12 Separated by forward slash (/)	0

Retrieving and Resetting Alarm Reports

When an alarm condition occurs, the appropriate front panel LED lights and HMI Screen 1.3 is displayed. (See Section 10, Human-Machine Interface, for more information about automatic display priority logic.) The HMI display scrolls between displaying all active alarm points. This includes alarms that are not programmable (relay trouble alarms). Any latched alarms that aren't currently active can be reset by pressing the HMI Reset key. Refer to Table 6-12 for the list of latching alarm points and self clearing alarm points.

The Reset key of the HMI is context sensitive. That is, the functionality depends upon what screen is currently being displayed. BESTlogic variable RSTKEY takes advantage of this to allow the front panel Reset key on the relay to be used in the programmable logic scheme when the Alarm Screens 1.3 (ISTATVALARMS) is active. An example of the use of this logic variable is to break the seal-in for a logic expression. The logic expression can be programmed so that the seal-in function uses VO13, VO14 or VO15. If the virtual output expression is included in one of the programmable alarm masks, the automatic display priority logic will cause the display to go to the Alarm Screens 1.3 (ISTATVALARMS). When the Reset key is pressed on the front of the relay, the RSTKEY logic variable is asserted and the logic expression seal-in is broken. See Application, Section 8, Application, Application Tips, for more information. Figure 6-18 (next page) shows the alarm reset logic.

Logic variables for ALMMAJ, ALMMIN and ALMLGC can also be set to operate any of the output contacts to give an indication that an alarm condition exists. Section 7, BESTlogic Programmable Logic, provides more details about this feature.

The status of the three front-panel LEDs (Relay Trouble, Minor Alarm and Major Alarm) can be read through the communication ports by using the RG-STAT command. Alarm status is given in the DIAG/ALARM line of the

Figure 6-18. Programmable Alarm Function General Status Report. Refer to the General Status Reporting subsection for more information about obtaining relay status with the RG-STAT command.

The RA (report alarms) command can be used to read detailed alarm reports and reset latched alarms.

RA Command

Purpose: Read or reset alarm information.
Syntax: \quad RA[-<type>][=0]
Comments: Type = LGC (Logic), MAJ (Major), MIN (Minor) or REL (Relay)
Privilege G or R password access is required to reset alarms.
Example 1. Read the current alarm status.
$>R A$
RA-LGC NONE
RA-MAJ NONE
RA-MIN ALARM\# 16 - SETTING CHANGE
RA-REL NONE
Example 2. Clear the latched minor alarm

$$
>\text { RA }-\mathrm{MIN}=0
$$

Links between Programmable Alarms and BESTIogic

Several links between the programmable alarms and BESTlogic allow alarm functions to be used in the logic scheme and programmable logic functions to be used in the alarm reporting function.

Programmable Alarms Controlled by BESTlogic Elements

Virtual outputs VO13, VO14 and VO15 are driven by BESTlogic expressions and are available in the programmable alarms function. These three virtual outputs have labels that can be assigned meaningful names. Then, when a logic condition that is used for an alarm exists, the label will be reported in the alarm reporting function.

Programmable Alarms Reset

Programmable alarms can be reset by any one of three methods:

- The programmable alarms reset logic expression becomes TRUE.
- Pressing the front panel Reset key when HMI Screen 1.3 is active.
- By connecting the alarms reset logic in BESTCOMS. Alternately, this can be done using the SARESET ASCII command.

To reset the alarms using BESTCOMS, select Reporting and Alarms from the Screens pull-down menu. Then select the Alarms tab. Select the Logic button in the BESTlogic box on the right side of the screen. Refer to Figure 6-17. The BESTlogic Function Element Screen for Alarm Reset Logic wiil appear. See Figure 6-19, next page.

To connect the function's input, select the RESET button in the BESTIogic Function Element Screen. The BESTlogic Expression Builder Screen will open. Select the expression type to be used. Then, select the BESTlogic variable or series of variables to be connected to the input. Select Save when finished to return to the BESTlogic Function Element Screen. For more details on the BESTlogic Expression Builder, see Section 7, BESTIogic Programmable Logic. Select Done when the settings have been completely edited.

In the example of Figure 6-19 the programmable alarms will be reset when either IN3 or IN4 becomes TRUE.

Alarm Reset Logic

Figure 6-19. BESTlogic Function Element Screen, Alarm Reset Logic

BESTlogic Elements Controlled by Programmable Alarms

Major, Minor and Logic programmable alarm settings drive BESTlogic variables ALMMAJ, ALMMIN and ALMLGC. These variables can be used in logic expressions to control logic when the alarm is active. For example, these variables could be used to actuate an output relay to signal a SCADA RTU that an alarm condition exists.

HARDWARE AND SOFTWARE VERSION

Hardware and software version reporting is used to determine what style chart selections are included in the relay, the relay serial number and the version of the embedded software (firmware).

Style and serial number information is contained on the label on the front panel. Embedded software information can be obtained at HMI Screen 4.6. The information of Screen 4.6 is also displayed briefly when operating power is applied to the relay.

A software and hardware version report can be obtained through BESTCOMS. Alternately it can be obtained using the RG-VER ASCII command.

To obtain the relay's version report through BESTCOMS, select Download Settings from Devicefrom the Communications

Figure 6-20. General Operation Screen, General Information Tab
menu. Downloaded settings from the relay will overwrite any settings you have made in BESTCOMS. The relay will ask you to save your current file before continuing the download.

To view the version of the relay once the download is complete, select General Operation from the Screens menu. Then select the General Information tab (see Figure 6-20). The General Information tab displays all of the version information about the relay.

SECTION 7 • BESTlogic PROGRAMMABLE LOGIC

TABLE OF CONTENTS

SECTION 7 • BESTlogic PROGRAMMABLE LOGIC 7-1
INTRODUCTION 7-1
WORKING WITH PROGRAMMABLE LOGIC 7-1
Function Block Logic Settings 7-6
Output Logic Settings 7-6
Defining Output Operation 7-6
Virtual and Hardware Outputs 7-6
BESTlogic Expression Builder 7-7
LOGIC SCHEMES 7-7
User Logic Scheme 7-8
Custom Logic Schemes 7-9
Creating or Customizing a Logic Scheme 7-9
Sending and Retrieving Relay Settings 7-9
Retrieving Relay Settings 7-9
Sending Relay Settings 7-9
Debugging the Logic Scheme 7-9
USER INPUT AND OUTPUT LOGIC VARIABLE NAMES 7-10
BESTlogic APPLICATION TIPS 7-10
Figures
Figure 7-1. BESTlogic Sensing Input Type G Function Blocks 7-2
Figure 7-2. BESTlogic Sensing Input Type H Function Blocks 7-3
Figure 7-3. 79 Function Box 7-6
Figure 7-4. Virtual Output Logic 7-6
Figure 7-5. BESTlogic Expression Builder Screen 7-7
Figure 7-6. BESTlogic Screen, Logic Select Tab 7-8
Tables
Table 7-1. Logic Variable Names and Descriptions 7-4
Table 7-2. Logic Variable Names and Descriptions for Sensing Input Type G Relays 7-5
Table 7-3. Label Settings 7-10

SECTION 7 • BESTlogic PROGRAMMABLE LOGIC

INTRODUCTION

Multifunction relays are similar in nature to a panel of single-function protective relays. Both must be wired together with ancillary devices to operate as a complete protection and control system. In the single-function static and electromechanical environment, elementary diagrams and wiring diagrams provide direction for wiring protective elements, switches, meters and indicator lights into a unique protection and control system. In the digital, multifunction environment, the process of wiring individual protection or control elements is replaced with the entry of logic settings. The process of creating a logic scheme is the digital equivalent of wiring a panel. It integrates the multifunction protection, control and input/output elements into a unique protection and control system.

BESTlogic is a programming method used for managing the input, output, protection, control, monitoring and reporting capabilities of Basler Electric's digital, multifunction, protective relay systems. Each relay system has multiple, self-contained function blocks that have all of the inputs and outputs of its discrete component counterpart. Each independent function block interacts with control inputs, virtual outputs and hardware outputs based on logic variables defined in equation form with BESTlogic. BESTlogic equations entered and saved in the relay system's nonvolatile memory integrate (electronically wire) the selected or enabled protection and control blocks with control inputs, virtual outputs and hardware outputs. A group of logic equations defining the function of the multifunction relay is called a logic scheme.

Several preprogrammed logic schemes are stored in relay memory. Each scheme is configured for a typical protection application and virtually eliminates the need for start-from-scratch programming. Any of the preprogrammed schemes can be copied and saved as the active logic. Preprogrammed logic schemes can also be copied and then customized to suit your application. Detailed information about preprogrammed logic schemes is provided later in this section.

BESTlogic isn't used to define the operating settings (pickup thresholds and time delays) of the individual protection and control functions. Operating settings and logic settings are interdependent but separately programmed functions. Changing logic settings is similar to rewiring a panel, and is separate and distinct from making the operating settings that control the pickup thresholds and time delays of a relay. Detailed information about operating settings is provided in Section 4, Protection and Control Functions.

WORKING WITH PROGRAMMABLE LOGIC

BESTlogic uses two types of logic settings: output logic settings and function block logic settings. These two types of settings are discussed in the following subsections. Output logic settings are entered in equation form and control the hardware outputs of the relay. BESTlogic function blocks are illustrated in Figures 7-1 and 7-2 and are discussed in the following paragraphs.
Names assigned to inputs, outputs, timers, and protection and control elements represent the logic variables in the equations. Tables 7-1 and 7-2 lists the logic variable names and descriptions.

Figure 7-1.BESTlogic Sensing Input Type G Function Blocks

Figure 7-2. BESTlogic Sensing Input Type H Function Blocks

Table 7-1. Logic Variable Names and Descriptions for Sensing Input Type H Relays

VARIABLE NAME	DESCRIPTION	VARIABLE NAME	DESCRIPTION
Input and Output Logic Variables		51PPU	51 Phase Picked Up
IN1-IN4	Inputs 1 through 4 Status	51NPU	51 Neutral Picked Up
VOA	Relay Trouble Alarm Output	51QPU	51 Negative Sequence Picked Up
VO1-VO5	Virtual Outputs 1 to 5 (Drives hardware Outputs 1 through 5)	Instantaneous Overcurrent Logic Variables	
VO6-VO15	Virtual Outputs 6 to 15	50TPT	50T Phase Tripped
Control Logic Variables		50TPPU	50T Phase Picked Up
RSTKEY	HMI Target Reset Key	50TNT	50T Neutral Tripped
101T	Virtual Breaker Control Switch Tripped	50TNPU	50T Neutral Picked Up
101C	Virtual Breaker Control Switch Close	50TQT	50T Negative Sequence Tripped
101SC	Virtual Breaker Control Switch Slip Contact	50TQPU	50T Negative Sequence Picked Up
62	62 Timer Output	150TPT	150T Phase Tripped
162	162 Timer Output	150TPPU	150T Phase Picked Up
43	Virtual Switch 43 Output	150TNT	150T Neutral Tripped
143	Virtual Switch 143 Output	150TNPU	150T Neutral Picked Up
243	Virtual Switch 243 Output	150TQT	150T Negative Sequence Tripped
343	Virtual Switch 343 Output	150TQPU	150T Negative Sequence Picked Up
SG0	Setting Group 0 Active (default)		
SG1	Setting Group 1 Active		
SG2	Setting Group 2 Active		
SG3	Setting Group 3 Active		
Monitor Logic Variables			
ALMLGC	Logic Alarm		
ALMMAJ	Major Alarm		
ALMMIN	Minor Alarm		
OUT1MON	Output 1 Monitor (circuit continuity)		
Reclosing Logic Variables			
79C	79 Close Signal		
79RNG	79 Running/Block Tap Changer		
79LO	79 Lock Out		
79F	79 Reclose Fail		
79SCB	79 Sequence Control Block		
Breaker Failure Logic Variables			
BFT	Breaker Failure Tripped		
BFPU	Breaker Failure Picked Up		
Time Overcurrent Logic Variables			
51PT	51 Phase Tripped		
51NT	51 Neutral Tripped		

Table 7-2. Logic Variable Names and Descriptions for Sensing Input Type G Relays

VARIABLE NAME	DESCRIPTION	VARIABLE NAME	DESCRIPTION
Input and Output Logic Variables		151NT	151 Neutral Tripped
IN1 - IN4	Inputs 1 through 4 Status	51PPU	51 Phase Picked Up
VOA	Relay Trouble Alarm Output	51NPU	51 Neutral Picked Up
VO1-VO5	Virtual Outputs 1 to 5 (Drives hardware Outputs 1 through 5)	151NPU	151 Neutral Picked Up
VO6-VO15	Virtual Outputs 6 to 15	Instantaneous	current Logic Variables
Control Logic Variables		50TPT	50T Phase Tripped
RSTKEY	HMI Target Reset Key	50TPPU	50T Phase Picked Up
101T	Virtual Breaker Control Switch Tripped	50TNT	50T Neutral Tripped
101C	Virtual Breaker Control Switch Close	50TNPU	50T Neutral Picked Up
101SC	Virtual Breaker Control Switch Slip Contact	150TPT	150T Phase Tripped
62	62 Timer Output	150 TPPU	150 T Phase Picked Up
162	162 Timer Output	150 TNT	150 T Neutral Tripped
43	Virtual Switch 43 Output	150TNPU	150T Neutral Picked Up
143	Virtual Switch 143 Output	250TNT	250T Neutral Tripped
243	Virtual Switch 243 Output	250TNPU	250T Neutral Picked Up
343	Virtual Switch 343 Output	350TNT	350T Neutral Tripped
SG0	Setting Group 0 Active (default)	350TNPU	350T Neutral Picked Up
SG1	Setting Group 1 Active		
SG2	Setting Group 2 Active		
SG3	Setting Group 3 Active		
Monitor Logic Variables			
ALMLGC	Logic Alarm		
ALMMAJ	Major Alarm	A	
ALMMIN	Minor Alarm		
OUT1MON	Output 1 Monitor (circuit continuity)		
Reclosing Logic Variables			
79C	79 Close Signal		
79RNG	79 Running/Block Tap Changer		
79LO	79 Lock Out		
79F	79 Reclose Fail		
79SCB	79 Sequence Control Block		
Breaker Failure Logic Variables			
BFT	Breaker Failure Tripped		
BFPU	Breaker Failure Picked Up		
Time Overcurrent Logic Variables			
51PT	51 Phase Tripped		
51NT	51 Neutral Tripped		

Function Block Logic Settings

Each BESTlogic function block is equivalent to its discrete device counterpart. For example, the Reclosing Logic Function Block of Figure 73 has many of the characteristics of a BE1-79M Relay.

Before using a protection or control function block, two items must be set: the mode and the input logic. Setting the Mode is equivalent to deciding which protection or control functions will be used in a logic scheme. The input logic establishes control of a function block.

Mode and input logic information is contained in logic setting command strings. Depending on the command, the mode setting can either enable or disable a logic input or determine how

Figure 7-3. 79 Function Box a function block operates. Input logic defines which logic variables control or disable a logic function. An example of an input BLOCK logic equation is IN3+VO6. The IN3+VO6 expression indicates that the 51P function is disabled when Input 3 (IN3) or Virtual Output 6 (VO6) are TRUE.

The AND operator may not be applied to the terms of an input logic equation. Any number of variables or their inverse can be combined in a function block input logic expression. Section 4, Protection and Control Functions provides detailed information about setting the logic for each function block.

Output Logic Settings

Defining Output Operation

Output operation is defined by Boolean logic equations. Each variable in an equation corresponds to the current state (evaluated every quarter cycle) of an input, output or timer. Figure Logic 7-4 illustrates this relationship. Every quarter cycle, output Equation expressions are evaluated as TRUE or FALSE. If a logic output that corresponds to a hardware output changes state, then the corresponding output relay contact also changes state.

Figure 7-4. Virtual Output Logic

When the relay is powered up, all logic outputs are disabled and most variables (including virtual outputs) initialize as FALSE. Some variable states are stored in EEPROM and are restored to the last state prior to loss of power. These variables include 43/143/243/343,101SC and SG0 through SG3. All control commands, including logic override control, are also stored in EEPROM. If you override output logic and force an output to open, that condition will be maintained even if operating power is cycled.

Logic equations are defined by logic variables, logic operators, and their position in an equation. The available logic operators include AND (*), OR (+) and NOT (/). The NOT operator is applied to the variable immediately following the symbol (/). For virtual output equations, OR logic can be applied to any number of variables if no AND logic is used in the expression. Similarly, AND logic can be applied to any number of variables if no OR logic is used. Any number of NOT operators may be used. For complex expressions that use both AND and OR operators, OR logic is limited to four terms. Up to four AND terms with any number of variables can be ORed together. When the relay is processing a complex expression, it performs AND operations before performing OR operations.

Virtual and Hardware Outputs

A virtual output exists only as a logical state inside the relay. A hardware output is a physical relay contact that can be used for protection or control. Each BE1-851 relay has five isolated, normally open (NO) output
contacts (OUT1 - OUT5) and one isolated, normally closed (NC) alarm output (OUTA). Output contacts OUT1 through OUT5 are controlled by the status of the internal virtual logic signals VO1 through VO5. If VO[n] becomes TRUE, then the corresponding output relay OUT[n] energizes and closes the NO contacts. For the alarm output, if VOA becomes TRUE, the ALM output de-energizes and opens. More information about input and output functions is provided in Section 3, Input and Output Functions.

Hardware outputs can also be controlled by the CO-OUT (control operate, output) ASCII command. The COOUT command overrides control of logic outputs. Outputs may be pulsed or latched in a 0 or 1 state independently from the state of the virtual output logic. More information about overriding control of logic outputs is available in Section 3, Input and Output Functions.

BESTlogic Expression Builder

The BESTlogic Expression Builder is used to connect the inputs of the relay's function blocks, physical inputs and outputs and virtual outputs. Using the BESTlogic Expression Builder is analogous to physically attaching wire between discrete relay terminals. The BESTlogic Expression Builder is opened each time the input of a BESTlogic function block is selected. Figure 7-5 illustrates the BESTlogic Expression Builder Screen.

The BESTlogic Expression Builder provides a point and click interface that allows the selected input to be easily connected using a single OR gate, single AND gate or an AND/OR combination. The usable list of inputs and outputs in the bottom left of the screen corresponds with the variable lists of Tables 7-1 and 7-2. Currently, the virtual outputs are the only functions that can use the single AND or AND/OR combination BESTlogic Expression Type.

The top of the screen displays the BESTlogic expression in a text window. Above the text window, the selected input and the associated ASCII command is displayed.

Figure 7-5. BESTlogic Expression Builder Screen

The Clear button will clear the expression to 0. The Resetbutton will reset the expression to its original state when the BESTlogic Expression Builder was first opened. The Cancel button resets the expression to its original state when the BESTlogic Expression Builder was first opened and returns the user to the previous screen. The Save button saves the expression shown in the text window and returns the user to the previous window.

LOGIC SCHEMES

A logic scheme is a group of logic variables written in equation form that defines the operation of a multifunction relay. Each logic scheme is given a unique name of one to eight alphanumeric characters. This gives you the ability to select a specific scheme and be confident that the selected scheme is in operation. Six logic schemes, configured for typical protection applications, are stored in nonvolatile memory. Only one of these logic schemes can be active at a given time. In most applications, preprogrammed logic schemes eliminate the need for custom programming. Preprogrammed logic schemes may provide more inputs, outputs or features than are needed for a particular application. This is because the preprogramed schemes are designed for a large number of applications with no special programming required. Unneeded inputs or outputs may be left open to disable a function or a function block can be disabled through operating settings. Unused current sensing inputs should be shorted to minimize noise pickup.

When a custom logic scheme is required, programming time can be reduced by copying a preprogrammed scheme into the user logic. The logic scheme can then be modified to meet the specific application.

User Logic Scheme

Digital, multifunction relays must have an user logic scheme in order to function. All Basler Electric multifunction relays are delivered with a default, user logic loaded into memory. The default, user logic scheme for the BE1-851 is named USER. If the function block configuration and output logic of USER meets the requirements of your application, then only the operating settings (power system parameters and threshold settings) need to be adjusted before placing the relay in service.

Note

There has been a fundamental improvement to the way the user sets up BESTlogic in this device. In some prior implementations of BESTlogic, it was necessary to make a separate setting that determined whether the user's logic scheme or if the one of the pre-programmed logic schemes was to be made active. This setting was made from the ASCII command interface using the SP-LOGIC (Set Protection Logic) command. This setting has been eliminated in relays with firmware version 2.42 and higher.

In the implementation of BESTIogic used in this relay, the logic scheme defined by the user's logic settings is always active. If the user wishes to use a pre-programmed logic scheme, he/she now copies it into his/her user logic settings. This process is accomplished using BESTCOMS or the ASCII command interface using the SL-N (Set Logic Name) command in this and previous BESTlogic implementations.

If a different preprogrammed logic scheme is required, it can be easily copied to active logic and used as is, or customized to your specifications. To accomplish this, communication with the relay must be established. It is accomplished by connecting a computer to the front or rear RS-232 port.

Logic schemes can be selected from the Logic Select tab on the BESTlogic Screen. To access this screen, select BESTlogic from the Screens pull-down menu. Then select the Logic Select tab. Select the desired logic scheme to copy to User logic. The active logic scheme is shown in the User box. In Figure 7-6, FEEDER_1 has been selected to user logic.

Figure 7-6. BESTlogic Screen, Logic Select Tab

CAUTION

Selecting a logic scheme to be active in BESTCOMS does not automatically make that scheme active in the relay. See the paragraphs later in this section titled Sending and Retrieving Relay Settings.

Custom Logic Schemes

A custom logic scheme can be created from scratch by copying NONE to active logic and then renaming the logic. To rename a scheme, place the mouse pointer over the name shown in the Userbox. This will highlight the current name. Simply type over the current name with a name appropriate for your application. A custom logic scheme can also be created by modifying any one of the preprogrammed logic schemes after copying it to active logic and renaming. Preprogrammed logic schemes copied to active logic with no name change are read-only schemes and cannot have their logic expressions altered. Before modifying a logic scheme copied to active logic, the scheme must be assigned a unique name of one to eight alphanumeric characters. This scheme is then referred to as a custom or user programmable logic scheme because the variable expressions of the logic can be customized or created from scratch to suit the needs of an application. A custom logic scheme may be revised many times, but only the most recent changes are saved to active logic.

NOTE

A copied logic scheme must be renamed in order to become a custom logic scheme. If it is not renamed, you will not be allowed to change the settings associated with that scheme.

CAUTION

Always remove the relay from service prior to changing or modifying the active logic scheme. Attempting a logic scheme change while the relay is in service could generate unexpected or unwanted outputs.

Creating or Customizing a Logic Scheme

Before customizing a preprogrammed logic scheme, the scheme must be renamed. The following procedure outlines the process of customizing or creating a logic scheme:
Step 1. Copy the preprogrammed scheme.
Step 2. Rename the scheme with a unique, non-preprogrammed, name.
Step 3. Using BESTCOMS, enable or disable the desired relay functions.
Step 4. Edit the logic expressions as required.
Step 5. Save the changes. Refer to Section 14, BESTCOMS, for more information on how to save and export settings files.

Sending and Retrieving Relay Settings

Retrieving Relay Settings

To retrieve settings from the relay, the relay must be connected to a computer through a serial port. Once the necessary connections are made, settings can be downloaded from the relay by selecting Download Settings from Device on the Communication pull-down menu.

Sending Relay Settings

To send settings to the relay, the relay must be connected to a computer through a serial port. Once the necessary connections are made, settings can be uploaded to the relay by selecting Upload Settings to Device on the Communication pull-down menu.

Debugging the Logic Scheme

If there are problems with a customized logic scheme, the RG-STAT command can be used to check the status of all logic variables. More information about the RG-STAT command can be found in Section 6,

USER INPUT AND OUTPUT LOGIC VARIABLE NAMES

Assigning meaningful names to the inputs and outputs makes sequential events reports easier to analyze. Input and output logic variable names are assigned by typing them into the appropriate text box on the related BESTCOMS screen. All of the BE1-851's inputs, outputs and 43 switches have labels that can be edited. Table $7-3$ shows the range and purpose of each label. Alternately, labels may be edited using the SN ASCII command.

Table 7-3. Label Settings

Setting	Range/Purpose	Default
Label	1 to 10 characters. User name to replace <var> in the RS report.	n/a
Closed State	1 to 7 characters. User label to replace default true label.	True
Open State	1 to 7 characters. User label to replace default false label.	False

BESTIogic APPLICATION TIPS

When designing a completely new logic scheme, logic evaluation order should be considered. Contact sensing inputs are evaluated first, then the function blocks and then the virtual outputs. VO15 is evaluated first and VOA is evaluated last. If a virtual output is used in a logic expression to control another virtual output, the virtual output used in the expression should be numerically higher. Otherwise, a logic expression for a numerically smaller virtual output won't be available to a numerically higher virtual output until the next processing interval. Logic is evaluated every quarter-cycle.

When designing custom protection schemes, avoid confusion by maintaining consistency between input and output functions in the custom scheme and the preprogrammed schemes.

OUT1 through OUT5 have normally open contacts (coil is de-energized). Normally open contacts can be used as normally closed outputs by inverting the logic expressions that drive them. Inverting an output logic expression causes the coil to be energized with the contacts closed in the normal state. Caution should be taken with normally closed contact logic because there are no shorting bars to maintain the closed condition if the draw-out assembly is removed from the chassis. In applications where a normally closed output is needed even when the electronics are removed, a normally open contact from the relay can be used to drive a low-cost auxiliary relay. The normally closed output of the auxiliary relay will maintain the closed output when the draw-out assembly is removed from the case. Alternately, an external switch can be used to short across a normally closed relay output when the draw-out assembly is removed. Extra care is required to ensure that the switch is closed prior to removing the draw-out assembly and that the switch is open after the relay is placed back in service.

Several links between the programmable alarms function and BESTlogic programmable logic allow alarm functions to be used in a logic scheme and programmable logic functions to be used in the alarm reporting function.

Programmable alarm settings for Major, Minor and Logic alarms drive BESTlogic variables ALMMAJ, ALMMIN and ALMLGC. These variables can be used in logic expressions to control logic when an alarm is active.

Virtual outputs VO13, VO14 and VO15 are driven by BESTlogic expressions. These three logic variables are also available in the programmable alarm function. Virtual outputs can also be assigned user programmable labels (described previously). With this feature, a logic condition can be designed and used for an alarm. The virtual output label would then be reported in the alarm reporting function.

SECTION $8 \cdot A P P L I C A T I O N ~$

TABLE OF CONTENTS

SECTION $8 \cdot A P P L I C A T I O N$ 8-1
GENERAL 8-1
EXPLANATION OF TERMS 8-1
Function Block 8-1
Torque Control 8-1
Virtual Switches 8-1
Radial System 8-1
OVERVIEW OF PREPROGRAMMED LOGIC SCHEMES 8-2
Factory Default Logic Settings 8-2
Feeder_1 Logic Scheme 8-2
Feeder_2 Logic Scheme 8-2
Feeder_3 Logic Scheme 8-2
Feeder_4 Logic Scheme 8-2
BUS Logic Scheme 8-2
BACKUP Logic Scheme 8-2
DETAILS OF PREPROGRAMMED LOGIC SCHEMES 8-3
FACTORY DEFAULT LOGIC SETTINGS 8-3
Operation - Protection 8-3
Operation - Setting Group Selection 8-3
Operation - Alarms 8-3
Factory Default Logic Settings and Equations for Sensing Input Type H Relays 8-8
Factory Default Logic Settings and Equations for Sensing Input Type G Relays 8-8
FEEDER_1 LOGIC SCHEME 8-9
Normal Operation - Protection 8-9
Normal Operation - Setting Group Selection 8-9
Normal Operation - Bus Protection 8-9
Normal Operation - Alarms 8-10
Contingency Operation - Test Mode 8-10
Contingency Operation - Backup Protection for Feeder Breaker Failure 8-10
Contingency Operation - Backup Protection for Feeder Relay Out-of-Service 8-10
Feeder_1 Logic Settings and Equations for Sensing Input Type H Relays 8-16
Feeder_1 Logic Settings and Equations for Sensing Input Type G Relays 8-16
FEEDER_2 LOGIC SCHEME 8-17
Normal Operation - Control 8-17
Normal Operation - Protection 8-17
Normal Operation - Reclosing 8-17
Normal Operation - Setting Group Selection 8-18
Normal Operation - Bus Protection 8-18
Normal Operation - Alarms 8-18
Contingency Operation - Test Mode 8-18
Contingency Operation - Backup Protection for Feeder Breaker Failure 8-18
Contingency Operation - Backup Protection for Feeder Relay Out-of-Service 8-19
Feeder_2 Logic Settings and Equations for Sensing Input Type H Relays 8-25
Feeder_2 Logic Settings and Equations for Sensing Input Type G Relays 8-25
FEEDER_3 LOGIC SCHEME 8-26
Normal Operation - Control 8-26
Normal Operation - Protection 8-26
Normal Operation - Reclosing 8-26
Normal Operation - Setting Group Selection 8-27
Normal Operation - Bus Protection 8-27
Normal Operation - Alarms 8-27
Contingency Operation - Test Mode 8-27
Contingency Operation - Backup Protection for Feeder Breaker Failure 8-28
Contingency Operation - Backup Protection for Feeder Relay Out-of-Service 8-28
Feeder_3 Logic Settings and Equations for Sensing Input Type H Relays 8-34
Feeder_3 Logic Settings and Equations for Sensing Input Type G Relays 8-34
FEEDER_4 LOGIC SCHEME 8-35
Normal Operation - Control 8-35
Normal Operation - Protection 8-35
Normal Operation - Reclosing 8-35
Normal Operation - Setting Group Selection 8-36
Normal Operation - Bus Protection 8-36
Normal Operation - Alarms 8-36
Contingency Operation - Test Mode 8-36
Contingency Operation - Backup Protection for Feeder Breaker Failure 8-37
Contingency Operation - Backup Protection for Feeder Relay Out-of-Service 8-37
Feeder_4 Logic Settings and Equations for Sensing Input Type H Relays 8-43
Feeder_4 Logic Settings and Equations for Sensing Input Type G Relays 8-43
BUS AND BACKUP LOGIC SCHEMES 8-44
Normal Operation - Control 8-44
Normal Operation - Bus Protection 8-44
Normal Operation - Setting Group Selection 8-45
Normal Operation - Alarms 8-45
Contingency Operation - Test Mode 8-45
Contingency Operation - Backup Protection for Bus Breaker Failure 8-45
Contingency Operation - Backup Protection for BUS Relay Out-of-Service 8-46
Contingency Operation - Backup Protection for BACKUP Relay Out-of-Service 8-46
Contingency Operation - Backup Protection for Feeder Relay Out-of-Service 8-46
BUS Logic Settings and Equations for Sensing Input Type H Relays 8-52
BUS Logic Settings and Equations for Sensing Input Type G Relays 8-52
BACKUP Logic Settings and Equations for Sensing Input Type H Relays 8-59
BACKUP Logic Settings and Equations for Sensing Input Type G Relays 8-59
MISCELLANEOUS LOGIC SETTINGS 8-61
APPLICATION TIPS 8-61
Trip Circuit Continuity and Voltage Monitor (Figure 8-16) 8-61
Close Circuit Monitor (Figure 8-17) 8-62
High Speed Reclose (Figure 8-18) 8-62
Block Load Tap Changer 8-63
Block Neutral and Negative Sequence Protection 8-63
Setting Group Selection 8-64
Output Contact Seal-In 8-64
Oscillographic Recording of Breaker Closures and Openings 8-65
Figures
Figure 8-1. Typical One-line Diagram for Factory Default Logic Settings 8-6
Figure 8-2. Factory Default Logic Settings Diagram 8-7
Figure 8-3. Typical One-line Diagram for Feeder_1 Logic 8-14
Figure 8-4. Feeder_1 Logic Diagram 8-15
Figure 8-5. Typical One-line Diagram for Feeder_2 Logic 8-23
Figure 8-6. Feeder_2 Logic Diagram 8-24
Figure 8-7. Typical One-line Diagram for Feeder_3 Logic 8-32
Figure 8-8. Feeder_3 Logic Diagram 8-33
Figure 8-9. Typical One-line Diagram for Feeder_4 Logic 8-41
Figure 8-10. Feeder_4 Logic Diagram 8-42
Figure 8-11. Typical One-line Diagram for BUS Logic 8-50
Figure 8-12. Bus Logic Diagram 8-51
Figure 8-13. Typical One-line Diagram for Backup Logic 8-57
Figure 8-14. Backup Logic Diagram 8-58
Figure 8-15. Interconnection Diagram for Integrated Protection System 8-60
Figure 8-16. Trip Circuit Continuity and Voltage Monitor 8-62
Figure 8-17. Close Circuit Monitor Logic 8-62
Figure 8-18. High Speed Reclose Interlock Logic 8-63
Figure 8-19. Output Seal-In Logic Diagram 8-65
Tables
Table 8-1. Factory Default Contact Sensing Input Logic 8-3
Table 8-2. Factory Default Function Block Logic 8-4
Table 8-3. Factory Default Virtual Switch Logic 8-4
Table 8-4. Factory Default Virtual Output Logic 8-5
Table 8-5. Feeder_1 contact Sensing Input Logic 8-11
Table 8-6. Feeder_1 Function Block Logic 8-11
Table 8-7. Feeder_1 Virtual Switch Logic 8-12
Table 8-8. Feeder_1 Virtual Output Logic 8-12
Table 8-9. Feeder_2 Contact Sensing Input Logic 8-19
Table 8-10. Feeder_2 Function Block Logic 8-19
Table 8-11. Feeder_2 Virtual Switch Logic 8-20
Table 8-12. Feeder_2 Virtual Output Logic 8-21
Table 8-13. Feeder_3 contact Sensing Input Logic 8-28
Table 8-14. Feeder_3 Function Block Logic 8-28
Table 8-15. Feeder_3 Virtual Switch Logic 8-29
Table 8-16. Feeder_3 Virtual Output Logic 8-30
Table 8-17. Feeder_4 contact Sensing Input Logic 8-37
Table 8-18. Feeder_4 Function Block Logic 8-38
Table 8-19. Feeder_4 Virtual Switch Logic 8-39
Table 8-20. Feeder_4 Virtual Output Logic 8-39
Table 8-21. BUS contact Sensing Input Logic 8-47
Table 8-22. BUS Function Block Logic 8-47
Table 8-23. BUS Virtual Switch Logic 8-48
Table 8-24. BUS Virtual Output Logic 8-48
Table 8-25. BACKUP Contact Sensing Input Logic 8-53
Table 8-26. BACKUP Virtual Switches Logic 8-53
Table 8-27. BACKUP Function Block Logic 8-54
Table 8-28. BACKUP Virtual Outputs 8-55
Table 8-29. Miscellaneous Logic Expressions 8-61

SECTION $8 \cdot A P P L I C A T I O N ~$

GENERAL

This section discusses application of the BE1-851 Overcurrent Protection System using the pre-programmed logic schemes. The Details Of Preprogrammed Logic Schemes subsection describes the characteristics of each logic scheme and how they combine to create an overcurrent protection system for a radial system substation. A detailed description of each preprogrammed scheme is also provided. This section concludes with application tips for programming a custom logic scheme to meet the requirements of your application.

The preprogrammed logic schemes are designed to accommodate most common distribution or sub-transmission radial system overcurrent coordination schemes. The protection engineer can choose a logic scheme that most closely meets his application practices and adapt it by changing the function block operation and settings. This eliminates the need to create a custom logic scheme.

It should be noted that each preprogrammed logic scheme also illustrates typical ways of using or controlling various functions. The user may choose to create a custom logic scheme by mixing the logic from several of the preprogrammed schemes. The logic can also be modified to incorporate some of the features described in the application tips provided at the end of this section. The flexibility of BESTlogic allows the protection engineer to create a custom scheme that exactly meets the requirements of the application.
Appendix C, Relay Settings Record provides settings sheets for recording the settings used in your protection system.

NOTE

All preprogramed schemes are shown for sensing input type H relays. Relays with sensing input type G do not have negative sequence elements.

EXPLANATION OF TERMS

The following terms and definitions will facilitate the understanding of the application discussions to follow.

Function Block

A stand alone protection or control function that is equivalent to its discrete component counterpart.

Torque Control

Torque control refers to blocking the start of an overcurrent function block. The pickup and trip outputs are held to zero and the timing function is not allowed to operate. This is in contrast to merely blocking the trip output. This applies to all overcurrent function blocks including those that do not emulate induction disk type (51) relays.

Virtual Switches

These logic switches emulate traditional switches used on relay and control panels such as the breaker control switch (101) and selector switches (43). Virtual switches may be operated via communication commands or the human-machine interface (HMI). Operation of these switches can be disabled or password protected if the user chooses not to use them without changing the preprogrammed BESTlogic schemes.

Radial System

As used in this section, a radial system is one where the loads are fed from only one source at a time.

OVERVIEW OF PREPROGRAMMED LOGIC SCHEMES

There are six preprogrammed logic schemes available. Four logic schemes are intended for use on feeder breakers. Two schemes are intended for use on the bus main breaker. This is typically the low-side bank breaker of the step-down power transformer.

Factory Default Logic Settings

BE1-851 relays are shipped from the factory with default logic settings that are designed to allow the relay to be used directly in applications that do not require any of the relays advanced features. These default settings provide a basic overcurrent protection scheme. The default setting for the logic scheme name is "USER." This scheme can be modified as outlined in Section 7, Logic Schemes. However, if you choose to change these settings, the defaults can only be brought back through BESTCOMS, manual programing or by reloading all of the factory defaults.

Feeder_1 Logic Scheme

This logic scheme provides time and instantaneous overcurrent protection. Breaker failure protection is also included. Functions such as manual control and automatic reclosing are not included. Logic is provided to maintain feeder protection when the relay is out of service. A bus relay using the preprogrammed logic scheme BACKUP will be signaled to continue protection.

Feeder_2 Logic Scheme

This logic scheme provides time and both high set and low set instantaneous overcurrent protection. Automatic reclosing is included with reclosing initiated by a protective trip (reclose initiate scheme). Breaker Failure and manual control functions are also included. Logic is included to signal a bus relay using the preprogrammed logic scheme BACKUP to provide feeder protection when the relay is out of service.

Feeder_3 Logic Scheme

This logic scheme provides time and both high set and low set instantaneous overcurrent protection. Automatic reclosing is included. Reclosing is initiated when the breaker opens. Reclosing is disabled after a manual trip by a control switch slip contact. The recloser is disabled by driving the recloser to lockout. Breaker Failure and manual control functions are also provided. Logic is included to signal a bus relay using preprogrammed logic scheme BACKUP to provide feeder protection when the relay is out of service.

Feeder_4 Logic Scheme

This logic scheme provides time and instantaneous overcurrent protection. Automatic reclosing is included. Reclosing is initiated when the breaker opens. The recloser is disabled by interrupting the reclose initiate input. Reclosing is disabled after a manual trip by a control switch slip contact. Breaker Failure and manual control functions are also included. Backup for an out of service relay is to be provided by redundant relays on the feeder breaker. Logic is included to interconnect with the redundant relays for an external breaker failure initiate and blocking of the external instantaneous.

BUS Logic Scheme

This logic scheme is applied to a bus main relay to provide primary bus overcurrent protection. It contains logic to interconnect with the feeder logic schemes to provide high speed overcurrent protection for the bus under normal conditions. It also contains logic to trip the feeder breakers while the feeder relays using Feeder_1, Feeder_2 or Feeder_3 logic schemes are out of service.

BACKUP Logic Scheme

This logic scheme is applied to a bus main relay to provide backup bus overcurrent protection as well as breaker failure protection for the bus breaker under normal conditions. It also provides primary bus overcurrent protection when the relay using BUS logic is providing feeder protection or when the primary bus relay is out of service.

DETAILS OF PREPROGRAMMED LOGIC SCHEMES

The following sub-sections describe each of the six preprogrammed logic schemes in detail. For each scheme, the operation of the protection and control logic under normal conditions is described. The features of each logic scheme are broken down into functional groupings and described in detail. This is followed by a discussion of how various contingencies are covered by each logic scheme.

FACTORY DEFAULT LOGIC SETTINGS

Logic scheme USER is intended for applications requiring three-phase and neutral nondirectional overcurrent protection. While not as elaborate as the other preprogrammed schemes, this logic scheme provides an excellent base on which to create a custom scheme for a specific application.

The components of USER logic are summarized in Tables $8-1,8-2,8-3$ and $8-4$. Figure $8-1$ is a one-line diagram of USER logic and Figure $8-2$ is a diagram representing the logic settings and equations of USER logic.

Operation - Protection

The phase, neutral and negative sequence elements are activated to provide timed (51) and instantaneous (50) overcurrent protection in this scheme. A function block is disabled by setting the pickup set-point at zero in each of the four setting groups. Virtual output VO11 is assigned for all protective trips. When VO11 becomes TRUE, OUT1 will operate and trip the breaker. Contact outputs OUT2, OUT3, OUT4 and OUT5 are designated to specific function blocks. OUT2 operates for instantaneous phase overcurrent conditions, OUT3 trips for timed phase overcurrent situations, OUT4 operates for instantaneous neutral and negative sequence overcurrent conditions, and OUT5 operates for timed neutral and negative sequence overcurrent conditions.

All contact sensing inputs are unassigned but IN1 is typically assigned to monitor breaker status (52b). Inputs IN2, IN3 and IN4 are available for user specified functions.

Voltage protection, frequency protection, automatic reclosing, breaker failure, breaker control and virtual switches are not included in this logic scheme.

Operation - Setting Group Selection

A setting group can be selected automatically or by using the communication ports or the front panel HMI . Automatic setting group changes are based on current level and duration. Automatic setting group changes for cold load pickup and/or dynamic setting adjustments are enabled by the SP-GROUP\# command. Setting group changes initiated by contact sensing inputs are not accommodated in this scheme, but IN2, IN3 or IN4 can be programmed to provide this function.

Operation - Alarms

If the continuous self-test diagnostics of the relay detect an error, failsafe output contact OUTA will close and the Relay Trouble LED of the HMI will light. OUTA will also close if relay operating power is lost. More information about alarms is provided in Section 6, Reporting and Alarm Functions.

Table 8-1. Factory Default Contact Sensing Input Logic settings

				State Labels	
Input	Purpose				
			CLOSED (1)	OPEN (0)	
IN1	Not used	INPUT_1	Open	Closed	
IN2	Not used	INPUT_2	Closed	Open	
IN3	Not used	INPUT_3	Closed	Open	
IN4	Not used	INPUT_4	Closed	Open	

Table 8-2. Factory Default Function Blocks Logic Settings

Function	Purpose	BESTIogic Expression	Mode Setting
50TP	Used for instantaneous phase overcurrent protection	0	1 (enabled)
50TN	Used for instantaneous neutral overcurrent protection.	0	1 (enabled)
50TQ	Used for instantaneous negative sequence overcurrent protection.	0	1 (enabled)
150TP	None	0	0 (disabled)
150TN	None	0	0 (disabled)
150TQ	None	0	0 (disabled)
51P	Used for timed phase-overcurrent protection.	0	1 (enabled)
51N	Used for timed neutral-overcurrent protection.	0	1 (enabled)
$51 Q$	Used for timed negative sequence overcurrent protection.	0	1 (enabled)
62	None	0	0 (disabled)
162	None	0	0 (disabled)
79	None	0	0 (disabled)
BF	None	0	0 (disabled)
GROUP	Input 0 Logic: No manual selection logic is used.	0	1 (discrete input selection)
	Input 1 Logic: No manual selection logic is used.	0	
	Input 2 Logic: No manual selection logic is used.	0	
	Input 3 Logic: No manual selection logic is used.	0	
	Auto/Manual Logic: Set to 1 (/0) to enable automatic selection. No manual selection is used.	/0	

Table 8-3. Factory Default Virtual Switch Logic Settings

	Purpose			State Labels	
Switch		Mode	Variable Label	TRUE (1)	FALSE (0)
43	Not used	1 (disabled)	SWITCH_43	Closed	Open
143	Not used	1 (disabled)	SWITCH_143	Closed	Open
243	Not used	1 (disabled)	SWITCH_243	Closed	Open
343	Not used	1 (disabled)	SWITCH_343	Closed	Open
101	Not used	1 (disabled)	n/a	n/a	n/a

Table 8-4. Factory Default Virtual Output Logic Settings

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
VOA (OUTA)	Alarm Output Contact.	Alarm contact closes automatically when relay trouble alarm occurs.	Alarm	Active	Normal
BESTlogic Expression: VOA $=0$					
$\begin{aligned} & \text { VO1 } \\ & \text { (OUT1) } \end{aligned}$	Breaker Trip Contact.	Contact closes when protective trip expression is TRUE.	BKR_TRIP	Trip	Normal
BESTlogic Expression: VO1 = VO11					
$\begin{aligned} & \text { VO2 } \\ & \text { (OUT2) } \end{aligned}$	Instantaneous Phase OC Auxiliary Contact.	Contact closes when instantaneous phase-overcurrent trip occurs.	50TP_TRIP	Trip	Normal
BESTlogic Expression: VO2 = 50TPT					
$\begin{gathered} \text { VO3 } \\ \text { (OUT3) } \end{gathered}$	Timed Phase OC Auxiliary Contact.	Contact closes when timed phaseovercurrent trip occurs.	51P_TRIP	Trip	Normal
BESTlogic Expression: VO3 $=51 \mathrm{PT}$					
$\begin{aligned} & \text { VO4 } \\ & \text { (OUT4) } \end{aligned}$	Instantaneous Neutral and Negative Sequence OC.	Contact closes when instantaneous neutral or instantaneous negativesequence overcurrent condition occurs.	INST_N\&Q	Trip	Normal
BESTlogic Expression: VO4 $=50 \mathrm{TNT}+50 \mathrm{TQT}$					
$\begin{aligned} & \text { VO5 } \\ & \text { (OUT5) } \end{aligned}$	Timed Neutral and Negative Sequence OC.	Contact closes when timed neutral or timed negative sequence overcurrent condition exists.	51 N \& QTRP	Trip	Normal
BESTlogic Expression: VO5 = 51NT+51QT					
VO6	None		VO6	True	False
BESTlogic Expression: $\mathrm{VO6}=0$					
VO7	None		VO7	True	False
BESTlogic Expression: VO7 = 0					
VO8	None		VO8	True	False
BESTlogic Expression: VO8 = 0					
VO9	None	A	VO9	True	False
BESTlogic Expression: VO9 = 0					
VO10	None		VO10	True	False
BESTlogic Expression: VO10 $=0$					
VO11	Protective Trip Expression.	TRUE when any 50 or 51 element times out.	PROT_TRIP	Trip	Normal
BESTlogic Expression: VO11 = 50TPT+50TNT+50TQT+51PT+51NT+51QT					
VO12	Protection Picked Up Expression.	TRUE when any 50 or 51 element picks up.	PROT_PU	PU	Normal
BESTlogic Expression: VO12 = 50TPPU+50TNPU+50TQPU+51PPU +51NPU+51QPU					
VO13	Alarm Mask 21.		VO13	True	False
BESTlogic Expression: VO13 = 0					
VO14	Alarm Mask 22.		VO14	True	False

				State Labels	
Output	Purpose	Output Description			FALSE (0)
BESTlogic Expression: VO14 $=0$		VO15	True	False	
VO15	Alarm Mask 23.				
BESTlogic Expression: VO15 $=0$					

Figure 8-1. Typical One-line Diagram for Factory Default Logic Settings

VOA - ALARM

OU-OUTx	OUTPUT

$\begin{gathered} \text { OופOר } \\ \text { indıno } \end{gathered}$	$\mathrm{x} \perp$ กO-OO

50
2
50
0

50
2
5
0
0

\section*{| 5 | |
| :--- | :--- |
| 20 | |
| 5 | |
| 0 | |
| 0 | 0 |} 50

号
50
0

D2862-8 10-10-99

| |
| :--- | :--- |
| |

な̛

CO-343
Note: For clarity, multiple variables going to the same OR
Gate are shown by a single line into the OR Gate.
VO12 PROT PU

Figure 8-2. Factory Default Logic Settings Diagram

Factory Default Logic Settings and Equations for Sensing Input Type H Relays
SL-N=USER
SL-50TP=1,0; $\quad S L-50 T N=1,0 ; \quad S L-50 T Q=1,0$
SL-150TP=1,0; $\quad S L-150 T N=1,0 ; \quad S L-150 T Q=1,0$
SL-51P=1,0
SL-51N=1,0
SL-51Q=1,0
SL-62=0,0,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=0,0,0
SL-GROUP=1,0,0,0,0,/0
SL-43=1
SL-143=1
SL-243=1
SL-343=1
SL-101=1
SL-VOA=1
SL-VO1=VO11
SL-VO2=50TPT
SL-VO3=51PT
SL-VO4=50TNT+50TQT
SL-VO5=51NT+51QT
SL-VO6=0
SL-VO7=0
SL-VO8=0
SL-VO9=0
SL-VO10=0
SL-VO11 =50TPT+50TNT+50TQT+51PT+51NT+51QT
SL-VO12=50TPPU+50TNPU+50TQPU+51PPU+51NPU+51QPU
SL-VO13=0
SL-VO14=0
SL-VO15=0
Factory Default Logic Settings and Equations for Sensing Input Type G Relays
SL-N=USER
SL-50TP=1,0; \quad SL-50TN=1,0; $\quad S L-50 T Q=1,0$
SL-150TP=1,0; $\quad S L-150 T N=1,0 \quad S L-150 T Q=1,0$
SL-51P=1,0
SL-51N=1,0
SL-62=0,0,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=0,0,0
SL-GROUP=1,0,0,0,0,/0
SL-43=1
SL-143=1
SL-243=1
SL-343=1
SL-101=1
SL-VOA=1
SL-VO1=VO11

SL-VO2=50TPT
SL-VO3=51PT
SL-VO4=50TNT
SL-VO5=51NT
SL-VO6=0
SL-VO7=0
SL-VO8=0
SL-VO9=0
SL-VO10=0
SL-VO11=50TPT+50TNT+51PT+51NT
SL-VO12=50TPPU+50TNPU+50TQPU+51PPU+51NPU
SL-VO13=0
SL-VO14=0
SL-VO15=0

FEEDER_1 LOGIC SCHEME

Logic scheme Feeder_1 is meant for use on a feeder breaker and provides overcurrent and breaker failure protection for a typical feeder in a non-directional overcurrent protection application. This logic scheme is intended to be used in conjunction with other programmable relays using the BUS and BACKUP logic schemes to provide protection when the relay is out of service. Automatic reclosing and other control functions such as virtual switches are not provided. When used with other programmable relays using logic scheme BUS and BACKUP, this scheme can provide complete high speed overcurrent protection for the transformers, bus and feeders in a radial system substation.

The components of Feeder_1 logic are summarized in Tables 8-5, 8-6, 8-7 and 8-8. Figure 8-3 is a one-line diagram of Feeder_1 logic and Figure 8-4 is a diagram representing the logic settings and equations of Feeder_1 logic.

Normal Operation - Protection

The 51 function blocks and the breaker failure function block re-trip output are enabled in the logic for tripping via OUT1. The 50T function blocks are enabled in the logic for tripping through OUT2. Each overcurrent function block can be disabled by setting its pickup setting at 0 in each of the four setting groups. The 50T ground (N), negative sequence (Q) and the 51 N and Q overcurrent function blocks are torque controlled by IN3. All N \& Q function blocks or only the $51 \mathrm{~N} \& Q$ function blocks can be disabled by modifying the inputs to these function blocks.

Normal Operation - Setting Group Selection

Setting group selection can be done automatically or by communications command/HMI override. Automatic setting group changes for cold load pickup and/or dynamic setting adjustment are enabled by the SP-GROUP\# commands. Setting group changes initiated by a contact sensing input is not accommodated in this scheme. IN2, IN3 or IN4 can be reprogrammed to provide this function if desired. The automatic change logic can be disabled by IN2.

Normal Operation - Bus Protection

When any of the 50T or 51 overcurrent function blocks are picked up, OUT4 closes. The signal from OUT4 is wired to IN2 of the upstream relay using BUS logic. The upstream relay blocks the 50T elements that are set to trip the bus breaker or bus lockout relay. If the fault is not on a feeder, the 50T elements of the bus relay are not blocked. The bus relay 50T elements are set with a time delay of 2 to 4 cycles to provide a minimal coordination interval for feeder relay OUT4 to close. Should there be a problem with the blocking logic, the bus relay 51 functions are not blocked to allow bus fault clearing with a traditional coordination interval.

When used to provide high speed overcurrent protection for the substation bus, it is recommended that all 51 function timing curves be set for instantaneous reset.

Normal Operation - Alarms

Two alarm logic variables drive the front panel alarm LEDs: Major alarm (ALMMAJ) and Minor alarm (ALMMIN). ALMMAJ is set to drive the fail safe output OUTA. ALMMIN is not set to drive an output relay. The logic can be modified to place ALMMIN in the BESTlogic expression for VOA if all alarms are to be combined. ALMMIN can be placed in the BESTlogic expression for another output if it is desired that these conditions be enunciated separately.

Contingency Operation - Test Mode

The test mode is intended to increase the security of the feeder protection system if external test switches are not installed on all outputs. When the relay is out of service for testing, the breaker failure and block upstream instantaneous functions are disabled. Backup by the upstream relay is enabled and the instantaneous function block trips are redirected to OUT1.

De-energizing IN4 will put the logic scheme in the test mode. IN4 can be controlled by a panel mounted selector switch that is closed in the normal state and open in the test state. IN4 can also be controlled by a pole of a standard external test switch that is opened with the rest of the test switch poles.

The logic expression for test mode drives Virtual Output 15 (VO15). This virtual output is alarm bit \#23 in the programmable alarm mask. It can be masked to drive an alarm LED to provide indication when the relay is in test mode.

Contingency Operation - Backup Protection for Feeder Breaker Failure

OUT5 is programmed as the breaker failure trip output. OUT5 can be wired to trip the bus breaker or a lockout relay. The breaker failure pickup (BFPU) output trips the feeder breaker directly via Output 1 to provide a breaker retrip signal for added security.

Initiation of the BF function block by external relays is not accommodated in this scheme. IN2, IN3 or IN4 can be programmed to provide this function or Feeder_4 logic may be used. The breaker failure function block is initiated by a protective trip. This function block has an independent fast drop out phase and ground current detector that detects a breaker opening and stops timing. An open breaker is detected when the current drops below 10% of nominal.

The BF function block can be disabled by setting the time delay at zero. This permits the traditional radial systems backup scheme of coordinated relays tripping different breakers.

Feeder_1 logic stops the block signal to allow the bus relay to trip the bus breaker through its 50T elements if a direct trip is not desired. This provides clearing of the fault on the circuit with the failed breaker in feeder relay breaker failure time (or bus relay 50T time whichever is greater) instead of the bus relay 51 time but is limited by the sensitivity constraints of the bus relay.

Contingency Operation - Backup Protection for Feeder Relay Out-of-Service

When the relay is out of service or has failed, OUT3 opens to signal the upstream relays providing backup protection. OUT3 operates in a fail safe mode where the outputs are closed during normal operation and open during a relay failure. This provides backup mode signaling when the feeder relay is extracted from the case.

Backup for relay failure can be implemented using the BUS and BACKUP preprogrammed logic schemes. These logic schemes are described later in this section.

Table 8-5. Feeder_1 Contact Sensing Input Logic

			State Labels \dagger	
Input	Purpose	Variable Label *	Closed (1)	Open (0)
IN1	52b Breaker Status	BREAKER	Open	Closed
IN2	Automatic setting group change logic auto/manual switch	SETGRPAUTO	Enabled	Disabled
IN3	Enable neutral and negative sequence, 50 and 51 protection when IN3 is energized.	N\&Q_ENABLE	Enabled	Disabled
IN4	Put the relay in test mode so that breaker failure is disabled and all trips go through OUT1 when IN4 is de-energized.	TESTDISABL	Normal	Test Mode

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-6. Feeder_1 Function Block Logic

Function	Purpose	BESTIogic Expression	Mode Settings
50TP	None	0	1 (enabled)
50TN	Block When disabled by switch connected to IN3.	/IN3	1 (enabled)
50TQ	Block when disabled by switch connected to IN3	/IN3	
150TP	None	0	0 (disabled)
150TN	None	0	0 (disabled)
150TQ	None	0	0 (disabled)
51P	None	0	1 (enabled)
51 N	Block when disabled by switch connected to IN3.	/IN3	1 (enabled)
51Q	Block when disabled by switch connected to IN3.	/IN3	1 (enabled)
62	None	0	0 (disabled)
162	None	0	0 (disabled)
79	None	0	0 (disabled)
BF	Initiate breaker failure when breaker failure initiate expression is TRUE	V010	1 (enabled)
	Block breaker failure protection when relay is in test mode.	/IN4	

Function	Purpose	BESTIogic Expression	Mode Settings
Group	No manual selection logic is used.	0	
	No manual selection logic is used.	1	
	No manual selection logic is used.		
	No manual selection logic is used.		
	Disable automatic selection when switch connected to IN2 is in the manual position.		

Table 8-7. Feeder_1 Virtual Switches Logic

			State Labels \dagger	
			Variable Label *	CLOSED (1)
Function	OPEN (0)			
43	Not used	SWITCH_43	Closed	Open
143	Not used	SWITCH_143	Closed	Open
243	Not used	SWITCH_243	Closed	Open
343	Not used	SWITCH_343	Closed	Open

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-8. Feeder_1 Virtual Outputs

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
VOA (OUTA)	Alarm Output Contact.	Close alarm contact when relay failure or major programmable alarm is TRUE.	ALARM	Active	Normal
BESTlogic Expression: VOA = ALMMAJ					
VO1 (OUT1)	50 Trip output.	Close OUT1 when time overcurrent trip is TRUE or when breaker failure is initiated or when any protective trip occurs while in test mode..	51_TRIP	Trip	Normal
BESTlogic Expression: VO1 = VO8*IN4+BFPU+VO11*/IN4					
$\begin{gathered} \text { VO2 } \\ \text { (OUT2) } \end{gathered}$	50 Trip Output.	Trip breaker when instantaneous overcurrent trip is TRUE and not in test mode.	50_TRIP	Trip	Normal
BESTlogic Expression: VO2 = VO9*IN4					
VO3 (OUT3)	Enable backup of relay by upstream relay.	Hold output closed if relay is not out of service because it is in test mode and it is not out of service due to relay failure	IN_SERVICE	Normal	Backup
BESTlogic Expression: VO3 = IN4					

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
VO4 (OUT4)	Block upstream instantaneous elements when relay is picked up for high speed bus over current protection logic.	Block upstream instantaneous elements when the protective pickup expression is TRUE and the relay is not in test mode and the breaker has not failed.	BLK_USTRM	Blocked	Normal
BESTlogic Expression: VO4 = VO12*/VO5*IN4					
VO5 (OUT5)	Breaker failure trip contact	Trip backup if breaker failure protection times out.	BKR_FAIL	TRIP	Normal
BESTlogic Expression: BFT					
VO6	None		VO6	True	False
BESTlogic Expression: VO6 = 0					
VO7	None		VO7	True	False
BESTlogic Expression: VO7 $=0$					
VO8	Time overcurrent trip.	TRUE if any of the time overcurrent elements trip.	51_TRIP	Trip	False
BESTlogic Expression: VO8 = 51PT+51NT+51QT					
VO9	Instantaneous over current tip.	TRUE if any of the instantaneous overcurrent elements trip.	50_TRIP	Trip	False
BESTlogic Expression: VO9 = 50TPT+50TNT+50TQT					
VO10	Breaker failure initiate expression	Initiate breaker failure timing when protective trip expression is TRUE.	BFI	INI	Normal
BESTlogic Expression: VO10 = VO11					
VO11	Protective Trip Expression.	TRUE when any 50 or 51 element times out.	PROT_TRIP	Trip	Normal
BESTlogic Expression: VO11 = 50TPT+50TNT+50TQT+51PT+51NT+51QT					
VO12	Protection Picked Up Expression.	TRUE when any 50 or 51 element picks up.	PROT_PU	PU	Normal
BESTlogic Expression: VO12 = 50TPPU+50TNPU+50TQPU+51PPU +51NPU+51QPU					
VO13	Alarm Mask 21.		VO13	True	False
BESTlogic Expression: VO13 = 0					
VO14	Alarm Mask 22.		VO14	True	False
BESTlogic Expression: VO14 = 0					
VO15	Alarm bit \#23 indication that the relay is in test mode and that breaker failure is disabled and all trips are rerouted to OUT1.	TRUE if IN4 is de-energized.	TEST_MODE	Test	Normal
BESTlogic Expression: VO15 = /IN4					

When IN4 is de-energized indicating test mode, the 50 T element is diverted to out 1 for testing purposes.

Figure 8-3. Typical One-line Diagram for Feeder_1 Logic

Figure 8-4. Feeder_1 Logic Diagram

Feeder_1 Logic Settings and Equations for Sensing Input Type H Relays

```
SL-N=FEEDER 1
SL-50TP=1,0; SL-50TN=1,/IN3; SL-50TQ=1,/IN3
SL-150TP=0,0; SL-150TN=0,0; SL-150TQ=0,0
SL-51P=1,0; SL-51N=1,/IN3; SL-51Q=1,/IN3
SL-62=0,0,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=1,VO10,/IN4
SL-GROUP=1,0,0,0,0,IN2
SL-43=0
SL-143=0
SL-243=0
SL-343=0
SL-101=0
SL-VO1=VO8*IN4+VO11*/IN4+BFPU
SL-VO2=VO9*IN4
SL-VO4=VO12*/VO5*IN4
SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=51PT+51NT+51QT
SL-VO9=50TPT+50TNT+50TQT
SL-VO10=VO11
SL-VO11=50TPT+50TNT+50TQT+51PT+51NT+51QT
SL-VO12=50TPPU+50TNPU+50TQPU+51PPU+51NPU+51QPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4
```

Feeder_1 Logic Settings and Equations for Sensing Input Type G Relays
SL-N=FEEDER_1
SL-50TP=1,0; SL-50TN=1,/IN3
SL-150TP=0,0; SL-150TN=0,0
SL-51P=1,0; SL-51N=1,/IN3
SL-62=0,0,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=1,VO10,/IN4
SL-GROUP=1,0,0,0,0,IN2
SL-43=0
SL-143=0
SL-243=0
SL-343=0
SL-101=0
SL-VO1=VO8*IN4+VO11*/IN4+BFPU
SL-VO2=VO9*IN4
SL-VO4=VO12*/VO5*IN4
SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=51PT+51NT

SL-VO9=50TPT+50TNT
SL-VO10=VO11
SL-VO11=50TPT+50TNT+51PT+51NT
SL-VO12=50TPPU+50TNPU+51PPU+51NPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4

FEEDER 2 LOGIC SCHEME

Logic scheme Feeder_2 is meant for use on a feeder breaker and provides overcurrent, breaker failure protection, reclosing, and the control functions required for a typical feeder in a non-directional overcurrent protection application. This logic scheme is intended to be used in conjunction with other programmable relays using the BUS and BACKUP logic schemes to provide protection when the relay is out of service.

Automatic reclosing uses a reclose initiate scheme and is initiated by protective trip.
When used with other programmable relays using logic scheme BUS and BACKUP, this scheme can provide complete high speed overcurrent protection for the transformers, bus and feeders in a radial system substation. The components of Feeder_2 logic are summarized in Tables 8-9, 8-10, 8-11 and 8-12. Figure $8-5$ is a one-line diagram of Feeder_2 logic and Figure 8-6 represents the logic settings and equations of Feeder_2 logic.

Normal Operation - Control

The virtual breaker control switch is programmed to provide manual trip and close control of the breaker. The control functions of this logic scheme use both traditional contact sensing inputs and virtual switches. Virtual switches that are not needed may simply go unused. The protection engineer may choose to free up contact sensing inputs for other uses by using the virtual switches exclusively for the various control functions.

Normal Operation - Protection

All overcurrent function blocks and the breaker failure function block re-trip output are enabled in Feeder_2 logic for tripping via OUT1. The 150T function blocks are set up as high set instantaneous functions which drive the recloser to lockout when they trip. Each overcurrent function block can be individually disabled by setting the pickup at 0 in the four setting groups. The 50TN, 50TQ, 51N and 51 Q function blocks are torque controlled by either IN3 or virtual switch 243. All N and Q function blocks or only the 51 N and 51 Q function blocks may be inhibited. This is done in BESTlogic by modifying the inputs to the function blocks.

Normal Operation - Reclosing

The reclosing logic in Feeder_2 uses a reclose initiate (RI) scheme where each step in the reclosing sequence is initiated by a protective trip. The recloser function block can be disabled by setting the first reclose time at zero in the four setting groups.

Reclosing can be disabled by either IN2 or Virtual Switch 143 which is connected to the drive to lockout (DTL) input of the recloser function block. In this scheme, enabling the recloser after a "one shot" trip will cause the recloser to be in lockout. When the breaker is manually closed, the relay will time out to a reset condition.

Drive to lockout also occurs if any of the 150TP/N/Q functions (typically used for high set instantaneous protection) trip or a breaker failure occurs. It should be noted that the 150TP/N/Q functions drive both the RI and the DTL inputs to the recloser function block. The DTL input takes priority over the RI input.

Zone sequence coordination can be enabled by setting an appropriate logic expression for 79ZONE. Zone sequence uses a BESTlogic expression but is not within the logic settings. The Feeder_2 logic scheme uses the expression SP-79ZONE=VO12.

Feeder_2 logic provides for the recloser to torque control the 50TP/N/Q functions (typically used for low set instantaneous protection) during various steps in the reclosing sequence. Setting the recloser sequence controlled blocking output in the four setting groups is done using the S\#-79SCB commands.

Recloser timing is stopped by the wait input if an overcurrent protection function block is picked up and timing. This prevents the reset timer from resetting the reclose function for a situation where a 51 element is just above pickup and the time to trip is longer than the reset time.

Initiation of the recloser function block by external relays is not accommodated in this scheme. IN2, IN3 or IN4 can be reprogrammed to provide this function if desired.

A block load tap changer output is not provided in this scheme. OUT5 can be reprogrammed as a 79RNG (recloser running/block tap changer) output and wired to energize a normally closed auxiliary relay.

Normal Operation - Setting Group Selection

Setting group selection can be done automatically or externally by communications command/HMI override. Automatic setting group changes for cold load pickup and/or dynamic setting adjustment are enabled by SP-GROUP\# commands. Setting group changes initiated by contact sensing inputs are not accommodated in this scheme. IN2, IN3 or IN4 can be reprogrammed to provide this function if desired. The automatic change logic can be disabled by Virtual Switch 43.

Normal Operation - Bus Protection

When any of the overcurrent function blocks are picked up, OUT4 closes. The signal from OUT4 is wired to IN2 of the upstream relay using BUS logic. The upstream relay blocks the 50T elements that are set up to trip the bus breaker or bus lockout relay. If the fault is not on a feeder, the 50T elements of the bus relay are not blocked. The bus relay 50T elements are set with a time delay of 2 to 4 cycles to provide a minimal coordination interval for the feeder relay OUT4 to close. Should there be a problem with the blocking logic, the bus relay 51 functions are not blocked to allow bus fault clearing with a traditional coordination interval.

When used to provide high speed overcurrent protection for the substation bus, it is recommended that all 51 function timing curves be set for instantaneous reset.

Normal Operation - Alarms

Two alarm logic variables drive the front panel alarm LEDs: Major alarm (ALMMAJ) and Minor alarm (ALMMIN). ALMMAJ is set to drive the fail safe output OUTA. ALMMIN is not set to drive an output relay. The logic can be modified to place ALMMIN in the BESTlogic expression for VOA if all alarms are to be combined. ALMMIN can be placed in the BESTlogic expression for another output if it is desired that these conditions be enunciated separately.

Contingency Operation - Test Mode

The test mode is intended to increase the security of the feeder protection and control system if external test switches are not installed on all outputs. When the relay is out of service for testing, the breaker failure, automatic reclosing and block upstream instantaneous functions are disabled. Backup by the upstream relay is enabled.

De-energizing IN4 or closing Virtual Switch 343 will put the logic scheme in the test mode. IN4 can be controlled by a panel mounted selector switch that is closed in the normal state and open in the test state. IN4 can also be controlled by a pole of a standard external test switch that is opened with the rest of the test switch poles.

The logic expression for test mode drives virtual output 15 (VO15). This virtual output is alarm bit \#23 in the programmable alarm mask. It can be masked to drive an alarm LED to provide indication when the relay is in test mode.

Contingency Operation - Backup Protection for Feeder Breaker Failure

OUT5 is configured as the breaker failure trip output. OUT5 can be wired to trip the bus breaker or a lockout relay. The breaker failure pickup (BFPU) output trips the feeder breaker directly via output 1 to provide a breaker retrip signal for added security.

Initiation of the BF function block by external relays is not accommodated in this scheme. IN2, IN3 or IN4 can be programmed to provide this function or Feeder_4 logic may be used. The breaker failure function block is
initiated by a protective trip. This function block has an independent fast drop out phase and ground current detector that detects a breaker opening and stops timing. An open breaker is detected when the current drops below 10 percent of nominal.

The BF function block is disabled by setting the time delay at zero. This permits the traditional radial system backup scheme of coordinated relays tripping different breakers.

Feeder_2 logic stops the block signal to allow the bus relay to trip the bus breaker through its 50T elements if a direct trip is not desired. This provides clearing of the fault on the circuit with the failed breaker in feeder relay breaker failure time (or bus relay 50T time whichever is greater) instead of the bus relay 51 time but is limited by the sensitivity constraints of the bus relay.

Contingency Operation - Backup Protection for Feeder Relay Out-of-Service

When the relay is out of service or has failed, OUT3 opens to signal the upstream relays providing backup protection. OUT3 operates in a fail safe mode; the output is closed during normal operation and open during a relay failure. This provides backup mode signaling when the feeder relay is extracted from the case.

Backup for relay failure can be implemented using the BUS and BACKUP preprogrammed logic schemes. These logic schemes are described later in this section.

Table 8-9. Feeder_2 Contact Sensing Input Logic

			State Labels \dagger	
Input	Purpose	Variable Label *	CLOSED (1)	OPEN (0)
IN1	52b Breaker Status.	BREAKER	Open	Closed
IN2	Enable recloser when IN2 is energized.	RCL_ENABLE	Enabled	Disabled
IN3	Enable neutral and negative sequence, 50 and 51 protection when IN3 is energized.	N\&Q_ENABLE	Enabled	Disabled
IN4	Put the relay in test mode so that reclosing and breaker failure are disabled when IN4 is de-energized.	TESTDISABL	Normal	Test mode

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-10. Feeder_2 Function Block Logic

Function	Description	BESTIogic Expression	Settings
50TP	Block when recloser sequence controlled blocking output is TRUE.	79 SCB	1 (enabled)
50TN	Block when recloser sequence controlled blocking output is TRUE or when disabled by IN3 or Virtual Switch 243.	79 SCB+/IN3+243	1 (enabled)
50TQ	Block when recloser sequence controlled blocking output is TRUE or when disabled by /IN3 or Virtual Switch 243.	$79 S C B+/ I N 3+243$	1 (enabled)
150TP	None	0	1 (enabled)
150TN	None	0	1 (enabled)

Function	Description	BESTIogic Expression	Settings
150TQ	None	0	1 (enabled)
51P	None	0	1 (enabled)
51 N	Block when disabled by IN3 or Virtual Switch 243.	/IN3+243	1 (enabled)
62	None	0	0 (disable)
162	None	0	0 (disable)
79	Initiate when reclose initiate expression is TRUE.	VO8	
	Breaker closed when IN1 is de-energized.	/IN1	
	Stop recloser timing when timing for a fault trip. TRUE when protection picked up expression is TRUE.	VO12	1 (enabled)
	Drive recloser to lockout when recloser drive to lockout expression is TRUE or when relay is in test mode.	VO9+/IN4+343	
BF	Initiate breaker failure when breaker failure initiate expression is TRUE.	V010	1 (enabled)
	Block breaker failure protection when relay is in test mode.	/IN4+343	
Group	Disable automatic selection when Virtual Switch 43 is in the manual position.	$/ 43$	1 (enabled)

Table 8-11. Feeder_2 Virtual Switches Logic

			State Labels \dagger	
	Purpose		Variable Label *	Closed (1)

Table 8-12. Feeder_2 Virtual Outputs

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE
$\begin{aligned} & \text { VOA } \\ & \text { (OUTA) } \end{aligned}$	Alarm Output Contact.	Close alarm contact when relay failure or major programmable alarm is TRUE.	ALARM	Active	Normal
BESTlogic Expression: VOA = ALMMAJ					
$\begin{aligned} & \text { VO1 } \\ & \text { (OUT1) } \end{aligned}$	Breaker trip contact.	Trip breaker when protective trip expression is TRUE or when breaker failure is initiated or when virtual breaker control switch is operated to trip.	51_TRIP	Trip	Normal
BESTlogic Expression: VO1 = VO11+BFPU+101T					
$\begin{gathered} \text { VO2 } \\ \text { (OUT2) } \end{gathered}$	Breaker close contact	Close breaker when recloser close output is TRUE OR when virtual breaker control switch is operated to close.	50_TRIP	Trip	Normal
BESTlogic Expression: VO2 $=79 \mathrm{C}+101 \mathrm{C}$					
$\begin{gathered} \text { VO3 } \\ \text { (OUT3) } \end{gathered}$	Enable backup of relay by upstream relay.	Hold output closed if relay is not out of service because it is in test mode and it is not out of service due to relay failure.	IN_SERVICE	Normal	Backup
BESTlogic Expression: VO3 $=\mathrm{IN} 4 * / 343$					
$\begin{aligned} & \text { VO4 } \\ & \text { (OUT4) } \end{aligned}$	Block upstream instantaneous elements when relay is picked up for high speed bus over current protection logic.	Block upstream instantaneous elements when the protective pickup expression is TRUE and the relay is not in test mode and the breaker has not failed.	BLK_USTRM	Blocked	Normal
BESTlogic Expression: VO4 = VO12*/VO5*IN4*/343					
$\begin{aligned} & \text { VO5 } \\ & \text { (OUT5) } \end{aligned}$	Breaker failure trip contact	Trip backup if breaker failure protection times out.	BKR_FAIL	Trip	Normal
BESTlogic Expression: BFT					
VO6	None		VO6	True	False
BESTlogic Expression: VO6 = 0					
VO7	None		VO7	True	False
BESTlogic Expression: VO7 = 0					
VO8	Reclose initiate expression	TRUE for any protective trip.	RCL_INI	Initiate	Normal
BESTlogic Expression: VO8 = VO11					
VO9	Recloser drive to lockout expression.	Drive recloser to lockout to disable it when IN 2 is deenergized or Virtual Switch 143 is closed or when the breaker virtual control switch is in the after trip state or if the breaker fails or when the high set instantaneous element trips.	RCL_DTL	DTL	Normal
BESTlogic Expression: VO9 = /IN2+143+V05+150TPT+150TNT+150TQT					

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE
VO10	Breaker failure initiate expression	Initiate breaker failure timing when protective trip expression is TRUE.	BFI	INI	Normal
BESTlogic Expression: VO10 = VO11					
VO11	Protective Trip Expression.	TRUE when any 50,150 or 51 erelement times out.	PROT_TRIP	Trip	Normal
BESTlogic Expression: VO11 = 50TPT+50TNT+50TQT+150TPT+150TNT+150TQT+51PT+51NT+51QT					
VO12	Protection Picked Up Expression.	TRUE when any 50,150 , or 51 element picks up.	PROT_PU	PU	Normal
BESTlogic Expression: VO12 $=50 \mathrm{TPPU}+50 \mathrm{TNPU}+50 \mathrm{TQPU}+150 \mathrm{TPPU}+150 \mathrm{TNPU}+150 \mathrm{TQPU}+51 \mathrm{PPU}$+51NPU+51QPU					
VO13	Alarm Mask 21.		VO13	True	False
BESTlogic Expression: VO13 $=0$					
VO14	Alarm Mask 22.		VO14	True	False
BESTlogic Expression: VO14 = 0					
VO15	Alarm bit \#23 indication that the relay is in test mode and that breaker failure and reclosing are disabled.	TRUE if IN4 is de-energized or if Virtual Switch 343 is closed.	TEST_MODE	Test	Normal
BESTlogic Expression: VO15 = /IN4+343					

Figure 8-5. Typical One-line Diagram for Feeder_2 Logic

Figure 8-6. Feeder_2 Logic Diagram

Feeder_2 Logic Settings and Equations for Sensing Input Type H Relays
SL-N=FEEDER_2
SL-50TP=1,79SCB; SL-50TN=1,79SCB+/IN3+243; SL-50TQ=1,79SCB+/IN3+243
SL-150TP=1,0; SL-150TN=1,0; SL-150TQ=1,0
SL-51P=1,0; SL-51N=1,/IN3+243; SL-51Q=1,/IN3+243
SL-62=0,0,0
SL-162=0,0,0
SL-79=1,VO8,/IN1,VO12,VO9+/IN4+343
SL-BF=1,VO10,/IN4+343
SL-GROUP=1,0,0,0,0,/43
SL-43=2
SL-143=2
SL-243=2
SL-343=2
SL-101=1
SL-VO1=VO11+BFPU+101T
SL-VO2=79C+101C
SL-VO4=VO12*/VO5*IN4*/343
SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=VO11
SL-VO9=/IN2+143+VO5+150TPT+150TNT+150TQT
SL-VO10=VO11
SL-VO11=50TPT+150TPT+50TNT+150TNT+50TQT+150TQT+51PT+51NT+51QT
SL-VO12=50TPPU+150TPPU+50TNPU+150TNPU+50TQPU+150TQPU+51PPU+51NPU+51QPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4+343
Feeder_2 Logic Settings and Equations for Sensing Input Type G Relays
SL-N=FEEDER_2
SL-50TP=1,79SCB; SL-50TN=1,79SCB+/IN3+243; 79SCB+/IN3+243
SL-150TP=1,0; SL-150TN=1,0
SL-51P=1,0; SL-51N=1,/IN3+243
SL-62=0,0,0
SL-162=0,0,0
SL-79=1,VO8,/IN1,VO12,VO9+/IN4+343
SL-BF=1,VO10,/IN4+343
SL-GROUP=1,0,0,0,0,/43
SL-43=2
SL-143=2
SL-243=2
SL-343=2
SL-101=1
SL-VO1=VO11+BFPU+101T
SL-VO2=79C+101C
SL-VO4=VO12*/VO5*IN4*/343
SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=VO11

FEEDER_3 LOGIC SCHEME

Logic scheme Feeder_3 is meant for use on a feeder breaker and provides all overcurrent and breaker failure protection, reclosing and control functions required for a typical feeder in a non-directional over-current protection application. This logic scheme is intended for use in conjunction with other programmable relays using BUS and BACKUP schemes to provide protection when the relay is out of service.

Automatic reclosing is initiated by the breaker opening. Reclosing is disabled after a manual trip by a control switch slip contact. In this logic scheme, the disable logic is connected to the drive to lockout (DTL) input. The recloser will remain in lockout until the breaker closes and the reset timer times out.

When used with other programmable relays using logic scheme BUS and BACKUP, this scheme can provide complete high speed overcurrent protection for the transformers, bus and feeders in a radial system substation.

The components of Feeder_3 logic are summarized in Tables $8-13,8-14,8-15$ and $8-16$. Figure 8-7 is a one-line diagram of Feeder_3 logic and Figure $8-8$ is a diagram representing the logic settings and equations of Feeder_3 logic.

Normal Operation - Control

The virtual breaker control switch is programmed to provide manual trip and close control of the breaker. Control functions of this logic scheme use traditional contact sensing inputs and virtual switches. Virtual switches that are not needed may simply go unused. The protection engineer may choose to free up contact sensing inputs for other uses by using the virtual switches exclusively for control functions.

Normal Operation - Protection

All overcurrent function blocks and the breaker failure function block re-trip output are enabled in Feeder_3 logic for tripping via OUT1. The 150T function blocks are set up as high set instantaneous functions which drive the recloser to lockout when they trip. Each overcurrent function block can be individually disabled by setting the pickup at 0 in the four setting groups. The 50TN, 50TQ, 51N and 51Q function blocks are torque controlled by either IN3 or Virtual Switch 243. All N and Q function blocks or only the 51N and 51Q function blocks may be inhibited. This is done in BESTlogic by modifying the inputs to the function blocks.

Normal Operation - Reclosing

The reclosing logic in Feeder_3 is initiated by the breaker opening. Automatic reclosing is disabled for a manual trip by a control switch slip contact. The recloser function block can be disabled by setting the first reclose time $=0$ in the four setting groups.
Reclosing can be disabled by IN2 or Virtual Switch 143 which is connected to the drive to lockout (DTL) input of the recloser function block. In this scheme, enabling the recloser after a "one shot" trip will cause the recloser to be in lockout. Once the breaker is manually closed, the recloser will time out to a reset condition. If an external control switch slip contact is used, it should be wired in series with the reclose enable switch to IN2.

The BESTlogic can be modified so that the reclosing disable logic interrupts the RI input to the recloser instead of driving the recloser to lockout. This is accomplished by using variables IN2, 143 and 101SC in the RI expression instead of the DTL expression. This recloser control logic is used in preprogrammed logic scheme Feeder_4.

Drive to lockout also occurs if any of the 150TP/N/Q functions (typically used for high set instantaneous protection) trip or breaker failure occurs. It should be noted that the 150TP/N/Q functions drive both the RI and the DTL inputs to the recloser function block. The DTL input takes priority over the RI input.

Zone sequence coordination can be enabled by setting an appropriate logic expression for 79ZONE. Zone sequence uses a BESTlogic expression but is not within the logic settings. The Feeder_3 logic scheme uses the expression SP-79ZONE=VO12.

Feeder_3 logic provides for the recloser to torque control the 50TP/N/Q functions (typically used for low set instantaneous protection) during various steps in the reclosing sequence. Setting the recloser sequence controlled blocking output in the four setting groups is done using the S\#-79SCB commands.

Recloser timing is stopped by the wait input if an overcurrent protection function block is picked up and timing. This prevents the reset timer from resetting the reclose function for a situation where a 51 element is just above pickup and the time to trip is longer than the reset time.

A block load tap changer output is not provided in this scheme. OUT5 can be reprogrammed as a 79RNG (recloser running/block tap changer) output and wired to energize a normally closed auxiliary relay.

Normal Operation - Setting Group Selection

Setting group selection can be done automatically or externally by communications command/HMI override. Automatic setting group changes for cold load pickup and/or dynamic setting adjustment are enabled by SP-GROUP\# commands. Setting group changes initiated by contact sensing inputs are not accommodated in this scheme. IN3 or IN4 can be reprogrammed to provide this function instead of their programmed functions if desired. The automatic change logic can be disabled by Virtual Switch 43.

Normal Operation - Bus Protection

When any of the overcurrent function blocks are picked up, OUT4 closes. The signal from OUT4 is wired to IN2 of the upstream relay using BUS logic. The upstream relay blocks the 50T elements that are set up to trip the bus breaker or bus lockout relay. If the fault is not on a feeder, the 50T elements of the bus relay are not blocked. The bus relay 50T elements are set with a time delay of 2 to 4 cycles to provide a minimal coordination interval for the feeder relay OUT4 to close. Should there be a problem with the blocking logic, the bus relay 51 functions are not blocked to allow bus fault clearing with a traditional coordination interval.

When used to provide high speed overcurrent protection for the substation bus, it is recommended that all 51 function timing curves be set for instantaneous reset.

Normal Operation - Alarms

Two alarm logic variables drive the front panel alarm LEDs: Major alarm-(ALMMAJ) and Minor alarm (ALMMIN). ALMMAJ is set to drive the fail safe output OUTA. ALMMIN is not set to drive an output relay. The logic can be modified to place ALMMIN in the BESTlogic expression for VOA if all alarms are to be combined. ALMMIN can be placed in the BESTlogic expression for another output if it is desired that these conditions be enunciated separately.

Contingency Operation - Test Mode

The test mode is intended to increase the security of the feeder protection and control system if external test switches are not installed on all outputs. When the relay is out of service for testing, the breaker failure, automatic reclosing and block upstream instantaneous functions are disabled. Backup by the upstream relay is enabled.

De-energizing IN4 or closing Virtual Switch 343 will put the logic in test mode. IN4 can be controlled by a panel mounted selector switch that is closed in the normal state and open in the test state. IN4 can also be controlled by a pole of a standard external test switch that is opened with the rest of the test switch poles.

The logic expression for test mode drives virtual output 15 (VO15). This virtual output is alarm bit \#23 in the programmable alarm mask. It can be masked to drive an alarm LED to provide indication when the relay is in test mode.

Contingency Operation - Backup Protection for Feeder Breaker Failure

OUT5 is configured as the breaker failure trip output. OUT5 can be wired to trip the bus breaker or a lockout relay. The breaker failure pickup (BFPU) output trips the feeder breaker directly via output 1 to provide a breaker retrip signal for added security.

Initiation of the BF function block by external relays is not accommodated in this scheme. IN2, IN3 or IN4 can be programmed to provide this function or Feeder_4 logic may be used. The breaker failure function block is initiated by a protective trip. This function block has an independent fast drop out phase and ground current detector that detects a breaker opening and stops timing. An open breaker is detected when the current drops below 10% of nominal.

The BF function block is disabled by setting the time delay at zero. This permits the traditional radial system backup scheme of coordinated relays tripping different breakers.

Feeder_3 logic stops the block signal to allow the bus relay to trip the bus breaker through its 50T elements if a direct trip is not desired. This provides clearing of the fault on the circuit with the failed breaker in feeder relay breaker failure time (or bus relay 50T time whichever is greater) instead of the bus relay 51 time; but, is limited by the sensitivity constraints of the bus relay.

Contingency Operation - Backup Protection for Feeder Relay Out-of-Service

When the relay is out of service or has failed, OUT3 opens to signal the upstream relays providing backup protection. OUT3 operates in a fail safe mode; the output is closed during normal operation and open during a relay failure. This provides backup mode signaling when the feeder relay is extracted from the case.

Backup for relay failure can be implemented using the BUS and BACKUP preprogrammed logic schemes. These logic schemes are described later in this section.

Table 8-13. Feeder_3 Contact Sensing Input Logic

	Purpose		State Labels \dagger	
Input	Variable Label *	CLOSED (1)		
IN1	52b Breaker Status.	BREAKER	Open	Closed
IN2	Enable recloser when IN2 is energized.	RCL_ENABLE	Enabled	Disabled
IN3	Enable neutral and negative sequence, 50 and 51 protection when IN3 is energized.	N\&Q_ENABLE	Enabled	Disabled
IN4	Put the relay in test mode so that reclosing and breaker failure are disabled when IN4 is de-energized.	TESTDISABL	Normal	Test mode

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-14. Feeder_3 Function Block Logic

Function	Purpose	BESTIogic Expression	Mode Settings
$50 T P$	Block when recloser sequence controlled blocking output is TRUE.	79 SCB	1 (enable)
$50 T N$	Block when recloser sequence controlled blocking output is TRUE or when disabled by IN3 or Virtual Switch 243	79 SCB+/IN3+243	1 (enable)

Function	Purpose	BESTIogic Expression	Mode Settings
50TQ	Block when recloser sequence controlled blocking output is TRUE or when disabled by IN3 or Virtual Switch 243.	79SCB+/IN3+243	1 (enable)
150TP	None	0	1 (enable)
150TN	None	0	1 (enable)
150TQ	None	0	1 (enable)
51P	None	0	1 (enable)
51N	Block when disabled by IN3 or Virtual Switch 243.	/IN3+243	1 (enable)
51Q	Block when disabled by IN3 or Virtual Switch 243.	/IN3+243	1 (enable)
62	None	0	0 (disable)
162	None	0	0 (disable)
79	Strapped high	/0	1 (enable)
	Breaker closed when IN1 is de-energized.	/IN1	
	Stop recloser timing when timing for a fault trip. TRUE when protection picked up expression is TRUE.	VO12	
	Drive recloser to lockout when recloser drive to lockout expression is TRUE or when relay is in test mode.	VO9+/IN4+343	
BF	Initiate breaker failure when breaker failure initiate expression is TRUE.	V010	1 (enable)
	Block breaker failure protection when relay is in test mode.	/IN4+343	
Group	Disable automatic selection when Virtual Switch 43 is in the manual position.	143	1 (enable)

Table 8-15. Feeder_3 Virtual Switches Logic

			State Labels \dagger	
Function	Purpose	Variable Label *	CLOSED (1)	OPEN (0)
43	Automatic setting group change logic auto/manual switch.	SETGRP_MAN	Manual	Auto
143	Disable recloser when virtual switch is closed.	RCL_DISABLE	Disabled	Enabled
243	Disable neutral and negative sequence, 50 and 51 protection when virtual switch is closed.	N\&Q_DISABLE	Disabled	Enabled
343	Put the relay in test mode so that reclosing and breaker failure are disabled when virtual switch is closed.	TESTENABLE	Test mode	Normal

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-16. Feeder_3 Virtual Outputs

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
$\begin{aligned} & \text { VOA } \\ & \text { (OUTA) } \end{aligned}$	Alarm Output Contact.	Close alarm contact when relay failure or major programmable alarm is TRUE.	ALARM	Active	Normal
BESTlogic Expression: VOA = ALMMAJ					
$\begin{aligned} & \text { VO1 } \\ & \text { (OUT1) } \end{aligned}$	Breaker trip contact.	Trip breaker when protective trip expression is TRUE or when breaker failure is initiated or when virtual breaker control switch is operated to trip.	BKR_TRIP	Trip	Normal
BESTlogic Expression: VO1 = VO11+BFPU+101T					
$\begin{gathered} \text { VO2 } \\ \text { (OUT2) } \end{gathered}$	Breaker close contact.	Close breaker when recloser close output is TRUE or when virtual breaker control switch is operated to close.	BKR_CLOSE	Close	Normal
BESTlogic Expression: VO2 $=79 \mathrm{C}+101 \mathrm{C}$					
$\begin{gathered} \text { VO3 } \\ \text { (OUT3) } \end{gathered}$	Enable backup of relay by upstream relay.	Hold output closed if relay is not out of service because it is in Test mode and it is not out of service due to relay failure.	IN_SERVICE	Normal	Backup
BESTlogic Expression: VO3 = IN4*/343					
$\begin{gathered} \text { VO4 } \\ \text { (OUT4) } \end{gathered}$	Block upstream instantaneous elements when relay is picked up for high speed bus over current protection logic.	Block upstream instantaneous elements when the protective pickup expression is TRUE and the relay is not in test mode and the breaker has not failed.	BLK_USTRM	Blocked	Normal
BESTlogic Expression: VO4 = VO12*/VO5*IN4*/343					
$\begin{gathered} \text { VO5 } \\ \text { (OUT5) } \end{gathered}$	Breaker failure trip conact	Trip backup if breaker failure protection times out.	BKR_FAIL	Trip	Normal
BESTlogic Expression: BFT					
VO6	None		VO6	True	False
BESTlogic Expression: VO6 = 0					
VO7	None		VO7	True	False
BESTlogic Expression: VO7 = 0					
VO8	None		VO8	True	False
BESTlogic Expression: VO8 = 0					
VO9	Recloser drive to lockout expression.	Drive recloser to lockout to disable it when IN2 is de-energized or Virtual Switch 143 is closed or when the breaker virtual control switch is in the after trip state or if the breaker fails or when the high set instantaneous element trips.	RCL_DTL	DTL	Normal
BESTlogic Expression: VO9 = /IN2+143+/101SC+V05+150TPT+150TNT+150TQT					
VO10	Breaker failure initiate expression.	Initiate breaker failure timing when protective trip expression is TRUE.	BFI	INI	Normal

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
BESTlogic Expression: VO10 = VO11					
VO11	Protective Trip Expression.	TRUE when any 50,150 or 51 element times out.	PROT_TRIP	Trip	Normal
BESTlogic Expression: VO11 = 50TPT+50TNT+50TQT+150TPT+150TNT+150TQT+51PT+51NT+51QT					
VO12	Protection Picked Up Expression.	TRUE when any 50, 150 or 51 element picks up.	PROT_PU	PU	Normal
$\begin{aligned} & \text { BESTlogic Expression: VO12 = 50TPPU+50TNPU+50TQPU+150TPPU+150TNPU+150TQPU+51PPU } \\ & +51 N P U+51 Q P U \end{aligned}$					
VO13	Alarm Mask 21.		VO13	True	False
BESTlogic Expression: VO13 = 0					
VO14	Alarm Mask 22.		VO14	True	False
BESTlogic Expression: VO14 = 0					
VO15	Alarm bit \#23 indication that the relay is in test mode and that breaker failure and reclosing are disabled.	TRUE if IN4 is de-energized or if Virtual Switch 343 is closed.	TEST_MODE	Test	Normal
BESTlogic Expression: VO15 = /IN4+343					

Figure 8-7. Typical One-line Diagram for Feeder_3 Logic

Figure 8-8. Feeder_3 Logic Diagram

Feeder_3 Logic Settings and Equations for Sensing Input Type H Relays
SL-N=FEEDER_3
SL-50TP=1,79SCB; SL-50TN=1,79SCB+/IN3+243; SL-50TQ=1,79SCB+/IN3+243
SL-150TP=1,0; SL-150TN=1,0; SL-150TQ=1,0
SL-51P=1,0; SL-51N=1,/IN3+243; SL-51Q=1,/IN3+243
SL-62=0,0,0
SL-162=0,0,0
SL-79=1,/0,/IN1,VO12,VO9+/IN4+343
SL-BF=1,VO10,/IN4+343
SL-GROUP=1,0,0,0,0,/43
SL-VOA=ALMMAJ
SL-43=2
SL-143=2
SL-243=2
SL-343=2
SL-101=1
SL-VO1=VO11+BFPU+101T
SL-VO2=79C+101C
SL-VO3=IN4*/343
SL-VO4=VO12*/VO5*IN4*/343
SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=0
SL-VO9=/IN2+143+/101SC+VO5+150TPT+150TNT+150TQT
SL-VO10=VO11
SL-VO11=50TPT+150TPT+50TNT+150TNT+50TQT+150TQT+51PT+51NT+51QT
SL-VO12=50TPPU+150TPPU+50TNPU+150TNPU+50TQPU+150TQPU+51PPU+51NPU+51QPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4+343
Feeder_3 Logic Settings and Equations for Sensing Input Type G Relays
SL-N=FEEDER_3
SL-50TP=1,79SCB; SL-50TN=1,79SCB+/IN3+243; 79SCB+/IN3+243
SL-150TP=1,0; SL-150TN=1,0
SL-51P=1,0; SL-51N=1,/IN3+243
SL-62=0,0,0
SL-162=0,0,0
SL-79=1,/0,/IN1,VO12,VO9+/IN4+343
SL-BF=1,VO10,/IN4+343
SL-GROUP=1,0,0,0,0,/43
SL-VOA=ALMMAJ
SL-43=2
SL-143=2
SL-243=2
SL-343=2
SL-101=1
SL-VO1=VO11+BFPU+101T
SL-VO2=79C+101C
SL-VO3=IN4*/343
SL-VO4=VO12*/VO5*IN4*/343

SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=0
SL-VO9=/IN2+143+/101SC+VO5+150TPT+150TNT
SL-VO10=VO11
SL-VO11=50TPT+150TPT+50TNT+150TNT+51PT+51NT
SL-VO12=50TPPU+150TPPU+50TNPU+150TNPU+51PPU+51NPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4+343

FEEDER_4 LOGIC SCHEME

Logic scheme Feeder_4 is meant for use on a feeder breaker and provides all overcurrent and breaker failure protection, reclosing and control functions required for a typical feeder in a non-directional overcurrent protection application. This logic is intended to be used in conjunction with redundant protective relays such as existing electromechanical relays to provide backup when the relay is out of service.

Automatic reclosing is initiated by the breaker opening. Reclosing is disabled after a manual trip by a control switch slip contact. In this logic scheme, the disable logic is connected to the reclose initiate (RI) input. Once re-enabled, the recloser will start the sequence and automatically close the breaker if it is open.

When used in conjunction with other programmable relays using logic scheme BUS, it can provide complete overcurrent protection for the transformers, bus and feeders in a radial system substation.

The components of Feeder_4 logic are summarized in Tables 8-17, 8-18, 8-19 and 8-20. Figure 8-9 is a one-line diagram of Feeder_4 logic and Figure $8-10$ is a diagram representing the logic settings and equations of Feeder_4 logic.

Normal Operation - Control

The virtual breaker control switch is programmed to provide manual trip and close control of the breaker. The control functions of this logic scheme use both traditional contact sensing inputs and virtual switches. Virtual switches that are not needed may simply go unused. The protection engineer may choose to free up contact sensing inputs for other uses by using the virtual switches exclusively for the various control functions.

Normal Operation - Protection

The 50T and 51 function blocks and the breaker failure function block re-trip output are enabled in Feeder_4 logic for tripping via OUT1. Each overcurrent function block can be individually disabled by setting the pickup at 0 in the four setting groups.

The 50TN, 50TQ, 51N and 51Q function blocks are torque controlled by Virtual Switch 243. All N and Q function blocks or only the 51 N and 51Q function blocks may be inhibited. This is done in BESTlogic by modifying the inputs to the function blocks.

Normal Operation - Reclosing

The reclosing logic in Feeder_4 is initiated by the breaker opening. Automatic reclosing is disabled for a manual trip by a control switch slip contact. The recloser function block can be disabled by setting the first reclose time $=0$ in the four setting groups.

Reclosing can be disabled by IN2 or Virtual Switch 143 which interrupts the RI input to the recloser function block. In this scheme, enabling the recloser after a "one shot" trip will cause the recloser to start the reclosing sequence and automatically close the breaker. If the control switch slip contact is in the after trip position, the recloser will not automatically start. If an external control switch slip contact is used, it should be wired in series with the reclose enable switch to IN2.

The BESTlogic can be modified so that the reclosing disable logic drives the recloser to lockout instead of interrupting the RI input. This is accomplished by using variables IN2, 143 and 101SC in the DTL expression instead of the RI expression. This recloser control logic is used in preprogrammed logic scheme Feeder_3. The recloser will be driven to lockout if a breaker failure occurs.

Zone sequence coordination can be enabled by setting an appropriate logic expression for 79ZONE. Zone sequence uses a BESTlogic expression but is not within the logic settings. The Feeder_4 logic scheme uses the expression SP-79ZONE=VO12.

Feeder_4 logic provides for the recloser to torque control the 50TP/N/Q functions (typically used for low set instantaneous protection) during various steps in the reclosing sequence. Setting the recloser sequence controlled blocking output in the four setting groups is done using the S\#-79SCB commands. Blocking of external instantaneous elements is done through OUT3.

Recloser timing is stopped by the wait input if an overcurrent protection function block is picked up and timing. This prevents the reset timer from resetting the reclose function for a situation where a 51 element is just above pickup and the time to trip is longer than the reset time.
A block load tap changer output is not provided in this scheme. OUT5 can be reprogrammed as a $79 R N G$ (recloser running/block tap changer) output and wired to energize a normally closed auxiliary relay.

Normal Operation - Setting Group Selection

Setting group selection can be done automatically or externally by communications command/HMI override. Automatic setting group changes for cold load pickup and/or dynamic setting adjustment are enabled by SP-GROUP\# commands. Setting group change by contact sensing input are not accommodated in this scheme. IN3 or IN4 can be reprogrammed to provide this function instead of their programmed functions if desired. The automatic change logic can be disabled by Virtual Switch 43.

Normal Operation - Bus Protection

When any of the 50T or 51 function blocks are picked up, OUT4 closes. The signal from OUT4 is wired to IN2 of the upstream relay using BUS logic. The upstream relay blocks the 150T elements that are set up to trip the bus breaker or bus lockout relay. If the fault is not on a feeder, the 150T elements of the bus relay are not blocked. The bus relay 150T elements are set with a time delay of 2 to 20 cycles to provide a coordination interval for the feeder relay OUT4 to close or the redundant feeder relays to trip the feeder breaker. Should there be a problem with the blocking logic, the bus relay 51 functions are not blocked to allow bus fault clearing with a traditional coordination interval.

When used to provide high speed overcurrent protection for the substation bus, it is recommended that all 51 function timing curves be set for instantaneous reset. Use of this protection feature with redundant electromechanical relays should be done with caution. Retrofit of the electromechanical relays with BE1-50/51B solid state overcurrent relays can mitigate this concern.

Normal Operation - Alarms

Two alarm logic variables drive the front panel alarm LEDs: Major alarm (ALMMAJ) and Minor alarm (ALMMIN). ALMMAJ is set to drive the fail safe output OUTA. ALMMIN is not set to drive an output relay. The logic can be modified to place ALMMIN in the BESTlogic expression for VOA if all alarms are to be combined. ALMMIN can be placed in the BESTlogic expression for another output if it is desired that these conditions be enunciated separately.

Contingency Operation - Test Mode

The test mode is intended to increase the security of the feeder protection and control system if external test switches are not installed on all outputs. When the relay is out of service for testing, the breaker failure, automatic reclosing and block upstream instantaneous functions are disabled. Backup by the upstream relay is enabled.

De-energizing IN4 or closing Virtual Switch 343 will put the logic in test mode. IN4 can be controlled by a panel mounted selector switch that is closed in the normal state and open in the test state. IN4 can also be controlled by a standard external test switch that is opened with the rest of the test switch poles.

The logic expression for test mode drives virtual output 15 (VO15). This virtual output is alarm bit \#23 in the programmable alarm mask. It can be masked to drive an alarm LED to provide indication when the relay is in Test mode.

Contingency Operation - Backup Protection for Feeder Breaker Failure

OUT5 is configured as the breaker failure trip output. OUT5 can be wired to trip the bus breaker or a lockout relay. The breaker failure pickup (BFPU) output trips the feeder breaker directly via output 1 to provide a breaker retrip signal for added security.

Initiation of the BF function block by external relays is provided by IN3. Fault detector supervision of the external initiate signal is provided by the 150T function blocks. The logic uses the pickup outputs of the function blocks. In this application, the time delay settings should be set a maximum so that they do not time out and target. If the external BFI signal from protective relays such as 81 or 87 T where fault detector supervision is not desired, the BESTlogic expression for VO12 which is the BFI logic expression in this logic scheme can be modified.

The BF function block is also initiated by a protective trip. This function block has an independent fast drop out phase and ground current detector that detects a breaker opening and stops timing. An open breaker is detected when the current drops below 10% of nominal. The BF function block is disabled by setting the time delay at zero. This permits the traditional radial system backup scheme of coordinated relays tripping different breakers.

Feeder_4 logic stops the block signal to allow the bus relay to trip the bus breaker through its 50T elements if a direct trip is not desired. This provides clearing of the fault on the circuit with the failed breaker in feeder relay breaker failure time (or bus relay 50T time whichever is greater) instead of the bus relay 51 time but is limited by the sensitivity constraints of the bus relay.

Contingency Operation - Backup Protection for Feeder Relay Out-of-Service

Primary protection for relay failure is provided by redundant relays applied to the feeder.

Table 8-17. Feeder_4 Contact Sensing Input Logic

			State Labels \dagger	
		Variable Label *	CLOSED (1)	OPEN (0)
Input	BREAKER		Closed	
IN2	52b Breaker Status.	Enable recloser when IN2 is energized.	RCL_ENABLE	Enabled
Disabled				
IN3	Enable neutral and negative sequence, 50 and 51 protection when IN3 is energized.	N\&Q_ENABLE	Enabled	Disabled
IN4	Put the relay in test mode so that reclosing and breaker failure are disabled when IN4 is de- energized.	TESTDISABL	Normal	Test mode

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-18. Feeder_4 Function Block Logic

Function	Description	BESTIogic Experession	Settings
50TP	Block when recloser sequence controlled blocking output is TRUE.	79SCB	1 (enable)
50TN	Block when recloser sequence controlled blocking output is TRUE or when disabled by IN3 or Virtual Switch 243.	79 CCB+243	1 (enable)
50TQ	Block when recloser sequence controlled blocking output is TRUE or when disabled by Virtual Switch 243.	$795 C B+243$	1 (enable)
150TP	None	0	1 (enable)
150TN	None	0	1 (enable)
150TQ	None	0	1 (enable)
51P	None	0	1 (enable)
51 N	Block when disabled by Virtual Switch 243.	243	1 (enable)
51Q	Block when disabled by Virtual Switch 243.	243	1 (enable)
62	None	0	0
162	None	0	0
79	Initiate when reclose initiate expression is TRUE.	VO8	1 (enable)
	Breaker closed when IN1 is de-energized.	/IN1	
	Stop recloser timing when timing for a fault trip. TRUE when protection picked up expression is TRUE.	VO12	
	Drive recloser to lockout when recloser drive to lockout expression is TRUE or when relay is in test mode.	VO9+/IN4+343	
BF	Initiate breaker failure when breaker failure initiate expression is TRUE	V010	1 (enable)
	Block breaker failure protection when relay is in test mode	/IN4+343	
Group	Disable automatic selection when Virtual Switch 43 is in the manual position.	143	1 (enable)

Table 8-19. Feeder_4 Virtual Switches Logic

Function	Purpose			State Labels \dagger
	Variable Label *	CLOSED (1)	OPEN (0)	
43	Automatic setting group change logic auto/manual switch.	SETGRP_MAN	Auto	Manual
143	Disable recloser when virtual switch is closed.	RCL_DISABLE	Disabled	Enabled
243	Disable neutral and negative sequence, 50 and 51 protection when virtual switch is closed.	N\&Q_DISABLE	Disabled	Enabled
343	Put the relay in Test mode so that reclosing and breaker failure are disabled when virtual switch is closed.	TESTENABLE	Test mode	Normal

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-20. Feeder 4 Virtual Outputs

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
$\begin{aligned} & \text { VOA } \\ & \text { (OUTA) } \end{aligned}$	Alarm Output Contact.	Close alarm contact when relay failure or major programmable alarm is TRUE.	ALARM	Active	Normal
BESTlogic Expression: VOA = ALMMAJ					
$\begin{aligned} & \text { VO1 } \\ & \text { (OUT1) } \end{aligned}$	Breaker trip contact.	Trip breaker when protective trip expression is TRUE or when breaker failure is initiated or when virtual breaker control switch is operated to trip.	BKR_TRIP	Trip	Normal
BESTlogic Expression: VO1 = VO11+BFPU+101T					
$\begin{aligned} & \text { VO2 } \\ & \text { (OUT2) } \end{aligned}$	Breaker close contact.	Close breaker when recloser close output is TRUE or when virtual breaker control switch is operated to close.	BKR_CLOSE	Close	Normal
BESTlogic Expression: VO2 = 79C+101C					
$\begin{gathered} \text { VO3 } \\ \text { (OUT3) } \end{gathered}$	Block external instantaneous elements.	Close contact when recloser sequence controlled blocking output is not TRUE.	79INST_BLK	Normal	Block
BESTlogic Expression: VO3 =/79SCB					
$\begin{aligned} & \text { VO4 } \\ & \text { (OUT4) } \end{aligned}$	Block upstream instantaneous elements when relay is picked up for high speed bus over current protection logic.	Block upstream instantaneous elements when the protective pickup expression is TRUE and the relay is not in test mode and the breaker has not failed.	BLK_USTRM	Blocked	Normal
BESTlogic Expression: VO4 = VO12*/VO5*IN4*/343					

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
$\begin{aligned} & \text { VO5 } \\ & \text { (OUT5) } \end{aligned}$	Breaker failure trip conact.	Trip backup if breaker failure protection times out.	BKR_FAIL	Trip	Normal
BESTlogic Expression: BFT					
VO6	None		VO6	True	False
BESTlogic Expression: VO6 $=0$					
VO7	None		VO7	True	False
BESTlogic Expression: VO7 = 0					
VO8	Reclose initiate expression.	Allow reclose when the recloser is not disabled. To operate, reclose must be enabled by IN2 and Virtual Switch 143 and virtual breaker control switch slip contact.	RCL_INI	INI	Normal
BESTlogic Expression: VO8 = IN2*/143*101SC					
VO9	Recloser drive to lockout expression.	Drive recloser to lockout to disable it if the breaker fails.	RCL_DTL	DTL	Normal
BESTlogic Expression: VO9 = VO5					
VO10	Breaker failure initiate expression	Initiate breaker failure timing when protective trip expression is TRUE or when external initiate contact is sensed and any of the fault detectors is picked up.	BFI	INI	Normal
BESTlogic Expression: VO10 = VO11+IN3*150TPPU+IN3*150TNPU+IN3*150TQPU					
VO11	Protective Trip Expression.	TRUE when any 50 or 51 element times out.	PROT_TRIP	Trip	Normal
BESTlogic Expression: VO11 = 50TPT+50TNT+50TQT+51PT+51NT+51QT					
VO12	Protection Picked Up Expression.	TRUE when any 50 or 51 element picks up.	PROT_PU	PU	Normal
BESTlogic Expression: VO12 = 50TPPU+50TNPU+50TQPU+51PPU +51NPU+51QPU					
VO13	Alarm Mask 21.		VO13	True	False
BESTlogic Expression: VO13 = 0					
VO14	Alarm Mask 22.		VO14	True	False
BESTlogic Expression: VO14 = 0					
VO15	Alarm bit \#23 indication that the relay is in test mode and that breaker failure and reclosing are disabled.	TRUE if IN4 is de-energized or if Virtual Switch 343 is closed.	TEST_MODE	Test	Normal
BESTlogic Expression: VO15 = /IN4+343					

Figure 8-9. Typical One-line Diagram for Feeder_4 Logic

Figure 8-10. Feeder_4 Logic Diagram

Feeder_4 Logic Settings and Equations for Sensing Input Type H Relays
SL-N=FEEDER_4
SL-50TP=1,79SCB; SL-50TN=1,79SCB+243; SL-50TQ=1,79SCB+243
SL-150TP=1,0; SL-150TN=1,0; SL-150TQ=1,0
SL-51P=1,0; SL-51N=1,243; SL-51Q=1,243
SL-62=0,0,0
SL-162=0,0,0
SL-79=1,VO8,/IN1,VO12,VO9+/IN4+343
SL-BF=1,VO10,/IN4+343
SL-GROUP=1,0,0,0,0,/43
SL-43=2
SL-143=2
SL-243=2
SL-343=2
SL-101=1
SL-VOA=ALMREL+ALMMAJ
SL-VO1=VO11+BFPU+101T
SL-VO2=79C+101C
SL-VO3=/79SCB
SL-VO4=VO12*/VO5*IN4*/343
SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=IN2*/143*101SC
SL-VO9=VO5
SL-VO10=VO11+IN3*150TPPU+IN3*150TNPU+IN3*150TQPU
SL-VO11=50TPT+50TNT+50TQT+51PT+51NT+51QT
SL-VO12=50TPPU+50TNPU+50TQPU+51PPU+51NPU+51QPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4+343
Feeder_4 Logic Settings and Equations for Sensing Input Type G Relays
SL-N=FEEDER_4
SL-50TP=1,79SCB; SL-50TN=1,79SCB+243
SL-150TP=1,0; SL-150TN=1,0
SL-51P=1,0; SL-51N=1,243
SL-62=0,0,0
SL-162=0,0,0
SL-79=1,VO8,/IN1,VO12,VO9+/IN4+343
SL-BF=1,VO10,/IN4+343
SL-GROUP=1,0,0,0,0,/43
SL-43=2
SL-143=2
SL-243=2
SL-343=2
SL-101=1
SL-VOA=ALMREL+ALMMAJ
SL-VO1=VO11+BFPU+101T
SL-VO2=79C+101C
SL-VO3=/79SCB
SL-VO4=VO12*/VO5*IN4*/343

BUS AND BACKUP LOGIC SCHEMES

Logic schemes BUS and BACKUP are meant for use on a bus main breaker, and provide all overcurrent protection and control functions required for a typical bus main breaker in a non-directional overcurrent protection application. These logic schemes are intended to be used in conjunction with other programmable relays using the Feeder_1, Feeder_2 and Feeder_3 logic schemes to provide complete overcurrent protection for the transformers, bus and feeders in a radial system substation.

The components of BUS logic are summarized in Tables 8-21, 8-22, 8-23 and 8-24. Figure 8-11 is a one-line diagram of BUS logic and Figure $8-12$ is a diagram representing the logic settings and equations of BUS logic.

The components of BACKUP logic are summarized in Tables $8-25,8-26,8-27$ and $8-28$. Figure $8-13$ is a one-line diagram of BACKUP logic and Figure $8-14$ is a diagram representing the logic settings and equations of BACKUP logic.

When interconnected with feeder relays using logic scheme Feeder_1, Feeder_2, Feeder_3, the BACKUP logic scheme provides complete backup (except for reclosing) for the feeder relays if relay failure occurs or when they are out of service for testing or maintenance. Figure 8-15 shows the interconnection of Feeder, BUS and BACKUP relays to achieve this integrated protection system.

Normal Operation - Control

The virtual breaker control switch is programmed to provide manual trip and close control of the bus breaker in both BUS and BACKUP logic. The control functions of these logic schemes use both traditional contact sensing inputs and virtual switches. Virtual switches that are not needed may simply go unused. The protection engineer may choose to free up contact sensing inputs for other uses by using the virtual switches exclusively for the various control functions.

Normal Operation - Bus Protection

The BUS relay primary task in normal operation is to provide high speed bus fault protection (2-4 cycles coordination interval) and timed overload or high unbalanced load protection. The BACKUP relay primary task is to backup the BUS relay for bus faults with a coordination interval of 18-20 cycles.

When any of the feeder relay overcurrent elements are picked up and timing, OUT4 on the feeder relay closes. This signal is wired to IN2 of the upstream (primary) bus relay using BUS logic which blocks the 50T elements. These are set with a delay of 2 to 4 cycles. If the fault is not on a feeder, the 50T elements of the bus relays are not blocked. The 50T function blocks are set up to trip the bus breaker by an external bus lockout relay (86B) via OUT4. The BACKUP relay does not get blocked when the feeder relays are picked up so its 50 T elements are set with a time delay long enough to allow the feeder breaker to interrupt the fault. These are set up to trip the 86B relay also via OUT4. If a bus fault lockout relay is not used, OUT4 can be wired in parallel with OUT1 to direct trip the bus breaker.

The BUS and BACKUP 50T functions should be set with a higher pickup than the highest feeder instantaneous elements to ensure that they will not pickup before any feeder relay.

If there is a contingency problem such as a relay removed from service, 51 protection is still provided. The BUS and BACKUP 51 functions are enabled for tripping via OUT1. The 51 functions are not blocked to allow clearing a bus fault with a traditional coordination interval. When used to provide high speed overcurrent protection for the substation bus, it is recommended that all 51 function timing curves be set for instantaneous reset.

Normal Operation - Setting Group Selection

For normal operation, the BUS and BACKUP relays are in setting group 0. In setting group 0, the two relays will only trip the bus breaker. Input two to the BACKUP relay identifies when a feeder relay is out of service, The BACKUP relay then closes OUT3 which is connected to input three of the BUS relay. The two relays then switch to setting group 1 . Setting group selection mode 2, binary coded selection, is used to recognize the group setting state. When Input DO to the setting group selection function block is a one, it is interpreted as a binary 1 causing the logic to switch to group 1.

When the relay is in setting group 1, the relays are operating in feeder relay backup mode. This expression is programmed to virtual output 13 of the BUS relay which drives alarm bit \#21 in the pro-grammable alarm mask. It can be masked to drive an alarm LED and alarm display to indicate when the BUS relay is in feeder backup mode and to trip a feeder breaker instead of the bus breaker.

Normal Operation - Alarms

Two alarm logic variables drive the front panel alarm LEDs: Major alarm (ALMMAJ) and Minor alarm (ALMMIN). ALMMAJ is set to drive the fail safe output OUTA. ALMMIN is not set to drive an output relay. The logic can be modified to place ALMMIN in the BESTlogic expression for VOA if all alarms are to be combined. ALMMIN can be placed in the BESTlogic expression for another output if it is desired that these conditions be enunciated separately.

Contingency Operation - Test Mode

The test mode is intended to increase the security of the protection and control system if external test switches are not installed on all outputs. When the BUS relay is out of service for testing, the overcurrent protection function trip outputs are routed to OUT1 only. When the BACKUP relay is out of service for testing, the overcurrent protection function trip outputs are routed to OUT1 only and the breaker failure function is disabled.

De-energizing IN4 or closing Virtual Switch 343 will put the logic in test mode. IN4 can be controlled by a panel mounted selector switch that is closed in the normal state and open in the test state. IN4 can also be controlled by a pole of a standard external test switch that is opened with the rest of the test switch poles.

The logic expression for test mode drives virtual output 15 (VO15). This virtual output is alarm bit \#23 in the programmable alarm mask. It can be masked to drive an alarm LED and HMI alarm display to provide indication when the relay is in test mode.

Contingency Operation - Backup Protection for Bus Breaker Failure

Bus breaker failure protection is provided by the main bus relay using pre-programmed logic scheme BACKUP. OUT5 is configured as the breaker failure trip output. OUT5 can be wired to trip the upstream breaker or a bus breaker failure lockout relay or other lockout relay that trips the transformer high side such as the 86T transformer differential lockout relay.

Initiation of the BF function block by external relays is provided by IN3. Fault detector supervision of the external initiate signal is provided by the 150T function blocks. The logic uses the pickup outputs of the function blocks. In this application, the time delay settings should be set a maximum so that they do not time out and target. If the external BFI signal from protective relays such as 81 or 87 T where fault detector supervision is not desired, the BESTlogic expression for VO12 which is the BFI logic expression in this logic scheme can be modified. The BF function block is also initiated by a protective trip. If you are tripping for a bus fault via a lockout relay, the additional time delay of the lockout relay should be added to your breaker failure time setting.

This function block has an independent fast drop out phase and ground current detector that detects a breaker opening and stops timing. An open breaker is detected when the current drops below 10% of nominal.

The BF function block is disabled by setting the time delay at zero. This permits the traditional radial system backup scheme of coordinated relays tripping different breakers.

Contingency Operation - Backup Protection for BUS Relay Out-of-Service

When the BUS relay is out of service, backup protection is provided by the BACKUP main bus relay. The BACKUP main bus relay provides permanent backup protection for the BUS relay regardless of other feeder contingencies. Under this contingency, protection for bus faults will be delayed by an 18-20 cycle coordination interval.

Contingency Operation - Backup Protection for BACKUP Relay Out-of-Service

When the BACKUP relay is out of service, full high speed bus fault protection and overload protection are provided by the BUS relay. Under this contingency, bus breaker failure protection is not provided as this is a double contingency situation.

Contingency Operation - Backup Protection for Feeder Relay Out-of-Service

OUT3 of each of the feeder relays should be wired to an auxiliary transfer relay (83/Fn) with one normally open and one normally closed contact. Under normal conditions, OUT3 of the feeder relay is closed and the 83 aux. relay is picked up. When the feeder relay is out of service due to failure, being in test mode, or if it is drawn out from its case, the 83 auxiliary relay will drop out.

The normally open contact (NO in shelf state) of the 83/Fn aux. relay is wired to Input 2 of the BACKUP relay to signal the BUS and BACKUP relays to change to setting group 1. When the BUS relay is in setting group 1, the 50T and 51 overcurrent function blocks trip an auxiliary tripping relay (94/BU) via OUT5.

In setting group 1, the BACKUP relay 51 time settings must coordinate with the BUS relay 51 time dial settings. Since the feeder relays provide a blocking signal to the BUS relay upon pickup of the 51 function blocks, it is not necessary for the 51 time dial settings on the BUS relay to coordinate with the feeder relays in setting group 1. Therefore, the 51 time dial settings of the BUS relay can be reduced in setting group 1 to provide the necessary coordination interval between the BUS relay and the BACKUP relay for this contingency. This minimizes the time delay that needs to be added to the 51 time dial settings for the BACKUP relay and provides a greater opportunity to keep the setting below the transformer damage curve.

The tripping output of the 94/BU auxiliary relay and the normally closed contacts (form B) of the 83/Fn auxiliary relay are wired in series with the feeder breaker trip coil. This allows the 94/BU relay to trip the feeder breaker when the feeder relay is out of service.

When the BUS and BACKUP relays are in feeder relay backup mode, operation for the various faults is as follows:

- A fault on a feeder with its relay still in service will send a blocking signal to the BUS relay preventing it from tripping high speed. The 51 functions of the BUS and BACKUP relays are set to coordinate with each other and the feeder relays.
- A fault on the feeder with the relay out of service, will not send a blocking signal to the BUS relay so it will trip the feeder breaker via the 94 and 83 relay contacts. Fault clearing will be after the 2 to 4 cycle coordination interval set on the BUS relay 50T functions or in BUS relay 51 time if the fault is farther out. For this reason, the BACKUP relay 51 functions must be set to coordinate with the BUS relay in this setting group.
- A fault on the bus will cause the BUS relay to trip the feeder breaker with the relay out of service because no blocking signal will be sent by any of the feeder relays. Since this will not clear the fault, the BACKUP relay will clear the fault with its 18-20 cycle coordination interval.

Table 8-21. BUS Contact Sensing Input Logic

	Purpose			State Labels \dagger	
	Input	Variable Label *	CLOSED (1)	OPEN (0)	
IN1	52b Breaker Status	BREAKER	Open	Closed	
IN2	Block instantaneous when feeder relay is picked up.	FEEDER_PU	Pickup	Normal	
IN3	Signal from relay on bus source that is using BACKUP logic that a feeder relay is out of service.	BACKUPMODE	Backup	Normal	
IN4	Put the relay in test mode so that all trips are re-routed to OUT1 when IN4 is de-energized.	TESTDISABL	Normal	Test mode	

Notes: * Variable labels are limited to 10 characters.
† State labels are limited to 7 characters.

Table 8-22. BUS Function Block Logic

Function	Description	BESTIogic Expression	Settings
50TP	Block when feeder relay is picked up indicating that the fault is on a feeder.	IN2	1 (enable)
50TN	Block when feeder relay is picked up indicating that the fault is on a feeder.	IN2	1 (enable)
50TQ	Block when feeder relay is picked up indicating that the fault is on a feeder.	IN2	1 (enable)
150TP	None	0	0 (disabled)
150TN	None	0	0 (disabled)
150TQ	None	0	0 (disabled)
51P	None	0	0 (disabled)
51N	None	0	0 (disabled)
51Q	None	0	1 (enabled)
62	Initiate time delay when 51 trip expressions is TRUE to provide backup tripping of the bus breaker when the relay is being used for backup feeder protection.	VO8	0 (disabled)
162	None	0	0 (disabled)
79	None	0	0 (disabled)
BF	None	0	0 (disabled)
	Switch to setting group 1 if feeder relay is out of service.	IN\#	2 (binary coded selection)
Group	Fix Auto/Manual switch in the manual position only. Selection by contact sensing only. No automatic selection logic.	0	

Table 8-23. BUS Virtual Switch Logic

Function	Purpose		State Labels †	
	Not used		CLOSED (1)	OPEN (0)
43	Not used	SWITCH_43	Closed	Open
143	Not used	SWITCH_143	Closed	Open
243	SWITCH_243	Closed	Open	
343	Put the relay in test mode so that reclosing and breaker failure are disabled when virtual switch is closed.	TESTENABLE	Test mode	Normal

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-24. BUS Virtual Outputs

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
VOA (OUTA)	Alarm Output Contact.	Close alarm contact when relay failure or major programmable alarm is TRUE.	ALARM	Active	Normal
BESTlogic Expression: VOA = ALMMAJ					
VO1 (OUT1)	Bus Breaker Trip.	Trip bus breaker for virtual control switch trip OR for 51 trip when in normal mode. Trip bus breaker for 41 trip after coordination time delay when in feeder backup mode. Close OUT1 for any trip when in test mode.	BKR_TRIP	Trip	Normal
BESTlogic Expression: VO1 = 101T+V08*/SGO+62*SG1+V011*V015					
$\begin{gathered} \text { VO2 } \\ \text { (OUT2) } \end{gathered}$	Bus breaker close.	Close breaker when virtual breaker control switch is operated to close	BKR_CLOSE	Close	Normal
BESTlogic Expression: VO2 = 101C					
$\begin{gathered} \text { VO3 } \\ \text { (OUT3) } \end{gathered}$	Not Used.	Not used.	VO3	True	False
BESTlogic Expression: VO3 = 0					
$\begin{gathered} \text { VO4 } \\ \text { (OUT4) } \end{gathered}$	Bus fault trip (86B.)	Trip bus breaker via lockout for bus faults (50T with 2-4 cycles delay) when in normal mode and not in test mode.	BUS_TRIP	Trip	Normal
BESTlogic Expression: VO4 = VO9*SG0*/VO15					

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
VO5 (OUT5)	Feeder breaker trip.	Trip feeder breaker via auxilary relay (94) for time (51) and instantaneous (50T with 2-4 cycles delay) when in feeder relay backup mode and not in test mode.	BKR_FAIL	Trip	Normal
BESTlogic Expression: VO11*SG1*/VO15					
VO6	None		VO6	True	False
BESTlogic Expression: VO6 $=0$					
VO7	None		VO7	True	False
BESTlogic Expression: VO7 = 0					
VO8	Time overcurrent trip.	TRUE if any of the time overcurrent elements trip.	51_TRIP	Trip	False
BESTlogic Expression: VO8 $=51 \mathrm{PT}+51 \mathrm{NT}+51 \mathrm{QT}$					
VO9	Instantaneous over current tip.	TRUE if any of the instantaneous overcurrent elements trip.	50_TRIP	Trip	False
BESTlogic Expression: VO9 = 50TPT+50TNT+50TQT					
VO10	None		VO10	True	False
BESTlogic Expression: VO10 $=0$					
VO11	Protective Trip Expression.	TRUE when any 50 or 51 element times out.	PROT_TRIP	Trip	Normal
BESTlogic Expression: VO11 = 50TPT+50TNT+50TQT+51PT+51NT+51QT					
VO12	Protection Picked Up expression.	TRUE when any 50 or 51 element picks up.	PROT_PU	PU	Normal
BESTlogic Expression: VO12 = 50TPPU+50TNPU+50TQPU+51PPU +51NPU+51QPU					
VO13 Alarm mask 21	Alarm that relay is in feeder backup mode.	TRUE if in setting group 1	FEEDER_BU	Backup	Normal
BESTlogic Expression: VO13 = SG1					
VO14	Alarm Mask 22.		VO14	True	False
BESTlogic Expression: VO14 = 0					
VO15	Alarm bit \#23 indication that the relay isn in test mode, breaker failure is disabled and all trips are rerouted to OUT1.	TRUE if IN4 is deenergized or if Virtual Switch 343 is closed	TEST_MODE	Test	Normal
BESTlogic Expression: VO15 = /IN4+343					

Figure 8-11. Typical One-line Diagram for BUS Logic

Figure 8-12. BUS Logic Diagram

BUS Logic Settings and Equations for Sensing Input Type H Relays

SL-N=BUS
SL-50TP=1,IN2; SL-50TN=1,IN2; SL-50TQ=1,IN2
SL-150TP=0,0; SL-150TN=0,0; SL-150TQ=0,0
SL-51P=1,0; SL-51N=1,0; SL-51Q=1,0
SL-62=1,VO8,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=0,0,0
SL-GROUP=2,IN3,0,0,0,0
SL-43=0
SL-143=0
SL-243=0
SL-343=2
SL-101=1
SL-VOA=ALMREL+ALMMAJ
SL-VO1=101T+VO8*SG0+62*SG1+VO11*VO15
SL-VO2=101C
SL-VO3= 0
SL-VO4=VO9*SG0*/VO15
SL-VO5=VO11*SG1*/VO15
SL-VO6=0
SL-VO7=0
SL-VO8=51PT+51NT+51QT
SL-VO9=50TPT+50TNT+50TQT
SL-VO10=0
SL-VO11=50TPT+50TNT+50TQT+51PT+51NT+51QT
SL-VO12=50TPPU+50TNPU+50TQPU+51PPU+51NPU+51QPU
SL-VO13=SG1
SL-VO14=0
SL-VO15=/IN4+343

BUS Logic Settings and Equations for Sensing Input Type G Relays

SL-N=BUS
SL-50TP=1,IN2; SL-50TN=1,IN2
SL-150TP=0,0; SL-150TN=0,0
SL-51P=1,0; SL-51N=1,0
SL-62=1,VO8,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=0,0,0
SL-GROUP=2,IN3,0,0,0,0
SL-43=0
SL-143=0
SL-243=0
SL-343=2
SL-101=1
SL-VOA=ALMREL+ALMMAJ
SL-VO1=101T+VO8*SG0+62*SG1+VO11*VO15
SL-VO2=101C
SL-VO3= 0
SL-VO4=VO9*SG0*/VO15

SL-VO5=VO11*SG1*/VO15
SL-VO6=0
SL-VO7=0
SL-VO8=51PT+51NT
SL-VO9=50TPT+50TNT
SL-VO10= 0
SL-VO11=50TPT+50TNT+51PT+51NT
SL-VO12=50TPPU+50TNPU+51PPU+51NPU
SL-VO13=SG1
SL-VO14=0
SL-VO15=/IN4+343

Table 8-25. BACKUP Contact Sensing Input Logic

			State Labels \dagger	
Input	Purpose	Variable Label *	CLOSED (1)	OPEN (0)
IN1	52b Breaker Status	BREAKER	Open	Closed
IN2	Put relay in feeder backup mode when feeder relay out of service is detected by open contact.	FEEDERS_OK	Normal	FDR_OOS
IN3	Breaker failure initiate by external relays.	BFI	INI	Normal
IN4	Put the relay in test mode so that breaker failure is disabled and all trips go through OUT1 when IN4 is de-energized.	TESTDISABL	Normal	Test mode

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-26. BACKUP Virtual Switches Logic

			State Labels \dagger	
Function	Purpose	Variable Label *	CLOSED (1)	OPEN (0)
43	Not used	SWITCH_43	Closed	Open
143	Not used	SWITCH_143	Closed	Open
243	Not used	SWITCH_243	Closed	Open
343	Put the relay in test mode so that breaker failure is disabled and all trips are rerouted to OUT1 when IN4 is de-energized.	TESTENABLE	Test Mode	Normal

Notes: * Variable labels are limited to 10 characters.
\dagger State labels are limited to 7 characters.

Table 8-27. BACKUP Function Block Logic

Function	Description	BESTIogic Expression	Settings
50TP	None	0	1 (enabled)
50TN	None	0	1 (enabled)
50TQ	None	0	1 (enabled)
150TP	None	0	1 (enabled)
150TN	None	0	1 (enabled)
150TQ	None	0	1 (enabled)
51P	None	0	1 (enabled)
51 N	None	0	1 (enabled)
51Q	None	0	1 (enabled)
62	None	0	0 (disabled)
162	None	0	0 (disabled)
79	None	0	0 (disabled)
BF	Initiate breaker failure when breaker failure initiate expression is TRUE.	V010	1 (enabled)
	Block breaker failure protection when relay is in test mode.	VO15	
Group	Switch to setting group 1 if feeder relay is out of service as indicated by open contact from feeder relays.	/IN2	2 (binary coded selection)
	No manual selection logic is used.	0	
	No manual selection logic is used.	0	
	No manual selection logic is used.	0	
	Fix Auto/Manual switch in the manual position only. Selection by contact sensing only. No automatic selection logic.	0	

Table 8-28. BACKUP Virtual Outputs

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
$\begin{aligned} & \text { VOA } \\ & \text { (OUTA) } \end{aligned}$	Alarm Output Contact.	Close alarm contact when relay failure or major programmable alarm is TRUE.	ALARM	Active	Normal
BESTlogic Expression: VOA = ALMMAJ					
$\begin{aligned} & \text { VO1 } \\ & \text { (OUT1) } \end{aligned}$	Bus breaker trip.	Trip bus breaker for virtual control switch trip or for 51 trip or when breaker failure is picked up. Close OUT1 for any trip when in test mode.	BKR_TRIP	Trip	Normal
BESTlogic Expression: VO1 = 101T+VO8+BFPU+VO11*VO15					
$\begin{gathered} \text { VO2 } \\ \text { (OUT2) } \end{gathered}$	Bus breaker close.	Close breaker when virtual breaker control switch is operated to close.	BKR_CLOSE	Close	Normal
BESTlogic Expression: VO2 $=101 \mathrm{C}$					
$\begin{gathered} \text { VO3 } \\ \text { (OUT3) } \end{gathered}$	Signal relay on bus source that is using BUS logic that feeder relay is out of service	Feeder relay is out of service as indicated by contact open from the feeder relays.	BACKUPMODE	Backup	Normal
BESTlogic Expression: VO3 = /IN2					
$\begin{aligned} & \text { VO4 } \\ & \text { (OUT4) } \end{aligned}$	Bus fault trip (86B).	Trip bus breaker via lockout for bus faults (50T with 18-20 cycles delay) when not in test mode.	BUS_TRIP	Trip	Normal
BESTlogic Expression: VO4 = VO9*/VO15					
$\begin{aligned} & \text { VO5 } \\ & \text { (OUT5) } \end{aligned}$	Breaker failure trip contact.	Trip backup if breaker failure protection times out.	BKR_FAIL	Trip	Normal
BESTlogic Expression: BFT					
VO6	None		VO6	True	False
BESTlogic Expression: VO6 = 0					
VO7	None		VO7	True	False
BESTlogic Expression: VO7 = 0					
VO8	Time overcurrent trip.	TRUE if any of the time overcurrent elements trip.	51_TRIP	Trip	Normal
BESTlogic Expression: VO8 = 51PT+51NT+51QT					
VO9	Instantaneous over current trip.	TRUE if any of the instantaneous overcurrent elements trip.	50_TRIP	Trip	Normal
BESTlogic Expression: VO9 = 50TPT+50TNT+50TQT					
VO10	Breaker failure initiate expression.	Initiate breaker failure timing when protective trip expression is TRUE or when external initiate contact is sensed and any of the fault detectors is picked up.	BFI	INI	Normal
BESTlogic Expression: VO10 = VO11+IN3*150TPPU+IN3*150TNPU+IN3*150TQPU					

Output	Purpose	Output Description	Variable Label	State Labels	
				TRUE (1)	FALSE (0)
VO11	Protective Trip Expression.	TRUE when any 50 or 51 element times out.	PROT_TRIP	Trip	Normal
BESTlogic Expression: VO11 = 50TPT+50TNT+50TQT+51PT+51NT+51QT					
VO12	Protection Picked Up expression.	TRUE when any 50 or 51 element picks up.	PROT_PU	PU	Normal
BESTlogic Expression: VO12 = 50TPPU+50TNPU+50TQPU+51PPU +51NPU+51QPU					
VO13	Alarm Mask 21.		VO13	True	False
BESTlogic Expression: VO13 = 0					
VO14	Alarm Mask 22.		VO14	True	False
BESTlogic Expression: VO14 = 0					
VO15	Alarm bit \#23 indication that the relay is in test mode and that breaker failure is disabled and all trips are rerouted to OUT1.	Trui if IN4 is de-energized or if Virtual Switch 343 is closed..	TEST_MODE	Test	Normal
BESTlogic Expression: VO15 = /IN4+343					

Figure 8-13. Typical One-line Diagram for Backup Logic

Note: For clarity, multiple variables going to the same OR Gate are shown by a single line into the OR Gate.

Figure 8-14. BACKUP Logic Diagram

BACKUP Logic Settings and Equations for Sensing Input Type H Relays
SL-N=BACKUP
SL-50TP=1,0; SL-50TN=1,0; SL-50TQ=1,0
SL-150TP=1,0; SL-150TN=1,0; SL-150TQ=1,0
SL-51P=1,0; SL-51N=1,0; SL-51Q=1,0
SL-62=0,0,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=1,VO10,VO15
SL-GROUP=2,/IN2,0,0,0,0
SL-43=0
SL-143=0
SL-243=0
SL-343=2
SL-101=1
SL-VOA=ALMREL+ALMMAJ
SL-VO1=VO8+BFPU+101T+VO11*VO15
SL-VO2=101C
SL-VO3= /IN2
SL-VO4=VO9*/VO15
SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=51PT+51NT+51QT
SL-VO9=50TPT+50TNT+50TQT
SL-VO10 = VO11+IN3(150TPPU+IN3(150TNPU+IN3(150TQPU
SL-VO11=50TPT+50TNT+50TQT+51PT+51NT+51QT
SL-VO12=50TPPU+50TNPU+50TQPU+51PPU+51NPU+51QPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4+343
BACKUP Logic Settings and Equations for Sensing Input Type G Relays
SL-N=BACKUP
SL-50TP=1,0; SL-50TN=1,0; SL-50TQ=1,0
SL-150TP=1,0; SL-150TN=1,0; SL-150TQ=1,0
SL-51P=1,0; SL-51N=1,0; SL-51Q=1,0
SL-62=0,0,0
SL-162=0,0,0
SL-79=0,0,0,0,0
SL-BF=1,VO10,VO15
SL-GROUP=2,/IN2,0,0,0,0
SL-43=0
SL-143=0
SL-243=0
SL-343=2
SL-101=1
SL-VOA=ALMREL+ALMMAJ
SL-VO1=VO8+BFPU+101T+VO11*VO15
SL-VO2=101C
SL-VO3= /IN2
SL-VO4=VO9*/VO15

SL-VO5=BFT
SL-VO6=0
SL-VO7=0
SL-VO8=51PT+51NT+51QT
SL-VO9=50TPT+50TNT+50TQT
SL-VO10 = VO11+IN3(150TPPU+IN3(150TNPU+IN3(150TQPU
SL-VO11=50TPT+50TNT+50TQT+51PT+51NT+51QT
SL-VO12=50TPPU+50TNPU+50TQPU+51PPU+51NPU+51QPU
SL-VO13=0
SL-VO14=0
SL-VO15=/IN4+343

Figure 8-15. Interconnection Diagram for Integrated Protection System

MISCELLANEOUS LOGIC SETTINGS

There are five logic variables that are classified as miscellaneous logic expressions. These expressions are: SG-TARG, SG-TRIGGER, SB-DUTY, SB-LOGIC and SA-RESET. The equations associated with these variables determine how the BE1-951 responds to conditions such as when to target what triggers fault reporting, defining breaker status monitoring, and setup for remote alarm/target reset provisions. These variables aren't included in any of the BESTlogic preprogrammed schemes. However, the factory default equations are compatible with each scheme.

The default miscellaneous expressions are common among the preprogrammed and custom schemes. When a preprogrammed scheme is modified or a new scheme is created, the miscellaneous logic expressions should be reviewed to ensure desired performance.

The default expressions for the miscellaneous logic settings are as follows:
SB-LOGIC=/IN1
SG-TRIGGER=BFT+VO11,BFPU+VO12,0
SP79ZONE=0
SG-TARG=BF/50TP/150TP/50TN/150TN/50TQ/150TQ/51P/51N/51Q,0
SA-RESET= 0
SB-DUTY $=0,0.000 e+00,0$

Table 8-29 lists the miscellaneous commands and the sections of this manual where detailed information about each command may be found.

Table 8-29. Miscellaneous Logic Expressions

Command	Reference
SB-LOGIC	Section 6, Reporting and Alarm Functions
SG-TRIGGER	Section 6, Reporting and Alarm Functions
SP-79ZONE	Section 4, Protection and Control
SG-TARG	Section 6, Reporting and Alarm Functions
SA-RESET	Section 6, Reporting and Alarm Functions
SB-DUTY	Section 6, Reporting and Alarm Functions

APPLICATION TIPS

Trip Circuit Continuity and Voltage Monitor (Figure 8-16)

OUT1 has a built in trip circuit voltage and continuity monitor that drives logic variable OUT1MON. This variable can be used to improve breaker failure logic or to automatically enhance security during testing.

If the relay detects a loss of voltage or continuity in the breaker trip circuit, it is possible to speed up fault clearing time by bypassing the breaker failure timer. Since relay failure and breaker failure are covered by different backup actions, it is desirable to reduce common mode failure mechanisms. It is recommended that the feeder breaker and feeder protection circuits be supplied by separate control power fuses or breakers. The equation for the Breaker Failure Trip logic (VO5) can be modified by ORing the Breaker Failure Initiate with the expression VO10(OUT1MON. VO10 is designated in each of the pre-programmed logic schemes as the Breaker Failure Initiate expression. Example 1 illustrates how the BFT logic expression is modified. It is important that the breaker failure timer bypass logic also be disabled in test mode. Example 2 shows the expression for blocking the upstream instantaneous element. Figure 8-16 illustrates using the trip circuit continuity monitor in breaker failure logic.

Example 1. Breaker failure trip expression: SL-VO5=BFT+VO10*OUT1MON*IN4*/343

Example 2. Block upstream instantaneous expression: SL-VO4=VO12*/VO5*/OUT1MON*/N4*/343
If the internal breaker failure function block is not being used, the trip circuit continuity and voltage monitor alarm can be used to detect when the test paddle or test switches have been opened. This will automatically place the relay in the test mode. Each of the preprogrammed logic schemes has logic to detect when the relay is out of service for test. This enables the backup logic and enhances security. It should be noted that if the test mode logic is modified in this manner, it is not possible to differentiate between the relay being out of service for test and a problem in the circuit breaker trip circuit. Otherwise, the internal breaker failure function block would be disabled during a known problem in the trip circuit.

Figure 8-16. Trip Circuit Continuity and Voltage Monitor

Close Circuit Monitor (Figure 8-17)

A close circuit monitor is not included in any of the preprogrammed logic schemes. This function may be added by using a 62 function block and a contact sensing input (INX) to monitor the close circuit. The logic is shown in Figure 8-17 The output of the 62 protection block will close the designated output contact (VOY) when an open breaker and open close circuit condition exists. The $\mathrm{S}<\mathrm{g}>-62$

Figure 8-17. Close $\overline{\bar{C}}$ Circuit Monitor Logic command is used to provide a 500 millisecond time delay to inhibit the momentary alarm that will occur due the timing difference between the two signals.

High Speed Reclose (Figure 8-18)

Each reclose time delay can be set as low as 100 milliseconds. If the application requires a reclose time delay of less than 250 milliseconds, it is recommended that the close logic expression be modified to prevent mis-coordination between the TRIP and CLOSE outputs. A hold timer for each output relay is provided to hold the output closed for approximately 200 milliseconds. This prevents the relay contacts from opening before the breaker auxiliary contact interrupts the trip coil current. For high speed reclosing, the hold timer must be disabled so that the output contact follows the VO1 output expression. To modify the logic, add the expression "reclose 79C AND NOT trip VO1" to the close logic. Examples 1 and 2 show a close expression and hold disable setting for high speed reclosing. Figure 8-18 illustrates this high speed reclose interlock logic scheme.

Example 1. Close expression: SL-VO2=79C*/VO1+101C
Example 2. Hold disable setting: SG-HOLD1=0

Figure 8-18. High Speed Reclose Interlock Logic

Block Load Tap Changer

A block load tap changer output is not provided in any of the preprogrammed logic schemes. One of the output relays can be programmed to operate when the recloser is running (79RNG) and wired to energize a normally closed auxiliary relay. The 79RNG logic variable is high when any of the timers is timing and low when the reclosing function is in a lockout or reset state.

Block Neutral and Negative Sequence Protection

The neutral and negative sequence overcurrent elements provide greater sensitivity to unbalanced faults than the phase overcurrent elements because they can be set to pickup below balanced three phase load. This can lead to a mis-operation during periods of load imbalance. The BE1-851 provides a neutral and negative sequence demand function that allows monitoring and alarming to prevent load imbalances. However, distribution systems with single pole fault clearing and switching devices or long single phase laterals may have mis-operations during switching activities.

The preprogrammed logic schemes provide for the use of a cutoff switch to block the ground and negative sequence 50T (used for low set instantaneous) and the 51 (inverse time) function blocks during switching activities. This is the most conservative approach. The protection engineer may wish to evaluate this strategy based on his/her system, operating practices and setting practices. For instance, on systems with wye connected loads, the ground units are most sensitive to this situation. On systems with delta connected loads the negative sequence units are most sensitive to this situation. It may not be necessary to block the instantaneous units if their settings prevent them from tripping for a switching imbalance.
To maintain proper coordination, the logic of the feeder relays may be interconnected with the upstream bus relay to block the equivalent ground and/or negative sequence function blocks in the upstream relay.

Setting Group Selection

The BE1-851 Overcurrent Protection System provides multiple settings groups for adaptive relaying. The preprogrammed logic schemes barely tap the flexibility that is available. The following examples illustrate how the settings groups can be adapted for different conditions and how different setting groups can be used to vary the system logic.
Example 1. Adapting the relay settings for different conditions.
In overcurrent protection systems, the source conditions can have a major impact on sensitivity, coordination intervals and clearing times. Generally, the pickup and time dial settings are a compromise between a normal condition and a worst case condition. Contact logic from the position of the source breakers can select which settings group is active. To do this, assign input D0 or D1 to a contact sensing input. Set the setting group selection mode at 2 for binary coded selection. If DO is set, group 0 will be selected when the input is off (binary code 00). Group 1 will be selected when the input is on (binary code 01). Similarly, if D1 is set, group 2 will be selected when the input is on (binary coded 10).

This logic is useful in a situation where two transformers feed a single bus or two busses have a bus tie between them. The feeder and bus relays must be coordinated for the situation where only one source is in service (bus tie open or one transformer out of service). However, when both sources are in service, such as when the bus tie is closed, each bus relay sees only half of the current for a fault. This results in poor sensitivity and slow clearing time for the bus relays.
Example 2. Adapting the logic in different setting groups.
The logic in most of the preprogrammed logic schemes can be varied in each of the different setting groups. This is accomplished by disabling functions by setting their primary settings at zero. It is also possible to do more sophisticated modification of the logic in each of the different setting groups by using the active setting group logic variables SG0, SG1, SG2 and SG3 in the BESTlogic expressions.

Output Contact Seal-In

Trip contact seal-in circuits have historically been provided with electromechanical relays. These seal-in circuits consisted of a dc coil in series with the relay trip contact and a seal-in contact in parallel with the trip contact. The seal-in feature serves several purposes for the electromechanical relays. One is to provide mechanical energy to drop the target. Second is to carry the dc tripping current from the induction disk contact which may not have significant closing torque for a low resistance connection. The third is to prevent the relay contact from dropping out until the current has been interrupted by the 52a contacts in series with the trip coil. If the tripping contact opens before the dc current is interrupted, the contact may be damaged. The first two of these items are not an issue for solid state relays but the third item is an issue.

To prevent the output relay contacts from opening prematurely, a 200 millisecond hold timer can be selected with the SG-HOLDn=1 command. Refer to Section 3, Input and Output Functions, for more information on this feature. If the protection engineer desires seal-in logic with feed back from the breaker position logic, he/she can provide this logic by modifying the BESTlogic expression for the tripping output. To do this, use one of the general purpose timers 62 or 162 and set it for mode 1 (Pickup/Dropout Timer). Set the timer logic so that it is initiated by the breaker position input and set the timer for two cycles pickup and two cycles dropout. Then AND the timer output with the tripping output and OR it into the expression for the tripping output. The same can be done for the closing output. Figure 8-19 provides a seal-in logic diagram.

Figure 8-19. Output Seal-In Logic Diagram

NOTE

This example is based on the Feeder_2, Feeder_3 or Feeder_4 preprogrammed logic schemes.

Example 1.

Turn off the hold timer for Output 1: SG-HOLD1=0; SG-HOLD2=0
Set the timer logic:
Set the pickup and dropout times:
SL-62=1,IN1,0
S\#-62=2c,2c
Set the output logic:
VO1=101T+BFPU+VO11+VO6*/62
VO2=101C+79C+VO7*62
VO6=VO1*/62
VO7=VO2*62

Oscillographic Recording of Breaker Closures and Openings

How do I program the relay to create an oscillographic record when the breaker closes or opens? Monitor the circuit breaker status by connecting the 52 b contacts to IN1. Set a general purpose timer (62) for mode 1 (pickup and dropout), initiated by not input one (/IN1) and no blocking with T1 equal to 0.015 seconds, and T2 equal to 0.015 seconds ($S L-62=1, /$ IN1,0 and $S<\#>-62=0.015,0.015$). Program a virtual output (VO10) to be TRUE (high) when the input to IN1 is FALSE and the 62 Output is FALSE or when the IN1 input is TRUE and the 62 Output is TRUE (VO10 $=/ \operatorname{IN} 1^{*} / 62+\operatorname{IN} 1^{*} 62$). Set the SG-TRIGGER command for a logic trigger when VO10 is TRUE (SG-TRIGGER=<TRIP trigger>,<PICKUP trigger>,VO10).

Here is the scenario: The breaker has been open for awhile. Therefore, IN1 input is TRUE and th 62 Output is FALSE. When the breaker closes, the IN1 input becomes FALSE and because the 62 Output is FALSE, Virtual Output 10 goes TRUE for the duration of T1 (15 milliseconds). After the T1 time delay, the 62 Output goes TRUE and remains TRUE until the initiate input (IN1) goes FALSE for the duration of T2. Virtual Output 10 was TRUE for the 15 milliseconds time delay of T1 and triggered the oscillographic record when the breaker closed.

Before the breaker opens, IN1 is FALSE and the 62 output is TRUE. When the breaker opens, IN1 becomes TRUE longer than time delay T2. During time T2, Virtual Output 10 is TRUE because both IN1 and the 62 Output are TRUE. This time, an oscillographic record is triggered because the circuit breaker opened.

SECTION $9 \cdot$ SECURITY

INTRODUCTION

Security, in the form of multilevel password protection, is discussed along with the information required for protecting specific function groups and user interface components against unauthorized access.
Passwords provide access security for three distinct functional access areas: Settings, Reports and Control. Each functional area can be assigned a unique password or one password can be assigned to multiple areas. A global password is used to access all three of the functional areas. BE1-851 passwords are not case sensitive; either lowercase or uppercase letters may be entered. Password security only limits write operations; passwords are never required to read information from any area.

Additional security is provided by controlling the functional areas that can be accessed from a particular communication port. For example, security can be configured so that access to Control commands from the rear RS-232 port (COM1) is denied. Then, an attempt to issue a Control command through COM1 will cause the relay to respond with an ACCESS DENIED and/or INVALID PASSWORD message. This will occur whether a valid password is entered or not. When configuring communication port access areas, you should be aware that the front RS-232 port (COMO) and the front panel human-machine interface (HMI) are treated as the same port.
The communication ports and password parameters act as a two-dimension control to limit changes. For a command to be accepted, the entered password must be correct and the command must be entered through a valid port. Only one password can be active at one time for any area or port. For example, if a user gains write access at COM1, then users at other areas (COM0, front panel HMI and COM2) won't be able to gain write access until the user at COM1 uses the EXIT command to release access control.

If a port holding access privileges, sees no activity (command entered or HMI key pressed) for approximately five minutes, access privileges and any pending changes will be lost. This feature ensures that password protection can't be accidentally left in a state where access privileges are enabled for one area and other areas locked out for an indefinite period.

If password protection is disabled, then entering ACCESS= followed by no password or any alphanumeric character string will obtain access to the unprotected area(s).

Setting Up Password Protection

Password protection is configured for each access area port and communication port using BESTCOMS. Alternately, password protection can be configured using the GS-PW ASCII command.

To configure password protection using BESTCOMS, select General Operation from the screens pull-down menu. Then select the Global Security tab. Refer to Figure 9-1.

The button in the Password Security box must be pressed if it reads Show Passwords, and a change is required. Passwords may be entered in the text boxes for Global Access, settings Access, Reports Access and Control Access. Each access level may be

Figure 9-1. General Operation Screen, Global Security Tab Enabled for COM 0, COM 1, or COM 2. Access levels may also be enabled for multiple ports.

Table 9-1. Password Protection Settings

Setting	Range/Purpose
password	User defined alphanumeric string with a maximum of 8 characters A setting of 0 disables password protection.

SECTION 10•HUMAN-MACHINE INTERFACE

TABLE OF CONTENTS

SECTION $10 \cdot$ HUMAN-MACHINE INTERFACE 10-1
GENERAL 10-1
FRONT PANEL DISPLAY 10-1
Menu Tree 10-2
Automatic HMI Display Priorities 10-7
Editing the Automatic Scrolling list 10-9
HMI OPERATIONS 10-10
Entering Settings 10-10
Performing Control Operations 10-10
Resetting Functions 10-11
Entering Passwords 10-12
Figures
Figure 10-1. BE1-851 Front Panel HMI 10-1
Figure 10-2. Menu Tree Branches 10-2
Figure 10-3. BE1-851 Menu Tree (Report Status Branch) 10-3
Figure 10-4. BE1-851 Menu Tree (Control And Metering Branches) 10-3
Figure 10-5. BE1-851 Menu Tree (Reports Branch) 10-4
Figure 10-6. BE1-851 Menu Tree (Protection Logic Branch) 10-5
Figure 10-7. BE1-851 Menu Tree (Protection Logic Branch) for Sensing Input Type G Relays 10-6
Figure 10-8. BE1-851 Menu Tree (General Settings Branch) 10-7
Figure 10-9. General Operations Screen, HMI Display Tab 10-8
Figure 10-10. Virtual Control Switch 143 Screen 10-10
Tables
Table 10-1. Front Panel HMI Descriptions 10-1
Table 10-2. Automatic Screen Display Priority Status 10-7
Table 10-3. BE1-851 Screen Numbers and Descriptions 10-8
Table 10-4. Figure 4-7 Call-out Descriptions 10-10

SECTION 10•HUMAN-MACHINE INTERFACE

GENERAL

This section describes the BE1-851 human machine interface (HMI) and illustrates the menu tree.

FRONT PANEL DISPLAY

Figure 10-1 shows the front panel HMI for a BE1-851 relay in an H 1 case configuration. The lettered locators of Figure 10-1 correspond to the HMI descriptions of Table 10-1. F1 and S1 style relays have the same controls and indicators with different layouts.

Figure 10-1. Front Panel HMI

Table 10-1. BE1-851 Front Panel HMI Descriptions

Locator	Description
A	LCD Display. Two line by 16 character display with backlighting. Primary source for receiving information from the relay or when locally programming settings to the relay. Displays active logic scheme name, targets, metering values, demand values, communications parameters, diagnostic information and the menu tree steps or branches.
B	Power LED. When this LED is ON, indicates operating power is applied to the relay.
C	Relay Trouble LED. When this LED is ON, indicates that the relay is off-line due to startup condition or a relay failure alarm. Refer to Section 3 for a description of the relay failure alarm diagnostics.
D	Minor Alarm LED. When this LED is ON, indicates a minor alarm status. Refer to Section 3 for a complete description of the minor alarms.
E	Major Alarm LED. When this LED is ON, indicates a major alarm status. Refer to Section 3 for a complete description of the major alarms.

Locator	Description
F	Trip LED. When this LED is flashing ON, indicates that a protective element is picked up. When this LED is ON continuously, indicates that a trip output is closed. The LED is sealed-in if a protective trip has occurred and there are targets being displayed.
G	Communications Port 0. RS-232 serial communications port. A computer terminal or PC running a terminal emulation program such as Windows ${ }^{\text {® }}$ port so termal can be connected to this Come the user may send commands to the relay or receive reports from the relay.
H	Reset Pushbutton Switch. Resets report data including sealed-in trip targets, Trip LED, peak demand currents and alarms. Aborts editing session without saving changes.
I	Scrolling Pushbuttons (Keys). Scrolls UP/DOWN/LEFT/RIGHT through the menu tree or when in the Edit mode, the LEFT/RIGHT scrolling pushbuttons select the variable to change and the UP/DOWN scrolling pushbuttons change the variable.
J	Edit Pushbutton Switch. Enables settings changes. When the Edit pushbutton is first pushed, an LED on the pushbutton turns on to indicate the edit mode is active. When changes are complete (using the scrolling pushbuttons) and the Edit pushbutton is pushed again, the LED turns off indicating that the changes are saved. If changes are not completed and saved within five minutes, the edit mode is exited without saving changes.
K	Identification Label. ID label shows the relay's sensing input current range, power supply type, serial number, and style number.

Menu Tree

The menu tree has six branches. These branches are:

1. REPORT STATUS. Display and resetting of general status information such as targets, alarms, recloser status, etc.
2. CONTROL. Operation of control functions such as controlling virtual switches, selection of active setting group, etc.
3. METERING. Display of real time metering values.
4. REPORTS. Display and resetting of report information such as time and date, demand registers, breaker duty statistics, etc.
5. PROTECTION LOGIC. Display and setting of protective function setting parameters such as pickups, time delays, etc.
6. GENERAL SETTINGS. Display and setting of non protective function setting parameters such as communication, CT ratios, connections, etc.
Each screen in the menu tree is numbered in the upper left hand corner of the screen. This number indicates the current branch and level in the menu tree structure so that you do not loose track of where you are when you have left the top level of the menu tree. You scroll through each level of the menu tree by using the RIGHT and LEFT scrolling keys. To go to a level of greater detail, you use the DOWN scrolling key. Each time you go to a lower level in the menu tree, another number is added to the screen number separated by a period. Figures $10-2$ through 10-8 illustrate all branches in the menu tree.

Figure 10-2. Menu Tree Branches

Figure 10-3. Report Status Branch Menu Tree

TO/FROM 1 REPORT STATUS

Figure 10-4. Control and Metering Branches Menu Tree

Figure 10-5. Reports Branch Menu Tree

Figure 10-6. Protection Logic Branch Menu Tree for Sensing Input Type H Relays

Figure 10-7. Protection Logic Branch Menu Tree for Sensing Input Type G Relays

Figure 10-8. General Settings Branch Menu Tree

Automatic HMI Display Priorities

If no front panel scrolling key has been pressed for approximately five minutes, the relay automatically switches to and displays the highest priority REPORT STATUS menu screen. In a typical application, the user would return to the relay and prefer to see the data that is of the most interest already on the screen. The automatic screen display follows the priority logic described in Table 10-2. For example, if a trip has occurred, the Target display screen is the highest priority and will be displayed automatically.

Table 10-2. Automatic Screen Display Priority Status

Priority	Priority Logic State	Screen	Displayed Data
1	Recloser (79) active	1.1	Recloser Status
2	Targets active	1.2.x	Scrolling display of Target Elements and Fault Currents
3	Alarms active	$1.3 . x$	Scrolling display of Active Alarms
4	Scrolling screens active	$1.4 . x$	Scrolling display of user screens programmed with the SG-SCREEN command
5	Scrolling screens disabled	1.2	Default Target Screen showing TARGETS NONE

If there are no targets or alarms, then the relay will automatically scroll through the user programmable scroll list (there is a scrolling display of up to 16 screens).

When the display is scrolling through the programmed scroll list, you can freeze the display and manually scroll through the scroll list. Pressing the RIGHT or LEFT scroll pushbutton will freeze the display. Repeatedly pressing the RIGHT scroll pushbutton will progress through the scroll list in ascending order. Repeatedly pressing the LEFT scroll pushbutton will progress through the scroll list in descending order. Pressing the UP scroll pushbutton will leave the automatic scroll list and place you in the menu tree at Screen 1.4, STATISCREENS.

Once the user has taken manual control of the display by pressing any of the scrolling pushbuttons, automatic priority has been disabled until the display times out. Thus, if a trip or alarm occurs during this time, the Trip or Alarm LED will light up but the display will not jump to the appropriate screen. It will be necessary to manually scroll to the target or alarm screen to see this data and reset it.

The HMI can be returned to automatic priority immediately without waiting for the timer to time out by scrolling to Screen 1.4, STATISCREENS and pressing the DOWN scroll pushbutton to return to the automatic scroll list.

Editing the Automatic Scrolling list

To edit the automatic scrolling list using BESTCOMS, select General Operation from the Screens pull-down menu. Then select the HMI tab. Refer to Figure 10-9. The screen numbers listed exhibit the default scrolling list The list of numbers on the right represent the screen numbers and the order in which they will be displayed when automatic scrolling begins. The number closest to the top will be displayed first. The four buttons on the screen can be used to add or remove screens from the list. They can also be used to change a selected screens position in the list.

To add a screen to the list, select the screen on the HMI simulation by clicking the mouse pointer on the arrows. Select the Add-> button to add the screen to the list.

Alternately, these settings may be made using the SGSCREEN ASCII command. Table 10-3 lists the screen numbers and their descriptions.

Figure 10-9. General Operations Screen, HMI Display Tab

Table 10-3. Screen Numbers and Descriptions

Screen Number	Description	Screen Number	Description
$\mathbf{1}$ Report Status	$\mathbf{2}$ Control		
1.1	Recloser Reset	2.1	43 aux switches
1.2	Targets	2.2	Breaker Control Trip \rightarrow Close
1.3	Alarms	2.3	Setting Group Control
1.4	Screen Scroll list	2.4	Output Control Override
1.5 .3	CO- OUT A12345	3 Metering	
1.5 .4	X43	3.1	3 Phase Current
1.5 .5	Active Group X	3.2	Neutral and Neg. Sequence Current
1.5 .6	Breaker		

Screen Number	Description	Screen Number	Description
4 Reports		5.1.1	50 T Settings
4.1	Fault Report	5.1.2	51 Settings
4.2	Event Report	5.1.3	62 Settings
4.3	Breaker Report	5.1.4	79 Settings
4.4	Demand Report	5.1.1.1	50TP
4.5	Time and Date	5.1.1.2	50 TN
4.6	Model and Version	5.1.1.3	50 TQ (150TP on G type relays)
4.3.1	Breaker operations Counter	5.1.1.4	150 TP (150TN on G type relays)
4.3.2	Breaker Duty	5.1.1.5	150 TN (250TN on G type relays)
4.4.1	Today's Peak	5.1.1.6	150 TQ (350TN on G type relays)
4.4.2	Yesterday's Peak	5.1.2.1	51P
4.4.3	Peak Since Reset	5.1.2.2	51N
4.4.1.1	TIA	5.1.2.3	51 Q (151N on G type relays)
4.4.1.2	TIB	5.1.3.1	62
4.4.1.3	TIC	5.1.3.2	162
4.4.1.4	TN	5.1.4.1	79
4.4.1.5	TQ	5.1.4.2	79
4.4.2.1	YIA	5.1.4.3	79
4.4.2.2	YIB	5.1.4.4	79
4.4.2.3	YIC	5.1.4.5	79
4.4.2.4	YIN	6 General Settings	
4.4.2.5	YIQ	6.1	COM Settings
4.4.3.1	PIA	6.2	LCD Contrast
4.4.3.2	PIB	6.3	Power System Setting
4.4.3.3	PIC	6.1.1	COM0 F-232
4.4.3.5	PIQ	6.1.2	COM1 R-232
5 Protection Logic		6.1.3	COM2 R485
5.1	Setting Group 0	6.3.1	CT RATIO
5.2	Setting Group 1	6.3 .2	Frequency
5.3	Setting Group 2	6.3.3	Phase ROT
5.4	Setting Group 3		
5.5	Global Settings		
5.5.1	50BF Setting		
5.5.1.1	50 BF TD		

HMI OPERATIONS

The following paragraphs describe how the HMI is used to set and control relay functions.

Entering Settings

Settings for protection functions can be edited at menu branch 5, PROTECTION LOGIC of the HMI LCD. Settings for general and reporting functions can be edited from menu branch 6, GENERAL SETTINGS. To edit a setting using the manual scrolling pushbuttons, perform the following procedures:

1. Scroll to the screen that displays the function to be edited.
2. Press the Edit pushbutton to gain access. If password security has been initiated for settings, you will be prompted to enter the appropriate password. See the paragraphs, Entering Passwords, for details on entering passwords from the HMI. Once access has been gained, the Edit LED will be lighted and a cursor will appear in the first settings field on the screen.
3. Press the UP or DOWN scrolling key to select the desired setting. Some settings require entering a number one character at a time. For example, to enter a 51 pickup as 7.3 amps , you would press the UP pushbutton until the 7 is showing. Then, press the RIGHT pushbutton to move the cursor over and press the UP pushbutton until the . is showing. Then, press the RIGHT pushbutton to move the cursor over and press the UP pushbutton until the 3 is showing. Other settings require scrolling through a list of selections. For example, you would move the cursor over to the CRV field and then scroll through a list of available TCC curves.
4. Once all of the settings on the screen have been entered, press the Edit pushbutton a second time and the settings will be validated. If the settings are in range, the screen will flash CHANGES SAVED, and the Edit LED will go out. If you want to abort the edit session without changing any settings, press the Reset pushbutton before you press the Edit pushbutton the second time. The screen will flash CHANGES LOST and the Edit LED will go out.

Performing Control Operations

Control operations can be executed at menu branch 2, CONTROL of the HMI LCD. These functions allow you to control the state of virtual switches, override logic, control the active setting group, and override the logic and control the state of output contacts. All of these functions work similarly to the process of entering settings in that you press the Edit pushbutton, use the UP and DOWN scroll pushbuttons to select the desired state, and press the Edit pushbutton for the action to be executed.

Figure 10-10 shows Virtual Switch 143 as an example of a virtual switch screen. See Section 4, Protection And Control Functions, for more details on the x43 and 101 functions. Table 10-4 describes each of the locators shown in Figure10-10. The user programmable label for this switch has been set to RCL_DISABL. The TRUE (closed) state label has been set to DISABLD. And, the FALSE (open) state label has been set to ENABLED. The logical mode for this application would be set to Mode 2 (On/Off switch).

Figure 10-10. Virtual Control
Switch 143 Screen

Table 10-4. Call-out Descriptions for Figure 10-10

Locator	Description
A	Screen number. This number eases navigation by indicating the current branch and level in the menu tree structure.
B	User selectable label (meaningful name) for specific virtual switches. The Switch 143 identification label is set to RCL_DISABL.

Locator	Description
C	User selectable label for the closed (1) state for Virtual Switch 143. The Switch 143 closed label is set to DISABLD.
D	Arrow icon indicates the current switch position (status). In Figure 10-9, the current status is the open state which is labeled ENABLD.
E	User selectable label for the open (0) state for Virtual Switch 143. The Switch 143 open label is set to ENABLED.

To operate the virtual switch, use the following procedure.

1. Using the manual scrolling pushbuttons, scroll to Screen 2.1.x (43 AUX SWITCHES). Or, if the screen has been placed in the automatic scroll list, simply wait for it to appear and press the RIGHT or LEFT scroll pushbutton to freeze the display.
2. Press the Edit pushbutton to gain access. If password security has been initiated for control functions, you will be prompted to enter the appropriate password. See the following subsection Entering Passwords for details on entering passwords for details on entering passwords at the HMI. Once access is gained to the control function, the Edit LED will light.
3. Press the UP or DOWN scrolling key to select the new state (as indicated by the arrow) that you wish to place the switch in. The "P" selection will pulse the state of the switch from its present state to the opposite state for approximately 200 milliseconds, the allowable states are dependent upon the logic mode setting for the switch. If the switch is set to Mode 1 (On/Off/Pulse), the "P" (pulse) selection will give an "INVALID PARAMETER" error. If it set to Mode 3 (Off/Momentary On), selecting one of the two state will give an "INVALID PARAMETER" error.
4. Press the Edit pushbutton a second time and the switch will change to the selected position, the screen will flash CHANGES SAVED, and the Edit LED will go out. If you want to abort the editing session without changing any controls, press the Reset pushbutton before you press the Edit pushbutton the second time. The screen will flash CHANGES LOST and the Edit LED will go out.

Resetting Functions

The Reset pushbutton is context sensitive. Its function is dependent upon the screen that is presently being displayed. For example, pressing the Reset key when the Demand Screen is displayed will reset the demands but it will not reset the alarms, etc. It is necessary to scroll through the menu tree to the Alarm Screen to reset an alarm. You are not prompted for a password when using the Reset key.
There are two BESTlogic variables associated with the HMI Reset pushbutton. Logic variable TRSTKEY becomes TRUE when the Reset pushbutton is pressed while the Target Screen is displayed. Logic variable ARSTKEY becomes TRUE when the Reset pushbutton is pressed while the Alarm Screen is displayed. See Section 8, Applications, Application Tips, for examples on the use of these variables.

Entering Passwords

If password security has been initiated for a function, the HMI will prompt you to enter a password when the Edit pushbutton is pressed. To gain access, you must enter the appropriate password. A field of eight asterisks appears with the cursor located under the leftmost character position. You can enter passwords by performing the following procedure.

1. Press the UP or DOWN scrolling pushbuttons until the proper first character of the password appears. Pressing UP scrolls through the alphabet and then the numbers in ascending order. Pressing DOWN scrolls through the numbers and then the alphabet in descending order.
2. Press the RIGHT scrolling pushbutton to move the cursor to the next character of the password and select the appropriate character.
3. Continue the process until the entire password has been spelled out. If the password is less than eight characters, leave the remaining asterisks in place instead of entering blanks.
4. Press the Edit pushbutton to enter the password. If the proper password has been entered, the screen will flash ACCESS GRANTED. If an incorrect password has been entered, the screen will flash ACCESS DENIED, and the Edit LED will go out.
5. Once you gain access, it remains in affect for five minutes. As long as you continue to press the Edit key for a function for which you have gained access, the five minute timer will be refreshed and you will not be prompted for a password.

SECTION 11•ASCII COMMAND INTERFACE

TABLE OF CONTENTS

SECTION 11 • ASCII COMMAND INTERFACE 11-1
INTRODUCTION 11-1
SERIAL PORT 11-1
RS-485 Port 11-1
RS-232 Ports 11-1
ASCII COMMAND INTERFACE 11-1
Command Structure 11-1
Using the ASCII Command Interface 11-2
Human to Machine ASCII Command Operations 11-2
Command Text File Operations 11-2
Embedding Comments into ASCII Text Files 11-3
Miscellaneous Command Descriptions 11-3
Obtaining Help Information 11-3
Changing Settings 11-3
Reading All Settings 11-4
Reading Specific Groups of Settings 11-5
Reading Logic Settings 11-6
ASCII Command Interface 11-7
COMMAND SUMMARY 11-8
Miscellaneous Commands 11-8
Metering Commands 11-8
Report Commands 11-8
Setting Command 11-10
Alarm Setting Commands 11-10
Breaker Monitoring and Setting Commands 11-11
General Setting Commands 11-11
Programmable Logic Setting Commands 11-13
User Programmable Name Setting Command 11-13
Protection Setting Commands 11-14
Global Commands 11-15
Tables
Table 11-1. Communication Settings 11-7

SECTION 11•ASCII COMMAND INTERFACE

INTRODUCTION

Relay and power system information can be retrieved from a remote location using the ASCII command interface. The ASCII command interface is also used to enter settings, retrieve reports and metering information and perform control operations. A communication port on the relay front panel provides a temporary, local interface for communication. Communication ports on the rear panel provide a permanent communication interface.

Front and rear panel communication ports can be connected to computers, terminals, serial printers, modems and intermediate communication/control interfaces such as RS-232 serial multiplexors. BE1-851 communication protocols support ASCII and binary data transmissions. ASCII data is used to send and receive human readable data and commands. Binary data is used for computer communication and transmission of raw oscillographic fault data, if available.
Modbus ${ }^{\text {TM }}$ and other common protocols are also available. An instruction manual (9 289900992) for using Modbus ${ }^{\text {TM }}$ protocol with the BE1-851 is available as well as instruction manual (9 289900995) for using DNP protocol. For information about other protocols, consult your Basler Electric Representative.

SERIAL PORT

Communication connections consist of two standard RS-232 ports, one RS-485 port and an IRIG port. BE1851 communication protocol is compatible with readily available modem/terminal software. If required, password protection provides security against unauthorized operation. Detailed information about making communication connections is provided in Section 12, Installation.

RS-485 Port

RS-485 terminal block connections are located on the rear panel and designated COM 2. This port supports half-duplex, multi-drop operation. Multi-drop (polled mode) operation is possible if a polling address is programmed for the port.

RS-232 Ports

Two female RS-232 (DB-9) connectors are provided. One port is located on the front panel and is designated COM 0 . Another port is located on the rear panel and is designated COM 1. Both ports support full-duplex operation. Polled operation is possible at the rear port using a simple RS-232 splitter if a polling address is programmed for COM 1.

ASCII COMMAND INTERFACE

A computer terminal or PC running terminal emulation software can be used at any of the three serial ports to send commands to the relay. Simple ASCII command language is used to communicate with the relay. When the relay receives a command, it responds with the appropriate action. ASCII commands can be used in human to machine interactions and in batch download type operations.

Command Structure

An ASCII command consists of a string made up of one or two letters followed by a hyphen and an object name.

| | xy-object name |
| :--- | :--- | :--- |
| where: \quadx
 y | Specifies the general command function.
 Specifies the command subgroup. |
| object name | Defines the specific object to which the command refers. |

Examples of object names include 51 N (neutral inverse time overcurrent function) and PIA (phase A peak current demand register). A command string entered by itself is a read command. A command string followed by an equal sign (=) and one or more parameters is a write command.

General command functions are organized into five major groups plus one group of miscellaneous commands.

CONTROL (C): Control commands perform select-before-operate control actions such as circuit breaker tripping and closing and active setting group changes. Subgroups include Select (S) and Operate (O).

GLOBAL (G) : One Global command performs operations that don't fall into the other general groups. The command for reading and changing passwords (GS-PW) is the only global command available.

METERING (M): Commands in this group report all real-time metering values. No subgroup is used with metering commands.

REPORTS (R): Reports commands read and reset reporting functions such as time and date, demand registers and breaker duty statistics. Subgroups include Alarms (A), Breaker Monitoring (B), Demand Recording (D), Fault Summary Reporting (F), General Information (G), Sequence of Events Recorder (S) and Oscillography (O).

SETTINGS (S): This group contains all of the setting parameters that govern relay function. Subgroups include Setting Groups $0,1,2$ and $3(0,1,2,3)$, Protection Settings (P) not in setting groups, Alarm Settings (A), Breaker Monitor Settings (B), General Settings (G) and Logic Settings (L).

MISCELLANEOUS: Miscellaneous commands include Access, Exit and Help. Note that only the first letter of these commands must be entered; entering the full command name is optional.

Using the ASCII Command Interface

Human to Machine ASCII Command Operations

Using ASCII commands, settings can be read and changed on a function by function basis. The mnemonic format of the commands helps you interact with the relay. It isn't necessary to remember all of the object names. Most commands don't require that you specify a complete object name. If the first two letters of a command are entered, the relay will respond with all applicable object names.

ASCII Command Examples

1. Obtain a breaker operations count by entering RB (Report Breaker). The BE1-851 responds with the operations counter value along with all other breaker report objects. If you know that the object name for the breaker operations counter is OPCNTR, you can enter RB-OPCNTR and read only the number of breaker operations.
Partial object names are also supported. This allows multiple objects to be read or reset at the same time.
2. Read all peak-since-reset demand current registers. Entering RD-PI (Report Demand - Peak Current (I)) will return demand values and time stamps for phase A, B, C, Neutral and Negative Sequence current. To read only the Neutral demand value, the full object name (RD-PIN) is entered. Entering RD-PI=0 resets all five of the peak-since-reset current demand registers.

Command Text File Operations

In command text file operations, an ASCII text file of commands is created and sent to the relay. For example, the S command is used to retrieve a complete list of settings from the relay in ASCII command format. This list of commands is captured, saved to a file, edited with any ASCII text editor and then uploaded to the relay. Because the number of relay settings is so large, loading settings with a text file is the preferred method of setting the BE1-851.

Embedding Comments into ASCII Text Files

Adding comments to ASCII settings files is an easy way to organize and label your settings. A comment line is started with two forward slashes (//) followed by the comment text. When the relay encounters // in a text file, it ignores all following characters until the next carriage return or linefeed character.

Example of embedding comments in a settings file.
//Group0 is used during normal operation
S0-50TP=7.50,0m;S0-50TN=2.5,0m . . .
//Group1 is used during cold load pickup
$\mathrm{S} 1-50 \mathrm{TP}=0,0 \mathrm{~m} ; \mathrm{S} 1-50 \mathrm{TN}=0,0 \mathrm{~m} ; \mathrm{S} 1-50 \mathrm{TQ}=0,0 \mathrm{~m}$

Miscellaneous Command Descriptions

Obtaining Help Information

The HELP (H) command provides general information on command syntax and functionality when the manual is not available. Entering HELP or H provides information about using the HELP command. HELP1 or H1 returns a complete list of relay commands. Entering HELP <cmd> where <cmd> is a specific command, returns information about the use and format of the command along with an example of how the command is used.

HELP Command
Purpose: Obtain help with command information.
Syntax: HELP[x/<cmd>]

Changing Settings

Access Command. Before making settings changes through a communication port, the ACCESS command must be used to obtain programming access. Enter ACCESS=<password> to obtain access to change settings associated with the password. Different passwords give the ability or access to perform different operations. The relay will deny access if an invalid password is entered or if another user has already been granted programming access through another serial port or at the front panel. Only one user can have access at any one time.

Even if password protection is not used, it is still necessary to obtain access so that accidental changes are prevented. If password protection is disabled, then ACCESS= will be accepted in place of a password. The relay will respond with ACCESS GRANTED: GLOBAL if the command entered was received and executed. The relay will respond with an error message and a ? if the command could not be executed.

The ACCESS (A) command and the EXIT (E) command are used to change relay settings, reset report registers and enable control commands through a serial port. These commands prevent changes from being made concurrently from two areas. For example, a user cannot make changes through COMO at the same time a remote user is making changes through COM2.

ACCESS Command

Purpose: Reads or sets access level in order to change settings.
Syntax: ACCESS[=<password>]
Comments: The ACCESS command must be used before any changes to settings can be made. Available ACCESS privileges are summarized in the following paragraphs.
READ-ONLY. This is the default access privilege when no passwords are active. Read-only access allows you to read settings and reports but not make settings changes.
PRIVILEGE G: GLOBAL ACCESS. Global access is obtained by password G (PWG). Global access permits entry of any command with no restrictions.
PRIVILEGE S: SETTING ACCESS. Setting access is obtained by password S (PWS). Setting access allows changes to any settings.

PRIVILEGE C: CONTROL ACCESS. Control access is obtained by password C (PWC). Control access enables relay control operations.
PRIVILEGE R: REPORT ACCESS. Report access is obtained by password R (PWR). Report access enables report operations to be performed.

An access privilege is obtained only when the appropriate password is entered. When a valid password is entered, the relay responds with the access privilege provided by the password entered. If an invalid password is entered, an error message is returned. If password protection is disabled in one or more privileges, then entering any string will provide access to the unprotected privileges.

ACCESS Command Examples

1. A valid password is entered.

ACCESS=OPENUP
ACCESS GRANTED: GLOBAL
2. An invalid password is entered.

ACCESS=POENUP
ACCESS DENIED
3. The current access privilege is read.

ACCESS
ACCESS: GLOBAL

Exit Command. After changes are made, the new data is saved or discarded using the EXIT command. Prior to saving or discarding any changes, you must confirm that you wish to exit the programming mode. There are three exit options: Y (Yes), $\mathrm{N}(\mathrm{No})$ or C (Continue).

EXIT Command

Purpose: Exit the programming mode.
Syntax: EXIT (Note: Relay will prompt for verification.)
Comments: It's important to make all programming changes before executing the EXIT command. This prevents a partial or incomplete protection scheme from being implemented.
When access privileges are obtained, all programming changes are made to a temporary, scratchpad copy of relay settings. These changes aren't saved to nonvolatile memory and initiated until the EXIT command is invoked and confirmed. After the EXIT command is entered, the relay prompts to confirm that the new data should be saved. Three options, Y, N or C are available. Entering Y will save the data. If N is entered, the relay will clear the changes and resume operating with the old settings. Entering C will abort the EXIT command and allow programming to continue.

EXIT Command Example

Release programming privileges and save settings changes.
EXIT<CR>
SAVE ChAnges ($\mathrm{Y} / \mathrm{n} / \mathrm{C}$) ? Prompt to save Yes, No or Continue
$\mathrm{Y}<\mathrm{CR}>$
ChANGES SAVED

$$
\begin{aligned}
& \text { Confirmation to save changes } \\
& \text { Confirmation that changes were saved }
\end{aligned}
$$

Reading All Settings

All user programmable settings can be listed using the S command. This read-only command is useful for documenting relay status during installation. The settings retrieved by the S command can be saved to a standard text file and sent to another relay to be configured with the same settings. This type of settings transfer takes less than one minute.

S Command

Purpose: Read all relay setting parameters.

Syntax: S

The S command returns the values of relay setting parameters in the same form that they are programmed. It can be used at the end of a programming session to make a record of the relay settings. If saved in a file, the report can be sent to another BE1-851 that will use the same settings. Because the report that is created
is a set of commands, sending the report to a different relay re-programs that relay with the settings contained in the S report.

Reading Specific Groups of Settings

While the S command is useful for reading all relay settings, several commands are available to read specific groups of settings.

Note: In the examples of this section, relay responses are printed in Courier New typeface.

SA Command
Purpose: Read all alarm settings for Major and Minor alarms.
Syntax: SA
SA Command Example
Read all alarm settings.
>SA
$\mathrm{SA}-\mathrm{BKR} 1=0,0$;
SA-BKR2 $=0,0$;
SA-BKR3 $=0,0$
SA-DIP=0.00;
SA-DIN=0.00;
$S A-D I Q=0.00$
SA-LGC=0
SA - MAJ $=0$
SA-MIN=0
SA-RESET=0

SB Command

Purpose: Read all breaker settings.
Syntax: SB

SB Command Example

Read all breaker settings.
>SB
SB-DUTY=0,0.000e+00
SB-LOGIC=/IN1
SG Command
Purpose: Read all general settings.
Syntax: SG
SG Command Example
Obtain a report of all general settings.

```
>SG
```

SG-CLK=M, 24, 0
SG-COMO=9600,A0,P0,R1,X1; $\quad S G-C O M 1=9600, A 0, P 0, R 1, X 1$
SG-COM2=9600,A0, PO, R1, X0
SG-CTP=1; SG-CTN=1
SG-DIP=15; $\quad S G-D I N=1 ;$
SG-DIQ= 1
SG-DSPP=F;
SG-FREQ=60
SG-HOLDA=0; SG-HOLD1=1; SG-HOLD2=1; SG-HOLD3=0
SG-HOLD4=0; SG-HOLD5=1
SG-ID=BE1-851,SUBSTATION_1
SG-IN1= 4, 16; SG-IN2= 4, 16; SG-IN3= 4, 16; SG-IN4= 4, 16
SG-PHROT=1
SG-SCREEN1=4.5; SG-SCREEN2=1.5.6; SG-SCREEN3=4.3.1; SG-SCREEN4=1.1
SG-SCREEN5=3.1; SG-SCREEN6=3.2; SG-SCREEN7=4.4; SG-SCREEN8=4.4.3
SG-SCREEN9=4.4.3.1;
SG-SCREEN10=4.4.3.2;SG-SCREEN11=4.4.3.3; SG-SCREEN12=4.4.3.4
SG-SCREEN13=4.4.3.5;SG-SCREEN14=0; SG-SCREEN15=0; SG-SCREEN16=0
SG-SGCON= 5
SG-TARG=51A/51B/51C/51N/51Q/150TA/150TB/150TC/150TN/150TQ/50TA/50TB/50TC/50
TN/50

```
TQ/62/162/BF,0
```

SG-TRIGGER=BFT+VO11, BFPU+VO12, 0

SN Command

Purpose: Read/Set user programmable names.
Syntax: \quad SN[-<var>[=<name>,<TRUE label>,<FALSE label>]

SN Command Example

Read the programmed labels for the alarm output (OUTA).
>SN-VOA
SN-VOA=VOA_LBL, TRUE, FALSE

$\mathrm{S}<\mathrm{g}>$ Command

Purpose: Read all protection settings.
Syntax: $\quad \mathrm{S}<\mathrm{g}>$

S <g> Command Example

Obtain a list of settings for setting group 2.
>S2
$\mathrm{S} 2-50 \mathrm{TP}=0.00, \quad 0 \mathrm{~m} ; \quad \mathrm{S} 2-50 \mathrm{TN}=0.00, \quad 0 \mathrm{~m} ; \quad \mathrm{S} 2-50 \mathrm{TQ}=0.00, \quad 0 \mathrm{~m}$
$\mathrm{S} 2-150 \mathrm{TP}=0.00, \quad 0 \mathrm{~m} ; \mathrm{S} 2-150 \mathrm{TN}=0.00, \quad 0 \mathrm{~m} ; \quad \mathrm{S} 2-150 \mathrm{TQ}=0.00,0 \mathrm{~m}$
$S 2-51 P=0.00,0.0, V 2 ; ~ S 2-51 N=0.00,0.0, V 2 ; ~ S 2-51 Q=0.00,0.0, V 2$
S2-62= 0m, 0m
$\mathrm{s} 2-162=0 \mathrm{~m}, 0 \mathrm{~m}$
$\mathrm{S} 2-791=0 \mathrm{~m} ; \quad \mathrm{S} 2-792=0 \mathrm{~m} ; \quad \mathrm{S} 2-793=0 \mathrm{~m} ; \quad \mathrm{S} 2-794=0 \mathrm{~m}$
$\mathrm{S} 2-79 \mathrm{R}=10 \mathrm{~s} ; \quad \mathrm{S} 2-79 \mathrm{~F}=1.0 \mathrm{~s} ; \quad \mathrm{S} 2-79 \mathrm{M}=60 \mathrm{~s}$
S2-79SCB=0
SP-79ZONE=0
$\mathrm{SP}-\mathrm{BF}=0 \mathrm{~m}$
SP-CURVE $=0.2663,0.0339,1.0000,1.2969,0.5000$
SP-GROUP1 $=0,0,0,0,51 P ; \quad \operatorname{SP}$-GROUP2 $=0,0,0,0,51 P$
SP-GROUP3 $=0,0,0,0,51 P$

Reading Logic Settings

The SL command is used to view the names of available logic schemes in memory. It also will return all of the logic equations for a specific logic scheme.

SL Command

Purpose: Obtain setting logic information.
Syntax: $\quad \mathrm{SL}[:<$ name>]
Comments: No password access is required to read settings.
Entering SL by itself returns all of the logic equations associated with the active logic scheme. Entering SL: returns the names of all available logic schemes. Entering SL: <name> returns all logic equations and settings for the named logic scheme.

SL Command Examples

1. Read the available logic schemes in memory.
```
USER, BASIC-OC, OC-W-79, OC-W-CTL, FDR-W-IL, BUS, BACKUP, NONE
```

2. Read all logic settings associated with the BACKUP logic scheme.
>SL-N:BACKUP

SL-50TP:1, 0;
SL-150TP:1,0;
SL-51P:1,0;
SL-62:0,0,0
SL-162:0,0,0
SL-79:0,0,0,0,0
SL-BF:1, VO10, VO15
SL-GROUP: 2, /IN2, 0, 0, 0, 0
SL-43: 0
SL-50TN:1,0;

SL-150TN:1,0;
SL-150TQ:1,0
SL-51N:1,0; SL-51Q:1,0

```
SL-143:0
SL-243:0
SL-343:2
SL-101:1
SL-VOA:ALMMAJ
SL-VO1:101T+VO8+BFPU+VO11*VO15
SL-VO2:101C
SL-VO3:/IN2
SL-VO4:VO9*/VO15
SL-VO5:BFT
SL-VO6:0
SL-VO7:0
SL-VO8:51PT+51NT+51QT
SL-VO9:50TPT+50TNT+50TQT
SL-VO10:VO11+150TPPU*IN3+150TNPU*IN3+150TQPU*IN3
SL-VO11:50TPT+50TNT+50TQT+51PT+51NT+51QT
SL-VO12:50TPPU+50TNPU+50TQPU+51PPU+51NPU+51QPU
SL-VO13:0
SL-VO14:0
SL-VO15:343+/IN4
```


ASCII Command Interface

The BE1-851 Overcurrent Protection System has three independent communications ports for serial communications. A computer terminal or PC running a terminal emulation program such as Windows ${ }^{\circledR}$ Terminal can be connected to any of the three ports so that commands may be sent to the relay. Communication with the relay uses a simple ASCII command language. When a command is entered through a serial port, the relay responds with the appropriate action. The ASCII command language is designed to be used in both human to machine interactions and in batch download type operations. Operation of the ASCII commands is described in detail in Section 11, ASCII Command Interface.

The ASCII communication byte framing parameters are fixed at 8 data bits, no parity and 1 stop bit. Additional ASCII command interface using the SG-COM command. These parameters are also settable from the humanmachine interface (HMI) from Screen 6.1.x. There are several additional settings described in Table 9-4 to further customize the ASCII communications. The additional parameters for page length, reply acknowledge and software handshaking are only settable from the ASCII command interface using the SG-COM command.

Table 11-1. Communication Settings

Parameter	Description	Range	Default
baud	baud rate	$300,600,1200,2400$, 4800,9600 19000	9600
A	address for polled operation	A0 (disabled) A1 to A65534	A0
P	page length	P0 (no page mode) P1 to P40	P0
R	reply acknowledgement level	R0 (disabled) R1 (enabled)	R1
X	Xon/Xoff (hardware handshaking) setting	X0 (disabled) X1 (enabled)	X1 (COM0,1) X0 (COM2)

SG-COM Command
Purpose: Read/Set serial communication protocol.
Syntax: \quad SG-COM[\#[=<baud>,A<addr>,P<pglen>,R<reply ack>,X<XON ena>]]
Comments: Password access privilege G or S is required to change settings.
\# = port number. ($0=$ front, 1 = rear RS-232, 2 = rear RS-485)
Example3. Program the front communication port for 1200 baud.
>SG-COMO = 1200

Example4. Read the communication settings for all ports.
>SG-COM
SG-COMO $=1200, \mathrm{AO}, \mathrm{P} 24, \mathrm{R1}, \mathrm{X1}$
SG-COM1=9600,A0, P24, R1, X1
SG-COM2=19K, A156, P0, R1, X0
If the ' A ' parameter is set at a nonzero value, the relay will ignore all commands that are not preceded by the proper address number. If an address of 0 is programmed, the relay will respond with an error message for any command preceded by an address. With polling enabled, a command preceded by 0 is treated as a global command. All networked relays will execute the command, but no relay will respond to the command. This avoids communication bus conflicts. The front panel communication port (COMO) is not configured for polling, so an attempt to program a non-zero address will result in an error message.

COMMAND SUMMARY

Miscellaneous Commands

ACCESS Command
Purpose: Read/Set access level in order to change settings.
Syntax: ACCESS[=<password>]
Reference: Section 11, ASCII Command Interface, Miscellaneous Command Descriptions
EXIT Command
Purpose: Exit programming mode.
Syntax: EXIT Note: Relay will prompt for verification.
Reference: Section 11, ASCII Command Interface, Miscellaneous Command Descriptions

HELP Command

Purpose: Obtain help with command operation.
Syntax: \quad HELP <cmd> or H <cmd> gives help with a command; H1 gives command list
Reference: Section 11, ASCII Command Interface, Miscellaneous Command Descriptions

Metering Commands

M Command
Purpose: Read all metered values.

Syntax:
Reference:
M
Section 11, Metering, Metering Command Descriptions
M-I Command
Purpose: Read metered current in primary unit.
Syntax: $\quad \mathrm{M}-\mathrm{I}[<$ phase $>]$
Reference: Section 11, Metering, Metering Command Descriptions
Report Commands

Report Commands
RA Command
Purpose: Report/Reset alarm information.
Syntax: \quad RA[=0]
Reference: Section 6, Reporting and Alarm Functions, Alarm Function
RA-MAJ Command
Purpose: Report/Reset major alarm information.
Syntax: RA-MAJ[=0]
Reference: Section 6, Reporting and Alarm Functions, Alarm Function

RA-MIN Command

Purpose:	Report/Reset minor alarm information.
Syntax:	RA-MIN[=0]
Reference:	Section 6, Reporting and Alarm Functions, Alarm Function

RA-REL Command
Purpose: Report/Reset relay alarm information.
Syntax: RA-REL[=0]
Reference: Section 6, Reporting and Alarm Functions, Alarm Function
RB Command
Purpose: Read breaker status.
Syntax: RB
Reference: Section 6, Reporting and Alarm Functions, Breaker Monitoring

RB-DUTY Command

Purpose:	Read/Set breaker contact duty log.
Syntax:	RB-DUTY[<phase> $>=\%$ duty $>]]$
Reference:	Section 6, Reporting and Alarm Functions, Breaker Monitoring

RB-OPCNTR Command
Purpose: Read/Set breaker operation counter.
Syntax: \quad RB-OPCNTR[=<\#operations>]
Reference: Section 6, Reporting and Alarm Functions, Breaker Monitoring
RD Command
Purpose: Report all demand data.
Syntax: RD
Reference: Section 6, Reporting and Alarm Functions, Demand Functions

RD-PI Command

Purpose: Read/Reset peak demand current.
Syntax: \quad RD-PI[<p>[=0]]
Reference: \quad Section 6, Reporting and Alarm Functions, Demand Functions

RD-TI Command

Purpose:	Report today's demand current.
Syntax:	RD-TI[<p>]
Reference:	Section 6, Reporting and Alarm Functions, Demand Functions

RD-YI Command

Purpose: Report yesterday's demand current.
Syntax: \quad RD-YI[<p>]

Reference: Section 6, Reporting and Alarm Functions, Demand Functions
RF Command
Purpose: Read/Reset fault report data.
Syntax: \quad RF[-n/NEW][=0/TRIG]
Reference: Section 6, Reporting and Alarm Functions, Fault Reporting
RG Command
Purpose:
Report general information.
Syntax:
Reference:

RG
Section 6, Reporting and Alarm Functions, Clock

RG-DATE Command
Purpose: Read/Set date.
Syntax: \quad RG-DATE[=<M/D/Y>] or RG-DATE[=<D-M-Y>]
Reference: Section 6, Reporting and Alarm Functions, Clock
RG-STAT Command
Purpose: Report relay status.
Syntax: RG-STAT
Reference: Section 6, Reporting and Alarm Functions, General Status Reporting
RG-TARG Command
Purpose: Report/Reset target status.
Syntax: RG-TARG[=0]
Reference: Section 6, Reporting and Alarm Functions, Fault Reporting
RG-TIME Command
Purpose: Report/Set time.
Syntax: \quad RG-TIME[=hr:mn:sc] or RG-TIME[=hr:mn<f>sc]]
Reference: Section 6, Reporting and Alarm Functions, Clock
RG-VER Command
Purpose: Read program version, model number, style number, and serial number.
Syntax: RG-VER
Reference: \quad Section 6, Reporting and Alarm Functions, Hardware and Software Version Reporting
RO Command
Purpose: Read oscillographic COMTRADE.DAT/.CFG fault report.
Syntax: RO-nA/B[\#].CFG/DAT
Reference: Section 6, Reporting and Alarm Functions, Fault Reporting

RS Command

Purpose: Read/Reset sequence of events record data.
Syntax: \quad RS[-n/Fn/ALM/IO/LGC/NEW][=0]
Reference: Section 6, Reporting and Alarm Functions, Sequence of Events Recorder

Setting Command

S Command
Purpose: Read all relay setting parameters.
Syntax: S
Comments: \quad Section 11, ASCII Command Interface, Using ASCII Commands

Alarm Setting Commands

SA Command

Purpose:	Read all major and minor alarm settings.
Syntax:	SA
Reference:	Section 11, ASCII Command Interface, Using ASCII Commands

SA-BKR Command

Purpose:	Read/Set breaker alarm settings.
Syntax:	SA-BKR[n][=<mode>,<alarm limit>]
Reference:	Section 6, Reporting and Alarms Function, Breaker Monitoring

SA-DI Command

Purpose:	Read/Set demand alarm settings.
Syntax:	SA-DII[p][=<alarm level>]
Reference:	Section 6, Reporting and Alarms Function, Demand Functions

SA-LGC Command

Purpose:	Read/Set logic alarm setting mask.
Syntax:	SA-LGC[=<alarm num 1>[/<alarm num 2>] . . [$[<$ alarm num n $>$]]
Reference:	Section 6, Reporting and Alarms Function, Alarms Function

SA-MAJ Command

Purpose: Read/Set major alarm setting mask.
Syntax: \quad SA-MAJ[=<alarm num 1>[/<alarm num 2>] ... [<alarm num $n>]]$

Reference: Section 6, Reporting and Alarms Function, Alarms Function

SA-MIN Command

Purpose: \quad Read/Set minor alarm setting mask.
Syntax: \quad SA-MIN[=<alarm num 1>[/<alarm num 2>] . . [[<alarm num n>]]
Reference: Section 6, Reporting and Alarms Function, Alarms Function

SA-RESET Command

Purpose:	Read/Set programmable alarms reset logic.
Syntax:	SA-RESET $[=<$ rst alm logic>]
Reference:	Section 6, Reporting and Alarms Function, Alarms Function

Breaker Monitoring and Setting Commands

SB Command

Purpose: Read all breaker settings.
Syntax: SB
Reference: \quad Section 6, Reporting and Alarms Function, Breaker Monitoring

SB-DUTY Command

Purpose:	Read/Set breaker contact duty.
Syntax:	SB-DUTY $[=<$ <mode>, <DMAX>]
Reference:	Section 6, Reporting and Alarms Function, Breaker Monitoring

SB-LOGIC Command

Purpose: Read/Set breaker contact logic.
Syntax: SB-LOGIC[=<breaker close logic>]
Reference: Section 6, Reporting and Alarms Function, Breaker Monitoring
General Setting Commands
SG Command

Purpose:	Read all general settings.
Syntax:	SG
Reference:	Section 11, ASCII Command Interface, Using ASCII Commands

SG-CLK Command

Purpose:	Read/Program format of time and date display.
Syntax:	SG-CLK $[=<$ date format(MM/D)>,<time format(12/24)>]
Reference:	Section 6, Reporting and Alarms Function, Clock

SG-COM Command

Purpose:	Read/Set serial communication protocol.
Syntax:	SG-COMM $\#[=<$ baud $>$, A<addr $>$, P $<$ pglen $>$, R $<$ reply ack $>$, X $<$ XON ena $>]]$
Reference:	Section 9, User Interface and Security, User Interface
	Section 11, ASCII Command Interface, Serial Port Settings and Connections

SG-CT Command

Purpose:	Read/Set Phase/Neutral CT ratio.
Syntax:	SG-CTT[t][=<CTratio $>]$
Reference:	Section 3, Input and Output Functions, Current Inputs

SG-DI Command

Purpose:	Read $/ \mathrm{Set} \mathrm{P}(\mathrm{IA} / \mathrm{IB} / \mathrm{IC} / \mathrm{var} /$ watt $), \mathrm{N}$ and Q demand interval.
Syntax:	$\mathrm{SG}-\mathrm{DII[p][=<} \mathrm{interval>]}$
Reference:	Section 6, Reporting and Alarms Function, Demand Functions

SG-HOLD Command

Purpose: Read/Program output hold operation.
Syntax: \quad SG-HOLD[n][$=<1 / 0$ hold ena $>$]
Reference: Section 3, Input and Output Functions, Outputs

SG-ID Command

Purpose: \quad Read/Set relay ID and station ID used in reports.
Syntax: \quad SG-ID[=<relayID(up to 10 char) $>,<$ StationID(up to 30 char)>]
Reference: Section 3, Input and Output Functions, Relay Identifier Information
SG-IN Command

Purpose:	Read/Set input recognition/debounce.
Syntax:	SG-IN[\#[=<r(ms)>,<db(ms)>]]
Reference:	Section 3, Input and Output Functions, Contact Sensing Inputs

SG-PHROT Command

Purpose:	Read/Set phase rotation setting.
Syntax:	SG-PHROT $=<$ phase rotation $>$]
Reference:	Section 3, Input and Output Functions, Voltage Inputs

SG-SCREEN Command

Purpose:	Read/Set default screen(s).
Syntax:	SG-SCREEN[n][=<default screen number>]
Reference:	Section 10, Human-Machine Interface, Front Panel Display

SG-SGCON Command

Purpose:	Read/Set SGC output on time.
Syntax:	SG-SGCON[=<time>]
Reference:	Section 4, Protection and Control, Setting Groups

SG-TARG Command

Purpose:	Report/Enable Target List and Reset Target Logic.
Syntax:	SG-TARG[$=<\mathrm{x} / \mathrm{x} / \ldots \mathrm{x}>,<$ rst TARG logic $>]$
Reference:	Section 6, Reporting and Alarm Functions, Fault Reporting

SG-TRIGGER Command

Purpose: Read/Set trigger logic.
Syntax: SG-TRIGGER[n][=<TRIP trigger>,<PU trigger>,<LOGIC trigger>]
Reference: Section 6, Reporting and Alarm Functions, Fault Reporting

Programmable Logic Setting Commands

SL Command

Purpose: Obtain setting logic information.
Syntax:
Reference: Section 11, ASCII Command Interface, Using ASCII Commands

SL-43 Command

Purpose:	Read/Set Logic for Virtual switch (x43).
Syntax:	SL-\{x\}43[=mode]
Reference:	Section 4, Protection and Control, Overcurrent Protection

SL-50T Command
Purpose: Read/Set logic for $x 50$ function modules.
Syntax: \quad SL-x50T[<p>[=<mode>,<BLK logic>]]
Reference: Section 4, Protection and Control, Overcurrent Protection

SL-51 Command

Purpose: \quad Read/Set logic for 51 function modules.
Syntax: \quad SL-x51[<p>[=<mode>,<BLK logic>]]
Reference: Section 4, Protection and Control, Overcurrent Protection

SL-62 Command

Purpose: \quad Read/Set logic for 62 function modules.
Syntax: \quad SL-<f>62[=<mode>,<INI logic>,<BLK logic>]
Reference: \quad Section 4, Protection and Control, General Purpose Logic Timers (62/162)

SL-79 Command

Purpose:	Read/Set logic for 79 function.
Syntax:	SL-79 $=<$ mode, $<$ RI logic $>,<$ STATUS logic $>,<$ WAIT logic>,<LOCKOUT logic>]
Reference:	Section 4, Protection and Control, Reclosing

SL-BF Command

Purpose: Read/Set logic for breaker failure function modules.
Syntax: \quad SL-BF[<p>][=<mode>,<lNI logic>,<BLK logic>]]
Reference: Section 4, Protection and Control, Breaker Failure Protection
SL-GROUP Command

Purpose:	Read/Set logic for setting group module.
Syntax:	SL-GROUP $[=<$ mode $>,<$ BLK logic $>]$
Reference:	Section 4, Protection and Control, Setting Groups

SL-N Command

Purpose: \quad Read, set, or copy the name of the custom logic.
Syntax: SL-N[=<name>]
Reference: Section 7, BESTlogic Programmable Logic, Logic Schemes

SL-VO Command

Purpose: Read/Set output logic.
Syntax: SL-VO[\#[=<Boolean equation>]]
Reference: Section 7, BESTlogic Programmable Logic, Working With Programmable Logic

User Programmable Name Setting Command

SN Command
Purpose: Read/Set user programmable names.

Syntax: \quad SN[-<var>[=<name>,<TRUE label>,<FALSE label>]
Reference: Section 7, BESTlogic Programmable Logic, User Input and Output Logic Variable Names

Protection Setting Commands

$\mathrm{S}<\mathrm{g}>$ Command

Purpose:	Read all protection settings.
Syntax:	S<g>
Reference:	Section 11, ASCII Command Interface, Using ASCII Commands

$\mathrm{S}<\mathrm{g}>-50 \mathrm{~T}$ Command
Purpose: \quad Read/Set 50TN pickup level and time delay.
Syntax: \quad S<g>-<t>50T[<p>][=<pu(A)>,<td(m)>]
Reference: Section 4, Protection and Control, Overcurrent Protection
S<g>-51 Command
Purpose: Read/Set 51 pickup level, time delay, and curve.
Syntax: $\quad S<g>-51[<p>][=<p u(A)>,<t d(m)>,<c r v>]$
Reference: Section 4, Protection and Control, Overcurrent Protection

S<g>-62 Command

Purpose: Read/Set 62 time delay.
Syntax: \quad S<g>-<t>62[=<t1>,<t2>]
Reference: \quad Section 4, Protection and Control, General Purpose Logic Timers (62/162)
S<g>-79 Command
Purpose: Read/Set 79 time delay.
Syntax: \quad S<g>-79[\#][=<td>]
Reference: Section 4, Protection and Control, Reclosing
S<g>-79SCB Command
Purpose: Read/Set 79 Sequence Controlled Block Output.
Syntax: \quad S<g>-79SCB[=<step list>]
Reference: Section 4, Protection and Control, Reclosing

SP-BF Command

Purpose: Read/Set the breaker failure timer setting.
Syntax: \quad SP-BF[=<time>[m/s/c]]
Reference: Section 4, Protection and Control, Breaker Failure Protection
SP-CURVE Command
Purpose: Read/Set the user programmable 51 curve parameters.
Syntax: SP-CURVE[$=<A>,,<C>,<N\rangle,<R>]$
Reference: Section 4, Protection and Control, Overcurrent Protection
SP-GROUP Command

Purpose:	Read/Program auxiliary setting group auto operation.
Syntax:	SP-GROUP $<$ g $>=[<$ sw $(m i n)>,<$ sw level\% $>,<$ reset $($ min $)>,<$ ret level\% $>]$
Reference:	Section 4, Protection and Control, Setting Groups

SP-79ZONE Command
Purpose: Read/Set 79 zone sequence logic.
Syntax: \quad SP-79ZONE[=<zone pickup logic>]
Reference: Section 4, Protection and Control, Reclosing

Global Commands

GS-PW Command
Purpose: Read or change a password.
Syntax: \quad GS-PW <t>[=<password>,<com ports(0/1/2)>]]
Reference: Section 9, Security, User Interface

SECTION $12 \cdot$ INSTALLATION

TABLE OF CONTENTS

SECTION $12 \cdot$ INSTALLATION 12-1
GENERAL 12-1
MOUNTING 12-1
CONNECTIONS 12-1
SETTINGS 12-1
COMMUNICATION CONNECTIONS 12-14
Front/Rear RS-232 Connections 12-14
RS-485 Connections 12-16
IRIG Input and Connections 12-16
Terminal Assignments 12-17
PREPARING THE RELAY FOR SERVICE 12-17
Configuring 12-17
Setting 12-17
Testing 12-17
DOVETAILING PROCEDURE 12-17
CONTACT SENSING INPUT JUMPERS 12-19
Figures
Figure 12-1. BE1-851 S1, Case, Overall Dimensions 12-2
Figure 12-2. BE1-851 S1, Case, Cutout Dimension 12-3
Figure 12-3. Adaptor Plate (FT32 Opening to S1 Case) 12-4
Figure 12-4. Adaptor Plate (S2 and FT21 Opening to S1 Case) 12-5
Figure 12-5. BE1-851 H1 Case Dimensions 12-6
Figure 12-6. Single Relay Mounting Plate Dimensions 12-7
Figure 12-7. Single Relay Mounting Dimensions for Panel Mounting without an Escutcheon Plate 12-7
Figure 12-8. Two-relay Mounting Plate Dimensions 12-8
Figure 12-9. Two-relay Mounting Dimensions for Panel Mounting without an Escutcheon Plate 12-9
Figure 12-10. BE1-851 F1 Case Overall Dimensions 12-10
Figure 12-11. BE1-851 F1 Case Cutout Dimensions 12-11
Figure 12-12. Typical AC Connection Diagram 12-11
Figure 12-13. Typical DC Connection Diagram 12-12
Figure 12-14. F1 Case, Rear View, Terminal Connections 12-13
Figure 12-15. H1 Case, Rear View, Terminal Connections 12-13
Figure 12-16. S1 Case, Rear View, Terminal Connections 12-14
Figure 12-17. RFL 9060 Protective Relay Switch to BE1-851 Cable 12-15
Figure 12-18. Personal Computer to BE1-851 12-15
Figure 12-19. Modem to BE1-851 (Null Modem Cable) 12-15
Figure 12-20. RS-485 DB-37 to BE1-851 12-16
Figure 12-21. IRIG , RS-485 and RS-232 Connections 12-17
Figure 12-22. Dovetailing Procedure 12-18
Figure 12-23. Contact Sensing Jumper locations 12-20
Tables
Table 12-1. RS-232 Pinouts (COM0 and COM1) 12-14
Table 12-2. RS-485 Pinouts (COM2) 12-16
Table 12-3. IRIG Pinouts 12-16
Table 12-4. Contact Sensing Turn-On Voltage 12-19

SECTION 12 • INSTALLATION

GENERAL

BE1-851 Overcurrent Relays are delivered with an instruction manual and BESTCOMS software in a sturdy carton to prevent shipping damages. Upon receipt of the relay, check the model and style number against the requisition and packaging list for agreement. Inspect for damage and, if there is evidence of such, immediately file a claim with the carrier and notify the Basler Electric Regional Sales Office, your sales representative or a sales representative at Basler Electric, Highland, Illinois.

If the relay is not installed immediately, store it in the original shipping package in a moisture and dust free environment.

MOUNTING

Because the relay is of solid-state design, it does not have to be mounted vertically. Any convenient mounting angle may be chosen. BE1-851 Overcurrent Protection Systems are available in three case styles. These styles are the $\mathrm{F} 1, \mathrm{H} 1$ and S 1 cases. Overall dimensions for the S1 case are shown in Figure 12-1. S1 case cutout dimensions are shown in Figure 12-4. Overall dimensions and cutout dimensions for the H 1 case are shown in Figures 12-5 through 12-7. Overall dimensions for the F1 case are shown in Figure 12-10. F1 case cutout dimensions are shown in Figure 12-11. All dimensions are given in inches and millimeters.

CONNECTIONS

Relay connections are dependent on the application and logic scheme used. All inputs or outputs may not be used in a given installation. Incorrect wiring may result in damage to the relay. Be sure to check the model and style number against the options listed in the Style Number Identification Chart in Section 1 before connecting and energizing a particular relay.

> NOTE
> Be sure the relay is hard-wired to earth ground with no smaller than 12 AWG copper wire attached to the ground terminal on the rear of the relay case. When the relay is configured in a system with other protective devices, it is recommended to use a separate lead to the ground bus from each relay.

Except as noted above, connections should be made with minimum wire size of 14 AWG. Be sure to use the correct input power for the power supply specified. Figure 12-12 is a typical AC connection diagram. Figure 12-13 is a typical DC connection diagram. Figure 12-14 is a rear view of the F1 style case showing the terminal connections.

SETTINGS

The settings for your application need to be entered and confirmed prior to placing the relay in service. Register settings such as breaker duty can be entered to match the current state of your system.

Figure 12-1. BE1-851 S1, Case, Overall Dimensions

Figure 12-2. BE1-851 S1, Case, Cutout Dimension

Figure 12-3. Adaptor Plate (FT32 Opening to S1 Case)

Figure 12-4. Adaptor Plate (S2 and FT21 Opening to S1 Case)

Figure 12-5. BE1-851 H1 Case Dimensions

Figure 12-6. Single Relay Mounting Plate Dimensions

Figure 12-7. Single Relay Mounting Dimensions for Panel Mounting without an Escutcheon Plate

Figure 12-8. Two-relay Mounting Plate Dimensions

Figure 12-9. Two-relay Mounting Dimensions for Panel Mounting without an Escutcheon Plate

Figure 12-10. BE1-851 F1 Case Overall Dimensions

Figure 12-11. BE1-851 F1 Case Cutout Dimensions

Figure 12-12. Typical AC Connection Diagram

Figure 12-13. Typical DC Connection Diagram

Figure 12-14. F1 Case, Rear View, Terminal Connections

Figure 12-15. H1 Case, Rear View, Terminal Connections

Figure 12-16. S1 Case, Rear View, Terminal Connections

COMMUNICATION CONNECTIONS

Front/Rear RS-232 Connections

Front and rear RS-232 connectors are DB-9 female DCE connectors. Connector pin numbers, functions, names and signal directions are shown in Table 12-1. Figures 12-17 through 12-19 provide RS-232 cable connection diagrams. For more information on communication settings, see Appendix D, Terminal Communication.

Table 12-1. RS-232 Pinouts (COM0 and COM1)

Pin	Function	Name	Direction
1	Shield	----	n / a
2	Transmit Data	(TXD)	From relay
3	Receive Data	(RXD)	Into relay
4	N/C	----	n / a
5	Signal Ground	(GND)	n / a
6	N/C	----	n / a
7	N/C	----	n / a
8	N/C	----	n / a
9	N/C	----	n / a

Figure 12-17. RFL 9060 Protective Relay Switch to BE1-851 Cable

Figure 12-18. Personal Computer to BE1-851 (Straight Cable)

Figure 12-19. Modem to BE1-851 (Null Modem Cable)

RS-485 Connections

The RS-485 connector is a three position terminal block connector designed to interface to a standard communication cable. A twisted-pair cable is recommended. Connector pin numbers, functions, names and signal directions are shown in Table 12-2. A cable connection diagram is provided in Figure 12-20.

Table 12-2. RS-485 Pinouts (COM2)

Terminal	Function	Name	Direction
A	Send/Receive A	(SDA/RDA)	In/Out
B	Send/Receive B	(SDB/RDB)	In/Out
C	Signal Ground	(GND)	n/a

TO RS422/RS485 DB-37 FEMALE
 $\begin{array}{ll}\text { D2557-11 } \\ 02-20-97\end{array} \quad \mathrm{R}_{\mathrm{t}}=\begin{aligned} \text { OPTIONAL TERMINATING } \\ \text { RESISTOR }(120 \text { OHMS TYP. })\end{aligned}$

TO BE1-851 3 POSITION TB

RESISTOR (120 OHMS TYP.)

Figure 12-20. RS-485 DB-37 to BE1-851

IRIG Input and Connections

The IRIG input is fully isolated and supports IRIG Standard 200-98, Format B002. The demodulated (dc levelshifted) input signal must be 3.5 volts or higher to be recognized as a high logic level. The maximum acceptable input voltage range is +10 to -10 volts. Input burden is nonlinear and rated at approximately 4 kilo-ohms at 3.5 Vdc and approximately 3 kilo-ohms at 20 Vdc .

IRIG connections are located on a terminal block shared with the RS-485 and input power terminals. Terminal designations and functions are shown in Table 3-3.

Table 12-3. IRIG Pinouts

Terminal	Function
A1	+ signal
A2	- reference

Terminal Assignments

Figure 12-21 illustrates the location of the IRIG and RS-485 terminals and the pin assignments for an RS-232 connector. Pin assignments are identical for both RS-232 connectors.

Figure 12-21. IRIG , RS-485 and RS-232 Connections

PREPARING THE RELAY FOR SERVICE

Configuring

Prior to putting the relay into service it must be programmed to configure and set the relay for the application. This involves entering a series of ASCII text based commands as described throughout this manual. These commands are entered into the relay after establishing communication with the relay via a terminal emulation program as previously described.

Setting

The task of programming the relay includes providing specific settings such as fault detector settings and timer settings.

Testing

It is normal procedure that a relay be tested prior to putting the relay into service. A suggested testing routine is provided in Section 13, Testing and Maintenance.

DOVETAILING PROCEDURE

Basler H 1 cases can be interlocked by means of a tenon and mortise on the left and right sides of each case. The following paragraphs describe the procedure of dovetailing two cases. Figure 12-22 illustrates the process.
Step 1. Remove the drawout assembly from each case by rotating the two captive, front panel screws counterclockwise and then sliding the assembly out of the case. Observe electrostatic discharge (ESD) precautions when handling the drawout assemblies.
Step 2. Remove the mounting bracket from the side of each case where the two cases will mate. Each bracket is held in place by four Phillips screws.

Step 3. The rear panel must be removed from one of the cases in order for the two cases to be joined. On that panel, remove the Phillips screw from each corner of the rear panel except for the screw at the upper lefthand corner (when looking at the rear of the case). This screw is closest to Terminal Strip A.

Step 4. Turn the screw nearest to Terminal Strip A counterclockwise until the rear panel can be removed from the case. If you have difficulty removing this screw, use the alternate method described in Step 4a. Otherwise proceed to Step 5.

Step 4a. Use a Torx ${ }^{\circledR} \mathrm{T} 15$ driver to remove the two screws attaching Terminal Strip A to the rear panel. Remove the terminal strip and set it aside. Remove the remaining Phillips screw from the rear panel and set the rear panel aside.

Step 5. Arrange the two cases so that the rear dovetailed edge of the case without a rear panel is aligned with the front dovetailed edge of the case with the rear panel installed. Once the dovetails are aligned, slide the cases together.

Step 6. Position the rear panel on the case from which it was removed. Make sure that the panel orientation is correct. Perform Step 6a if Terminal Strip A was not removed during the disassembly process. Perform Step 6b if Terminal Strip A was removed during disassembly.

Step 6a. Position the rear panel over the case and align the screw closest to Terminal Strip A with its mating hole. Tighten the screw while maintaining proper alignment between the rear panel and case. Finish attaching the panel to the case by installing the remaining three Phillips screws. When installed, the rear panels prevent the two cases from sliding apart.

Step 6b. Align the rear panel with the case and install the four Phillips screws that hold the rear panel in place. Position Terminal Strip A in its panel opening and replace the two Torx ${ }^{\circledR}$ T15 screws. When installed, the rear panels prevent the two cases from sliding apart.

Step 7. Mount the case assembly in the desired rack or panel opening and reinstall the drawout assembly in each case.

Figure 12-22. Dovetailing Procedure

CONTACT SENSING INPUT JUMPERS

Four contact sensing inputs provide external stimulus to initiate BE1-851 actions. An external wetting voltage is required for the contact sensing inputs. The nominal voltage level of the external dc source must comply with the dc power supply input voltage ranges listed in Section 1, General Information, Specifications. To enhance user flexibility, the BE1-851 uses wide range ac/dc power supplies that cover several common control voltages. The contact sensing input circuits are designed to respond to voltages at the lower end of the control voltage range while not overheating at the high end of the range.

Energizing levels for the contact sensing inputs are jumper selectable for a minimum of 5 Vdc for 24 Vdc nominal sensing voltages, 26 Vdc for 48 Vdc nominal sensing voltages or 69 Vdc for 125 Vdc nominal sensing voltages. See Table 12-1 for the control voltage ranges.

Table 12-4. Contact Sensing Turn-On Voltage

Nominal Control Voltage	Nominal Turn-On Voltage Range	
	Jumper Installed	Jumper Removed
24 Vdc	$5-8 \mathrm{Vdc}$	n / a
$48 / 125 \mathrm{Vac} / \mathrm{Vdc}$	$26-38 \mathrm{~V}$	$69-100 \mathrm{~V}$
$125 / 250 \mathrm{Vac} / \mathrm{Vdc}$	$69-100 \mathrm{~V}$	$138-200 \mathrm{~V}$

Each BE1-851 is delivered with the contact sensing jumpers installed for operation in the higher end of the control voltage range. If the contact sensing inputs are to be operated at the lower end of the control voltage range, the jumpers must be installed on Pins 2 and 3.

The following describes how to locate and remove/change the contact sensing input jumpers:

1. Remove the drawout assembly by loosening the two thumb screw and pulling the assembly out of the case. Observe all electrostatic discharge (ESD) precautions when handling the drawout assembly.
2. Locate the two jumper terminal blocks that are mounted on the Digital Circuit Board. The Digital Circuit Board is the middle board in the assembly and the jumper terminal blocks are located on the component side of the circuit board. Each terminal block has two sets pins. With the jumper as installed at the factory, one pin should be visible when viewed from the side of the unit. This configuration allows the inputs to operate at the higher end of the control voltage range. Figure 12-23 illustrates the location of the jumper terminal blocks as well as the position of a jumper placed in the high voltage position.
3. To select operation at the lower end of the control voltage range, install the jumper across the two pins. Use care when removing and installing each jumper so that no components are damaged.
4. When all jumpers are positioned for operation in the desired control voltage range, prepare to place the drawout assembly back into the case.
5. Align the drawout assembly with the case guides and slide the assembly into the case.
6. Tighten the screws.

Figure 12-23. Contact Sensing Jumper locations

SECTION $13 \cdot$ TESTING AND MAINTENANCE

TABLE OF CONTENTS

SECTION $13 \cdot$ TESTING AND MAINTENANCE 13-1
GENERAL 13-1
POWER-UP 13-2
COMMUNICATIONS 13-2
STYLE AND SERIAL NUMBER VERIFICATION 13-2
IRIG 13-2
CONTACT SENSING INPUTS AND OUTPUT CONTACTS 13-3
PICKUP AND DROPOUT TESTING 13-3
50T Pickups and Dropouts 13-3
51 Pickups and Dropouts 13-5
TIMINGS 13-7
50T Timings 13-7
51 Timings 13-9
MAINTENANCE 13-11
Maintenance of Backkup Battery for Real Time Clock 13-11
To Replace Battery in H 1 Case 13-11
To Replace Battery in S1 Case 13-12
Figures
Figure 13-1. Terminals and Connections 13-1
Tables
Table 13-1. Relay Voltages 13-2
Table 13-2. Appropriate Voltages 13-3
Table 13-3. Output Commands 13-3
Table 13-4. Pickup Settings 13-4
Table 13-5. Pickup Ranges 13-4
Table 13-6. Pickup Settings 13-4
Table 13-7. Pickup Ranges 13-4
Table 13-8. Pickup Settings 13-5
Table 13-9. Pickup Ranges 13-5
Table 13-10. Pickup Settings 13-5
Table 13-11. Pickup Ranges 13-6
Table 13-12. Pickup Settings 13-6
Table 13-13. Pickup Ranges 13-6
Table 13-14. Pickup Settings 13-6
Table 13-15. Pickup Ranges 13-7
Table 13-16. Pickup and Timer Settings 13-7
Table 13-17. Timing Ranges 13-8
Table 13-18. Timing Ranges 13-8
Table 13-19. Timing Ranges 13-8
Table 13-20. Pickup Settings 13-9
Table 13-21. Pickup Ranges 13-9
Table 13-22. Command Settings 13-9
Table 13-23. Timing Ranges 13-10
Table 13-24. Command Settings 13-10
Table 13-25. Timing Ranges 13-10
Table 13-26. Command Settings 13-11
Table 13-27. Timing Ranges 13-11

SECTION 13 • TESTING AND MAINTENANCE

GENERAL

You may prefer to test your relay before installation. To function test BE1-851 relays, perform the procedures provided in the following paragraphs. A relay terminals and connections diagram is provided in Figure 13-1.

Figure 13-1. Terminals and Connections

POWER-UP

Step 1. Apply voltage to Power Terminals A6 and A7. Table 13-1 shows the appropriate voltage for each style of relay.
Table 13-1. Relay Voltages

Style Number	Voltage Input
xxx1xx	$48-125 \mathrm{Vac} / \mathrm{dc}$
xxx2xx	$125-250 \mathrm{Vac} / \mathrm{dc}$
xxx3xx	24 Vdc

Step 2. Verify that the Power LED is illuminated, the display backlight is lit and characters are displayed on the display. Upon power-up of the relay, a brief self test is performed. During this five second test, all of the front panel LEDs will flash and the display will indicate each step of the test followed by a screen showing the relay model number and software version.

COMMUNICATIONS

Either a VT-100 terminal or a computer with a serial port and suitable communications software may be used to communicate with any of the BE1-851 relay's three communications ports. The relay default communications settings are: a baud rate of 9600 , 8 data bits, 1 stop bit, parity - none and XOn/XOff flow control.

Step 1. Connect the terminal cable to the rear RS-232 port on the relay.
Step 2. Transmit the command "ACCESS=851" to the relay. The relay should respond with "ACCESS GRANTED: GLOBAL." Transmit "EXIT" after getting access.

Step 3. Connect the terminal cable to the front RS-232 port on the relay.
Step 4. Transmit the command "ACCESS=851" to the relay. The relay should respond with "ACCESS GRANTED: GLOBAL." Transmit "EXIT" after getting access.

Step 5. Connect an RS232/RS485 converter box to the RS-232 port on the terminal. Connect the RS-485 output terminals of the converter box to the relay RS-485 terminals.

Step 6. Transmit the command "ACCESS=851" to the relay. The relay should respond with "ACCESS GRANTED: GLOBAL." Transmit "EXIT" after getting access.

STYLE AND SERIAL NUMBER VERIFICATION

Over any communications port, transmit the command "RG-VER." The BE1-851 will respond with the model number, style number, program version and date, boot code version and date, as well as the relay serial number. Verify that the part, style and serial numbers match the information on the relay front label.

IRIG

Step 1. Connect a suitable IRIG source to the relay IRIG Terminals A1 and A2.
Step 2. Upon receiving the IRIG signal, the relay clock will be set with the current time, month and day. This may be verified at Screen 4.5 on the front panel display or by transmitting "RG-TIME" and "RG-DATE" to any of the relay communications ports.

CONTACT SENSING INPUTS AND OUTPUT CONTACTS

Step 1. Apply voltage to the relay contact sensing inputs IN1, IN2, IN3 and IN4. Table 13-2 shows the appropriate voltage to apply.

Table 13-2. Appropriate Voltages

Style Number	Input Voltage
$x x x 1 x x$	48 VDC
$x x x 2 x x$	125 VDC
xxx3xx	24 VDC

Step 2. Transmit the command "RG-STAT." Examine response line "INPUT(1-4) STATUS:" to verify that all inputs were detected.

Step 3. Transmit the commands "ACCESS=851," "CS-OUT=ENA," "CO-OUT=ENA" and "EXIT;Y" to enable the output control override capability of the relay.
Step 4. Using Table 13-3 as a guide, transmit the commands listed and verify that the appropriate output contacts change state. When each command is transmitted, the corresponding output will be pulsed briefly. An ohmmeter or continuity tester may be used to monitor the output contacts status.

Table 13-3. Output Commands

Output	Terminals	Commands
OUT1 (N.O.)	C1 \& C2	CS-OUT1=P,CO-OUT1=P
OUT2 (N.O.)	C3 \& C4	CS-OUT2=P,CO-OUT2=P
OUT3 (N.O.)	C5 \& C6	CS-OUT3=P,CO-OUT3=P
OUT4 (N.O.)	C7 \& C8	CS-OUT4=P,CO-OUT4=P
OUT5 (N.O.)	C9 \& C10	CS-OUT5=P,CO-OUT5=P
ALARM (N.C.)	C11 \& C12	CS-OUTA=P,CO-OUTA $=P$

Step 5. Disable the control override ability if desired by transmitting the commands "ACCESS=851," "CS-OUT=DIS," "CO-OUT=DIS" and "EXIT;Y" to the relay.

PICKUP AND DROPOUT TESTING

Transmit the frequency command, "SG-FREQ=50" or "SG-FREQ=60", depending on which frequency the relay is to be tested at. Transmit the commands "ACCESS=851," "CS-GROUP=0" and "CO-GROUP=0" to select settings group 0 . Save the settings by transmitting the command "EXIT;Y."

50T Pickups and Dropouts

Step 1. Transmit the following scheme to the relay:
ACCESS=851
SL-N=NONE
YES
SL-N=PU50
SL-50T=1,0
SL-VO1=50TPT+50TNT
EXIT;Y

Step 2. Transmit the appropriate command from Table 13-4 to program the 50T pickup setting.

Table 13-4. Pickup Settings

Style Number	Command	
$x 1 x x x x$	$S 0-50 T P=0.1 A, 0 M$	$S 0-50 T N=0.1 A, 0 M$
$x 3 x x x x$	$S 0-50 T P=0.5 A, 0 M$	$S 0-50 T N=0.1 A, 0 M$
$x 5 x x x x$	$S 0-50 T P=0.5 A, 0 M$	$S 0-50 T N=0.5 A, 0 M$

Step 3. Slowly ramp up the current applied at the Phase A input until OUT1 closes. Verify that pickup occurred within the acceptable range listed in Table 13-5.

Table 13-5. Pickup Ranges

	Phase		Neutral	
Style Number	Low Limit	High Limit	Low Limit	High Lit
x1xxxx	0.09 amps	0.11 amps	0.09 amps	0.11 amps
x3xxxx	0.45 amps	0.55 amps	0.09 amps	0.11 amps
x5xxxx	0.45 amps	0.55 amps	0.45 amps	0.55 amps

Step 4. After pickup occurs, ramp the current down slowly until OUT1 opens. Dropout should occur at 90\% $\pm 2 \%$ of the pickup current magnitude.
Step 5. Transmit the appropriate command in Table 13-6 to reprogram the pickup setting.
Table 13-6. Pickup Settings

Style Number	Phase	Neutral
$x 1 x x x x$	$S 0-50 T P=1.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{SO}-50 \mathrm{TN}=1.0 \mathrm{~A}, 0 \mathrm{~m}$
x 3 xxxx	$\mathrm{SO}-50 \mathrm{TP}=5.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{~S} 0-50 \mathrm{TN}=1.0 \mathrm{~A}, 0 \mathrm{~m}$
x 5 xxxx	$\mathrm{SO}-50 \mathrm{TP}=5.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{SO}-50 \mathrm{TN}=5.0 \mathrm{~A}, 0 \mathrm{~m}$

Step 6. Slowly ramp up the current applied at the relay Phase A input until OUT1 closes. Verify that pickup occurred within the acceptable range listed in Table 13-7.

Table 13-7. Pickup Ranges

	Phase			Neutral	
Style Number	Low Limit	High Limit	Low Limit	High Limit	
x 1 xxxx	0.98 amps	1.02 amps	0.98 amps	1.02 amps	
$\mathrm{x} 3 x x x x$	4.9 amps	5.1 amps	0.98 amps	1.02 amps	
x 5 xxxx	4.9 amps	5.1 amps	4.9 amps	5.1 amps	

Step 7. After pickup occurs, ramp the current down slowly until OUT1 opens. Dropout should occur at 90% $\pm 2 \%$ of the pickup current magnitude.

Step 8. Transmit the appropriate command in Table 13-8 to reprogram the pickup setting.

Table 13-8. Pickup Settings

Style Number	Phase	Neutral
$x 1 x x x x$	$S 0-50 T P=5.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{So}-50 \mathrm{TN}=5.0 \mathrm{~A}, 0 \mathrm{~m}$
x 3 xxxx	$\mathrm{SO}-50 \mathrm{TP}=25.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{SO}-50 \mathrm{TN}=5.0 \mathrm{~A}, 0 \mathrm{~m}$
x 5 xxxx	$\mathrm{SO}-50 \mathrm{TP}=25.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{~S} 0-50 \mathrm{TN}=25.0 \mathrm{~A}, 0 \mathrm{~m}$

Step 9. Slowly ramp up the current applied at the relay Phase A input until OUT1 closes. Verify that pickup occurred within the acceptable range listed in Table 13-9.

Table 13-9. Pickup Ranges

	Phase		Neutral	
Style Number	Low Limit	High Limit	Low Limit	Hight
$x 1 x x x x$	4.9 amps	5.1 amps	4.9 amps	5.1 amps
$x 3 x x x x$	24.5 amps	25.5 amps	4.9 amps	5.1 amps
$x 5 x x x$	24.5 amps	25.5 amps	24.5 amps	25.5 amps

Step 10. After pickup occurs, ramp the current down slowly until OUT1 opens. Dropout should occur at 90\% $\pm 2 \%$ of the pickup current magnitude.

Step 11. Repeat Steps 2 through 10 for the Phase B current input.
Step 12. Repeat Steps 2 through 10 for the Phase C current input.
Step 13. Repeat Steps 2 through 10 for the Neutral current input.

51 Pickups and Dropouts

Step 1. Transmit the following scheme to the relay.
ACCESS=851
SL-N=NONE
YES
SL-N=PU51
SL-51=1,0
SL-VO1=51PT+51NT
EXIT;Y
Step 2. Transmit the appropriate command in Table 13-10 to program the pickup setting.
Table 13-10. Pickup Settings

	Command	
Style Number	Phase	Neutral
$x 1 x x x x$	$S 0-51 P=0.1 A, 0 M$	$S 0-51 N=0.1 A, 0 M$
$x 3 x x x x$	$S 0-51 P=0.5 A, 0 M$	$S 0-51 N=0.1 A, 0 M$
$x 5 x x x x$	$S 0-51 P=0.5 A, 0 M$	$S 0-51 N=0.5 A, 0 M$

Step 3. Slowly ramp up the current applied at the relay Phase A input until OUT1 closes. Verify that pickup occurred within the acceptable range listed in Table 13-11.

Table 13-11. Pickup Ranges

	Phase		Neutral	
Style Number	Low Limit	High Limit	Low Limit	High Limit
x 1 xxxx	0.09 amps	0.11 amps	0.09 amps	0.11 amps
$\mathrm{x} 3 x x x x$	0.45 amps	0.55 amps	0.09 amps	0.11 amps
x 5 xxxx	0.45 amps	0.55 amps	0.45 amps	0.55 amps

Step 4. After pickup occurs, ramp the current down slowly until OUT1 opens. Dropout should occur at 95\% $\pm 2 \%$ of the pickup current magnitude.

Step 5. Transmit the appropriate command in Table 13-12 to reprogram the pickup setting.
Table 13-12. Pickup Settings

Style Number	Phase	Neutral
$x 1 x x x x$	$S 0-51 P=1.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{~S} 0-51 \mathrm{~N}=1.0 \mathrm{~A}, 0 \mathrm{~m}$
x 3 xxxx	$\mathrm{SO}-51 \mathrm{P}=5.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{~S} 0-51 \mathrm{~N}=1.0 \mathrm{~A}, 0 \mathrm{~m}$
x 5 xxxx	$\mathrm{S} 0-51 \mathrm{P}=5.0 \mathrm{~A}, 0 \mathrm{~m}$	$\mathrm{~S} 0-51 \mathrm{~N}=5.0 \mathrm{~A}, 0 \mathrm{~m}$

Step 6. Slowly ramp up the current applied at the relay Phase A input until OUT1 closes. Verify that pickup occurred within the acceptable range listed in Table 13-13.

Table 13-13. Pickup Ranges

	Phase		Neutral	
Style Number	Low Limit	High Limit	Low Limit	High Limit
$x 1 x x x x$	0.98 amps	1.02 amps	0.98 amps	1.02 amps
$x 3 x x x x$	4.9 amps	5.1 amps	0.98 amps	1.02 amps
$x 5 x x x x$	4.9 amps	5.1 amps	4.9 amps	5.1 amps

Step 7. After pickup occurs, ramp the current down slowly until OUT1 opens. Dropout should occur at 95\% $\pm 2 \%$ of the pickup current magnitude.

Step 8. Transmit the appropriate command in Table 13-14 to reprogram the pickup setting.
Table 13-14. Pickup Settings

Style Number	Phase	Command
$x 1 x x x x$	$S 0-51 P=3.2 A, 0 m$	$S 0-51 N=3.2 A, 0 m$
$x 3 x x x x$	$S 0-51 P=16.0 A, 0 m$	$S 0-51 N=3.2 A, 0 m$
$x 5 x x x x$	$S 0-51 P=16.0 A, 0 m$	$S 0-51 N=16.0 A, 0 m$

Step 9. Slowly ramp up the current applied at the relay Phase A input until OUT1 closes. Verify that pickup occurred within the acceptable range listed in Table 13-15.

Table 13-15. Pickup Ranges

	Phase		Neutral	
Style Number	Low Limit	High Limit	Low Limit	High Limit
x1xxxx	3.136 amps	3.264 amps	3.136 amps	3.264 amps
$x 3 x x x x$	15.68 amps	16.32 amps	3.136 amps	3.264 amps
x5xxxx	15.68 amps	16.32 amps	15.68 amps	16.32 amps

Step 10. When pickup occurs, ramp the current down slowly until dropout occurs. Dropout should occur at $95 \% \pm 2 \%$ of the pickup current magnitude.

Step 11. Repeat Steps 2 through 10 for the Phase B input.
Step 12. Repeat Steps 2 through 10 for the Phase C input.
Step 13. Repeat Steps 2 through 10 for the Neutral input.

TIMINGS

50T Timings

Step 1. Transmit the following scheme to the relay.
ACCESS=851
SL-N=NONE
YES
SL-N=TIME50
SL-50T=1,0
SL-VO1=50TPT+50TNT
SG-DSP=F
EXIT; Y
Step 2. Transmit the appropriate command in Table 13-16 to program the pickup and timer settings.
Table 13-16. Pickup and Timer Settings

Style Number	Phase	Neutral
$x 1 x x x x$	$S 0-50 T P=1.0 \mathrm{~A}, 0.0 \mathrm{~m}$	$\mathrm{SO}-50 \mathrm{TN}=1.0 \mathrm{~A}, 0.0 \mathrm{~m}$
$x 3 x x x x$	$\mathrm{SO}-50 \mathrm{TP}=5.0 \mathrm{~A}, 0.0 \mathrm{~m}$	$\mathrm{SO}-50 \mathrm{TN}=1.0 \mathrm{~A}, 0.0 \mathrm{~m}$
x 5 xxxx	$\mathrm{SO}-50 \mathrm{TP}=5.0 \mathrm{~A}, 0.0 \mathrm{~m}$	$\mathrm{SO}-50 \mathrm{TN}=5.0 \mathrm{~A}, 0.0 \mathrm{~m}$

Step 3. Apply the appropriate current value to the Phase A input and measure the time between the application of current and OUT1 closing. Verify that the timing is within the acceptance range stated in Table 13-17.

Table 13-17. Timing Ranges

Style Number	Current/Frequency Phase Neutral		Low Limit	High Limit
x1xxxx	$1.05 \mathrm{~A} / 50 \mathrm{~Hz}$	$1.05 \mathrm{~A} / 50 \mathrm{~Hz}$	0.0 sec	0.1 sec
x1xxxx	$1.05 \mathrm{~A} / 60 \mathrm{~Hz}$	$1.05 \mathrm{~A} / 60 \mathrm{~Hz}$	0.0 sec	0.083 sec .
x3xxxx	5.25A/50 Hz	$1.05 \mathrm{~A} / 50 \mathrm{~Hz}$	0.0 sec	0.1 sec .
x3xxxx	$5.25 \mathrm{~A} / 60 \mathrm{~Hz}$	$1.05 \mathrm{~A} / 60 \mathrm{~Hz}$	0.0 sec	0.083 sec .
x5xxxx	5.25A/50 Hz	5.25A/50 Hz	0.0 sec	0.1 sec.
x5xxxx	$5.25 \mathrm{~A} / 60 \mathrm{~Hz}$	$5.25 \mathrm{~A} / 60 \mathrm{~Hz}$	0.0 sec	0.083 sec .

Step 4. Apply the appropriate current value to the Phase A input and measure the time between the application of current until OUT1 closes. Verify that the timing is within the acceptance range stated in Table 13-18.

Table 13-18. Timing Ranges

Style Number	Current/Frequency Phase Neutral		Low Limit	High Limit
x1xxxx	$1.5 \mathrm{~A} / 50 \mathrm{~Hz}$	1.5A/50 Hz	0.0 sec	0.04 sec
x1xxxx	$1.5 \mathrm{~A} / 60 \mathrm{~Hz}$	$1.5 \mathrm{~A} / 60 \mathrm{~Hz}$	0.0 sec	0.033 sec
x3xxxx	$7.5 \mathrm{~A} / 50 \mathrm{~Hz}$	$1.5 \mathrm{~A} / 50 \mathrm{~Hz}$	0.0 sec	0.04 sec
x3xxxx	$7.5 \mathrm{~A} / 60 \mathrm{~Hz}$	$1.5 \mathrm{~A} / 60 \mathrm{~Hz}$	0.0 sec	0.033 sec
x5xxxx	7.5A/50 Hz	7.5A/50 Hz	0.0 sec	0.04 sec
x5xxxx	7.5A/60 Hz	7.5A/60 Hz	0.0 sec	0.033 sec

Step 5. Apply the appropriate current value to the Phase A input and measure the time between the application of current and OUT1 closing. Verify that the timing is within the acceptance range stated in Table 13-19.

Table 13-19. Timing Ranges

Style Number	Current/Frequency Phase		Neutral	

Step 6. Transmit the appropriate command in Table 13-20 to program the pickup setting.
Table 13-20. Pickup Settings

Style Number	Command	
	Phase	Neutral
x1xxxx	S0-50TP=1.0A,5s	S0-50TN=1.0A,5s
x3xxxx	S0-50TP=5.0A,5s	SO-50TN=1.0A, 5s
x5xxxx	S0-50TP=5.0A,5s	S0-50TN=5.0A,5s

Step 7. Apply the appropriate current value to the Phase A input and measure the time between the application of current and OUT1 closing. Verify that the timing is within the acceptance range stated in Table 13-21.

Table 13-21. Pickup Ranges

Style Number	Current/Frequency Phase Neutral		Low Limit	High Limit
x1xxxx	$1.05 \mathrm{~A} / 50 \mathrm{~Hz}$	$1.05 \mathrm{~A} / 50 \mathrm{~Hz}$	4.85 sec	5.35 sec
x1xxxx	$1.05 \mathrm{~A} / 60 \mathrm{~Hz}$	$1.05 \mathrm{~A} / 60 \mathrm{~Hz}$	4.833 sec	5.333 sec
x3xxxx	$5.25 \mathrm{~A} / 50 \mathrm{~Hz}$	$1.05 \mathrm{~A} / 50 \mathrm{~Hz}$	4.85 sec	5.35 sec
x3xxxx	$5.25 \mathrm{~A} / 60 \mathrm{~Hz}$	$1.05 \mathrm{~A} / 60 \mathrm{~Hz}$	4.833 sec	5.333 sec
x5xxxx	$5.25 \mathrm{~A} / 50 \mathrm{~Hz}$	5.25A/50 Hz	4.85 sec	5.35 sec
x5xxxx	$5.25 \mathrm{~A} / 60 \mathrm{~Hz}$	5.25A/60 Hz	4.833 sec	5.333 sec

Step 8. Repeat Steps 2 through 7 for the Phase B input.
Step 9. Repeat Steps 2 through 7 for the Phase C input.
Step 10. Repeat Steps 2 through 7 for the Neutral input.

51 Timings

Step 1. Transmit the following scheme to the relay:
ACCESS=851
SL-N=NONE
YES
SL-N=TIME51
SL-51=1,0
SL-VO1=51TP+51TN
EXIT; Y
Step 2. Transmit the appropriate command from Table 13-22 to program the pickup, time delay setting and curve type.

Table 13-22. Command Settings

	Command	
Style Number	Phase	Neutral
$x 1 x x x x$	$S 0-51 \mathrm{P}=0.1 \mathrm{~A}, 0.5,12$	$\mathrm{SO}-51 \mathrm{~N}=0.1 \mathrm{~A}, 0.5,12$
$x 3 x x x x$	$\mathrm{~S} 0-51 \mathrm{P}=0.5 \mathrm{~A}, 0.5,12$	$\mathrm{~S} 0-51 \mathrm{~N}=0.1 \mathrm{~A}, 0.5,12$
$x 5 \mathrm{xxxx}$	$\mathrm{S} 0-51 \mathrm{P}=0.5 \mathrm{~A}, 0.5,12$	$\mathrm{~S} 0-51 \mathrm{~N}=0.5 \mathrm{~A}, 0.5,12$

Step 3. Apply the appropriate current value to the Phase A current input and measure the time between the application of current and OUT1 closing. Verify that the timing is within the acceptance range stated in Table 13-23.

Table 13-23. Timing Ranges

Style Number	Current	Low Limit	High Limit
x1xxxx	0.2 amp	0.445 sec	0.491 sec
x1xxxx	1.0 amp	0.151 sec	0.166 sec
x1xxxx	2.6 amps	0.118 sec	0.130 sec
x1xxxx	4.0 amps	0.109 sec	0.119 sec
x3xxxx or $\times 5 \times x x x$	1.0 amp	0.445 sec	0.491 sec
x3xxxx or $\times 5 \mathrm{xxxx}$	5.0 amps	0.151 sec	0.166 sec
x 3 xxxx or x 5 xxxx	13.0 amps	0.118 sec	0.130 sec
x3xxxx or $\times 5 \mathrm{xxxx}$	20.0 amps	0.109 sec	0.119 sec

Step 4. Transmit the appropriate command from Table 6-24 to reprogram the pickup, time delay setting and curve type.

Table 13-24. Command Settings

Style Number	Phase	Command
$x 1 x x x x$	$S 0-51 P=0.1 A, 5.0,12$	$S 0-51 N=0.1 A, 5.0,12$
$x 3 x x x x$	$S 0-51 P=0.5 A, 5.0,12$	$S 0-51 N=0.1 A, 5.0,12$
$x 5 x x x x$	$S 0-51 P=0.5 A, 5.0,12$	$S 0-51 N=0.5 A, 5.0,12$

Step 5. Apply the appropriate current value to the Phase A current input and measure the time between the application of current and OUT1 closing. Verify that the timing is within the acceptance range stated in Table 13-25.

Table 13-25. Timing Ranges

Style Number	Current	Low Limit	High Limit
$x 1 x x x x$	0.2 amp	4.205 sec	4.647 sec
x 1 xxxx	1.0 amp	1.272 sec	1.405 sec
x 1 xxxx	2.6 amps	0.935 sec	1.033 sec
x 1 xxxx	4.0 amps	0.846 sec	0.934 sec
$\mathrm{x} 3 x x x x$ or $\times 5 \mathrm{xxxx}$	1.0 amp	4.205 sec	4.647 sec
$\mathrm{x} 3 x x x x$ or x 5 xxxx	5.0 amps	1.272 sec	1.405 sec
x 3 xxxx or x 5 xxxx	13.0 amps	0.935 sec	1.033 sec
x 3 xxxx or x 5 xxxx	20.0 amps	0.846 sec	0.934 sec

Step 6. Transmit the appropriate command from Table 13-26 to reprogram the pickup, time delay setting and curve type.

Table 13-26. Command Settings

	Command	
Style Number	Phase	Neutral
$x 1 x x x x$	$\mathrm{SO}-51=0.1 \mathrm{~A}, 9.9,12$	$\mathrm{~S} 0-51=0.1 \mathrm{~A}, 9.9,12$
x 3 xxxx	$\mathrm{S} 0-51=0.5 \mathrm{~A}, 9.9,12$	$\mathrm{~S} 0-51=0.1 \mathrm{~A}, 9.9,12$
x 5 xxxx	$\mathrm{S} 0-51=0.5 \mathrm{~A}, 9.9,12$	$\mathrm{~S} 0-51=0.5 \mathrm{~A}, 9.9,12$

Step 7. Apply the appropriate current value to the Phase A current input and measure the time between the application of current and OUT1 closing. Verify that the timing is within the acceptance range stated in Table 13-27.

Table 13-27. Timing Ranges

Style Number	Current	Low Limit	High Limit
$x 1 x x x x$	0.2 amp	8.300 sec	9.172 sec
$x 1 \mathrm{xxxx}$	1.0 amp	2.493 sec	2.755 sec
$x 1 x x x x$	2.6 amps	1.824 sec	2.016 sec
$x 1 x x x x$	4.0 amps	1.650 sec	1.822 sec
$x 3 x x x x$ or $x 5 x x x x$	1.0 amp	8.300 sec	9.172 sec
$x 3 x x x x$ or $x 5 x x x x$	5.0 amps	2.493 sec	2.755 sec
$x 3 x x x x$ or $x 5 x x x x$	13.0 amps	1.824 sec	2.016 sec
$x 3 x x x x$ or $x 5 x x x x$	20.0 amps	1.650 sec	1.822 sec

MAINTENANCE

BE1-851 Overcurrent Relays require no preventive maintenance. However, testing should be performed according to scheduled practices. If the relay fails to function properly, consult the Customer Service Department of the Power Systems Group, Basler Electric, for a return authorization number prior to shipping.

Maintenance of Backkup Battery for Real Time Clock

The backup battery for the real time clock is an optional feature available in BE1 numeric products. A 3.6 V, 0.95Ah lithium battery is used to maintain clock function during extended loss of power supply voltage (over eight hours). In mobile substation and generator applications, the primary battery system that supplies the relay power supply may be disconnected for extended periods (weeks, months) between uses. Without battery backup for the real time clock, clock functions would cease after eight hours (capacitor backup).

The backup battery should be replaced after five years of operation. The recommended battery is a lithium 3.6V, 0.95Ah battery (Basler p/n: 9318700012 or Applied Power p/n: BM551902).

To Replace Battery in H1 Case

Step 1. Remove the unit from the case.

Step 2. Disconnect the battery cable from the connector on the right side of the unit. See Figure 13-3 for battery location of H 1 case units. Caution: Be sure that all static body charges are neutralized before touching the PC board.

Step 3. The battery is located on the left side of the case (see Figure 13-3). Using a $5 / 16$ " nut driver, remove the nut holding the battery strap in place. Then remove the old battery being careful not to hang the leads on the PC board components. Consult your local ordinance for proper battery disposal.

Step 4. Insert the new battery by carefully feeding the leads through the hole in the aluminum plate and sliding them between the PC boards. Plug the new battery into the connector as shown in Figure 13-2.

WARNING!

Don't short-circuit, reverse battery polarity or attempt to recharge the battery.

Step 5. Place the battery under the battery strap and replace the nut. Put the unit back into the case.

To Replace Battery in S1 Case

Step 1. Remove the unit from the case.
Step 2. Remove the front panel from the unit by removing the four screws located in the upper, lower, left and right hand corners. The battery will be attached to the back side of the panel using a strap similar to what is shown for the H 1 case in Figure 13-2.

Step 3. Disconnect the battery cable from the connector on the right side of the unit. Caution: Be sure that all static body charges are neutralized before touching the PC board.

Step 4. Using a $5 / 16$ " nut driver, remove the nut holding the battery strap in place. Then remove the old battery being careful not to hang the leads on the PC board components. Consult your local ordinance for proper battery disposal.

Step 5. Insert the new battery and connect the lead to the connector the old battery had been connected to.

WARNING!

Don't short-circuit, reverse battery polarity or attempt to recharge the battery.

Step 6. Place the battery under the battery strap and replace the nut. Put the unit back into the case.

SECTION 14 • BESTCOMS SOFTWARE

TABLE OF CONTENTS

SECTION 14 • BESTCOMS SOFTWARE 14-1
DESCRIPTION 14-1
INTRODUCTION 14-1
INSTALLATION 14-2
Operating Requirements 14-2
Installing the Program on your PC Using Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 14-2
Connecting the PC to the Relay. 14-3
STARTING BESTCOMS 14-3
Start BESTCOMS 14-3
System Setup Summary Screen. 14-3
CONFIGURE THE PC 14-4
SETTING THE RELAY 14-4
Select Logic Scheme for Display 14-4
Settings Display and Selection 14-5
General Operation 14-5
Setting Group Selection 14-6
Overcurrent 14-7
Reclosing 14-8
Breaker Failure 14-9
Logic Timers 14-9
Reporting and Alarms 14-10
Inputs and Outputs 14-11
Virtual Switches 14-12
BESTlogic 14-12
COPYING SETTINGS FROM GROUP TO GROUP 14-13
DOWNLOADING OSCILLOGRAPHY FILES 14-13
View Fault Details 14-14
View Fault Sequence of Events 14-14
Download an Oscillography File 14-14
METERING. 14-14
FILE MANAGEMENT 14-14
Saving a Settings File 14-14
Opening a Settings File 14-15
Uploading a Settings File 14-15
Downloading a Settings File 14-15
Printing a Settings File 14-15
Figures
Figure 14-1.Typical User Interface Components 14-2
Figure 14-2. BESTCOMS Splash Screen 14-3
Figure 14-3. System Setup Summary Screen. 14-4
Figure 14-4. General Operation Screen, General Information Tab 14-5
Figure 14-5. Setting Group Selection Screen 14-7
Figure 14-6. Overcurrent Screen, 51 Tab 14-7
Figure 14-7. Reclosing Screen 14-8
Figure 14-8. Breaker Failure Screen 14-9
Figure 14-9. Logic Timers Screen 14-9
Figure 14-10. Reporting and Alarms 14-10
Figure 14-11. Inputs and Outputs Screen, Inputs 1 - 4 Tab 14-11
Figure 14-12. Virtual Switches Screen 14-12

Figure 14-14. Save Dialog Box .. 14-14

SECTION 14 • BESTCOMS SOFTWARE

DESCRIPTION

BESTCOMS is a Windows ${ }^{\oplus}$ based program that runs on an IBM compatible computer, and provides a user friendly, graphical user interface (GUI) for use with Basler Electric communicating products. BESTCOMS is an acronym that stands for Basler Electric Software Tool for Communications, Operations, Maintenance and Settings.

BESTCOMS provides the user with a point and click means for setting and monitoring the in-service relay or relays under test. The point and click method provides an efficient, fast setup for configuring one or several relays. This software is provided free with every BE1-851.

INTRODUCTION

A primary advantage of the 32 -bit BESTCOMS is that an actual unit (operating BE1 Numerical System) is not required to perform any or all settings and adjustments for any preprogrammed scheme. Nor is it needed to create a custom scheme complete with settings and adjustments. Also, BESTCOMS for all of the BE1 Numerical Systems are identical except for differences inherit in the systems. This means that once you become familiar with a BESTCOMS for one system, you are also familiar with BESTCOMS for all of the systems.

Using the BESTCOMS GUI, you may prepare setting files off-line (without being connected to the relay) and then upload the settings to the relay at your convenience. These settings include protection and control, operating and logic, breaker monitoring, metering, and fault recording. Engineering personnel can develop, test and replicate the settings before exporting them to a file and transmitting the file to technical personnel in the field. In the field, the technician simply imports the file into the BESTCOMS database and uploads the file to the relay where it is stored in nonvolatile memory. (See the paragraphs on File Management later in this manual for more information on saving, uploading and downloading files.)
The BESTCOMS GUI also has the same preprogrammed logic schemes that are stored in the relay. This gives the engineer the option (off-line) of developing his setting file using a preprogrammed logic scheme, customizing a preprogrammed logic scheme or building a scheme from scratch. Files may be exported from the GUI to a text editor where they can be reviewed or modified. The modified text file may then be uploaded to the relay. After it is uploaded to the relay, it can be brought into the GUI but it cannot be brought directly into the GUI from the text file. The GUI logic builder uses basic AND/OR gate logic combined with point and click variables to build the logic expressions. This reduces the design time and increases dependability.

The BESTCOMS GUI also allows for downloading industry-standard COMTRADE files for analysis of stored oscillography data. Detailed analysis of the oscillography files may be accomplished using Basler Electric's BESTwave software. For more information on Basler Electric's Windows ${ }^{\circledR}$ based BESTwave software, contact your local sales representative or Basler Electric, Technical Support Services Department in Highland, Illinois.

This section provides an introduction to all of the screens in the BE1-851 Overcurrent Protection System with their field layouts and typical entries. Common program activities such as applying settings, modifying logic and setting up password security are discussed. These discussions are application oriented. We explore how the activity or task can be performed using an appropriate BE1-851 BESTCOMS screen.
BESTCOMS screens are similar to most Windows ${ }^{\circledR}$ based GUI. You may immediately notice common features such as the pull-down menu, toolbar, icons and help prompts when the mouse pointer is paused over an icon. Some of these features are shown in Figure 14-1. Notice that the Navigation Bar has a right and left arrow at the extreme right hand side of the screen. Clicking on these arrows will shift the Navigation Bar to allow access to all of the icons on the bar. Like most computer programs, there is more than one way to perform an activity or task. These various methods are discussed in the following paragraphs in conjunction with the appropriate BESTCOMS screen.

Figure 14-1.Typical User Interface Components

INSTALLATION

BESTCOMS-851 software contains a setup utility that installs the program on your PC. (This is typical for all of the BE1 Numerical Systems.) When it installs the program, an uninstall icon (in the Control Panel, Add/Remove Programs feature) is created that you may use to uninstall (remove) the program from your PC . The minimum recommended operating requirements are listed in the following paragraph.

Operating Requirements

- IBM compatible PC, 486DX2 or faster (100 MHz or higher speed microprocessor recommended), with a minimum of 20 megabytes of RAM
- Microsoft ${ }^{\circledR}$ Windows NT^{\circledR}, Windows ${ }^{\circledR} 95$, Windows ${ }^{\circledR} 98$ or Windows ${ }^{\circledR}$ Millennium Edition (Me)
- CD-ROM drive
- One available serial port

Installing the Program on your PC Using Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$

1. Insert the CD in the PC CD-ROM drive.
2. When the Setup and Documentation $C D$ menu appears, click the Install button for the BESTCOMS PC Program. The setup utility automatically installs BESTCOMS-851-32 on your PC.
When BESTCOMS is installed, a Basler Electric folder is added to the Windows ${ }^{\oplus}$ program menu. This folder is accessed by clicking the Start button and Programs and then Basler Electric. The Basler Electric folder contains an icon for the BESTCOMS-851 program.

Connecting the PC to the Relay

Remember, you do not have to have a unit connected to the PC to operate BESTCOMS and program settings. If you have an actual unit, connect a communication cable between the front RS-232 communication port on the BE1-851 front panel and an appropriate communication port on the PC.

STARTING BESTCOMS

Start BESTCOMS

Start BESTCOMS by clicking the Start button, Programs, Basler Electric and then the BESTCOMS for BE1-851 icon. At startup, a splash screen with the program title and version number is displayed for a brief time (Figure 14-2). After the splash screen clears, you can see the initial screen - the System Setup Summary Screen. (This is the same process if you do or do not have a unit connected to your PC.)

Figure 14-2. BESTCOMS Splash Screen

System Setup Summary Screen

This screen (Figure 14-3) gives you an overview of the system setup. There are two areas or folder tabs (like paper file folder tabs) to the screen. These are Protection and Control and Reporting and Alarms. When the screen is first displayed, the Protection and Control summary information is in the foreground and the Reporting and Alarms tab is in the background. You may select either of these tabs and bring that tab and information into the foreground. If you are at another BESTCOMS screen such as Overcurrent Protection and want to return to this screen, you may
 use the Screens pull-down menu or click on the System Setup Summary icon which is shown at the right margin of this paragraph.

Protection and Control

Look in the lower, right-hand corner for the legend. This legend provides interpretation for the various indicated colors. Any protection and control function or element may be enabled or disabled and the current state is indicated by the associated color. If the function is enabled, the color is green. If the function is only disabled by a setting (such as zero), the color is yellow. If the function is only disabled by logic, the color is blue. If the function is disabled by both a setting and logic, the color is gray.

If a function has variations such as 27 X which has three modes (fundamental, three-phase residual and third harmonic) and none of these modes are enabled, a tilde (\sim) is displayed.

In addition to the functional status, Group selection is displayed and the names are shown for the displayed and active logic and the virtual switches.

Figure 14-3. System Setup Summary Screen

CONFIGURE THE PC

If you have an actual BE1-851 relay, configure your PC to match the BE1-851 configuration. To do this, pull down the Communication menu in the pull-down menu and select Configure. Now, match the communication configuration in the BE1-851 relay. You may select Terminal (VT100 Emulation) and go directly to that communication protocol. You must close Terminal Mode before you can use BESTCOMS again. If you are comfortable using ASCII commands, the Terminal Mode is an easy method for checking the actual settings or status of the relay when you are in doubt about an action taken in BESTCOMS. ASCII commands are available in the relay instruction manuals.

SETTING THE RELAY

To set the relay, we will discuss the contents of each of the screens for BESTCOMS for BE1-851. The System Setup Summary Screen was discussed in previous paragraphs. We begin with the assumption that you have started BESTCOMS, connected the PC to the relay, and configured your PC to the relay. If the default settings are active in your relay, you will have to change the logic to clear the Major alarm or disable the Logic $=$ None Alarm under Alarm Priority in Reporting And Alarms, Alarms. This section describes BESTCOMS features as they occur and not on a priority (perform this setting first) basis. For information on how to select or name the active logic, see the paragraphs on BESTlogic.

Select Logic Scheme for Display

In Figure 14-3, below the pull-down menu, there is a pull-down arrow for the Logic menu. To select a preprogrammed scheme, pull down this menu and click on the desired scheme. When you do, the logic selected name is displayed in the Logic window and the System Setup Summary Screen displays what results would be if that scheme were active. It does not make it the active screen. You select custom and preprogrammed logic schemes using the BESTlogic Screen (see additional paragraphs in this manual).

Settings Display and Selection

Immediately below the Logic menu, there is a Settings window. If the active screen does not have a possible group 0, 1, 2 or 3 selection, then Global is shown in the Settings window. Settings available at this time are general in nature and do not apply to any group. If a group selection is possible, then a pulldown menu is shown and provides for group 0,1,2 or 3 selection. An example of this is the Overcurrent Protection Screen. Pull down the Screens menu and select Overcurrent Protection. When you do, the Settings window display changes to the Group pull-down menu. If you wanted the specific setting change that you were about to make to affect the Group 1 settings, select Group 1.

General Operation

Pull-down the Screens menu and select General Operation or click on the General Operation icon which is shown at the right margin of this paragraph. This screen has five folder tabs and the first tab is labeled General Information.

General Information

This tab (Figure 14-4) allows you to fill in the style number of the relay which is available from the label on the relay front panel. You can also enter the serial number and software application program information. Additionally, you may enter the name of the substation and the feeders so that relay reports have some form of installation-specific identification.

Figure 14-4. General Operation Screen, General Information Tab

Power System

This tab allows you to enter the frequency, phase rotation, nominal CT secondary voltage and current, and power line parameters. If the phase rotation entry is not correct, it will cause problems in several areas including metering values and targets. Power line parameters are necessary for line protection. In other words, you must make entries in these fields in order for the BE1-851 protection elements to function. These symmetrical component sequence quantities are entered to provide immediate reference information for settings of the protection elements in the BE1-851 relay. Distance to fault calculation accuracy is also dependent on the power line parameters entered in this screen.

Global Security

Each of three communication ports and the four functional areas (Global, Settings, Reports and Control) have password security. This allows the user to customize password protection for any and all ports. For example, you could allow technicians to have global access to all three functional areas via the front communication port. You could also restrict the rear port which is connected to a modem to read-only access.

If you select Show Passwords and the default passwords have not been changed, all four passwords appear and can be changed. If the global password has been changed, a dialog box appears explaining that you must enter the global password to enable viewing and editing the existing passwords. After entering the global password, the passwords and enable boxes appear. You may then make changes in any and all areas. Clicking a box for a specific communication port toggles the functional area for that port either ON or OFF. Notice that the front panel human-machine interface (HMI) and communications port zero are combined and considered as one.

Communication

This tab allows the user to set or change additional communication parameters that cannot be set under the Communication, Configure screen. Baud Rate has the pull-down menu, Reply and Handshaking are either enabled or disabled, and Page Length can be stepped up or down one page at a time using the up or down arrow button. Address can be stepped up or down to change the address except for Com Port 0 Front. This address is always A0 and cannot be changed. If the relay has Modbus ${ }^{\top \mathrm{M}}$, an additional panel appears on the General Operation, Communication tab. This panel allows the user to select the Precision Format, Parity, Remote Delay Time and Stop Bits. For more information on these parameters, see the appropriate Modbus ${ }^{\top \mathrm{M}}$ instruction manual.

HMI Display

This tab allows the user to change the screen scroll list. Only the code for the latest version of BESTCOMS is contained within BESTCOMS. If you have an earlier version of the embedded firmware in your relay and selected that information on the General Information tab under General Operation, you can select a screen scroll item in BESTCOMS that is not available in the relay. If you do, you will get an error code immediately.

Setting Group Selection

Pull down the Screens menu and select Setting Group Selection or click on the Setting Group Selection icon which is shown at the right margin of this paragraph. This screen has no folder tabs and is labeled Setting Group Selection/Setting Group Automatic Control Settings.

Setting group selection involves programming the relay to automatically select one group out of four protective element setting groups in response to system conditions. When the system is normal, the default or normal group is 0 . Auxiliary setting groups allow adapting the coordination settings to optimize them for a predictable situation. Sensitivity and time coordination settings can be adjusted to optimize sensitivity or clearing time based upon source conditions or to improve security during overload conditions. Near the bottom of Figure 14-5 (next page), there is a Monitor Setting window for Groups 1, 2 and 3 . This field in each group allows you to select which element controls that specific group selection. The Switch Threshold sets the level for the monitored element and the Switch Time sets the time delay to prevent the group change from changing the instant that the monitored element exceeds the Switch Threshold setting. Return Threshold and Time does the same thing for changing back to the previous group.

You do not have to depend only on monitored conditions to change group selection. The active Setting Group can be controlled at any point in time by the setting group control logic. (Refer to Section 4, Protection and Control, for more information on Setting Groups.) The setting group control also has an alarm output variable SGC (Setting Group Changed). This output is asserted whenever the BE1-851 switches from one setting group to another. The alarm bit is asserted for the SCCON time setting.

You can click in the

Setting Group Selection - Setting Group Automatic Control Settings

Figure 14-5. Setting Group Selection Screen Setting Group Change (SGC) Alarm Timer (Sec) field and set the SGCON Time setting.

Overcurrent

Pull down the Screens menu and select Overcurrent or click on the Overcurrent protection icon which is shown at the right margin of this paragraph. This screen has three folder tabs and the first tab is 51 .

51 (Time Overcurrent)

This tab allow you to enter the settings for the time overcurrent elements. BE1-851 relays have three time overcurrent elements. The pull down Pickup menu (Figure 14-6) allows you to select the relative pickup quantity. BE1-851 relays measure the current input in secondary amperes. You can also choose to use primary amperes, per unit amperes or percent amperes.

Figure 14-6. Overcurrent Screen, 51 Tab

If you want to change the characteristic curve constants, select the Curve Coefficients and a dialog box opens for those entries.

Select the BESTlogic box at the bottom of the Phase (51P) panel. The status of the logic is shown above the BESTlogic box. A dialog box (BESTlogic Function Element) opens showing the status of the element logic and the logic scheme name. If you have a custom logic scheme active, you may change the status of the element logic by pulling down the menu and selecting from the available choices. Set the 51 N and 51Q properties in a likewise manner.

50T and 150T (Instantaneous Overcurrent)

BE1-851 relays have six instantaneous elements. These two tabs for the instantaneous elements are almost identical to the 51 screens. The settable time delay is the primary difference. To change the time delay, pull down the Time menu and select your preferred unit of measure (milliseconds, seconds, minutes or cycles) and then change the time for the appropriate phase, neutral or negative sequence element.

Reclosing

Pull down the Screens menu and select Reclosing or click on the Reclosing icon which is shown at the right margin of this paragraph. This screen has no folder tabs and is labeled Reclosing.

The reclosing function provides up to four reclosing attempts that can be initiated by a protective trip or by one of the contact sensing inputs. To set the actual reclose sequence, first pull down the Time Units menu (Figure 14-7) and set the units for time measurement. Notice that when the Reclose 1 Time setting is zero, the Sequence Controlled Block (SCB), Trip 1 is grayed out. Set the Reclose 1 Time for the first reclose time and the SCB window is now available. Now enter the reclose times for the remaining reclose attempts. The total time for all reclose attempts is

Figure 14-7. Reclosing Screen cumulative. For example, the second reclose attempt is the sum of Reclose 1 Time and Reclose 2 Time. Reclose three total time would be the sum of the reclose time for three, two and one. If you want to block the instantaneous or any other protection element during reclose, check the SCB window or windows. If the 79 C or 52 status is TRUE, and the SCB is enabled (checked) for the next reclose attempt, the 79 SCB output becomes TRUE and the output logic can be used to block the instantaneous element.

Set the reset time using the same unit of measure that was used for the reclosing attempts. Reset time is how long you want the relay to remain reset before the relay returns to the initial state.

Set the maximum cycle time. Maximum cycle time limits the duration of a reclosing sequence as determined from sequence initiation to automatic relay reset or lockout.

Logic settings for the 79 reclosing function can be made by clicking on the BESTlogic button and with your custom logic selected, select the mode and other input logic by using the Mode pull-down menu and clicking on the logic inputs to set the logic.

To set the zone sequence coordination, click on the Zone Sequence Logic button. When the Reclosing dialog box opens, click on the logic diagram and set the logic.

Breaker Failure

Pull down the Screens menu and select Breaker Failure or click on the Breaker Failure icon which is shown at the right margin of this paragraph. This screen has no folder tabs and is labeled Breaker Failure.

To set the time delay from when the breaker failure initiate is received and the trip output is asserted, first pull down the Timer Setting Units menu (Figure 14-8) and set the units for time measurement. Then set the Timer Setting Time.

Logic settings for the breaker failure function can be made by clicking on the BESTlogic button and with your custom logic selected, select the mode and other input logic by using the Mode pull-down menu and clicking on the logic inputs to set the logic.

Figure 14-8. Breaker Failure Screen

Logic Timers

Pull down the Screens menu and select Logic Timers or click on the Logic Timers icon which is shown at the right margin of this paragraph. This screen has no folder tabs and is labeled Logic Timers.

Logic timers, 62 and 162, are general purpose timers with six operating modes. Each operating mode has a T1 and T2 setting (Figure 14-9). The function of these settings depends on the type of timer (mode) selected. For a description of the setting functions, see Section 4, Protection And Control.

Logic settings for the logic timers can be made by clicking on the BESTlogic button and with your custom logic selected, use the Mode pull-down menu and select one of the six timer modes or disable the logic timers.

Select other input logic by clicking on the logic inputs

Figure 14-9. Logic Timers Screen to set the logic.

Reporting and Alarms

Pull down the Screens menu and select Reporting and Alarms or click on the Reporting and Alarms icon which is shown at the right margin of this paragraph. This screen has five folder tabs and the first tab is Clock Display Mode.

Clock Display Mode

Use the Time and Date Format pull-down menus (Figure 14-10) to set the current time and date in the preferred format.

Demands

Demand intervals can be set independently for the phase, neutral and negative sequence demand calculations. Click in the phase, neutral or negative sequence field and enter the time or adjust the time by using the appropriate (up or down) arrow buttons. Use the pull-down menus to set the unit of measure for each threshold setting. The demand value is shown in each field as the data is metered.

Breaker Monitoring

Each time the breaker trips, the breaker duty monitor updates two sets of registers for each pole of the breaker. his function selects which of the two sets of duty registers are reported and monitored, sets the existing values and programs the function logic.

Use the Breaker Duty Monitoring pull-down menu to select the operating Mode. Click in the field for 100% Duty Maximum and set the value. Logic settings for the Block Accumulation Logic can be made by clicking on the Logic button and with your custom logic selected, select the block accumulation logic.

Because the relay is completely programmable, it is necessary to program which logic variable monitors breaker status (how the relay knows when the breaker is closed). Set the Breaker Status Logic by clicking on the Logic button and with your custom logic selected, select the control logic.

Three breaker alarm points are programmable for checking breaker monitoring functions. Each alarm point can be programmed to monitor any of the three breaker monitoring functions or all three alarm points can be programmed to monitor one function and alarm at various threshold levels. Use the pull-down menu for Point 1 and select the preferred breaker monitoring mode (function). With the Mode set, the Threshold field is viable and has a zero threshold. Use the keyboard to enter the threshold value or the appropriate (up or down) arrow buttons. Repeat the procedure for Breaker Alarm Points 2 and 3.

[^0]Logic settings for the Alarm Reset Logic can be made by clicking on the BESTlogic Logic button and then clicking on the Reset input. Other logic blocks shown under BESTlogic on the Alarms tab are shown for reference only. There is no interaction available.

Fault Recording

Logic expressions define the three conditions that determine when a fault has occurred. When a fault is detected by the relay, the relay records (stores in memory) data about the fault. The three conditions that determine a fault are Trip, Pickup and Logic Trigger. To define these conditions, click on Fault Recording, - Logic button and then click on Tripped, Pickup and Logic in turn, and program the inputs that define each condition. You may clear existing programming by clicking on the Clear button or clicking on each individual variable.

Logic settings for the Target Reset Logic can be made by clicking on the Target Reset - Logic button and then clicking on the Reset input. Other logic blocks on the Alarms tab are shown for reference only. There is no interaction available.

Any protective function, except 62, 162 and 60FL, that has a trip will set a target because these functions have the targets enabled on the Fault Recording tab. If you are using a protective function in a supervisory capacity and do not want to set a target when the protective function trips, disable that target by clicking on the specific target. If you want to disable all of the targets for a specific type of function, click on the appropriate button on the left side of the Enabled Targets pane (for example, "No 51's,"."No 50T's," No 150T's," etc.).

Inputs and Outputs

Pull down the Screens menu and select Inputs and Outputs or click on the Inputs and Outputs icon which is shown at the right margin of this paragraph. This screen has two folder tabs and the first tab is Inputs 1-4.

Inputs 1-4

There are four programmable inputs in the BE1-851 relay. To program how long the Input 1 contact must be closed to be recognized as closed, first, pull down the Time Units menu (Figure 1411) and set the units for the appropriate time measurement. Then, click on the Input 1, Recognition Time, and enter the new value or use the appropriate (up or down) arrow buttons to set the new value. To program how long the Input 1 contact must be open to be recognized as open, click on the Input 1, Debounce Time, and enter the new value or use the appropriate (up or down) arrow buttons to set

Figure 14-11. Inputs and Outputs Screen, Inputs 1-4 Tab the new value.

You can assign a meaningful name to each input. This makes sequential events reports easier to analyze. To assign a meaningful name to Input 1, click in the Name field and enter the new name. To change the label for the Closed State, click on the Closed State field and enter the new name. To change the label for the Open State, click on the Open State field and enter the new name. The remaining three inputs have the same functions.

Outputs 1-5, A

On this tab, the only feature that you may change is to select the programmable hold attribute. To select the hold attribute (contacts remain closed for 200 milliseconds) for any output, click on the hold attribute field for that output. To change the label for any of the virtual outputs, see the paragraphs on BESTlogic, Virtual Outputs later in this manual.

Virtual Switches

Pull down the Screens menu and select Virtual Switches or click on the Virtual Switches icon which is shown at the right margin of this paragraph. This screen (Figure 14-12) has no folder tabs and is labeled Virtual Switches.

You can assign a meaningful name or label to each virtual switch. This makes sequential events reports easier to analyze. To assign a meaningful label to Virtual Switch 43, click in the Label field and enter the new name. To change the label for the Closed State, click on the Closed State field and enter the new name. To change the label for the Open State, click on the Open State field and enter the new name. The remaining three virtual switches (141, 241 and 341) function the same way.

The mode logic setting for Virtual Switch 43 can be made by clicking on the

Figure 14-12. Virtual Switches Screen BESTlogic button and with your custom logic selected, select the mode logic by using the Mode pull-down menu. The remaining three virtual switches have the same functions.

The Virtual Breaker Control Switch 101 provides manual control of a circuit breaker or switch without using physical switches and/or interposing relays. The mode logic setting for Virtual Switch 43 can be made by clicking on the BESTlogic button and with your custom logic selected, select the mode logic by using the Mode pull-down menu.

BESTIogic

Pull down the Screens menu and select BESTlogic or click on the BESTlogic icon which is shown at the right margin of this paragraph. This screen has three folder tabs and the first tab is Logic Select.

Logic Select

This tab (Figure 14-13) allows you to select one of the preprogrammed logic schemes and copy that scheme to the active logic. You may then keep the preprogrammed logic but are allowed to change nothing in the scheme. You must rename that logic to a custom name and then make changes as you desire. Click on the logic to be copied to the active logic and a dialog box appears requiring that you okay the replacement of all settings. Execute the OK and then type in the custom name.

Virtual Outputs

You can assign a meaningful name or label to each virtual output. This makes sequential events reports easier to analyze. To assign a meaningful label to Vrtual Otput VO6, click in the Label field and enter the new name. Remember, VO6 does not have actual hardware output contacts. Only VOA and VO1 through VO6 have hardware output contacts. To change the label for the True State, click on the True State field and enter the new name. To change the label for the False State, click on the False State

Figure 14-13. BESTlogic Screen, Logic Select Tab field and enter the new name. To change the logic associated with VO6, click on the BESTlogic button associated with VO6. Click on the logic input and program the logic variables that define VO6. You may clear existing programming by clicking on the Clear button or clicking on each individual variable. The other 14 virtual outputs have the same function.

Function Blocks

Not all of the logic functions have BESTlogic labeled on the button. If the logic function is labeled Logic and not BESTlogic, the ASCII command for the function is not prefixed with SL-. For example: Breaker Status is a function of breaker monitoring and the ASCII command is SB-LOGIC for Setting, BreakerLogic. To program a logic function, find the logic function in the list and click on the associated BESTlogic or Logic button. The BESTlogic Function Element dialog box opens with the available programming. If the Mode pull-down menu is available, select the appropriate mode. Click on the logic inputs and program the appropriate logic.

COPYING SETTINGS FROM GROUP TO GROUP

There are a lot of settings in any BE1-Numerical Systems product and the differences between Group 0 and any other group settings may be minimal. It would be convenient if there was a way to copy settings from Group 0 to another group and then just change only those settings that are different. With BESTCOMS, there is an easy way to do that. Pull down the Copy menu from the pull-down menu as shown in Figure 1. There is only one choice, Copy from Group to Group. When you select this choice, a dialog box opens allowing you to select the Copy to group. When you okay the copy routine, another dialog box opens to inform you that the copy routine is complete. Now change those settings that are different.

DOWNLOADING OSCILLOGRAPHY FILES

To download an oscillography file, pull down the Reports menu from the Pull-down menu as shown in Figure 1 and select Oscillography Download. When you select this choice, you may get a communication error if you are not configured to an actual relay. If you have communication with the relay, a dialog box
opens allowing you to View/Download Relay Fault Files. If there have been no fault events triggered, you may create one by clicking on the Trigger button in the View/Download Relay Fault Files dialog box.

View Fault Details

To view the fault record details, select an event by clicking on the event number or anywhere on the event line. The event grays-out while the information is being retrieved from the relay. View the fault details in the associated window.

View Fault Sequence of Events

To view the fault record sequence of events, click on the radio button by the View Fault Sequence of Events. View the fault sequence of events in the associated window.

Download an Oscillography File

To download an oscillography file, click on the Download button in the View/Download Relay Fault Files Dialog box. Use normal Windows ${ }^{\oplus}$ techniques to select the computer folder that is to receive the download file. You may create a new folder at this time by clicking on the New Folder button. Select the type of file to download: Binary or ASCII. Okay the file save and the Fault Record Filenames dialog box opens. Use the default Base Filename or enter a new file name. As you change the file name, the names for the Header File, Fault Sequence and Fault Summary also change automatically. Okay the file names and then exit the dialog box. You have now downloaded the oscillography file. You may view this oscillography file using Basler Electric's BESTwave software.

METERING

To observe the system metering, pull down the Reports menu from the Pull-down menu as shown in Figure 1 and select Metering. When the Metering dialog box opens, click on the Start Polling button. If BESTCOMS is not configured to the relay communication settings, you will receive a Communications Error. The Metering dialog box has two pull-down menus: File and Communication. To configure communication with the relay, pull down the Communication menu and select Configure. Choose the Communication port and baud rate, as required. If you have communication with the relay, click on the Start Polling button. Metering values are displayed in the various screen windows. If you select Configure with polling in progress, you will get the Polling Active dialog box. You must stop polling before you can change configuration. To stop polling, click on the Stop Polling button. To exit, pull down the File menu and select Exit. You may also use the Windows ${ }^{\circledR}$ techniques and click on the close icon (X) in the upper right-hand corner of the Metering dialog box.

FILE MANAGEMENT

In these paragraphs, file management describes saving, opening, uploading, downloading and printing settings files.

Saving a Settings File

If you change any settings in the active custom logic scheme and try to exit BESTCOMS, the dialog box shown in Figure 14-14 appears. If you choose Yes, a file properties dialog box appears. The file properties dialog box also appears if you pull down the file menu and choose Save or Save As. The lines of information that are grayed-out are automatically entered based on

Figure 14-14. Save Dialog Box the file name and relay identifier information command (SG-ID). You may enter up to 50 characters in the Additional Info: field and 2,500 characters in the File Comments field. When you okay the dialog box, you are given an opportunity to name the file and select the path. Clicking on Save completes saving a settings file.

Opening a Settings File

To open a settings file into BESTCOMS, pull down the File menu and choose Open. If the settings in your BESTCOMS have changed, a dialog box will open asking you if want to save the current settings changes. You may choose Yes or No. After you have taken the required action to save or not save the current settings, the Open dialog box appears. This dialog box allows you to use normal Windows ${ }^{\circledR}$ techniques to select the file that you want to open. Select the file and open it and the file settings have been brought into BESTCOMS.

Uploading a Settings File

To upload a settings file to the BE1-851 relay, you must first open the file through BESTCOMS or create the file using BESTCOMS. Then pull down the Communication menu and select Upload Settings to Device. You are prompted to enter the password. If the password is correct, the upload begins and the percent complete loading bar is shown. At upload completion, you are asked if you want to save the settings and make them active. After replying, you are informed of the status: Yes - settings are saved or No - settings are discarded. If you would like to view the file names as they are uploaded, pull down the Communication menu and select Configure. When the Configure Communication Port dialog box opens, click the On button for Show Commands During Data Transfer and then OK. Now, during data transfer, you will see two screens (Sending and Status) and the percent complete loading bar. If a data transfer error occurs, you can briefly see the error notification in the Status window. The file settings will not be uploaded and the changes discarded. You may then scroll through the Status window until you find the error notification. Click on the error notification and the data file that transferred in error is shown in the Sending window.

Downloading a Settings File

To download a settings file from a BE1-851 relay, you must pull down the Communication menu and select Download Settings from Device. If the settings in your BESTCOMS have changed, a dialog box will open asking you if want to save the current settings changes. You may choose Yes or No. After you have taken the required action to save or not save the current settings, the downloading is executed.

Printing a Settings File

To print a settings file, pull down the File menu and select Print. A dialog box, Print BE1-851 Settings File opens with the settings file shown and typical Windows ${ }^{\circledR}$ choices to setup the page and the printer. Execute these commands as necessary and then select Print.

You may also export the settings file to a text file. Pull down the File menu and select Export to Text. A dialog box, Export to Text File opens with the settings file shown. Execute the OK command and then use normal Windows ${ }^{\circledR}$ techniques to select the path. Execute the save command and you now have a text file of your BESTCOMS settings.

APPENDIX A • TIME-OVERCURRENT CHARACTERISTIC CURVES

TABLE OF CONTENTS
APPENDIX A • TIME-OVERCURRENT CHARACTERISTIC CURVES A-1
GENERAL A-1
CURVE SPECIFICATIONS A-1
TIME-OVERCURRENT CHARACTERISTIC CURVE GRAPHS A-2
Time Dial Setting Cross-Reference A-3
Using Table A-3 A-3
List of Figures
Figure A-1. Time Characteristic Curve S, S1 Short Inverse,99-1369, (Similar to ABB CO-2) A-5
Figure A-2. Time Characteristic Curve S2, Short Inverse,99-1595 (Similar to GE IAC-55) A-6
Figure A-3. Time Characteristic Curve L, L1, Long Inverse,99-1370, (Similar to ABB CO-5) A-7
Figure A-4. Time Characteristic Curve L2, Long Inverse,99-1594, (Similar to GE IAC-66) A-8
Figure A-5. Time Characteristic Curve D, Definite Time,99-1371, (Similar to ABB CO-6) A-9
Figure A-6. Time Characteristic Curve M, Moderately Inverse,99-1372, (Similar to ABB CO-7) A-10
Figure A-7. Time Characteristic Curve I, 11 Inverse Time,99-1373 (Similar to ABB CO-8) A-11
Figure A-8. Time Characteristic Curve I2, Inverse Time,99-1597 (Similar to GE IAC-51) A-12
Figure A-9. Time Characteristic Curve V, V1, Very Inverse,99-1374 (Similar to ABB CO-9) A-13
Figure A-10. Time Characteristic Curve V2, Very Inverse,99-1596 (Similar to GE IAC-53) A-14
Figure A-11. Time Characteristic Curve E, E1, Extremely Inverse,99-1375 (Similar to ABB C0-11) A-15
Figure A-12. Time Characteristic Curve E2, Extremely Inverse,99-1598 (Similar to GE IAC-77) A-16
Figure A-13. Time Characteristic Curve A, Standard Inverse, 99-1621 A-17
Figure A-14. Time Characteristic Curve B, Very Inverse, 99-1376 A-18
Figure A-15. Time Characteristic Curve C, Extremely Inverse, 99-1377 A-19
Figure A-16. Time Characteristic Curve G, Long Inverse, 99-1622 A-20
Tables
Table A-1.51P and 51N Time Characteristic Curve Constants A-2
Table A-2. Characteristic Curve Cross-Reference A-3
Table A-3. Characteristic Curve Cross-Reference A-4
Equations
Equation A-1 A-1
Equation A-2 A-1

APPENDIX A • TIME-OVERCURRENT CHARACTERISTIC CURVES

GENERAL

Basler Electric inverse time-overcurrent relays (ANSI Device 51) provide time/current characteristic curves that closely emulate most of the common electromechanical, induction disk relays manufactured in North America. To further improve relay coordination, selection of integrated reset or instantaneous reset characteristics is also provided.

CURVE SPECIFICATIONS

Timing Accuracy (All 51 Functions) Within $\pm 5 \%$ or $\pm 1 \frac{1}{2}$ cycles (F / R response) or $-11 / 2+3$ cycles (A response) whichever is greater for time dial settings of D greater than 0.1 and multiples of 2 to 40 times the pickup setting but not over 150 A for 5 A CT units or 30 A for 1 A CT units.
Sixteen inverse time functions and one fixed time function and one programmable time function can be selected. Characteristic curves for the inverse and definite time functions are defined by the following equation:

$$
\mathrm{T}_{\mathrm{T}}=\frac{\mathrm{A} \cdot \mathrm{D}}{\mathrm{M}^{\mathrm{N}}-\mathrm{C}}+\mathrm{B} \cdot \mathrm{D}+\mathrm{K} \quad \quad \text { Equation } \mathrm{A}-1
$$

$$
\mathrm{T}_{\mathrm{R}}=\frac{\mathrm{R} \cdot \mathrm{D}}{\left|\mathrm{M}^{2}-1\right|} \quad \quad \text { Equation } A-2
$$

$\mathrm{T}_{\mathrm{T}}=$	Time to trip when $\mathrm{M} \geq 1$
$\mathrm{~T}_{\mathrm{R}}$	$=$
	Time to reset if relay is set for integrating
	reset when $\mathrm{M}<1$. Otherwise, reset is 50
	milliseconds or less
D	$=$
M	TIME DIAL setting (0.0 to 9.9)
$\mathrm{M}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{K}$	Multiple of PICKUP setting (0 to 40)
R	$=$
$=$	Constants for the particular curve
$=$	Constant defining the reset time.

Table 1-1 lists the time characteristic curve constants. See Figures A-1 through A-16 for graphs of the characteristics.

Table A-1. 51P and 51N Time Characteristic Curve Constants

BE1-851 Curve Selection	BE Curve Name	Trip Characteristic Constants					
		A	B	c	N	K	R
S1	S, Short Inverse	0.2663	0.034	1	1.2969	0	0.5
S2	S2, Short Inverse	0.029	0.021	1	0.9844	0	0.094
L1	L1, Long Inverse	5.6143	2.1859	1	1	0	15.75
L2	L2, Long Inverse	2.3955	0	1	0.3125	0	7.8001
D	D, Definite Time	0.4797	0.2136	1	1.5625	0	0.875
M	M, Moderately Inverse	0.3022	0.1284	1	0.5	0	1.75
11	I, Inverse Time	8.9341	0.1797	1	2.0938	0	9
12	Inverse Time	0.2747	0.1043	1	0.4375	0	0.8868
V1	V, Very Inverse	5.4678	0.1081	1	2.0469	0	5.5
V2	V2, Very Inverse	4.4309	0.099	1	1.9531	0	5.8231
E1	Extremely Inverse	7.7624	0.028	1	2.0938	0	7.75
E2	E2, Extremely Inverse	4.9883	0.013	1	2.0469	0	4.7742
A	Standard Inverse	0.014	0	1	0.02	0	2
B	B, Very Inverse (1^{2} t)	1.4636	0	1	1.0469	0	3.25
C	Extremely Inverse (1^{2} t)	8.2506	0	1	2.0469	0	8
G	Long Time Inverse (1^{2} t)	12.121	0	1	1	0	29
F	Fixed Time $\boldsymbol{\Delta}$	0	1	1	0	0	1
P	Programmable	0 to 600	0 to 25	0 to 1	0.5 to 2.5	0	0 to 30

A Curve F has a fixed delay of one second times the Time Dial setting.

- For integrated reset, append \mathbf{R} to the curve name. For example, curve $\mathbf{S 1}$ has instantaneous reset. Curve S1R has integrated reset.

TIME-OVERCURRENT CHARACTERISTIC CURVE GRAPHS

Figures A-1 through A-16 illustrate the characteristic curves of the BE1-851 Relay. Table A-2 cross-references each curve to existing electromechanical relay characteristics. Equivalent time dial settings were calculated at a value of five times pickup. A drawing number is provided in the caption of each graph. Contact the Basler Electric Power Systems Group Customer Service Department at (618) 654-2341 and request the drawing number to order a full-size (10 inches by 12 inches) Characteristic Curve graph on transparent paper (vellum). A complete set of drawings is available by requesting Basler Publication 9252000990.

Table A-2. Characteristic Curve Cross-Reference

BE1-851 Curve	Curve Name	Drawing No.	Similar To
S1	S, Short Inverse	$99-1369$	ABB CO-2
S2	S2, Short Inverse	$99-1595$	GE IAC-55
L1	L, L1, Long Inverse	$99-1370$	ABB CO-5
L2	L2, Long Inverse	$99-1594$	GE IAC-66
D	D, Definite Time	$99-1371$	ABB CO-6
M	M, Moderately Inverse	$99-1372$	ABB CO-7
I1	I, I1 Inverse Time	$99-1373$	ABB CO-8
I2	I2 Inverse Time	$99-1597$	GE IAC-51
V1	V, V1 Very Inverse	$99-1374$	ABB CO-9
V2	V2, Very Inverse	$99-1596$	GE IAC-53
E1	E, E1 Extremely Inverse	$99-1375$	ABB CO-11
E2	E2, Extremely Inverse	$99-1598$	GE IAC-77
A	A Standard Inverse	$99-1621$	BS, IEC Standard Inverse
B	B, Very Inverse (It)	$99-1376$	BS, IEC Very Inverse (It)
C	Extremely Inverse (I $\left.{ }^{2} t\right)$	$99-1377$	BS, IEC Extremely Inverse (It)
G	Long Time Inverse	$99-1622$	BS, IEC Long Time Inverse
F	Fixed Time	N/A	n/a
P	Programmable	N/A	n/a

Time Dial Setting Cross-Reference

Although the time characteristic curve shapes have been optimized for each relay, time dial settings of Basler Electric relays are not identical to the settings of electromechanical induction disk overcurrent relays. Table A-1 helps you convert the time dial settings of induction disk relays to the equivalent setting for Basler Electric relays. Enter time dial settings at human-machine interface (HMI) Screens 5.X.4.1 (51P), 5.X.4.2 (51N), 5.X.4.3 (151N) and 5.X.4.4 (51Q). Enter time dial settings through the communication ports using the $\mathrm{S}<\mathrm{g}>-$ $51 \mathrm{P} / 51 \mathrm{~N} / 151 \mathrm{~N} / 51 \mathrm{Q}$ commands. For more information, refer to Section 4, Protection and Control Functions, 51 Overcurrent Functions.

Using Table A-3

Cross-reference table values were obtained by inspection of published electromechanical time current characteristic curves. The time delay for a current of five times tap was entered into the time dial calculator function for each time dial setting. The equivalent Basler Electric time dial setting was then entered into the cross-reference table.

If your electromechanical relay time dial setting is between the values provided in the table, it will be necessary to interpolate (estimate the correct intermediate value) between the electromechanical setting and the Basler Electric setting.

Basler Electric relays have a maximum time dial setting of 9.9. The Basler Electric equivalent time dial setting for the electromechanical maximum setting is provided in the cross reference table even if it exceeds 9.9. This allows interpolation as noted above.

Basler Electric time-current characteristics are determined by a linear mathematical equation. The induction disk of an electromechanical relay has a certain degree of non linearity due to inertial and friction effects. For this reason, even though every effort has been made to provide characteristic curves with minimum deviation from the published electromechanical curves, slight deviations can exist between them.

In applications where the time coordination between curves is extremely close, we recommend that you choose the optimal time dial setting by inspection of the coordination study. In applications where coordination is tight, it is recommended that you retrofit your circuits with Basler Electric electronic relays to ensure high timing accuracy.

Table A-3. Characteristic Curve Cross-Reference

Curve Name	Equivalent to	Drawing No.	Electromechanical Relay Time Dial Setting											
			0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0											
			Basler Electric Equivalent Time Dial Setting											
S, S1	ABB CO-2	99-1369	0.3	0.8	1.7	2.4	3.4	4.2	5.0	5.8	6.7	7.7	8.6	9.7
L, L1	ABB CO-5	99-1370	0.4	0.8	1.5	2.3	3.3	4.2	5.0	6.0	7.0	7.8	8.8	9.9
D	ABB CO-6	99-1371	0.5	1.1	2.0	2.9	3.7	4.5	5.0	5.9	7.2	8.0	8.9	10.1
M	ABB CO-7	99-1372	0.4	0.8	1.7	2.5	3.3	4.3	5.3	6.1	7.0	8.0	9.0	9.8
I, I1	ABB CO-8	99-1373	0.3	0.7	1.5	2.3	3.2	4.0	5.0	5.8	6.8	7.6	8.7	10.0
V, V1	ABB CO-9	99-1374	0.3	0.7	1.4	2.1	3.0	3.9	4.8	5.7	6.7	7.8	8.7	9.6
E, E1	ABB CO-11	99-1375	0.3	0.7	1.5	2.4	3.2	4.2	5.0	5.7	6.6	7.8	8.5	10.3
12	GE IAC-51	99-1597	0.6	1.0	1.9	2.7	3.7	4.8	5.7	6.8	8.0	9.3	10.6	
V2	GE IAC-53	99-1596	0.4	0.8	1.6	2.4	3.4	4.3	5.1	6.3	7.2	8.4	9.6	
S2	GE IAC-55	99-1595	0.2	1.0	2.0	3.1	4.0	4.9	6.1	7.2	8.1	8.9	9.8	
L2	GE IAC-66	99-1594	0.4	0.9	1.8	2.7	3.9	4.9	6.3	7.2	8.5	9.7	10.9	
E2	GE IAC-77	99-1598	0.5	1.0	1.9	2.7	3.5	4.3	5.2	6.2	7.4	8.2	9.9	

Figure A-1. Time Characteristic Curve S, S1 Short Inverse, 99-1369, (Similar to ABB CO-2)

Figure A-2. Time Characteristic Curve S2, Short Inverse, 99-1595 (Similar to GE IAC-55)

Figure A-3. Time Characteristic Curve L, L1, Long Inverse, 99-1370, (Similar to ABB CO-5)
TIME IN SECONDS

Figure A-4. Time Characteristic Curve L2, Long Inverse, 99-1594, (Similar to GE IAC-66)

Figure A-5. Time Characteristic Curve D, Definite Time, 99-1371, (Similar to ABB CO-6)

Figure A-6. Time Characteristic Curve M, Moderately Inverse, 99-1372, (Similar to ABB CO-7)

Figure A-7. Time Characteristic Curve I, I1 Inverse Time, 99-1373 (Similar to ABB CO-8)

Figure A-8. Time Characteristic Curve I2, Inverse Time, 99-1597 (Similar to GE IAC-51)

Figure A-9. Time Characteristic Curve V, V1, Very Inverse, 99-1374 (Similar to ABB CO-9)

Figure A-10. Time Characteristic Curve V2, Very Inverse, 99-1596 (Similar to GE IAC-53)

Figure A-11. Time Characteristic Curve E, E1, Extremely Inverse, 99-1375 (Similar to ABB C0-11)

Figure A-12. Time Characteristic Curve E2, Extremely Inverse, 99-1598 (Similar to GE IAC-77)

Figure A-13. Time Characteristic Curve A, Standard Inverse, 99-1621

Figure A-14. Time Characteristic Curve B, Very Inverse, 99-1376

Figure A-15. Time Characteristic Curve C, Extremely Inverse, 99-1377

Figure A-16. Time Characteristic Curve G, Long Inverse, 99-1622

APPENDIX B•COMMAND CROSS-REFERENCE

TABLE OF CONTENTS

APPENDIX B • COMMAND CROSS-REFERENCE B-1
INTRODUCTION B-1
Tables
Table B-1. Miscellaneous Commands B-1
Table B-2. Metering Commands B-1
Table B-3. Control Commands B-1
Table B-4. Report Commands B-2
Table B-5. Setting Command B-2
Table B-6. Alarm Setting Commands B-3
Table B-7. General Setting Commands B-3
Table B-8. Breaker Monitoring and Setting Commands B-4
Table B-9. Programmable Logic Setting Commands B-4
Table B-10. User Programmable Name Setting Command B-4
Table B-11. Protection Setting Commands B-5
Table B-12. Global Command B-5

APPENDIX B•COMMAND CROSS-REFERENCE

INTRODUCTION

This appendix lists all ASCII commands, command syntax, brief command descriptions and any corresponding human-machine interface (HMI) screens. Commands are organized by function in the following groups and tables:

- Miscellaneous (Table B-1)
- Metering (Table B-2)
- Control (Table B-3)
- Report (Table B-4)
- \quad Setting (Table B-5)
- Alarm Setting (Table B-6)
- General Setting (Table B-7)
- Breaker Monitoring and Setting (Table B-8)
- Programmable Logic Setting (Table B-9)
- User Programmable Name Setting (Table B-10)
- Protection Setting (Table B-11)
- Global (Table B-12)

An entry of x in the HMI Screen column represents 1 for Setting Group 0, 2 for Setting Group 1, 3 for Setting Group 2 and 4 for Setting Group 3.

Table B-1. Miscellaneous Commands

ASCII Command	Function	HMI Screen
ACCESS[=<password>]	Read/Set access level in order to change settings.	n/a
EXIT	Exit programming mode.	n/a
HELP <cmd> or H <cmd>	Obtain help with command operation.	n/a

Table B-2. Metering Commands

ASCII Command	Function	HMI Screen
M	Read all metered values.	n / a
M-I[<phase $>]$	Read metered current in primary unit.	$3.1,3.2,3.4$, $3.5,3.6$

Table B-3. Control Commands

ASCII Command	Function	HMI Screen
CO-<control>[=<mode>]	Control operation.	n/a
CS-<control>[=<mode>]	Control selection.	n/a
CS/CO-GROUP[=<operation $>\}$	Group Overide Select and Operate Controls.	2.3 .1
CS/CO-OUT[=<operation>]	Output Overide Select and Operate Controls.	2.4 .1
CS/CO-43/143/243/343[=<operation>]	Virtual Switch Select and Operate Controls.	$2.1 . \mathrm{X}$
CS/CO-101[=<operation>]	Breaker Control Select and Operate Controls.	2.2 .1

Table B-4. Report Commands

ASCII Command	Function	HMI Screen
$\mathrm{RA}[=0$]	Report/Reset alarm information.	1.3
RA-LGC[=0]	Report/Reset logic alarm information.	1.3
RA-MAJ[=0]	Report/Reset major alarm information.	1.3
RA-MIN[=0]	Report/Reset minor alarm information.	1.3
RA-REL[=0]	Report/Reset relay alarm information.	1.3
RB	Read breaker status.	1.5.6
RB-DUTY[<phase>[=\%duty>]]	Read/Set breaker contact duty log.	4.3.2
RB-OPCNTR[=<\#operations>]	Read/Set breaker operation counter.	4.3.1
RD	Report all demand data.	n/a
RD-PI[<p>[=0]]	Read/Reset peak demand current.	$\begin{gathered} \text { 4.4.3.1- } \\ \text { 4.4.3.5 } \end{gathered}$
RD-TI[<p>]	Report today's demand current.	$\begin{gathered} \text { 4.4.1.1- } \\ \text { 4.4.1.5 } \end{gathered}$
RD-YI[<p>]	Report yesterday's demand current.	$\begin{gathered} \text { 4.4.2.1- } \\ \text { 4.4.2.5 } \end{gathered}$
RF[-n/NEW][=0/TRIG]	Read/Reset fault report data.	4.1
RG	Report general information.	n/a
RG-DATE[$=<\mathrm{M} / \mathrm{D} / \mathrm{Y}>$] or RG-DATE[=<D-M-Y>]	Read/Set date.	4.6
RG-STAT	Report relay status.	n/a
RG-TARG[=0]	Report/Reset target status.	1.2
RG-TIME[=hr:mn:sc] or RG-TIME[=hr:mn<f>sc]]	Report/Set time.	4.6
RG-VER	Read program version, model number, style number and serial number.	4.7
RO-nA/B[\#].CFG/DAT/HDR	Read oscillographic fault report.	n/a
RS[-n/Fn/ALM/IO/LGC/NEW][=0]	Read oscillographic COMTRADE.DAT/.CFG fault report.	n/a

Table B-5. Setting Command

ASCII Command	Function	HMI Screen
S	Read all relay setting parameters.	n/a

Table B-6. Alarm Setting Commands

ASCII Command	Function	HMI Screen
SA	Read all major and minor alarm settings.	n/a
SA-BKR[n][=<mode>,<alarm limit>]	Read/Set breaker alarm settings.	n/a
SA-DI[p][=<alarm level>]	Read/Set demand alarm settings.	n/a
SA-DVAR[=<alm Ivl>,<alm Ivl>]	Read/Set var demand alarm setting.	n/a
SA-DWATT[=<alm Ivl>,<alm Ivl>]	Read/Set watt demand alarm setting.	n/a
SA-LGC[=<alarm num $1>[/<$ alarm num 2>] \ldots $[<a l a r m ~ n u m ~ n>]] ~$	Read/Set logic alarm setting mask.	n/a
SA-LGC[=<alarm num $1>[/<a l a r m ~ n u m ~ 2>] ~$ $[<a l a r m ~ n u m ~ n>]] ~$	Read/Set logic alarm setting mask.	n/a
SA-MAJ[=<alarm num $1>[/<$ alarm num 2>] \ldots $[<a l a r m ~ n u m ~ n>]] ~$	Read/Set major alarm setting mask.	n/a
SA-RESET[=<rst alm logic>]	Read/Set programmable alarms reset logic.	n/a

Table B-7. General Setting Commands

ASCII Command	Function	HMI Screen
SG	Read all general settings.	n / a
SG-CLK[=<date format(M/D)>,<timeformat(12/24)>]	Read/Program time and date format .	n / a
SG-COM[\#[=<baud>,A<addr>,P<pglen>, R<reply ack>,X<XON ena>]]	Read/Set serial communication protocol.	$6.1 .1-6.1 .3$
SG-CT[t][=<CTratio>]	Read/Set Phase/Neutral CT ratio.	$6.3 .1,6.3 .2$
SG-DI[p][=<interval>]	Read/Set P(IA/IB/IC/), N and Q demand interval.	n / a
SG-DSP[P/N]	Read analog signal dsp filter type.	n / a
SG-HOLD[n][=<1/0 hold ena>]	Read/Program output hold operation.	n / a
SG-ID[=<relayID>,<StationID>]	Read/Set relay ID and station ID used in reports.	n / a
SG-IN[\#[=<r(ms)>,<db(ms)>]]	Read/Set input recognition/denounce.	n / a
SG-PHROT[=<phase rotation>]	Read/Set phase rotation setting.	6.3.7
SG-SCREEN[n][=<default screen number>]	Read/Set default screen(s).	n / a
SG-SGCON[=<time>]	Read/Set SGC output on time.	n / a
SG-TARG[=<x/x/...x>,<rst TARG logic>]	Report/Enable target list and reset target logic.	n / a
SG-TRIGGER[n][=<TRIPtrigger>,<PUtrigger>, $<L O G I C ~ t r i g g e r>] ~$	Read/Set trigger logic.	n / a

Table B-8. Breaker Monitoring and Setting Commands

ASCII Command	Function	HMI Screen
SB	Read all breaker settings.	n/a
SB-DUTY[=<mode>,<DMAX>]	Read/Set breaker contact duty.	n/a
SB-LOGIC[=<breaker close logic>]	Read/Set breaker contact logic.	n/a

Table B-9. Programmable Logic Setting Commands

ASCII Command	Function	HMI Screen
SL[:<name>]	Obtain setting logic information.	n/a
SL-x50T[<p>[=<mode>,<BLK logic>]]	Read/Set logic for $\times 50$ function modules.	n/a
SL-x51[<p>[=<mode $>,<$ BLK logic $>$]]	Read/Set logic for 51 function modules.	n/a
SL-<f>62[=<mode>,<INI logic>,<BLK logic>]	Read/Set logic for 62 function modules.	n/a
SL-79[=<mode,<RI logic>,<STATUS logic>, <WAIT logic>,<LOCKOUT logic>]	Read/Set logic for 79 function	n/a
SL-BF[<p>][=<mode>,<INI logic>,<BLK logic>]]	Read/Set logic for breaker failure function modules.	n/a
SL-GROUP[=<mode>,<BLK logic>]	Read/Set logic for setting group module.	n/a
SL-N[=<name>]	Read, set, or copy the name of the custom logic.	n/a
SL-VO[\#[=<Boolean equation>]]	Read/Set output logic.	n/a

Table B-10. User Programmable Name Setting Command

ASCII Command	Function	HMI Screen
SN $[-<$ var $>[=<$ name $>,<$ TRUE label $>,<$ FALSE label $>]$	Read/Set user programmable names.	n/a

Table B-11. Protection Setting Commands

ASCII Command	Function	HMI Screen
$\mathrm{S}<\mathrm{g}>$	Read all protection settings.	n/a
$\mathrm{S}<\mathrm{g}>-50 \mathrm{TP}[=<\mathrm{pu}>,<t \mathrm{~d}>$]	Read/Set 50TP pickup level and time delay.	5.x.3.x
S<g>-<t>50TN[=<pu>, <td >]	Read/Set 50TN pickup level and time delay.	5.x.3.x
$\mathrm{S}<\mathrm{g}>-51 \mathrm{P}[=<\mathrm{pu}>,<t \mathrm{~d}>,<c r v>$]	Read/Set 51 pickup level, time delay and curve.	5.x.4.x
$\mathrm{S}<\mathrm{g}>-<\mathrm{f}>51 \mathrm{~N}[=<\mathrm{pu}\rangle,\langle t \mathrm{~d}>,<\mathrm{crv}\rangle$]	Read/Set 51 N pickup level, time delay and curve.	5.x.4.x
S<g>-<t>62[=<t1>,<t2>]	Read/Set 62 time delay.	5.x.6.1
$\mathrm{S}<\mathrm{g}>-79[\#][=<t d>]$	Read/Set 79 time delay.	$\begin{gathered} \text { 5.x.7.1- } \\ \text { 5.x.7.4 } \end{gathered}$
SP-BF[=<time>[m/s/c]]	Read/Set the breaker failure timer setting	5.5.1.1
SP-CURVE[=<A $>,<\mathrm{B}\rangle,\langle\mathrm{C}\rangle,\langle\mathrm{N}\rangle,<\mathrm{R}\rangle$]	Read/Set the user programmable 51 curve parameters.	n/a
SP-GROUP<g>=[<sw(min)>,<swlevel\%>, <reset(min)>,<ret level\%><prot element>]	Read/Program auxiliary setting group auto operation.	n/a
SP-79ZONE[=<zone pickup logic>]	Read/Set 79 zone sequence logic.	n/a

Table B-12. Global Command

ASCII Command	Function	HMI Screen
GS-PW $<\mathrm{t}>[=<$ password $>,<$ com ports $(0 / 1 / 2)>]]$	Read or change a password.	n/a

APPENDIX C•RELAY SETTINGS RECORD

INTRODUCTION

This appendix provides a complete listing of all BE1-851 settings. This listing is in the form of a settings record that you may use to record information relative to your protection system. These settings sheets may be removed and photo copied. This listing is grouped in the following order with a reminder at the end to exit with the save settings procedure:

- Global Security Settings
- BESTlogic Settings For User Programmable Logic Scheme
- Active Protection And Control Logic
- Protection Setting Groups
- General Protection Settings
- Alarm Settings
- Breaker Monitoring Settings
- Global Settings
\qquad Page \qquad of \qquad
BE1-851 Style Number G Serial Number \qquad Version Number \qquad

GLOBAL SECURITY SETTINGS

BESTLOGIC SETTINGS FOR USER PROGRAMMABLE LOGIC SCHEME

The SL-N command is used to set the name of the logic scheme or to copy the pre-programmed logic scheme.

\qquad Page \qquad of \qquad
BE1-851 Style Number_G Serial Number \qquad Version Number \qquad

Virtual Switches
SL-43
SL-143
SL-243
SL-343
Virtual Bkr Control Switch
SL-101
Virtual Output Logic Settings
VO w/ HW Outputs
SL-VOA
SL-VO1
SL-VO2
SL-VO3
SL-VO4
SL-VO5
Additional VO
SL-VO6
SL-VO7
SL-VO8
SL-VO9
SL-VO10
SL-VO11
SL-VO12
SL-VO13
SL-VO14
SL-VO15
$=$ Mode, $0,1,2,3$

$=$ Output Expression - AND ${ }^{*}, \mathrm{OR}+$, NOT / \square

USER PROGRAMMABLE LABEL SETTINGS

Contact Sensing Input Labels
SN-IN1
SN-IN2
SN-IN3
SN-IN4
Virtual Switch Labels
SN-43
SN-143
SN-243
SN-343

10 Character
= Variable Label

$=$ Variable Label

7 Character
1 State Label

1 State Label

7 Character
0 State Label

0 State Label

Substation ID \qquad Relay ID \qquad Date \qquad Page \qquad of \qquad
BE1-851 Style Number_G \qquad Serial Number \qquad Version Number
Virtual Output Labels SN-VOA SN-VO1

SN-VO2
SN-VO3
SN-VO4
SN-VO5
SN-VO6
SN-VO7
SN-VO8
SN-VO9
SN-VO10
SN-VO11
SN-VO12
SN-VO13
SN-VO14
SN-VO15

GLOBAL I/O SETTINGS

Power System Settings
Nominal Frequency
SG-FREQ
System Rotation
SG-PHROT
Digital Signal Processing
SG-DSPP
SG-DSPN
CT Ratio
SG-CTP
SG-CTN
Input Conditioning

$=$ Ratio, Turns

SG-IN1
SG-IN2
SG-IN3
SG-IN4

\qquad Page \qquad of \qquad
BE1-851 Style Number_G \qquad Serial Number \qquad Version Number \qquad

Output Hold Attribute
SG-HOLDA
SG-HOLD1
SG-HOLD2
SG-HOLD3
SG-HOLD4
SG-HOLD5

PROTECTION SETTING GROUPS
GROUP 0

Substation ID \qquad Relay ID \qquad Date \qquad Page \qquad of \qquad
BE1-851 Style Number G \qquad Serial Number \qquad Version Number

Time Overcurrent S1-51P
S1-51N
S1-51Q
Timers
S1-62
S1-162
Recloser
S1-791
S1-792
S1-793
S1-794
S1-79R
S1-79F
S1-79M
Recloser SCB Output
S1-79SCB
GROUP 2

\qquad Page \qquad of \qquad
BE1-851 Style Number G \qquad Serial Number \qquad Version Number \qquad
GROUP 3

general protection settings

Recloser Zone Sequence Logic
SP-79ZONE
Breaker Failure
SP-BF
Programmable Curve
SP-CURVE
Programmable Curve-2nd Line
SP-CURVE
Automatic Group Selection
Grp 1 Auto Settings
SP-GROUP1
Grp 1 Auto Settings-2nd Line
SP-GROUP1
Automatic Group Selection Grp 2 Auto Settings SP-GROUP2

Sensing Input Type G Relays

FAULT REPORTING SETTINGS

\qquad Page \qquad of \qquad
BE1-851 Style Number_G \qquad Serial Number \qquad Version Number \qquad

The following settings are only for units with Modbus (Style \# BE1-851 xx-xxx1).
Remote Delay, MR

BREAKER MONITORING SETTINGS

Breaker Duty
SB-DUTY
Breaker Duty-2nd Line
SB-DUTY
Breaker Status
Breaker Status Logic
SB-LOGIC

= Delimiters
Block Duty Accumulation via Programmable Logic Expression
\qquad Page \qquad of \qquad
BE1-851 Style NumberG Serial Number \qquad Version Number

ALARM SETTINGS

EXIT WITH SAVE SETTINGS - YES

E
Y
\qquad Date \qquad Page \qquad of \qquad
BE1-851 Style Number H \qquad Serial Number \qquad Version Number \qquad

GLOBAL SECURITY SETTINGS

BESTLOGIC SETTINGS FOR USER PROGRAMMABLE LOGIC SCHEME

The SL-N command is used to set the name of the logic scheme or to copy the pre-programmed logic scheme.

Substation ID Relay ID Date \qquad Page \qquad of \qquad
BE1-851 Style Number H Serial Number \qquad Version Number \qquad
SL-43
SL-143
SL-243
SL-343
Virtual Bkr Control Switch
SL-101
Virtual Output Logic Settings
VO w/ HW Outputs
SL-VOA
SL-VO1
SL-VO2
SL-VO3
SL-VO4
SL-VO5
Additional vo
SL-VO6
SL-VO7
SL-VO8
SL-VO9
SL-VO10
SL-VO11
SL-vO12
SL-VO13
SL-VO14
SL-VO15

$=$ Output Expression - AND *, OR +, NOT /

$=$ Output Expression - AND ${ }^{*}$, OR + , NOT /

USER PROGRAMMABLE LABEL SETTINGS

Substation ID \qquad Relay ID Date \qquad Page \qquad of \qquad
BE1-851 Style Number H \qquad Serial Number \qquad Version Number \qquad

SN-VO3
SN-VO4
SN-VO5
SN-VO6
SN-VO7
SN-VO8
SN-VO9
SN-VO10
SN-VO11
SN-VO12
SN-VO13
SN-VO14
SN-VO15

GLOBAL I/O SETTINGS

Power System Settings
Nominal Frequency
SG-FREQ

System Rotation
SG-PHROT
Digital Signal Processing

SG-DSPP
SG-DSPN
CT Ratio
SG-CTP
SG-CTN
Input Conditioning
SG-IN1
SG-IN2
SG-IN3
SG-IN4
Output Hold Attribute

SG-HOLDA
SG-HOLD1
SG-HOLD2
SG-HOLD3
SG-HOLD4
SG-HOLD5

PROTECTION SETTING GROUPS

GROUP 0

Inst OC w/ Time Delay = Pick Up, sec amps , Time $M=m s e c, C=c y c, S=s e c(M$ is default if not specified)
\qquad Page \qquad of \qquad
BE1-851 Style Number H \qquad Serial Number \qquad Version Number \qquad
S0-50TP
SO-50TN
S0-50TQ
S0-150TP
S0-150TN
S0-150TQ
Time Overcurrent
S0-51P
S0-51N
S0-51Q
Timers
S0-62
S0-162
Recloser
S0-791
S0-792
S0-793
S0-794
S0-79R
S0-79F
S0-79M
Recloser SCB Output
S0-79SCB
GROUP 1

Substation ID \qquad Relay ID Date \qquad Page \qquad of \qquad
BE1-851 Style Number H \qquad Serial Number \qquad Version Number \qquad
S1-794
S1-79R
S1-79F
S1-79M
Recloser SCB Output
S1-79SCB
GROUP 2
Inst OC w/ Time Delay
S2-50TP
S2-50TN
S2-50TQ
S2-150TP
S2-150TN
S2-150TQ
Time Overcurrent
S2-51P
S2-51N
S2-51Q
Timers
S2-62
S2-162
Recloser
S2-791
S2-792
S2-793
S2-794
S2-79R
S2-79F
S2-79M
Recloser SCB Output
S2-79SCB
GROUP 3
Inst OC w/ Time Delay
S3-50TP
S3-50TN
S3-50TQ
S3-150TP
S3-150TN
S3-150TQ
Time Overcurrent
S3-51P
S3-51N

$=$ Time, $M=$ msec, $C=\operatorname{cyc}, S=\sec (M$ is if not specified)

$=$ Trip Numbers

\qquad Page \qquad of \qquad

GENERAL PROTECTION SETTINGS

Recloser Zone Sequence Logic
SP-79ZONE
Breaker Failure
SP-BF
Programmable Curve
SP-CURVE
Programmable Curve-2nd Line
SP-CURVE
Automatic Group Selection
Grp 1 Auto Settings
SP-GROUP1
Grp 1 Auto Settings-2nd Line
SP-GROUP1
Automatic Group Selection
Grp 2 Auto Settings
SP-GROUP2
Grp 2 Auto Settings-2nd Line SP-GROUP2

Automatic Group Selection
Grp 3 Auto Settings
SP-GROUP3
Grp 3 Auto Settings-2nd Line SP-GROUP3
Setting Group Changed Timer
SG-SGCON

\qquad Date \qquad Page \qquad of \qquad
BE1-851 Style Number H \qquad Serial Number \qquad Version Number \qquad

REPORTING AND ALARM FUNCTION SETTINGS

 DEMAND REPORTING SETTINGSDemand Interval
SG-DIP
SG-DIN
SG-DIQ

FAULT REPORTING SETTINGS

Substation ID Relay ID \qquad Date \qquad Page \qquad of \qquad
BE1-851 Style Number H Serial Number \qquad Version Number \qquad
SG-SCREEN15
SG-SCREEN16
Communications
Front RS232 Port
SG-COMO
Front RS232 Port - 2nd Line
SG-COMO
Rear RS232 Port
SG-COM1
Rear RS232 Port - 2nd Line
SG-COM1
Rear RS485 Port
SG-COM2
Rear RS485 Port - 2nd Line SG-COM2

The following settings are only for units with Modbus (Style \# BE1-851 xx-xxx1).

BREAKER MONITORING SETTINGS

EXIT WITH SAVE SETTINGS - YES

APPENDIX D•TERMINAL COMMUNICATION

TABLE OF CONTENTS

APPENDIX D • TERMINAL COMMUNICATION D-1
WINDOWS 95^{\circledR} HYPERTERMINAL D-1
WINDOWS ${ }^{\circledR}$ TERMINAL D-2
Figures
Figure D-1. Connection Description Dialog Box D-1
Figure D-2. COM Properties Dialog Box D-1
Figure D-3. ASCII Setup Dialog Box D-2
Figure D-4. Terminal Preferences Dialog Box D-3
Figure D-5. Text Transfers Dialog Box D-3
Figure D-6. Communications Dialog Box D-3
Table
Table D-1. RS-232 Communication Ports D-2

APPENDIX D•TERMINAL COMMUNICATION

This appendix provides instructions for configuring Windows 95^{\circledR} HyperTerminal and Windows ${ }^{\circledR}$ Terminal to communicate with your BE1-851 Overcurrent Protection System.

WINDOWS $95{ }^{\circledR}$ HYPERTERMINAL

Step 1. Click Start, Programs, Accessories, HyperTerminal.
Step 2. Click HyperTerminal to open the folder.
Step 3. Select the file or icon labeled Hypertrm or Hypertrm.exe. Once the program has started, you will be presented with a series of dialog boxes.
Step 4. Dialog Box: Connection Description
See Figure D-1.
a. Type the desired file name, for example, BE1-851
b. Click "OK."

Step 5. Dialog Box: Phone Number
a. Click drop-down menu: CONNECT USING

Select Direct To Com X where X is the port you are using on your computer.
b. Click "OK."

Step 6. Dialog Box: COM X Properties
a. Make the following selections using Figure D-2 as a guide.
Set the bits per second setting so that it matches the setting of the relay. The default baud rate of the relay is 9,600 .
Set the Data bits at 8.
Set the Parity to None.
Set the $\underline{\text { Stop bits at } 1 . ~}$
Set Flow control to Xon/Xoff.
b. Click "OK." This creates an icon with the file name entered in Step 4 and places it in the HyperTerminal folder. Future communication sessions can then be started by clicking the appropriate icon.
Step 7. Click File - Properties on the menu bar. Click the Settings tab.
a. Make the following selections:

Check the Terminal Keys radio button.

Figure D-1. Connection Description Dialog Box

Figure D-2. COM Properties Dialog Box

Select VT-100 emulation.
Set the Backscroll Buffer to the maximum setting of 500 .
b. Click the ASCII Setup button. Make the following selections using Figure D-3 as a guide:

ASCII Sending
Place a check at Send line ends...
Place a check at Echo typed characters...
Select a Line delay setting of 100 to 200 milliseconds.

Select the Character delay to zero milliseconds.

ASCII Receiving

Disable Append line feeds... by leaving the box unchecked.

Disable Force incoming... by leaving the box unchecked.

Place a check at \underline{W} rap lines...

Figure D-3. ASCII Setup Dialog Box
c. Click "OK."
d. Click "OK."

Step 8. Click File and then click Save.

NOTE

Settings changes do not become active until the settings are saved.

Step 9. HyperTerminal is now ready to communicate with the relay. Table D-1 describes the required connection for each RS-232 port.

Table D-2. RS-232 Communication Ports

Connection	Type
Front Port	9-pin female DCE
PC to Front RS-232 port cable	Straight
Rear Port	9-pin female DCE
Modem to Rear RS-232 port cable	Null modem
PC to Rear RS-232 port cable	Straight

WINDOWS ${ }^{\circledR}$ TERMINAL

Step 1. In Program Manager, open the Accessories program group and double click the Terminal icon to start the program.
Step 2. On the menu bar, select Settings/Terminal Emulation.
a. In the dialog box, click DEC VT-100 (ANSI).
b. Click "OK."

Step 3. Select Settings/Terminal Preferences.
a. Using Figure D-4 as a guide, make the following selections in the dialog box:
Check the Line Wrap and Local Echo boxes to enable these functions.

Disable (uncheck) the CR->CR/LF Inbound function.

Enable the CR->CR/LF Outbound function.
b. Set the Buffer Lines at 244 .
c. Click "OK."

Step 4. Select Settings/Text Transfers.
a. Make the following selections using Figure D-5 as a guide:
Set Flow Control at Line at a Time.
Enable Delay Between Lines and set the delay at $1 / 10$ or $2 / 10$ seconds.
Disable (uncheck) Word Wrap...
b. Click "OK."

Step 5. Select Settings/Communications.
a. Make the following selections:

Under Connector, select the appropriate communication port for your computer.

Adjust the Baud Rate setting so that it matches the setting of the relay. The default baud rate of the BE1-851 is 9,600 .

Set the Data Bits at 8 .
Set the $\underline{\text { Stop Bits at } 1 .}$
Disable Parity Check by selecting None.
Set Flow Control to Xon/Xoff.
b. Click "OK."

Step 6. Click File and then Save. Enter a desired file name such as BE-851.trm. For future communication sessions, click File and open this file. Terminal will automatically be set up to communicate with the BE1-851 Relay.
Step 7. Terminal is now ready to communicate with the relay.

Figure D-4. Terminal Preferences Dialog Box

Figure D-5. Text Transfers Dialog Box

Figure D-6. Communications Dialog Box

[^0]: Alarms
 BE1-851 relays have 26 programmable alarm points. These points are for the monitored power system, associated equipment, and non-core circuits and functions in the relay. Each of these alarm points can be programmed to assert the Major, Minor or Logic Alarms when an alarm point is activated. To program an alarm point, find the point in the Alarm Priority list and then click on the appropriate field under the Major, Minor or Logic Alarm.

