AUTHOR	Ayre, H. Glenn; And Others
TITLE	Analytic Geometry. Ieacher's Commentary, Unit No. 65. Revised Edition.
INSTITOTION	Stanford Univ., Calif. School Mathematics Study Group.
SPONS AĠENCY	Natioral Science Foundation, Washington, D.C.
PUB DATE	65
NOTE	490p.; For related Student Text, see SE 022 989; Not available in hard ccpy due to marginal legibility of original document
EDRS PRTCE DESCRIPTORS	MF-\$1.00 Plus Postage. HC Not Available from EDRS.
	Algebra; *Analytic Geometry; Gecmetrjc Concepts;
	*Instructional Materials; Mathematics Education;
	*Secondary Education; *Secondary School Mathematics;
	*Teaching Guides
identipieqs	*School Mathematics Siudy Group

ABSTRACI'

This is the teacher's guide to the SMSG text ANALYTIC GEOMETRY. The text is designed to be used as a cne-semester course for $12 t h$ grade students. Included in this guide. are: (1) suggested length of study for each chapter; (2) discussion of each chapter that is in the student text; (3) comments keyed to the pages of the student's text to provide explanaticn and background for the teacher; (4) answers to exercises; and (5) discussion of supplementary materials in the text. (RH)

[^0]
ANALYTIC GEOMETRY

Analytic Geometry

Teacher's Commentary

revised edition

Prepared by:

H. Glenn Ayre	Western Illinois University
William E. Briggs	University of Colorado
Daniel Coniskey	- The Taft School, Watertown, Connecticut
John Dyer-Bennet	Carleton College, Northfield, Minnesota
Daniel J. Ewy	" Fresno State College
Sandra Forsythe	Cubberley High School, Palo Alto, California
James H. Hood	San Jose High School, San Jose, California
Max Kramer	San Jose State College, San Jose, California
Carol V. McCamman	Coolidge High School, Washington, D.C.
William Wernick	Evander Childs High School, New York, New York

[^1]

Firancia! support for School Mathematics Study Group has been provided by the National Science Foundation.

Permission to make verbatim. use of material in this book must be secured from the Director of SMSG. Such permission will be granted except in unusual circumstances. Publicatıons incorporating SMSG materials must include both an acknowledgment of the SMSG copyright (Yale University or Stanford University, as the case may be) and a disclaimer of SMSG endorsement. Exclusive license will not be granted save in exceptional circumstances, and then only by specific action of the Advisory Board of SMSG.
(196S by The Board of Trustees of the _eland Stanford Junior University. A!l rir,.ts reserved. * Printed in the United States of America.
y
ANALYTIC GEOMEPRY
Teacher's Commentary
Contents
INIRODUCTION 1
A WORD ABOUT THE EXZRCISES 2
A SUGGESTED TIME SCHEDULE 3
Chapter

1. ANALYTIC CEOMETRY 5
2. COORDINATES AND THE LINE 7
3. VECTORS AND THEIR APPIICATIONS 83
4. PRJOFS BY ANALYTIC METHODS 123
5. GRAPHS AND mHEIR EQUATIONS 147
6. CURVE SKETCHING AND LOCUS PROBLEMS 191
7. CONLC SECTIONS 269
8. THE LINE AND THE PLAANE IN 3 -SPACE 313
c. QUADRIC SURFACES 347
9. GEOMETRIC TRANSFORMATION 425
Supplement to Chapter 2 449
Supplement D (Supplement to Chapters 2, 3, and 8) 463
Supplement to Chapter? 475
Supplement to Chapter 10 485

The text Analytic Geometry had its beginnings in 1962 when a small committee of mathematicians and teachers met to discuss the question as to whether there was a need for a new text in analytic geometry for high school, and whether the School Mathematics Dtudy Group should undcrtake to write one. Since the conclusion was affirmatye, some guidelines were prepared to indicate the form and content desired.

In the summer of 1963 an experimental text and gccompanying comnentary Fere prepared by an SMEG writing team consisting of university mathematicians and high school teachers. During the following school year this text was used by about 30 teachers in schools distributed from California to New England, but mostly in 2 centers where the teachers had the benefit of conferences with each other and with an interested coldege professor. The complete revision of the text and commentary in the summer of 1764 took into account both the comments and criticisms of these teachers, and the recommendations of an advisory comnittee of the SMSG Board. We are deeply indebted to those who helped with suggestions, especially to the teachers who used the experimental text.

Analytic Geometry is intenácd for use as a one-semester course in the l2th grade. It is expected that the students vourd have completed GMOG Intermediate Mathematics or the equivalent. If it is planned to use Elementgry Functions • with the same class, it is suggested that that text be used before the Analytic Geometry. However, knowleige of Elementary Functions has not been assumed in this text.

The suggested time schedule here is only tentative; the teacher will adadt it to the particular class. Certain topics are presented here ior completeness; for example, some of the work on forms of an equation of a line, on conic sections, or on vectcrs, will have been studiedpreviously by many classes. Very little time need be spent on famildar work, giving more time for new topics or ior supplementary work.

We believe that a reasonabl, well-prepared class of the stude.ts who elect 12th grade mathematics can complete our basic text (Chapters 1 to ió) in a semester. Tr e material in the supplamentary chapters was placed there because it was not felt essential to the cont nuity of the course. Howeyer, we feel that this is important andinteresting material; we think that it is within $0^{\text {thn }}$ gra? of able students and will oroaden their mathematical background.

It is hoped that good elasses and individual able stureats will use the supplementary chapters.

Following the opening remarks for each chapter in this Commentary, you will find running comments keyed in the margin to the pages of the student's text. These zontain further explanation and beckground whoh we hope will be useful to you.
-
A WORD ABOUT THE EXERCISES * *

Come of the exercises are designed to provide just exercise, bu't you will find that some otners are far from routine. Within each set of exercises the Δ arrangement is usually from the more routine to the more complex problems. The most difficult problems are listed separately as "Challenge Problems". A few problems have been included which extend the material beyond the regular textual treatment. We advise you to look at each such prollem betore assigring it to a student so trat you may assertain whether it is appropriate and how much time it will consume.

- We can..lot suggest apmopriate class assignments since they will vary with the preparation and abil.:ty of the class. if course, enough drill wori: should be included to fix the fundamental skills and concepts. In the case of a well-prepared class, the dr:Il-type problems might be omitted entirely on any topic previously studied. While the particular problems assigned will vary with the elass and perhaps even with the individual pupils, it is hopec that all students will be assigned some of the problems which may be more time sonsuming but which will show them some of the "fun" of Analytic Geometry.

Solutions for the exercises appear at the point in the running commentary corresponding to the placement oi the problems in the stydent's text. Any given problem ma, have several acceptable solutions; therefore, the solution presented here should not be considered as the "right", or only, solution. The student is encouraged frequently to use his own judgment in pursuing a solution; hence, if he presents a solution ich is correct, it should be . accepted.

The basic text (Chapters 1 to 10) was designed to be covered in one semester of eighteen weeks. The time schedule given below is the result of combining the opinions of the authors with the experience of the teachers who used the'preliminary edition.

If you find that your class is falling behind the suggested schedule, you may wish to compensate by treating some topics in less depth or by assigning fewer exercises. .If this procedure is not satisfactory, you probably should consider cutting short, first on Chapter 10 and then on Chapter 3. The text was designed so that the least loss to the students would occur in this circumstance.

Chapter 1

Chapter 1 is a brief introduction to the text. It is intended to give the students aid idea of what analytic geometry is and to show them they already know something about the subject. If possible, they shoul. read it before the first meeting of the class and reread it at intervals during the course.

Since coordinate systems are so important in analytic geometry, it is advisable to discuss in class some of the examples mentioned. The students. should be asked to explain latitude and longitude, which are mentioned but not defined in the text. They might be invited to suggest other coordinate systems for a line, a plane, space, a spherical surface, and a torus. How... ever, the coordinate systems which are important in the course are treated in detail later, so not much class time should be spent on them at this point.

Chapter 1 also includes a discussion of the reasons for studying analytic geometry. It is felt that students should know something of the role of analytic geometry among the various branches of mathematics, and that they should realize that their main goal is not information about the particular topies studied, but rather understanding of and ability to use the techniques of analytic geometry.

Analytic Geometry really began when it was realized that every geometric object and every geometric operation can be referred to the number system and, hence, to algebra. The most significant steps in this arithmetization of geometry were taken by two French mathematicians, Pierie Fermat (1601-1655) and René Descartes (1596-1650). Fermat began work on analytic geometry in 1629 but his treatise Ad Locus Planos et Solidos Isagoge was not published until 1679. Chief credit, therefore, is given to Descartes whose Geometrie was published in 163 , and who influenced the work of many mothematicians. In the Geönetric, one finds the earliest unification of algebra and geometry. Apollonius and other Greek mathematicians had used coordinates to locate points in a geometric figure. It was Descartes who introduced the algebraic representation of a curve or surface by an equation involving two or three variables.

Descartes' book does yot contain a systematic development or the subject such as you find in this text, The method must be const ructed from isolated statements in different.parts of the treatise. It is interest ns that Fermat's work included the equations. $y=m x, x y=k, x^{2}+y^{2}=a^{2}, x^{2} \pm a^{i} y^{2}=b^{2}$ for lines and conics.

Many mathematicians extended Descartes work. Among these were Jom Wallis in his' Tractatus de cectionibus Conics and John DeWith in his Liementa Curvarum Linearum. Most of the work of Descartes and his contemporaries was concerned with the geometry of Apollonius. Newton worked with algebraic equations in his study of cubid curyes in 1703 . The first analytic geometry of conic sections divorced from the work of Appollonius was developed by Eulet in his Introductio in 1748..

Since that time the methods of Analytic Geometry have become the most significant in the study of geomet r_{y}. In more advanced mathematics they have essentially replaced the synthetic method. More recently vector methods have been incorporáted in Analytic Geómetry and are being used more and more widely in mathematical applications.

Teacherr's Comentary
 Chapter 2
 coordinatés and the cine

This chapter is fuffamental to the rest of the book, In it we discuss coordinate systems for a line and a plane. We also treat the analytic geometry of lines in a plane, A good deal of ${ }_{c}$ 'the material in the chapter is famillar from previous courses; it is repeated here for purposes of review and completeness, You will probably find that the material of Sections $2-1,2-2,2-3$, and $2-5$ may be covered yery quickly, It is likely that the, material on polar coordinates, drection on a line, angles between lines, and. the normal and polar forms of an equation of a line will be new to most students, The majority of the class time should se spent on these topics. -Many examples have been interspersed throughout the text. Though these increase the number of pages in the chapter, hopeitully they will help the student to proceed more rapidly and decrease the need for classroom explanation and discussion, Many more exercises have been included. than any given class might be expected to dẹ. You will probably find it advisable to break the chapter into two units for testing purposes. For this reason, a set of review exercises has been included after Section $\stackrel{2}{2}, 5$.

7-15 If the students are to get anything out of this section, they must understand clearly the treatment of distance -n SKSG Geometry, By the Distance Postulate, to every pair of different points there corresponds a unique positive number. It is called the distance between the points because it is the. "official" version of the intuitive notion of distance. The Ruler and Ruler Placement Postulates enakie us to nake any point on a line the origin of a coordinate system, and to mak either direction from that point the positive one. However, we can not choose the scale. It is already there in tine geometry. Betweennéss and congruence are defined in terms of coordin, ates, and thus coordinate systems are fundamentai in the development of the - SMSG Geometry,

Nevertheless, intuition tells us'that scale doesn't really matter. If two boats are equally ong, their lengths expressed in meters are equal just as their leneths expressed in feet are equal. Let a, b, and c be the
'coordinatcs of the points A, B, and C^{-}on a line, in a certain coordinate system, and $a<b<c$. Then if we change the size of the units (but nothing else) in our coordinate system, and $\left.a^{p}, b\right\}$, and c^{\prime} are the new coordinates of the same points, we should find that $a^{2}<b^{2}<c^{2}$. We have not attempted to prove that we do have this frcedom in the text. In order to get started on the task ìcfore us, we hąve offered cxamples illustrating the ways in which we normally assume this freedom in applying ccometry. The examples themselves are trivial in difficulty and were deliberately chosen so; their purpose is to illustrate the many assumptions we make in solving cven a simple problem as woll as the importance of these assumptions.

The techniques of analytac geometry are more saleabie if we exploit to the fullest the freeaom to choose various coordinate systems. When the occasions arise to mention this freedom, we shall make much of it, usually by invoking a grandiose principle as we do here in tue Linear Coordinate System Principle.

In this principletwe are actually postulating a theorem we could prove, but the proof is difficult for mast students. We have included material in the supplement to Chapter 2, for abie students who are well versed in SMSG Gcometry and the concept of function, and who are interested in the deductive nature of mathematics.

Note that the symbol " $d(R, S)$ " is defined in terms of a fixed coordinate system. It would be nice if our notation showed this, but that wouli make it rathe ${ }^{3}$ complicated. It is advisable to stress this point when the symbol is introduced, so the students will be reminded of it every time they see it later.

The definition of a directed segment will probably seem rather unnatural to the students. They will feel that the idea or the segment $\overline{A B}$ considered as running from A to B is quite clear and they will wonder why we give this strange definjtion. It may help to ask them to try to define the concept in terms which are "official" in our formal systcm. They will find that any definition of this kind, and no other kind is permissible, seems unnatural.

This is not the first time the students have seen such a definition. They undoubtedly felt they knew what the inside of a triangle was before they stidied geometry, and most. of them were probably surprised to find out how 0 much trouble it was to give an acceptable definition.

1. There should be some agreement between the numbers obtained by comparing these measurements and those rumbers in the text. Howcver, the degree of agreement will depend upon how well the subdivisions of the units are estimated. The constants of proportionality should be consistent.
E. The side is measured to 2 slace accuracy and the results are correct to 2 place accuracy. The discrepency between 2.53 and 2.54 is not significant because they are the same to 2 place accuracy.
2. Hopefully, students will be able to anticipate that the proper units are feet; the computẽd answer ($12 \pi \mathrm{ft} .=37.6992$) seems so idealized to be meaningl.ess.
3. The answer will depend upon the source of the information as to the distance from New York to San Francisco. The answer should be close to 400 miles to the inch.
4. 1 inch represents ≈ 330 miles; the "line" from New York to San Francisco would be approximately 9.2 inches long.
5. The bicycमist travels at the rate of $8 \mathrm{mi} /$ hour. The friend travels at the rate of $32 \mathrm{~km} /$ hour or, $\approx 20 \mathrm{mi} / \mathrm{hour}$.
a) $8 t-20(t-2)=$ distance apart at time t. One hour aftex the friend begins ($t=3$) the distance apart is 4 miles.
b) When the distances both have traveled are equal, $20(t-2)=8 t$ and $t=3 \frac{1}{3}$ hours. The distance is (approximately) 27 miles.
6. Rate of bicyclist A is 4 miles/hour. Rate of bicyclist B^{*} is 5 miles/hour. Rate of preposterous bee is 10 miles/hour.
a)

$$
\begin{aligned}
20 t+5 t & =30 \\
15 t & =30 \\
t & =2 \text { hour }
\end{aligned}
$$

Distance bee traveled $=2 \times 10=20 \mathrm{mi}$.
b)

$$
\begin{aligned}
4 t+5 t & =30 \\
9 t & =30 \\
& =\frac{10}{3} \text { or } 3 \frac{1}{3} \text { hour }
\end{aligned}
$$

Total dis'jance bee traveled $=3 \frac{1}{3} \times 10$ or $33 \frac{1}{2} \mathrm{mi}$.

The statement of the Linear Coordinate System Principle clearly indicates that the measures of distance are proportional, but it is perhaps not so clear that the criteria for order, or betweenness, also carry over in the coordinate systems which we consider. It is not a trivial matter to show that it does. Unfortunately, any numerical example would be hopelessly artificial. An illustration of this idea can be found in physics. The boiling point of alcohol is between the boiling point of water and the freezing point of water. The relationship of betweenness would hold for the corresponding temperatures at these points, whether indicated in the Fahrenheit or the Centigrade scales.

The notion of a point of division may be extended to include the endpoints of the segment and points external to the segment, but directed distance should be used in this case in order to assure uniqueness. If in the equation $\frac{\vec{d}(P, X)}{\vec{d}(P, Q)}=t$, we define $\vec{d}(P, X)$ to be the directed distance from P to X and $\vec{\alpha}(P, Q)$ to be the directed distance from P to Q, we may write

$$
\frac{x-p}{q-p}=t
$$

In this case, when $0<t<1$, we still obtain internal points of division. When $t=0$, we obtain the coordinate of P; when $t=1$, we obtain the coordinate of Q : When $t<0$, we obtain the coordinates of points in the ray $\overrightarrow{Q P}$ which are external to $\overline{P Q}$; when $t>1$, we obtain points in the ray $\overline{\mathrm{PQ}}$ which axe external to $\overline{\mathrm{PQ}}$,

If your students are like ours, they will comprehend the notion of a weighted average even more clearly when it is applied to test grades which are "weighted" in calculating the final average.

There is additional material on linear combinations in the Supplement to Chapter 3 and in SMSG Intermediate Mathematics on pages 374-376 and page 4:-

The parametric representation is equivalent to the extension of the notion of point of division given in the note on page 18.' If the SMSG Geometry with Coordinates is available, you may wish to look at the material on pages 107-111.

The material on the analytic representations of the subsets of a line is more important as an introduction to later work than it is in. itself. It provides a review of the notion of the graph of an equation and a reminder

that conditions other than equations alzo have grap ${ }^{1} 15$. If the students are not familiar with the propexties of inequaliiics, it may be necessary to spend a little time on them at this point.
1.

Exercises 2-2

(b)

(d) $\quad-3-2-1011234567$ $\mathrm{A}_{1} 1+\mid$

(f)

(g)

(h)

(j)
(k)

(0)

| j) | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | |

(p)

(q)

(r)

2. (a) $3 \leq x \leq 4$ Alternative $(x-3)(x-4) \leq 0$
(f) $\quad(x+2)(x+1)(x-1)(x-3) \frac{(x-1)}{(x-1)} \leq 0$
(b) $-2 \leq x<2$
(g) $\left|x-\frac{2}{5}\right| \leq \frac{1}{5}$
(c) if $\begin{aligned} & b>a: \\ x & \geq a+2(b-a)=2 b-a\end{aligned}$
Alternative: $\frac{1}{5} \leq x \leq \frac{3}{5}$
(d) $x \leq x_{2}+\frac{1}{2}\left(x_{2}-x_{1}\right)$
(h) $x<3$
(e) $(x+1)(x)(x-1)(x-3) \frac{x}{x} \leq 0$
(i) $\sin \pi \quad x \neq 0$
Alternative: $-1 \leq x<0$
(j) $\sin \theta \geq 0$
or $\quad 1 \leq x \leq 3$
3. (a) $3 a,-3 a$
(b) All values of x such that $0 \leq \dot{x} \leq 1$.
4. (a) $m=\frac{15}{2}$
(b) $m=\frac{11}{2}$
(c) $m=r$
(d) $m=(r+t)+1$
(e) $m=r+\frac{3}{2} t$
(f) $m=\frac{5}{2} r+\frac{1}{2} s$
(g) $m=\frac{1}{2}\left(r^{2}-r+s^{2}-s\right)$
(h) $m=\frac{1}{2}(r+s)$
5. (a) $X=Q$
(b) $\quad X=P$
(c) X is between P and Q
(d) Q is between P and X
(e) P is between X and Q^{*}
(f) Q is between P and X
6. (a) $t=-1$

$$
t=\frac{1}{3}
$$

(b) $t=\frac{2}{3}$
(c) $t=3$
(d) $t=-1$

$$
t=1
$$

7. (a) $\frac{d(A, B)}{d(B, C)}=\frac{1-1 \frac{1}{2}}{1 \frac{1}{2}-2 \frac{1}{2}}=\frac{-\frac{1}{2}}{-1}=\frac{1}{2}$
(b) $\frac{d(B, C)}{d(C, D)}=\frac{1 \frac{1}{2}-2 \frac{1}{2}}{2 \frac{1}{2}-4 \frac{1}{2}}=\frac{-1}{-2}=\frac{1}{2}$
(c) $\frac{d(C, D)}{d(D, E)}=\frac{2 \frac{1}{2}-4 \frac{1}{2}}{4 \frac{1}{2}-9}=\frac{-2}{-4 \frac{1}{2}}=\frac{4}{9}$
8. (a) $b=\frac{2}{3} a+\frac{1}{3} c$
(b) $c=\frac{2}{3} b+\frac{1}{3} d$
(c) $d=\frac{9}{13} c+\frac{4}{13} e$
9. (a) $T_{1}=1 \frac{1}{2}{ }^{\leqslant} T_{2}=2$
(b) $T_{1}=2 \frac{1}{2} \quad T_{2}=3 \frac{1}{2}$
(c) $T_{1}=\frac{14}{3} \quad T_{2}=\frac{41}{6}$
10. $P=\frac{3}{4}$ or $\frac{9}{4}$
$Q=1$ or 4
$R=6$ or 12

26
The teacher will have to use his own judgment as to how much time should be spent on coordinate systems in the plane not of the type we derinc. For example, if we consider two mutually perpendicular lines and on each of them a perfectly arbitrary linear coocdinate system, then by the method described in the text there is established a one-to-one correspondenve between the points in the plane and the ordered pairs of real numbers. However, many things become more complicated. The distance between two points, for example, is no. longer given by the usual formula. Probably no nore than a few minutes should be spent on this in class, after which Challenge Exerise 4 on page 54 can be assigned. (See Supplement C for more on this subject.)

27 We may, of course, extend the notion of point of division as we did on page 18.

If the SMSG Geometry with Coordinates is available, you may want to look at pages 543-550, where there is an alternative development of the parametric representation of the points on a line.

Exercises $\frac{2-3}{}$

1. (a) $M=\left(3,4 \frac{1}{2}\right)$
$A=(2,3)$
$B=(4,6)$
(b) $\mathrm{M}=\left(5,7 \frac{1}{2}\right)$
$A=(4,6)$
$B=(6,9)$
(c) $M=\left(5 \frac{1}{2}, 2 \frac{1}{2}\right)$
$A=\left(5 \frac{1}{3}, 5 \frac{2}{3}\right)$
$B=\left(5 \frac{2}{3},-\frac{2}{3}\right)$
(d) $M=\left(-2 \frac{1}{2}, 3 \frac{1}{2}\right)$
$A=\left(-\frac{1}{3}, 1 \frac{1}{3}\right)$
$B=\left(-\frac{14}{3}, \frac{17}{3}\right)$
(e) $M=(0,0)$
$A=(-2,-1)$
$B=(2,1)$
(f) $M=\left(-4 \frac{1}{2},-4 \frac{1}{2}\right)$
$A=(-4,-5)$
$B=(-5,-4)$
(g) $M=\frac{p_{1}+q_{1}}{2}, \frac{p_{2}+q_{2}}{2}$
$A=\frac{2 p_{1}+q_{1}}{3}, \frac{2 p_{2}+q_{2}}{3}$.
$B=\frac{p_{1}+2 q_{1}^{2}}{3}, \frac{p_{2}+2 q_{2}}{3}$
(h) $M=\left(\frac{3 \mathrm{~s}}{2}, \frac{3}{5}\right)$
$A=\left(\frac{5 s}{3}, \frac{6 t}{3}\right)$
$B=\left(\frac{4 s}{3} \frac{t}{3}\right)$
(i) $M=\left(\frac{3 r}{2}+\frac{s}{2},-2 r-\frac{s}{2}\right)$
$A=\left(\frac{7 x}{3}+s,-\frac{7 r}{3}\right)$
$B=\left(\frac{2 r}{3},-\frac{5 r}{3}-s\right)$
2. (a) $x=2 a+6 b$
$y=3 a+b$
(b) $x=-1 a+2 b$
$y=5 a_{i}^{\prime}-7 b$
(c) $x=-3 a-6 b$
$y=-6 a+4 b$
3. (a) $x=2+4 t$
$y=3-2 t \cdot$
(b) $x=-4+6 t$
$y=5-12 t$
(c) $x=-3-3 t$
$y=-6+10 t$
4. If, in equation (2), $x_{0}=x_{1}$ or $y_{0}=y_{1}$

$$
x=\frac{d x_{0}+c x_{0}}{c+d}
$$

or

$$
y=\frac{d y_{0}+c y d}{c+d}-
$$

Simplifying,

$$
x=x_{0}
$$

$$
\begin{equation*}
y=y_{0} \tag{d}
\end{equation*}
$$

1 These are conditions describing points on lines parallel to the y-axis or x-axis respectively.
(a) Substituting into equation (1) we see that

$$
\begin{aligned}
\frac{7-(-3)}{22-(-3)} & =\frac{0-(-6)}{9-(-6)} \\
\frac{10}{25} & =\frac{6}{15} \\
\frac{2}{5} & =\frac{2}{5} \quad \therefore \text { Points } A, B, C \text { are collinear: }
\end{aligned}
$$

Check:

$$
\begin{aligned}
& d(A, B)=\sqrt{(7-(-3))^{2}+(0-(-6))^{2}} \\
&=\sqrt{136}=2 \sqrt{34} \\
& d(B, C)=\sqrt{((-3)-22)^{2}+((-6)-9)^{2}} \\
&=\sqrt{850}=5 \sqrt{34} \\
& d(A, C)=\sqrt{(7-22)^{2}+(0-9)^{2}} \\
&=\sqrt{306}=3 \sqrt{34} \\
& d(A, B)+d(A, C)=2 \sqrt{34}+3 \sqrt{34}=d(B, C) \\
& \therefore A, B, C \text { must be collinear }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\frac{-1-3}{-5-3} & \stackrel{?}{=} \frac{4-(-14)}{-6-(-14)} \\
\frac{-4}{-8} & \neq \frac{18}{8} \text { not collinear }
\end{aligned}
$$

Check:

$$
\begin{aligned}
d(A, B) & =\sqrt{((-1)-3)^{2}+(4-(-14))^{2}} \\
& =\sqrt{340}=2 \sqrt{85} \\
d(B, C) & =\sqrt{(3-(-5))^{2}+((-14)-(-6))^{2}} \\
& =\sqrt{128}=8 \sqrt{2} \\
d(A, C) & =\sqrt{((-1)-(-5))^{2}+(4-(-6))^{2}} \\
& =\sqrt{592}=4 \sqrt{37} \\
& d(A, B)+d(B, C) \neq d(A, C) .
\end{aligned}
$$

This verifies that the points are not collinear.

86. Given that:

$$
\begin{aligned}
& A(1,-1), \\
& B(4,7), \text { and } \\
& P(h,-3) \\
& \frac{1-4}{h-4}=\frac{-1-7}{-3-7} \\
& \frac{-3}{h-4}=\frac{-8}{-10} \\
&-8 h+32=30 \\
&-8 h=-2 \\
& h=\frac{1}{4}
\end{aligned}
$$

30-38 Polar coordinates are a new topic for most students and care must be taken in their presentation. The primary difficulty is the multiplicity of the polar representations of a given point.

Other examples of the physical application of polar coordinates occur in air and sea navigation. The path of a racing sail boat beating up to a mark may appeal to some students. The pains across newly planted lams on corner lots bear this out, too. is worthy of emphasis. A student of the calculus must exercise particular care in the use of polar coordinates. If a curve is symmetric with respect to the origin, it is all too easy to sum up the area bounded by the curve on one side of the origin--and at the same time subtract away an equal area on the other. A judicious use of symmetry and boundaries is essential in such cases.

35
Once again we want to stress the freedom to choose our analytic framework in any way which will make algebraic manipulation as painless as possible. In general, if P and Q are any two distinct points in any plane and if $\left(p_{1}, p_{2}\right)$ and $\left(q_{1}, q_{2}\right)$ are any two distinct rdered pairs of real numbers, there exists a rectangular coordinate system in that plane in which $P=\left(p_{1}, p_{2}\right)$ and $Q=\left(q_{1}, q_{2}\right)$. Furthermore, if we let $\left(r_{1}, \theta_{1}\right)$ and $\left(x_{2} ; \theta_{2}\right)$ be any two distinct ordered pairs of real numbers, there exists a polar coordinate system in the plane in which $P=\left(r, \theta_{1}\right)$ and $Q=\left(r_{2}, \theta_{2}\right)$. (Note that the change from $\left(p_{1}, p_{2}\right)$ and $\left(q_{1}, q_{2}\right)$ to $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{2}\right)$ was
unnecessary; any two distinct ordered pairs of real numjers may $z \in$ coordinates of P and Q in coordinate systems of each type. If at least one of the points is not on an axis, the coordinate system is unique.)

35
A moment's thought should convince you that the usual equations relating polar and rectangular coordinates are completeiy deyendent upon a particular orientation of both coordinate systems in the same plane. If either coordinate system should be introduced differently into the plane, we would have to develop new equations of transformation.

36
The ordered pairs (r, θ) satisfying equations (ε) describe two distinct points, but once the student las developed some favility with polar coordinates, it will be easy to choose the appropriate ones. If the students are famfliar with the inverse trigonometric relations, they may prefer some equivalent of the follwoing definition,

$$
P=\left\{(r, \theta): \text { where } \begin{array}{rl}
r & = \pm \sqrt{x^{2}+y^{2}} \neq 0, \theta=\cos ^{-1} \frac{x}{r} \\
& =\sin ^{-1} \frac{y}{r} ;
\end{array}\right.
$$

where $x^{2}+y^{2}=0, r=0$ and θ is any real number.) Hopefuliy, a student will ask what to do when $x-C$, since one of the equations of transformation is not defined. Some other studen. shoula be able to point out that in this case $\theta=\frac{\pi}{2}+n \pi$, where n is any integer.
'Example 5 is worth some attention, for the application of the Law of Cosines as a distance formula in rolar soordinates is often convenient. Again there is a loophole, for it may not be apparent that the Law of Cosines still applies if $\theta_{1}=\theta_{2}+n \pi$; where n is any integer. In section $2-$? we shall have oczasion to point out that the relationst:p described still holis even, when the "vertices of the triangle" are collinear.

38-40 There is a wealth of practice exerclses lere. Exercise 5 would require seventy different answers if all parts were done; Exervise 10 has over thirty answers. You will probably want to pick and choose within this set of exercises, but there is plenty of extra drill available for students who need it.

Exèrcises 2-4

$\left(5,135^{\circ}\right)\left(-5,315^{\circ}\right)$
$\left(5,495^{\circ}\right)$
$\left(-5,-45^{\circ}\right)$
$\left(2,90^{\circ}\right)\left(-2,270^{\circ}\right)$
$\left(2,450^{\circ}\right)$
$\left(-2,-90^{\circ}\right)$
$\left(-4,45^{\circ}\right)\left(4,-135^{\circ}\right)$
$\left(4,225^{\circ}\right)$
$\left(-4,405^{\circ}\right)$
$\left(3,-120^{\circ}\right)\left(-3,60^{\circ}\right)$
$\left(3,240^{\circ}\right)$
$\left(3,600^{\circ}\right)$
2.

3.

\checkmark
4.

6. (a) $(0,0)$
(e) $(-1,0)$
(b) $(1,-1)$
(f) $(0, \sqrt{2})$
(c) $\left(\frac{5}{2}, \frac{5}{2} \sqrt{3}\right)$
(g) $(-1,-\sqrt{3})$
(d) $(4,0)$
(h) $(\sqrt{2},-\sqrt{2})$
7.
(a) $\left(\sqrt{2}, 45^{\circ}\right)$
(e) $\left(2,150^{\circ}\right)$
(b) $\left(2 \sqrt{2}, 315^{\circ}\right)$
(f) $\left(2,240^{\circ}\right)$
(c) $\left(p, 0^{0}\right)$
(g) $\left(\sqrt{29}, 22^{\circ}\right)$
(d) $-\left(q, \frac{\pi}{2}\right)$
(h) $\left(\sqrt{17}, 166^{\circ}\right)$
8. (a) $d(A, B)$ when $A=\left(2,150^{\circ} \not\right)^{\circ}$ and $B \cdot\left(4,210^{\circ}\right)$

$$
=\sqrt{(2)^{2}+(4)^{\prime}-2(2)(4) \cos \left(10^{\circ}-150^{\circ}\right)}=i \sqrt{3}
$$

Using rectangular coordinates

$$
\begin{aligned}
& A=\left(2^{\prime}, 150^{\circ}\right) \text { in rectangular coordinates }(-\sqrt{3}, 1)^{\circ} \\
& B=\left(4,210^{\circ}\right) \text { in rectangular coordinates }(-2 \sqrt{3},-c) \\
& \begin{aligned}
d(A, B) & =\sqrt{(-\sqrt{3}-(-2 \sqrt{3}))^{2}+(1-(-2))^{2}} \\
& =\sqrt{(\sqrt{3})^{2}+\left(3^{2}\right)^{2}}=2 \sqrt{3}
\end{aligned}
\end{aligned}
$$

(b) Using rectangular coordinates:
$A=,\left(5, \frac{5}{4} \pi\right)$ in rectangular coordinates $\left(-\frac{5}{2} \sqrt{2},-\frac{5}{2} \sqrt{2}\right)$
$B=\left(12, \frac{7}{4} \pi\right)$ in rectangular coordinates $(6 \sqrt{2},-6 \sqrt{2})$
9. (a) $d(A, B)=\sqrt{34}$
cob) $A=\left(2,37^{\circ}\right), B=\left(3,100^{\circ}\right)$
$d(A, B)=\sqrt{4+9-2(2)(3) \cos (100-37)}$
$d(A, B)=\sqrt{4+9-12(.454)}$
$d(A, B)=\sqrt{4+9-5.45}=\sqrt{7.55}=2.75$
(c) $d(A, B)=\sqrt{52}$
(d) $d^{d(A, B)}=\sqrt{7}$
(e) $d(A, B)=7$
(i) $\mathrm{d}(\mathrm{A}, \mathrm{B})=.5 \sqrt{5}$
10.

The twelve interior points of intersection different from 0 are"

$\left(\frac{10}{3} \sqrt{3}, 30^{\circ}\right)$	$\left(\frac{10}{3} \sqrt{3}, 90^{\circ}\right)$	$\left(\frac{10}{3} \sqrt{3}, 150^{\circ}\right)$
$\left(\frac{10}{3} \sqrt{3}, 210^{\circ}\right)$	$\left(\frac{10}{3} \sqrt{3}, 270^{\circ}\right)$	$\left(\frac{10}{3} \sqrt{3}, 330^{\circ}\right)$
$\left(5,0^{\circ}\right)$	$\left(5,60^{\circ}\right)$	$\left(5,120^{\circ}\right)$
$\left(5,180^{\circ}\right)$	$\left(5,240^{\circ}\right)$	$\left(5,300^{\circ}\right)$

11. (a) $\left((-1)^{k_{r}},\left(\theta_{0}+180 k\right)^{0}\right)$
(b) $\left((-1)^{k_{r}}, \theta_{0}+\pi k\right)$

41-47 Students should find little if any new material in this section. It is - i.acluded for review and completeness.

41 The georetric form is usciul in developing equation for a line, since it is elosely allied both to the geometric picture and, since the denominators are direction numbers for the line, to the parametric repre.entation for the line. It corresponds to the symmetric equations for a line in 3-space.

43 Inclination is defined geometrically, since our point of view is geometric. This definition may also prenare the student for the definition of direction angles in the following, section.

44 Note that inclination is defined even when slope is not.
49 Since the general form of an equation of a line does not reveal immediately the geometric characteristics of the line, it is worthwhile to develop facility in interpreting the geometric propertice from the coefficients.

Exerojses 2-5

| 1. $y+3=2(x-2)$ | | $2 x-y-7=0$ |
| :--- | :--- | :--- |$\quad p=7 \quad q=3$

\rightarrow Two lines are perpendicular if and only if
(a) the product of their siopes is -1 or
(b) one has no slope and the other zero sicpe.
8. $\frac{x+8}{4}=\frac{y-8}{-3}$
9. (1) $\frac{x+4}{6}=\frac{y-8}{-5}$
(2) $5 x+6 y-28=0$
(3) $y-8=-\frac{5}{6}(x+4)$
(6) $y-8=\frac{3-8}{2+4}(x+4)$
(4) $y=-\frac{5}{6} x+\frac{14}{3}$
(7) $x+4=\frac{2+4}{3-8}(y-8)$

SLope: - $\frac{5}{6} \quad x$-intercept: $\frac{28}{5} \quad y$-intercept: $\frac{14}{3}$ $y=-\frac{a}{b} x-\frac{c}{b}$
10. (a) If $b=0$, $a c \neq 0$, line is vertical, through $\left(-\frac{c}{a}, 0\right)$
(b) If $a=0, b c \neq 0$, line is hori ontal, through ($0 ;-\frac{0}{b}$)
(2) If $c=0, a b \neq 0$, line has slope $-\frac{a}{b}$, through $(0,0)$
11. (a) $y=-\frac{7}{3} x+5$
(b) $y=x-5$
(c) $y=-\frac{2}{7} x+\frac{17}{7}$
(a) $y=-x-2$
(e) $y=\frac{\sqrt{3}}{3} x+\frac{\sqrt{3}-9}{3}$
12. (a). $\frac{x-3}{1-3}=\frac{y-2}{-2-2}$
(b) The midpoint of $\overline{\mathrm{BC}}$ is $\left(\frac{3}{2}, 3\right)$
:ledian from A can be represented by

$$
\frac{x-1}{\frac{3}{2}-1}=\frac{y-(-2)}{3-(-2)}, \text { or } 10 x-y-12=0
$$

(c) The midpoint of $\overline{A C}$ is $\left(\frac{1}{2}, 1\right)$. And from (b) midpoint of $\overline{B C}$ is $\left(\frac{3}{2}, 3\right)$. Line joining these two points is represented by $\frac{x-\frac{1}{2}}{\frac{3}{2}-\frac{1}{2}}=\frac{y-1}{3-1}$, or $2 x-y=0$.
13. Given the conditions of the problem, it appears that there are. thrce possible solktions. (sketch below)

Triangle (1): Tris triangle is not satisfactory, cince its area must be greater than 40 ; that is, its area includes that of the rectangle with 0 and P as opposite vertices, and adjacent Lides on the axes. Triang+: (3): The area of the triangle is $\frac{1}{6} a_{2} b_{1}$. The slope of $\overline{B F}=$ slope of $\overline{A B}$ and

$$
\frac{8}{5+b_{1}}-\frac{a_{2}}{b_{1}}
$$

Solving for a_{i},

$$
a_{2}=\frac{8 b_{1}}{5+b_{1}}
$$

Substituting into $\frac{1}{2} a_{2} b_{1}$, we find that the positive root is $5\left(b_{1}=5\right)$. Using $\quad a_{2}=\frac{8 b_{1}}{5+b_{1}}$, ye find $a_{2}=4$.
The equation of the line through $(0,4),(-5,0)$, and $(5,8)$ using the symmetric form is

$$
\frac{x+5}{0+5}=\frac{y-0}{4-0}, \text { or } 4 x-5 y+20=0
$$

Triangle (3): Area of triangle 3 is $\frac{1}{2} a_{2} b_{1}$.
. Slope of $\overline{P B}=$ slope of $\overline{A B}$

$$
\cdots-\frac{8}{5-b_{1}}=\frac{a^{2}}{o_{1}}-
$$

Solving for a_{2}, we see that

$$
a_{2}=\frac{8 b_{1}}{5-b_{1}}
$$

Substituting in area formula, $b_{1}=\frac{20}{8}$ and $a_{2}=8$.
The equation of the line through $(0,-8),\left(\frac{20}{8}, 0\right)$ and $(5,8)$ in. symmetric form is

$$
\frac{x-0}{5-0} \quad \frac{y-(-8)}{8-(-8)}, \text { or } 16 x-5 y-40=0
$$

Since this is such a long charter, you may want to test the students at this point. With this in mind we have included a copious set of review and challenge exercises from which selections may be made.

Review Exercises - Section 2-1 through Section 2-5

1. $(x: \quad 1<x \leq 2\}$

2. $(x:(x-1)(x+2)=0\}$

3. $\{x:|x|<3\}$

4. $\{x:|x-4| \geq 2\}$

5. One-space: A point four units to the left of the origin.
Two-space: A line parallel to the y-axis four units to the left of it.
6. The empty set.
7. One-space: A segment of the x-axis between, but not including the points

 $x=2$ and $x=6$. 2-Space: A portion of the $x y$-plane between but excluding 1 ines $x=2$ and $x=6$.
8. Qne-space: The portion of the x-axis to the right of 2 including $x=2$ and to the left of and including $x=-2$. 2-space: The portion of the plane to the right of and including the line $x=2$ and
 the portion of the plane to the left of and including the line $x=-2$.

9. One-space: A segment of the x-axis between and including the points $-x=6$ and $x=-6$.
2-space: The portion of the plane between and including the lines
$x=6$ and $x=-6$.

10. Let m represent the midpoints and t_{1}, t_{2} represent the trisection points.
(a) $m=\frac{1}{2}$

$$
t_{1}=0 \text { and } t_{2}=1
$$

(b) $m=-2$

$$
t_{1}=-3 . \text { and } t_{2}=-1
$$

(c) $m=\frac{1}{2}$

$$
t_{1}=-\frac{1}{3} \text { and } t_{2}=1 \frac{1}{3}
$$

11. (a) $\left(2, \frac{\pi}{3}\right)$
(d) $\left(\sqrt{13}, 236^{\circ}\right)$, approximately
(b) $\left(2, \frac{3 \pi}{4}\right)$
(c) $\left(5,-53^{\circ}\right)$, approximately.
(e) $(1,0)$
(f) $\left(1, \frac{\pi}{2}\right)$
12. (a) $(2 \sqrt{2}, 2 \sqrt{2})$
(d) $(3 \sqrt{2}, 3 \sqrt{2})$
(b) $\left(-\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)$
(e) $\left(\frac{-5 \sqrt{2}}{2}, \frac{-5 \sqrt{2}}{2}\right)$
(c) $(\sqrt{2}, \sqrt{2})$
(f) $\left(-\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$
13. $3 x+4 y=14$
14. $8 x-11 y+46=0$
15. $5 x-2 y+10=0$.
16. $y=\sqrt{3} x+5-4 \sqrt{3}$
17. $y=6$
18. $x=4$
19. The equation for $\stackrel{\rightharpoonup}{A B}$ is $y=-\sqrt{2} x+6 \sqrt{3}$

The equation for $\overrightarrow{\mathrm{BC}}$ is $\mathrm{y}=8 \sqrt{3}$
The equation for $\overrightarrow{C D}$ is $y=\sqrt{3} x+6 \sqrt{3}$
The equation, for is $y=-\sqrt{3} x-6 \sqrt{3}$
The equation for $\overline{E F}$ is $y=-3 \sqrt{3^{*}}$.
The equation for $\overrightarrow{F A}$ is $y=\sqrt{3} x-6 \sqrt{3}$
20. The equation for $\overrightarrow{A B}$ is $\sqrt{3} x+y-6 \sqrt{3}=0$

The equation for $\overrightarrow{B C}$ is $y-3 \sqrt{3}=0$
The equation for $\overrightarrow{C D}$ is $\sqrt{3} x-y+6 \sqrt{3}=0$
The equation for $\overrightarrow{D E}$ is $\sqrt{3} x+y+6 \sqrt{3}=0$
The equation for $\overline{\mathrm{EF}}$ is $\mathrm{y}+3 \sqrt{3} \mathrm{y}=0$
The equation for $\overrightarrow{F A}$ is $\sqrt{3} x-y-6 \sqrt{3}=0$
21. The equation for $\overrightarrow{A B}$ is $\frac{x-6}{-3}=\frac{y}{3 \sqrt{3}}$

The equation for $\overrightarrow{B C}$ is not -defined
The equation for $\overrightarrow{C D}$ is $\frac{x+6}{3}=\frac{y}{3 \sqrt{3}}$
The equation for $\overrightarrow{\mathrm{D}}$ is $\frac{x+3}{-3}=\frac{y+3 \sqrt{3}}{3 \sqrt{3}}$
The equation for EF is not defined
The equation for $\overrightarrow{F A}$ is $\frac{x-3}{3}=\frac{y+3 \sqrt{3}}{3 \sqrt{3}}$
22. $\frac{-\sqrt{3}}{3}$ is the slope of $\overrightarrow{\mathrm{AC}}$.
$\frac{\sqrt{3}}{3}$ is the slope of $\overrightarrow{B D}$.
$\frac{\sqrt{3}}{3}$ is the slope of $\overrightarrow{A E}$.
$\frac{-\sqrt{3}}{3}$ is the slope of $\overrightarrow{\mathrm{DF}}$.
(23. Let t_{1} and t_{2} represent the trisection points.

For $\overline{A B}, t_{1}=(5, \sqrt{3})$ and $t_{2}=(4,2 \sqrt{3})$.
For $\overrightarrow{B C}, t_{1}=(1,3 \sqrt{3})$ and $\left.t_{2}=-1,3 \sqrt{3}\right)$.
For $\overline{C D}, t_{1}=(-4,2 \sqrt{3})$ and $t_{2}=(-5, \sqrt{3})$.
For $\overline{\mathrm{DE}}, t_{1}=(-5,-\sqrt{3})$ and $t_{2}=(-4,-2 \sqrt{3})$:
For $\overline{E F}, t_{1}=(-1,-3 \sqrt{3})$ and $t_{2}=(1,-3 \sqrt{3})$.
For $\overline{F A}, t_{1}=(4,-2 \sqrt{3})$ and $t_{2}=(5,-\sqrt{3})$.
24. (a) $P=(4,2 \sqrt{3})$ or $(8,-2 \sqrt{3})$
(b) $Q=\left(\frac{3}{7}, 3 \sqrt{3}\right)$ or $(21,3 \sqrt{3})$
(c) $R=\left(-\frac{13}{3}, \frac{5 \sqrt{3}}{3}\right)$ or $(9,15 \sqrt{3})$
25. The inclination of $\overrightarrow{A B}=120^{\circ}$

The inclination of $\stackrel{\rightharpoonup}{A C} \leq 150^{\circ}$
The inclination of $\overrightarrow{\mathrm{AE}}=30^{\circ}$
The inclination of $\overrightarrow{A F}=60^{\circ}$
26. Symmetric form.
displays direction pair does not exist for lines parallel to either axis
General form.
always exists
conceals intercepts
displays direction fair
ease in computing intersections
ease in telling if. L contains (0,0)
Point-slope form.
displays slope does not always exist
ease in testing if P is on L
Slope-intercept form.
displays slope and intercept does not always exist
intercept form.
displays intercepts does not always exist

Two-point form.
usual way of finding line through two points
determines slope
must be used in different form if $\stackrel{\rightharpoonup}{P}_{1} P_{2}$ is vertical
(a) general form
(b) intercept form
(c) general form
(d) slope-intercept form
(e) slope-intercept
(f) symmetric
(g), symmetric
(h) symmetric
27. A square as shown in the figure

28. It is interesting to have students note what happens as the constant term shrinks to zero. At this instant the square shrinks to a point. The teacher might ask what happens when the constant is negative.
29. The half-plane above and excluding the line $x-y=1$.
30. The half-plane above and including the line $x-y=1$.
31. The "triangular" portion of the plane below and excluding the lines $x-y=1$ and $x+y=1$.
Graph for Exercise 17.
Cross hatch shows intersection set

32. The graph of R_{1} in 2-space is the vertical strip of the plane between and excluding the lines $x=-4$ and $x=4$.

The graph of R_{2} in 2-space is the horizontait strip of the plane between and excluding lines $y=4, y=-4$. The cross-hatch in the graph represents $R_{1} \cap R_{2}$.
In one-space R_{1} is a segment between and excluding points $x=4$ and $x=-4$; for $R_{\hat{c}}$ the same situation prevails on the y-axis.
(The line for points y may be any line.) $R_{1} \cap R_{2}$ is a single point, provided the x-axis intersects the y-axis.

In 3-space we can visualize R_{1} and R_{2} as the path of the 2 -space graph for each separate set as it moves perperdicular to the plane of the page; $R_{1} \cap R_{2}$ as a rectangular solid perpendicular to the plane of the page. The bounding planes are excluded from the graphs.
33. If < is replaced by \leq the graphs would be as in Exercise 18 except the boundaries would be included in every case. For $R_{2} \cup R_{2}$ apply definition of union of sets. The instructor may very well use this group of exercises as an informal introduction to families of curves. Note the role of the parameter.
34. Use two-point or point-slope or otherwlse to obtain $F=\frac{9}{5} c+32$ and $C=\frac{5}{9}(F-32)$. Science students need not memorize the formula; they can derive it.
35. The separate graphs R_{1} to ${ }^{\prime} R_{6}$ are labeled in the figure. $R_{4} \cap R_{5} \cap R_{6}$ is the set of all points on the triangle "and its interior as show by, the cross hatch. 1 -

1 Good students should enjoy this confrontation with ideas that go beyond the routine.
(a) Set of lines parallel to y-axis through points $(x, 0)$ where x ranges gver the integers.
(b) Set of lines parallel to the x-axis through points ($0, \dot{y}$) where a y ranges over the integers.
(c) The set of all lattice points of the plane.
(d) Includes all of R_{1}, R_{2}, R_{3}. A grill such as paper ruled in cross section.
(e) Boundaries on the heavy sides are included.
(f) Same graph moved K units to the right.
(g) and (h) Notice effect of placement of minus signs.
(a) $\mathrm{R}_{1}=\{(x, y):[x]=x\}$

(b) $R_{2}=\{(x, y):[y]=y\}$

(c) $R_{3}=\{(x, y):[x]=\dot{x}) \cap((x, y):[y]=y\}$

(e) $R_{5}=\{(x, y):\{x]=\{y\}\}$

(f) $R_{6}=((x, y):[x]=[y+k])$
(g) $R_{7}=((x, y):[x]=[-y]\}$

$(h) \cdot R_{8}:=\{(x, y):\{\dot{x}]=-[y]\}$

2. $\{(r, 0): r=0\}$
[dotted line accounts for negative values of r]

3. $\left\{(r, 0): r^{2}=0\right\}$

4. (a) $d\left(p_{1}, p_{2}\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(\frac{r^{2}}{s}\right)^{2}\left(y_{2}-y_{1}\right)^{2}}$
(b) $d\left(p_{1}, P_{2}\right)=\sqrt{\left(\frac{s}{r}\right)^{2}\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
(c) $\overrightarrow{P Q}$ and $\overrightarrow{R S}$ must either be parallel or have supplementary inclinations.

Let $\alpha=\frac{\mathbf{r}}{\boldsymbol{s}}$. From part (a) we know that for $d(P, Q)=d(R, S)$ we must
have $\left(p_{1}-q_{1}\right)^{2}+\alpha^{2}\left(p_{2}-q_{2}\right)^{2}=\left(r_{1}-s_{1}\right)^{2}+\alpha^{2}\left(r_{2}-s_{2}\right)$.
But also $\left(p_{1}-q_{1}\right)^{2}+\left(p_{2}-q_{2}\right)^{2}=\left(r_{1}-s_{1}\right)^{2}+\left(r_{2}-p_{2}\right)^{2}$.
Thus $\left(1-\alpha^{2}\right)\left(p_{2}-q_{2}\right)^{2}=\left(1-\alpha^{2}\right)\left(r_{2}-s_{2}\right)^{2}$. Since $r \neq s$, we know $\alpha^{2} \neq 1$. Therefore, $1-\alpha^{2} \neq 0$ and we may divide by $1-\alpha^{2}$.

From the result we see that the distances in the y-direction must be equal. But then the distances in the x-direction must be equal. These conditions are, satisfied'only when $\overline{D_{f}}$ and $\overline{R S}$ are parallel or when they have supplementary inclinations.
5.

The line may be written
in a simpler analytic representation.

$$
4 x+3 y-5=0
$$

6. The graph of $(a x+b y+c)^{k}=0$ is the same as the graph of $a x+b y+c=0$. A simpler representation is $a x+b y+c=0$.
7.

$$
\begin{array}{rl}
3 x+2 y-1 \leq 0 & y-\frac{3}{2} x+\frac{1}{2} \\
\left(-\frac{1}{13}, \frac{8}{13}\right) \\
-3 y+2=0 \\
y & =\frac{2}{3} x+\frac{2}{3} \\
-\frac{3}{2} x+\frac{1}{2}=\frac{2}{3} x+\frac{2}{3} \\
x & =-\frac{1}{13} \\
y & =\frac{8}{13}
\end{array}
$$

8.

$$
(3 x+2 y-1)(2 x-3 y+2)=0
$$

9.

$$
(x+y)(x-y)=0
$$

10.

11. (a) rational
-(b) rational
(c) real
(d) complex
12. (a) R may be any line containing the point ($-\frac{4}{5},-\frac{1}{5}$; except

$$
L=\{(x, y): x+y+1=0\} .
$$

(b) S may be any line containing the point $\left(-\frac{4}{5},-\frac{1}{5}\right)$ except

$$
L=\{(x, y): 3 x-2 y+2=0\}
$$

(c) I may be any line containing the point (.. $\frac{4}{5},-\frac{1}{5}$).
13. (a) U is the whole plane except for the points of

$$
L=\{(x, y): x+y+1\}
$$

other than $\left(-\frac{4}{5},-\frac{1}{5}\right)$.
(b) V is the whole plane except for the points of

$$
L=\{(x, y): 3 x-2 y+2=0\}
$$

other than $\left(-\frac{4}{5},-\frac{1}{5}\right)$
(c) W is the whole plane.
14. There are two possibilities: $L_{0}=\left\{(x, y): a_{0} x+b_{0} y+c_{0}=0\right\}$ and $L_{1}=\left\{(x, y): a_{1} x+b_{1} y+c_{1}=0\right\}$ may intersect at a point $\left(x_{0}, y_{0}\right)$. In this case,
(a) R may be any line containing $\left(x_{0}, y_{0}\right)$ except L_{1},
(b) S may be any line containing $\left(x_{0}, y_{0}\right)$ except' L_{0},
(c) T is the whole plane except those points of L_{1} other than $\left(x_{0}, y_{0}\right)$,
(d) U is the whole plane except those points of L_{0} other than $\left(x_{0}, y_{0}\right)$,
(e) V may be any line containing $\left(x_{0}, y_{0}\right)$, and
(f) W is the whole plane.
L_{0} and L_{1} may be parallel. In this case,
(a) unless R is empty, it is a line parallel to L_{0} and Ψ_{1} except L_{1}, when $k=0, R=L_{0}$; when $0<k R$ is between L_{0} and L_{1}; when $-1<k<0, L_{0}$ is between L_{1} and R; when $k=-1, R$ is
$\because \quad$ empty (the null set); when $k<-1, L_{1}$ is between L_{0} and R.
(b) The same argunent holds for S, but the roles of L_{0} and L_{1} are reversed.
(c) T is the whole plane except L_{1}.
(d) U.is the whole plane except L_{0}.
(e) unless V is empty, it is a line parallel to L_{0} and $L_{1 .}$. When $\mathrm{n}=0, \mathrm{~V}=\mathrm{L}_{0}$; when $\mathrm{m}=0, \mathrm{~V}=\mathrm{L}_{0}$.
(f) W is the whole plane.
15. (a) the null (or empty) set.
(b) the whole plane.

We include a copious set of Illustrative Test Items from which we may wish to make selections.

Illustrative Test Items for Sections 2-1 through 2-5

1. If P and Q have coordinates 3 and -5 respectively in one linear coordinate system on the line and corresponding coordinates -2 and 3 respectively in a second linear coc-jinate system, what are the corresponding coordinates of points with the following coordinates in the firsc coordinate system?
(a) 0
(e) $-1 \frac{4}{5}$
(b) 1
(c) -1
(f) -13
(d) $-\frac{1}{5}$
(g) 11
(h) 10
2. If M, A, and B are the midpoint and trisection points of $\overline{P Q}$, find m, a, and b when
(a). $p=3, q=12$
(b) $p=-3, q=1$
(c) $p=-2, q=13$
(d) $p=2 r+3 s, q=3 r-2 s$
3. If the coordinates of P, Q, and R are $2, x$, and 12 respectively, find the value(s) of x such that
(a) $d(P, Q)=\frac{1}{5} d(P, R)$
(b) $d(P, R)=2 d(P, Q)$
(c) $d(P, Q)=5 d(P, R)$
(d) $d(P, Q)=2 d(R, P)$
(e) $d(Q, P)=\frac{1}{2} d(P, R)$
4. If M, A, and B are the midpoint and trisection points of $\overline{P Q}$, find the coordinates of M, A, and B when
(a) $P=(2,1), Q=(-4,-2)$
(b) $P=(7,1), Q=(-2,1)$
(c) $P=(-2,5), Q=(7,12)$
(d) $P=\left(p_{1}, p_{2}\right), Q=\left(q_{1}, q_{2}\right)$
(e) $P=(1, r), Q=(\dot{s}+r, 2 s-3)$
5. P, Q, and R are points in a plane with a rectangular coordinate system. Determine whether the three points are collinear if
(a) $P=(-5,5), \quad Q=(0,0), \quad R=(7,-7)$
(b) $P=(-1,5), Q=(8,-3), \quad R=(-7,-6)$
(c) $P=(1,2), \quad Q=(9,10), \quad R=(-3,-2)$
(d) $P=(9,-10), Q=(-8,5), \quad R=(0,-2)$
6. A line with slope $-\frac{2}{3}$ passes through $(-3,4)$. If the points $(p, 7)$ and ($5, q$) are on the line, find p and q.
7. Sketch the graphs of the sets of points on a line with the following analytic representations.
(a) $[x:-1 \leq x<4]$
(b) $[x:|x-5|<2]$
(c) $[x:(x-1)(x-3) \leq 0]$
(d) $[x: x(x+2)(x-3)=0]$
8. Find analytic conditions which describe the illustrated sets of points.
(a)

(b)

(c)

(d)

9. Find three polar representations for the point with rectangular coordinates
(a) $(3,3 \sqrt{3})$
(e) $(4,-4)$
(b) $(-2,-2)$
(f) $\left(1, \frac{1}{\sqrt{3}}\right)$
(c) $(-1, \sqrt{3})$
(g) $(6,0)$
(h) $(0,-12)$
10. Find rectangular coordinates for the point with polar coordinates
(a) $(4,0)$
(b) $\left(\sqrt{2}, 45^{\circ}\right)$
(c) $\left(6,-120^{\circ}\right)$
(d) $\left(5, \frac{5 \pi}{6}\right)$
(e) $\left(-3,-\frac{3 \pi}{4}\right)$
(f) $\left(-4,-\frac{11 \pi}{6}\right)$
11. Wi thout changing to rectangular coordinates find the distance between the points whose polar coordinates are
(a) $(5,0)$ and $\left(12, \frac{\pi}{2}\right)$
(b) $(6,0)$ and $(6,-\pi)$.
(c) $\left(4,45^{\circ}\right)$ and $\left(5,-135^{\circ}\right)$
(d) $\left(3, \frac{\pi}{3}\right)$ and $\left(4, \frac{2 \pi}{3}\right)$
(e) $\left(-6,-\frac{\pi}{4}\right)$ and $\left(5, \frac{\pi}{4}\right)$
(f) $\left(-3,-90^{\circ}\right)$ and $\left(6,90^{\circ}\right)$.
12. Find an equation in the indicated form for the line which
(a) contains $(5,3)$ and $(6,4)$; symmetric form.
(b) contains $(0,4)$ and ($3 ; 0$) ; intercent form.
(c) contains $(7,-6)$, slope $-\frac{2}{3}$; point-slope form.
(d) contains $(13,-6)$ and $(-2,12)$; general form.
(e) contains $(0,-5)^{\prime}$, slope $\frac{3}{2}$; slope-intercept form.
(f) contains $(9,10)$ and $(-\sqrt{2}, 4)$; two-point form.
(g) contains $(-5,12)$, incrination $\frac{3 \pi}{4}$; point-slope form.
(h) contains $(5,7)$ and $(5,-3)$; two-point form.
(1) contains $(3,-6)$ and $(-3,3)$; intercept form.
(j) x -intercept 2 ; y -intercept 4 ; general form.
(k) x-intercept 5 ; inclination 60°; slope-intercept form.
(1) contains $(-5,7)$, slope $\frac{6}{7}$; symmetric form.
(m) contains ($-5,-4$), inclination 45°; general form.
(n) contains $\left(7,-2\right.$), slope $\frac{7}{13}$; symmetric form.
(o) contains ($6,-5$) and $(-3,2)$; two-point form.
(p) contains $(3,4)$, slope -2 ; intercept form.
(q) contains $(6,1)$ and ($-2,5$) ; slope-intercept form.
(r) contains $(9,3)$ and $(9,12)$; general form.
(s) contains $(2,3)$ and $(-7,3)$; general form.
(t) contains $(-5,4)$, inclination $\frac{2 \pi}{3}$; point-slope form.
13. Show that the triangle $A B C$ is a right triangle if $A=(-1,-3), B=(11,8)$, and $C=(-3,4)$.
14. Find an equation in general form of the line containing the median to side $\overline{B C}$ of triangle $A B C$ if $A=(-2,7), B=(3,4)$, and $C=(1,-2)$.
15. Find the area of the triangle determined by the lines

$$
\begin{aligned}
& L_{1}=\{(x, y): 2 x-8=0\}, \\
& L_{2}=\{(x, y): 12 x-5 y-53=0\}, \\
& L_{3}=\{(x, y): 4 x-5 y+19=0\}
\end{aligned}
$$

16. . In triangle $A B C, A=(0,0), B=(6,0)$ and $C \times(0,8)$.
(a) The bisector $\angle A$ divides the segment. $\overline{B C}$ ina what ratio?
(b) The point D at which the bisector of $\angle A$ intersects $\overline{B C}$?
(c) Find $d(B, D)$ and $d(C, D)$.
17. Find the coordinates of the points in which the line that contains $(-8,3)$ and $(3,-2)$ intersects the axes.

Answers

1: (a) $-\frac{1}{8}$
(b). $-\frac{3}{4}$
(c) $\frac{1}{2}$
(d) 0
(e) 1
(f) 8
(g) -7
(h) $-6 \frac{3}{8}$
2.
(a) $m=7 \frac{1}{2}, \quad a=6$, $b=9$
(b) $m=-1$,
$a=-1 \frac{2}{3}$,
$\mathrm{b}=-\frac{1}{3}$
(c) $m=5 \frac{1}{2}$,
$a=3$,
$b=8$
(d) $m=\frac{5 r+s}{2}, a=\frac{7 r+4 s}{.{ }^{3}}, \quad b=\frac{8 r-s}{3}$
3. (a) 0,4
(b) $-3,7$
(c) $-48,52$
(d) $-18,22$
(e) $-3,7$
4. (a) $M=\left(-1,-\frac{1}{2}\right) \quad A=(0,0) \quad B=(-2,-1)$
(b) $M=\left(2 \frac{1}{2}, 1\right) \quad, \quad A=(4,1) \quad B=(1,1)$
(c) $M=\left(2 \frac{1}{2}, 8 \frac{1}{2}\right) \quad A=\left(1,7 \frac{1}{3}\right) \quad B=\left(4,9 \frac{2}{3}\right)$
(d) $M=\left(\frac{p_{1}+q_{1}}{2}, \frac{p_{2}+q_{2}}{2}\right) \quad A=\left(\frac{2 p_{1}+q_{1}}{3}, \frac{2 p_{2}+q_{2}}{3}\right) \quad B=\left(\frac{p_{1}+2 q_{1}}{3}, \frac{p_{2}+2 q_{2}}{3}\right)$
(e) $M=\left(\frac{r+s+1}{2}, \frac{r+2 s-3}{2}\right)$
$A=\left(\frac{r+s+2}{3}, \frac{2 r+2 s-3}{3}\right) \quad B=\left(\frac{2 r+2 s+1}{3}, \frac{r+4 s-6}{3}\right)$
5. (a) Yes
(b) No
(Determine the distances between the
(c) Yes pairs of points; the points are collinear
(d) No if ${ }^{*}$ and only if the sum of the two shorter distances equals the longer. More simply, use slopes; the points are collinea: if and only if the slope of $\overline{\mathrm{PQ}}$ equals the slope of $\overline{P R}$.)
6. $p=-7 \frac{1}{2}, q=\int_{i}^{\frac{4}{3}}$.
7. (a)

(b)

(c)

(a)

8. (a) $\{x:-2 \leq x \leq 4\},\{x:|x-1| \leq 3\},(x:(x+2)(x-4) \leq 0)^{\prime}$, or the equivalent.
(b) $\quad(x:-5 \leq x<1\},\left(x: \frac{x-1}{x-1}|x+2| \leq 3\right),\left(x: \frac{x-1}{x-1}(x+5)(x-1) \leq 0\right\}$, or the equivalent.
(c) $\{\dot{x}: x(x+3)(x-2)=0\},\{-3,0,2\}$, or the equivalent.
(d) $\{x: x \leq-2$ or $x \geq 3\},\left(x:\left|x-\frac{1}{2}\right| \geq 2 \frac{1}{2}\right\},(x:(x+2)(x-3) \geq 0\}$, or the equivalent.
9. (There are, of course, unlimitcd possibilities for the answers to this question; we give only a few.)
(a) $\left(6, \frac{\pi}{3}\right),\left(-6, \frac{4 \pi}{3}\right),\left(6,60^{\circ}\right) ;\left(-6,240^{\circ}\right)$.
(b) $,\left(2 \sqrt{2}, \frac{5 \pi}{4}\right),\left(-2 \sqrt{2}, \frac{\pi}{4}\right),\left(2 \sqrt{2}, 225^{\circ}\right),\left(-2 \sqrt{2}, 45^{\circ}\right)$
(c) $\left(2, \frac{2 \pi}{3}\right),\left(-2, \frac{5 \pi}{3}\right),\left(2,120^{\circ}\right),\left(-2,300^{\circ}\right)$
(d) $\left(4, \frac{7 \pi}{6}\right),\left(-4, \frac{\pi}{6}\right),\left(4,210^{\circ}\right),\left(-4,30^{\circ}\right)$
(e) $\left(4 \sqrt{2}, \frac{7 \pi}{4}\right),\left(-4 \sqrt{2}, \frac{3 \pi}{4}\right),\left(4 \sqrt{2}, 315^{\circ}\right),\left(-4 \sqrt{2}, 135^{\circ}\right)$
(f) $\left(\frac{2}{\sqrt{3}}, \frac{\pi}{6}\right),\left(-\frac{2}{\sqrt{3}}, \frac{7 \pi}{6}\right),\left(\frac{2}{\sqrt{3}}, 30^{\circ}\right),\left(-\frac{2}{\sqrt{3}}, 210^{\circ}\right)$
(g) $(6,0),(-6, \pi),\left(6,0^{\circ}\right),\left(-6,180^{\circ}\right)$
(h) $\left(12, \frac{3 \pi}{2}\right),\left(-12, \frac{\pi}{2}\right),\left(12,270^{\circ}\right),\left(-12,90^{\circ}\right)$
10.
(a) $(4,0)$
(d) $\left(-\frac{5 \sqrt{3}}{2}, \dot{2} \frac{1}{2}\right)$
(b) $(1,1)$
(c) $(-3,-3 \sqrt{3})$
(e) $\left(\frac{3}{\sqrt{2}}, \frac{3}{\sqrt{2}}\right)$
(f) $(-2 \sqrt{3}, 2)$
11. (a) 13
(d) $\sqrt{13}$.
(b) 12
(e) $\sqrt{61}$
(c) 9
(f) 3^{*}
12. (a) $\frac{x-5}{6-5}=\frac{y-3}{4-3}$
(b) $\frac{x}{3}+\frac{y}{4}=1$
(c) $y+6=-\frac{2}{3}(x-7)$
(d) $6 x+5 y,-48=0$
(e) $y=\frac{3}{2} x-5$
(f) $y-10=\frac{4-10}{-\sqrt{2}-9}(x-9)$
(g) $y-12=-1(x+5)$
(h) $x-5=\frac{5-5}{-3-7}(y-7)$
(i) $\frac{x}{-1}+\frac{-\frac{y}{-\frac{3}{2}}}{-\frac{1}{2}}=1$
(j) $4 x-2 y-8=0$
(k) $y=\sqrt{3} x-5 \sqrt{3}$
(1) $\frac{x+2}{2+5}=\frac{y-7}{13-7}$
(m) $x-y+1=0$
(n) $\frac{x-7}{20-7}=\frac{y+2}{5+2}$
(0) $y+5=\frac{2+5}{-3-6}(x-6)$.
(p) $\frac{x}{5}+\frac{y}{10}=1$.
(q) $y=-\frac{1}{2} x+4$
(r) $x=9$
(s) $y=3$
(t) $y-4=-\sqrt{3}(x+5)$
52^{28}
13.
(a) $(d(A, B))^{2}=(-1-11)^{2}+(-3-8)^{2}=265$ $\cdot(a(B, C))^{2}=(11+3)^{2}+(8 \leq 4)^{2}=212$ $(a(A, C))^{2}=(-1+3)^{2}+(-3-4)^{2}=53$
Since $(d(A, B))^{2}=(d(B, C))^{2}+(a(A, C))^{2}$, by the converse of the Pythagorean Theorem.triangle $A B C$ is a right triangle with $\angle A C B$ the right angle.
(b). If you 'permit students to use, the fact that the product of the slopes is -1 if end only if lines are perpendicular, the proof follows more readily from the fact that
14. $3 x+2 y-8=0$

16. (a) 3 to 4
(b) $\left(3 \frac{3}{7}, 3 \frac{3}{7}\right)$
(c) $d(B, D)=4 \frac{2}{7} ; d(C, \dot{D})=5 \frac{5}{7}$
17. The line intersects the x-axis at $\left(-\frac{7}{5}, 0\right)$; the line intersects, the y-axis at $\left(0,-\frac{7}{11}\right)$.

57-63 Most students will probably believe they have a clear intuitive understanding of the idea of the two directions on a line and may feel the discussion here is pointless. As with the notion of a directed segment, it may help to ask them to try to explain what they mean accurately, using terms with clear geometric meanings. When they find that this is e at at all easy, they.may be convinced that our approach is worth studying.

57 The open question of lines without slope is considerednin Exercise 5 on page 64. At this point we assume that the student recalls that parallel, nonvertical lines have the same slope. In Section $2-7$ we shall reaffirm this fact.

57
We shall use the idea of equivalent direction numbers for a line a great deal; if a student does not grasp this idea now, he may find it a frequent stumbling block.

You may well note that had we chosen directed angles to describe the lines in the plane, a single angle hould suffice. However, a pair of nonnegative angles is conventional and leads to symmetric representation; it. is also desirable, since a trifle of direction angles is much neater in 3-space. The extension to spaces of ligher dimension is immediate with the approach adopted here.

59-60 The fact that the pair of normalized direction numbers and the pair of direction cosines are equal is extremely convenient.
61. The context which specifies a direction for a line varies and is, of course, frequently quite colloquial, as "the line from P to Q ".

Exercise 6 on page 64 asks for a justisication that the alternative . direction angles for a line are respectively supplementery.

62 The information developed in the solution to Example $4(\mathrm{~b})$ is quite useful. The student should develop facility in extracting from a general form of an equation of a line dircstion numbers and direction cosines for the line.

The importance of Example 5 may not be apparent. It provides what little initial motivation there is for the normal form of the equation of a line.

64
Exercise 7 might well be discussed bricfly even if it is not assigned, for it develops a relationship whici is useful in relating the equations of a line in polar and rectangular coordinates.

Exercises 2-6

1. (a) $(-3,4)$ or $(3,-4)$
(b) $(4,1)$ or $(-4,-1)$
(c) $(0,6)$ or $(0,-6)$
(d) $(-5,0)$ or $(5,0)$
(e) $(1,1)$ or $/(-1,-1)$
(f) $(2,2)$ or $(-2,-2)$
(g) $(-1,1)$ or $(1,-1)$
-(h) $(-4,4)$ or $(4,-4)$
2. (a) $\left(-\frac{3}{5}, \frac{4}{5}\right)$ or $\left(\frac{3}{5},-\frac{4}{5}\right)$
(b) $\left(\frac{4}{\sqrt{17}}, \frac{1}{\sqrt{17}}\right)$ or $\left(\frac{-4}{\sqrt{17}}, \frac{-1}{\sqrt{17}}\right)$
(c) $(0,1)$ or $(0,-1)$
(d) $(-1,0)$ or $(1,0)$
(e) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
(f) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
(g) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
(h) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
3. (a) $\alpha=127^{\circ}, \beta=37^{\circ}$; or $\alpha=53^{\circ}, \beta=143^{\circ}$ (approximately)
(b) $\alpha=76^{\circ}, \beta=14^{\circ}$; or $\alpha=104^{\circ}, \beta=166^{\circ}$ (approximately)
(c) $\alpha=90^{\circ}, \beta=0^{\circ}$; or $\alpha=90^{\circ}, \beta=180^{\circ}$
(d) $\alpha=180^{\circ}, \beta=90^{\circ}$; or $\alpha=0^{\circ}, \hat{\beta}=90^{\circ}$
(e) $\alpha=45^{\circ}, \beta=45^{\circ}$; or $\alpha=135^{\circ}, \beta=135^{\circ}$
(f) $\alpha^{\circ}=45^{\circ}, \beta=45^{\circ}$; or $\alpha=135^{\circ}, \beta=135^{\circ}$
(g) $\alpha=135^{\circ}, \beta=45^{\circ}$; or $\alpha=45^{\circ}, \beta=135^{\circ}$
(h) $\alpha=135^{\circ}, \beta=45^{\circ}$; or $\alpha=45^{\circ}, \beta=135^{\circ}$
4. (a) $\begin{array}{ccccc}(3,-1 \cdot & (2,0) & (0,-3) & (-1,2) & (-2,1) \\ -\frac{4}{3} & 0 & \text { not defined } & -2 & -\frac{1}{2}\end{array}$
(b) $\left(\frac{3}{5},-\frac{4}{5}\right)$, or any equivalent given by $\left(\frac{3 c}{5},-\frac{4 c}{5}\right), c \neq 0$.

$$
\alpha=53^{\circ}, \beta=143^{\circ} \text {; or } \alpha=127^{\circ}, \beta=37^{\circ}
$$

$(1,0)$, any equivalent given by $(c, 0), c \neq 0$. $\alpha=0^{\circ}, \beta=90^{\circ}$; or $\alpha=180^{\circ}, \beta=90^{\circ}$
$(0,-1)$, or any equivalent given by $(0,-c), c \neq 0$. $\alpha=90^{\circ}, \beta=180^{\circ}$; or $\alpha=-90^{\circ}, \beta=0^{\circ}$.
$\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$, or any equivalent given by $\left(-\frac{c}{\sqrt{5}} \frac{2 \mathrm{c}}{\sqrt{5}}\right), \mathrm{c} \neq 0$.

$$
\alpha=117^{\circ}, \beta=27^{\circ} ; \text { or } \alpha=63^{\circ}, \beta=153^{\circ}
$$

$\left(-\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$, or any equivalent given by $\left(-\frac{2 c}{\sqrt{5}}, \frac{c}{\sqrt{5}}\right), \mathrm{c} \neq 0$. $\alpha=153^{\circ}, \beta=63^{\circ}$; or $\alpha=27^{\circ}, \beta=117^{\circ}$
(c) and (d)

5. A pair of direction numbers determined by P_{0} and P_{1} are $\left(\ell_{1}, m_{1}\right)=\left(0, y_{1}-y_{0}\right) ; m_{1}=y_{1}-y_{0} \neq 0, \ell_{1}=0$.

A pair of direction numbers determined by P_{0} and P_{2} are
$\left(l_{2}, m_{2}\right)=\left(0, y_{2}-y_{0}\right) ; m_{2}=y_{2}-y_{0} \neq 0$ and $\ell_{2}=0$.
Since. $m_{1} \neq 0$ and $m_{2} \neq 0$, both

$$
c_{1}=\frac{m_{2}}{m_{1}} \text { and } c_{2}=\frac{m_{1}}{m_{2}}
$$

are defined and not equal to zero. Thus,

$$
\begin{gathered}
\left(c_{1} \ell_{1}, c_{1} m_{1}\right)=\left(\ell_{2}, m_{2}\right) \text { and }\left(c_{2} \ell_{2}, c_{2} m_{2}\right)=\left(\ell_{1}, m_{1}\right) . \\
\left(0, y_{1}-y_{0}\right) \text { and }\left(0, y_{2}-y_{0}\right)
\end{gathered}
$$

are equivalent pairs of direction numbers for the vertical line.
6. $\cos \alpha=\frac{\ell}{\sqrt{\ell^{2}+m^{2}}}$ $\cos \beta=\frac{m}{\sqrt{l^{2}+m^{2}}}$
$\cos \alpha^{\prime}=\frac{l}{\sqrt{l^{2}+m^{2}}}$
$\cos \beta^{\prime}=\frac{-m}{\sqrt{l^{2}+m^{2}}}$
So $\cos \alpha^{\prime}=-\cos \alpha$
$\cos \beta^{\prime}=-\cos \beta$
Hence $\alpha^{\prime}= \pm \alpha+p_{\pi} \quad \beta^{\prime}= \pm \beta+q_{\pi} \quad p, q$ odd integers but α, α^{\prime},
β, and β^{\prime} are between 0 and π, so the only solutions are

$$
\beta^{\prime}+\beta=\pi, \quad \alpha^{\prime}+\alpha=\pi .
$$

7. (a) 1. In the Figure $2-13 a, \omega=\frac{\pi}{2}-\beta+2 \pi n$. Therefore
$\sin \omega=\sin \left(\frac{\pi}{2}-\beta\right)$ but since the sine of an angle is equal to the cosine of its complement, $\sin \omega=\cos \beta$
8. In Figure $2-13 \mathrm{~b}, \omega=\beta-\frac{\pi}{2}+2 \mathrm{~m}$. Therefore

$$
\begin{aligned}
& \sin \omega=\sin \left(\beta-\frac{\pi}{2}\right) \\
& \sin \omega=\sin \left[-\left(\frac{\pi}{2}-\beta\right)\right] \\
& \sin \omega=\cos (-\beta) \\
& \sin \omega=\cos \beta
\end{aligned}
$$

3. In Figure 2-13c, $\omega+\frac{\pi}{2}+\beta=180+2 \pi n$ and $\omega=\frac{\pi}{2}-\beta+2 \pi n$. The result is the same as part 1 above.
4. In Figure $2-13 \pi, \omega-\beta=\frac{\pi}{2}+2 \pi n$ and $\omega=\frac{\pi}{2}+\beta+2 \pi n$. Therefore $\sin \omega=\sin \left(\frac{\pi}{2}+\beta\right)$

$$
\sin \omega=\sin \frac{\pi}{2} \cos \beta+\cos \frac{\pi}{2} \sin \beta
$$

Since $\sin \frac{\pi}{2}=1$ and $\cos \frac{\pi}{2}=0$

$$
\sin \alpha=\cos \beta
$$

(b) 1. If the positive ray lies on the positive half of the x-axis,

$$
\omega=2 \pi n \text { and } \beta=\frac{\pi}{2}
$$

Since we wish to show that $\sin \omega=\cos \beta$, we may substitute and see that

$$
\sin 2 \pi n=\cos \frac{\pi}{2}=0
$$

2. If the positive ray lies on the positive half of the y-axis, $\omega=\frac{\pi}{2}+2 \pi n$ and $\beta=0$ and $\sin \frac{\pi}{2}=\cos 0=1$.
3. If the positive ray lies. on the negative half of the x-axis, $\omega=\pi+2 \pi n$ and $\beta=\frac{\pi}{2}$ and $\sin \pi=\cos \frac{\pi}{2}=0$
4. If the positive ray lies on the negative half of the y-axis, $\omega=\frac{3 \pi}{2}+2 \pi n, \beta=\pi$ and $\sin \frac{3 \pi}{2}=\cos \pi=-1$
5. (a) $(-\dot{2}, 2)$
$\left(\frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$
$\alpha=153^{\circ} \beta=117^{\circ}$
(b) $(-2,1)$
$\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
$\alpha=153^{\circ}, \hat{F}=63^{\circ}$
(c) $(6,5)$
$\left(\frac{6}{\sqrt{61}}, \frac{5}{\sqrt{61}}\right)$
$\alpha=40^{\circ}, \sigma=50^{\circ}$
6) It is traditional to talk about the angle between two lines, but present standards of precision require that we take account of the fact li.gt at least four angles are formed when two lines intersect. These angles can be distinguished in a diagram by various methods, but all of these methods must induce a sense along each of the incs.

67-68 The second solution to Example (2) is given as a suggestion to the student that once he has recognised the form of the equations of the lines normal to a given line, he may write immediateiy the equation of the normal containing a given point.

Sometimes the results of our analytic approach describe additional situations not usually approached in the same way geometrically. The situation here furnishes a nice example of this.

69
Example 3(b) is also offered to show the student how he may use an equation of a given line in geneal form to. write immediately an equation of a parallel line containing a given point.

70-71, Since $\left(b_{1},-a_{1}\right)$ and ($\left.b_{2},-\dot{a}_{2}\right)$ are pairs of dirccion numbers for the lines L_{1} and L_{2} respectively, we also note that

$$
\cos \theta=\frac{{ }^{\ell_{1} \ell_{2}+m_{1} m_{2}}}{\ell_{2}^{2}+m_{2}^{2} \sqrt{l_{2}^{2}}+m_{2}^{2}}
$$

or, $\cos 0-\lambda_{1} \lambda_{2}+\mu_{1} \mu_{2} \cdot$

In Exereise 12 on page 74 the studunt is asked to develop this relationship. It has some merit when the lines foming $L \theta$ are directed lines. In this case $L \hat{\theta}$ is the angle formed by positive rays or I_{1} and L_{2} with en'points at the point of intersection (if any) cf L_{1} and L_{2}. Exercise 15 on page 8% also calls for such an interpretation.

71-7: Example', is really a lemma to be used in the development of the normal form of an equation of a line in the following section.

Exercises 2-7

1. (a) $d(A, C)=d(B, C)+d(A, B)$, by the delinition of letweenness for points. This is equivalent to

$$
d(A, B)=d(A, C)-d(B, C),
$$

which implies

$$
\left.(d(A, B))^{2}=(d(A, C))^{2}+(d i B, C)\right)^{2}-2 d(A, C) d(B, C) ;
$$

since $\cos C-\cos 0^{\circ}=1$, we may write

$$
(d(A, B))^{2}=(d(A, C))^{2}+(d(B, C))^{2}-2 d(A, C) d(B, C) \cos C
$$

(b) Here we have

$$
d(A, B)=d(A, C)+d(B, C),
$$

which implies

$$
\begin{aligned}
& (d(A, B))^{2}=(d(A, C))^{2}+(d(B, C))^{2}+2 d(A, C) d(B, C) ; \\
& \text { since } \cos C=\cos 180^{\circ}=-1, \text { we may write } \\
& (d(A, B))^{2}=(d(A, C))^{2}+(d(B, C))^{2}-2 d(A, C) d(B, C) \cos C .
\end{aligned}
$$

2. (a) Equation (6) states that

$$
\cos \ni=\frac{a_{1}^{a_{2}}+b_{1} b_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}}} .
$$

Substituting into Equation (6),

$$
\begin{gathered}
\cos \theta=\frac{a_{1} a_{2}}{\sqrt{a_{1}^{2}} \sqrt{a_{2}^{2}+b_{2}^{2}}} . \\
\cos \theta=\frac{ \pm a_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}} .
\end{gathered}
$$

Let a be the inclination of L_{2}. Then the measures of the angles θ between L_{1} and L_{2} are $90^{\circ}-\alpha$ and $90^{\circ}+\alpha$. $\cos \theta=\cos \left(90^{\circ}-\alpha\right)=\cos 90^{\circ} \cos \alpha+\sin 90^{\circ} \sin \dot{\alpha}=\sin \alpha$ or
$\cos \theta=\cos \left(90^{\circ}+\alpha\right)=\cos 90^{\circ} \cos \alpha-\sin 90^{\circ} \sin \alpha=-\sin \alpha$.
Also we have $\tan \alpha=\frac{\sin \alpha}{\cos \alpha}=-\frac{a_{2}}{b_{2}}$

$$
b_{2} \sin \alpha=-a_{2} \cos \alpha,
$$

and $b_{2}{ }^{2} \sin ^{2} \alpha=a_{2}{ }^{2} \cos ^{2} \alpha=a_{2}^{2}\left(1-\sin ^{2} \alpha\right)$.
This is equivalent to $\sin ^{2} \alpha=\frac{a_{2}{ }^{2}}{a_{2}{ }^{2}+b_{2}{ }^{2}}$,
and

$$
\sin \alpha=\frac{ \pm a_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}=\cos \theta
$$

(b) $\quad \cos \theta=\frac{a_{1}{ }^{a} 2}{\sqrt{a_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}}}= \pm_{1}$ $\theta=0^{\circ}$ or 180°, which is the case for parallel lines.
3. L_{2}. and L_{5} are the same lines
L_{1} and L_{4} are the same lines
L_{3} is perpendicular to L_{1} and L_{4}
4. (a) $\theta=7^{\circ}$
(b) $\quad \theta=90^{\circ}$
(c) $\quad \theta=45^{\circ}$
(d) $\quad \theta=.83^{\circ}$
(e) $\quad \theta=0^{\circ}$ (lines are parallel).
(f) $\theta=90^{\circ}$
5. The slope of $O P$ is $\frac{b}{a}$ and the slope of $O Q$ is $\frac{a}{-b}$. Since $\frac{m}{\overline{O P}} \cdot m_{\overline{O Q}}=-1, \overline{O P} \perp \overline{O Q}$.
6. (a) $2 x-3 y=0$
(b) $3 x+y-8=0$
(c) $3 x+2 y-17=0$
(d) $x-3 y-5=0$
7. (a) $2 x-5 y+31=0$
(b) $2 x-3 y+17=0$
(c) $16 x-6 y-13=0$
(d) $y=7$
(e) $x=5$
8. $D=(4,-8)$.

3 possibilities; $(12,2)$ and $(-2,12)$ are the others.
9. The slope of L_{1} is $\frac{4}{3}$

$$
y+2=\frac{4}{3}(x-1)
$$

10. (a) $\begin{aligned} & \overrightarrow{A B}: 2 x+7 y-17=0 \\ & \overrightarrow{B C}: x+y-1=0\end{aligned}$
$\overrightarrow{\mathrm{CA}}: 3 x+8 y^{r}-23=0$
(b) $m \overrightarrow{A B}=-\frac{2}{7}$
$\mathrm{m} \overrightarrow{\mathrm{BC}}=-1$
$m \underset{\mathrm{CA}}{\mathrm{CA}}=-\frac{3}{8}$
(c)

$$
\begin{gathered}
\mathrm{m} \angle \mathrm{CBA}=151^{\circ} \\
\cos \theta_{1}=\frac{2+7}{\sqrt{1+1} \sqrt{4+49}}=.874 \\
\theta_{1}=29^{\circ}
\end{gathered}
$$

The angle desired is the supplement of θ_{1} or $180^{\circ}-29^{\circ}$ or 151°

$$
\begin{gathered}
\cos \theta_{2}=\frac{3 \angle B C A}{\sqrt{1+1} \sqrt{9+64}}=.910^{+} \\
\theta_{2}=24^{\circ} \\
m \angle C A B= \\
\cos \theta_{3}=\frac{6+56}{\sqrt{4+19} \sqrt{9+64}}=.997^{-} \\
\therefore \theta_{3}=5^{\circ}
\end{gathered}
$$

(d) Altitfude to side $\overrightarrow{A B}$
$7 x-2 y+29=0$
Altitude to side $\overrightarrow{B C}$
$x-y-4=0$
Altith'e to side $\overrightarrow{A C}$
$8 x-3 y+25=0$
11. (a) $\mathrm{L}_{1}^{\prime}=\left\{(x, y): b_{1} x-a_{1} y=0\right\}$

$$
L_{2}^{\prime}=\left\{(x, y): b_{2} x-a_{2} y=0\right\}
$$

(b) $\quad \therefore \cos \theta=\frac{a_{1} a_{2}+b_{1} b_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}} \quad$ and using Equation (6),

$$
\cos \phi=\frac{b_{1} b_{2}+a_{1} a_{2}}{\sqrt{\left(b_{1}\right)^{2}+(-a)^{2}} \sqrt{b_{2}^{2}+\left(-a_{2}\right)^{2}}}
$$

$$
\cos \theta=\cos \phi
$$

If L_{1}^{\prime} is \perp, to L_{1} and L_{2}^{\prime} is \perp to L_{2}, then the measure of an angle between L_{1} and L_{2} is equal to the measure of an angle between L_{1}^{\prime} and L_{2} !.
12. (a) $L_{1}=\left\{(x, y) ; \quad \lambda_{1} x+\mu_{1} y+c_{1}=0\right\}$
$L_{2}=\left\{(x, y): \quad \lambda_{2} x+\mu_{2} y+c_{2}=0\right\}$
$\cos \theta=\frac{\lambda_{1} \lambda_{2}+\mu_{1} \mu_{2}}{\sqrt{\lambda_{1}{ }^{2}+\mu_{1}{ }^{2}} \cdot \sqrt{\lambda_{2}{ }^{2}+\mu_{2}{ }^{2}}}$
but

$$
\begin{aligned}
\lambda_{1}^{2}+\mu_{1}^{2} & =\lambda_{2}^{2}+\mu_{2}^{2}=1 \\
\cos \theta & =\lambda_{1} \lambda_{2}+\mu_{1} \mu_{2}
\end{aligned}
$$

(b) If $\cos \theta$ is positive $0^{\circ} \leq \theta \leq 90^{\circ}$ and $\angle \theta$ is the least angle formed by L_{1} and L_{2}.
(c) Assume $\mathrm{L}_{1} \perp \mathrm{~L}_{2}$

$$
m_{1}=-\frac{\lambda_{1}}{\mu_{1}} \text { and } m_{2}=-\frac{\lambda_{2}}{\mu_{2}} \text { and }
$$

葠

$$
m_{1} m_{2}=-1
$$

So $\left(-\frac{\lambda_{1}}{\mu_{2}}\right)\left(-\frac{\lambda_{2}}{\mu_{2}}\right)=-1$ and

$$
\begin{aligned}
& \lambda_{1} \lambda_{2}=-\mu_{1} \mu_{2} \\
& \lambda_{1} \lambda_{2}=-\mu_{1} \mu_{2}=0
\end{aligned}
$$

Conversely assume $\lambda_{1} \lambda_{2}+\mu_{1} \mu_{2}=0$
but

$$
\lambda_{1} \lambda_{2}+\mu_{2} \mu_{2}=0=\cos \theta
$$

and

$$
\cos \theta=0
$$

$$
\therefore \theta=90^{\circ} \text { and }
$$

$$
=L_{1} \perp L_{2}
$$

75-78 The normal form of an equation of a line is troublcume tc develop, for students have usually not considered the characterization of a line by a normal segment from the origin. Therefore, the argument for bothering to develop it at all must rest upon its applications; it is not at all a naturul extension in the students ${ }^{2}$ eyes. With this in mind, before bedinning this section it might be helpful to challenge the students to find the distance between a line and a point not on the line. Once they have been forced to the trouble of finding (a) the slope of the perpendiculars to the civen line, (b) an equation of the perpendicular containing the given point, (c) the point of intersection of this perpendicular and the given line, and (d) the distance between the point of intersection and the Eiven point, they may be more in a mood to pursue a development which solves thic problem more easily.

76 The conventional notation does lead to confusion here. It is easy for the student to confuse the coefficients in the normal form with the direction cosines of the line itself. Emphasis on the reason for the name "normel form" may shorten the period of confusion. Then, too, an oral drill on the following information to be gleaned from the normal form may help.

If $\lambda>0$ and $\mu>0$, the line extends above the origin from upper left to lower right; if $\lambda<0$ and $\mu>0$, above the origin from lower left to upper right; if $\lambda<0$ and $\mu<0$, below the origin from upper left to lower right; if $\lambda>0$ and $\mu<0$, below the origin from lower left to upper right. If $\lambda=0$ and $\mu=1$, the line is horizontal and above the origin; if $\lambda=0$ and $\mu=-1$, horizontal and below the origin; if $\mu=0$ and $\lambda=1$, vertical and to the right of the origin; if $\mu=0$ and $\lambda=-1$, vertical and to the left of the orizin.

To make sense oi this information a student will have to keep in mind ${ }^{6}$ that (λ, μ) is the pair of direction cosines of the normal segment.

The fact that authorities differ in the case of lines containing the origin has a backhanded sort of, significance. There seems to be little reason to recognize \dot{a} difference which does not make a difference. E.g., $1 . \overline{0}=0 . \overline{9}$; there is no numerical difference.

78 If your students are already versed in the parametric representation of lines, there is a neater approach to the problem.

The line $\overrightarrow{\mathrm{FP}}_{1}$ has the parametric representation

$$
\begin{aligned}
& x=x_{1}+\lambda t \\
& y=y_{1}+\mu t
\end{aligned}
$$

With this representation $|t|$ is the distance between (x, y) and $P_{1}=\left(x_{1}, y_{1}\right)$. In particular, if we let $F=\left(x_{0}, y_{0}\right)$, for some $t ", F$ has a representation

$$
\begin{aligned}
& x_{0}=x_{1}+\lambda t_{1} \\
& y_{0}=y_{1}+\mu t_{1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& x_{0}-x_{1}=\lambda t_{1} \\
& y_{0}-y_{1}=\mu t_{1},
\end{aligned}
$$

and

$$
\begin{aligned}
d\left(R_{1}, F\right) & =\sqrt{\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-y_{1}\right)^{2}}=\sqrt{\left(\lambda t_{1}\right)^{2}+\left(\mu t_{1}\right)^{2}} \\
& =\left|t_{1}\right| \sqrt{\lambda^{2}+\mu^{2}}=\left|t_{1}\right| .
\end{aligned}
$$

Since the point $F=\left(x_{0}, y_{0}\right)$ satisfies the equation $\lambda x+\mu y-p=0$, we have

$$
\lambda\left(x_{1}+\lambda t_{1}\right)+\mu\left(y_{1}+\mu t_{1}\right)-p=0,
$$

which is equivalent to

$$
\lambda x_{1}+\mu y_{1}-p=-\left(\lambda^{2}+\mu^{2}\right) t_{1}=-t_{1}
$$

Thus,

$$
d\left(P_{1}, F\right)=\left|t_{1}\right|=\left|\lambda x_{1}+\mu y_{1}-p\right|
$$

With this approach we do not have to consider the five different cases.
79-82 The amount of classroom explication necessaxy on the polar form will depend upon the students? background in analytic trigonometry. Some familiarity with the addition formulas is essential. These are developed in SMSG Intermediate Mathematics, pages 605-61C, and, of course, in any stanciard trigonometry text.
79 At this point you may wish to consider that since $P=(-f, \theta+\pi)$, the line also has the polar representation

$$
-\mathbf{r} \cos (\theta+(\pi-\omega))=p
$$

This opens a question to which we shall return in Chapter 5, when we consider, related polar equations.

Although the polar angle which contains the normal segment to L is the some set of points as the direction angle α and $\angle \omega=\angle \alpha$, our conventions for measuring these angles are different. The measure of $/ \omega$

- may be any real number, while $0 \leq \alpha \leq \pi$ (or $0 \leq \alpha \leq 180^{\circ}$). Thus, even if we choose an $\langle\omega$ such that. $| \omega \mid$ is minimal, we still are assured only that $|\omega|=\alpha$, or $\omega= \pm \alpha$. However, since $\omega= \pm \alpha+2 \pi n$ for any integer n, in, the case we describe, we do have $\cos \omega=\cos (2 \pi n \pm \alpha)=\cos \alpha$. The test should read $\omega= \pm \alpha+2 \pi n$ for any integer n.

81 Students may not be familiar with the technique of "normalizing" coefficients in order to rewrite

$$
a \cos \theta+b \sin \theta \text { as } \sqrt{a^{2}+b^{2}} \sin \left(\theta+a_{1}\right)
$$

where

$$
\sin a_{1}=\frac{a}{\sqrt{a^{2}+b^{2}}} \text { and } \cos a_{1}=\frac{b}{\sqrt{a^{2}+b^{2}}}
$$

or as $\sqrt{a^{2}+b^{2}} \cos \left(\theta-\beta_{1}\right)$, where

$$
\cos \beta_{1}=\frac{a}{\sqrt{a^{2}+b^{2}}} \text { and } \sin \beta_{1}=\frac{b}{\sqrt{a^{2}+b^{2}}}
$$

Therefore, you may wish to consider other examples than Part (e) of Example 5. 84-85 In assigning exercises you may well wish to consider Exercises 7 through 9, which suggest a further application of the normal form, and Exercises 12 through 17, which furnish practice in transforming equations srom representations in one coordinate system to the other.

These last exercises open questions which will be considered in detail in Chapters 5 and 6. In the algebraic manipulation of polar equations we alay frequently do some rather wild things which would get us into trouble in rectangular representations. The freedom we exploit stems from three considerations:
i) the multiplicity of the polar representations of a point,

1i) related polar equations, (See Chapter 5.)
iii) "factoring" equations. (Ree Chapter 6.)

For example, in Exercise 13 we suggest multiplication of both members of the equation by, r. In réctangular representations such multiplication by a factor containing a variable is quite likely to add points to ine graph, but here the points $(0, \theta)$, which might be added, are already included by the original representation as $\left(0,\left(n+\frac{1}{2}\right) \pi\right)$, where n is any integer.

In Exercise 12 we first obtain

$$
r^{2}=36, \text { or } r^{2}+36=(r-6)(r+6)=0
$$

Now the equations obtained, by setting the factors of the left member equal to zero,

$$
r=6 \text { and } r=46
$$

are related polar equations (as defined on page 167 of the text), for they each have the same graph as $r^{2}=36$. Since each is a simpler representation of the graph, later on we shall prefer either one to the first equation,

In Exercise 17 we first obtain

$$
\left(r^{2}+r \sin \theta\right)^{2^{\circ}}=r^{2}
$$

If we divide both members by r^{2}, we obtain

$$
(r+\sin \theta)^{2}=1
$$

but we have not lost any points from the graph a. The pole is the only point we might have lost, and it is still represented by

$$
\left(0,\left(n+\frac{1}{2}\right) \pi\right)
$$

where n is any integer, Then we may factor to obtain

$$
(r+\sin \theta-1)(r+\sin \theta+1)=0 ;
$$

the equations

$$
r=1-\sin \theta \text { aid } r=-(1+\sin \theta)
$$

which are suggested by the factors of the original equation are related polar equations. Their graphs are identical to the graph of the original equation, and either one is, a far simpler representation.

- In summary, multiplication or division of both members of an equation by a factor containing the variable and taking the square roots of both members of the equation, are techniques which are fraught with danger and seldom desirable in rectangular representations, They are more frequently acceptable and even desirable in polar representations.

However, we are not suggesting' that the teacher should open these questions not. They will be considered in Chapters 5 and 6. To discuss them now would probably only confuse the students. We prefer that the answers to the exercises here be left in the original form obtained without say attempt at simplification. Rather we include this discussion to alert the jeacher to the questions. laid open and to prepuri nim or her for the questions that may arise from curious and inquiring students.

1. (a) $-\frac{4}{5} x+\frac{3}{5} y-3=0$
(b) $\frac{5}{13} x+\frac{12}{13} y-5=0$
(c) $\frac{3}{\sqrt{13}} x-\frac{2}{\sqrt{13}} y-\frac{6}{\sqrt{13}}=0$
(d) $\frac{-5}{\sqrt{34}} x+\frac{3}{\sqrt{34}} y-\frac{12}{\sqrt{34}}=0$
(e) $\frac{3}{\sqrt{10}} \mathrm{x}-\frac{1}{\sqrt{10}} \mathrm{y}-\frac{7}{\sqrt{10}}=0$
(f) $\frac{8}{17} x+\frac{15}{17} y-\frac{30}{17}=0$
2. (a)

$4 x-3 y+15=0$
(g) $\frac{12}{13} x-\frac{5}{13} y=0$
(h) $y-\frac{20}{7}=0$
(i) $-x-\frac{15}{9}=0$
(j) $\frac{5 x}{13}-\frac{12 y}{13}-\frac{60}{13}=0$
(k) $-\frac{8}{17} x+\frac{15}{17} y-\frac{120}{17}=0$
(1) $\frac{3}{5} x-\frac{4}{5} y-\frac{7}{5}=0$
of course this is not an efficient way to draw the graph. The exprcise was put in to help familiarize the students with this form of equation for a line.
3. (a) $r \sin \theta=4$
(e) $r \cos \left(\theta-300^{\circ}\right)=\frac{3}{2}$
(b) $r \cos \theta=4$
(f) $\theta=45^{\circ}$, or $\theta=\frac{\pi}{4}$
(c) $\theta=.60^{\circ}$, or $\theta=\frac{\pi}{3}$
(g) $r \cos \left(\theta-150^{\circ}\right)=2$
(d) $r \cdot \cos \left(\theta-315^{\circ}\right)=3$
(h) $r \cos \left(\theta \cdot 135^{\circ}\right)=2$
4. (a) $r \cos \theta-4=0$
$-(b) r^{x} \sin \theta+4=0$
(c) $\theta-90^{\circ}$, or $\theta=\frac{\pi}{2}$
(d) $r \cos \theta+r \sin \theta+2=0$
(e) $3 r \cos \theta-2 r \sin \theta+6=\infty$
(f) $r \cos \theta+\sqrt{3} r \sin \theta-2=0$
(g) $15 r \sin \theta-8 r \cos \theta+34=0$
5. (a) If P_{1} is on L, then $\left|\lambda x_{1}+\mu y_{1}-p\right|=0$. But the distance from P_{1} to L is zero wen P_{1} is on L.
(b) P_{1} is on the same side of L as $0 ; P_{1}$ is closer than O to L. In this case $d\left(p_{1}, F\right)=p-p_{1}=\left|\lambda x_{1}+\mu y_{1}-p\right|$.
(c) P_{1} is on the same side of L as $0 ; P_{1}$ and 0 are equidistant from L. In this case L_{1} contains the origin, $p_{1}=0$, and $\mathrm{d}\left(\mathrm{P}_{1}, \mathrm{~F}\right)=\mathrm{p}-\mathrm{p}_{1}=\left|\lambda \mathrm{x}_{1}+\mu \mathrm{y}_{1}-\mathrm{p}\right|$.
6. (a) $\frac{58}{13}$
(b) $\frac{22}{5}$
(c) $\frac{20}{\sqrt{17}}$
(d) $\frac{50}{\sqrt{74}}$
(e) 0
7. A point, $P_{0}=\left(x_{0}, y_{0}\right)$ on the bisector if the distance from P to I_{1} is equal to the distance from P to L_{2}.

Then from our distance formula, we have

$$
\left|\frac{3}{5} x-\frac{4}{5} y+1\right|=\left|\frac{12}{13} x+\frac{5}{13} y-1\right|
$$

Taking both choices for the signs yields the two desired equations:

$$
21 x+77 y-130=0
$$

and

$$
3 x-3 y=0
$$

8.

$$
7 x+9 y-152=0
$$

and

$$
\begin{gathered}
99 x-77 y-144=0 \\
\left|\lambda_{1} x+\mu_{1} y-p_{1}\right|=\left|\lambda_{2} x+\mu_{2} y-p_{2}\right| \quad \text { gives us } \\
\left(\lambda_{1}-\lambda_{2}\right) x+\left(\mu_{1}-\mu_{2}\right) y-\left(p_{1}-p_{2}\right)=0 \text { and } \\
\left(\lambda_{1}+\lambda_{2}\right) x+\left(\mu_{1}+\mu_{2}\right) y-\left(p_{1}+p_{2}\right)=0 .
\end{gathered}
$$

9.
10. $x-3=0$
11. $r \cos \theta-r \sin \theta=0$
12. $r^{2}=36$
13. $r=4 \cos \theta$
$r^{2}=4 r \cos \theta$
$\left(x^{2}+y^{2}\right)=4 x$
$x^{2}-4 x+y^{2}=0$
When $\theta=\frac{\pi}{2}, r=0$. Thus the pole is in the graph of the original
equation. One must make this cneck because both sides of the equation have been multiplied by $\mathbf{r} ; \mathbf{r}=0$ is then a root of the new equation,
14. $r=2 a \cos \theta$

Mote that the pole is in the graph of the equation, Then $r^{2}=2 a r \cos \theta$ or $x^{2}+y^{2}=2 a x$.
15. (a) $y=\sqrt{3} x$
(b) $y+4=0$
(c) $\sqrt{x^{2}+y^{2}}=5$

$$
x^{2}+y^{2}=25
$$

16.

(b)

(a)

(c)

17. (a) $r^{2}-4 r \cos \theta=0$
(b) Note that the pole is in the graph of the equation. Then

$$
\begin{aligned}
& r^{2}=5 r \cos \theta-3 r \sin \theta \\
& x^{2}+y^{2}-5 x+3 y=0
\end{aligned}
$$

(c) $-y=4$, or $y=-4$.
(d) $\left(r^{2}+r \sin \theta\right)^{2}=r^{2}$

Review Exercises - Section 2-6 through Section 2-8

1. direction numbers direction cosines
direction angles
(approximately)
(a) $(7,-10)$
$\left(\frac{7}{\sqrt{149}},-\frac{10}{\sqrt{149}}\right)$
$\alpha=55^{\circ}, \beta=145^{\circ}$
(b) $(25,24)$
$\left(\frac{25}{\sqrt{1201}}, \frac{24}{\sqrt{1201}}\right)$
$\alpha=4.44^{\circ}, \beta=1.6^{\circ}$
(c) $(-6,5)$

$$
\left(\frac{-6}{\sqrt{61}}, \frac{5}{\sqrt{61}}\right)
$$

$\alpha=140^{\circ}, \beta=50^{\circ}$
(d) $(7,6)$
$\left(\frac{7}{\sqrt{85}}, \frac{6}{\sqrt{85}}\right)$
$\alpha-41^{\circ}, \beta-49^{\circ}$
(e) $(3,-3)$
$\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
$\alpha=45^{\circ}, B-135^{\circ}$
(f) $(4,7)$
$\left(\frac{4}{\sqrt{65}}, \frac{7}{\sqrt{65}}\right)$
$\alpha=60^{\circ}, \beta=30^{\circ}$
(g) $(1,2)$
$\left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$
$\alpha=63^{\circ}, \beta=27^{\circ}$
(h) $(-2,1)$
$\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$
$\alpha=153^{\circ}, \beta=63^{\circ}$
2. The points are collinear if two line segments detemined by the points have the same slope.
(a) $\frac{13-1}{11-(-4)}=\frac{12}{15}=\frac{4}{5}$

$$
\frac{13-5}{11-1}=\frac{8}{10}=\frac{4}{5}
$$

points are collinear
(b) $\frac{-2-7}{1-(-5)}=\frac{-9}{6}=-\frac{3}{2}$

$$
\frac{-2-(-12)}{1-6}=\frac{10}{-5}=-\frac{\varepsilon}{1}
$$

po-nts are not collinear
(c) $\frac{17-(-1)}{23-(-1)}=\frac{18}{24}=\frac{3}{4}$

$$
\frac{17-(-13)}{23-(-17)}=\frac{30}{40}=\frac{3}{4}
$$

points are collinear
(x)

$$
\begin{aligned}
& \frac{-4-8}{0-(-3)}=\frac{-12}{3}=-4 \\
& \frac{-4-(-11)}{0-5}=\frac{7}{-5}
\end{aligned}
$$

points are not collinear
3. $d(A, B)=\sqrt{41}$
$d(A, C)=\sqrt{53}$
$d(B, C)=2 \sqrt{10}$
4. $\overrightarrow{A B}:+x-5 y+17=0$
$\overrightarrow{A C}: 2 x+7 y-1=0$
$\stackrel{\rightharpoonup}{B C}: 3 x+y-11=0$
5. length of altitude from $A: \frac{19}{\sqrt{10}}$
length of altitude from $B: \frac{38}{\sqrt{53}}$
length of altitude from $C: \frac{38}{\sqrt{41}}$
6. area $(\triangle A B C)=19$
7. (a) $x(2 \sqrt{41}-4 \sqrt{53})+y(7 \sqrt{41}+5 \sqrt{53})-(\sqrt{41}+17 \sqrt{53})=0$
(b) $x(4 \sqrt{10}+3 \sqrt{41})+y(-5 \sqrt{10}+\sqrt{41})+(17 \sqrt{10}-11 \sqrt{11})=0$
(c) $x(2 \sqrt{10}+3 \sqrt{53})+y(7 \sqrt{10}+\sqrt{53})-(\sqrt{10}+11 \sqrt{53})=0$
8. (a) $d\left(A, L_{1}\right)=\frac{3}{\sqrt{13}}$
$d\left(A, L_{2}\right)=\frac{17}{5}$
$d\left(A, L_{3}\right)=\frac{1}{\sqrt{5}}$
(b) $d\left(B, L_{1}\right)=\frac{5}{\sqrt{13}}$
$d\left(B, L_{2}\right)=\frac{14}{5}$
$d\left(B, L_{3}\right)=\frac{4}{\sqrt{5}}$
(c) $\mathrm{d}\left(\mathrm{C}, \mathrm{L}_{1}\right)=\frac{17}{\sqrt{13}}$
$d\left(C, L_{2}\right)=\frac{4}{5}$
$d\left(c, L_{3}\right)=\frac{10}{\sqrt{5}}$
9. (a) $x(10-3 \sqrt{13})+y(-15-4 \sqrt{13})+(30+12 \sqrt{13})=0$

$$
x(10+3 \sqrt{13})+y(-15+4 \sqrt{13})+(30-12 \sqrt{13})=0
$$

(b) $x(2 \sqrt{5}-\sqrt{13})+y(-3 \sqrt{5}+2 \sqrt{13})+(6 \sqrt{5}-4 \sqrt{13})=0$

$$
x(2 \sqrt{5}+\sqrt{13})+y(-3 \sqrt{5}-2 \sqrt{13})+(6 \sqrt{5}+4 \sqrt{13})=0
$$

(c) $x(3 \sqrt{5}-5)+y(4 \sqrt{5}+10)+(-12 \sqrt{5}-20)=0$ $x(3 \sqrt{5}-5)+y(4 \sqrt{5}-10)+(-12 \sqrt{5}+20)=0$
10. (a) $\frac{6}{\sqrt{13}}$
(b) $\frac{11}{5}$
(c) $\frac{6}{\sqrt{5}}$
11. $P_{A}\left(\frac{87}{17}, \frac{92}{17}\right) \quad P_{B}\left(-\frac{63}{17},-\frac{8}{17}\right)$
12. $\theta_{1} 82^{\circ}$
$\theta_{2} \quad 98^{\circ}$
13. L_{1} may be written $3 x+5-19=0$
L_{2} may be written $5 x-3 y+7=0$
If $a_{1} a_{2}+b_{1} b_{2}=0$ the lines are perpendicular
Substituting

$$
(3)(5)+(5)(-3)=0
$$

and
14. Find the angles between I_{1} and L_{2}, where L_{1} contains the points $(3,4),-1,-1)$ and I_{n}, contains the points $(-4,6),(3,0)$.

Solutes. Cine no sense is 'imposed on I_{1} ' and " $I_{L_{2}}$ we will find their angles of intersection.

We may take as direction numbers for $\mathrm{I}_{1},(4,5)$ and for $\mathrm{l}_{2},(-1,6)$.
(Why?) Thereföre:

$$
\begin{aligned}
& \cos \theta=\frac{(4)(-1)+(5)(6)}{\sqrt{4^{2}+5^{2}} \sqrt{(-1)^{2}+6^{2}}} \approx .034 \\
& \therefore \quad A \approx 88^{\circ}
\end{aligned}
$$

We may, most simply, find the other angle of intersection as the supplement of θ, but it is instructive to use equivalent direction numbers for L_{L}. which have the effect of reversing the sense induced by the first choice. We use now $(-4,-5)$, and $(-7,6)$ as pairs of direction numbers and get

$$
\begin{aligned}
& \cos \theta^{\prime}=\frac{(-4)(-7)+(-5)(6)}{\sqrt{(-4)^{2}+(-5)^{2}} \sqrt{(-7)^{2}+6^{2}}} \approx-.034 \\
& \therefore \quad A^{\prime} \approx 92^{\circ}
\end{aligned}
$$

which is, as we expected, supplementary to θ.
15. $\begin{gathered}\cos \theta=\frac{\left(-\frac{2}{\sqrt{5}}\right)\left(\frac{7}{\sqrt{58}}\right)+\left(\frac{1}{\sqrt{5}}\right)\left(\frac{3}{\sqrt{58}}\right)}{\sqrt{\frac{4}{5}+\frac{1}{5}} \sqrt{\frac{49}{58}+\frac{9}{58}}} \approx-.047 \\ \theta \approx 130^{\circ}\end{gathered}$
16. $A=(3,4) \quad B=(-2,7) \quad C=(6,9)$

$$
\begin{aligned}
& m_{\overline{A B}}=\frac{7-4}{-2-3}=-\frac{3}{5} \\
& m_{\overline{B C}}=\frac{9-7}{6+2}=\frac{2}{8}=\frac{1}{4} \\
& m_{\overline{A C}}=\frac{9-4}{6-3}-\frac{5}{3}
\end{aligned}
$$

Since $m_{A B} m_{A C}=\left(-\frac{3}{5}\right)\left(\frac{5}{3}\right)=-1$
$\overline{A B} \perp \overrightarrow{A C}$ and $\triangle A B C$ is a right triangle
17. (a) $-\frac{3}{\sqrt{58}} x+\frac{7}{\sqrt{58}} y-\frac{29}{\sqrt{58}}=0$
(b) $-\frac{20}{29} x+\frac{21}{29} y-42=0$
(c) $\frac{4}{5} x-\frac{3}{5} y-\frac{24}{5}=0$
(d) $\frac{3}{\sqrt{58}} x-\frac{7}{\sqrt{58}} y=0$
(e) $x-\frac{7}{5}=0$
18. (a) $r \cos (\theta-60)=1$
(b) $r \cos \theta=-4$
(c) $\theta=147^{\circ}$
19. (a) $\sqrt{3} x+y=-5$
(b) $3 y-4 x=12$
20. (a) $r(8 \cos \theta+7 \sin \theta)=56$
(b) $r(15 \sin \theta-8 \cos \theta)=-180$

Challenge Exercises

1. $3 x-4 y+c=0$ or $a x+b y+c=0$, with $\frac{a}{b}=\frac{3}{-4}$.
d. $4 x+3 y+c-0$ or $a x+b y+c=0$, with $\frac{a}{b}=\frac{4}{3}$.
2. $a x+b y=0$
3. $y-3=m(x-2)$
4. $y=\frac{3}{4}(:-4)$. (Fixing the value of m reduces the family to one member.)
5. $y=-3 x+b$ (a pencil of lines.)
6. Let $L_{1}: a x+b y+c=c$ and $L_{2}: m x+n y * p=0$ be two intersecting lines. The equations of the lines of the angle bisectors are then

$$
\begin{aligned}
& x\left(\frac{a}{\sqrt{a^{2}+b^{2}}}-\frac{m}{\sqrt{m^{2}+n^{2}}}\right)+y\left(\frac{b}{\sqrt{a^{2}+b^{2}}}-\frac{n}{\sqrt{m^{2}+n^{2}}}\right)+\left(\frac{c}{\sqrt{a^{2}+b^{2}}}-\frac{p}{\sqrt{m^{2}+n^{2}}}\right)=0 \\
& x\left(\frac{a}{\sqrt{a^{2}+b^{2}}}+\frac{m}{\sqrt{m^{2}+n^{2}}}\right)+y\left(\frac{b}{\sqrt{a^{2}+b^{2}}}+\frac{n}{\sqrt{m^{2}+n^{2}}}\right)+\left(\frac{c}{\sqrt{a^{2}+b^{2}}}+\frac{b}{\sqrt{m^{2}+n^{2}}}\right)=0
\end{aligned}
$$

Their slopes are $\frac{m \sqrt{a^{2}+b^{2}}-a \sqrt{m^{2}+n^{2}}}{b \sqrt{m^{2}+n^{2}}-n \sqrt{a^{2}+b^{2}}}, \frac{-m \sqrt{a^{2}+b^{2}}-a \sqrt{m^{2}+n^{2}}}{b \sqrt{m^{2}+n^{2}}+n \sqrt{a^{2}+b^{2}}}$
The product of the slopes is $\frac{-m^{2}\left(a^{2}+b^{2}\right)+a^{2}\left(m^{2}+n^{2}\right)}{b^{2}\left(m^{2}+n^{2}\right)-n^{2}\left(a^{2} b^{2}\right)}=\frac{-m^{2} b^{2}+a^{2} n^{2}}{m^{2} b^{2}-a^{2} n^{2}}=-1$
Hence, the lin.s of the bisectors are perpendicular.
8. $L=\{(x, y): d x$ by $+c=f(x, y)=0\}$ and
$L_{1}-\left\{(x, y): a x_{1}+b y_{1}+c=f\left(x_{1}, y_{1}\right)=0\right\}$
The direction numbers of each line are (a, b) . Therefore the lines are parallel.
9. Given $\triangle A B C$ with vertices $A(0,0), B(1,0)$ and $C(a, b)$. To prove that the altitudes are congruent at a point H and find the coordinates of H .

> the siope of $\overline{A B}$ is 0
> the slope of $\overline{A C}$ is $\frac{b}{a}$
> the slope of $\overline{B C}$ is $\frac{b}{a-1}$

The slope of the altitude from A is $-\frac{a-1}{b}$
The slope of the altitude from B is $-\frac{a}{b}$
The altitude from A is represented by $y=-\frac{a-1}{b} x$
The altitude from B is represented by $y=-\frac{a}{b}(x-1)$

If the altitudes are concurrent, $-\frac{a-1}{b} x=-\frac{a}{b}(x-1)$

$$
\text { and } x=a \text { and } y=-\frac{a(a-1)}{b}
$$

the equation of the altitude from C is $x-a$ and tie point of intersection of the other two altitudes is clearly on this line.
10. The midpoint of $\overline{A B}=\left(\frac{1}{2}, 0\right)$

The midpoint of $\overline{B C}=\left(\frac{a+1}{2}, \frac{b}{2}\right)$
The midpoint of $\overline{A C}=\left(\frac{a}{2}, \frac{b}{2}\right)$
The median from A is represented by

$$
y=\left(\frac{b}{a}+l\right) x
$$

The median from B is represented by

$$
y=\frac{b}{a-2}(x-1)
$$

These two medians intersect at the point

$$
\left(\frac{a+1}{3}, \frac{b}{3}\right)
$$

The median from C is represented by

$$
y=\frac{b}{a-\frac{1}{2}}\left(x-\frac{1}{2}\right)
$$

and the point $\left(\frac{a+1}{3}, \frac{b}{3}\right)$ is contained in this line.
Therefore the median are concurrent at $\circ\left(\frac{a+1}{3}, \frac{b}{3}\right)$
11. The bisector of $\angle A$. is given by

$$
\begin{align*}
& y=\frac{b x-a y}{\sqrt{a^{2}+b^{2}}} \text { and solving for } y, \\
& y=\frac{b x}{\sqrt{a^{2}+b^{2}}+a} \tag{1}
\end{align*}
$$

The bisector of $\angle B$ is given by

$$
\begin{align*}
& y=\frac{b-b x-(1-a) y}{\sqrt{b^{2}+(1-a)^{2}}} \text { and solving for } y, \\
& y=\frac{b(1-x)}{\sqrt{b^{2}+(1-a)^{2}}-a+1} \tag{2}
\end{align*}
$$

Equating (1) and (2)

$$
\frac{b x}{\sqrt{a^{2}+b^{2}}+a}=\frac{b\left(1^{-}-x\right)}{\sqrt{b^{2}+(1-a)^{2}}+1-a}
$$

Solving for x we get,

$$
x=\frac{\sqrt{a^{2}+b^{2}}+a}{\sqrt{b^{2}+(1-)^{2}}+1+a \sqrt{a^{2}+b^{2}}}
$$

Substituting x into equation (1),

$$
y=\frac{b}{\sqrt{b^{2}+(1-a)^{2}}+1+\sqrt{a^{2}+b^{2}}}
$$

So the point of intersection is

$$
\frac{\sqrt{a^{2}+b^{2}}+a}{\sqrt{b^{2}+(1-a)^{2}}+1+\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{b^{2}+(1-a)^{2}}+1+\sqrt{a^{2}+b^{2}}}
$$

12.

Midpoint of $\overline{\mathrm{AC}}=\left(\frac{\mathrm{a}}{2}, \frac{\mathrm{~b}}{2}\right)=\mathrm{D}$
MIdpoint of $\overline{B C}=\left(\frac{a+1}{2}, \frac{b}{2}\right)=F$
Midpoint of $\overline{A B}=\left(\frac{1}{2}, 0\right)=E$
Slope of $\overline{A B}=0_{1}$
slope of $\overline{A C}=\frac{b}{a}$
Slope of $\overline{B C}=\frac{b}{a-1}$ $\therefore 78{ }^{74} \cdots \cdots \cdots$

Equations of perpendicular bisector through $D=$

$$
\begin{equation*}
y=-\frac{a}{b} x+\frac{a^{2}}{2 b}+\frac{b}{2} \tag{1}
\end{equation*}
$$

Equation of perpendicular bisector through $E=$

$$
\begin{equation*}
x=\frac{1}{2} \tag{2}
\end{equation*}
$$

Equation of perpendicular bisector through $F=$

$$
\begin{equation*}
y=-\frac{a-1}{b} x+\frac{a^{2}-1}{2 b}+\frac{b}{2} \tag{3}
\end{equation*}
$$

If $x=\frac{1}{2}$ is substituted into quation (1) and (3) the values of y are the same. Thereiore the perpendicular bisectors are concurrent at

$$
\begin{aligned}
& \left(\frac{1}{2}, \frac{a^{2}-a}{2 b}+\frac{b}{2}\right) \\
& H=\left(a,-\frac{a(l)}{b}\right) \\
& G=\left(\frac{a+1}{3}, \frac{b}{3}\right) \\
& E=\left(\frac{1}{2}, \frac{a^{2}+b^{2}-a}{2 b}\right)
\end{aligned}
$$

The slope of $\overline{H G}=\frac{\frac{a-a^{2}}{b}-\frac{b}{3}}{a-\frac{a+1}{3}}=\frac{3 a-3 a^{2}-b^{2}}{(2 a-1) b}$;
The slope of $\overline{H E}=\frac{\frac{a-a^{2}}{b}-\frac{a^{2}+b^{2}-a}{2 b}}{a-\frac{1}{2}}=\frac{3 a-3 a^{2}-b^{2}}{(2 a-1) b}$.
Therefore, the points are collinear. An equation of the line is

$$
\left(3 a^{2}+b^{2}-3 a\right) x+(2 a b-b) y+a-a^{3}-a b^{2}=0
$$

Illustrative Test Items - Sections 2-6 through 2-8

1. Find a pair of direction numbers for the line $\overrightarrow{P Q}$.
(a) $P=(2,3), \quad Q=\therefore(4,5)$.
(b) $P=(1,-4), \quad Q=(7,4)$.
(c) $P=(-2,7), \quad Q=(4,3)$.
(d) $P=(-2,-3), \quad m=-1$.
(e) $P=(-1,7), \quad \alpha=150^{\circ}$
(f) x-intercept 4 ; y-intercept 3 .
2. Find a pair of direction cosines fo: a line,
(a) $L=\{(x, y): x-y+.2=0\}$.
(b) containing $(3,5)$ and $(1,7)$.
(c) with slope $-\sqrt{3}$.
(d) with inclination $\alpha=30^{\circ}$.
(e) parallel to the x-axis .
(f) perpendicular to the x-axis . .
3. Find direction angles for
(a) the line containing $(-1,-3)$ and $(-3,-1)$.
(b) the ray emanating from the origin and containing the point $(6,-6 \sqrt{3})$.
(c) the line with equation $\sqrt{3} x+y-7=0$.
(d) the normal segment to $L=\{(x, y): x+\sqrt{3} y+7=0\}$.
4. Which, if any, of the lines with the given equations are parallel? perpendicular? the same line?
.1
$\rightarrow L_{1}: y-1=\frac{2}{3}(x+2)$

$$
f_{2}: \frac{x}{4}+\frac{y}{6}=1
$$

$$
\begin{aligned}
& L_{4}: y=\frac{2}{3} x-\frac{1}{3} \\
& L_{5}: \frac{x+2}{1+\frac{2}{2}}=\frac{y-1}{3-1}
\end{aligned}
$$

$L_{3}: 3 x+2 y+3=0$
-
5. Find the cosine of the least angle between the pairs of lines with the indicated equations.
(a) $x+3 y-1=0$;
$2 x+3 y-7=0$.
(b) $2 x+4 y-5=0$;
$3 x+4 y-1=0$.
(c) $x-y+13=0$;
$5 x+3 y+12=0$.
6. Let $L=\{(x, y): 4 x-7 y+13=0\}$. Write an equation in general form of a line
(a) paralleI to L and containing the poist $(3,2)$.
(b) perpendicular to L and containing the origin.
(c) parailel to L and with x-intercept 4 .
(d) perpendicular to L and containing the point $(3,2)$.
7. Find an equation of thé perpendicular bisector of $\overline{A B}$, where $A=(1,-3), B \fallingdotseq\left(7, \frac{1}{1}\right)$.
8. Let $A=(2,1), B=(8,3)$, and $C=(5,8)$. Find the area of triangle $A B C$.
9. A line I_{1} makes an angile whose cosipe is $\frac{2}{5} \sqrt{5}$ with $L_{2}=\{(x, y): 2 x+y-7=0\}$. What is the slope of L_{1} ? Find an equation of L_{1} if it contains the point $(-4,2)$.
10. Find the normal form of each, of the following equations.
(a) $3 x-4 y+15=0$
(b) $\sqrt{\frac{x--2}{5-2}}=\frac{y+1}{2+1}$
(c) $y-7=\frac{7}{3}(x+4)$
(d) $\frac{x}{5}+\frac{y}{12}=1$
(e) $y=\frac{8}{15} x-2$
(f) ${ }^{\prime} \frac{x+3}{21+3}-\frac{y-4}{17-1}$
(g) $7 x-2 y=0$
(i) $7-3 y=\dot{\theta}$
11. Find the distance between P and \dot{L} :
(a) $p<(5,10) ; \quad L=\{(x, y): 3 x-4 y+10-0\}$.
(b) $\dot{p}=(5,-1) ; \quad L=\{(x, y): 12 x-5 y+26-0\}$.
(c) $P=(6,4) ; \quad L=\{(x, y): x+2 y-4=0\}$.
(d) $P=(7,-3) ; \quad L:=\{(\dot{x}, y): 2 x-3 y+5=0\}$
12. Find equations of the lines bisecting the angles formed by (a) $L_{1}-\{(x, y): 3 x-4 y+j \quad 0\}$ and $L_{c}-\{(x, y): j x-12 y+26=0\}$
(b) $L_{1}=\{(x, y): x+y-i=0\}$ and $L_{2}=\{(x, y): 8 x-1 j y+34-0\}$.
13. Write in polar rom the equations of the following lines:
(a) parallel to the polar axis and a unite above it.
(b) perpendicular to the polar axis and s units to the right of the - pole.
(c) containing the point $\left(-2, \frac{5 \pi}{4}\right)$ and having inclination $\frac{3 \pi}{4}$.
(d) through the pole with slope -1 .

Lt. Transform each of the following equations into polar coordinates.
(a) $3 x-2 y+5=0$
(b) $7 x+8 y-56=0$
(c) $x^{2}+y^{2}=25$
(d) $y-x^{2}+4 x+4$
15. Transform can oi the followimé equations into rectangular coordinates.
(a) $\mathrm{r} \cos \theta=4$
(b) $2 r \cos \theta+L_{5 r} \sin \theta=6$
(c) $r=3 \sin \theta$
(d) $r \cos \left(\theta-\frac{\pi}{2}\right)=4$. To.
16. Let the vertices of the triangle $A B C$ be $A=(-4,2), B=(6,6)$, $C=(4,-4)$.
(a) Find the lengths of the sides.
(b) Find the equations of the lines containing the sides.
(c) Find an equation of the perpendicular bisector of side $\overline{\mathrm{AC}}$.
(d) Find an equation of the line containing the altitude to side $\overline{\mathrm{AC}}$.
(e) Find the length of the altitude to side $\overline{\mathrm{AC}}$.
(f) Find an equation of the line containing the median to side $\overline{\mathrm{AC}}$.
(g) Find the length of the median to side $\overline{\mathrm{AC}}$.
(h) Find the area of the triangle.
(i) Find the centroid of triangle $A B C$ (intersect ,ion of the medians).
(j) Find an equation of the line containing the bisector of $L_{L} A$.

Answers

1. (a) (a, z), or equivalent pair
(d) ($1,-1$) , or equivalent pair.
(b) $(6,8)$, or equivalent pair
(e) $(-\sqrt{3}, 1)$, or equivalent pair.
(c) $(6,-4)$, or equivalent pair
(f) $(-4,3)$, or equivalent pair.
2. (a) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, or $\left(-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$
(d) $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$, or $\left(-\frac{\sqrt{3}}{2},-\frac{1}{2}\right)$
(b) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, or $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(c) $(1,0)$, or $(-1,0)$
(c) $\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$, or $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
(f) $(0,1)$, or $(0,-1)$
3. (a) $\alpha=135^{\circ}, \beta=45^{\circ}$; or $\alpha-45^{\circ}, \beta 135^{\circ}$.
(b) $\alpha-60^{\circ}, \beta-150^{\circ}$.
(c) $\alpha=120^{\circ}, \beta=30^{\circ}$; or $\alpha-50^{\circ}, \beta \leq 150^{\circ}$.
(d) $\alpha=120^{\circ}, B=150^{\circ}$.
4. L_{1} and L_{5} are the same.
L_{1}, L_{l}, and L_{5} are parallel
L_{2}^{\prime} and L_{3} are parallel
L_{1}, L_{4}, and L_{y} are perpendicular to L_{2} and L_{3}.
5...(a) $\frac{11}{\sqrt{130}}$
(b). $\frac{11}{5 \sqrt{5}}$
(c) $\frac{1}{\sqrt{17}}$
5. (a) $4 x-7 y+2-0$
(b) $7 x+4 y-0$
(c) $4 x-7 y-16=0$
(d) $7 x+4 y-29-0$
6. $3 x+2 y-10-0$
7. $20 \frac{3}{2}$
8. $m-\frac{3}{4}$
$3 x+4 y+4=0$
9. (a) $-\frac{3}{5} x+\frac{4}{5} y-3-0$
(b) $\frac{x}{\sqrt{2}}-\frac{y}{\sqrt{2}}-\frac{3}{\sqrt{2}}=0$
(c) $\frac{-7}{\sqrt{50}} x+\frac{3}{\sqrt{58}} y-\frac{49}{\sqrt{58}}=0$
(d) $\frac{12}{13} x+\frac{2}{13} y-\frac{60}{13}=0$
(e) $\frac{8}{17} x-\frac{15}{17} y-\frac{30}{17}=0$
(i) $-\frac{7}{25} x+\frac{24}{25} y-\frac{117}{25}=0$
(g) $\frac{7}{\sqrt{53}} x-\frac{2}{\sqrt{53}} y=0$
(h) y $\frac{7}{3}=0$
10. (a) 3
(b) 7
(c) $2 \sqrt{5}$
(d) $\frac{28}{\sqrt{1.3}}$
11. (a) $14 x+8 y-65=0$ and $64 x-112 y+195=0$
(b) $x(17-8 \sqrt{2})+y(17+15 \sqrt{2})-(17+34 \sqrt{2})=0$ and $x(17+8 \sqrt{2})+y(17-15 \sqrt{2})-(17-34 \sqrt{2})=0$.
12. (a) r. $\cos \left(\theta-\frac{\pi}{2}\right)=2$
(b) $r \cos \theta=3$
(c) $r \cos \left(\theta-\frac{\pi}{4}\right)=2$
(d) $\theta=\frac{3 \pi}{4}$
13. (a) $3 r \cos \theta-2 r \sin \theta+5=0$
(b) $7 r \cos \theta+8 r \sin \theta-56=0$
(.) $r^{2}=25$
(d) $\left.r \sin \theta=r^{2} \cos ^{2} \theta+4 r \cos \theta+4=1-\cos \theta+2\right)^{2}$
14. (a) $x=4$
(b) $2 x+5 y=6$
(c) $x^{2}+y^{2}=3 y$
(d) $y=4$

15. (a) $d(A, B)=2 \sqrt{29} ; d(B, C)=2 \sqrt{26} ; d(A, C)=10$.
(b) $\overrightarrow{A B}: 2 x-5 y+18=0$
$\overrightarrow{B C}: \quad 5 x-y-24=0$
$\overrightarrow{A C}: \quad 3 x+4 y+4=0$
(c) $4 x-3 y-3-0$
(d) $4 x-3 y-6=0$
(e) $\frac{46}{5}=9.2$
(f) $7 x-6 y-6=0$
(g) $\sqrt{85}$
(h) 46
(i) $\left(2, \frac{4}{3}\right)$
(j) $x(3 \sqrt{29}-10)+y(4 \sqrt{29}+25)+(4 \sqrt{29}-90)=0$

81

Chapter 3

VECTORS AND THETR APPLICATION

3-1. Why Study "Vectors"?
91 In the opening paragrarhs reference is madt to the increasing importance of vectors and vector methods in the fields of applied mathematics, sciende, and engineering. Youn need only pick up any text in these subjects to be assured of the accuracy of this statement. Most recent books in calculus (e.g., Calculus and Analytic Geometry by G.B. Thomas) make considerable use of vector methods, You may like to read Analytio Geometry: A Vectur Approach by Charles Wexler for an extensive treatment of this subject.

It is quite likely that most of your students will go on to study calculus and more advanced mathematics. Mcst students in science and engineering are now encouraged to take courses in vector analysis and linear algebra. The latter course starts with vector algebra and uses it to approach the subject of matrices. In this context, a vector is a row or column of a matrix. Our approach is from the geometric point of view (as is vector analysis) but the two are clearly closely related.

The beginnings of this subject can be found in the writings of Aristotle, and later in the works of Galileo (1564-1642, Italian). However, serious study of the subject began with William Rowan Hamiltor (1805-1865, Irish) and Herman Grassmann (180G-1Ji7, German). Their vork was dependent upon the earlier development of analytic geometry. Hamil.ton was inspired by problems arising from Newtonian physies and astronomy. In solving problems related to the motion of particles, Hamilton needed a non-commutative algebra. The quaternion $A=a_{0}+a_{1} i+a_{2} j+a_{3} k$ (where $i^{2}=j^{2}=k^{2}=i . k=-1$ and the $a^{\prime} s$ are real), provided the answer since, for example, $i, j=-j \cdot i$. The quaternion led to the vector and, in the cross-product of vectors, $A \times B=-B \times A$. (See this Commentary on Section 3-7).

Grassmann approached the subject of vectors from the algebraic point of view. He was seeking an algebraic method of extending geometry from three into n dimensions. A vector in two dimensions is defined as an ordered
yair of real numbers and in threc dimensions as an ordered triple of real numbers. In n dimerisions, a vector is ar ordered n-tuple of real numbers. This is the approash used todiny in the study of vector"spaces in modern algebra.

If your stadents hav zlready studied vectors in SMSG "Gcometry with Coordinates", "Intermeinat Mathematips", or "Matrix Algebra", a large narst of the material in this.chayter will serve as a revicw: Some time should be snent, howeye:, in analyzine the aifferent approaches to the jubject. In this Way hir students will revicw the topic from another point of vicw. Some of : the subject matter and many of the problems are new to all.

3-2. Directed Line Segments and Vectors.
2 For more information regardine airected line segments, you should read

Probably the most distinctive :art of our approach to the study of vectors lics in our defmition of a vestor. Since thrre is no way to distineuish any directed line segment from arother with the same magnitude and sense of direction, it is therefore reasonatle to define a vector as an infinite set of equivalent directed line segments. Any member of the set can be used to represent this vector. The origin-vector (a new term created here) is very often used to remresent the set because of its convenience in geometric proofs and in the study of vector components.

Unless specific geometric conditions ottain, our approach to the subject also gives us the freedom to usc frec vectors or bound vectors as we choosc. The "Origin Principle" on pagt. 93 and the "(rigin-Vector Prineiple" on page 96 are carcfuily and explicitly stated to make this point clear.

The question of equality or inequality of vectors refers only to sets. When we say "two vectors are cqual" we are only talkins about the same infinite set of directed line segments. Thus "equality" really means "identity". The use of the term in this serse is consistent with its use in all other SMSG texts. For example in carlier texts, if $\overline{A B}=\overline{C D}$, then $\overline{A D}$ and $\overline{\mathrm{CD}}$ are identically the same sogment, with $A=C$ and $B=D^{\prime}$.

However, in applications of vertors, it is convenient to use the term vector, as we state in the text, to mean a single member of the sc' We consider it proper to do this when there is no danger of ambip,uity. The students will then be on more familiar ground wher they meet vectors; ... other courses.

The disclission surrotinding the origin-vector principle is of greatest importance. You will have many occasions to refer to it in the succeeding sections, particularly in Chapter 4 , where many proofs of geometric theorems are discussed.
-
Exercises 3-2

1. *

2. $\overrightarrow{\mathrm{FE}}$ and $\overrightarrow{J I}$; $\overrightarrow{\mathrm{LK}}$ and $\overrightarrow{\mathrm{UP}}$; $\overrightarrow{Q R}, \overrightarrow{O P}$ and $\overrightarrow{M N}, \overrightarrow{Q S}$ and $\overrightarrow{T V}$ Each set is a representation of the same vector.

(a) $\begin{aligned} \vec{l} & =\vec{m} \\ \vec{e} & =\vec{b} \\ \vec{l} & =\vec{a} \\ \overrightarrow{\mathrm{~h}} & =\vec{k}\end{aligned}$
(and others)
(b) $\vec{a}=-\vec{l}$
$\overrightarrow{\mathrm{f}}=-\stackrel{\rightharpoonup}{\mathrm{c}}$
$\stackrel{\rightharpoonup}{g}=-\stackrel{\rightharpoonup}{n}$
$\vec{h}=-\vec{f}$
(and others)
5.

6. Motion of a car, winds, weight, momentum, angular momentum, electical and magnetic fields, etc.

3-3. Sum and Difference of Vectors. Scalar Multiplication.

The definition presented on this page is concerned only with the sum of two non-zero vectors not lying in the same line.

If \vec{A} and \vec{B} lie in the same line and have the same sense of direction, then $\vec{A}+\vec{B}$ is a vector in the same line with the same sense of direction and with magnitude $|\vec{A}|+|\vec{B}|$. If \vec{A} and \vec{B} have different senses of direction and, let us say, $|\vec{A}|>|\vec{B}|$, ther $\vec{A}+\vec{B}$. will have the direction of \vec{A} and magnitude $|\vec{A}|-|\vec{B}|$.

By part (2) of the definition of the sum of two vectors, $\vec{P}+\vec{P}$ is a vector with magnitude twice the magnitude of \vec{P}. Similarly $(\vec{P}+\vec{P})+\vec{P}$ is ${ }^{\varepsilon}$ a vector with magnitude 3 times the magnitude of \vec{P}. Thus the definition of $\vec{r} \vec{P}$ generalizes naturally from what we think $2 \overrightarrow{\mathrm{P}}$ and $3 \overrightarrow{\mathrm{~F}}$ should be (neither being defined at this point).

An emphasis on subtraction of vectors defined in terms of addition should be made. This should be done not only for purely algebraic.reasons, but also, to sinplify finding the difference of two vectors in a vector ajagram.

Exercises 3-3

1. (a) $\stackrel{\rightharpoonup}{\mathrm{C}}$
(b) $\stackrel{\rightharpoonup}{\mathrm{C}}$
(c) \vec{E} (requires assumptions that vector addition is associative and that diagonals of a parallelogram bisect each other)
(d) 2 (requires second assumption in part c)
(e) $\overrightarrow{\mathrm{C}}$
2. (a) $\overrightarrow{\mathrm{e}}=-\vec{a}$
$\vec{d}=-\vec{b}$
$\vec{e}=\vec{a}+\vec{b}$
(b) (i) $\quad \vec{e}=\vec{a}-\vec{d}$
(ii) $\overrightarrow{\mathrm{e}}=\vec{a}+\vec{b}$
(iii) $\overrightarrow{\mathrm{e}}=\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{c}}$
(iv) $\vec{e}=-\vec{i}-\vec{d}$
(c) (i) $\overrightarrow{0}$
(ii) $\stackrel{\rightharpoonup}{0}$
3.

(a) $\vec{b}+\vec{c}$
(b) $\vec{b}-\vec{c}$
$\because \quad /$

(c) $\vec{c}-\vec{b}$
(d) $\vec{a}+\vec{b}+\vec{c}$

4.

$\vec{a}+\vec{b}=\vec{c}$
It can also be seen that $-\vec{a}+\vec{c}=\vec{b} \quad \therefore \vec{b}=\vec{c}-\vec{a}$
5. (a) $\frac{1}{2}$
(d) $\frac{3}{4}$
(b) 2
(e) $\frac{3}{2}$
(c) -1
(f) $-\frac{3}{5}$
6.

From the diagram above $-\vec{a}=\vec{b}$ and $\vec{c}=\vec{d}$
also

$$
\vec{b}+\overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{t}} \text { and } \overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{t}} \text {. }
$$

$$
\therefore \vec{a}+\vec{c}=\vec{b}+\vec{d}
$$

$\therefore|4 \vec{A}|=12$
$|-5 \overrightarrow{\mathrm{~A}}|=15$
$-|5 \overrightarrow{\mathrm{~A}}|=-25$
8. Since $\vec{a}=\vec{b}, \vec{a}$ and \vec{b} are representatives of the same infinite set of equivalent directed line segments. Thus

$$
|\stackrel{\rightharpoonup}{a}|=|\stackrel{\rightharpoonup}{b}| \text { and } \stackrel{\rightharpoonup}{a}|\mid \stackrel{\rightharpoonup}{b}
$$

Now $\vec{a} \| \vec{a}$ and $\overrightarrow{r a}$ is r times as large as \vec{a}. Ais $\overrightarrow{r b} \| \vec{b}$ and is r times as large as \vec{b}. Thus

$$
\begin{aligned}
|r \vec{a}|= & |r \vec{b}| \text { and } r \vec{a}|\mid r \vec{b} \\
& \therefore r \vec{a}=r \vec{b}
\end{aligned}
$$

9. $|\mathrm{k} \overrightarrow{\mathrm{b}}|$ is equal to the magnitude of $\overrightarrow{\mathrm{a}}$.
10. (a) $\begin{aligned} \overrightarrow{\mathrm{b}} & =\overrightarrow{\mathrm{e}} \\ \overrightarrow{\mathrm{h}} & =\overrightarrow{\mathrm{p}}\end{aligned}$
$\overrightarrow{\mathrm{E}}=-\overrightarrow{\mathrm{n}}$
$\overrightarrow{\mathrm{d}}=-\overrightarrow{\mathrm{a}}$
$\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{f}}$
$\overrightarrow{\mathrm{l}}=\overrightarrow{\mathrm{m}}$
(b) $\overrightarrow{\mathrm{l}}-\overrightarrow{\mathrm{k}}=\overrightarrow{\mathrm{b}}$
$\vec{g}+\vec{b}=\vec{a}+\vec{m}$
$\vec{l}-\vec{c} ; \vec{g}-\vec{o}$
$\vec{h}+\vec{n}=\vec{l}+\vec{k}$
$\vec{b}: \vec{e} \quad \vec{n}$
$\vec{e}+\vec{h}=-\vec{a}$
(and others)
11.

One example: One could follow the path from P to R, from R to S, from S to Q.
12. (a) not necessarily
(b) yes
13.

$$
\begin{gathered}
|\vec{a}| \text { is.length of } \vec{a} \\
|\vec{b}| \text { is length of } \vec{b} \\
|\vec{a}+\vec{b}| \text { is length of } \vec{a}+\vec{b}
\end{gathered}
$$

Since $\stackrel{\rightharpoonup}{c}$ is equivalent to $\stackrel{\rightharpoonup}{a}$, then $|\vec{c}|=|\vec{a}|$.
Since the sum of the lengths of two sides of e triangle is freater than or equal that of the third, we have

$$
\begin{aligned}
& |\vec{c}|+|\vec{b}| \geq|\vec{a}+\vec{b}| \\
\therefore & |\vec{a}|+|\vec{b}| \geq|\vec{a}+\vec{b}|
\end{aligned}
$$

14.

$$
\begin{aligned}
&|\vec{B}|= \\
&|\overrightarrow{\mathrm{p}}|= 2 \frac{1}{2}^{\prime \prime} \\
& \overrightarrow{\mathrm{C}} \text { is the resultant } \\
&|\overrightarrow{\mathrm{C}}| \approx 1 \frac{3}{4}^{\prime \prime}, \text { representing approxi- } \\
& \quad \text { mately } 3 \frac{1}{2} \text { miles in the } \\
& \text { direction indicated. }
\end{aligned}
$$

15. Let the speed and direction of the current be represented by \vec{C} along the y-axis. Let the actual speed and -direction of the boat be represente by $\overline{\mathrm{R}}$. We want to find the vector \vec{B} representing the boat's motion in still water which when added to $\overrightarrow{\mathrm{C}}$ represents the combined erfeet of current and engine on the boat. $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{C}}+\overrightarrow{\mathrm{B}} .|\overrightarrow{\mathrm{B}}|$ represents 6 m.p.h. at $\angle \mathrm{ROB}$.

16.

1:. \vec{A} and \vec{B} are distinct vectors
Let A have coordinates (a, b), B coordinates (c, α)
Then ${ }^{-} \overrightarrow{-B}$ has its terminal point at ($-c, p\left({ }^{p}\right)$
and $\overrightarrow{-A}$ has its terminal point at $(-a,-k)$.
Thus ${ }^{*}-\vec{B}$ has its terminal point at $(a-c, a-d)$ and $\vec{B}-\vec{A}$ has its terminal point at ($c-a, d-b$).

Case one: $b \neq \mathrm{d}$.
Then slope of line $\stackrel{\rightharpoonup}{A B}$ is given by $\frac{b-d}{a-c}$
and slope of line $\overleftrightarrow{O C}$ is given by $\frac{(b-a)-0}{(a-c)-0}=\frac{b-a}{a-c}$.
Therefore the lines are parallel.

Case two: $b=d$.
Then line $\overleftrightarrow{A B}$ has no slope defined, but it is parallel to the line $x=0$, which is the line $O C$.
The proof that $\vec{B}-\vec{A}$ lies on a line'parallel to the line through A - and B is similar.

If $b \neq d$ then $m(\overleftrightarrow{A B})=\frac{d-b}{c-a}$
and $m(\overleftrightarrow{O D})=\frac{(a-b)-0}{(c-a)-0}=\frac{a-b}{c-a}$
So the lines are parallel.
If $b=d$, then $\overrightarrow{A B}$ is parallel "o the line $x=0$ which is Alternatively, we need not use coordinates:

Let $\vec{D}=-\vec{B}$ and $\vec{E}=-\vec{A} \cdot \vec{A}-\vec{B}$ is the vector determined by the vector
 opposite 0 in the parallelogram formed with $\overline{O A}$ and $\overline{O D}$ as sides. Hence $\vec{F}=\vec{A}-\vec{B}$. But $d(F, A)=d(D, O)$ and $d(D, 0)=d(O, B)$. So $d(F, A)=d(O, B)$. Because $\overrightarrow{O D}=\overrightarrow{O B}$ and $\overrightarrow{F A} \| \overrightarrow{O D}$, we see that.
$\angle \mathrm{FAO}=\angle \mathrm{BOA}$. With $\mathrm{d}(0, \mathrm{~A})=\mathrm{d}(\mathrm{A}, 0)^{\circ}$ we now know that $\triangle F A O \cong \triangle B O A$. We get $d(F, O)=d(a, B)$ which tells us that $O F A B$ is a parallelogram since we already have $d(F, A)=d(0, B)$. So $\vec{F}=\vec{A}-\vec{B}$ lies on a line parallel to $\overrightarrow{A B}$.
19. Given that $\vec{a}, \vec{b}, \vec{c}$, and \vec{d}, are conSecutive vector sides of a quadrilateral. We wish to prove that the figure is a parallelogram if and only if $\vec{b}+\vec{d}=\overrightarrow{0}$. We must show that:
(1) if $\vec{b}+\vec{d}=\overrightarrow{0}$, then the quadrilateral is a parallelogram and that
(2) if the quadrilateral is a parallelogram; then $\vec{b}+\vec{d}=\overrightarrow{0}$.

Proof:
(1) Assựe

$$
\begin{aligned}
\vec{b}+\vec{d} & =\overrightarrow{0} \\
\vec{b} & =-\vec{d}
\end{aligned}
$$

$\therefore \quad \vec{b}$ and \vec{d} are parallel, have the mme magnitude and are opposite ides.
\therefore Quadrilateral is a parallelogram.
(2) Assume the quadrilateral is a paraliologram. Then the opposite sides; must be equal and parallel; ie., $\vec{b}=\vec{a}$.
$\therefore \vec{b}+\vec{a}=\overrightarrow{0}$.
19.

The diagram above shows label lng which leads to a simple proof.
To prove: The sum of six vector: drawn from the center of a regular hexagon to its vertices is zero.

$$
\vec{a}+(-\vec{a})+\vec{b}+(-\vec{b})+\vec{c}+(-\vec{c})=\overrightarrow{0} .
$$

(1) Let $\overrightarrow{A B}=\vec{a}, \overrightarrow{B C}=\vec{b}, \overrightarrow{C D}=\vec{c}, \ldots, \overrightarrow{P A}=\vec{p}$.
(2) Note that for triangle $A B O$, we have

$$
\therefore \quad \begin{aligned}
& \overrightarrow{A B}+\overrightarrow{B O}=-\overrightarrow{O A} \\
& \therefore \overrightarrow{A E}+\overrightarrow{B D}+\overrightarrow{O A}=\overrightarrow{0}
\end{aligned}
$$

(3) Then if we divide our polygon into trier les as show, we have:

$$
(\overrightarrow{A B}+\overrightarrow{B O}+\overrightarrow{O A})+(\overrightarrow{B C}+\overrightarrow{C O}+\overrightarrow{O B})+\ldots+\overrightarrow{A O}=\vec{O} .
$$

$$
\text { But } \quad \overrightarrow{A O}=-\overrightarrow{O A}, \overrightarrow{B D}=-\overrightarrow{D B} \text {, etc. } \ldots
$$

$$
\therefore \text { (4) } \vec{a}+\vec{b}+\vec{c}+\ldots+\vec{p}=\overrightarrow{0} \text {, or } \overrightarrow{A B}+\overrightarrow{B C}+\ldots \overrightarrow{P A}=\overrightarrow{0}
$$

3-4. Priserties of Vester cucrations.

104 The purwose of this section is to develop come algebraic stracture for the operations of vector addition and scaler multiplication.

Perhaps the best way of showing the associative property by means of Fiture $j-\rho 1_{i}$ to consider the quadrilateral whose vertices are the terminal points of $\vec{Q}, \vec{P}+\vec{Q}, \vec{Q}+\vec{R}$, and $(\vec{P}+\vec{Q})+\vec{R}$. It is a parallelogram since each of a pair of opposite sides is parallel to \vec{R} and has length equal to the lensth of \vec{R}. Similarly the teritinal points of $\vec{R}, \vec{P}+\vec{Q}, \vec{Q}+\vec{R}$, and $\vec{P}+(\vec{Q}+\vec{R})$ ara vertices of a parallelogran. (opposite sides equal in length and parallel to $\overrightarrow{\mathrm{P}}$). Thus the two parallelograms are identical and the fourth vertices must coinciade.

105
A nicer proof depends on the onc-to-onc sorrespondenec between points in the plane and ordered pairs of real numbers. It appears in the solution in Exercise 17, Section 3-6.

ThEOREM 3-4. The vectors (rs) $\overline{\mathrm{F}}$ and $\mathrm{r}(\mathrm{s} \overline{\mathrm{P}})$ both have terminal point X such that $d(0, x)-r s d(0, P)$.

		Exerciscs 3-4
2. (a)	Show that:	$\vec{B}+(\vec{A}-\vec{B})-\vec{A}$
	If	$\vec{B}+(\vec{A}-\vec{B})=\vec{A}$,
	then	$\vec{B}+(-\vec{B}+\vec{A})=\vec{A}$
		$(\vec{B}+(-\vec{B}))+\vec{A}=\vec{A}$
	2nç	$\vec{A} \div \vec{A}$

Since this last statement is true, the steps can be reversed to prove that $\vec{B}+(\vec{A}-\vec{B})=\vec{A}$.
(b) If
then
and

$$
\begin{aligned}
&(\vec{A}-\vec{B})+\vec{B}-\vec{A}, \\
& \vec{A} \cdot((-\vec{D})+\vec{B})=\vec{A} \\
& \cdot \vec{A} \\
&\vec{A} . \quad \text { (} e e \text { remark in part }(\mathrm{a}))
\end{aligned}
$$

2. (a)
$\overrightarrow{\mathrm{X}}=1 \cdot \overrightarrow{\mathrm{~A}}+1 \cdot \overrightarrow{\mathrm{~B}}$
$\vec{X}=\frac{1}{3} \vec{A}+\frac{2}{3} \vec{B}$

(c) $\vec{X}=0 \cdot \vec{A}+\frac{1}{2} \vec{B}=\frac{1}{2} \vec{B}$

(d) $\vec{X}=\frac{1}{2} \stackrel{\rightharpoonup}{A}+\frac{1}{2} \vec{B}$

(e) $\vec{X}=\frac{1}{4} \vec{A}+\frac{5}{4} \vec{B}$

x is on $\overrightarrow{A B}$ when the sum of $\mathrm{p}+\mathrm{q}$ is l .
3. (a)

(b) $\vec{A}-\vec{B}=r(\vec{B}-\vec{A})$ for $r=-1$
4.

Let O be the origin and points P, Q, R determine vectors \vec{P}, \vec{Q} and \vec{R}, Let A be the vertex opposite O in the parallelogram determined by
. \vec{R} and \vec{Q},i.e., $\vec{A}=\vec{P}+\vec{Q}$.
Let \vec{B} be the vertex opposite O in the parallelogram determined by
\vec{Q} and \vec{R}, i.e., $\vec{B}=\vec{Q}+\vec{R}$.
Iet $\overrightarrow{\mathrm{T}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{R}} \quad$ and $\overrightarrow{\mathrm{T}}=\overrightarrow{\mathrm{P}}+\overrightarrow{\mathrm{B}}$

$$
=(\vec{P}+\vec{Q})+\vec{R} \quad=\vec{\Gamma}+(\bar{Q}+\vec{R})
$$

We wish to prove $\overrightarrow{\mathrm{T}}=\overrightarrow{\mathrm{T}}^{\mathrm{r}}$. It is enough to show that T and $\mathrm{T}^{\text {r }}$ coincide. By using Exercises 3-3, Problem 17, $\overline{A P}\|\overline{O R}\| \overline{Q B}$ and.
$d(A, T)=d(O, B)=d(Q, B)$.
Thus ATBQ is a arallelogram so $\overline{B T} \| \overline{Q A}$ and $d(B, T)=d(B, T)$.
By construction of $A, \overline{O P} \| \overline{Q A}$ and $d(O P)=d(Q A)$.
By construction of $\mathrm{T}^{\mathrm{r}}, \overline{\mathrm{BT}} \| \overline{\mathrm{OP}}$ and $\mathrm{d}\left(\mathrm{B}, \mathrm{T}^{\mathrm{r}}\right)=\mathrm{d}(\mathrm{O}, \mathrm{P})$.
Therefore $\overline{B T} \| \overline{B I^{\prime}}$ and $d(B, T)=d\left(B, T^{\prime}\right)$.
So we must have $\overline{B T}=\overline{B T^{1}}$.
Whence $T=T^{\prime}$ and $\bar{T}=\bar{T}^{T}$. Q.E.D.

6. If

$$
\begin{aligned}
& (-r) \vec{P}=r(-\stackrel{\rightharpoonup}{P}), \\
& (-r) \vec{P}=, r[(-1)(\vec{P}) j \\
& (-r) \stackrel{\rightharpoonup}{P}=(r)(-1)(\stackrel{\rightharpoonup}{P}) \\
& (-r) \stackrel{\rightharpoonup}{P}=(-r) \vec{P} .
\end{aligned}
$$

Since" this last statement is true, the steps can be reversed to prove that $(-r) \vec{P}=r(-\vec{P})$.

3-5. Characterization of the Point on a Line.
109 In the proof of the distributive laws (Theorem 3-6), we left two items - as unfinished business. The first was the proof in the case where \vec{P} and \vec{Q}. are collinear and have opposite senses of direction.

In this case, assume $|\stackrel{\rightharpoonup}{P}|>|\stackrel{\rightharpoonup}{Q}|$. Then:
(1) By the same definition we used earlier, $\vec{P}+\vec{Q}$ has the same diraclion as \vec{P} and has magnitude $|\vec{P}|-|\vec{Q}|$.
(2) If $r>0$, then ${ }^{\cdot \rightarrow} r(\vec{P}+\vec{Q})$ has the same direction as $(\vec{\Gamma}+\vec{Q})$, and, by (1) above, the same direction as $\overrightarrow{\mathrm{P}}$. The magnitude of \cdot $r(\stackrel{\rightharpoonup}{P}+\stackrel{\rightharpoonup}{Q})=|r(\stackrel{\rightharpoonup}{P}+\stackrel{\rightharpoonup}{Q})|=r|\stackrel{\rightharpoonup}{P}+\stackrel{\rightharpoonup}{Q}|$ and is, by (1) above, equal to $r(|\vec{P}|-|\vec{Q}|)$. The distributive law gives the magnitude as $r|\stackrel{\rightharpoonup}{P}|-r|\vec{Q}|$.
(3) We now consider $r \stackrel{\rightharpoonup}{P}$ and $r \vec{Q}$, which, since $r>0$, hare the same directions respectively as \vec{P} and \vec{Q}. By our hypothesis, \vec{P} and \vec{Q} have opposite senses of directions, and therefore so do $r \vec{P}$ and $\mathrm{r} \vec{Q}$. Since we have ϵ assumed $|\vec{P}|>|\vec{Q}|$, we have $r|\vec{P}|>r|\vec{Q}|$, and, therefore $|r \stackrel{\rightharpoonup}{P}|>|r \vec{Q}|$.
(4) Our definition for the sum of vectors now requires that $r \bar{P}+r \vec{Q}$ have the same direction as $r \vec{P}$ and thir, is the some direction as $\overrightarrow{\vec{P}}$. The same definition requires that the magnitude of $r \vec{P}+r \vec{Q}$ be $|r \vec{P}|-|r \vec{Q}|$; but thic latter expression can be writton as $r(|\stackrel{\rightharpoonup}{p}|-|\vec{Q}|)$.
(5) Since we have shown that the vectors $r^{\prime}(\vec{P}+\vec{Q})$ and $r \vec{P}+r \vec{Q}$ have the same magnitude and the same sense of direction, we have shom that they are equal.

The second item we did not discuss concerned the proof when $r<0$. In this case, our figure must be changed to the following:

Since $r<0, r \vec{P}$ and $r \stackrel{\rightharpoonup}{Q}$ have directions opposite those of \vec{P} ond \vec{Q} respectively. The proof for the case $r>0$ in the text will need to be modified as follows in order th hold when $r<0$.

In step (I), since r is negative and the absoiute values positive, $|\vec{A}|=-r|\vec{Q}|$ and $|\vec{B}|=-r|\vec{Y}|$.

In step (2) $\frac{|\vec{B}|}{|\vec{A}|}=\frac{-r|\vec{P}|}{-r \cdot|\vec{Q}|}=\frac{|\vec{P}|}{|\vec{Q}|}$.
\vdots

In step (5), $a(0, D)=|r a(0, C)|$,

$$
|\stackrel{\rightharpoonup}{D}|=|r \stackrel{\rightharpoonup}{C}| .
$$

In step (0), since the vectors are in opposite directions, $\vec{D}=r \vec{C}$ 110 When teaching this section, we would recommend that at first specific numbers be used for \bar{p} and q. As an example, consider the line $\stackrel{\rightharpoonup}{A B}=\{X: \vec{X}=\overrightarrow{D A}+\vec{q} \vec{B}$, where $p+q=1\}$. Let $p=\frac{1}{3}, q=\frac{2}{3}$. Then $\vec{X}=\frac{1}{3} \vec{A}+\frac{2}{3} \vec{B}$.

Take any vectors \vec{A} and \vec{B}. Find the sum of $\frac{1}{3} \vec{A}$ and $\frac{\hat{i}}{3} \vec{B}$ and verify, by construction, that X lies or $\overline{A B}$. Then let $p:=\frac{4}{3}$ and $q=-\frac{1}{3}$ and see if the statement still holds.
$8:$.
Such experiences will help the students visualize what is really taking place.

111
In Chapter 2 , a formula was developed for finding the coordinates a point which divides a line segment in a given ratio. A comparable result for vectors is derived in Theol em 3-8. It may be of interest ${ }^{+}$to the student to compare the derivations and the applications of the results.
s

Exercises 3-5

1.

$\begin{aligned} & \text { (a) if } \vec{A} \text { is the zero vector, } \\ & \text { if } \vec{C}=q \vec{B} \text { and } \\ & \text { is the zero vector } \vec{C}=p \vec{A}\end{aligned}$
(b) if $\vec{C}=\vec{A}, p=1, q=0$.
(c) (i) if $p>0$, and $q>0$, the terminal point of $\stackrel{\rightharpoonup}{C}$ lies in $\overline{A B}$.
(ii) if $p<0$, the terminal point of \vec{C} lies on \vec{B} but not on $\mathrm{A} \overline{\mathrm{B}}$.
(iii) if $p=0, \vec{C}=q \vec{B}$ and \vec{C} lies on $\stackrel{\rightharpoonup}{O B}$.
(d) (i) $p=q=\frac{1}{2}$

(ii) $y=\frac{1}{3}, q=\frac{2}{3}$

(iii) $p=-\frac{1}{4}, q=\frac{5}{4}$

(iv) $p=\frac{3}{2}, c=-\frac{1}{2}$

2. (a) $n=\frac{2}{5}$ and $m=\frac{3}{5}$
(b) $m=\frac{5}{2}$ and $n=-\frac{3}{2}$
3. (a)

119.4
(b)

4. Prove: $(r+s) \vec{P}=r \vec{P}+s \vec{P}$

We note that $(r+s) \stackrel{\rightharpoonup}{P} \| r \stackrel{\rightharpoonup}{P}+s \vec{P}$
Case 1: $r>0, s>0$.
$r>0, s>0$ imply $r+s>C$. Thus $(r \dot{s}) \vec{P}$ and $r \vec{P}+s \vec{P}$ have the same sense of direction, and

$$
|(r+s) \stackrel{\rightharpoonup}{P}|=(r+s)|\vec{P}|=r|\stackrel{\rightharpoonup}{P}|+s|\stackrel{\rightharpoonup}{P}|=|r \stackrel{\rightharpoonup}{P}|+|s \stackrel{\rightharpoonup}{P}|=|r \stackrel{\rightharpoonup}{P}+s \cdot \stackrel{\rightharpoonup}{P}| .
$$

Case 2: $r>0, s<0 . r>|s|$

- Then $r+s>0$ and $|(r+s)| \vec{P}|=(r+s)| \vec{P}|=(r-|s|)| \vec{P} \mid=$ $r|\stackrel{\rightharpoonup}{P}|-|s| \stackrel{\rightharpoonup}{P}=|r \vec{P}|-|s \stackrel{\rightharpoonup}{P}|=|r \vec{P}+s \vec{P}|$.

Case 3: $r>0, s<C, r<|s|$
Then $r+s<0$ and $|(r+s) \stackrel{\rightharpoonup}{P}|=-(r+s)|\vec{P}|=(-|r|+|s|)|\vec{P}|=$ $-|r| \stackrel{\rightharpoonup}{P}+|s| \stackrel{\rightharpoonup}{P}=-|r \stackrel{\rightharpoonup}{P}|+|s \stackrel{\rightharpoonup}{P}|=|r \stackrel{\rightharpoonup}{P}+s \stackrel{\rightharpoonup}{P}|$.

Case 4: $r \geqslant 0, s<0, r=|s|$ $|(r+s) \stackrel{\rightharpoonup}{P}|=0$ and $|r \stackrel{\rightharpoonup}{P}+s \stackrel{\rightharpoonup}{P}|=0 \quad \mid$

Case 5: $r=0$ or $s=0 \quad$ The proof follows from the definition of scalar multiplication.

3-6. Components.

The notation introduced in this section si plifies vector manipulations. A component is itself a real number and not a vector.

What is actually done in this section is to establish an isomorphism between vectors with certain operations and ordered pairs of real numbers for which certain operations are defined. This leads eventually to vector spaces

कhi sh are shavatrized abotractly by postulatiuy the basis" properties exhitited in this treatment. A set, of postulatos for a vcetor firane ean be Sound in and Intormediate Mathematise, pase cithex or any text on modern algeors or linear alyeara.

Sine the origin-vector is unique, the vector $\{a, b]$ equals the vector. $[c, d]$. if and on!y ii $a=$ and $b^{\circ}=d$. This desiniption of cquality is, \quad. used throughout the rest of the text and in many proultens.

115
Part of the material presented earlier on the topic or linear combinations (See pases $100-109$) is especially pertinent here. The unit ventors $i=[1,0]$ and $j=[0,1]$ in two dimensions and $i=[2,0,0], j=[0,7,0]$ and $k=[0,6,1]$ in three aimensions are used in most apalication of vector" aralysis. The i, j, k vectors are discussed in Chapter 8.

Exercises 3-6

0
4. (a) $\sqrt{2}$
(b) 5
(c) $\sqrt{a^{2}+b^{2}}$
(d) 1
5.

$$
\begin{aligned}
& \vec{A}=1: i+2 j \\
& \vec{B}=5 i-j \\
& \vec{p}=\vec{B}=\vec{A}=(5-4) i+(-i-2) j \\
& \quad . \quad=i-3 j
\end{aligned}
$$

6. $\overrightarrow{0}=0 \cdot \vec{X}+0 \cdot \vec{Y}$
7. The midpoint of the line segmentuoiring $(2,5)$ and $(5,8)$ is $\left(\frac{7}{2}, \frac{13}{2}\right)$

$$
\hat{p}=\frac{7}{2} i+\frac{13}{2} j
$$

8. (a) $\stackrel{\rightharpoonup}{p}=\frac{\sqrt{3}}{2} i+\frac{1}{2} j$
(b) $\stackrel{\rightharpoonup}{q}=\frac{\sqrt{3}}{2} i-\frac{1}{2} j$
(c) $\vec{r}=\frac{4}{5} i-\frac{3}{5} j$
9. (a) $x=\frac{-13}{6} \quad y=\frac{23}{6}$
(b) $x=\frac{-1}{5} \quad y=\frac{4}{5}$
(c) $x=\frac{27}{13} \quad y=\frac{8}{13}$
(d) $x=\therefore \quad y=\frac{-1-r}{2}$ for each real number. The real numbers

- form an infinite set.

10. ${ }^{7}(a) \quad[a, b]=a[1,0]+b[0,1]$
(b) $[a, b]=\frac{a+b}{b}[1, i]+\frac{b-a}{2}[-1, b]$
(c) $[a, b]=-b \sqrt{2}\left[-\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right]+(b-a)[-1,0]$
11. $\mathrm{T}_{\mathrm{x}}=25 \sqrt{3}$ lbs. ≈ 43.3 lbs. $\mathrm{T}_{\mathrm{y}}=25$ lbs.

$$
\begin{aligned}
\vec{A} & =\left[\dot{A}_{x}, A_{y}\right]=\left[|\vec{A}| \cos 37^{\circ},|\vec{A}| \sin 37^{\circ}\right] \\
& =\left[20 \cdot \frac{4}{5}, 20 \cdot \frac{3}{5}\right] \\
\vec{B} & =\left[B_{x}, B_{y} j=\left\{|\vec{B}| \cos \left(-30^{\circ}\right),|\vec{B}| \sin \left(-30^{\circ}\right)\right]\right. \\
& =\left[30 \frac{\sqrt{3}}{2}, 30\left(-\frac{1}{2}\right)\right]
\end{aligned}
$$

$$
\vec{A}+\vec{B}=[16,12]+[15 \sqrt{3},-15]=[16+15 \sqrt{3},-3] \approx[1: 2,-2] .
$$

13. (a) 2°, below x-axis in 4 th quadrant. The components of the second vector, $\vec{B}=[26,-12]$
(b) 32° from y-axis in 2nd quadrant. The components of the second vector, $\vec{B}=[-16,30]$
14. $24^{\circ} 30^{\circ}$
15. (a) 21.3 lbs.wacting 3^{0} north of west.
(b) 31.3 lbs. acting 2^{0} north of west.

In part (a) the components are $[-15 \sqrt{2}, 15 \sqrt{2}-20]$
In part (b) the components are $[-10-15 \sqrt{2}, 15 \sqrt{2}-20]$
16. 14.6 lbs .
17. THEOREM $3-1$. Let $\vec{P}=[a, b] \quad \vec{Q}=[c, d]$
$\vec{P}+\vec{Q}=[a ; c, b+d]$ and $\vec{Q}+\vec{P}=[c+a, b+d]$
But addition in the real numbers is commutative so $a+c=c+a$, $b+d=d+b \cdot$. Therefore $[a+c, b+d]=[c+a, d+b]$ which means $\vec{P}+\vec{Q}=\vec{Q}+\vec{P}$.

THEOREM 3-2. $\vec{P}=[a, b\rangle \quad \vec{Q}=[c, d] \quad \vec{R}=[c, f]$
$(\vec{P}+\vec{Q})+\vec{R}=[(a+c)+e,(b+\dot{d})+f]$
$\stackrel{\rightharpoonup}{P}+(\stackrel{\rightharpoonup}{Q}+\stackrel{\rightharpoonup}{R})=[a+(c+e), b+(d+r)]$
But addition in the reals is associative whinh means $[(a+c)+e,(b+d ;+f]=[a+(c+e), b+(d+f)]$. Hence, $(\vec{P}+\vec{Q})+\vec{R}=\stackrel{\rightharpoonup}{\mathbf{P}}+(\vec{Q}+\vec{R})$.

THEOREM 3-6. r and s are real numbers. $\bar{P}=[a, b], \bar{R}=[c, d]$

$$
\text { (1) } \begin{aligned}
r(\stackrel{\rightharpoonup}{P}+\stackrel{Q}{Q}) & =r([a+c, b+d]) \\
& =[r a+r c, r b+r d] \\
& =[r a, r b]+[r c, r d] \\
& =r \stackrel{\rightharpoonup}{P}+r \stackrel{Q}{Q}
\end{aligned}
$$

(2) $(r+s) \vec{p}-(\underline{r}+s)[a, b]$

$$
\begin{aligned}
& =[(r+s) a,(r+s) b] \\
& =[r a+s a, r b+s b] \\
& =[r a, r b]+[s a, s b] \\
& =r \vec{p}+s \vec{p} .
\end{aligned}
$$

18. THEORDM 3-10. If $\vec{X}=[a, b]$ and r is a real number, then $r \bar{X}=[r a, r b]$.

Case 1: $a=0$. Then \vec{X} lies along the y-axis. By definition, $r \vec{X}$ lies along the \dot{y}-axis also with terminal point at rb . So $r \bar{X}=[r \cdot 0, r b]=[r a, r b]$.
Case 2: $b=0$. By same argument $\quad \vec{X}=[r a, r b]$.
case 3: $a \neq 0$ and $b \neq 0$.
We get $\triangle O X A \sim \triangle O Z C$ and $\triangle O X B \sim \triangle O Z Q$.

So $\frac{d(0, X)}{d(0, Z)}=\frac{d(0, A)}{d(0, C)}=\frac{d(0, B)}{d(0, D)}=\frac{1}{r}$

Let $\vec{Z}=r \cdot \vec{X}$.

$$
x=(a, b)
$$

But $d(0, A)=a \quad d(0, B)=b$
Therefore $d(0, C)=r a \quad d(0, D)=r b$ and $Z=(r a, r b)$. (alternatively)
If $\vec{X}=[a, b]$, define $\vec{A}=[a, 0] \quad \vec{B}=\{0, b]$ so that $\vec{X}=A+B$.
$\vec{r} \vec{X}=\vec{A} \vec{A}+\vec{r} \vec{B}$
By Cases 1 and 2, $r \vec{A}=[r a, 0], r \overrightarrow{\mathbb{D}}=[0, r b]$.
So $r \vec{X}=[r a, 0]+[0, r b]:\{r a, r b]$.
19. The vector representation of each set below is written so that if $r=0$ we obtain \vec{A} and if $r=1$ we obtain \vec{B}.
(a) $\{[2-6 r, 3+2 r\}: r$ is a real number $\}$
(b) $\{[1+2 r, 3+6 r\}: r$ is a real number $\}$
(c) $[[4,-7+9 r]: r$ is a real number $]$
(d) $[[2+r]: r$ is a real number $]$
(e) $\{[-3+4 r, 2-4 x]: 0 \leq r \leq 1\}$
(f) $\{[1+r]: 0 \leq r \leq]\}$
(g) $\{[3-5 r, 4-r]: 0 \leq r \leq 1\}$
(h) $\{[1-4 r,-2+4 r\}: 0 \leq r\}$
(i). $\{[2-r]: 0!\leq r\}$
(j) $\{[3-5 r, 4-r]: 0 \leq r\}$
(k) $\{[-2+5 r, 3+r]: r \leq r\}$
(1) $\{[2-r]: 0 \leq r\}$
(m) $\{[3-5 r, 4-r]: 0 \geq r\}$
(n) $\{[-3+4 r, 2-4 r\}: 0<r<1\}$
20. (a) $\vec{M}=[3,6], \vec{T}_{1}=[2,4], \vec{T}_{2}=[4,3]$
(b) $\vec{M}=\left[\frac{7}{2},-\frac{9}{2}\right], \vec{T}_{]}=\left[\frac{4}{3},-\frac{7}{3}\right], \vec{T}_{2}=\left[\frac{11}{3},-\frac{20}{3}\right]$
(c) $\vec{M}=\left[\frac{a_{1}+a_{2}}{2}, \frac{b_{1}+b_{2}}{2}\right] \quad \overrightarrow{\mathrm{T}}_{1}=\left[\frac{2 a_{1}+b_{1}}{3}, \frac{2 a_{2}+b_{2}}{3}\right]$

$$
\stackrel{\rightharpoonup}{T}_{2}=\left[\frac{a_{1}+2 b_{1}}{3}, \frac{a_{2}+2 b_{2}}{3}\right] .
$$

21. (a) $[2,8]$
(b) [7]
(c) $[0,0]$
(d) $\left[\frac{2}{3}, \frac{5}{2}\right]$
(e) $\left[\frac{39 \pi+2 \sqrt{2}}{26(\sqrt{2}+\pi)}, \frac{26 \pi+24 \sqrt{2}}{39(\sqrt{2}+\pi)}\right]$
(f) [7]

3-7. Inner Product.
Although it is desirable algebraically to have some kind of vector multiplication, it is a little more difficult to introduce in a geometric framework. It would be possible to start by simply definine the inner product of two vectors by

$$
\left[a_{1}, a_{2}\right] \cdot\left[b_{1}, b_{2}\right]=a_{1} b_{1}+a_{2} b_{2} .
$$

This is quite satisf"ctory from the algebraic point of view, but does not connect very well with our development of vectors to this point. Hence a geometric approach is used by applying the law of cosines to the triangle formed by \vec{X} and \vec{Y}. The definition of inner product is then made in terms of the resulting expression. The physical concept of work is one of the simplest applications of the inner product. It is included here to show that the inner product has relevance to a practical problem in science.

Theorem 3-13 establishes the connection between the geometric definition of inner product and its representation by components of the vectors. Either form can be used as indicated by a particular situation.

124
We dia not present the vector product (or cross-product) $a \times b$ because some limitations had to be set for this chapter. The magnitude of
$\vec{a} \times \vec{b}=|\vec{a}||\vec{b}| \sin \theta$; its direction lies along a line perpendicular to the plane determined by \vec{a} and \vec{b}; and its sensc of direction is determined by the motion of a right-hand screw when \vec{a} is rotated into \vec{b}.

$$
\stackrel{\rightharpoonup}{\mathrm{c}}=\stackrel{\rightharpoonup}{\mathrm{a}} \times \stackrel{\rightharpoonup}{\mathrm{b}}
$$

Iou should note that $\vec{a} \times \vec{b}=-\vec{b} \times \vec{a}$ because the sense of direction is reversed. Thus the commutative law fails. $|\vec{a} \times \vec{b}|$ is the area of the parallelogram with \vec{a} and \vec{b} as sides.

Your interested studente may like to investigate this topic in a standard text on vector analysis.

Exercises 3-7

1. (a) 0
(e) 0
(b) 0
(f) -7
(c) 1
(g) $a c+b d$
(d) 1
2. (a) - 11
(f) -205
(b) -65
(c) 48
(g) -76
(d) -110
(e) 29
3. (a) 90°
(b) 80°
(c) 109°
(d) 60°
4. (a) $|\dot{\bar{A}}|^{2}=25$.
(f) 34°
(g) 0°
(h) 0
(i) 347
(j) 64
(e) 132°
(h) 180°
(b) $|\vec{B}|^{2}=169$
5. (a) $\frac{-16}{3}$
(b) $\frac{16}{3}$
(c) -3
(a) $4 a$
(e) $-16 i+12 j ; 16 i-12 j$
6.

$$
\begin{aligned}
& \triangle A O B \text { is a right } \triangle . \\
& \text { If } \vec{C} \text { is as shown, } \\
& \vec{C}=\vec{B}-\vec{A} \\
& \vec{C}=i+7 j
\end{aligned}
$$

7.

$$
\begin{aligned}
& \vec{A}=2 i-3 j \\
& \vec{B}=2 i+j \\
& \vec{A} \cdot \vec{B}=|\vec{A}| \cdot|\vec{B}| \quad \cos \theta
\end{aligned}
$$

(a) $\vec{A} \cdot \vec{B}=(2)(-2)+(-3)(1)=-7$
\because rom $\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta$, we find that ${ }^{*} \cos \theta=-.863$
$\therefore \theta$ is approximately 150°
(b) Since $\vec{W}=\vec{F} \cdot \vec{S}$ and $\vec{F}=\vec{A}=2 i-3 j$

$$
\overrightarrow{\mathrm{S}}=\overrightarrow{\mathrm{B}}=-2 i+0 j,
$$

we have $\vec{W}=\vec{F} \cdot \vec{S}=a_{1} a_{2}+b_{1} b_{2}$, and

$$
w=(2)(2)+(-3)(0)=4(\text { in proper units })
$$

8. (a) 240 ft .1 bs.
(b) , 8660 ft. lbs.
9. (a) $10 . \therefore \mathrm{ft}$.
(b) 538.2 ft .
10.

(a) $|\vec{A}|=\cos ^{2} \theta+\sin ^{2} \theta=1,|\vec{B}|=\cos ^{2} \phi+\sin ^{2} \phi=1$, and $\vec{A} \cdot \stackrel{\rightharpoonup}{B}=|\vec{A}||\vec{B}| \cos \psi$ where ψ is the angle between \bar{A} and \bar{B}.
(b) In this case $\psi=0-\sigma$
$\therefore \vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos (\theta-\theta)=3 \cdot 1 \cdot \cos (\theta-\theta)=\cos (\phi-\theta)$. Using components $\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{B}}=\cos \phi \cos \theta+\sin \phi \sin \theta$.
Thus $\cos (0-\theta)=\cos \phi \cos \theta+\sin \Phi \sin \theta$.
11. To show $-1 \leq \frac{\stackrel{\rightharpoonup}{X} \cdot \stackrel{\rightharpoonup}{Y}}{|\stackrel{\rightharpoonup}{X}| \cdot|\stackrel{\rightharpoonup}{Y}|} \leq 1$.

This expression is defined only if $\vec{X} \neq \overrightarrow{0}$ and $\vec{Y} \neq \overrightarrow{0}$. In this case $\overrightarrow{\mathrm{X}} \cdot \overrightarrow{\mathrm{Y}}$ is defined as $|\overrightarrow{\mathrm{X}}||\overrightarrow{\mathrm{Y}}| \cos \theta$. Now $-1 \leq \cos \theta \leq 1$ for any angle, XOY , $|\bar{X}||\bar{Y}| \neq 0$ so we may multiply through by

$$
1=\frac{|\vec{X}||\vec{Y}|}{|\vec{X}||\vec{Y}|} \text { getting }-1 \leq \frac{\vec{X} \cdot \stackrel{\rightharpoonup}{Y}}{|\vec{X}||\vec{Y}|} \leq 1 .
$$

12. There is no associative law for inner products. The inner product of two vectors is a scalar.

3-8. Laws and Applications of the Inner (Dot) Product.
128
Most of the proofs of geometric theorems have been left for Chapter 4. '.nese two proofs are given here to demonstrate that an abstract concept, such as the inner product of vectors, can be useful. The proof of the concurrence of the sltitudes of a triangle is, we hope, impressive.
 intersect $\stackrel{\rightharpoonup}{B C}$. The answer is far from simple and involves a number of theorems involving the concepts of order, incidence, and betweenners. A. careful treatment of such questions is given by ha. Noise in his book Elementary Geometry from an Advanced Viewpoint. A careful non-vector proof of this theorem is in SMSG Geometry with Coordinates, p. ($00-501$.

A second derivation of the formula for the area of a triangle, $K_{\infty}=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{2}\right|$ is as follows:

(1) Consider $\triangle 0 x y$ and the realted non-zero vectors $\vec{x}-\left[x_{1}, x_{?}\right]$ and $\bar{Y}:\left[y_{1}, y_{2}\right]$ and the angle θ between them. Applying the trigonometric form for the area of a triangle, we have

$$
K=\frac{1}{2}|\vec{X}||\vec{Y}| \sin \ddots
$$

(2) Since $\vec{X} \cdot \vec{Y}=|\vec{X}||\vec{Y}| \cos \theta$, we have $\cdot|\vec{X}||\vec{Y}|=\frac{\vec{X} \cdot \vec{Y}}{\cos \theta}$, and

$$
K=\frac{1}{2}(\vec{X} \cdot \vec{Y}) \tan \theta, \theta \neq \frac{\pi}{2}
$$

(If the vectors are perpendicular, $K=\frac{1}{2}|\vec{X}||\vec{Y}|$).
(3) To write the result in terms of components, we observe the following:
(a) $\vec{X} \cdot \vec{Y}=x_{1} y_{1}+x_{2} y_{2}$
(b) $\cos \theta=\frac{\vec{X} \cdot \vec{Y}}{|\vec{X}||\vec{Y}|}=\frac{x_{1} y_{1} \pm x_{2} y_{2} .}{\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}} \sqrt{y_{1}{ }^{2}+y_{2}{ }^{2}}}$
(c) $\sin \theta= \pm \sqrt{1-\cos ^{2} \theta}= \pm \sqrt{1-\frac{\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}}{\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)\left(y_{1}{ }^{2}+y_{2}{ }^{2}\right)}}$

$$
=\frac{ \pm\left(x_{1} y_{2}-x_{2} y_{1}\right)}{\sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}}=\frac{ \pm\left(x_{1} y_{2}-x_{2} y_{1}\right)}{|x||Y|} .
$$

(4) Thus $\mathrm{K}=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right|$.

Exercises $3-8,9$

1. $\vec{X}=[2,4] \quad \vec{Y}=(-1,-3], t=5$

$$
\begin{aligned}
(t \stackrel{\rightharpoonup}{X}) \cdot \vec{Y}=t(\vec{X} \cdot \stackrel{\rightharpoonup}{Y}) & =(\vec{X}) \cdot(t \vec{Y}) \\
{[10,20] \cdot\{-1,-3] } & =5\{[2,4] \cdot[-1,-3]\}=[2,4] \cdot[-5,-15] \\
-10-60 & =5\{-2-12\}=-10-60 \\
-70 & =-70=-70
\end{aligned}
$$

2. If $\vec{X}=\left[x_{1}, x_{2}\right]$ and $\vec{Y}=\left[y_{1} y_{2}\right]$, prove that
$(t \vec{X}) \cdot \vec{Y} \doteq \vec{X} \cdot(t \vec{Y})$ for any scalar t.
Proof: ($t \widehat{X}$) $\cdot \vec{Y}=\vec{X} \cdot(t \bar{Y})$ if
$\left[t x_{1}, t x_{2}\right] \cdot\left[y_{1} y_{2}\right]=\left[x_{1}, x_{2}\right]\left[t y_{1}, t y_{2}\right]$ or
$t x_{1} y_{1}+t x_{2} y_{2}=t x_{1} y_{1}+t y_{1} y_{2}$.
Since this last statement is true, the steps can be reversed to prove the original, statement of the theorem.
3. To prove:

$$
\vec{X} \cdot(\overrightarrow{\mathrm{Y}}+\mathrm{b} \vec{Z}), \vec{a}(\overrightarrow{\mathrm{X}} \cdot \overrightarrow{\mathrm{Y}})+\mathrm{b}(\overrightarrow{\mathrm{X}} \cdot \overrightarrow{\mathrm{Z}}) \text {, we note. }
$$

that $\vec{X} \cdot(a \vec{Y})+\vec{X} \cdot(b \vec{Z})=a(\vec{X} \cdot \vec{Y})+b(\vec{X} \cdot \vec{Z})$ (Theorem 3-14a)
and $\quad a(\vec{X} \cdot \vec{Y})+b(\vec{X} \cdot \vec{Z})=a(\vec{X} \cdot \vec{Y})+b(\vec{X} \cdot \vec{Z})$ (Theorem 3-14b)
4. (a) $(\vec{A}+\vec{B}) \cdot(\vec{A}-\vec{B})=(\vec{A}+\vec{B}) \cdot \vec{A}-(\vec{A}+\vec{B}) \cdot \vec{B}$ (Theorem 3-14a) $=(\vec{A} \cdot \stackrel{\rightharpoonup}{A})+(\vec{B} \cdot \vec{A})-(\vec{A} \cdot \vec{B})-(\vec{B} \cdot \vec{B}) \quad$ (Theorem 3-14a)
$=|\vec{A}|^{2}-|\vec{B}|^{2}$ (Commutative Property of Inner Product and the fact that $\left.\vec{A} \cdot \vec{A}=|\vec{A}|^{2}, \vec{B} \cdot \vec{B}=|\vec{B}|^{2}\right)^{r}$
(b) Construction: Two lines are parallel or intersect at a point.
(1) Theorem 3-12 and Theorem 3-14a.
(2) Same reason.
(3) Equality of real numbers and the commutative property.
(4) Additive property of equality.
(5). Theorem 3-14a and Theorem 12.
(6) $\stackrel{\rightharpoonup}{a}$ lies on $\overrightarrow{A D}$ and ($\stackrel{\rightharpoonup}{c}-\vec{b}$) lies on $\overrightarrow{B C}$.
5.

r
6. (a) $-\frac{7 \sqrt{5}}{5}$
(b) $-\frac{7 \sqrt{13}}{13}$
7. (a) x direction, $15 \sqrt{2}$ y direction, $15 \sqrt{2}$
(b) 26.0
(c) 29.4

$$
\begin{aligned}
K & =\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}\right| \\
& =\frac{1}{2}|18+2| \\
& =\frac{1}{2}|20|=10
\end{aligned}
$$

Check by alternate method : $\overline{O A} \mid \overline{O B}$ since $m_{\overline{O A}}$ is the negative reciprocal of $m_{\overline{C B}} \cdot \quad . \overline{O B}$ is an altitude of $\triangle O A B$
$\alpha(0, A)=\sqrt{10}$ and $d(0, B)=\sqrt{40}$
$A=\frac{1}{2}(\sqrt{10})(\sqrt{40})=10$

1. Let P be any point not on $\triangle A B C$.

Let $\widehat{A P}, \overrightarrow{B P}, \overleftrightarrow{C P}$ intersect
sides $\overrightarrow{B C}, \overparen{A C}, \overleftrightarrow{A B}$ respectively
at points Q, R. S.
To show $\frac{d(A, S)}{d(S, B)} \cdot \frac{d(B, Q)}{d(Q, Q)} \cdot \frac{d(C, R)}{d(R, A)}=1$
Take origin at A.

Then $\vec{R}=\frac{d(A, R)}{d(\vec{A}, C)} \vec{C}, \vec{S}=\frac{d(A, S)}{d(A, B)} \vec{B}$
$\stackrel{\leftrightarrow}{C S}$ contains points $x \vec{C}+(1-x) \vec{S}=x \vec{C}+(1-x) \frac{d(A, S)}{d(A, B)} \vec{B}$
$\stackrel{\leftrightarrow}{B R}$ contains points $y \stackrel{\rightharpoonup}{B}+(1-y) \vec{R}=y \stackrel{\rightharpoonup}{B}+(1-y) \frac{d(A, R)}{d(A, C)} \vec{C}$
For intersection $y=(1-y) \frac{d(A, S)}{d(A, B)} x=(1-y) \frac{d(A, R)}{d(A, C)}$
which reduces to $x=\frac{d(A, R) \cdot d(S ; B)}{d(A, B) \cdot d(A, C)-d(A, S) \cdot d(A, R)}$

$$
: y=\frac{d(A, S) \cdot d(R, C)}{d(A, B) \cdot d(A, C)-d(A, S) \cdot d(A, R)}
$$

Thus $\vec{P}=\frac{d(A, S)!d(R, C)}{d(A, B) \cdot d(A, C)-d(A, S) \cdot d(A, R)} \vec{B}+$

$$
\frac{d(A, R) \cdot d(S, B)}{d(A, B) \cdot d(A, C)-d(A, S) \cdot d(A, R)} \stackrel{\rightharpoonup}{C}
$$

But Q is on $\mathcal{A P}$, so for some t we have

$$
\begin{equation*}
t \vec{P}=\vec{B}+\frac{a(Q, B)}{d(B, C)}(\vec{C}-\vec{B}) \tag{3}
\end{equation*}
$$

whence $t\left(\frac{d(A, S) \cdot d(R, C)}{d(A, B) \cdot d(A, C)-d(A, S) \cdot d(A, R)}\right)=\frac{d(B, C)-d(Q, B)}{d(B, C)}=\frac{d(Q, C)}{d(B, C)}$
and $t\left(\frac{d(A, R) \cdot a(S, B)}{(A, B) \cdot d(A, C)-d(A, S) \cdot d(A, R)}\right)=\frac{d(Q, B)}{d(B, C)}$
Substituting the expression for t obtained from (3) into (4) and simplifying we get

$$
\begin{aligned}
& \quad \begin{array}{l}
d(A, R) \cdot d(S, B) \cdot d(Q, C) \cdot d(B, C) \cdot d(B, C) \cdot d(A, S) \cdot d(R, C) \cdot d(Q, B) \\
\text { which gives } \\
\frac{d(A, S) \cdot d(C, R) \cdot d(Q, B)}{d(S, B) \cdot d(R, A) \cdot d(Q, C)}=1
\end{array}
\end{aligned}
$$

$A=[a, 0] \quad B=[b, 0] \quad C=[0, c] \quad p=[0, p]$
(This exercise considers only the case D strictly between A and B so that $a<0<b$ and $\frac{b}{a} \neq \frac{p}{c}$.)
If (x, y) is on $\overrightarrow{A C}$, then $y=\frac{c}{-a}(x-a)$
If (x, y) is on $\overrightarrow{P B}$, then $y=\frac{p}{=b}(x-b)$
Solving these to find coordinates of N we get

$$
N=\left[\frac{a b(p-c)}{a p-b c}, \frac{c p(a-b)}{a p-b c}\right]=\left[N_{x}, N_{y}\right]
$$

If (x, y) is on $\overrightarrow{B C}$, then $y=\frac{c}{-b}(x-b)$
If (x, y) is on $\overrightarrow{P A}$, then $y=\frac{p}{-a}(x-a)$.
Solving for the coordinates of ${ }^{\prime} \mathrm{K}$ we get

$$
M=\left[\frac{a b(p-c)}{b c-a p}, \frac{a p(b-a)}{b c-a p}\right]=\left[M_{x}, M_{y}\right]
$$

Because both $\angle N D C$ and $\angle M D C$ are smaller than 90° angles they are congruent if $|\sin \quad \angle N D C|^{2}=\left|\sin \quad L^{\prime M D C}\right|$ for which it is enough that |sin $\left.\angle \mathrm{NDC}\right|^{2}=|\sin \quad \angle \mathrm{MDC}|^{2}$. But this follows from
$|\sin \quad \angle N D|^{2}=\frac{|N|^{2}}{d^{2}(N D)}=\frac{a^{2} b^{2}(c-p)^{2}}{(b c-a p)^{2}} \cdot \frac{(b c-a p)^{2}}{a^{2} b^{2}(c-p)^{2}+c^{2} p^{2}(b-a)^{2}}$
and $\mid \sin$

$$
|M D C|^{2}=\frac{\left|M_{x}\right|^{2}}{d^{2}(M D)}=\frac{a^{2} b^{2}(p-c)^{2}}{(b p-a c)^{2}} \cdot \frac{(b c-a p)^{2}}{a^{2} b^{2}(c-p)^{2}+c^{2} p^{2}(b-a)^{2}}
$$

3.

. 0

$$
20-018 \text {. }
$$

$$
\vec{P}=\frac{\dot{d}(B, P)}{d(B, A)} \vec{A} \quad \vec{R}=\frac{d(B, R)}{d(B, C)} \vec{C}
$$

$$
\begin{aligned}
& Q \text { is on } \overleftrightarrow{A C} \text { so for some } x, \vec{Q}=x \vec{A}+(1-x) \vec{C} \\
& Q \text { is on } \overleftrightarrow{P R} \text { so for some } y, \vec{Q}=y \vec{P}+(1-y) \vec{R}
\end{aligned}
$$

$$
\text { Hence } \quad x=y-\frac{d(B, P)}{d(B, A)}
$$

$$
\begin{gathered}
=y \frac{d(B, P)}{d(B, A)} A+(1-y) \frac{d(\dot{B}, R)}{d(B, C)} C \\
(1-x)=(1-y) \frac{d(B, R)}{d(B, C)}
\end{gathered}
$$

From these we get

$$
\begin{equation*}
\vec{Q}=\frac{d(B, P) \cdot d(B, C)}{d(B, C) \cdot d(B, P)-d(B, A) \cdot d(B, R)} \vec{A}+\frac{d(B, R) \cdot d(A, P)}{d(B, C) \cdot d(B ; P)-d(B, A) \cdot d(B, P)} \stackrel{\rightharpoonup}{C} \tag{1}
\end{equation*}
$$

' $\stackrel{\rightharpoonup}{Q}$ is a defined point only if the denominator is not zero, which is the condition that excludes ℓ parallel to a side.
Similarly we may write

$$
\begin{equation*}
\vec{Q}=\frac{d\left(Q_{2} C\right)}{d(A, C)} \vec{i}+\frac{d(Q, A)}{d(A, C)} \vec{C} \tag{2}
\end{equation*}
$$

Then the coefficient \dot{s} of \vec{A} and \vec{C} in (1) must be equal respectively to the corresponding coefficients in (2). From which we find

$$
\frac{d(A, Q)}{d(Q, C)} \cdot \frac{d(C, R)}{d(P, B)} \cdot \frac{d(B, P)}{d(P, A)}=1
$$

4. (a) To show $\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2} \leq\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)\left(y_{1}{ }^{2}+y_{.2}{ }^{2}\right)$

$$
\begin{aligned}
& \left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}=x_{1}^{2} y_{1}^{2}+2 x_{1} y_{1} x_{2} y_{2}+x_{2}^{2} y_{2}^{2} \\
& \left(x_{1}{ }^{2}+x_{2}^{〔}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{1}^{2}+\dot{x}_{1}^{2} y_{2}^{2}+x_{2}^{2} y_{2}^{2}
\end{aligned}
$$

Thus we need to show that

$$
2 x_{1} y_{1} x_{2} y_{2} \leq x_{2}^{2} y_{2}^{2}+x_{2}^{2} y_{1}^{2}
$$

But this is true because we always have

$$
\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}=x_{1}{ }^{2} y_{2}^{2}-2 x_{1} y_{2} x_{2} y_{1}+x_{2}^{2} y_{1}^{2} \geq 0
$$

(b) Let $\vec{X}=\left[x_{1}, y_{1}\right], \vec{Y}=\left[x_{2} ; y_{2}\right]$ in 2 -space.

Then we write $(\vec{X} \cdot \vec{Y})^{2} \leq|\vec{X}|^{2} \because|\vec{Y}|^{2}$
(c) $(\overrightarrow{\mathrm{X}}: \overrightarrow{\mathrm{Y}})^{2}=|\overrightarrow{\mathrm{X}}|^{2} \cdot|\overrightarrow{\mathrm{Y}}|^{2}$ if and only if $\mathrm{x}_{1} y_{2}=\mathrm{x}_{2} \mathrm{y}_{1}$, that is, if and only if $\vec{X}=r \vec{Y}, \quad r \neq 0$

Review Exercises

1. (a) $\vec{X}=\vec{A}+\vec{B}-\vec{C}=[0,-2]$
(b) $\vec{X}=\frac{1}{5}(2 \vec{A}+3 \vec{B}-4 \vec{C})=\left[-1,-\frac{4}{5}\right]$
(c) $\vec{X}=\vec{C}-\frac{2}{3} \vec{A}+\frac{2}{3} \vec{B}=\left[-\frac{2}{3}, \frac{31}{3}\right]$
(d) $\vec{X}=\frac{1}{3}(\vec{B}+\vec{C}-\vec{A})=\left[-\frac{2}{3}, \frac{14}{3}\right]$
(e) $\vec{X}=-2 \vec{C}-3 \vec{B}=[-1,-24]$
(f) $\vec{X}=-\frac{1}{3} \vec{A}-\frac{1}{3} \vec{B}=\left[-\frac{1}{2},-\frac{4}{3}\right]$
2. Prove: $\vec{A}+\vec{X}=\overrightarrow{0}$ is satisfied by

$$
\vec{X}=(-1) \vec{A}=-\vec{A}
$$

Proof:

$$
\begin{aligned}
\vec{A}+\vec{X}^{-} & =\vec{A}+(-1 \vec{A}): \quad & \quad \text { (Substitution) } \\
\therefore \quad & =\vec{A}+-\vec{A} \quad & \quad \text { (Definition or } \cdot(-7) \vec{A}) \\
& =\overrightarrow{0} \quad & (-\vec{A} \text { is additive inverse } \\
& & \text { of } \vec{A})
\end{aligned}
$$

3. $(r s) \vec{P}=r(s \vec{P})$

- Proof: (rs) \vec{P} and $r(s \vec{P})$ are parallel and have the same sense of. direction.
$\mid(r s) \vec{P}]=|r s||\vec{P}|=|r||s||\vec{P}|=|r||s \vec{P}|=|r(s \stackrel{\rightharpoonup}{P})|$.

$$
\begin{aligned}
& \text { 4. (a) }[14,-3] \\
& \text { (d) }[6,0] \\
& \text { (b) }[-7,16] \text { (e) }[14,10] \\
& \text { (c) }[-2,1 \text {] } \\
& \text { (f) }[-18,-4] \\
& \text { 5. (a) }[-6,-2] \\
& \text { (d) } \left.10,-\frac{2}{3}\right] \\
& \text { (b) }\left\{\frac{17}{5},-\frac{12}{5}\right] \\
& \text { (e) }[-7,0] \\
& \text { (c) }\left\{-\frac{1}{3},-\frac{1}{3}\right\} \\
& \text { (f) }\left[-\frac{13}{6}, 0\right] \\
& \text { (a) } 0 \\
& \text { (f) }-38 \\
& \text { (b) } 0 \\
& \text { (g) } 243 \\
& \text { (c) } 21 \\
& \text { (h) }-4 \\
& \text { (d). }-36 \\
& \text { (i) }-192 \\
& \text { (e) } 0 \\
& \text { (3) }-11 \\
& \gamma^{i}{ }^{7} \text {. (a) } 2 \sqrt{13} \\
& \text { (h) } 0 \\
& \text { (b) } 2 \sqrt{13} \quad-\pi \\
& \text { (i) } 36 \\
& \text { (c) } 2 \sqrt{13}+3 \sqrt{10} \\
& \text { (j) } 329 \\
& \text { (a) }-\sqrt{15} \\
& \text { (k) } 225 \\
& \text { (e) } \sqrt{25} \\
& \text { (i) } 26 \\
& \text { - (敛, } \sqrt{226} \\
& \text { (m) } 105 \\
& \text { (B) } 5 \sqrt{13} \\
& \text { (n) } 52 \\
& \text { ©. (a) } 2(2 i+3 j)+3(3 i-2 j)-(-i+3 j)=4 i+6 j+9 i-6 j+i-3 j^{\circ} \\
& =141-3 \mathrm{~J} \\
& \text { (b) }-7 i+36 j \\
& \text { (c) }-2 i+1: j \\
& \text { (d) } 62 \\
& \text { (e) } 14 i+10 j \\
& \text { (f) }-181^{\prime}-4.5
\end{aligned}
$$

9. (a) $\stackrel{\grave{X}}{X}=6 i-2 j$
(b.) $2(2 i+3 j)+3(3 i-2 j) \div 1(-i+3 j)+5\left(x_{1} i+x_{2} j\right)$.

$$
4 i+6 j+9 i-6 j=-4 i+12 j+5 x_{1} i+5 x_{2} j
$$

$$
17 i^{\circ}=12 \hat{j}=5 x_{1} i+5 x_{2} j
$$

$$
5 x_{1}=11
$$

$$
x_{1}=\frac{17}{5}
$$

$$
5 x_{2}=-12
$$

$$
x_{2}=-\frac{12}{5}
$$

$$
\vec{x}=\frac{17}{5} i-\frac{12}{5}
$$

(c) $\vec{X}=-\frac{1}{3} i-\frac{1}{3} j^{\prime}$
(d) $2 i+3 j+2\left(x_{1} i+x_{2} j\right)=3 i-2 j-i+3 j-x_{1} i-x_{2}^{j}$
(e) $\bar{x}=-71$
(f) $\vec{X}=-\frac{13}{6} 1$
\therefore 10. $(a)(2 i+3 j) \cdot(3 i-2 j)=(2)(3)+(3)(-2)=0$
(b) $2(2 i+3 j) \cdot 3 i 3 i-2 j)=(4 i+6 j) \cdot(9 i-6 j)=(4)(9)+(6)(-6)=0$
(c) 21
(d) -36
(e) 0
(f) -38
(g) $(3(2 i+3 j)+5(3 i-2 j)) \cdot(3(3 i-2 j)-2 i-i+3 j))$

$$
(6 i+9 j+15 i-10 j) \cdot(9 i-6 j+21-6 j)
$$

$(211-j) \cdot(111-12 j)=(21)(11)+(-1)(-12)=243$
(n) -4
(i) -192
(j) 36

$$
\begin{aligned}
& 2 i+3 j+2 x_{1} i+2 x_{2} j=3 i-2 j-i+3 j-x_{1} i-x_{2} j \\
& \begin{aligned}
0 i+2 j & =-3 x_{1} i-3 x_{2}^{j} \\
x_{1} & =0
\end{aligned} \\
& -3 x_{2}=2 \\
& x_{2}=-\frac{2}{3} \\
& \text { d, } \quad \bar{x}=-\frac{2}{3} j
\end{aligned}
$$

11.

$$
\begin{aligned}
& \text { (a) } \mathrm{m} \angle \mathrm{ABC}=90 \\
& \mathrm{~m} \angle \mathrm{BCD}=100 \\
& \mathrm{~m} \angle \mathrm{CDA}=55 \\
& \mathrm{~m} \angle \mathrm{DAB}=115 \\
& \text { (b) } \begin{aligned}
\text { Area of } \triangle O A B & =9 \\
\text { Area of } \triangle O B C & =8 \\
\text { Area of } \triangle O A C & =7 \\
\text { (c) Area of } \triangle \mathrm{ABC} & =\text { Area of } \triangle O A B+\text { Area of } \triangle O B C \text { - Area } \triangle O A C \\
& =\zeta+8-7=10
\end{aligned} \text { (in } \\
& \text { Ares }
\end{aligned}
$$

12.

$$
\begin{aligned}
& \text { Area of } \triangle A O B=\frac{1}{2}\left|a_{1} b_{2}-a_{2} b_{1}\right| \\
& \text { Area of } \triangle B O C=\frac{1}{2}\left|b_{1} c_{2}-b_{2} c_{i}\right| \\
& \text { Area, of } \triangle A O C=\frac{1}{2}\left|a_{1} c_{2}-a_{2} c_{1}\right|
\end{aligned}
$$

$$
\text { From the diagram' above: Area of } \triangle A B C=\text { Area of } \triangle A O B+\text { Area of }
$$

$$
\triangle B O C \text { - Area of } \triangle A O C \text {. }
$$

$$
\text { Area of } \triangle A B C=\frac{1}{2}\left|a_{1} b_{2}-a_{2} b_{1}\right|+\frac{1}{2}\left|b_{1} c_{2}-b_{2} c_{1}\right|-\frac{1}{2}\left|a_{1} c_{2}-a_{2} c_{1}\right|
$$

$$
\text { Area of } \dot{A B C}=\frac{1}{2}\left|a_{1} b_{2}-a_{2} b_{1}+b_{1} c_{2}-b_{2} c_{1}-a_{1} c_{2}+a_{2} c_{1}\right|
$$

Area of $\triangle A O B=\frac{1}{2}\left|a_{2} b_{2}-a_{2} b_{1}\right|$
Area of $B O A C=2($ Area of $\triangle A O B)=\left|a_{1} b_{2}-a_{2} b_{1}\right|$
14. (a) $[-4,7]$
(b) $[-4]$
(c) $\left[\frac{1}{2},-\frac{9}{2}, \frac{11}{2}\right]$
(d) $\left[-15, \frac{23}{2}\right]$
15. (a) $\triangle A B C=\overline{A B} \cup \overline{B C} \cup \overline{C A}$

$$
\begin{gathered}
=\{(2-3 r, 3-r): 0 \leq r \leq 1\} \quad \cup\{[-1+2 r, 2+2 r]: 0 \leq r \leq 1\} \\
\\
\end{gathered}
$$

(b) $[1,3]=\left[-1+3\left(\frac{1}{2}\right)+2\left(\frac{1}{4}\right), 2+\left(\frac{1}{2}\right)+2\left(\frac{1}{4}\right)\right]$ where we certainly have

$$
0<r=\frac{1}{2}<1,0<s=\frac{1}{4}<1 \text {; and } r+s=\frac{3}{4}<1
$$

$$
\text { So }[3,1] \in \operatorname{Int} \cdot(\operatorname{Reg} \cdot A B C)
$$

(c) $[1,1]=[-1+3 x+2 s, 2+r+2 s]$ if and only if $r=-\frac{3}{2}$, $s=-\frac{5}{4}$. So clearly $[1,1]$ coes not satisfy the conditions to be in Region ABC.

$$
\begin{aligned}
& \text { Region } \mathrm{ABC}=(\overline{\mathrm{B}}+\mathrm{r}(\overrightarrow{\mathrm{~A}}-\overrightarrow{\mathrm{B}})+\mathrm{s}(\overline{\mathrm{C}}-\overline{\mathrm{B}}): 0 \leq r \leq 1,0 \leq \mathrm{s} \leq 1, r+\mathrm{s} \leq 1\} \\
& =\{[-1+3 r+2 s, 2+r+2 s]: 0 \leq r \leq 1,0 \leq s \leq 1, r+s \leq 1\} \\
& \text { Int. (Reg.ABC })=\{(\vec{B}+r(\vec{A}-\bar{B})+s(\vec{C} \cdot \vec{D}): 0<r<1,0<s<1, r+s<1\} \\
& =\{[-1+3 r+2 s, 2+r+2 s]: 0<r<1,0<s<1, r+s<1\}
\end{aligned}
$$

 From graphical considerations, we show $\overline{P_{2},}, c$ intersects $\overline{A B}$ which is a subset of $\triangle A B C$. The conditions $0 \leq r \leq 1,0 \leq t \leq 1,[2-3 r, 3-r]=[1,1+2 t]$ are met for $t=\frac{5}{6}, r=\frac{1}{3}$. Hence the segments intersect in the point $\left[1, \frac{8}{3}\right]$.
16. Region $A B C D=$ Region $B A D \cup$ Region $B D C \cup$ Region $B A C$

$$
\begin{array}{r}
=(\vec{B}+r(\vec{A}-\vec{B})+s(\vec{C}-\vec{B})+t(\vec{D}-\vec{B}): 0 \leq r \leq 1,0 \leq s \leq 1,0 \leq t \leq 1, r+s \leq 1, \\
= \\
=[1-1+3 r+2 s+3 t, 2+r+2 s+2 t]: 0 \leq r \leq 1,0 \leq s \leq 1,0 \leq t \leq 1, r+s \leq 1\} \\
\\
s+t \leq 1, r+t \leq 1\}
\end{array},
$$

Note: the commas indicate logical conjunction of the ε ix individual conditions.
17. Region $A B C D=$

$$
\begin{array}{r}
(\vec{B}+r(\vec{A}-\bar{B})+s(\vec{C}-\vec{B})+t(\vec{D}-\vec{B}): 0 \leq r \leq 1,0 \leq s \leq 1,0 \leq t \leq 1, r+s \leq 1, \\
\\
s+t \leq 1, r+t \leq 1\}
\end{array}
$$

18. (a) 90°
(b) 97°
(c) 45°
(d) 61°
19. $\angle \mathrm{CAB}=90^{\circ}$
$\angle A B C=45^{\circ}$
$\angle A C B=45^{\circ}$
20. $\angle \mathrm{PSR}=135^{\circ}$
$\angle \mathrm{SRQ}=135^{\circ}$
$\angle B Q P=45^{\circ}$
$\angle Q P S=45^{\circ}$
Trapezoid

Chapter 4

PROOFS BY ANALYTIC METHODS

This is the first of what some students refer to as "fun" chapters. There is nothing new to learn in the sense that there are no new theorems or definitions. The students have accumulated a variety of tocls; now they will set how these tools may be used. In spite of the groans and complaints one hears from the class, most stuants thoroughly enjoy this type of thing.

Our primary concern in this chapter is that each student develop a systematic approach to solving problems.by coordinates or vectors. We feel that a satisfactory beginning can be made by writing analytic proofs of familiar geometric theorems. It is also our aim that, while he is operating with these analytic tools, each student realize and appreciate the power available in the application of these tools. These methods represent a tremendous advance in mathematics, and the students should be aware of their heritage.

After a discussion of three methods of proof--by rectangular coordinates, by vectors, by polar coordinates--the chapter culminates in a section where the student must make a conscious choice of method. In order that the student not be denied this valuable opportunity to develop mathematical maturity, the teacher, must avoid the temptation to decide for the student. Every student is entitled to learn what happens when he makes a poor choice. Furthermore, his choice may be, for him, the best.

The exercise solutions are given in the form we think is line most natural; but, to follow the spirit of the text, the teacher should accept any presentation which is mathematically sound. Then if the teacher feels that the student could have produced a simpler or more direct proof by using another method, this could be pointed out.

4-2. $\frac{\text { Proofs }}{r} \frac{\text { Using }}{}$ Rectangular Coordinates.
This section, which is concerned with proofs using rectangular coordinates, may be skimmed or swiftly reviewed if the class has already covered this material in another course. Some time might be saved in this way since the time allotment for this chapter assumes that most of the students have had little or no experience in this area.

The techniques we recomind are developed by means of examples. Following Example 1, we have suggested a short outline of systematic steps a student may follow for the problems which seem particularly suited to rectangular coordinates. To facilitate the study of the examples, we suggest that each student copy the figure and supply coordinates for it as the proof proceeds.

Among other things, Example 1 illustrates a rather delicate choice the student must make. On one hand, he must select coordinates which make the figure perfectly general; on the other hand, he should choose coordinates which make use of the information given in the problem. If he does this improperly, in the first instance he may have a proof which is valid for only a special case; in the second instance he may have a very complicated proof where a simple one would suffice. Example 1 shows how the choice of coordinates may be improved without losjng generality in the figure.

We use the fact that $d(A, C)=d(B, C)$ to show that $\overline{C D}$ has no slope.
or

$$
\begin{aligned}
\sqrt{b^{2}+c^{2}} & =\sqrt{(b-2 a)^{2}+c^{2}}, \\
b^{2} & =b^{2}-4 a b+4 a^{2} .
\end{aligned}
$$

Therefore,

$$
4 a b=4 a^{2},
$$

and, if $a \neq 0$, then $a=0$ and $\overline{C D}$ is vertical.
Regarding the choice of coordinates for A and B in Figure 4-4, we deliberately chose "-a" to the right of "a" so that some students who need the reminder may note that $-a$ does not necessarily represent a negative number. It means the opposite of a; hence, when a is negative, $-a$ is positive.

To show that C lies on the y-axis, we note that

$$
\mathrm{d}(\mathrm{~A}, \mathrm{C})=\mathrm{d}(\mathrm{~B}, \mathrm{C}),
$$

or

$$
\sqrt{(b-a)^{2}+c^{2}}=\sqrt{(b-(-a))^{2}+c^{2}},
$$

or

$$
b^{2}-2 a b+a^{2}-b^{2}+2 a b+a^{2}
$$

Therefore, $0=4 a b$, and; if $a \neq 0$, then $b=0$. "

143 We justify the choice of abscissa for point C in Figúre. $4-5$ in the iollowins way. Let $D=(b, c)$ and $C=(d, c)$. Since $\overline{B C}|\mid \overline{A D}$, their slopes are equal. Thus

	$*$	$\frac{c}{d-a}$	$=\frac{c}{b},(a \neq d)$,
	and	0	$=d-a$,
or	$:$	d	$=a+b-$

We are dealing with well-know and previously proved properties of geometric figures; therefore, some confusion may exi.t in the clase as to which of these properties may be assumed in choosing coordinates for the figure. Although the teacher is at liberty, of course, to set lap his own "ground rules", we recommend that only thote properties ascribed to geometric figures by their definitions or by the hypothesis be allowed wher sclecting the coordinates. For the purposes of this section, we have alco allowed the theorems (after proof) of Exercises 4-2. The teacher is not bound u this. Our reason for the exception is to make it unnecessury for a student to prove the same thing in two separate exercises.

To complete the proof of Example 3 , we note that for the conclusion, $d(A, C)=d(B, C)$, to be true, we must have

$$
\sqrt{4 a^{2}+4 c^{2}}=\sqrt{4 b^{2}+4 c^{2}}
$$

This will hold is $a^{2}=b^{2}$. From the hypothesis, чe have $d(A, N)=d(B, M)$, or
$\sqrt{(b-2 a)^{2}+c^{2}}=\sqrt{(2 b-a)^{2}+c^{2}}$.

This simplifies to
Figure ${ }^{4-6}$

$$
\begin{aligned}
b^{2}-4 a b+4 a^{2}+c^{2} & =4 b^{2}-4 a b+a^{2}+c^{2} \\
3 a^{2} & =3 b^{2},
\end{aligned}
$$

or
from which we have $a^{2}=b^{2}$ as required.

Hypothesis:
$\overline{B M}$ and $\overline{A N}$ are medians.
$\overline{\mathrm{BM}} \cong \overline{\mathrm{AN}}$.
Conclusion:
$\overline{A C} \cong \overline{B C}$.

1. $\overline{\mathrm{BM}}$ and $\overline{\mathrm{AN}}$ are medians.
2. M is the midpoint of $\overline{A C}$;
N is the midpoint of $\overline{B C}$.
3. $\overline{\mathrm{N}} \| \overrightarrow{\mathrm{A}} \boldsymbol{\mathrm { B }}$.
4. Introduce $\overline{M D}$ and $\overline{N E}$ perpendicular to $\overrightarrow{A B}$.
5. $\overline{\mathrm{MD}} \cong \overline{\mathrm{NE}}$.
6. $\overline{\mathrm{BM}} \cong \overline{\mathrm{AN}}$.
7. $\triangle B M D$ and $\triangle A N E$ are right triangles.
8. $\triangle B M D \cong \triangle A N E$.
9. $\angle D B M_{1} \simeq \angle E A N$.
10. $\overline{A B} \cong \overline{A B}$.
11. $\triangle A B M \cong \triangle B A N$.
12. $\overline{\mathrm{AM}} \cong \overline{\mathrm{BN}}$.
13. $d(A, M)=d(B, N)$.
14. $d(A, C)=d(B, C)$.
15. $\overline{M C} \cong \overline{B C}$.

16. Hypothesis.
17. Definition of median.
18. The line joining the midpoints of two sides of a triangle is parallel. to the line containing the third side:
19. There is a unique perpendicular to a line from a point not on the. line.
20. Parallels are everywhere equidistant.
21. Hypothesis.
22. Ferpendiculars form right angles.
23. Hypotenuse - leg theorem.
24. Correspondịg angles of congruent triangles are congruent.
25. Retlectiye property of congruence for segments.
26. S. A. S. theorem.
27. Corresponding sides of congruent triangles are congruent.
28. Definition of congruence.
29. Definition of midpoint and multiplication property of equals.
30. Definition of congruence., "

It is not anticipated that the teacher will assign all of the parts of Eercises $4-2$ to a single student. The excess exercises may be used for tect items. It is suggested that exercises $10,13,16$ be assigned to everyone. These theorems are proved by vector methods in the next section, and the students may profit from a comparison of the two methods of proof.

Exercises 4=2

(Note: Formal proofs arc not presented here. We merely indicate the essentials of one possible solution for each problem.)

1. $M=(a, c) ; N=(b, c)$.

Slope of $\overline{M N}=0$;
slope of $\overline{A B}=0$.
$\therefore \overline{M N} \| \overline{A B}$.

$$
\begin{aligned}
d(M, N)=\sqrt{(a-b)^{2}} & =|a-b| . \\
d(A, B)=\sqrt{(2 a-2 b)^{2}} & =|2 a-2 b| \\
& =2|a-b| .
\end{aligned}
$$

2. $M=(a, c)$; since ${ }^{*}$.

- $\overline{M P} \| \overline{A B}, P=(x, c)$.
$\therefore \mathrm{P}$ lies on $\overline{\mathrm{BC}}$; therefore, slope
of $\overline{\mathrm{PC}}=$ slope of $\overline{\mathrm{BP}}$; that is,

$$
\frac{-c}{x}=\frac{-c}{2 b-x} .
$$

Thus, $x=b$ and $P=(\dot{b}, c)$, the midpoint of $\overline{B C}$.

3. Part I. If $d(A, P)=d(B, P)$, then
$\sqrt{(x+a)^{2}+y^{2}}=\sqrt{(x-a)^{2}+y^{2}}$, $x^{2}+2 a x+a^{2}+y^{2}=x^{2}-2 a x+a^{2}+y^{2}$, and $4 a x=0$.

Therefore, if $a \neq 0$, then $x_{3}=0$ and P lies on the y-axis, the perpendicular bisector of $\overline{A B}$.

Part II. If P lies on the perpendicular biscctor of $\overline{A B}$, then $x=0$ and $d(A, P)=\sqrt{a^{2}+y^{2}}=\sqrt{(-a)^{2}+y^{2}}=d(B, P)$.
4. By definition $\overline{O C} \| \overline{A B}$ and their
slopes are equal. Thus
$\frac{d}{c}=\frac{-d}{b-a},(a \neq b)$,
and $\mathrm{b}=\mathrm{a}+\mathrm{c}$. Therefore,
$d(B, C)=\sqrt{a^{2}}=|a|=d(A, 0)$
and $d(C, 0)=\sqrt{c^{2}+d^{2}}=d(B, A)$.

midpoint of $\overline{\mathrm{AC}}=\left(\frac{a+c}{2}, \frac{e}{2}\right)$.
Since $\left(\frac{c}{2}, \frac{d}{2}\right)=\left(\frac{a+c}{2}, \frac{e}{2}\right)$,
$\mathrm{b}=\mathrm{a}+\mathrm{c}$ and $\mathrm{d}=\mathrm{e}$.
This satisfies the conditions for the theorem of Exercise 5 .
7. Since $O A B C$ is a parallelogram, it
 may have coordinates as in
Fxercise 5. Since $d(0, B)=d(A, C)$, $\sqrt{(a+c)^{2}+d^{2}}=\sqrt{(a-c)^{2}+d^{2}}$,
$a^{2}+2 a c+c^{2}+d^{2}=a^{2}-2 a c+c^{2}+d^{2}$, and $4 \mathrm{ac}=0$.
If $a \neq 0$, then $c=0$ and $B=(a, d)$; therefore, $\angle O A B$ is a right angle.
8. The coordinates shown in the figure take \&ccount of the fact that a rhombus is a parallelogran with congruent sides.

The slope of $\overline{A C}$ is $\frac{\sqrt{a^{2}-c^{2}}}{c-a}$;
the slope of $\overline{O B}$ is $\frac{\sqrt{a^{2}-c^{2}}}{a+c}$.

The product of the slopes is $\frac{a^{2}-c^{2}}{c^{2}-a^{2}}=-1$; herice, the diagonals are perpendicular.
0. Ithe slone of $\overline{A C}=\frac{d}{e-a}$; the slope of $\overline{O B}-\frac{d}{a+c}$. Since $\overline{A C} \perp \overline{O B}, \frac{d}{c-a} \cdot \frac{d}{a+c}--1 \cdot$
merefore, $d^{2}=a^{n}-a^{\prime}$, or
$a^{2}=c^{2}+d^{2}$. Hence,
$|a|-\sqrt{c^{2}+d^{2}}=d(0, c)=d(0, \Lambda)$.

10. $A P=(a, 0) ; Q-(a+0, d) ;$
$R=(b+c, d+e) ; S-(c, e)$.
, Slope of $\overline{P Q}=$ slope or $\overline{R S}-\frac{d}{b}$; slope of $\overline{P S}=$ sIope of $\overline{R Q}=\frac{e}{c-a}$.
11. $P=(a, 0) ; Q=(a+b, d) ;$
$R=(b+c, d+e) ; S=(c, e)$.

- Midpoint of $\overline{R P}=\left(\frac{a+b+c}{2}, \frac{d+e}{2}\right)$;
midpoint of $\overline{S Q}=\left(\frac{a+b+c}{2}, \frac{d+e}{2}\right)$.

12. $d(A, C)=\sqrt{(c-a)^{2}+d^{2}}$

$$
\begin{aligned}
& =\sqrt{(a-c)^{2}+d^{2}} \\
& =d(0, B) .
\end{aligned}
$$

13. $D=(c, d) ; E=(a+b, d)$. Siope of $\overline{D E}=0=$ slope of $\overline{O A}$ and slope of $\overline{B C}$.
$d(0, A)=d(C, B)=2 a+2 b-2 c$

$$
=2(a+b-c)
$$

$d(D, E)=a+b-c$.
14. ${ }^{\mathrm{D}} \mathrm{D}=(\mathrm{c}, \mathrm{d})$; let $\mathrm{E}=(\mathrm{e}, \mathrm{d})$.

 Since E lies on $\overline{A B}$, the slope of $\overline{\mathrm{BE}}=$ the slope of $\overline{\mathrm{AE}}$; hence, $\frac{d}{2 b-e}=\frac{d}{e-2 a}, 2 e=2 a+2 b$, and $e=a+b$; Therefore $E=(a+b, d)$, the midpoint of $\bar{A} \bar{B}$.
15. Let the acute angle be at 0 .

$$
\begin{aligned}
(d(A, B))^{2} & =(b-a)^{2}+c^{2} \\
& =b^{2}-2 a b+a^{2}+c^{2}
\end{aligned}
$$

Also $(d(0, B))^{2} \pm(a(0, A))^{2}$.

$$
\begin{aligned}
& =\left(b^{2}+c^{2}\right)+a^{2}-2 a(0, A) b \\
& =b^{2}-2 a b+a^{2}+c^{2}
\end{aligned}
$$

16. $K=\left(\frac{3 a+3 b}{2}, 0\right)$;
$L=\left(\frac{3 b}{2}, \frac{3 c}{2}\right) ;$
$M=\left(\frac{3 a}{2}, \frac{3 c}{2}\right)$.
The point $(a+b, c)$ divides each of $\overline{\mathrm{CK}}, \overline{\mathrm{BM}}$, and $\overline{\mathrm{AL}}$ in the ratio 2:1.
17. Since $\overline{\mathrm{AP}} \perp \overline{\mathrm{BC}}$, the slope of
 $\cdot \overline{\mathrm{AP}}=\frac{\mathrm{b}}{\mathrm{c}}$; since $\overline{\mathrm{BQ}} \perp \overline{\mathrm{AS}}$, the slope of $\overline{B Q}=\frac{a}{c}$.
$\overrightarrow{A P}=\left\{(x, y): \quad y=\frac{b}{c}(x-a)\right\} ;$
$\widehat{B Q}=\left\{(x, y): \quad y=\frac{a}{c}(\dot{x}-b)\right\}$.
Since the intersection must lie on
the y-axis, $x=0^{\circ}$, and the point is ($0,-\frac{a b}{c}$) .

In the solution of this exercise we wish to make use of the proposition: The segnent joining the center of a circle to the midpoint of a chord of the circle is perpendicular to the chord., He dispose of this proposition first.

Since $d(0, A)=d(0, B)$,
$\sqrt{4 a^{2}+4 c^{2}}=\sqrt{4 b^{2}+4 d^{2}}$,
or $a^{2}+c^{2}=b^{2}+d^{2}$.
The siope of $\overrightarrow{A B}=\frac{c-a}{a-b}$;
the slope of $\overline{O M}=\frac{c+\ddot{d}}{a+b}$.
The product of these slopes is
$\frac{c^{2}-d^{2}}{a^{2}-b^{2}}$, and, since

$a^{2}+c^{2}=b^{2}+d^{2}, c^{2}-d^{2}=b^{2}-a^{2}$.

Substituting in the product of the slopes obtained above, we have

$$
\frac{b^{2}-a^{2}}{a^{2}-b^{2}}=-1
$$

therefore, $\overline{O M} \perp \overline{A B}$

We return to the first problem and select a coordinate system as depicted in the figure. We nave placed the origin at the midpoint of $\stackrel{\rightharpoonup}{P C}$, and we let $M=(x, y)$.

- We then have $d(P, M)=\sqrt{(x+a)^{2}+y^{2}}$,

$$
\begin{aligned}
d(M, C) & =\sqrt{(x-a)^{2}}+\frac{y^{2}}{}, \\
\text { and } \quad d(P, C) & =2 a .
\end{aligned}
$$

By employing the Pythagorean Theorem in $\triangle P C M$ we obtain

$$
\begin{gathered}
(x+a)^{2}+y^{2}+(x-a)^{2}+y^{2}=4 a^{2}, \\
x^{2}+2 a x+a^{2}+y^{2}+x^{2}-2 a x+a^{2}+y^{2}=4 a^{2}, \\
2 x^{2}+2 y^{2}=2 a^{2}, \\
x^{2}+y^{2}=a^{2} .
\end{gathered}
$$

We recognize this as an equation of the circle of radius a which has its center at the origin. However, the entire circle is not the locus in the case we have depicted. The locus is the are of this circle which is contained in or on the fixed circle. This is the case for which the radius, r, of the fixed circle is less than $2 a^{\prime}$; the point P is exterior to the fixed circle. If $r=2 a, P$ is on the fixed circle; if $r>2 a$, P is inside the fixed circle. In both of these latter two cases, the entire circle $x^{2}+y^{2}=a^{2}$ is the locus.

4-3. proofs Usine Vectors.
The purpoze of, thig wetion is to anow another method or proving
 to another. For a fartiaular pobiem, une motaod may be simpler than andther methe, but the roint ...ic is to increase tr.c diversity of available methods. - Usine vestore may be at: approach whi h, thoush new to many students can be of sonsiderable interect to them. If the teacel (or any student) wishes to. fursue this topi of vestor, alplied to seometry, he may consult Elementary Vector Geonetry by Seymour Schusier-.

147 A reference to the lis usuion or Figure $j-8$ in Chapter 3 may help some studentz to underctand t.ec vestor addition pertormed in Example 1. This example is Exercise 1 ; of the prexeding cet.

An application or vector eddition wrich may interest some students involves the sum around a viosed region. For example, $\vec{a}+\vec{b}+\vec{i}+\vec{a}=\overrightarrow{0}$. one of Kirchnoff's Laws, which is widely used in dealing with elestripal circita, ztates that the sum of the yotential
 (voltage) drops around a lozed viscuit is zero.

147 . The itulents should diwsov.i that altering the directions of any of the vestord in Figure \quad - 3 will nol cusertally chatge the proof--only cume details will te modizied. Tre student, may "cnuounter some difficulty, however, if' they are careless in the way they latel the vectors. For example, since E is the midpoint of ${ }^{\circ} \overline{A D}$ and we hose \vec{a} to desienate the vector fyon A to: E, the vector from E, D is also lateled \vec{a}. But if we used the vector from D to E,'it would be laveled $-\vec{a}$.

148
Example : is Exercise 10 of Exereises 4 -. . We have suggested to the
 We think this irill helf t student to see that the choice of an origin is completely arbitrary, and the drawine of the origin-vettors as the proof \& proceeds may aid in visualizing the steps of the proof.

Example 3 is Exercise 16 o" Exersiṣes 4-2. Note that a particular shoice of origin (aided by a prior knowledge of the result) greatly simplifies the proof.

In solving any sort of problem it is difficult in general to tell beforehand what will "work" and what will not. This is true of the more complicated exercises where a particular choice of the roigin may give simpler calculations than occur with another dhoive. In general, an origin should be selected which allows the hytothec: to be expressed simply. It should also be chosen so that the number of independent vectors needed is as small as possible. Apart from this, experichter Eained frof trial and error is a valuable nelp. If calulations toe dom with one choice, perhape another choice should be made. • However, come propositionz zimply do not possezs hort,. . elegant proofs.

The centroid of an area or a volume can ve defined in mathematical terms using integral calculus. The center of eravity of a thin uniform zhect or, of a uniform mass is the centroid of the correspondiag mathematical area or volume.

Physically, the center of cravity of an ooject will always lie on a vertical line through a point of suspension of the oljest. Thus the senter of gravity of a trangular object can also be determined experımentally ky suspending it from 2 different points, say - vertices, and then determining. where the lines of suspension intersect.

There may be some mystery surrounding the chaice of unit vectors in Example 4. Of course, we always can say, "It works!" But we can ive a more sound justification. The fact that we nsed an anfle biector could lead someone to think of the diagonals of a rhombus, and the concruent indes of a rhomkus could lead omeone to think of unit vector. . Student. (and teaćher.) should not be discouraged if they 'io not think of thinge like this; years of experience and/or a little luck play a large part in there activitics.

Exerciscs 5 and t of Section ' $-\xi$ are the same theoreme used in Examples 3 and 1 of Section 't-, Thesc may be assigned for purfosec of comparihe the two methods of proof.

Exercises $\frac{4-3}{-}$

(Note: Formal proofs are not presented here. We merely indicate the essentials of one possible solution for each problem.)

1. Let E be the midpoint of $\overline{\mathrm{DB}}$. We have $\overrightarrow{\mathrm{p}}=\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{m}}$ and $\vec{q}=\vec{m}+\vec{a}$; therefore, $\vec{p}=\vec{q}$
. and point E bisects $\overline{A C}$.

2.

Consider the diagram at the left. $\overline{A Y} \cong \overline{Y C} \quad \overline{C X} \cong \overline{X B}$
We wish to show that $\overline{O Y}$ and $\overline{X X}$ trisect $\overline{\mathrm{AB}}$, and that $\overline{\mathrm{AP}}$ passes through points of trisection of $\overline{O Y}$ and $\overline{O X}$.

Any point on $\overline{A B}$ can be represented by $z \vec{A}+(1-z) \vec{B}, 0 \leq z \leq 1$.
Any point on $\overline{O Y}$ can be represented by $y \vec{Y}, \quad 0 \leq y \leq 1$.
Any point on $\overrightarrow{O X}$ can be represented by $x \vec{X}, \quad 0 \leq x \leq 1$.
We wish to find values of x and z 'such that $z \vec{A}+(1-z) \vec{B}=x \vec{X}$.
But we aiso know $\overrightarrow{\mathrm{X}}=\frac{1}{2}(\overrightarrow{\mathrm{C}}+\overrightarrow{\mathrm{B}})$ and $\overrightarrow{\mathrm{C}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$
so we want $z \vec{A}+(1-z) \vec{B}=\frac{1}{2} x(\vec{A}+\vec{B}+\vec{B})$

$$
z \vec{A}+(1-z) \vec{B}=\frac{1}{2} x \vec{A}+\dot{x} \vec{B}
$$

so we find $z=\frac{1}{3} \quad x=\frac{2}{3}$
Thus the intersection is at $\frac{1}{3} \vec{A}+\frac{2}{3} \vec{B}=\frac{2}{3} \vec{X}$
We find by similar computations that $\overline{A B}$ intersects $\overline{O X}$ at $\frac{2}{3} \bar{A}+\frac{1}{3} \vec{B}=\frac{2}{3} \vec{Y}$ This means $\overline{O Y}$ and $\overline{O X}$ trisect $\overline{A B}$ and also that $\overline{A B}$ passes through points of trisection of $\overline{\mathrm{OX}}$ and $\overline{\mathrm{OX}}$.
3. Using A as the origin, we have
$\overrightarrow{\mathrm{P}}=\frac{1}{2}(\overrightarrow{\mathrm{~B}}+\overrightarrow{\mathrm{C}})$,
$\vec{Q}=\frac{1}{2} \vec{C}$,
$\overrightarrow{\mathrm{R}}=\frac{1}{2} \stackrel{\rightharpoonup}{\mathrm{~B}}$.
The intersection of meglans $\overline{B Q}$

- and $\overline{C P}$ can be located by finding the values of x and y which solve
$x \vec{B}+(1-x) \vec{Q}=y \vec{C}+(1-y) \vec{R}$.
Substituting, we obtain

Figure 4-12
$x \vec{B}+\frac{1}{2} \vec{C}-\frac{1}{2} x \vec{C}=y \vec{C}+\frac{1}{2} \vec{B}-\frac{1}{2} y \vec{B}$.
Equating corresponding coefficients, we have

$$
x=\frac{1}{2}(1-y) \text { and } y=\frac{1}{2}(1-x)
$$

from which we obtain $x=y=\frac{1}{3}$.
This tells us that the intersection of $\overline{B Q}$ and $\overline{C R}$ is $\frac{1}{3}(\vec{B}+\vec{C})$, which is tricection point of each of these medians. A trisection point of $\overline{A P}$ is

$$
\text { a } \quad \frac{2}{3} \overline{\mathrm{D}}=\frac{2}{3} \cdot \frac{1}{2}(\vec{B}+\vec{C})=\frac{1}{3}(\vec{B}+\vec{C}) \text {. }
$$

4. Since $\frac{d(C, P)}{d(C, B)}=\frac{1}{r}$, the vector
from C to P is $\vec{C}-\frac{1}{r} \vec{a}$.
The vector from C to A is
($\vec{a}-\vec{b}$), and we wish to find $n(\vec{a}-\vec{b})=\vec{d}$, the scalar multiple of it. The vector from 0 to Q may be expressed as $(\vec{b}+\vec{d})$ or
 as a scalar multiple of the vector
$\stackrel{\rightharpoonup}{\mathbf{P}}$. We therefore have

$$
\begin{gathered}
\vec{b} \cdot \vec{d}=m(\vec{b}+\vec{c}), \\
\vec{b}+n(\vec{a}-\vec{b})=m\left(\vec{b}+\frac{1}{r} \vec{a}\right), \\
\vec{b}+\vec{a}-\overrightarrow{n b}=m \vec{b}+\frac{m}{r} \vec{a}
\end{gathered}
$$

Equating corresponding coefficients Eives us

$$
n=\frac{m}{r} \text { and } m=(1-n)
$$

for these equations we find $n=\frac{1}{r+1}$. Therefore,

$$
\hat{d}=\frac{1}{r+l}(\vec{a}-\vec{b}), \text { and } \frac{d(C, Q)}{d(C, A)}=\frac{1}{r+1} .
$$

5. From the diagram we see that the vector from N to A is $\overrightarrow{2}-\vec{b}$ and the vector from M to B is $2 b-\vec{a}$. Since $d(N, A)=d(M, B)$, we have $|2 \vec{a}-\vec{b}|=|2 \vec{b}-\vec{a}|$. Using the Law of Cosines, we may write this as

$\sqrt{4|\vec{a}|^{2}+|\vec{b}|^{2}+4 \cdot \stackrel{\rightharpoonup}{a} \cdot \vec{b}}=\sqrt{4|\vec{b}|^{2}+|\vec{a}|^{2}+4 \stackrel{\rightharpoonup}{b} \cdot \stackrel{a}{a}}$.
This equation simplifies to
or

$$
\begin{aligned}
4|\vec{a}|^{2}+|\vec{b}|^{2} & =4|\vec{b}|^{2}+|\vec{a}|^{2}, \\
3|\vec{a}|^{2} & =3|\vec{b}|^{2} .
\end{aligned}
$$

${ }^{\circ}$ From this we see that $\hat{\imath}|\vec{a}|=2|\vec{b}|$, and $\triangle A B C$ is isosceles.
This vector proof of Example 3, Section $4-2$, is somewhat artificial because of the use of the Law of Cosines. It may be profitable for the students to compare this proof with the rectangular coordinate and zynthetic proofs appearing in Section $4-2$ of this commentary. It can be noted that applying vectors to equal. leagths may become awkward if the vectors are not parallel.
6. The vector from C to D may
be expressed as $\frac{1}{2} \vec{a}+\frac{1}{2} \vec{b}$, and
the vector from A to B may be expressed as $\vec{b}-\vec{a}$. The product of these two vectors is

$$
\begin{aligned}
& (b-a) \cdot\left(\frac{1}{2} \vec{a}+\frac{1}{2} \vec{b}\right) \\
= & \frac{1}{2} \vec{a} \cdot \vec{b}-\frac{1}{2} \vec{a} \cdot \vec{a}+\frac{1}{2} \vec{b} \cdot \vec{b}-\frac{1}{3} \vec{a} \cdot \vec{b} \\
= & \frac{1}{2}\left(|\vec{b}|^{2}-|\vec{a}|^{2}\right) .
\end{aligned}
$$

Since the isoceles triangle has $|\vec{a}|=|\vec{b}|$, the vector product is zero, - and $\overline{C D} \perp \overline{A B}$.
7. Let $A B C D$ be a quadrilateral; ie., A, B, C, D are distinct.
$\vec{M}=\frac{1}{2}(\vec{A}+\dot{\vec{B}}) \quad \therefore \quad \vec{N}=\frac{1}{2}(\vec{B}+\vec{C})$
$\vec{P}=\frac{1}{2}(\vec{C}+\vec{D}) \quad \vec{Q}=\frac{1}{2}(\vec{D}+\vec{A})^{\prime}$
$\mathrm{M}, \mathrm{N}, \mathrm{P}, \mathrm{Q}$ are the midpoints of the sides.
We wish to show $\overline{M P}$ bisects $\overline{N Q}$.
Points of $\overline{M P}: \quad x \vec{M}+(1-x) \vec{P} \quad 0 \leq x \leq 1$
Points of $\overline{N Q}: y \bar{N}+(1-y) \vec{Q}$
Intersection requires that

$$
\begin{array}{ll}
& x \vec{M}+(1-x) \vec{P}=y \stackrel{\rightharpoonup}{N}+(1-y) \vec{Q} \\
& x\left(\frac{1}{2} \vec{A}+\frac{1}{2} \vec{B}\right)+(1-x)\left(\frac{1}{2} \vec{C}+\frac{1}{2} \stackrel{D}{D}\right)=y\left(\frac{1}{2} \bar{B}+\frac{1}{2} \stackrel{\rightharpoonup}{C}\right)+(1-y)\left(\frac{1}{2} \bar{D}+\frac{1}{2} \vec{A}\right) \\
\text { so } & \frac{1}{2} x=\frac{1}{2}(1-y) \text { and } \frac{1}{2}(1-x)=\frac{1}{2} y \\
\text { hence } & x=y=\frac{1}{2} .
\end{array}
$$

Thus $\overline{M P}$ intersects $\overline{N G}$ in a point which bisects both.
8. $\vec{x}=-\vec{a}+\vec{c}+\vec{b}$;
$\vec{x}=\vec{a}-\vec{b}$.
Adding, we have
$2 \vec{x}=\vec{c}$, or $\vec{x}=\frac{1}{2} \vec{c}$.

9. $(\vec{a}+\vec{b}) \cdot(\vec{b}-\vec{a})$
$=\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b}-\vec{a} \cdot \vec{a}-\vec{a} \cdot \vec{b}$
$=|\vec{b}|^{2}-|\vec{a}|^{2}$.
Since $|\vec{a}|=|\vec{b}|,|\vec{b}|^{2}-|\vec{a}|^{2}=0$.

10. As in Example 4, we use unit vectors to express the angle

- bisectors. Then, taking the
* vector product, we obtain

$$
\begin{aligned}
& \frac{\vec{a}}{|\vec{a}|}+\frac{\vec{b}}{|\vec{b}|} \cdot \frac{\vec{b}}{|\vec{b}|}-\frac{\vec{a}}{|\vec{a}|} \\
= & \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}+\frac{\vec{b} \cdot \vec{b}}{|\vec{b}|^{2}}-\frac{\vec{a} \cdot \vec{a}}{|\vec{a}|^{2}}-\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \\
= & \frac{|\vec{b}|^{2}}{|\vec{b}|^{2}}-\frac{|\vec{a}|^{2}}{|\vec{a}|^{2}}=0 .
\end{aligned}
$$

11.

$$
\begin{array}{rlrl}
\vec{a}=2 \vec{r}+\vec{q} & \vec{b} & =-2 \vec{r}+\vec{p} & \vec{c}=-2 \vec{p}+\vec{r} \\
\vec{a}=2 \vec{p}-\vec{q} & \vec{b} & =2 \vec{q}-\vec{p} & \vec{c}=-2 \vec{q}-\vec{r} \\
2 \vec{a}=2 \vec{r}+2 \vec{p} & 2 \vec{b} & =2 \vec{q}-2 \vec{r} & 2 \vec{c}=-2 \vec{p}-2 \vec{q} \\
& \vec{a}+\vec{b}+\vec{c}=\vec{r}+\vec{p}+\vec{q}-\vec{r}-\vec{p}-\vec{q}=\overrightarrow{0} &
\end{array}
$$

4-4. Proofs Usine Polar Coordinates.

Polar coordinates are not particularly adapted for proving theorems of the type we have been discussing. The beauty and usefulness of this form will te more apparent in later chapters. Exercises uzing polar representation are, therefore, deferred. We rave included two examples to illustrate the possibilities for poler coordinates at this point of our proéress and to set the stage for the next section.

4-5. Choice of Method of Proof.
This section, which contains rather specific directions for problem solving, should be Larefully read and dis ussed. Most of the Review Exercises which follow may be used to give the students experience in choosing and following through with come particular method. The solutions we precent are merely the ones which pecurred to us; they are not put forth as the only ones available or even the best of the many possibilities. As was waid before, any mathematically sound presentation should be acceptable.

Review Exercises

1. $d(0, M)=\sqrt{a^{2}+b^{2}}$.

$$
\begin{aligned}
d(A, M)=d(B, M) & =\sqrt{(2 a-a)^{2}+b^{2}} \\
& =\sqrt{a^{2}+b^{2}} .
\end{aligned}
$$

2. Let the fixed points be on the x-axis, as indicated in the figure. By multiplying the slopes of the sides of the angle we have

$$
\begin{gathered}
\frac{y}{x-a} \cdot \frac{y}{x+a}=-1, \\
y^{2}=-x^{2}+a^{2}, \text { or } x^{2}+y^{2}=a^{2} .
\end{gathered}
$$

3.

$d(0, C)=\sqrt{a^{2}+b^{2}}$ and $d(A, B)=\sqrt{a^{2}+b^{2}}$
4.

The courdinates of B are ($a+b . d)$.
$(d(0, A))^{2}+(d(A, B))^{2}+(d(B, C))^{2}+(d(C, O))^{2}$
$=a^{2}+\left(b^{2}+d^{2}\right)+a^{2}+\left(b^{2}+d^{2}\right)$
$=2\left(a^{2}+b^{2}+d^{2}\right)$
$(d(0, B))^{2}+(d(A, C))^{2}=\left((a+b)^{2}+d^{2}\right)+\left((a-b)^{2}+d^{2}\right)$
$=2\left(a^{2}+b^{2}+d^{2}\right)$.
5. $D=(a, 0) ; E=(2 a=c, d) ;$
) $\quad \mathrm{F}=(\mathrm{a}, 2 \mathrm{~d}) ; \mathrm{G}=(\mathrm{c}, \mathrm{d})$.
From Exercise 10 of Exercises l_{i}-2, we know that DEFG is a parallelogram; from Exercise 9 of Exercises 4-2, we know that DEFG is a rhombus if $\overline{\mathrm{DF}} \underset{\mathcal{L E}}{\mathrm{GE}}$. It is evident from the coordinates of the midpoints that $\overline{\mathrm{DF}}$ is vertical and $\overline{\mathrm{GE}}$ is horizontal.

6. $D=(b, d) ; E=(a+c, d)$.

It is evident from the coordinates that $\overline{O A}, \overline{B C}$, and $\overline{D E}$ are horizontal and, hence, parallel. $\mathrm{d}(0, \mathrm{~A})-\mathrm{d}(\mathrm{B}, \mathrm{C})=2 \mathrm{a}-(2 \mathrm{~b}-2 \mathrm{c})$ $=2(a-b+c)$.
$\mathrm{d}(\mathrm{D}, \mathrm{E})=\mathrm{a}+\mathrm{c}-\mathrm{b}$.

7.

The vector from D to G is $\vec{a}-\vec{b}$; the vector from H to B is $2 \vec{a}-\vec{b}-\vec{a}=\vec{a}-\vec{b}$; hence, $\vec{D} \| \vec{H} \vec{B}$. The vector from A to E may be represented by $x \vec{a}+(1-x) \vec{b}$ or by $y(2 \vec{a}+\vec{b})$. Setting these equal we have

$$
x \vec{a}+(1-x) \vec{b}=x y \vec{a}+y \vec{b} .
$$

Equating coefricients results in $x-2 y, y=1-x$. Solving these equations together gives us $y=\frac{1}{3}$. The. vector, from A to F may be represented by $x(2 \vec{a})+(1-x)(\vec{a}+\vec{b})$ or by $y(\vec{a}+\vec{b})$. Equatine these, ne obtain $y=\frac{2}{3}$.

8. Let D, E, and F be the midpoints of the sides, and let the perpendicular bisectors of $\overline{A B}$ and $\overline{\mathrm{BC}}$ intersect at the origin. Since \bar{D} is
perpendicular to the vector from A to B, $\frac{1}{2}(\vec{A}+\vec{B}) \cdot(\vec{B}-\vec{A})=0$, or $\frac{1}{2}(\vec{B} \cdot \vec{B}-\vec{A} \cdot \vec{A})=0$; therefore $|\vec{D}|^{2}=|\vec{A}|^{2}$, Similarly, $|\vec{A}|^{2}=|\vec{C}|^{2}$. Since $\vec{F}=\frac{1}{2}(\vec{A}+\vec{C}), \frac{1}{2}(\vec{A}+\vec{C}) \cdot(\vec{A}-\vec{C})$

$$
\begin{aligned}
& =\frac{1}{2}(\vec{A} \cdot \vec{A}-\vec{C} \cdot \vec{C}) \\
& =\frac{1}{2}\left(|\vec{A}|^{2}-|\vec{C}|^{2}\right)
\end{aligned}
$$

But since $|\vec{A}|^{2}=|\vec{C}|^{2}, \frac{1}{2}\left(|\vec{A}|^{2}-|\vec{C}|^{2}\right)=0$, and \vec{F} is perpendicular to the vector from C to A. Consequently the perpendicular bisector of $\overline{A C}$ intersects the other two perpendicular bisectors at 0 .
9. Let M and N divide $\overline{A C}$ and $\overline{B C}$ in the samos ratio, r. Then, $\vec{M}-\vec{N}$
$=(r \stackrel{\rightharpoonup}{\mathrm{~A}}+(1-r) \vec{C})-(r \vec{B}+(1-r) \vec{C})$
$=r \vec{A}-r \vec{E}=r(\vec{A}-\vec{B})$.

10.

$\vec{x}=\vec{a}+\vec{c}-\vec{b}$,
$\vec{x}=-\vec{a}+\vec{d}-(-\vec{b})$.
Adding, we obtain $\overrightarrow{2 x}=\vec{c}+\vec{d}$, or $\vec{x}=\frac{1}{2}(\vec{c}+\vec{d})$.

We are given parallelograms ABCD; AEFD, FGCH.
Define numbers d, h such that $\bar{D}=d \bar{A} ; \vec{H}=h \vec{C}$.
We will express everything in terms of d, h, \vec{A}, \vec{C} and assume all points are distinct.
The line through $\overline{\mathrm{DE}}$ contains points $x \overline{\mathrm{D}}+(1-x) \overline{\mathrm{E}}$

$$
\text { or } x(d \bar{A})+(1-x)(\bar{A}+h \vec{C})
$$

The line through $\overline{\mathrm{HG}}$ contains points $\mathrm{y} \overline{\mathrm{H}}+(1-\mathrm{y}) \overline{\mathrm{G}}$

$$
\text { or } y h \vec{c}+(1-y)(\vec{c}+d \vec{A}) .
$$

For these two lines to intersect, we must have

$$
(x d+1-x) \vec{A}+(1-x) h \vec{C}=(1-y) d \vec{A}+(y h+1-y) \vec{C} \ldots
$$

Thus we must have

$$
\begin{aligned}
& y h+1-y=h-x h \\
& x d+1-x=d-y d .
\end{aligned}
$$

Solving this system we get, under condition that $h \neq 1-d$,

$$
y=\frac{d-1}{h+d-1} \quad x=\frac{h-1}{h+d-1}
$$

which puts the intersection at X such that

$$
\vec{X}=\frac{h d}{h+d-1} \vec{A}+\frac{h d}{h+d-1} \vec{C}=\frac{h d}{h+d-1}(\vec{A}+\vec{C}) .
$$

From this we see immediately that X lies on the line containing $\overline{O B}$ since $\vec{A}+\vec{C}=\vec{B}$.
The restriction $h \neq 1-d$ arises, because in the case $h=1-d$, we get $\frac{|\vec{A}|}{|\mathrm{C}|}=\mathrm{h}=1-\mathrm{d}=\frac{1-|\vec{D}|}{|\bar{A}|}$ which makes the parallelograms similar and the diagonals parallel.
12. Since $d(A, P)-d(Q, B), \vec{P}$ can
be rofyresented by $\vec{A}+\vec{F}(\vec{B}-\vec{A})$
and \vec{Q} by $\vec{B}+p(\vec{A}-\vec{B})$.
$\vec{x}=\vec{A}+k(\vec{C}-\vec{A})$ and $\vec{x}-Q^{\vec{F}}$, :o that
$\vec{A}+k(\vec{C}-\vec{A})-q \vec{P}$,
$\vec{A}+k(\vec{A}+\vec{B}-\vec{A}) \quad q(\vec{A}: p(\vec{B}-\vec{A}))$, $\overrightarrow{\mathrm{A}}+\mathrm{k} \overrightarrow{\mathrm{B}}-\mathrm{q}(\mathrm{L}-\mathrm{p}) \overrightarrow{\mathrm{A}}+\mathrm{qp} \overrightarrow{\mathrm{B}}$.

Equating coctricients, we have
$\mathrm{l}-\mathrm{q}(\mathrm{l}-\mathrm{p})$ and $\mathrm{k}-\mathrm{q}$;
therefore,
$\mathrm{k}-\frac{\mathrm{p}}{1-\mathrm{p}}$ and $\overrightarrow{\mathrm{X}} . \overrightarrow{\mathrm{A}}+\frac{\mathrm{p}}{\mathrm{i}} \frac{\mathrm{p}}{\mathrm{B}}$.
A similar argument gives us $\bar{Y} \cdot \overline{\bar{B}}+\frac{p}{1-p} \vec{A}$.
Thus,

$$
\begin{gathered}
\vec{X}-\vec{Y} \cdot \vec{A}+\frac{p}{1-p} \vec{B}-\vec{B}-\frac{p}{1-p} \vec{A} . \\
\cdot\left(1-\frac{p}{1-\vec{p}}\right)(\vec{A}-\vec{B}) ; \\
\overrightarrow{X Y} \| \overrightarrow{A B} .
\end{gathered}
$$

hence,
13. The sum of the square: of the lengths of the four sides is

$$
\begin{aligned}
(2 a)^{2}+ & (b-a)^{2}+(a d)^{2}+(a b-2)^{2}+(2 d-a)^{2}+(a c)^{2}+(2 e)^{2} \\
& =8 a^{2}+8 b+8 c^{2}+8 d^{2}+8 e^{2}-8 a b-8 b c-8 d e:
\end{aligned}
$$

The sum of the squares of the lengths of the diagonals is

$$
\begin{aligned}
& (2 b)^{2}+(2 d)^{2}+(2 c-2 a)^{2}+(2 e)^{2} \\
& -4 a^{2}+4 b^{2}+4 c^{2}+4 d^{2}+4 e^{2}-8 a c
\end{aligned}
$$

Subtracting these sums, we obtain,

$$
\begin{aligned}
& 4 a^{2}+4 b^{2}+4 c^{2}+4 d^{4}+4 e^{2}+8 a c-8 a b-8 b c-8 d e \\
= & 4\left(a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+2 a c-2 a b-2 b c-2 d e\right) .
\end{aligned}
$$

'The square of the length of the line segment joining the midpoints of the diagonals is
$(a+c-b)^{2}+(e-d)^{2}=a^{2}+b^{2}+c^{2}+d^{2}+e^{2}+2 a c-2 a b-2 b c-2 d e$.
14. We select coordinates for the two rocks and the tree as shown - in the diagram. After marching the required distances and directions from the rocks, the-positions P_{1} and P_{2} are located. frne midpoint of $\overline{P_{1} P_{2}}$ is $\left(\frac{1}{2}, \frac{1}{2}\right)$; therefore, the buried treasure is
 located at the center of the square : whose side is determined by the two rocks. (The location of the tree is unimportant.)

GRAFHS AND THEIR EQUATIONS

The material of this chapter starts with familiar content including much that has been encountered in earlier courses. The treatment is broader and deeper here than before. It is broader because we now have analytic representations in rectangular, polar, vector, and parametric forms. It is deeper because we take account of some troublesome details and special cases that are not adequately treated on a more elementary level. The work is consequently a bit more difficult, but also more rewarding.

We call particular attention to the treatment of related polar equations, and of paths, as distinguished from curves. Neither treatment is met in a. traditional first course in analytic geometry, but we feel that they illumi-. nate some significant mathematical content that is appropriate to this work.

There are many exercises, but, as has been mentioned before in visi: book, .they need not all be assigned. We particularly urge the teacher to exploit a viewpoint we recommended to students. Stress the dynamic aspect of the relationship between geometry and algebra. Some appropr!ate questions here are, "What would be the effect in the graph if we changed this 5 to -5 ?"; "What change would we have to make in the equation if we wanted to raise the graph 3 units?; if we wanted a largel circle?; if we wanted only the portion an the first quadrant?"; "What kind of graphs would we get if we replaced this 6 by a variable m, and then took jarger and larger values of m ?".

Exercises 5-2

1. $\mathrm{y}=3$

$$
7 \text {. }
$$

2. $x=-5$
3. $y=x$ and $y=-x$; or $x^{2}=y^{2}$
4. $y= \pm 2 x$; or $y^{2}=4 x^{2}$
5.. $r=a$; or $x^{2}+y^{2}=a^{2}$
5. $(x-3)^{2}+(y+2)^{2}=a^{2}$.
6. $x=-1$
7. $3 x-7 y-14=0$
8. $\sqrt{5}|x+y-2|=\sqrt{2}|x+2 y+2|$; or
$(\sqrt{5}+\sqrt{2}) x+(\sqrt{5}+2 \sqrt{2}) y-2 \sqrt{5}+2 \sqrt{2}=0$, and
$(\sqrt{5}-\sqrt{2}) x+(\sqrt{5}-2 \sqrt{2}) y-2 \sqrt{5}-2 \sqrt{2}=0$.
9. $y^{2}=8 x$
10. If $P=(\dot{x}, y)$ is a point, of the locus, then the distance from, P° to the line is $\frac{|2 x+y+2|}{\sqrt{5}}$, and from P to the point $(2,0)$ is
$\sqrt{(x-2)^{2}+(y+1)^{2}}$. The statement of equality of these twb distances yislds our equation: $x^{2}-4 x y+4 y^{2}-28 x+6 y+21=0$.
11. $9 x^{2}+25 y^{2}=225$
12. $7 x^{2}-9 y^{2}=63$
13. $18 x^{2}+48 x y+7 y^{2}-156 x-68 y+142=0$
14. $5 x-6 y+17=0$
15. $\left(\left(x-x_{1}\right)^{2}+\left(y-y_{1}\right)^{2}\right)\left(\left(x-x_{2}\right)^{2}+\left(y-y_{2}\right)^{2}\right)=k^{2}, k>0$

17: $-3 \leq y \leq 3$
18. $x^{2}+y^{2} \geq 25$
19. $-1 \leq x \leq 1$
20. $(x-1)^{2}+(y-3)^{2} \leq 2^{2}$, or $x^{2}+y^{2}-2 x-6 y+6 \leq 0$
21. $y>\frac{5}{2}$
22. $x^{2}+8 y \geq 16$
23. $\mathrm{y}^{2} \leq 100-20 \mathrm{x}$
24. $-6<x<6$; or $|x|<6$
25. $x^{2}+y^{2}<(8.08)^{2}$; or $x^{2}+y^{2}<65.2864$

「-3. Parametric Representation.

The content and treatment ot the material in this setion are dosely related to the physical and seichtitic appliations that pupil: will meet in other elasses an in later work. Beicnec teasters in the serool should be show this section, and their couperation soliested in devisi, w laboratory experiments alons the lines sugeestid.

Exereises -3-3
1.

t	0	1	2	3	4	3	\ddots	\vdots	0	9	10
x	0	2	8	10	3	40	\because	9	128	102	200
y	6	3	12	2	4	4	10	4	1%	43	300

3.

t	0	1	2	\vdots	4	5	$:$	7	9	3	10
x	0	16	352	523	104	830	1056	1230	1404	1544	1100
y	0	.0	04	144	36	100	50	94	104	1004	1000

3. $\left\{\begin{array}{l}x=5 t, \\ y=2 .\end{array}\right.$
4. $\left\{\begin{array}{l}x=-6, \\ y=24 .\end{array}\right.$
5. $\left\{\begin{array}{l}x=.3 t, \\ y=.4 t\end{array}\right.$
6. $\left\{\begin{array}{l}x=-6+\frac{j}{5} t, \\ y=1+\frac{24}{5} t .\end{array}\right.$
7. Eliminating the parameter sives $y=x^{2}$. With the usual placement of the axes this means that the point starts from rest at the origin and moves steadfly to the right as it moves more and more rapidly upward. Its path is along a parabola whose vertex is at the origin and which $;$ concave upward. Since we assume $t: 0$, the point travels on only the right half of the parabola. 25.9 units.
8. For the line $4 x-3 y+? \quad C$ have direction mumers fo: the normal, $(4,-3)$. Therefore we may take direction numbers for the line as cither $(3,4)$, or $(-3,-4)$. Since no sense of direction alons the ine is specified we musi consider hoth. If we wer direction consines then the displacement alons the bine will we one unit for cach unit interval of the parameter t. Since the given rate is 10 units per second we must now take direction numbers ten times the dircetion osincs, i.c., $\left(10\left(\frac{3}{5}\right)^{\prime \prime}, 10\left(\frac{4}{5}\right)\right)$. Since the point goos throuth $(1,2)$ at the time when $\tau=3$, the elapsed time aftor that $: 3$ imbinated iy $\&-3$. i: have, in the first case; theretore,

$$
\left\{\begin{array} { l }
{ x - 1 + (t - 3) , } \\
{ y - 2 + \cdots (t - 3) : }
\end{array} \quad \text { or } \quad \left\{\begin{array}{ll}
x & -1+n, \\
y & -N+t ;
\end{array}\right.\right.
$$

and is the sceond casc,

$$
\left\{\begin{array}{l}
x-i+i t, \\
y \quad \because-i t .
\end{array}\right.
$$

In the first case, when t - r the rocition is $-1,-\%$, aus wen $t=10$ the position is $42,2(3)$. it se senond mese, when t. W the

9. Refer to the solution of ' avove.

$$
\left\{\begin{array} { l }
{ x = - \frac { 1 1 } { \sqrt { 3 3 } } t , } \\
{ y - 0 - \frac { 1 0 } { \sqrt { x } } t ; }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x \cdots-\frac{14}{\sqrt{1 ?}} t \\
\cdots \cdots \frac{1}{\sqrt{n}} t
\end{array}\right.\right.
$$

 and direction voilif., $\frac{a-a}{\sqrt{(c-+!+(d-b)}}, \frac{a-1}{\sqrt{e-a)+(a-b)^{\prime}}}$

The se osity of the roint alol, the inc is $\frac{\sqrt{(a-a)}}{\left.t_{1}-t_{0}-b\right)}$,
 that unit intervais of the parameter , corconond properly to dis-
 t_{0} we indieate wheth our parameter t the elapsed wam situe then, $t-t_{0}$. Therefore wo have the parametrin equations:

$$
\left\{\begin{array}{c}
x=a+\frac{\sqrt{(c-a)^{2}+(d-b)^{2}}}{t_{1}-t_{0}} \frac{c-a}{\sqrt{(c-a)^{2}+(d-b)^{2}}}\left(t-t_{0}\right) \\
\cdots=b+\frac{\sqrt{(c-a)^{2}+(d-b)^{2}}}{t_{1}-t_{0}} \frac{a-b}{\sqrt{(c-a)^{2}+(d-b)^{2}}}\left(t-t_{0}\right)
\end{array},\right.
$$

These formidable equations become:

$$
\left\{\begin{array}{l}
x=a+\frac{c-a}{t_{1}-\frac{t_{0}}{0}}\left(t-t_{0}\right) \\
y=b+\frac{d-b}{t_{1}-t_{0}}\left(t-t_{0}\right)
\end{array}\right.
$$

Yos may easily verify from these equations that when $t-t_{0}$ the position is (a,b), and when $t-t_{1}$ the position'is (c, d).
11. Assume t in seconds. The point moves from the point $(1,0)$ to the 2 point $(-1,0)$ and back again, making a round trip in 2π seconds. It starts from rest at $(1,0)$, increases its speed until it reaches the origin, then slow uswn until it comes to rest momentarily at ($-1,0$), then reverses the process endlessly. Its maximum speed occurs each time at the origin. (By methods of the calculus this maximum speed can be shown to be cne unit per second at that instant.) Such motion is called a "simple harmonic motion" and has many physical applications.

t	0	1	2	3	4	5	6	1	8	9	10
x	1	.540	-.418	-.990	-.652	.287	.961	.752	-.150	-.913	-.836

At the end of one minute $t=60$, and Tabie II does not give corresponding values for $\cos t$. We use the fact that $\cos t$ is periodic, of period 2π. (These matters will be develoyed further in the next chapter.)

We express 60 as a multiple of π and a remainder less than π; which we find by dividing 60 by a suitable decimal equivalent of π. Tables I and II are given correct to three significant figures and a careless student may then take 3.1 t as a proper equivalent of π. However, any inaccuracy in this approximation will be multiplied by a factor of about 20 and will give us a seriously inaccurate answer.

It is not our intention to enter into an extended discussion of significant figures and accuracy of computation, but in this exuchse we caution that we must choose an appropriate approximation of π.

We assume $t=60=60.0000$, and use $\pi \approx 3.1416$ and obtain $60.0000=19 \pi+.3096$, which we write briefly as $60=19 \pi+.310$. Therefore $\cos 60=\cos (19 \pi+.310)=-\cos .310=-.952$.

In the same way we assume t for one hour to equal 3600.0000000 , not 3600 , and then take the proper approximation, $\pi \approx 3.141593$. Then $3600,0000000=1145 \pi+2.876015$, or $3600.0000000=1146 \pi-.285578$, which we write more briefly as $3600=1146 \pi$. . 286 . Thus $\cos 3600=\cos (1146 \pi-.286) \fallingdotseq \cos (-.286)=\cos .286 \approx .959$.

You need not belabor the details of approximate computation, but this is a good place to show the need for a proper approximation for π. It is also a good place to show that when we are working with measurements and we add zeros to the dividend in division we are assuming more and more accuracy in its determination. A measurement of 10 . inches is less accurate than one of 10.0 inches which is in turn less accurate than a measurement of 10.00 inches. We particularly warn against the error of dividing a 10 inch length into three equal parts and writing the length of one part as $3.3333 \ldots$ inches:
12. The motion could be that of an object dropyeu from an altitude of 500 feet, in which case we assume no air resistance, and a value of i'6 feet per second per second as the acceleration due to gravíly. A value of y represents the altitude, in feet, above the surface of the earth, at corresponding time t, in seconds after the irstant of release. The change of sign of y in the interval $t=5$ to $t=6$ can be interpreted to mean that the object reaches the surface of the earth in that interval. The negative values of y afterwards would indicate the depth below the surface, if the fall continued dow a vertical shaft.

t	0	1	2	3	4	5	6	7	8	9	10
y	500	484	436	356	244	100	-76	-284	-524	-796	-1100

13. (Refer to the solution of Exercise 12) This equation could represent the motion of an object hurled upward at 64 feet ser second from an altitude of 120 feet.

t	0	1	2	3	4	5	6	7	8	9	10
y	120	168	184	168	120	40	-72	-216	-392	-600	-840

 simpte hamoni. motion with thes oruitions: the point starts from a
 farthe thent midion at ($4,()$ where it halts momentarily and re-

 Suh cquatons of "Anng were in the .thly ot vihrations, and ot variations, of an altematime merent.

t.		1			4	?	;			?	10
x		2. 63	-..0;	-6.104	\cdots	- . !	- $\quad 14$	3. 5.4	$=1.13$	$-\cdots 0$	3.6 .68

 in ${ }^{\circ} \mathrm{r}$: ic - ands.
 variable t ha: the ame interpetation it both rquations. Therefore
 For three values oi i. . , thererore the points start

Fonal phenomena are familiar nourn to physics, but it is interesting to see how the associated mathematical analy.is; can be used in other situations. Authors in reeont phblication, have applica these roncepts in such areas as: cpademiolong, to :tudy the pread and ontrol of aisease; demography, to stway the distributions of sroup; of feople; bacteriology, to study the spread or control of baetcria! growth; communication theory, to study the distribution of "information", and so on. We leave thesc for later years, and concern ourselves now with the simplest and most natural of the applications, of parametric equations of the cirele, that is, circular paths.

The teacher is urged to make a simple visual aid: , The essential features are two movable radii $\overline{O A}$ and $\overline{O B}$ mounteu on a panel of suitable size. Two stucients can ther, give independent motions to points on the rim of the circle. This model will be particularly useful when you get to
 problems of "meeting" or "overtaking".

Zxercises 5-4

1. $\left\{\begin{array}{l}x=10 \cos \theta, \\ y=10 \sin \theta .\end{array}\right.$
2. We assume t in seconds. A clockwise rotation means that as t increases from $0, \theta$ decreases from 0 , and in this case a rate of 4 rps gives the ansular displacement, $-8 \pi t$. The equations are

$$
\left\{\begin{array}{l}
x=10 \cos (-3 \pi t) \\
y=10 \sin (-8 \pi t)
\end{array}\right.
$$

3. Consider $x=a \cos (b+a t)$. Since the radius is δ inches, then $a=6$ and we are committed to incles as the measure of x.

Since the numbers 0 and 60 are assigned to the $12 o^{\prime}$ clock position the units of rotation in this problem are irtended to ve minutes. The angular position of any point on the rim can be given in terms of these m-units, measured from the $12 o^{\prime}$ clock position, or in terms of the usual θ, in radlan units from the polar axis. Thus the $2 o^{\prime}$ clock position can be described $b_{i} m=10$, and also by $\beta=\frac{\pi}{\gamma}$. Since we rotate clockwise at the rate of one rotation in 60 minutes we have \mathbb{N}, the li.cted rate of ankular displacement, equal to 1 m-unit per minute, $\therefore \frac{-\pi}{30}$ radians per minutes.

If' in the eq ation $\left.x=a \quad 0 s^{\prime} b ; a t\right)$ we use radian units for b we have $b=\frac{\pi}{2}$, since we start from the $1 \therefore D^{\prime}$ clock position. Finally, since we are asked fo the path during one hour, we take $0<t<60$. The result $\left.\|^{\prime} a_{n}\right]$ this discussion is the following pair of equations:

$$
\left\{\begin{array}{l}
x=6, \cos \left(\frac{\pi}{2}-\frac{\pi}{30} t\right), \\
y=6 \sin \left(\frac{\pi}{2}-\frac{\pi}{30} t\right),
\end{array}\right.
$$

t is the time ir minutes, x and y are in inches, and the angle is measured as usuai in radians, counterclockwise from the polar axis.
4. $\left\{\begin{array}{l}x=4+3 \cos \theta, \\ y=3 \sin \theta .\end{array}\right.$
5. $\left\{\begin{array}{l}x=4 \cos \theta, \\ y=6+4 \sin \theta .\end{array}\right.$
6. $\left\{\begin{array}{l}x=4+3 \cos \left(-\frac{\pi}{2}-4 \pi t\right), \\ y=3 \sin \left(-\frac{\pi}{2}-4 \pi t\right) .\end{array}\right.$

Note: These equations supply information about the starting position $\left(-\frac{\pi}{2}\right)$, and the direction and speed of rotation (-4π), but for purposes of computation they may be replaced by the equivalent equations,

$$
\left\{\begin{array}{l}
x=4+\cos \left(\frac{\pi}{2}+4 \pi t\right) \\
y=-3 \sin \left(\frac{\pi}{2}+45 t\right)
\end{array}\right.
$$

These latter equations show that the path of the point P of exercise 6 is the reflection in the x-axis of the path of the point P^{1} whose equations are

$$
\left\{\begin{array}{l}
x^{\prime}=4+\cos \left(\frac{\pi}{2}+4 \pi t\right), \\
y^{\prime}=3 \sin \left(\frac{\pi}{2}+4 \pi t\right)
\end{array}\right.
$$

The point P ' starts at the highest point of its path and moves counterclockwise, as we should expect the reflected point to do:
7. $\left\{\begin{array}{l}x=4 \cos \left(\frac{\pi}{2}+6 \pi t\right), \\ y=6+4 \sin \left(\frac{\pi}{2}+6 \pi i\right) .\end{array}\right.$
8. The point moves around a circle whose center is the origin and whose radius is 4 . The point starts from the 30^{\prime} clock position and moves counterclockwise at the rate of $\frac{1}{2}$ rotation per, second.
9. The point moves around a circle whose center is the origin and whose radius is 6 . It starts from the 120^{\prime} clock position and moves clockwise at the rate of $\frac{1}{2} \mathrm{rps}$.

Note: In Solutions 10-16 the paths are all circular, and we shall condense the information which could be written out in full as in (3) and (9) above.
10. Circle; center, origin; $r=8$; start, 3 o'clock position; direction, clockwise; rate, $\frac{3}{2}$ rps.
11. Circle; , center, origin; $r=10$; start, 6 o $^{\text {iclock position; direction, }}$ counterclockwise; rate, 5 rps.
12. Circle; center, $(4,0)$; radius, 1 ; start, 3 o'clock position; direction, counterclockwise; rate, 3 rps.
13. Circle; center, $(0,-3)$; radius, 1 ; start, 3 o'clock position; direction, counterclockwise; rate, 4 , rps.
14. Circle; center, $(2,5)$; radius, 1 ; start, 30^{\prime} clock position; direction, counterclockwise; rate, 6 rps.
15. Circle; center, (a,c) ; radius, b ; start, 3 o' $^{\text {clock position; direc. }}$ tion, counterclockwise; rate, 1 rps.
16. Circle, center; (p, r); radius q; start, at the angular position $-\alpha$ on the circle; direction, counterclockwise if $n<0$, no motion at all if $n=0$; rate, n rps.
17. (a) Circle; center, origin; radius, 6 ; start, 3 o'clock position; direction, counterclockwise; rate, 2 rps.
(b)

t	0	0.1	0.2	0.3	0.4	0.5	0.6	0.1	0.8	0.9	1.0
x	6.00	1.84	-4.88	-4.88	1.84	6.00	1.84	-4.88	-4.88	1.34	6.00
y	0	5.71	3.49	-3.49	-5.71	0	5.71	3.49	-3.49	-5.71	0

(c) $\left\{\begin{array}{l}x=6 \cos \left(\frac{\pi}{2}+4 \pi t\right), \\ y=6 \sin \left(\frac{\pi}{2}+4 \pi t\right) .\end{array}\right.$
(d) $\left\{\begin{array}{l}x=6 \cos (-2 \pi t), \\ y=6 \sin (-2 \pi t) .\end{array}\right.$
(e) Since the first and third points move in opposite directions, they will meet when the sum of their angular displacements equals their original separation, and, after that, when their additional argular displacements add to an integral multiple of 2π. That is, $2 \pi t+4 \pi t=0$, since they start together, from which $t=0$, and the points are at $(6,0)$. After that, $2 \pi t+4 \pi t=2 \pi, i_{4}, 6 \pi$, ... , that is, $\mathrm{t}=\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \ldots$. The points start together, and meet every $\frac{1}{3}$ second thereafter. The corresponding points are $(6,0),(-3,-5.196),(-3,5.196),(-6,0),(-3,-5.196), \ldots$
(f) As in the previous part, we add the angular dinhlacments, and find the first meeting point when this sum is equal to their original angular separation: that is, when $2 \pi t+4 \pi t=\frac{\pi}{6}$. Thus they meet first when $t=\frac{1}{12}$, at the point $(5.190,-3)$. Then we find, as above, their subsequent meetings take place every $\frac{1}{3}$ second, which should be expected, since the first and second points are traveling at the same rate. the meetings therefore take place when
$t=\frac{1}{12}, \frac{5}{12}, \frac{9}{12}, \frac{13}{15}, \ldots$, at $(5.196,-j),(-1.196,-3),(0,0)$, $(5.190,-3), \ldots$.
18. (a)
$A:\left\{\begin{array}{l}x=\frac{1}{2 \pi} \cos \left(\frac{1}{6} \pi-\frac{2}{3} \pi t\right), \\ y=\frac{1}{2 \pi} \sin \left(\frac{1}{6} \pi-\frac{2}{3} \pi t\right) .\end{array}\right.$
$B:\left\{\begin{array}{l}x-\frac{1}{2 \pi} \cos \left(\frac{11}{6} \pi-\frac{1}{2} \pi t\right), \\ y=\frac{1}{2 \pi} \sin \left(\frac{11}{6} \pi-\frac{1}{2} \pi t\right) .\end{array}\right.$
C: $\left\{\begin{array}{l}x=\frac{1}{2 \pi} \cos \left(\frac{1}{2} \pi+\frac{2}{5} \pi t\right), \\ y=\frac{1}{2 \pi} \sin \left(\frac{1}{2} \pi+\frac{2}{5} \pi t\right) .\end{array}\right.$
(b) A: When $t=0,3,6,9$, position is $\left(-\frac{\sqrt{3}}{4 \pi},-\frac{1}{4 \pi}\right)$;

When $t=1,4,7,10$, position is " $\left(0, \frac{1}{2 \pi}\right)$;
When $t=2,5,8$, position is $\left(\frac{\sqrt{3}}{4 \pi},-\frac{1}{4 \pi}\right)$.
B: When $t=0,4,8$, position is $\left(\frac{\sqrt{3}}{4 \pi},-\frac{1}{4 \pi}\right)$;
When $t=1,5,9$, position is $\left(-\frac{1}{4 \pi},-\frac{\sqrt{3}}{4 \pi}\right)$;
When $t=2,6,10$, position is $\left(-\frac{\sqrt{3}}{4 \pi}, \frac{1}{4 \pi}\right)$;
When $t=3,7$, position is $\left(\frac{1}{4 \pi}, \frac{\sqrt{3}}{4 \pi}\right)$.
C: When $t=0,5,10$, position is $(0, .159)$;
When $t=1,6$, position is $(-.151, .049)$;
When $t=2,7$, position is ($-.094,-.129$);
When $t=3,8$, position is $\left(.094_{4},-.129\right)$;
When $t=4,9$, position is (.151, .049) ;
(c) By the methods of the solution of Exercise 17 we find:
(1) A and C meet when $t=.625$, at $(-.112, .112)$;
(c) B and C meet when $t=1.480$, at ($-.152,-.046$);
(3) A and C meet when $t=2.500$, at $(0,-.159)$;
(4) B and. C meet when $t=3.700$, at (.159, . . 008) ;
(5) A and C meet when $t=4.375$, at (.112,.112).
(d) By the methods already reterred to we find that A and C meet in $\frac{5}{8}$ seconds and every $\frac{15}{8}$ seconds thereafter. That is, their meetings take place at times $t=\frac{5}{8}+\frac{15}{8} p$, where p is a positive integer. In the same way, we find that B and C meet in $\frac{40}{27}$ seconds and every $\frac{20}{9}$ seconds thereafter. That is, the B and C meetings take place when $t=\frac{40}{27}+\frac{20}{9} q$, where q is a positive integer. If A, B, and C are all to meet, there must be a time at which the A, C, and the B, C meetings occur simultaneously. That is, there must be positive integral values of p and q such that $\frac{5}{8}: \frac{15}{8} p=\frac{40}{27}+\frac{20}{9} q$. This equation is equivalent to: $81 p-96 q=31^{\circ}$. In this equation, however, the left member is! evenly aivisible by 3 but the, right member is not, therefore there can be no integral values of p and q ta satisfy it. Therefore there can be no common meeting of A, B, and C.
19. Since the points move in reflected paths with respect to the y-axis, the second point must start from, the position symmetric to A, that is, , at $(-\pi, 0)$, where the angular displacement from A is π. Therefore the equations for the second point are.

$$
\left\{\begin{array}{l}
x=r \cos (\pi-4 \pi t) \\
y=r \sin (\pi-4 \pi t)
\end{array}\right.
$$

20. (a) Assume a unit circle, time in seconds, and angular velocity in 'radians per second. The 100° clock position, T, has an angular displacement of $\frac{5 \pi}{6}$. Since point P arrives at position T in 10 seconds, its angular velocity is " $\frac{.5 \pi}{60}$, or $\frac{\pi}{12} \ldots$ In the same way the angular velocities of Q, R, and S are $\frac{\pi}{30},-\frac{\pi}{60}$, and $-\frac{2 \pi}{30}$ or $-\frac{\pi}{15}$.

Therefore, as before, the equations of motion are:

$$
\begin{aligned}
& P:\left\{\begin{array}{l}
x=\cos \frac{\pi}{1 ?} t, \\
y=\sin \frac{\pi}{12} t
\end{array}\right. \\
& \text { Q: }\left\{\begin{array}{l}
x-\cos \left(\frac{\pi}{2} ; \frac{\pi}{30} t\right): \\
y=\sin \left(\frac{\pi}{2}, \frac{\pi}{30} t\right) .
\end{array}\right. \\
& \text { i: }\left\{\begin{array}{l}
x=\cos \left(\pi-\frac{\pi}{60} t\right), \\
y=\sin \left(\pi-\frac{\pi}{60} t\right)
\end{array}\right. \\
& S:\left\{\begin{array}{l}
x=\cos \left(\frac{3 \pi}{2}-\frac{\pi}{15} t\right), \\
y=\sin \left(\frac{3 \pi}{2}-\frac{\pi}{15} t\right)
\end{array}\right.
\end{aligned}
$$

(b) By the methods of the solution of the previous exercise we find that the meetings of the following pairs take place at the indicated times (where a, b, c, d, are nositive integers):

$$
\begin{aligned}
& Q \text { and } \dot{R}, \text { when } t_{1}=10+40 \mathrm{a} ; \\
& Q \text { and } S \text {; when } t_{2}=10+20 \mathrm{~b} ; \\
& P \text { and } R \text {, when } t_{3}=10+20 \mathrm{c} ; \\
& p \text { and } S \text {, when } t_{4}=10+\frac{40}{3} d .
\end{aligned}
$$

We verify that when $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are all zero, the values of ${ }^{\circ}$ $t_{1}, t_{2}, t_{3}, t_{4}$, are all equal to 10 , as required by the statement of the problem. If there is to be a simultaneous meeting at another time, there must be values of $a, b, c *, d$ other than zero for which these times are equal. Clearly, if we take $d=3$ or any multiple of 3 , we can find such values. When $d=3$, then $t_{4}=10+40=50$. Successive multiples of 3 as values of d give values of $t_{4}: 10,50,90,130, y .$. , and these are clearly possible values of t_{1}, t_{2}, and t_{3}, also. That is, the simultaneous meetings take place every 40 secohds after the first such meeting. The angular positions of these, meetings are found to be $\frac{5 \pi}{6}, \frac{25 \pi}{6}, \frac{15 \pi}{2}, \frac{130 \pi}{12}, \ldots$.

Questions of meetiag or overtaking on circuiar paths are related to important problems in space exploration. Consider the complications that arise: the paths in space are not circular but essentially elliptical; the paths are not along the same cllipse, and the different ellipses are not usually in the same plane, so that we must not consider the meeting points (they would be catastrophic), but the points of nearest approach; the velocitier along these paths are not uniform but variable in very complicated ways. The solutions to the exercises in our text are essential first steps in arriving at the level of ability needed to solve the difficult problems of astrogation that arise in spaca travel.

5-5. Parametric Equations of t.le Cycloid.

The physical ap,lications of the cycloid are interesting indeed but theizonalysis is beyond the scope of this book. Students who are interested in photography can make photographs of a cycloid by taking a time exposure of a flashlight attachea to an automobile wheel as it rolls along the road.

We give another derivation of the equations of the cycloid which uses the idea of a transformation of coordinates. You may wish to leave this derivation until you have reached the more complete treatment of transformation in Chapter 10.

Since $d(0, T)$ - length of $P 1=a \theta$, the coordinates of the center of t the circle are (a, a). We take this point as orimin of an $x^{\prime}-, y^{\prime}$-coordinate system, hence. $F(x, y)$ becomes
where

$$
\begin{aligned}
& y\left(x^{\prime}, y^{\prime}\right) \\
& \left\{\begin{array}{l}
x=x^{\prime}+2 \theta \\
y=y^{\prime}+a
\end{array}\right.
\end{aligned}
$$

But in this new coordinate system

$$
\left\{\begin{array}{l}
x^{\prime}=a^{\prime} \cos 0, \\
y^{\prime}-a \sin 0 .
\end{array}\right.
$$

since
we, have

$$
\cos \theta-\sin \theta \text { and } \sin \theta-\cos \theta,
$$

therefore

$$
\left\{\begin{array}{l}
x^{\prime}=-a k i n \theta, \\
y^{\prime}-a \cos \theta,
\end{array}\right.
$$

Therefore, finely

$$
\left\{\begin{array} { l }
{ x - - a \operatorname { s i n } \theta + a \theta , } \\
{ y - - a \operatorname { c o s } \theta , a ; }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
y-a(\theta-\sin \theta) ; \\
y-a(1-\cos \theta) .
\end{array}\right.\right.
$$

Exercises 2-5

1. $\left\{\begin{array}{l}x=\theta-\sin \theta, \\ y=1-\cos \theta .\end{array}\right.$

The intervals suggested indicate degree measure, rat. it would be an ". error to use these measures in the equations above; since the equations were derived on the basis of radian measure for θ.. We maj revise the formulas to suit egret measure, or convert the intervals to radian. measure. The latter procedure is the easier and the one we follow.

θ degrees	0	30	60	90	120	150	180	210	240	270	300	330	360
θ radians	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$.$\frac{5 \pi}{3}$	$\frac{11 \pi}{6}$	2π
x	0	0	.2	.6	1.2	2.5	3.1	4.2	5.1	5.1	6.1	6.3	6.3
y,	0	.1	.5	1.0	1.5	1.9	2.0	1.9	1.5	1.0	.5	.1	0

164^{161}

The values of x and y are computed to the fearest tenth, and the graph is sketched below.

2. The height of the rectangle is the diameter of the generf ing circle whose radius is therefore equal to 3 . The base of the rectangle is as long as the circumference of that circle and is therefore 6π. The equations of the cycloid are

$$
\left\{\begin{array}{l}
x=3(\phi-\sin \phi) . \\
y=3(1-\cos \phi) .
\end{array}\right.
$$

3. We have $a=3$ inches, and equations for the graph,

$$
\left\{\begin{array}{l}
x=3(0-\sin 0), \\
y=3(1-\cos 0) .
\end{array}\right.
$$

The angular veiocity is given as 4 rps which neans that $\omega=8 \pi$ radians per second. Since $\theta=\omega t$ the equations above become

$$
\left\{\begin{array}{l}
x=3(8 \pi t-\sin 8 \pi t) \\
y=3(1-\cos 8 \pi t)
\end{array}\right.
$$

t	.1	.2	.3	.4	.5
x	5.77	17.93	19.75	28.38	37.68
y	5.42	2.08	2.08	5.42	0

To compute these values we had to find functions of angles whose radian measures exceeded 1.60 , which is as far as our Table II goes. We must use the procedure expiained in the solution to Exercise 5-3, Number 11. Thus $\sin .8 \pi=\sin 2.51=\sin (\pi-2.51)=\sin .63=.589$, and so on.
P will reach its first high point at the end of the first half turn which will occur at the end of the first $\frac{1}{8}$ second. When $t=.125$, $P=(9.4,6)$.
4. (a) All cycloids have the same shape, therefore an accurate scale drawing requires any carefully draw cycloid and a properly chosen scale. The width of one arch is $2 \pi a$, and the height is $2 a$, where a is the radius of the generating circle. Tn this case the / base line represents 66 inches, or $2 \pi a$. Therefore $a=10 \frac{1}{2}$ inches. We suggest a scale of $1: 12$ which means that the drawing should be $5 \frac{1}{2}$ inches across and $1 \frac{3}{4}$ inches high.

(b) we have

$$
\begin{cases}x=a(\phi-\sin \phi), & a=10 \frac{1}{2} . \\ y=a(1-\cos \phi) ;\end{cases}
$$

We must correct the linear rate of 30 mph into an angular rate of rotation for a wheel. witt 66 inch circumference. A rate f $30 \mathrm{mph}=\frac{30 \cdot 5280 \cdot 12}{60}$ inches per minute $=\frac{6 \cdot 5280}{66}$ rotations per minutc $=\frac{5200}{11} 2 \pi$ radians per minute. Therefore $\omega=\frac{10560}{11} \pi$ and $\theta=\frac{10560}{11} \pi t$. Finally we have the equations of motion with values for x and y in inches, and t in minutes:

$$
\left\{\begin{array}{l}
x=\frac{21}{2}\left(\frac{10560}{11} \pi t-\sin \frac{10560}{11} \pi t\right) \\
y=\frac{21}{2}\left(1-\cos \frac{10560}{11} \pi t\right)
\end{array}\right.
$$

You may wish to present the following "paradox" and solicit explanations from the class:

Suppose a nickel and a dime are firmly attached concentrically, and the - nickel is volled one full turn without slipping alone the line $\stackrel{A}{A B}$. Then $d(A, B)$ is the circumference of the nickel and since $d(A, B)=d(P, Q)$ the circumferences are equal. Aren't they?

Answer. (Don't tell the class too soon.) Of course the circumferences are not equal. If the nickel docsn't siip alone $\overrightarrow{A B}$ then the dime must slip alonig $\overrightarrow{\mathrm{PQ}}$.

Challenge Exercises for Sections 5-3, j-4, y-5

1. From Figure $5-1, \bar{i}$, since $\mathrm{d}(0, G)=$ length of $\widehat{F C}=a 0$, the coorainates of C are $(a t, a)$. If $P=(x, y)$ is a point of the locus, then

$$
\left\{\begin{array}{l}
x=a-b \sin t, \\
y=a-b \cos \theta .
\end{array}\right.
$$

In Figure j-1t the point Q less coordinates $(0, k)$. To find k we first find from $0-40-6$ sin \quad. We can do this only approximately, from the tables and the fact that sin: $-\frac{1}{3} 0$. From trable II we have sinl. $10-0.97$ and sin 7.480 .7 . A reasonable estimate sives $0 \approx 1.0$, within the limits of searagy or this table. Therefore

As b secs larece in comerison with a the lower loops rit. relatively laret, whe the wapt look, as it it were being compressed horizontally. The tower loons will intesent, ard over!a! and the prapt
 or liks an elacorate dockic.
2. Than arevinj shonh mare clear the relations:

The equationd for tras artats y-lold are cat + ly the beme an tho:e tor the pooar arrola. $\begin{cases}x & a \operatorname{cosin} . \\ y & \text { a }-\cos .\end{cases}$

The distinguishing feature for their graphs is in the relative sizes of a and b, as indicated in the text.

3. (Refer to Figure $5-15$ in the text.) Since length of $\widehat{A B}$ length of $\widehat{B P}$, We have $a \Delta=b \theta$. Also, $c=((a+b) \cos e,(a+b) \sin \theta)$. If P - (x, \ddot{y}) is a point of the locus then

$$
\left\{\begin{array}{l}
x=d(0, E)-a(F, D)=(a+b) \cos \theta-a \sin \psi \\
y=d(C, E)-d(C, D)=(a+b) \sin \theta-a \cos \psi
\end{array}\right.
$$

Since $\theta+0, \psi=\frac{\pi}{2}$ we have $\sin \psi=\cos (\theta+0)$, and $\cos \psi=\sin (\theta+\delta)$, thus we may eliminate ψ from the equations above and write

$$
\left\{\begin{array}{l}
x-(a+b) \cos \theta-a \cos (\theta-a), \\
y=(a+b) \sin \theta-a \sin (\theta+b)
\end{array}\right.
$$

Finally, since $\theta=\frac{b}{a} \theta$ we may eliminate θ from the equations above and get

$$
\left\{\begin{array}{l}
x=(a+b) \cos \theta-a \cos \left(\theta+\frac{b}{a} \theta\right) \\
y=(a+b) \sin \theta-a \sin \left(\theta+\frac{b}{a} \theta\right)
\end{array}\right.
$$

These are usually written

$$
\left\{\begin{array}{l}
x=(a+b) \cos \theta-a \cos \left(\frac{a+0}{a} \theta\right) \\
y=(a ; b) \sin \theta-a \sin \left(\frac{a+b}{a} \theta\right)
\end{array}\right.
$$

4. The analysis here is closely related to that of the previous solution. We furnish a diagram and essential steps only.

$$
\left.\left.\begin{array}{rl}
a s & =b \theta \\
0+\psi-\theta & =\frac{\pi}{a} \\
d(P, D) & =a \sin \psi, \\
d(C, D) & =a \cos \psi . \\
p & =(x, y)
\end{array}\right\} \begin{array}{rl}
x=(b-a) \cos \theta+a \sin \psi, \\
y=(b-a) \sin \theta-a \cos \psi
\end{array}\right] \begin{aligned}
& x=(b-a) \cos \theta+a \cos \left(\frac{b-a}{a} \theta\right) \\
& y=(b-a) \sin \theta-a \sin \left(\frac{b-a}{a} \theta\right)
\end{aligned}
$$

Symperte in $y-x$ xi: $C=y=a, x$ covers all reals is mitotic to x-axis, talent io $s \quad$ a To set the analvite representation, connect

 equations for the rept,

$$
\left\{\begin{array}{l}
x \quad \text { in } \cot \theta . \\
y \quad \text { in } \theta .
\end{array}\right.
$$

6. Choose coordinate system so that $P_{1}=(b, 0), P_{c}-(-b, 0)$. Then we get the condition $x^{2}+y^{2}=a^{2}-b^{2}$. If $|a|<|b|$, thero ar no points in locus. If $|a|=|b|$, the locus is the point $(0,0)$. If $|a|>|b|$, the locus is a circle with origin at $(0,0)$
 and radius $\sqrt{a^{2}-b^{2}}$.

1. Square $(a, a)(-a, a)(a,-a)(-a,-a)$, constant $4 k^{2}, x^{2}+y^{2}=k^{2}-2 a^{2}$. If $k^{2}<2 a^{2}$, locus is empty set. If $k^{2}=2 a^{2}$, locus is point at $(0,0)$. If $k^{2}>2 a^{2}$, locus is a circle with center $(0,0)$ and radius $\sqrt{k^{2}-2 a^{2}}$.
2. Same square: side $x=a, x=-a, y=a, y=-a$, constant $4 k^{2}$, $x^{2}+y^{2}=2 k^{2}-2 a^{2}$. If $\mathrm{k}^{2}<a^{2}$, locus is empty set. If $k^{2}=a^{2}$, locus is $(0,0)$. If $k^{2}>a^{2}$, locus is circle with center $(0,0)$ and radius $\sqrt{2 k^{2}-2 a^{2}}$.

م. $\quad(2 c) x+(a+b) y=c(a+b)$ (The sides of the triangle may be extended to allow values of y and x ouside of the triangle.)
10. $y^{2}+\left(x-\frac{a}{2}\right)^{2}=\left(\frac{a}{2}\right)^{2}$. Q does lie on the locus.
11. (Refer to Figure 5-1\% in the text.)

$$
\begin{aligned}
d(P, S) & =d(0, R)=2 a \cos \theta, \\
d(0, S) & =2 a \sec \theta . \\
r=d(0, P) & =d(0, S)-d(P, S)=2 a(\sec \theta-\cos \theta) .
\end{aligned}
$$

This is a polar equation for the graph. An equivalent form for this equation is . $=2 a \sin \theta \tan \theta$. To change to rectangular coordinates it is convenient to multiply both members by r and obtain $r^{2}=2 a(r \sin \theta)(\tan \theta)$, which yields $x^{2}+y^{2}=2 a(y)\left(\frac{y}{x}\right)$, which can be written, $x\left(x^{2}+y^{2}\right)=2 a y^{2}$, or $y^{2}=\frac{x^{3}}{2 a-x}$.

The procedure of multiplying both members of the equation by r is convenient, but we must check that the graphs of $r=2 a \sin \theta \tan \theta$ and $x^{2}=2 a r \sin \theta \tan \theta$ are the same. The only points that might. be on the graph of the latter but, not on that of the former are points for whick r - O , but the pole, which is the only such point, is already on that graph. The equations thereore do have the
 same graphs. The idéa will escope the stude:, s undess they think about such simple example; as x ant x^{2}, y, whose riaphs are different. The siturtion for polar vo, iliatci can be stated as follows. Suppose the pole lics on the ermh or the equation $f(r, \theta)-0$. Then the geaphs of that equation and the equation rer, θ) - O are identic:'. The same thing ean oceur when we are dealine with rectanguld coordi ates. for example, the equations $x \quad x y$ ma $x^{i} \quad x y$ have the stme fraph. The expla ation is essenthal , 'he same as it was for polar coordinates. All the points whinh would oufrise have heer added to the graph when we multinlicd toth meme ors of it: eqution sy x, were already points of the emph or x x..

Apolar cquation tor the tond; of 1 i; $r \frac{\theta}{\cos \theta}$. Therefore equations tor lik 'o'i of 1 and pr are

$$
x \frac{2}{0 \cos }: x
$$

The erisection of 'th angle is; one of the ereat lassical problems in mathematics under the usual conditions, allow. ng only compasses and unmarked straightedge, the problem is provilly insoluble. (See e.g., That is Mathematic; Courant and Robbini.) However, by the use of special curve.; whith cannot be drawn solely with compasses and unmarked :traightedge the problem can be solved. Any such curve used for this
purpose is called a trisectrix. 'to show the use of the conchoid as a trisectrix we proceed as; follow:

We ture given any $\angle \mathrm{ABC}$. From 0 , any point in $\overrightarrow{B C}$, draw $\overrightarrow{O R}\rfloor \overrightarrow{A B}$. Construct the left branch of the sonchoid as in the text, using $d(Q, B)$ as length ℓ. (This is the step which is barred under the classic restriction.) Now construct a circle with B as center, and ℓ as radius, to cut the conchoid at F . Draw $\overrightarrow{O P}$ to cut $\overrightarrow{A B}_{i}$ at Q. We atsert that $" L O Q A) \frac{1}{3} m(\angle O B A)$.
Proof: Draw $\overline{\text { PB }}$. Then, from isosceles triang? es POB and FBO we can verify the relations indicated in the diagram.

Note that if ℓ is greater than the distance from the point to the line, then the left branch of the conchoid has a loop, as in the text. If $\&$ equals the distance from the point to the line then the left branch has a cusp as in the illustration here. If ℓ is leas than the distance from the point to the line, the left branch will have an indentation toward the fixed point.
13. (Refer to Figure 5-19.)

Through T draw lines parallel to the axes as indicated.

$$
\begin{gathered}
d(P, T)=a \theta ; \\
\left\{\begin{array}{l}
x=d(T, M)-d(O, N) \\
y=d(P, M)+d(T, N)
\end{array}\right.
\end{gathered}
$$

$$
\left\{\begin{array}{l}
x=a \theta \cos \left(\theta-\frac{\pi}{2}\right)+a \cos (\pi-\theta) \\
y=a \theta \sin \left(\theta-\frac{\pi}{2}\right)+a \sin \theta .
\end{array}\right.
$$

Therefore $\left\{\begin{array}{l}x=a \cos \theta+a \theta \sin \theta, \\ y=a \sin \theta-a \theta \cos \theta .\end{array}\right.$
14. Students sometimes refer to this preblem as the "hula-hoop" proolem. Figure 5-20 in the text contains lines which are not pertinent to this solution. Flease ignore them and refer to the figure at the right:
$\mathrm{d}(\mathrm{C}, \mathrm{T})=\mathrm{d}(\mathrm{C}, \mathrm{P})=\mathrm{b} ; \mathrm{d}(\mathrm{O}, \mathrm{T})=\mathrm{a} ;$
${ }^{-}(0, C)=b-a$.
$\widehat{\mathrm{AT}}=\widehat{\mathrm{PT}}, a \theta=b, \quad \theta=\frac{a}{b} \theta$.
$E=(x, y)$.

$$
\left\{\begin{array}{l}
x=d(0, F)+d(D, P)=(b-a) \sin (0-\psi)+b \sin \psi \\
y=d(D, C)-d(F, C)=b \cos \psi-(b-a) \cos (0-\psi)
\end{array}\right.
$$

Cince $\theta=\oplus-\psi+\frac{\pi}{2}$, we may eliminate ψ :

$$
\begin{aligned}
& \sin (0-\psi)=\sin \left(\theta-\frac{\pi}{2}\right)=-\cos \theta \\
& \cos (\theta-\psi)=\cos \left(\theta-\frac{\pi}{2}\right)=\sin \theta ;
\end{aligned}
$$

$$
\begin{aligned}
& \sin \psi=\sin \left(0-\theta+\frac{\pi}{2}\right)=\cos (\theta-\theta)=\cos (\theta-\phi) \\
& \cos \psi=\cos \left(\theta-\theta+\frac{\pi}{2}\right)=-\sin (\theta-\theta)=\sin (\theta-\phi)
\end{aligned}
$$

$$
\left\{\begin{array}{l}
-a) \cos \theta+b \cos (\theta-0), \\
y=b \sin (\theta-\phi)-(b-a) \sin \theta .
\end{array}\right.
$$

Finally, since $0=\frac{a}{b}$,

$$
\left\{\begin{array}{l}
x=-(b-a) \cos \theta+b \cos \left(\frac{b-a}{b} \theta\right) \\
y=-(b-a) \sin \theta+b \sin \left(\frac{b-a}{b} \theta\right)
\end{array}\right.
$$

5-6. Parametric Equations of a Straight Line.
The material in this section uses methods developed in this chapter to extend and apply the content introduced in Chapter 2 . We recommend here and throughout the book that students be required to refer lackwards and forwards. To prepare for this section students should be given, in the preceding few days, some home-work exercises from the latter half' of Chapter 2, and that you continue giving some home-work exercises from that chapter as you go on through this section. A systematic overlapping of such assigrments is a feature of what is called "spiral" assignments, which we recommend.

The geometric version of the assumption that $x_{1}=x_{0}$ is that the two points are equidistant from the y-axis, the geometric version of the conclusion (that the equations are $x=x_{0}, y=y_{0}+m t$), is inat the line through these points is parallel to the y-axis. In the second case the assumption is equivalent to saving that the points are equidistant from the x-axis, and the conclusion is equivalent to saying that the line through them is parallel to the x-axis.

It makes no difference what letter is used for the parameter in parametric equations for a line. Thus we could have represented the lines L_{1} and L_{2} of Example 2 as follows:

$$
\begin{aligned}
L_{1}: x & =4-2 t, \\
y & =2-6 t
\end{aligned} \quad \begin{aligned}
L_{2}: x & =-3-t \\
y & =-1+3 t
\end{aligned} .
$$

If a student asks whether the two t's are equal, it must be made clear that the question is meaningless. They are both, variables and can take any real value. Suppose we had used the representations above and had then tried to find the intersection of the lines by splving the simultaneous equations

$$
\begin{aligned}
4-2 t & =-3-t \\
2-6 t & =-1+3 t .
\end{aligned}
$$

The question we would really have been trying to answer is whether there are any values of t which give the same point on both lines, and this is not the question we started with. This point comes up again in Example ..

Exercises 5-6

J. (a) $\left\{\begin{array}{l}x=5-3 t \\ y=-1+4 t\end{array}\right.$

$$
\left\{\begin{array}{l}
x=2+3 t \\
y=3-4 t
\end{array}\right.
$$

(b) $\left\{\begin{array}{l}x=0+4 t \\ y=0+1 t\end{array}\right.$
$\left\{\begin{array}{l}x=4-4 t \\ y=1-1 t\end{array}\right.$
(c) $\left\{\begin{array}{l}x=2+0 t \\ y=-3+6 t\end{array}\right.$
$\left\{\begin{array}{l}x=2-0 t \\ y=3-6 t\end{array}\right.$
(d) $\left\{\begin{array}{l}x=-1-5 t \\ y=4+0 t\end{array}\right.$
$\left\{\begin{array}{l}x=-6+5 t \\ y=4+0 t\end{array}\right.$
(e) $\left\{\begin{array}{l}x=1+1 \cdot t \\ y=i+1 \cdot t\end{array}\right.$
$\left\{\begin{array}{l}x=2-1 \cdot t \\ y=2-1 \cdot t\end{array}\right.$
(f) $\left\{\begin{array}{l}x=-1+2 t \\ y=-1+2 t\end{array}\right.$
$\left\{\begin{array}{l}x=1-2 t \\ y=1-2 t\end{array}\right.$
(g) $\left\{\begin{array}{l}x=1-1 \cdot t \\ y=0+1 \cdot t\end{array}\right.$
$\left\{\begin{array}{l}x=0+i \cdot t \\ y=1-1 \cdot t\end{array}\right.$
(h) $\left\{\begin{array}{l}x=2-4 t \\ y=-2+4 t\end{array}\right.$
$\left\{\begin{array}{l}x=-2+4 t \\ y=2-4 t\end{array}\right.$
2. (a)

(b)

(c)

(d)

(e)

if)

(g)

(h)

3. (a) $\left(-1^{2}, 21\right)$
(0) The lines are parallei; their pairs of direcion numbers are equivalent: $(6,-4)=(-2(-3),-2(2))$
(c) The lines are coincident; their pairs of direction mumers are equivalent and they have at least one point $(-3,2)$ in common.

I: Using points $(1,1)(4,3)$ on the line $\mathrm{I}:$: $\mathrm{x}-\mathrm{iy}, 1,0$.

$$
\text { 3. } \begin{aligned}
& x_{1}-x_{2}=\ell\left(t_{1}-t_{2}\right), y_{1}-y_{2}-m\left(t_{1}-t_{2}\right) \\
& d\left(P_{1}, P_{2}\right)=\sqrt{\ell^{2}\left(t_{1}-t_{2}\right)^{2}+m^{\prime}\left(t_{1}-t_{2}\right)^{2}} \\
& \ldots=\sqrt{\left(t_{2}-t_{1}\right)^{2}} \cdot \sqrt{\ell^{2}+m^{2}} \\
&=\left|t_{2}-t_{1}\right| \cdot \sqrt{\ell^{2} \cdot m^{2}}
\end{aligned}
$$

6. $\left\{\begin{array}{l}x=16+t(-24) \\ y=2+t(3,0)\end{array}\right.$
7. (a) Substituting $x=\lambda t, y=\mu t$ into $a:^{2}+b y^{2}-a^{2} b^{2}$ aims

$$
\begin{aligned}
& a \lambda^{2} t+b \mu^{2} t^{2}=a^{2} v^{2} \\
& t^{2}\left(u \lambda^{2}+b \mu^{2}\right)-a^{2} b^{2} \\
& a \lambda^{2}+b \mu^{2} \neq 0
\end{aligned}
$$

$\gamma_{\text {If }}$

$$
t^{2}-\frac{a^{2} b^{2}}{a \lambda^{2}+b \mu^{2}} ;
$$

if:
$a \lambda^{2}+b \mu^{2}>0$.
$t= \pm \frac{|a b|}{\sqrt{a \lambda^{2}+b \mu^{2}}} ;$
hence line intersects figure at points equidistant from 0 under conditions mentioned.
(b) Putting $x=\lambda t, y=\mu t$ into $y=a x^{3}$, we get $t a i^{3} t^{3}$. If a>0 for $\mu / 0, \lambda / 0$ and considering only $t / 0$ we get $t^{2}=\frac{u}{a \lambda^{3}}$.
If $\mu_{i} \lambda>0, t= \pm \frac{1}{\lambda} \sqrt{\frac{\mu}{a \lambda}}$ and intersections are symmetric.
If $\mu^{\prime} \cdot \lambda<0$, there are no intersections for $t \neq 0$.
Thus the origin is the center.

- '(2) $a<0$, for
$u \neq 0, \lambda \neq 0$ and considering $t \neq 0$ we get $\dot{t}^{2}=\frac{\mu}{a \lambda^{3}}$.

If $\mu \cdot \lambda>0$, there are no intersection for $t \neq 0$.
If $\mu \cdot \lambda<0$, then there fare intersections for

$$
t=\int \pm \frac{1}{\lambda} \sqrt{\frac{\mu}{a \lambda}} .
$$

Again the origin is the center.
(c) Putting $x=\lambda t, y=\mu t$ into $y=\frac{x^{3}}{x^{2}-1}$ we Eet $\mu t=\frac{\mu^{3} t^{3}}{\lambda^{2} t^{2}-1}$ which is not defined for $\lambda t=1$

If $\mu \neq 0$

$$
\mu \lambda^{2} t^{3}-\mu t=\mu^{3} t^{3}
$$

if $\mathrm{t} \neq 0$

$$
\lambda^{2} t^{3}-t=\mu^{2} t^{3} ;
$$

$\lambda^{2} t^{2}-1=\mu^{2} t^{2} ;$
$\therefore t^{2}\left(\lambda^{2}-\mu^{2}\right)=1$.
If $\mu^{2} \neq \lambda^{2}$

$$
\mathrm{t}^{2} \vdots=\frac{1}{\lambda^{2}-\mu^{2}}
$$

If $\lambda^{2}>\mu^{2}$, then the line intersects the curve for

$$
t= \pm \sqrt{\frac{1}{\lambda^{2}-\mu^{2}}} \text {, that is, symmetrically. }
$$

There is no value of t if $\lambda^{2} \leq \mu^{2}$. Thus the curve has the origin as its center.
3. We suppose that a bounded set a has two centers, and show that we get a contradiction. We call these centers 0 and I and establish a coordinate system with origin at 0 , with x-axis along $\overrightarrow{0 I}$, and I as the point $(1,0)$. If 0 and I are centers then 0 has a symmetric image, O_{1} in I, and $O_{1}=(2,0) \cdot O_{1}$ has a symmetric image O_{2} in 0_{1} and $0_{2}=(-2,0) \cdot 0_{2}$ has a symmetric image 0_{3} in I, and $\mathrm{o}_{3}=(3,0)$, and so on. The points $\mathrm{o}_{1}, \mathrm{O}_{3}, \mathrm{o}_{5}, \ldots$, are all members of S and their coordinates, $(2,0),(3,0),(4,0), \ldots$, indicate that they are farther and farther from the origin. Clearly they cannot all be enclosed by an finite rectangle, which means that S cannot be bounded.

Trie statement is not true for unbounded sets; for exmple any point of a line is a center of the set of points of that line.
9. We express the line in paranetric form usins direction cosines:

$$
\left\{\begin{array}{l}
x=3+0.8 t, \\
y-3+0.0 t
\end{array}\right.
$$

When $t=1,(x, y)-(5.8, t .1)$;
when $t--2,(x, y)=(4,0,4)$.
10. $\left\{\begin{array}{l}x=0+3 t, \\ y=9+4 t .\end{array}\right.$

It is simplest here to use $d(A, B)$ units along the line. When $t 5$, $(x, y)=(25,29)$; when $t:-5,(x, y)=-7!,-11)$.

Review Rxercises

In the enswers to these exerciscs we supply, in most cases, the simplest and most directly achieved answer. It is always to ke understood that a given graph has infiniteiy many aralyti: reprocentations. Some of these may be trivially related as: $y-y$ and $y=10$; some non-trivaliy as: $x+2 y-11=0$ and

$$
\left\{\begin{array}{l}
x=5+4 t, \\
y=3-2 t .
\end{array}\right.
$$

The teacher is particularly urged in this chapter to consider carefully any pupil's answer which may differ from the one prestnted here. It may be correct, but witten in unfaniliar form, and the student may, with benefjt, carry the burden of showing the equivaleace of the twe.

When we are asked for an analytic description of a sct, for example, 2(a) below, we will usually write our answer in the form in wich it appears in the literature:

$$
x-4 y+\cdots=0
$$

instead of the lonfer form:

$$
\{(x, y): x-4 y+i=0\}
$$

1. (a) The lines: $y=x$ and $y=-x$; or $y^{2}=x^{2}$.
(b) The line: $x=8$.
(c) The line: $y=4$.
(d) The line: $3 x-4 y-8=0$.
(e) The circle: $(x-5)^{2}+(y-8)^{2}=9$, which can also be written: $x^{2}+y^{2}-10 x-16 y+80=0$.
(f) The lines: $x=2$ and $x=8$.
(g) The lines: $\because=1$ and $:=-r$.
'h) The lines: $3 x-4 y+22=0$ and $3 x-4 y-8=0$.
(i) The lines: $x=k+h$ and $x=k-h$.
(j) The linos: $y-q+p, y=q-p$.
(k) If $a x+b y+c=0$ represents a line, then $a^{2}+b^{2} \neq 0$ and the distance from $P=\left(x_{0}, y_{0}\right)$ to this lines is given by $d=\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}} \frac{b^{2}}{}}$. This equation is equivalent to $a x_{0}+b y_{0}\left\{c= \pm d \sqrt{a^{2}+b^{2}}\right.$, therefore the locus of all such points $P=(x, y)$ is the pair of lines represented by $a x+b y \gamma c+d \sqrt{a^{2}+b^{2}}=0$, and $a x+b y+c-d \sqrt{a^{2}+b^{2}}=0$.
(1) The distance from $P=(x, y)$ to $A=(5,0)$ is $\sqrt{(x-5)^{2}+y^{2}}$, and to $B=(11,0)$ is $\sqrt{(x-11)^{2}+y^{2}}$. The condition is equivalent to; $\sqrt{(x-5)^{2}+y^{2}}=2 \sqrt{(x-11)^{2}+y^{2}}$. This equation is an answer to the exercise, but it can be written more simply as $x^{2}+y^{2}-26 x+143=0$, or as $(x-13)^{2}+y^{2}=4^{2}$. This last equation yitids the additional information that the graph is a cirsle with center at $(13,0)$ and with radus 4_{4}.
(m) The condition yields directly: $y=\sqrt{(x-5)^{2}+(y-8)^{2}}$ or more simply $x^{2}-10 x-16 y+89=0$. This can also be written $(x-5)^{2}=16(y-4)$, which can be incerpreted to be an equation. of a parabola with vertex at $(5,4)$, axis al ong the y-axis, and open , upward.
(n) As above, we get the parabola: $y^{2}-8 x+2^{4}=0$.
(0) The distance from $P=(x, y)$ to $D=(5,3)$ is $\sqrt{(x-5)^{2}+(y-3)^{2}}$. The distance from $P=(x, y)$ to the line $3 x-4 y+7=0$ is $\frac{|3 x-4 y+i 7|}{\sqrt{3^{2}+4^{2}}}$. An answer to this exercise is given by the statement of equality for these two distances, $\sqrt{(x-5)^{2}+(y-3)^{2}}=\frac{|3 x-4 y+7|}{\sqrt{3^{2}+4^{2}}}$. This can be written somewhat more simply as $16 x^{2}+24+y+9 y^{2}-292 x-94 y+801=0$. We state that the graph is a parabola with an oblique axis perpendicular to the given line, but we leave any further discussion of this equation and graph for Chapter 10. ${ }^{1178} 181$
(p) As in the previous exercise, an answer is given by: $\sqrt{(x-r)^{2}+(y-s)^{2}}=\frac{|a x+b y+c|}{\sqrt{a^{2}+b^{2}}}$, which can be written also as:
$(a x+b y+c)^{2}=\left(a^{2}+b^{2}\right)(x-r)^{2}+(y-s)^{2}$, or, as a polynomial in x and y :
$b^{2} x^{2}-2 a b x y+a^{2} y^{2}-2\left(a c+a^{2} r+b^{2} r\right) x-2\left(b c+a^{2} s+b^{2} s\right) y$ $+\left(a^{2} r^{2}+a^{2} s^{2}+b^{2} r^{2}+b^{2} s^{2}-c^{2}\right)=0$.
We state again without proof that the graph of this equation is a parabola with its axis perpendicular to the given line.

In (a) - (i) we give our answers in both rectangular, and parametric forms; either or both may be uso त.
(a) $x-4 y+7=0$;
or $\left\{\begin{array}{l}x=-3+8 t, \\ y=1+2 t .\end{array}\right.$
(b) $x-4 y+7=0, x \geq-3$;
or $\left\{\begin{array}{l}x=-3+8 t, \\ y=1+2 t,\end{array}\right.$
$t \geq 0$ 。
(c) $x-4 y+7=0,-3 \leq x \leq 5$; or
$\left\{\begin{array}{l}x=-3+8 t, \\ y=1+2 t,\end{array}\right.$
$0 \leq t \leq 1$.
(d) $x+2 y-11=0$;
or $\left\{\begin{array}{l}x=5-4 t, \\ y=3^{4}+2 t .\end{array}\right.$
(e) $x+2 y-11=0, x \leq 5$;
or $\left\{\begin{array}{l}x=5-4 t, \\ y=3+2 t,\end{array}\right.$
$t \geq 0$.
(f) $x+2 y-11=0,1 \leq x \leq 5$; or
(g) $x-y+4=0$;
(h) $x-y+4=0, x \leq 1$;
or $\left\{\begin{array}{l}x=1-4 t, \\ y=5-4 t,\end{array} \quad t \geq 0\right.$.
(i) $x-y+4=0,-3 \leq x \leq 1$ or $\left\{\begin{array}{l}x=1-4 t, \\ y=5-4 t,\end{array}\right.$

$$
0 \leq t \leq 1
$$

(j) This, and the next fo $:$ parts of this exercise are most readily done with parametric representations or vectors. The interior of $\angle A B C$ can be described as the set of points of the interior of all rays $\overrightarrow{B P}$, where P is a point of the interior
 of $\overline{C A}$. In that case $P=(x, y)$; where $\dot{x}=1-4 t, y=5-4 t, 0<t<1$, from (i). above. We need another parameter to give us the interior of $\overrightarrow{B P}$. Thus direction numbers for $\overrightarrow{B P}$ are (1-4t-5,5-4t-3), or $(-4-4 t, 2-4 t)$. Thus, for a point $Q=(x, y)$ of the interior of $\overrightarrow{B P}$ we have $x=5+s(-4-4 t), y=3+s(2-4 t)$, $s>0$. We present this answer more neatly:
$\left\{(x, y): x=5-4 x-4 s t, y=3+2 s-4 s t, s>0,0<t^{\circ}<1\right\}$.
In vector form, if. P is an interior point of $\overline{C A}$ then。 $\vec{p}=\vec{c}+t(\vec{a}-\vec{c}), 0<t<1$. If Q is an interior point of $\overrightarrow{B P}$, then $\vec{q}=\vec{b}+s(\vec{p}-\vec{b}), s>0$. In terms of $\vec{a}, \vec{b}, \vec{c}$, we have $\vec{q}=\vec{b}+s(\vec{c}+t(\vec{a}-\vec{c})-\vec{b}), \vec{q}=(s t) \vec{a}+(1-s) \vec{b}+(s-s t) \vec{c}$, with $s>0,0<t<1$. Note that the sum of the scalar multipliers is 1 .

We can show the equivalence of the vector and parametric forms by expressing each vector in terms of its components and then combining, retairing the parametric conditions $s>0,0<t<1$. Thus: $\overrightarrow{\mathrm{q}}=[\mathrm{x}, \mathrm{y}], \overrightarrow{\mathrm{a}}=[-3,1], \overrightarrow{\mathrm{b}}=[5,3], \overrightarrow{\mathrm{c}}=[1,5]$. Then $[x, y]=s t[-3,1]+(1-s)[5,3]+(s-s t)[1,5]$, $[x, y]=[-3 s t+5-5 s+s-s t, s t+3-3 s+5 s-5 s t]$, $[x, y]=[5-4 s-4 s t, 3+2 s-4 s t]$.
Therefore

$$
\left\{\begin{array}{l}
x=5-4 s-4 s t \\
y=3+2 s-4 s t
\end{array}\right.
$$

and these are the parametric equations we found before.
(k) If P is a point of the interior of $\overline{A B}$, then $P=(-3+8 t, 1+2 t), 0<t<1$. Proceed as in the previous solution and obtain the answer, $\{(x, y): x=1-4 s+8 s t, y=5-4 s$: $3 \mathrm{~s} t, \mathrm{~s}>0,0<t<1\}$. In vector form $\vec{p}=\vec{a}+t(\vec{b}-\vec{a}), 0<t<l$, and \vec{q}, the vector to any point Q of the interior of $\angle B C A$ is given by
$\stackrel{\rightharpoonup}{q}=\bar{c}+s(\vec{p}-\vec{c}), s>0$. This can be written in terms of $\vec{a}, \vec{b}, \vec{c}$ as was done in the previous solvtion: $\vec{q}=(s-s t) \vec{a}+(s t) \vec{b}+(1-s) \vec{c}, s>0,0<t<i$.
Note the resemulance to the result in the previous exercise. The component forms of these vectors can be used to relate this result to the parametric equation round a few lines earlier.
(b) (Refer to the two previqus solutions.)
$\vec{p}=\vec{c}+t(\vec{b}-\vec{c}), 0<t<1 ; \vec{q}=\vec{a}+s(\vec{p}-\vec{a}), s>0$. $\vec{q}=(1-s) \vec{a}+(s t) \vec{b}+(s-s t) \vec{e} \cdot s>0,0<t<1$.
The parametric form is
$\left\{(x, y): x=-3+4 s+4 s t, 1+4 s-2 s t, s>0, O_{2}<t<1\right\}$.
(m) The interior of $\triangle A B C$ is part of the interior of $\angle A B C$. If we refer to the solution of part (j) of this group we need now use only the interior points of $\overline{B P}$ where P is an in. terior point of $\overline{A C}$. We can effect this result by a simple change on the parameter s which we now take $0<s<1$. Our solution in vector form is therefore:
$\vec{q}=(s t) \vec{a}+1-s) \vec{b}+(s-s t) \vec{c}$, with $0<s<1,0<t<1$. We could use the results of ((κ) and (ℓ) above, and obtain $\overrightarrow{\mathrm{q}}=(\mathrm{s}-\mathrm{st}) \overrightarrow{\mathrm{a}}+(\mathrm{st} \cdot \stackrel{\rightharpoonup}{b}+(1-\mathrm{s}) \overrightarrow{\mathrm{c}}, 0<\mathrm{s}<1,0<t<1 ;$ $\overrightarrow{\mathrm{q}}=(1-\mathrm{s}) \overrightarrow{\mathrm{a}}+(\mathrm{st}) \overrightarrow{\mathrm{b}}+(\mathrm{s}-\mathrm{st}) \overrightarrow{\mathrm{c}}, 0<\mathrm{s}<1,0<\mathrm{t}<1$.

The similarity of these expressions leads to a more symmetric formula, if we note that the scalar multipliers' are nor-negative and have the sum 1 . We may write a vector formula for the inter or of $\triangle A B C$ thus: $\vec{q}=\alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}$, where α, β, γ are non-negative and $\alpha+\beta+\gamma=1$.
(n) $x+2 y+1=0$.
(o) $x-y-2=0$.
(p) $x-4 y+19=0$.
(q) $2 x-y+7=0$.
(r) $x+y-8=0$.
(s) $4 x+y-9=0$.
(t) $x-2 y+5=0$.
(u) $y=3$.
(v) $x=1$.
(w) The line $y=$? is parallel to the $x-a x i s$, and the line $x_{1}=-3$ is parallel to the y-axis.
(x) $4 x+y-6=0$.
(y) $2 x-y-2=0$.
(z) If the center of the circle is at (u, v) then
$(1-u)^{2}+(5-v)^{2}=(5-u)^{2}+(3-v)^{2}=(3+u)^{2}+(1-v)^{2}=r^{2}$
Solving these equations gives the coordinates of the center, $\left(\frac{4}{3}, \frac{2}{3}\right)$, and the lengl: of the radius, $\frac{\sqrt{170}}{3}$. Thus the circle has the equation, $\left(x-\frac{4}{3}\right)^{2},\left(y-\frac{2}{3}\right)^{2}-\frac{10}{9}$, which may be written also as $3 x^{2}+3 y^{2}-8 x-4 y-50=0$.
3. The abbreviated sketch we supply for each part of this exercise should indicate the answers requestea originally. Other brief comments are supplied as seem necessary.
(a)

(d)

(c)

(e)

(f)
hyperbola

(g)

(h)

(i)

(j)

Pair of vertical lines
(k)

(ℓ)

The entire plane except.
(m)

The x - and y-axes.
(n)

The two iines innicated $x=1$, and $y=-2$.
(o)

The pair of vertical lines.
(p)

The region below the line $y=x$.
(q)

The shaded region between the lines $y= \pm x$, as shown.

$x^{2}<x^{2}$ is
equivalent
$x^{2}-x>0$,
or
$x(x-1)>0$.
This inequality is true for all x except for $Q \leq x \leq 1$. The graph is the envire plane except region between the yer ital lines.
4. We do not supply full answers here, but only en ugh in sketch or comment to make contact with familiar material.
(a) Circle with radius 3 and center at the pole.
(b) The-interior of the circle in (a) above.
(c) Since there is no negative restriction on \mathbf{r}, the set is the entire plane. If $0<r<3$ the set would be the same as (b) above.
(d) The plane outside the circle of (a) above.
 measure 2 .
(f) Since there is no negative restriction on e the set is the entire plane.
(g) If $\mathbf{r}>0$. the graph is a spiral similar to that of Figure 5-j but opening more rapidly. It contains the pole and crosses the polar axis to the right at $4 \pi, 8 \pi, 12 \pi, \ldots$, and to the left at (abscissas) $-2 \pi,-6 \pi,-10 \pi, \ldots$ if $r<0$ the graph is the symmetric image with respect to the pole of the path just describe l, thus the entire graph is a double spiral opening counterclockwise and crossing the polar axis at (abscissas) $0,2 \pi, 2 \pi, 4 \pi,-4 \pi$, 6π, -6π,
(h) The entire plane. Compare the polar and rectargular conditions: $x=y$ gives a line, and $x<y$ a half-planc: $r=\theta$ a spiral, and $r<\theta$ the whole plane.
(i) Two lines through the origin, $\theta=2.1$ and $\theta=1.9$.
(j) The annular region between two concentric circles of radii : 4.9 and 5.1 with centers at the pole.

In the next few solutions we supply a familiar equivalent equation in rectangular coordinates related in the obvious way, to polar coordinates. The graphs for parts (k) ... (q) are all liner, and in each case the absolute value of the numerator is the distance from the pole to the line.
(k) The line $y=6$.
(ℓ) The line $x=-3$.
(m) The line $x=-2$.
(n) The line $\dot{x}=y$.
(o) The line through ($\sqrt{2}, 0$) with siof 1 .
(p) The line through $(-4 \sqrt{2}, 0)$ with slope 1 .
(q) We take $0 \leq b \leq 2 \pi$; If $b=0$ the graph is the line $y-a$; if $b=2 \pi$ the graph is the line $y=-a$. If $b=\frac{\pi}{2}$ or $\frac{3 \pi}{2}$ the graph is the line $x=-a$ or $x=a$, respectively. If b has any other value in the indicated domain the graph is the line through ($-a \csc b, 0$), with the slope $\tan b$.
(r) Polar inequalities must be carefully analyzed. In this case if $0<\theta<\pi$ the graph is the region above the line $y=1$. If $\theta=\pi$ there is no value of r for which $r>\frac{1}{\sin \theta}$ since $\frac{1}{\sin \theta}$ is not defined then. If $\pi<\theta<2 \pi$ then the graph contains every point which is below the line $y=1$ and on any line which intersects the line $y=1$ and which goes through the origin. That is, this part of the graph is the region below the line $y=1$, excluding the two half-lines along the x-axis: $y=0, x>0$, and $y=0^{3}$, $x<0$. To summarize, the graph of
$r>\frac{1}{\sin \theta}$ is the entire plane except the points of the line $y=1$ and the points of the two half-lines along the x-axis: $y=0, x>0$, and $y=0, x<0$. It is instrictive to investigate, but we will not, the relation between $r<\frac{1}{\sin \theta}$ and $r \sin \theta<1$, noting that this second inequality is related to $\mathrm{y}<1$.

- 185188
(s) We consider $0 \leq \theta<2 \pi$. If $\theta=0$ the graph is that part of the x-axis to the left of $x=2$. If $0<\theta<\frac{\pi}{2}$ we get, - ror $0<r<\frac{a}{\cos ; \theta}$, the vertical strip above the x-axis and between the y-axis and the line $x=2$. For this game domain, if r _ O we get the oristin and all points in the third Nadrant. If $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$ we get the region to the right of the ine $x=2$. Since $\frac{\hat{c}}{\cos \theta}$ is not defined for $\theta=\frac{\pi}{2}$ or $\frac{2 \pi}{2}$ there is no value of, r defined for these values of θ. If $\frac{3 \pi}{?}<\theta<\pi$ and $0<r<\frac{2}{\cos \theta}$ we get the vertical strip beiow the x-axis and between the y-axis and the line $x=2$. For this same domain if $r \leq 0$ we get the origin and ail poinus in the second quadrant. To summarize, the graph we want is the entire plane except the line $x=2$, and the two halflines alons the y-axis; $x-0, y>0$, and $x=0, y<0$. It is instructive to investigate, though we will not, the relation between $r>\frac{2}{\cos \theta}$ and $r \cos \theta>\varepsilon$, noting that this sreond inequaty is related to ${ }^{\prime} x>2$:
(t) The pole.

5. In the diceussion or related yolar equations in Section 5-2 we used the fact that the point $P=(r, \theta)$ has also the coordinates $(-r, \theta+\pi)$. Thus, if P is on the graph of $r=f(\theta)$ we must also have P on the craph or $-r-f(\theta+\pi)$. Then we obtained the equival ent equation $r=-t(\theta+\pi)$, but this step cannot be carried through so easily with inequalities. If the point (r, θ) is on the graph of $r>f(\theta)$, then that sume po: $2 i$, now indicated by $(-r, \theta+\pi)$, is on the graph of $-r>f(\epsilon, \pi$, , but this last inequality is equivalent to $r<-f(\theta+\pi)$, and this is 4, related polar inequality of $r>f(\cdot \theta)$. However, the oricinal incquaity can frequently be written in the form $g(r, \theta)>0$ for which, the related polar inequality is $g(-\dot{r}, \theta+\pi)>0$ and is usually easier 'o nandle.
(a) $r^{2}-9$
(b) $r^{2}<9$
(c) $\dot{r}>-3$.
(d) $r<-3$
(e) $\theta=2-\pi$
(f) $\theta<-\frac{\pi}{2}$
(g) $r=-2(\theta+\pi)$
(h) $\quad r>-(\theta+\pi)$
(i) $|\theta+\pi-2|=.1$
(j) $|-r-5|<.1$, or $|r+5|<.1$
(k) $r=\frac{6}{\sin \theta}$
(1) $\alpha=\frac{-3}{\cos \theta}$
(m) $r=\frac{-2}{\cos \theta}$
(n) $r=\frac{5}{\cos \theta}$
(0) $r=\frac{1}{\cos \left(\theta+\frac{\pi}{4}\right)}$
(q) $r=\frac{a}{\sin (\theta-b)}$
(r) $r<\frac{1}{\sin \theta}$
(s) $r>\frac{2}{\cos \theta}$
(t) $r=0$
6. (a) $y=x^{2}-2 x+2$
(b) $x-2 y+4=0$
(c) $2 y=x+x y$
(a) $x^{3}=y^{2}+x y$
(e) $y=x^{2}-2$
(f) $\frac{x^{2}}{9} \pm \frac{y^{2}}{16}=1$
(g) $\frac{(x-2)^{2}}{9}+\frac{(y-4)^{2}}{25}=1$
(h) $4 y^{2}=x^{2}\left(4^{2}-x^{2}\right)$
(i) $\frac{1}{x^{2}}+\frac{1}{y^{2}}=1$.
(j) $x^{2}=16 y^{2}\left(1-y^{2}\right)\left(1-2 y^{2}\right)^{2}$
7. $x=3-\frac{3}{5} t$,
$y=7-\frac{4}{5} t$.
8. $x=84 t$,
$y=288 t$.
9. When $t=3, \cdot A=(8,0), B=(-1,14), d(A, B)=\sqrt{277}$.

When $t=5, A=(14,-2), B=(-5,16), d(A, B)=\sqrt{585}$.
10. When $t=2 P_{x\}}=\left(x_{1}+2 \ell_{1}, y_{1}+2 m_{1}\right), P_{2}=\left(x_{2}+2 \ell_{2}, y_{2}+2 m_{2}^{3}\right)$, $d\left(p_{1} p_{2}\right)=\sqrt{\left(x_{1}-x_{2}+2 \ell_{1}-2 l_{2}\right)^{2}+\left(y_{1}-y_{2}+2 m_{1}-2 m_{2}\right)^{2}}$.
11. (a) $x=\cos \left(\frac{\pi}{2}+6 \pi t\right), y=\sin \left(\frac{\pi}{2}+6 \pi t\right)$.
(b) $x=\cos \left(-\frac{\pi}{2}-4 \pi t\right), y=\sin \left(-\frac{\pi}{2}-4 \pi t\right) \cdot x$
(c). $x=\cos \left(-\frac{\pi}{6}+2 \pi t\right), y=\sin \left(-\frac{\pi}{6}+2 \pi t\right)$.
(d) $x=\cos (\pi-8 \pi t), y=\sin (\pi-8 \pi t) \quad \therefore$
(e) $x=\cos \left(\frac{7 \pi}{6}+\pi t\right), y=\sin \left(\frac{7 \pi}{6}+\pi t\right)$.
12. We give, the time in seconds and the angular position in terms of θ only. "The rectangular coordinates of the position are ${ }^{\prime}(\cos \theta$, $\sin \theta$).
(a) $\frac{1}{10}, \cdot\left(\frac{11 \pi}{10}\right)$
(f) $\frac{3}{8},(0)$
(b) $\frac{2}{3},\left(\frac{\pi}{2}\right)$
(g) $\frac{1}{1.5},\left(\frac{3 \pi}{30}\right)$
(c) $\frac{1}{28},\left(\frac{5 \pi}{7}\right)$
(h) $\frac{7}{60},\left(\frac{\pi}{15}\right)$
(d) $\frac{2}{\frac{1}{15}},\left(\frac{13 \pi}{10}\right)$
(i) $\frac{4}{3},\left(\frac{\pi}{2}\right) \cdot$
(e) $\frac{5}{18} ;\left(\frac{7 \pi}{18}\right)$
(3) $\frac{11}{54},\left(\frac{31 \pi}{27}\right)$
13. Assume that it starts" from its farthest right position

$$
\left\{\begin{array}{l}
x=4+3 \cos 4 \pi t \\
y=5+3 \sin 4 \pi t
\end{array}\right.
$$

If, when $t=0$ it starts from the angular position θ relative to its ' center, then -the equations of motion are

$$
\left\{\begin{array}{l}
x=4+3 \cos (4 \pi t+\theta) \\
y=y+3 \sin (4 \pi t+\theta)
\end{array}\right.
$$

IU.. Assume it starts from the angular position θ relative to its center. Then

$$
\left\{\begin{array}{l}
x=-1+2 \cos (u-2 \pi t) \\
y=\quad .
\end{array}\right.
$$

These are all circular paths with center at the center of the clock. We give the radius, angular position of starting point, direction of rota-

- *ion, and angular velocity revolutions per minute.
(a) $A_{a}, 0$, vounterclockh
(b) $6, \frac{\pi}{2}$, counterclockwise, 1 rpm. 4

10 , π, clockwise, ${ }^{\prime}$ j rpm.
(d) $8, \pi$, counterclockwise; 2 rpm.
(e) The given equations are equivalent to

$$
\left\{\begin{array}{l}
x=2 \cos \left(\frac{\pi}{2}-2 \pi t\right) \\
y=2 \sin \left(\frac{\pi}{2}-2 \pi t\right) ;
\end{array}\right.
$$

therefore the motion is as above: $2, \frac{\pi}{6}$, clockwise, 1 rpm.
16. (a)
. $\left\{\begin{array}{l}x=3 \cos \theta, \\ y=3 \sin \theta .\end{array}\right.$
(b)

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=3 \cos \theta \\
y=4 \sin \theta
\end{array}\right. \\
& \vdots=\sqrt{6} \cos \theta,
\end{aligned}, \begin{aligned}
& x=\sqrt{5} \sin \theta .
\end{aligned}
$$

(c)
\because 17. (a) The path of P is a cycloid with parametric equations

$$
\left\{\begin{array}{l}
x=a(\dot{\theta}-\sin \theta) \\
y=a(i-\cos \theta)
\end{array}\right.
$$

We, assume the following: $a=12$ inches; the wheel rolls from left to right; x is measured in inches along the road to the right from the first contact point of $P ; y$ is measured in inches above the road; θ is the angle of rotation measured. ,clockwise from the 60° clock. pcistion to the position of P; _ $J_{\theta}=\omega t$ where t is measured in seconds and $0 ;=3 \mathrm{rps}=6 \pi$ 'radius per second. Our equations are:

$$
\left\{\begin{array}{l}
x=12(6 \pi t-\sin 6 \pi t) \\
y=12(1-\cos 6 \pi t)
\end{array}\right.
$$

(b) The path of Q is a curtate cycloid whose equations were derived in the solution to Challenge Exercise 2 on page 18.
The equations of the path of Q are

$$
\left\{\begin{array}{l}
x=12(6 \pi t)-6 \sin (6 \pi t) \\
y=12-6 \cos (6 \pi t) .
\end{array}\right.
$$

192
$189 / 190$

Chapter 6
 CURVE SKETCHING AND LOCUS PROBLEMS

This chapter exploris in detail the relation between a curve and its analytic representation. We present some methods of curve-sketching which are probably new to the students, particularly the addition and multiplication of ordinates and the addition of radii. These relate the graphs of certain types of equations to the more familiar graphs of simpler equations.

We then discuss some geometric properties of the curve and see how they can he deduced from its analytic representations. We see how the choice of coordinate system casts its particular light on our analysis, and explore the advantages and disadvantages of each in a variety of situations. The geometric properties we consider are symmetry, extent, periodicity, intercepts, and asymptotes. The treatment is careful but not exhaustive, and students should be encouraged to see any open questions, that we leave, and to try to supply some answers. This is the essence of research, and should be so presented.

We suggest some topics that may be explored as extensions of the content of this chapter: asymptotes which are oblique lines; asymptotes which are other curves; "phase displacements", which may be considered additions of abscissas; properties of families of curves; envelopes of families of curves; self-interrecting curves; extensions to three or more dimensions; applications of this content to physics, particularly to periodic phenomena such as radio broadcasting; the relations among period, frequency, velocity of propagation,. and wave length; resonance and interference, both in sound and in light; the Doppler effect in sound and in light; and so on. Students are pleased to recognize the Doppler effect in the changing pitch of an automobile siren as it approaches, passes, and recedes from them. They are also pleased to obseave the interference of light as they look through an almost closed space between thumb and forefinger.
". The teacher is referred to any recently written text in physics, and particularly to the members of the science department in the school. The topics mentioned are suitable for joint investigation through experimental
and theoretical approaches. Both students and teachers can benefit from a systematic investigation in depth of any of the topics mentioned, and the opportunity to check experiment with theory and vice versa.

The sire curve is particularly suited to exhibit such matters as boundedness and periodicity. The polar graph of $r=\sin \theta$ exhibits boundedness in that it is entirely contained in a circle of radius more than $\frac{1}{2}$. The periodicity is show by the fact that as θ increases without limit, the point, P will go endlessly, around the circle as show.

Exercises 6-2(a)

It is to be understood that when we ask for bounds for a graph we want the "best" bounds, that is, the most restrictive. Thus, for $1(a)$, $y=2 \sin x$, we certainly have bounds ± 10; "better" bounds are ± 5, but the "best" bounds are ± 2 as indicated below.

1. We use the fact that $0 \leq \sin \theta \leq 1$ and $0 \leq \cos \theta \leq 1$ for any θ.
(a) $-2 \leq y \leq 2$ for any x.'
(b) $-1 \leq y \leq 1$ for any x.
(c) $1 \leq y \leq 3$ for any x.
(d) $-\frac{1}{2} \leq y \leq \frac{1}{2}$ for any x.
(e) Since $0 \leq \sin \theta \leq 1$ for any θ, we have $0 \leq 2 \sin \left(3 x+\frac{\pi}{2}\right) \leq 2$, and $-2 \leq y \leq 6$.
(f) We know $0 \leq|0.6 \sin x| \leq 0.6$, and $0 \leq|0.8 \cos x| \leq 0.8$ therefore we have bounds $0 \leq y \leq 1.4$; but we can do better, since the two terms in the sum, being related, do not reach their maximum (or minimum) values for the same, value of x.
Note that $(.6)^{2}+(.8)^{2}=1$ therefore we may take $0.6-\cos t$ and $0.8=\sin t$, and write $y=\sin x \cos t+\cos x \sin t$, with t as above. Therefore $y=\sin (x+t)$ and we now have
$-1 \leq y \leq 1$. These are the best bounds, and the solution to this exercise.
(g) $y=2 \operatorname{in} x+3 \cos x=\sqrt{2^{2}+3^{2}}\left(\frac{2}{\sqrt{2^{2}+3^{2}}} \sin x+\frac{3}{\sqrt{2^{2}+3^{2}}} \cos x\right)$ $=\sqrt{2^{2}+3^{2}}(\sin x \cos t+\cos x \sin t)$ where $\cos t=\frac{2}{\sqrt{13}}$, and so on.

Since $y=\sqrt{13} \sin (x+t)$ we have the solution,

$$
-\sqrt{13} \leq y \leq \sqrt{13}
$$

(h) $y=a \sin x+y \cos x=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}} \sin x+\frac{b}{\sqrt{a^{2}+b^{2}}} \cos x\right)$

$$
=\sqrt{a^{2}+b^{2}}(\sin x \cos t+\cos x \sin t)=\sqrt{a^{2}+b^{2}} \sin (x+t) ;
$$

as in the previous solution. Therefore

$$
-\sqrt{a^{2}+b^{2}} \leq y \leq \sqrt{a^{2}+b^{2}}
$$

(i) $0 \leq y \leq 1$
(i) $y=\sin ^{2} x-\cos ^{2} x=-\cos 2 x$. Therefore $-1 \leq y \leq 1$.
2. Bounds: $a-|b| \leq y \leq a+|b|$

Period: Since $\sin (c x+d)=\sin (c x+d: 2 \pi n)$

$$
=\sin \left(c\left(x+\frac{2 \pi n}{c}\right)+0\right), \text { there sill be no }
$$

change in y if x is increase n by $\frac{2 \pi n}{c}$ for integral n. Therefore the period is $\frac{2 \pi}{c}$.

6-2(b). Symmetry.

We deal only with point and line symmetry. The content of this section is essential to some important transformations of the plane, which will be dealt with in Chapter 10 and its supplement. Students should be cautioned against replacing the phrase "symmetric with respect to the x-axis", by the non-equivalent, "symmetric with the x-axis". Some authors use "rt" to replace "with respect to". We usually confine the domain of θ thus: $0 \leq \theta<2 \pi$, since the generalization beyond this domain is usually simple.

Exercises 6-2(b)

1. This question repeats. Number 8 of Section 5-6, to whose solution you are referred.
2. An ellipse, or a rectangle which is not square; it equilateral triangle; a square.
3. A circle, a line, the plane, a half-plane.
4. Yes. In review exercise ivunber 17 at the end of this chapter we ask for the proof of a somewhat stronger statement, that symmetry with respect to " both of two perpendicular lines requires symmetry with respect to their intersection.
5. No. Consider t^{\prime}.e graph of $x y=1$, or $y=x^{3}$, or the letter S.
C. We summarize the results by tabulating for parts (a), (b), (c), (a), (e) , (h), (i), (j), the answers to these questions: Is the graph symmetric with respect to the x-axis?; the y-axis?; origin?; the line $y=x$? ; the line $y=-x$?
(a) No, yes, no, no, no.
(b) No, no, yes, no, no.
(c) No, yes, no, no, no.
(d) No, no, no, no, no.
(e) No, no, no, yes, no.
(f) This equation is equivalent to $(x+y)^{2}+2(x+y)+1=2$ or $(x+y+1)^{2}=2$, whose graph is the pair of lines $x+y+1 \pm \sqrt{2}=0$. These lines are parallel and ore symmetric with respect to (1) the line midway between them: $x+y+1=0$; (2) each point of this line, that is, each point ($(x, y): x=-t, y=t-i$, for al. t) ; and (3) each perpendicular to this line, that is each line of the family $x-y+k=0$.
dg) This equation is equivalent to $(x+y+5)(x+y-?)=0$, whose graph is the pair of parallel lines: $x+y+5=0$ and $x+y-2=0$. They are symmetric with respect to (1) the line midway between them, $x+y+\frac{3}{2}=0$; (2) each point of this line, that is, each point $\left\{(x, y): x=-t, y=t-\frac{3}{2}\right.$, for all $\left.t\right\}$; and (3) each perpendicular to this line, that is, to each line of the family $x-y+k=0$.
(h) No, no, no, yes, no.
(i) Yes, no, no, no, no.
(3) If n is even: yes, yes, yes, yes, yes;
if n is odd: no, no, no, yes, no.
For parts (k) - (t). We consider only symmetry with respect to the pole and any line through the pole. We present our answers in this order:
Is the graph symmetric with respect to the pole?
What lines through the pole are axes of symmetry for the graph?
(k) Yes; $\theta=0, \theta=\frac{\pi}{2}$.
(l) No; $\theta=0$ (since the related polar equation is $r=-\sin ^{2} \theta$), $\theta=\frac{\pi}{2}$.
(m) No; $\theta=\frac{\pi}{2}$. (This curve is an ovaloid through the points $(2,0)$, $\left.\left(1, \frac{\pi}{2}\right),(2, \pi),\left(3, \frac{3 \pi}{2}\right).\right)$
(n) No; $\theta=0$. (This curve is a parabola.)
(o) No; $\theta=\frac{\pi}{2}$. (This curve is an ellipse. It has symmetry with respect to i.ts center, the point $\left(\frac{3}{4}, \frac{\pi}{2}\right)$, and the lines along its axes. These lines are most easily represented in rectangular coordinates: $\mathrm{x}=0$, which has already been found, and $y=\frac{3}{4} \cdot$ This last result could be found by polar methods but will not be discussed further.)
(p) Yes; $\theta=0, \theta=\frac{\pi}{2}$. (This locus is a pair of parallel lines and has, beside the axes of symmetry already mentioned, any line parallel to the polar axis, that is, any member of the family $r=\frac{a}{\sin \theta}$.
(q) Yes; $\theta=\frac{\pi}{4}, \theta=\frac{3 \pi}{4}$. (This locus is a double loop in the first and third quadrants, crossing at the pole.)
(r) No; $\theta=\frac{\pi}{6}, \theta=\frac{5 \pi}{6}, \theta=\frac{\pi}{2}$. (This locus is a three-leaved rosette, with loops out to $\left(2, \frac{\pi}{6}\right),\left(2, \frac{5 \pi}{6}\right),\left(2, \frac{3 \pi}{2}\right) . j$
(s) No; $\theta=\frac{\pi}{2}$ • (The graph is an ovaloid curve through the points $\left.(3,0),\left(1, \frac{\pi}{2}\right),(3, \pi),\left(5, \frac{3 \pi}{2}\right).\right)$
(t) No; $\theta=\frac{\pi}{2}$. (The graph is an ovaloid curve through the points $\left.(a, 0),\left(a+0, \frac{\pi}{2}\right),(a, \pi),\left(a-b, \frac{3 \pi}{2}\right).\right)$

Challenge Problems

1. Given a point P in space and a plane M which does not contain P. The symmetric image of P with respect to M is the point P^{\prime} sucn that M is the perpendicular bisector of $\overline{\mathrm{PP}^{1}}$. The question of figurereversal in a mirror can raise some interesting problems. The fact is that there is a top-bottom reversal, as is seen by the reflection of a mountain in the surface of a lake. We could easily see the top-bottom reversal in our persons if we stood on a mirror, or sat at a mirror-top desk. Our normal position of viewins establishes an unconscious vertical plane of reference, usually the perpendicular bisector of the sezment joining our eyes. When we lie on our sides this plane is no longer vertical, and the reversal is now from top to bottom. Ycu may grasp these ideas more cleariy if you close one eye to help remove the unconscious vertical plane of reference and then consider various relative positions of the mirror, the eye, and the reflected object.
2. The problem is trivial if L is horizontal or vertical. Assume that it is neither. L is the \perp bisector of $\overline{P_{1} P_{2}}$, therefore the midpoint of $\overline{P_{1} P_{2}}$ must be on L, therefore $a\left(\frac{x_{1}+x_{2}}{2}\right)+b\left(\frac{y_{1}+y_{2}}{2}\right)+c=0$, or
$a x_{1}+a x_{2}+b y_{1}+b y_{2}+2 c=0 . \overrightarrow{P_{2} P_{2}} L$, thereiore $a x_{1}+a x_{2}+b y_{1}+b y_{2}+2 c=0 \cdot \vec{P}_{2} P_{2} \perp L$, thereiore
$\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{b}{a}$, thus, $b x_{1}-b x_{a}-a y_{1}+a y_{2}=0$. We solve these two equations for x_{2} and y_{2}, and find
$P_{2}=\left(-\frac{\left(a^{2}-b^{2}\right) x_{1}+2 a b y_{1}+2 a c}{a^{2}+b^{2}},-\frac{2 a b x_{1}+\left(b^{2}-a^{2}\right) y_{1}+2 b c}{a^{2}+b^{2}}\right)$

U-2(c). Extent.

The discussions of the examples in the text are done in sufficient detail to meet the requirements of a teyt at this level. The ideas of this section are a good foundation for the topic of continuity which is so significant in the calculus. We do not discuss functions whose graphs have serivus discontinuities; nor the "pathological" curves of higher mathematics. However, it 'is salutary for the class to discuss the graph of, say, $y=(-1)^{x}$ which is totally discontinuous and consists of an infinite number of the points of the lines $y=1$ and $y=-1$.

In this chapter (Page 214), the term "asymptote" has been used with reference to a line to which the points on a graph approach more and more closely, but which contain no points of the graph. This is always true of the vertical asymptotes, i.e. the y-axis or lines paraliel to the y-axis. In the second example (see Figure 6-3), we note that the x-axis is crossed by the curve at $(0,0)$ but acts as an asymptote \dot{f}, r the points of the graph where $x>1$ and $x<-3$. In sommon practice such a line is also referred to as a horicontal asymptote. Ho rer, it can be proved that such horizontal gamptote may hate only a finite number of points in common with the curve.

It is also important to note that it is possible to have asymptotes which are not lines. For example, the parabola $y=x^{?}$ acts as an asymptote to the curve $y=x^{2}+\frac{1}{x}$. You may like to assign this to your better students after discussing the graph of $y=x+\frac{1}{x}$ on page 220.

6-3. Conditions and Graphs (Rectangular Coordinates).
We have taken a good deal of zime and space to show how to sketch certain graphs which are related to familiar graphs. itudents soon "catch on" and. quickly develop a finescompetence in this part of their work, often reporting later that this was the most useful part of the course in later applications.

We suggest afain a dynamic approach to graphing. Typical questions are, "fiow could we cha.ge the equation to raise the graph 2 units?"; "What happens to the graph if we reverse these signs?" , etc. As in.all exercises, the more, the better, but please do not assign all the exercises of Exercise 6-3. You may, of course, use some of them for test items.

Students are always interested in applications of these ideas that come within their immediate experience. You should point out that the graph of the equation $y \doteq a+b \sin c x$ is a simplified version of broaacast waves that are received by their radio and television sets. An increase in a hasthe effect of raising the "bias". Koughly this is what is done on the TV set when we increase the "brightness". An increase in b has the effect of increasing the amp'itude. On the 'TV screen the lights would get lighter and the darks would get darker. This is what is done when we increase the "contrast".

The equation $y=b \sin c x$ also represents roughly the motion of a point on a vibratins string. When we strike a piano key lightly, then heavily we increase the loudness but not the pitch. This situation would correspond in the equation, to increasing b, but keeping c constant.

When we strike two piano keys evenly we have the same loudness but different pitch. This would correspond in the equation to keeping b constant but changing c.

The relationships among mathematics, physics, and music were investigated by the great Greek mathematicians. We leave for individual investigation the extension and development of these ideas to include harmony, resonance, interic.ence, beats, etc., all of which are referred to in any current book on physics.

Exercises $5-3$

1.' $y=2$

y-intercept: 2
x-intercept: none
4. $x=4$

y-intercept: none
x-intercept: 4
5. $y=-x+3$

y-intercept: 3
x-intercept: 3
6. $y=2 x-1$

y-intercept: -1
x-intercept: $\frac{1}{2}$
$7 \cdot x-2 y+3=0$ $2 y+3=0$
8. $2 x+3 y-5=0$

y-intercept: $\frac{5}{3}$
x-intercept: $\frac{5}{2}$
9. $\frac{x}{2}-\frac{y}{3}=1$

y-intercept: -3
x-intercept: 2
10. $\frac{x}{3}+\frac{y}{4}=1$

2i. $y=-\frac{3}{2} x+\frac{7}{2} \underbrace{y}_{2}$.
y-intercept: $\frac{7}{2}$.
x-intercept: $\frac{7}{3}$
12. $y=-\frac{1}{2} x-2$

y-intercept: - 8 x-intercept: -4 。
13. $(x-2)^{2}+(y+1)^{2}=1$

x-intercept: 3
y-intercept: none
x-intercept: 2
center: $(2,-1)$
bounded
14. $(x+1)^{2}+y^{2}=y^{4}$
y-intercept: $\pm \sqrt{3}$
x-intercepts: -3,1
cenṫer: ($-1,0$) .
bounded
15. $(x+1)^{2}+(y-1)^{2}=0$

Which is $x=-1$ and $y=1$

The locus is a single point.
16: $y^{2}=x(x-2)(x-3)$

y-intercept: 0
x-intercopts: 0, 2, 3
curve is not connected
symmetric in x-axis
no asymptotes ' γ
17. $x^{2}=(y+1)(y-1)(y-4)$.

y-intercepts: $-1,1,4$
x-intercepts: -2, 2
curve is not connected
symmetric in y-axif
no asymptotes
18. $x y^{2}-2 y-x=-5$

y-intercepts: if
x-intercept: 0
not connerted
symmeticic in point (0,0)
asymptotes: $\dot{y}=1, \dot{y}=-1, x=0$
19. $y=\sin 2 x$

y-intercept: 0
x-intercepts: $\frac{\pi}{2}$
$-1 \leq y \leq 1$

$$
20
$$

x-intercépt: 0
$-1 \leq x \leq 1$
21. $y=2 \sin x$

- y-intercept: 0
x-intercepts: n_{m}
$-2 \leq y \leq 2$

y-intercepts: $\frac{\pi}{2}+$ ñ
x-intercept: 1

y-intercept: 1
x-intercept: none
asymptote: $y=0$

26. $y=2^{-x}$

y -intercept: 1
xaintercept: none
asymptote: $y=0$
27. $y=2^{x^{2}}$

y-intercept: 1
x-intercept: none
symmetric in y-axis
28. $y=3^{x^{3}}$

y-intercept: 1
y-Intercept': none

29. $y=\ln x$

y-intercept: none
x-intercept: 1
30. $y=\ln x^{2}$

y-intercept: none
x-intercepts: 1 , -l
symmetric wrt y-axis
31. $y=\operatorname{lrg}_{2} x$

y-intercept: none
x-intercept: 1
asymptote: $\sigma_{6}=0$.
32.

ho intercepts
no points in left or below (1,4)
33. $x y=3$

no intercepts
asymptotes: $\mathrm{x}=0, \mathrm{y}=0$
34. $x^{2}+y^{2}=2^{2}$

y-intercepts: 2,-2
x-intercepts: $2,-2$
center: $(0,0)$
symmetric wry any line through 0 .
35. $4 x^{2}+y^{2}=16$

y-intercepts: $4,-4$
x-intercepts: $2,-2$
symmetric in both axes
$-4 \leq y \leq 4-2 \leq x \leq 2$
36. $x=3 \cos ^{3} \theta \quad y=3 \sin ^{3} \theta$
$x^{2 / 3}+y^{2 / 3}=9^{2 / 3}$

y-intercepts: 3,-3
x-intercepts: $3,-3$
symmetric wry both axes
tangent to axes at corner points
37. $x+y=1$
$0 \leq y \leq 1$
$\underbrace{}_{0} \underbrace{y} 0 \leq x \leq 1$
y-intercept: 1
x-intercept: 1
38. $y=x-1$ and $x \geq 1$ and $y \geq 0$ 41. $(y-2)^{2}<2(x+1)$

y-inte.cept: none
x-intercept: 1
restricted to first quadrant
39. $y>x^{2}$

symmetric wrt y-axis unbounded
40. $\frac{x^{2}}{9}+\frac{y^{2}}{4}<1$

bounded
symmetric wrt both axes

unbounded region
symmetric wrt $y=2$
42. $(x+2)^{2}+(y+3)^{2} \geq 4$

unbounded region
center at (-2,-3).
43. $y^{2}=x^{3}$

\ddot{y}-intercept: 0
x-intercept: 0
symmetric wrt x -ax:s

y-intercept: 0
x-intercept: 0
symmetric wrt x -axis

$$
46 \cdot x^{2} y+4 y-x-0
$$

y-intercept: 0
x-intercept: 0
asymptote: $\mathrm{y}=0$
symmetric wrt origin
47. $x^{4}+y^{4}=a^{4}$

y-intercepts: $|a|,-|a|$
x-intercepts: $|a|,-|a|$
symmetric wrt both axes
y-intercepts: $|a|,-|a|$
x-intercepts: $|a|,-|a|$
symmetric wrt both axes
y-intercepts: $|a|,-|a|$
x-intercepts: $|a|,-|a|$
symmetric wrt both axes

$$
\frac{-1}{4} \leq y \leq \frac{1}{4}
$$

45. $x^{3}+x y^{2}-3 x^{2}+y^{2}=0$

y-intercept: 0
x-intercepts: 0, 3
asymptote: $\mathrm{x}=-1$

6-4. Graphs and Conditions (Polar Coordinates).

The use of an auxiliary graph in rectangular coordinates, as shown in Example 3 is probably new to the ciass. It is a useful technique and should be practised in a fer exercises until it is understood and becomes a familiar tool. The same may be said for the technique of addition of radii, shom in the same example. We may think of this last technique in a dynamic way, considering the radius, r, as changing, or modulating, as θ changes. Thus, in Figure $6-29(a)$, as the ray $\overrightarrow{O P}$ rotates counterclockwise the Q-points along
that ray also move counterclockwise, but have an extra radial motion, the modulation of the rudii. The class might discuss the eraphs of $1+3 \sin \theta$; $1+b \sin \theta ; 2+\sin \theta ; a ; \sin \theta$; and finally $a+b \sin \theta$, for changing values of a and b.

The special ambiguity in the polar coordinates of the pole is an extra ingredient to consider in diccussing the intersections of polar graphs. The situation has a geographic anal og which students find interesting. If you are at the north polc, wich direction is south? The answer is more semantic than factual. If by "south" we mean dircetly toward the soutis end of the earth's axis then the answer is: straight down along that axis. If by "south" we mean an available direction of travel along the earth's surface, then the answer is: any direction. If "north" and "south" mean "directly to the ends of the earth's axis", ther an object drorped to the surface from a point above the "north pole" will travel simultaneously both north and south:

Exercises 6-4

1. $r=3, r=-3$

Circle: center 0 , radius 3 $x^{2}+y^{2}=9$

2. $r=-2, r=2$

Circle: center 0 , radius 2 $x^{2}+y^{2}=4$

3. $\theta=\frac{\pi}{6}, \theta=\frac{7 \pi}{6}$

Line through 0
$y=\frac{\sqrt{3}}{3} x$

4. $\theta=-\frac{3 \pi}{2}, \theta=-\frac{\pi}{2}$

Line through 1
$x=0$

5. $r=3 \sin e$, relate a equation the same

Circle: center $\left(\frac{3}{2}, \frac{\pi}{2}\right)$, radius $\frac{3}{2}$

- This circle is described twice as the radius vector rotates through 2π 。

$$
x^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{9}{4}
$$

6. $r=\sin 2 \theta, r=-\sin 2 \theta$

The graph is a four-leaved rose.
$.\left(x^{2}+y^{2}\right)^{3 / 2}=2 x y$

7. $r=\cos 2^{\wedge}, r=-\cos 2 \theta$

Four leared rose
Symnetric with respect to origin
and lines $\theta=0, \hat{\theta}=\frac{\pi}{4}, \theta=\frac{\pi}{2}$
$\left(x^{2}+y^{2}\right)^{3}=\left(x^{2}-y^{2}\right)^{2}$

8. $r=\sin 5 f$, related equation the same

Five leared rose
Symmetric with respect to origin' and lines $\hat{C}=\frac{\mathrm{n} \pi}{10}, \mathrm{n}=1,3,5,7,9$.
$\left(x^{2}+y^{2}\right)^{3 / 2}=5 x^{4} y-10 x^{2} y^{3}+x^{2}$

10. $r \cos \left(\rho-1: 50^{\circ}\right) \cdot 3$, related quation the sme r Straight line
9. $r \cos e=-3$, related equation the s.med

Striknt line
$x=-3$

$$
y=\sqrt{3} x+6
$$

11. $r=\frac{3}{1-\cos \theta}, r=\frac{-3}{1+\cos \theta}$. Paraiola: focus 0 , directrix $x=-3$
Unbounded. Symmetric witia respect to pollar axis

$$
y^{2}=6 x+9
$$

12. $r=\frac{9}{4-5 \cos \theta}, r=\frac{-9}{4+5 \cos \theta}$.
13. $r=2(1+\sin \theta), r=2(\sin \theta-1)$

Cardiod: Bounded
Symmetric wrt $\hat{O}=90^{\circ}$
$\left(x^{2}+y^{2}\right)^{2}-4 x^{2}(1+y)-4 y^{3}=0$

14. $r=2 \tan \theta, r=-2 \tan \theta$
"Kappa Curve" so called because of its' resemblance to the Greek letter kappa, κ
Unbounded. Symmetric wri origin, $\theta=0, \rho=90^{\circ}$.
Vertical asymptotes $x= \pm 2$ $x^{4}=y^{2}\left(4-x^{2}\right)$

- 15. $r=\frac{4}{\theta}, r=\frac{-4}{\theta+\pi}$.

Spiral. Unbounded.
(Solid line corresponds to positive r)
Not defined at $\theta=0$ or $r=0$
17. $r=2-3 \cos \theta, r=-2-3 \cos \theta$ Limacon. Bou 'ed.
Symmetric wrt $\theta=0$
$\left(x^{2}+y^{2}\right)^{2}+6 x\left(x^{2}+y^{2}\right)+5 x^{2}-4 y^{2}=0$

16. $r=2 \cos \theta-1, r=2 \cos \theta+1$ Limacon. Bounded.

Symmetric writ $\theta=0$

$$
\left(x^{2}+y^{2}\right)^{2}-4 x\left(x^{2}+y^{2}\right)+3 x^{2}-y^{2}=0
$$

18. $r=2+\sin \theta, r=\sin \theta-2$ Cardiod. Bounded. Symmetric wrt $\theta=90^{\circ}$ $\left(x^{2}+y^{2}\right)^{2}-2 y\left(x^{2}+{ }^{2}\right)-y^{2}-2 x^{2}=0$

19. $r^{2}=\cos 2 \theta$, related equation the same

Two leafed rose
Symmetric writ $\theta=0, \theta=90^{\circ}$. Bounded, restricted to segments.
$-45^{\circ} \leq \theta \leq 45^{\circ}, 135^{\circ} \leq \theta \leq 225^{\circ}$ $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$

20. $r^{2}=4 \sin 2 \theta$, related equation the same
Two leafed rose
Symmetric wot $\theta=45^{\circ}$ and 0 Bounded, restricted to - : $0 \leq \theta \leq 90^{\circ}, 180^{\circ} \leq \theta \leq 270^{\circ}$ $\left(x^{2}+y^{2}\right)^{2}=8 x y$

21. $\mathbf{r}=4 \tan \theta \sec \theta$, related equation the same

Parabola. Unbounded.
Symmetric writ $\theta \leq 90^{\circ}$
$y=\prod_{4}^{1} x^{2}$

22. $r=2\left(1+\sin ^{2}\right.$
$\theta), \mathbf{r}=-2\left(1+\sin ^{2} \theta\right)$
Bounded.
Symmetric wry $\theta=0, \theta=90^{\circ}$
$\left(x^{2}+y^{2}\right)^{3}=4\left(x^{2}+y^{2}+y\right)^{2}$

2j. $r=\frac{5 \cdot}{1+\cos n}, r=\frac{5}{\cos \theta-1}$
Parabola. Jnbounded.
Symmetric wrt $0=0$
$x=-0.1 y^{2}+2.5$

$2 j$. $|r| \leq 2$, related equation the same Disk, boundary ancluded.
Bounded. Symnetric wrt 0 .

$$
x^{2}+y^{2} \leq 4
$$

The whole plane; every point (r, ϵ) in the plane may be expressed with negative r.
$24 \cdot \quad r \leq 2, r \geq 2$ pres.
27. $0 \leq \theta \leq \frac{\pi}{4}, \pi \leq \theta \leq \frac{5 \pi}{4}$.

Unbounded. Symmetric

$$
\text { wre } 0 \text { and line } \theta=\frac{\pi}{8}
$$

28. $0 \leq \theta \leq \frac{\pi}{4}$ and $x \geq 0$,
$\pi \leq \theta \leq \frac{5 \pi}{4}$, and $r \leq 0$. Unbounded. Symetric
wit line $\quad \theta=\frac{\pi}{8}$

6-5. Intersections of Graphs (Rectangular Coordinates).
This topic has been met in carlier courses and is here treated with.a little more generality. The method of lincar combinationg of tunctions is used briefly here and more thoroughly in section $i-\eta$. The exercisés arc limited to linear and quadratic equations only and present no sjecial difficulties. Higher degree equations have more complicated graphs and present much more difficulties when we consider their intersections.

The order, n, of a curre is the maximum juber of points of intersection that it may have with a straight line. .Students may enjoy aiscussing the following questions about the orders of curves: What is the relation between the order of a curve and the degree of an equation of it? (Note that we say "an equation", because we have already seen that a curve may have more than one equation.) What is the maximum number or intersections between two curves of orders m and n ? Discuss the order of a closed curve, a selfintersecting curve.

Exercises 6-5

1. The point of intersection is $(2,0)$.
2. The point of intersection is $(2,3)$.

3. The point of intersection is ($-1,2$).

4. The point of intersection is $\left(\frac{1}{5}, \frac{8}{5}\right)$.

.5. The intersection is the null set.

5. The points of intersection are $\left(\frac{2}{\sqrt{5}}, \frac{4}{\sqrt{5}}\right)$ and $\left(-\frac{2}{\sqrt{5}},-\frac{4}{\sqrt{5}}\right)$

6. The points of intersection are ($1,-1$) and ($-1,1$).

7. The point of intersection is ($1 ;-2$).

8. The intersection is the null set.

9. The points of intersection are $(1,2)$ and $(9,6)$.

10. The points of intersection are (1,1) and ($-1,-1$).

11. The points of intersection are $\left(\frac{2+\sqrt{10}}{3}, \frac{-1+\sqrt{10}}{3}\right)$ and $\left(\frac{2-\sqrt{10}}{3}, \frac{-1-\sqrt{10}}{3}\right)$

12. The points of intersection are $-\left(\frac{3}{2}, \frac{\sqrt{35}}{2}\right)$ and $\left(\frac{3}{2}, \frac{-\sqrt{35}}{2}\right)$.

13. The points of intersection are $(3, \sqrt{6}),(3,-\sqrt{6}),(-3, \sqrt{6})$, and $(-3,-\sqrt{6})$.

$$
6-5
$$

15. The points of intersection are $(2,2),(1,1)$ and $(-2,-2)$.

16. The points of intersection are $(1,1)$ and $(-1,1)$.

悉
 222424

For Problems 17 to 19, the intersection is the shaded region.
17.
18.

$$
\left\{(x, y): y>x^{2} \text { and } y<x+1\right\}
$$

$\left\{(x, y): x>y^{2}\right.$ and $x \leq \sqrt{y^{2}-4}$

19.

6-6. Intersection of Loci (Polar Coordinates).

Any adequate treatment of this 'topic must give careful consideration to the special situation at the pole; and to the multiple representations of polar graphs. We have done this in the text, and found the concept of related polar equations particularly useful in finding all intersection points.

Intersections of the graphs of polar inequalities are not treated here because they lead into content beyond the level of this book.

Exercises 6-6
1.

Related equations are $r=-\frac{2}{3 .-\cos \theta}$ and $\theta=\frac{2}{1} 0^{\circ}$.
2.

The related equations are $r=-\frac{4}{1-\sin \theta}$ and $\theta=315^{\circ}$.
3. $(0 ; \theta)$ and $\left(\frac{\sqrt{2}}{2}, 45^{\circ}\right)$
4. $(0, \theta)\left(\frac{1}{2}, 60^{\circ}\right)\left(\frac{1}{2}, 300^{\circ}\right)$

Related equations are the same.
\boldsymbol{y}

The reiated equations are

$$
r=\cos \theta \text { and } r=-1-\cos \theta
$$

5. $(0, \theta)\left(\frac{\sqrt{3}}{2}, 30^{\circ}\right)\left(\frac{\sqrt{3}}{2}, 150^{\circ}\right)$

The related equations are $r=\cos \theta$ and

$$
\therefore=-\operatorname{in} 2 \theta
$$

6. $\left(\frac{1}{2}, 30^{\circ}\right)\left(\frac{1}{2}, 150^{\circ}\right)$

$r=\frac{-1}{1+\cos \theta}$

The related equations are -1 -si:: θ and
$\operatorname{nrsin} \theta=1$.

6-7. Fumilics of Cürvés.

This topic is u nocessary ioundation for parts of the usual calculus courses. Wc exparul the idfa of linear combinations of runctions and treat familics ui curves murc ecnerally. A one-paranctar family is related to the physicar concept ut one "acgree of freedom" and so on. It is instructive to develor tifs bricfly, showing how the restriction of each degrec of freedom is cquivalent to the assignment if a spccific value to one parameter. Thus, drawing a circle one the blackburd involves three degrees of freedom: locate it horizontully, locatc it vurtically, dctermine its radius. These determinations arc made, and the degrees of freedom arc restricted, by assigning spccific values respectively t, a, b, r, in the three-parameter family: $(x-a)^{2}+(y-b)^{2}=r^{2}$.

The method of choosing a particular member of a family is often more complicated than assigning numcrical values to the parameters. The particular member may be determined by a conditior whose application may be quite indirect. There will be future applications of the method show for picking
out a lancet line, by imposirus the condition that such a line has a double contact point. Aleckraically this means that the "equation wish gives the abscissas of the intersection points must lave multiple root is. If the cation i: quadratic, as in the text, this condition means that the discriminat of the quadratic equation must equal aero.. This is what gives us the equation from winch we pick outs the values of the parameter for the members of the family that satisfy our condition.

The review cxarciscs at the end of the chapter furnish many opportunities. to wite lamilics of curves, mostly lines and circles. We did not include cxarcisc. in which the student is asked to pick out a particular member of the family to satisfy a given condition. These are simple to improvise, ard may take any of the following forms: Find the member of the family which goes throws a given point; find the member of the family that has a given slope; find the member of the family that is tangent to a given circle; etc. ${ }^{-m}$ It is instructive to consider each family as a set of curves; then the question of finding a particular curve that satisfies two conditions is equivalent to the question of finding the intersection of two sets of curves. Note carefully that wo use the word "intersection" here to mean the curve (or curves) common to the two sets of carver that comprise the two families.
\qquad

Exercises 6-7

1. $x=a$.
2. $y=a$.
3. $y+1=k(x-2)$.
4. $y=k x+b$
5. $(x+1)^{2}+(y-2)^{2}=a^{2}$
6. $(x-a)^{2}+(y-b)^{2}=16$
7. $\frac{x}{a}=y^{2}$.
8. $3-4 y+k=0$.
9. $x-2 y+x=0$.
10. $x \cos t+4 \sin t-5=0$.
11. $x \cos \cdot t+y \sin t-p=0, p>5$.
12. $x^{2}+y^{2}-2 h x-2 k y=0, h^{2}+k^{2}=36$; or
$x^{2}+y^{2}-2 h x-2 \sqrt{36-h^{2}} y=0$
13. $(x-h)^{2} i(y-k)^{2}=1, h^{2}, r^{2}>1$.
14.j $\mathrm{y}=4 \mathrm{x}-12$.
14. $3 x-3 y+20=0$.
$16.4 x+5=0$.
15. The famiy of all lines through the intersection of the given lines is represented $a(x-2 y+3)+b(x+3 y-2)=0$. Picking a and b so" that $(1,1)$ lics on the line and simplifyine we get $y=1$.
16. $(a+b) x^{2}+(a+b) y^{2}-a(a-b) \dot{x}+4 b y-35 a-44 b=0$

For each pair (a, b) this cquation represents a elrele through the interscetion of the given two. The whole family of eircles is called a coaxial family. Their centers are all on the perpendicular biscetor of the common chord of any two of these circies. If $a=1, b=0$ we get the first eircle; if $a=0, b=1$, we get the second circle; if $\cdot a=: b$ we get a line, the line along this common chord. This line may be considered a degenerate circle. It has the properity that from any point on it the tangents to all members of the coaxial family have equal lengths.
19. $x+3 y-7=0$.
20. $3 x+4 y-15=0$.
21. $y-5=\frac{-72}{a^{2}}(x-2)$ a represents the x-interecpt:; $\frac{72^{\circ}}{a}$, the y-interecept. Thus $\frac{-72}{a^{2}}$ is the slope, and $\frac{1}{2}(a)\left(\frac{72}{a}\right)$ the area of the triangle in the first quadrant.
22. $x=5$ and $3 x-4 y+25=0$. Any line through the intersection of the given lines can be represented by $a(y-10)+b(2 x-y)=0$, that is, by $2 b x+(a-b) y_{b}-10 a=0$. The distance from such a line to the origin is $\frac{|2 b(0)+(a-b) 0-10 a|}{\sqrt{4 b^{2}+(a-b)^{2}}}$ that is $\frac{|10 a|}{\sqrt{a^{2}-2 a b+5 b^{2}}}$. If this distance is 5 then $|2 a|=\sqrt{a^{2}-2 a b+5 b^{2}}$. Thus $3 a^{2}+2 a b-5 b^{2}=0$. Set $a=t b$ and we get $3 t^{2}+2 t-5=0$ and $t=1$ or $-\frac{5}{3}$. These give us the solutions above.

Review Exercises

1: First, we lind the coordinates of the intersections of the fwo given lines with all lines parallel to the x-axis. For . ine parallel to the x-axis, the y-coordinates of the two lntersections are the same. Thus we have $\dot{x}_{1}-8=-y_{1}$ and $\left\langle x_{2}-1=y_{2}=y_{1}\right.$, or $x_{2}-\frac{1}{2}=\frac{y_{1}}{2}$. Adding gives $\frac{x_{1}+x_{2}}{2}=\frac{17-y_{1}}{4}$. Hence the equation of the desired locus is $x=\frac{17-y}{4}$ or $y=-4 x+17$.
2. In the same manner as in 1 above we find the equation

$$
y=\frac{1}{2} x+\frac{7}{2}
$$

3. (a) $d(P, A)^{2}=\sqrt{(x+4)^{2}+y^{2}}=03(P, B)=2 \sqrt{(x-4)^{2}+y^{2}}$ which Eiven us unon simplifictaion $3 x^{2}+3 y^{2}-40 x+48=0$ which is the equation of a circle.
(b) $\sqrt{(x+4)^{2}+y^{2}}+\sqrt{(x-4)^{2}+y^{2}} \quad 10$ which sives $\frac{x^{2}}{x^{2} j}+\frac{y^{2}}{9}=1$ which is the equation or on cllif \cdot.
(c). $\sqrt{(x+4)^{2}+y^{2}}-\sqrt{(x-4)^{2}+y^{2}}=2$ whtch Elves $x^{2}-\frac{y^{2}}{15}=1$ which is the equation of a hyperbola.
(d) If the lines are perpendicular, the product of their slopes is $\mathbf{- 1}$, therefore
$\frac{y-0}{x+1} \cdot \frac{y^{-0}-0}{x-1}=-1, \therefore y^{2}=1+x^{2}$, or $x^{2}, y^{2}=16$.
This is an equation of a circle.
(e) $\frac{y-0}{x+1}=2 \cdot \frac{y-0}{x-1}, \therefore y=c$; or $x \div-12$.

The locus is the pair of lines whose equations are given above.
(f) $\frac{y-0}{x+4}=1+\frac{y^{2}-0}{x-1}$, therefore $x y-4 y=x^{2}-16+x y+4 y$.

This equation may be written $x^{2}+8 y-1 \mu=0$, and is an equation of a parabola.
(g) Let, α be the inclination of $\overrightarrow{P A}$ and P be the inclination of $\vec{P} \vec{B}$. If m_{1}, m_{2} are their respective slopes then $\tan \angle A P B=\tan (B-\alpha)$
$\therefore 1=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}$ or $1=\frac{\frac{y}{x+1}-\frac{y}{x-1}}{1+\frac{y}{x+1} \cdot \frac{y}{x-4}}=\frac{\ddots y}{x^{2}-16+y^{2}} \ldots$
This equaiion may be writtien more simply as $x^{2}+(y-4)^{2}=32$. and is an equation of a circle.
(h) In the same way as in (g) above, we have
$\tan \angle A F B=\tan 60^{\circ}=\sqrt{3}=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}=\frac{8 y}{x^{2}-16+y^{2}}$. This equation may be written $x^{2}+y^{2}-\frac{8}{\sqrt{3}} y=16$ and is an equation of a circle.
(1) Area $=\frac{1}{2} h b ; a(A, B)=8 \quad \therefore \frac{1}{2} h=20 \quad \therefore h=5$.

Since the distance from P to the x-axis must be 5 , the locus of P is the pair of lines whose equations are $y=+5, y^{\prime}=-5$.
(j; $\sqrt{(x+4)^{2}+y^{2}}<\sqrt{(x-4)^{2}+y^{2}}$ means that $x<0$.
4. Let $M=(r, s)$ be the midpoint of $\overline{A P}$. Then $r=\frac{x+6}{2}, s=\frac{y+0}{2}$;
$\therefore \quad \therefore x=2 r-6$ and $y=2$. Since $P=(x, y)$ is on the circle $x^{2}+y^{2}=36$, we have $(2 r-6)^{2}+(2 s)^{2}=36$ or $r^{2}-6 r+9+s^{2}=9$. This may be written $r^{2}+s^{2}-6 r=0$ or $x^{2}+y^{2}-6 x=0$ and is an equation of a circle, which is the required locus.
5. Let $P=(r, s)$. Then $x=\frac{r+0}{2}, y=\frac{s+5^{\circ}}{2}$. Since $x^{2}+y^{2}=25$, $\therefore\left(\frac{r}{2}\right)^{2}+\left(\frac{s+5}{2}\right)^{2}=25$, or $r^{2}+(s+5)^{2}=100$. This equation may be written $x^{2}+y^{2}+10 y-75=0$ and is an equation of a circle, which is the required locus.
6." Let $B=(x, y)^{\prime}, E=(20, t)$ and M, .the midpoint of $\overline{D E}=(r, s)$. From similar triangles, $\frac{y}{x+10}=\frac{t}{30}, \ldots t=\frac{30 y}{x+10}$. We have $r=\frac{x+20}{2}$, $s=\frac{y+t}{2} ; \therefore x=2 r-20 ., y=2 s-t=2 s-\frac{30 y}{x+10} . \quad$ These. equations yield $x=2(r-10), y=\frac{2 s(r-5)}{r+10}$. Since D is on the circle $x^{2}+y^{2}=.100$, we have' $(2(r-10))^{2}+\left(\frac{2 s(r-5)}{r+10}\right)^{2}=100^{\circ}$, or, $(r-10)^{2}+\frac{s^{2}(r-5)^{2}}{(r+10)^{2}}=25$. This may be written
$(r-10)^{2}\left(r^{2}-20 r+100-25\right)+s^{2}(r-5)^{2}=0$, or, $i r+10)^{2}(r-5)(r-15)+s^{2}(r-5)^{2}=0$; which is equivalent to $(r-15)(r+10)^{2}+(r-5) s^{2}=0$. Therefore an equátion for the required locus is $(x-15)(x+10)^{2}+(x-5) y^{2}=0$.
However, a much simpler solution is available in polar coordinates. Take the pole at C and the polar axis to the right along the x-axis. Let $D=(p, \theta), E=(q, \theta)$, and M, the midpoint of $\overline{D E}=(r, \theta)$. Then $\frac{p}{20}=\cos \theta, \frac{30}{q}=\cos \theta$ and $r=\frac{1}{2}(p+q)=\frac{1}{2}(20 \cos \theta+30 \sec \theta)$. Therefore ar equation for the required locus is $\mathbf{r}=10 \cos \theta+15 \sec \theta$. We may show the equivalence of these two solutions by using the relation$\sin \mathrm{p}: r^{2}=x^{\prime 2}+y^{\prime 2}, \cos \theta=\frac{x^{\prime}}{\sqrt{x^{\prime}+y^{\prime 2}}} ;$ and $x^{\prime}=x+5 ., y^{1}=5$. The conputation is elementary but tedious.

Any line parallel to $y=3 x+5$ has an equation $y=3 x+d$, and, will intersect the circle $x^{2}+y^{2}-4 x+8 y=0$ in two points whose abscissas are the roots of $x^{2}+(3 x+d)^{2}-4 x+8(3 x+d)=0$. If the midpoint of this chord has coordinates (r, s), then $r=\frac{1}{2}$, the sum of the abscissas of the endpoint, that is, $\frac{1}{2}$ the sum of the roots of this equation, and this result can be found from th. " coefficients directly without solving the equation. Thus $10 x^{2}+(20+6 d) x+d^{\dot{2}}+8 d=0$, and $r=-\frac{10+3 \mathrm{~d}}{10}, \because s=3 r+d=-\frac{30-d}{10}$. Eliminating a fromi these two equations yields $r+3 s+10=0$, therefore an equation for the required locus is $x+3 y+10=0$.
8. In the same manner as in Exercise i, we find $x-9 y=0$ as an equation for the locus.
9. (a) The line $\frac{x}{a}+\frac{y}{b}=1$ has intercepts a and b. The conditions of the problem requires that $a b= \pm 24$. Therefore $\frac{x}{a} \pm \frac{a y}{24}=1$ is a pair of equations representing two one-parameter families of lines, the solution we require. Of course $a \neq 0$.
(b) As in $9(a)$, we need $\frac{x}{a}+\frac{y}{b}=1$ and $a+b=6$, that is $\frac{x}{a}+\frac{y}{6-a}=1$ with $a \neq 0,6$. We may consider that a line parallel to an "xis has just one intercept whose "sum" is itself; in which case we may include in our solution the lines $x=6$; and $y=6$.
(c) $(x-a)^{2}+(y-b)^{2}=a^{2}$
(d) $(x-a r)^{2}+(y-b)^{2}=b^{2}$
(e) The distance from the center (a, b) of one such circle to the line $4 x+3 y-2=0$ is $\frac{4 a+3 b-2}{5}$, and, by the conditions of the problem, equals ± 1. The centers must lie therefore on the lines $4 x+3 y-7=0$ and $4 x+3 y+3=0$, which are parallel to the original lines. The families of circles are therefore $(x-a)^{2}+(y-b)^{2}=1$ where (a, b) must satisfy one of the equations of the lines just found. In terms of a single parameter the answers are $(x-a)^{2}+\left(y-\frac{7}{3}+\frac{4}{3} a\right)^{2}=1$, and $(x--)^{\prime}-\left(y+1+\frac{4}{3} 3\right)^{2}=1$.
(f) The two families are $(x-a)^{2}+\left(y-\frac{5 r+2}{3}+\frac{4 a}{3}\right)^{2}=r^{2}$, $(x-b)^{2}+\left(y+\frac{5 r-2}{3}+\frac{4}{3} b\right)^{2}=r^{2}$.
(g) $(x-a)^{2}+(y-b)^{2}=36$ where $a^{2}+b^{2}<36$.
(h) $(x-a)^{2}+(y-b)^{2}=a^{2}+b^{2}$.
'i) The distance from $P=(x, y)$ on the circle to the center (a, b) must equal the distance from $(12,5)$ to the same center. Therefore the circles we want have equation:

$$
(x-a)^{2}+(y-b)^{2}=(12-a)^{2}+(5-b)^{2}
$$

(j) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $a^{2}+b^{2}<r^{2}$.
(k) $(x-a)^{2}+(y-b)^{2}=25$ where $a^{2}+b^{2}>25$.
(ℓ) The two families are $(x-g)^{2}+\left(y-\frac{d \sqrt{a^{2}+b^{2}}-c-a r}{b}\right)^{2}=d^{2}$ ana $(x-n)^{2}+\left(y+\frac{a \sqrt{a^{2}+b^{2}}+e+a h^{2}}{b}\right)^{2}=a^{2}$ where b and h are arbitrary.
(m) A point (a,b) on a bisector of the angles formed by the two lines must be equidistant from them, therefore
$\left|\frac{3 a-4 b+5}{5}\right|=\left|\frac{4 a-3 b+9}{5}\right|$. These bisectors have, therefore, the equations $3 x-4 y+5=4 x-3 y ; 9$; and $3 x-4 y+5=-4 x+3 y-9$; that is, $x y+4=0$, and $x-y+2=0$.
(Note that these lines are perpendicular to each other.)
Therefore $b=-a-4$, or $b=a+2$. The families of circles:
$(x-a)^{2}+(y-b)^{2}=r^{2}$, become
$(x-a)^{2}+(y+a \cdot 4)^{2}=\left(\frac{1}{5} a+\frac{21}{5}\right)^{2}$; and
$(x-a)^{2}+(y-a-2)^{2}=\left(\frac{1}{5} a+\frac{3}{5}\right)^{2}$.
(n) The families are $(x-g)^{2}+(y-h)^{2}=\frac{\left(a_{1} b^{b}+b_{1} h+c_{1}\right)^{2}}{a_{1}{ }^{2}+b_{1}{ }^{2}}$ where

and for the other family

$$
h=-\frac{\frac{a_{2} b^{g /+} c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}+\frac{a_{1} g+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}}{\frac{b_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}+\frac{b_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}} .
$$

(o) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $b^{2} \leq r^{2}$.
(p) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $a^{2}>r^{2}$.
(q) $(x-g)^{2}+(y-h)^{2}=r^{2}$ where $\frac{|g a+h b+c|}{\sqrt{a^{2}+b^{2}}}>r$.
(r) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $0<r$, and $\sqrt{a^{2}+b^{2}}+r<10$.
(s) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $r>0$ and $|r-1| \leq \sqrt{a^{2}+b^{2}} \leq r+1$.
(t) $a x+b y+d=0$ where $\frac{d}{\sqrt{a^{2}+b^{2}}} \leq 1$.
(u) $\left(x-a^{\prime}\right)^{2}+(y-b)^{2}=r^{2}$ where $0<a, 0<b, a+b<10$, and $r<$ the smallest of $\left\{a, b, \frac{|a+b-10|}{\sqrt{2}}\right\}$.
(v) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $r^{2}>\varepsilon^{2}+(10-b)^{2}$, $r^{2}>a^{2}+b^{2}$, and $r^{2}>(a-10)^{2}+b^{2}$.
(w) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $\sqrt{a^{2}+b^{2}}+r=10$.
(x) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $\sqrt{a^{2}+b^{2}}-r=10$.
(y) $(x-a)^{2}+(y-b)^{2}=r^{2}$ where $r-\sqrt{a^{2}+{ }^{2}}=10$.
(z) $(x-g)^{2}+(y-h)^{2}=R^{2}$ where $\frac{|a g+b h+c|}{\sqrt{a^{2}+b^{2}}}=R$ and

$$
(r-g)^{2}+(s-h)^{2}=R^{2}
$$

10. (a)

(b)

(c)

(d)

(e)

${ }_{238}^{233}$
(${ }^{(}$)

(g)

(h)

(i)

$$
\begin{aligned}
& x^{2}-x=20 \\
& x^{2}-x-20=0 \\
& (x-5)(x+4)=0
\end{aligned}
$$

(j)

(k)

The given condition is equivalent
to $x y+2 x-y-2>0$ or
$(x-1)(y+2)>0$. Therefore both
factors must be positive, or both factors
must be negative. These conditions require $x>1$ and $y>-2$; or
$x<1$ and $y<-2$.
${ }^{23} 1$
(ℓ)

(m)

(n)
(p)

シ
-
2

The graph is the set of all points on the circle, and ail point: on the y-axis, as shown.
(q)

The graph is the set of all points on the circle, all points on the x-axis, and all points on the y-axis, as shown.

(s)

(t)

11. (a)

1 (b)

(c)

\rightarrow
247^{24}
(d)

(e)
 1
(f)

(g)

(h)

From $y=t^{2}$ we have $t= \pm y$ and $x> \pm 2 y$. There $y \geq 0$, and our locus is the set of all points above the x -axis and to the right of cither branch of the parabola $x^{2}=4 y$. It is sufficient to take all points which are both above the x -axis, and to the right of the left branch, as shown.
(i)

(j)

12. (a)

$\mathbf{r}=\cos 2 \theta$. Four leafed rose, symmetric with respect to the pole, and with respect to the ines $\theta=0^{\circ}, \theta=90^{\circ}, \theta=45^{\circ}, \theta=135^{\circ}$. Symmetry with respect to the last two lines can be shown if we use the related polar equation, thus: the points $\left(x, 45^{\circ}-\alpha\right)$, ($r, 45^{\circ}+\alpha$) are symmetrically situated with respect to the line $\theta=45^{\circ}$, but $\cos 2\left(45^{\circ}-\alpha\right) \neq \cos 2\left(45^{\circ}+\alpha\right)$. However, the point $\left(r, 45^{\circ}+\alpha\right)$ is on the curve for which we have the equation $\mathbf{r}=-\cos 2\left(A-180^{\circ}\right)$, and we now have $\cos 2\left(45^{\circ}-\alpha\right)=-\cos 2\left(45^{\circ}+\alpha+280^{\circ}\right)$, as can easily be shown. In the same way we coild show. symmetry with respect to the line $\theta=135^{\circ}$ by showing $\cos 2\left(135^{\circ}-\alpha\right)=-\cos 2\left(135^{\circ}+\alpha+180^{\circ}\right)$.
(b)

$r=\cos (\theta+2)$
Circle of radius $\frac{1}{2}$, with center at ($\frac{1}{2},-2$):
$25^{25} 3$
(c)

$$
\therefore r=\sin \left(\theta-\frac{\pi}{2}\right)=-\cos \theta
$$

Circle of radius $\frac{1}{2}$. with center at $\left(\frac{1}{2}, \pi\right)$.
(d)
(e)

$r=3 \sin 2 \theta$
Four leafed rose symmetric with respect to $\theta=45^{\circ}, \theta=135^{\circ}$, $\theta=0^{\circ}$ and $\theta=90^{\circ}$. It is also symmetric with respect to the pole. .$\quad .254250$
(f)

$$
\begin{aligned}
& r=1+\sin \theta \\
& \text { Cardiod symmetric with respect to } \theta=90^{\circ}
\end{aligned}
$$

(g)

$$
r=2-\cos \theta
$$

Limacon symmetric with respect to $\theta=0^{\circ}$.
(h)

1

$$
r=1+2 \sin \theta
$$

Limaçon symmetric with respect to. $\theta=90^{\circ}$.
13. $\ddot{y}=x^{2} \quad 1 y=x^{4}$

$$
\text { Ir } m>n
$$

for $|x|<1, x^{2 m}<x^{2 n}$
for $|x|>1, x^{2 m}>\dot{x}^{2 n}$
14. $y=x \quad y=x^{3} \quad y=x^{5}$

Generalization.

Let m, n Le odea integers, $0<n<m$.
then io:
$\begin{array}{ll}x<-1 \text { we get } & x^{m}<x^{n}<-1 \\ x=-1 & x^{m}=x^{n}=-1 \\ -1<x<0 & -1<x^{n}<x^{m}<0\end{array}$
$y=0 \quad . \quad x^{n} F x^{m}=0$
$0<x<1 \quad 0<x^{\text {m }}<x^{n}<1$
$x=1 \quad \cdot \quad x^{m^{\prime}}=x^{n}=0$
lex
$1<x^{n} .<x^{m}$
15. $y=3 \sin x+4 \cos x$

$$
y=5\left(\frac{2}{5} \sin x+\frac{4}{5} \cos x\right)
$$

- We know that $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\sin \beta \cos \alpha$.
tet $\arccos \frac{3}{5}=\theta=53^{\circ}$.
Then $\sin (x+\theta)=\frac{3}{5} \sin x+\frac{4}{5} \cos x$.
So $y=5 \sin (x+\theta) \approx 5 \sin \left(x+53^{\circ}\right)$.

16. If $y=a \sin x+b \cos x$ we may write

$$
y=\sqrt{a^{2}+b^{2}}\left(\frac{a}{\sqrt{a^{2}+b^{2}}} \sin x+\frac{b}{\sqrt{a^{2}+b^{2}}} \cos x\right)
$$

or letting

$$
\begin{aligned}
& =\operatorname{arcccs} \frac{a}{\sqrt{a^{2}+b^{2}}} \\
y & =\sqrt{a^{2}+b^{2}} \sin (x+\theta)
\end{aligned}
$$

17. Let $L_{1}: a x+b y+c=0$
and $L_{2}:-b x+a y^{1}+a=0$
be two perpendicular lines. Let S be a set symmetric with I_{1} and L_{2}.

Denote the intersection of L_{1}
 and L_{2} by P_{i}.

$$
P_{i}-\left(\frac{b d-a c}{a^{2}+b^{2}}, \frac{-a d-b c}{a^{2}+b^{2}}\right)
$$

We need to show that for any P_{0} in S, its reflection in P_{i} is also in S.

If $P_{0}=\left(p_{0}, q_{0}\right)$ is in S, then the reflection $P_{1}=\left(p_{1}, q_{1}\right)$ of P_{0} in L_{1} is still in $\cdot S$. Since $L_{1} I L_{2}$, the point P_{1} is determined by equations
(1)

$$
\frac{a p_{1}+b q_{1}+c}{\sqrt{a^{2}+b^{2}}}=-\frac{a p_{0}+b q_{0}+c}{\sqrt{a^{2}+b^{2}}}
$$

(2)

$$
\frac{-b p_{1}+a q_{1}+d}{\sqrt{a^{2}+b^{2}}}=\frac{-b p_{0}+a p_{0}+d}{\sqrt{a^{2}+b^{n}}}
$$

i.e., the conditions, $d\left(P_{0}, L_{1}\right)=d\left(P_{1}, L_{1}\right)$ and P_{1}, P_{0} on opposite side.,

$$
\text { and } d\left(P_{0}, I_{1}, j\right)=d\left(P_{1}, L_{2}\right) \text { and } P_{1}, P_{0} \text { on wame side. }
$$

Solving these we find

$$
P_{1}=\left(p_{1}, q_{1}\right)=\left(\frac{p_{0}\left(b^{2}-a^{2}\right)-2 a c}{a^{2}+b^{2}}, \frac{q_{0}\left(a^{2}+b^{2}\right)-2 b c}{a^{2}+b^{2}}\right)
$$

Since P_{1} is in S, the reflection $P_{?}$ of P_{1} in $L_{\text {, }}$ is in B. Setting up and solving equations analogous to (1) and (c) we find

$$
P_{2}=\left(p_{2}, q_{2}\right)=\left(2 \frac{(b d-a c)}{a^{2}+b^{2}}-p_{0}, \frac{-b c-a d}{a^{2}+b^{2}}-q_{0}\right)
$$

Recalling some theorems of earlier chapters, we see that P_{i} is the midpoint of $\overline{P_{0} P_{2}}$, hence that the reflection of P_{C} in P_{i} i: P_{2}. Thus for any P in S its reflection in P_{i} is the reflection in L_{2}. of the reflection of P in L_{1}, and is therefore in S.

$$
\begin{aligned}
& y=A+0 \quad \therefore+i \quad y=t(t) . \\
& \therefore \text { ac: ! : . it mul an?, it } \\
& =\frac{n-\vdots}{a} \text { ari } q=i(\underline{P-b})
\end{aligned}
$$

19. (a)

(b)

(c)

$$
y=3-2 \sin \left(2 x+\frac{3 \pi}{2}\right)
$$

(d)

ϑ
Bixay

h
3

CHALLENGE EXERCISES

1. The graph of $y=\sin 4 x \sin x$ may be thought of as a "rapidly" oscillating sine curve. $y_{1}=\sin 4 x$, inodulated by a "slower" oscillating sine curve, $y_{2}=\sin x$. Then, as in Example 8, the graph of $y=y_{1} y_{2}$ will be constrained between the graphs of $y_{2}=\sin x$ and $y_{3}=\sin x$. The graph of y will touch the graph of y_{2} whenever $y_{1}= \pm 1$, that is, when $x=\frac{\pi}{8}, \frac{3 \pi}{8}, \frac{5 \pi}{8}, \ldots$. The graph of y will cross the x axis when either y_{1} or y_{2} ' equals zero, that is, at $0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \ldots$. The graph looks like this (different scales on the axes) :

The graph of $y=(6+\sin x) \sin 12 x$ is also a rapidly oscillating. curve $y_{2}=\sin 12 x$ modulated by a slower oscillating curve $y_{1}=6+\sin x$. The graph of y_{1} is a sine curve elevated 6 units above the x-axis. It is bound between 5 and 7 , therefore the graph of $\dot{\circ} \mathrm{y}=\mathrm{y}_{1} \mathrm{y}_{2}$ is constrained by symmetric curves $\mathrm{y}_{1}=6+\sin \mathrm{x}$ and a $y_{3}=-6-\sin x$ which bound a horizontal strip of periodically varying width, narrowest from 5 to - 5 and widest from 7 to - 7 . The rest of the analysis of the graph is similar to that of the previous paragraph. The graph is drawn below (different scales along the axes).

The graph of $y=\sin (1000 \pi t) \sin (1000000 \pi t)$ will not be drawn but it may be analyzed in the same fay as the others. We have a, rapidly oscillating curve, $y_{2}=\sin (1000000 \pi t)$ modulated by a lower oscillating curve $y_{1}=\sin (1000 \pi t)$. Physicists would say that the first curve has a frequency of 500,000 cycles or 500 kilocycles or .5 megacycles per second. This is a reaso ble radio frequency (RF). The second curve then has a frequehcy of 500 cps which is a reasonable audio frequency (AF). A further discussion of cycles and frequency would lead us too far into physics, and is left for further investigation there.

Teachers: Commentary 'Chapter 7

CONIC SECTIONS

The student of Intermediate Mathematics has studied conic sceti as with. equations. given in simple form in rectangular coordinates; here we kesin with something different. After taking up the introductory material in Section $\bar{i}-1$ and 7-2, if you feel that there is time, you may want to take next the first five sections of the Supplement to. Chapter 7. In this you will find a cerefur . development of the geometry of the plane sections of a right circular cone. This development relates the geometric properties of the conics to the cone, the cutting plane, and the sphere, tangent to both of them. It is show that, for a given conic section, the ratio of two cosines is a corstant; this ratio, of course, is the eccentricity.

Section 7-3 develops equations in polar form for conies with focus at the pole, first with directrix perpendicular to the polar axis, and then with directrix parallel to the polar axis. (Cases in which there is rotation about the pole will be considered in Chapter 10.) The polar form emphasizes the essential similarity of the locus conditions for, the ellipse, hyperbolaf and parabola. Transformation of polar equations to familiar, f.rms of the cquations of the conics in rectangular coordinates is dealt with in Section $7-4$. The ëxercises in both of these sections provide desirable review of polar coordinates.

The fours positions of a conic considered in the text of Section 7-3, in Example 2, and in Exercises 9 and 10, give four forms of the equation which we summarize here.

$$
\begin{aligned}
& -r=\frac{e p}{1 \pm e \cos \alpha} \quad \cdots \quad\left\{\begin{array}{l}
\text { directrix } 1 \text { polar axis } \\
+ \text { if directrix contains }{ }^{\prime}(\hat{p}, 0) \\
- \text { if directrix contains }(-p, 0)
\end{array}\right. \\
& \left\{\begin{array}{lcc}
\text { directrix } & \text { || polar axis } & i \\
+ & \text { if - directrix contains } & \left(p, \frac{\pi}{2}\right) \\
= & \text { if directrix contains } & (-m y)
\end{array}\right.
\end{aligned}
$$

In all these cases the focus is at the pole.

The students should be urged, in doing Exercises $7-3$, not to use point-by-point plotting alone. If they first rewrite the equations in a standard form, as indicated in Examples 3 and 4 , they can tell what. kind of conic section is represented. Then they should find intexcepts, a few more points, and use symmetry.

For the convenience of the teacher in making assignments, most of the exercises in "this chapter are arranged so that even and odd exercises are roughly comparable. This does not include the applications toward the end of ce-tain sets, or the challense problems. In the case of exercises such as and 2 of Exercises ?-6, or 1 and 2 of the Review Exercises, with long IIsts of lettexed parts, (a), (c), (e), ... are comparable to (b), (d), (f) \ldots

Exercises 7.3

1. $r=\frac{4}{1-\cos \theta}$

2. $r=\frac{1}{1-\cos \varphi}$

3.

7
4. $r=\frac{2}{1-\frac{1}{3} \cos \theta}$

5. $x=\frac{3}{1--\frac{5}{4} \cos \cdot \theta}$
s. $r=\frac{3}{1-\sin \theta}$

3

6. $r=\frac{12}{1-3 i \cos \theta}$
2. $r=\frac{e p}{1+e \sin \theta}$.

7. $r=\frac{4}{1-\sin \theta}$
11. (a) $r=\frac{4}{2+\cos \theta}$
\because

(b) $r=\frac{3}{x+\frac{5}{4} \sin \cdot \theta}$

(c) $T=\frac{2}{1+\frac{3}{4} \sin \theta}$

12. $r=\frac{.6}{1-\cos \theta}$

Parabola

13. $r=\frac{10, ~}{1--\sin \theta}$.

Parabole,

14. $r=\frac{4}{1-\frac{2}{3} \cos \theta}$

Elilipse

15. $r=\frac{4}{1-\frac{4}{3} \cos 6}$

Hyperbola

i\% $s=\frac{-i}{-\sin \theta}$

Perabola

$1 ; \cdot=\frac{3}{1+2 \cos \theta}$

Mreprola

18. $r=\frac{3}{1-\cos \theta}$

Parabola
1). $r=\frac{-2}{1-\sin \theta}$

Parabola*

a)

 the path are Given: $\sqrt{100}, 1^{\circ} 0^{\circ}$ and $\left(0,0,0^{\circ}\right)$. We substitute these coordinates in the equation and solve the resultirs equations simultaneously to obtain e . , $\mathrm{p} \quad \mathrm{rr}, \mathrm{in}$. the least distance is , COO mi.; the Eyeatost, when $\theta \quad c^{\circ}$, is to mi.

In section $-h_{1}$ emphasis is on the ahectra involved in transforming from ? ? form. In the text we square both music of san quit our. to obtain Equation (2) : ait is important that students wherotana ul y this is permissible; no doubt they have ween warned hat so doing maj introdwe points not in the graph of the orietina, equation. The justification in the text depenis on showing that squarime, in effect, introdu ${ }^{*}$ es a new equation which is the reLated polar equation of thesorititust equation and line has the same graph. You might prefer a different proof, somewhat as follows.

Parabola: Since $y=\operatorname{res} \therefore$, ros $t=\frac{x}{r}$.

Then
becomes

$$
\begin{aligned}
& r \frac{n}{1-\cos \theta} \\
& r-\frac{p}{1-\frac{\pi}{r}} \\
& -\frac{m}{r-m} .
\end{aligned}
$$

This is the case if
or
$r \cdot y!p$.
(It would appear that we have divided themph by r at ih. print. This would mean that we would lose the solution $r-0$. . Howcorre : ince
 included in the or: inal guation. In the inllowin ita multiplyine by an altenetive remation with the oneme rati.)

We square both cides (o when

$$
r^{\prime} \quad x^{\prime}+p x+0
$$

and substitute e_{n}. to oltain

$$
x^{\prime \prime}+y^{\prime} \quad x^{\prime} \cdot y^{\prime \prime}+y
$$

or

$$
y^{\prime}=p(x+E)
$$

which is a recomizable form for a parmoln with vertex at ($-\frac{p}{-}$, .

Elliose: If

$$
r=\frac{e p}{1-\epsilon \cos 0} \text {, where } 0<e<1 \text {, }
$$

then
or

$$
\begin{aligned}
& r=\frac{e d}{1-\frac{e x}{r}} \\
& r=\frac{e r p}{r-e x} .
\end{aligned}
$$

This is the case if

$$
r-e x=e p
$$

or

$$
r=e(x+p)
$$

(Once again we have removed the solution $r=0^{\circ}$ which did not satisfy, the original equation:. In the following step we are again multiplying by an $\underset{7}{a}$ ternative equation with the same graph.)

We square both sides to obtain

$$
r^{2}=e^{2}\left(x^{2}+2 p x+p^{2}\right)
$$

and substitute for r^{2} to obtain

$$
x^{2}+y^{2}=e^{2}\left(x^{2}+2 p x+p^{2}\right)
$$

This is Equation (4) in the text.
We call your attention to the way in which directions for Exersise $7-4$ have been written. Depending on what kind of practice your class needs, you would assign all of parts (a), (b), and (c), or just the parts you wish to emphasize:

Exercise 7-4

The graphs are routine and will not be drawn.

1. $x^{2}+y^{2}=9, r=-3$.
2. $x^{2}+y^{2}=81, r=-9$.
3. $(x-1)^{2}+y^{2}=1$, related equation the same.
4. $x^{2}+y^{2}-x-y=0$, related equation the same.
5. $y^{2}=16+8 x, r=\frac{-4}{1+\cos \theta}$
6. $y^{2}=9-6 x, r=\frac{-3}{1-\cos e}$
7. $\frac{(x+2)^{2}}{1}-\frac{y^{2}}{3}=3, r=\frac{-3}{i+2 \cos \theta}$
8. $\frac{(x-2)^{2}}{16}+\frac{y^{2}}{12}=1, r=\frac{-6}{2+\cos \theta}$
9. $\frac{(x-2)^{2}}{9}+\frac{\dot{y}^{2}}{5}=1, r=\frac{-5}{3+2 \cos \theta}$

10: $\frac{(x+3)^{2}}{4}-\frac{y^{2}}{5}=1, r=\frac{-5}{2+3 \cos \theta}$
11. $\left(x^{2}+y^{2}-x\right)^{2}=x^{2}+y^{2} \quad$ cardiod curve, $r=\cos \theta-1$
12. $x^{2}=4-4 y, r=\frac{-2}{1+\sin \theta}$
13. ${ }^{7} x^{2}+16 y^{2}-12 x-144=0, r=\frac{-12}{4+3 \cos \theta}$
14. $9 y^{2}-16 x^{2}-200 y+400=0, r=\frac{-20}{4-5 \sin \theta}$

Students of CMSC Intermediate Mathematics will have covered most of the material in Sections $7-5$ through $?-8$; it is in this text for convenience of reference. Ease in handling the simple forms of the equations of the conics is, an important skill.

With able and well-prepared students, only a brief review of the text of these sections will be necessary. However, a number of the exercises should be done, both to reinforce previous learning and to develop further some of the properties and applications of conic sections. With such groups the teacher may want to take up the sections of the Supplement to Chapter ? which deai with the general second-degree equation.

If the students are not familiar with the equations and basic properties of the conic sections summarized in the first paragraphs of these sections, the teacher will want to take time to develop this material with the class. Intermediate Mathematics would be helpful here.

While the amount of time that should be devoted to these sections will vary greatly with the training and ability of the class, it is urged that the time be sufficient for the students to develop some facility both with use of . the locus definitions and with the standard forms.

The answers for Exercises $7-5$ through $7-8$ do not, in most cases, include the sketches the students are asked to make. However, use of the listed information about the curves will make it easy to check the students' sketches.

2. (a) Case (a). Equatisn $\mathrm{D}_{2}^{2}=0$. The y-axis.

Case (b). Equation: 4 , A line parallel to the) y-akis.
3.
the cope.
$(a)^{2}(y+2)^{2}=-6\left(x-\frac{1}{2}\right)^{2}$
(b) $(x+1)^{c}=2\left(y \frac{x}{2}\right)$.
(c) $y^{2}=-20 x$
(d) $(y-5)^{2} 04(x-4)$
4. Same answers as for Problem 3.
5. (a) $y^{2}=-10 x$
(b) $(x-2)^{2}=-12(y+3)$
(c) $y^{2}=\frac{49}{2} x$
(d) $(x+2)^{2} \doteq-16(y-3)$
6. The equally spaced rulings permit locating points that care equally distant from a fixed line $\left(L_{0}\right)$ and a fixed point (F). Thus P_{2}. is two units from L_{0} (since it is on the second ruling away from L_{0}) and it is two units from F (since the radius, sed to determine it was twó units, with F° as center).
7. For every position of the pencil point P, the distance from P to the fixed line (L) is equal to the distance from P to the fixed point F.

Challenge Problems

1. The focus of the parabola is $F=\left(0, \frac{1}{4}\right)$: the slope of the line containing P and F is $\frac{4 a^{2}-1}{4 a}$. Using this and the slope of the tangent line (2a), we find that the tangent of the angle these lines form is $\frac{1}{2 \mathrm{a}}$. To avoid the problem presented by a vertical line, we use the fact that the angle between the tangent line and the parallel to the axis of the parabola is the complement of the angle formed by the tangent line and the x -axis; tangent of this last angle is 2 a ; hence the tangent of its complement is $\frac{l}{2 \mathrm{a}}$.

0
2. (a) The tangent perpendicular to the line $y=2 a x-a^{2}$ must have slope $-\frac{1}{2 a}$; therefore its point of contact is $P^{l}=\left(-\frac{1}{4 a}, \frac{1}{16 a}\right.$)

A test for collinearity can then be applied to the coordinates of P, P^{1}, and V.
(b) Using the previous results, we obtain the equation of the tangent at $P^{\prime}: 8 a x+16 a^{2} y+1=0$. We apply a test of concurrency to this equation, the equation of the tangent at P, and the equation of the directrix ($4 \mathrm{y}+1=0$).

Example 2 of Section i-6 will give an oportunity to review with the students the technique of completing the square. Here the coeff:cients are numerical; when the method was used in Sect'on $7-4$ the coeff'cients were literal. Since the technique will continue to be useful here and elsewhere, we recommend that the teacher check that the students have facility with it. The, should be able to handle not just tle simplest cases ilike the first ones in the exercise set), but also ones like $l(g),(h)$ and $5(c)$ of this set, and $3(\mathrm{~g}),(\mathrm{h})$ of Exercises 7-7.

Exercises 7-6

1. (a) $(x-4)^{2}+y^{2}=16$

$$
c=(4,0) \quad r=4
$$

(b) $(x-3)^{2}+(y-5)^{2}=1$
(c) $(x-2)^{2}+(y+4)^{2}=0$
(d) $(x+7)^{2}+\left(y-\frac{9}{2}\right)^{2}=\frac{37}{4}$
(e) $\left(x-\frac{1}{2}\right)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{1}{2}$
(f) $(x-a)^{2}+(y-b)^{2}=0$
(5) $\left(x-\frac{3}{5}\right)^{2}+\left(y+\frac{2}{5}\right)^{2}=\frac{3}{25}$

Locus is the point (a, b) .
$C=\left(\frac{3}{5},-\frac{2}{5}\right) r=\frac{1}{5} \sqrt{3}$
(h) $\left(x-\frac{a}{2}\right)^{2}+\left(y+\frac{b}{2}\right)^{2}=\frac{a^{2}+2 a b+b^{-2}}{4}$
2. (a) $x^{2}+y^{2}-6 x+10 y-15=0$
(b) $x^{2}+y^{2}+10 x-24 y=0$
(c) $x^{2}+y^{2}-6 x-4 y+9=0$ and $x^{2}+y^{2}-6 x-4 y+4=0$
(d) The center is $(2,1)$ or $(-1,4)$.

Equations: $x^{2}+y^{2}-4 x-2 y-4=0$ and $x^{2}+y^{2}+2 x-8 y+8=0$.
(e) $x=\frac{17}{5}$. Equation: $25 x^{2}+25 y^{2}-50 x-100 y-164=0$
(f) If equation is written $\mathrm{x}^{2}+\mathrm{y}^{2}+D \mathrm{D} x+E y+F=0$, substitution of the coordinates gives equations $2 \mathrm{D}+3 \mathrm{E}+\mathrm{F}+13=0$, $5 D+E+F+26=0,3 E+F+3=0$. Final equation: $x^{2}+y^{2}-5 x-y=0$
3. (a) slope of radius to $(3,-4)$ is $-\frac{4}{3}$; therefore slope of tangent is $\frac{3}{4}$. Equation: $3 x-4 y-25=0$
(b) Proceding as in part (a), equation of tangent is $x_{1} x+y_{1} y=x_{1}^{2}+y_{1}^{2}$. Since $\left(x_{1}, y_{1}\right)$ is a point of the circle, $\mathrm{x}_{1}{ }^{2}+\mathrm{y}_{1}{ }^{2}=r^{2}$; thus the desired equation is $\mathrm{x}_{1} \mathrm{x}+{ }^{\prime} \mathrm{y}_{1} \mathrm{y}=\mathrm{r}^{2}$.
4. (a) Since the center $(0 ; 0)$, the point $(3,7)$, and a point of contact of the tangent develnines a right triangle, the Pythagorean Theorem can be used. Length of tangent $=\sqrt{58-25}=\sqrt{33}$.
(b) [See part (a)] $C\left(-\frac{D}{2},-\frac{E}{2}\right), r=\frac{1}{2} \sqrt{D^{2}+E^{2}-4 F}$

$$
\begin{aligned}
t^{2} & =\left(x_{1}+\frac{D}{2}\right)^{2}+\left(y_{1}+\frac{E}{2}\right)^{2}-\frac{1}{5}\left(D_{1}^{2}+E^{2}-4 \cdot{ }^{2}\right) \\
& =x_{1}^{2}+y_{1}^{2}+D x_{1}+E y_{1}+F
\end{aligned}
$$

(c) If $t^{2}=0$, the point $\left(x_{1}, y_{1}\right)$ is a point of the circle. If $t^{2}<0$, the distance from the center to $\left(x_{1}, y_{1}\right)$ is less than the radius; hence the point $\left(x_{1}, y_{1}\right)$, is a point of the interior of the circle.
5. (a) $a\left(x^{2}+y^{2}-10 x-2 y-35\right)+i \cdot x^{2}+y^{2}+4 x-(y-49)=0$
(b) Substitution of $x=0, y=-6$ in (a) gives $13 a=-23 b$. If we let $a=23$ and $b=13^{\circ}$, an equation is.
$\therefore \quad 5 x^{2}+5 y^{2}-141 x+16 y-84=0$.
(c) The terms containing x in the equation of part (a) are $(a+b) x^{2}+(-10 a+4 b) x$.
Thus the x-coordinate ∂f° the center (which we know is -5) is $\frac{5 a-2 b}{a+b}$. From this we find $10 a=-3 b$; we Let $a=-3, b=10$. Using these values, the equation is $7 x^{2}+7 y^{2}+70 x-54 y-385=0$.
6. Let the circles have equations $(x-h)^{2}+(y-k)^{2}=r^{2}$ and $\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}=r_{1}{ }^{2}$. Then an equation of the radical axis is $(x-h)^{2}+(y-k)^{2}-r^{2}-\left(\left(x-h_{1}\right)^{2}+\left(y-k_{1}\right)^{2}-r_{1}^{2}\right)=0$. For either circle, the square of the length of the tangent from the point (x, y).. to the circle is the square of the distance from the point fo the center, minus the square of the radius. The condition that these two lengths be equal is

$$
\cdot(x-h)^{2}+(y-k)^{2}-r^{2}=\left(x-h_{1}\right)^{2}+\left(v-k_{1}\right)^{2}-r_{1}^{2} .
$$

But this is exactly the condition shown above, that the point (x, y) is on the radical axis.
7. As shown in Problem 6 , the required point must be on the radical axis c of each pair of circles. We find equations of two of the radical axes (say $6 x-y=-8$ and $4 x-3 y=11$) and solve; the point is $\left(-\frac{5}{2},-7\right)$.
8. Using the circle, with equations in Problem C, slope of line of centers is $\frac{k_{1}-k}{h_{1}-h}$. From equation of radical axis (also Problem 6), slope is $-\frac{h_{1}-h}{k_{1}-k}$, the negative reciprocal of slope of line of centers. (If $h_{1}=h$, first line is parallel to y-axis and second to x - Axis, and also, they are perpendicular; opposite case if $k_{1}{ }^{\circ}=k$.).
9. For the first circle, we have $C_{1}-\left(-\frac{D_{1}}{2},-\frac{F_{1}}{2}\right), r_{1}{ }^{2}=\frac{D_{1}^{2}+E_{1}^{2}-4 F_{1}}{4}$; for the second, $C_{2}=\left(-\frac{D_{2}}{\hat{c}},-\frac{E_{2}}{2}\right), r_{2}{ }^{2}=\frac{D_{2}{ }^{2}+E_{2}{ }^{2}-4 F_{2}}{4}$. Bo the definition of orthogonal circles, $r_{1}{ }^{2}+r_{2}^{2}=d\left(C_{1}, C_{2}\right)^{2}$; this conditron is $\frac{D_{1}^{2}+F_{1}^{2}-4 F_{1}}{4}+\frac{D_{2}^{2}+E_{2}^{2}-4 F_{2}}{4}=\left(-\frac{D_{1}}{2}: \frac{D_{2}}{2}\right)^{2} \div\left(-\frac{E_{1}}{2}+\frac{E_{2}}{2}\right)^{2}$. When simplified, this is the desired condition.
12. Use the condition in Problem 21.; in (b) both members of the equations must be divided by 2 before the condition applies.
11. (a) $k=-2$
(b) $k=48$ (Equations must be rewritten in prover form.)

Challenge Problems

1. Let the equations of the circles be

$$
\begin{align*}
& C_{1}: x^{2}+y^{2}+D_{1} x+E_{1} y+F_{1}=0 \tag{1}\\
& C_{2}: x^{2}+y^{2}+D_{2} x+E_{2} y+F_{2}=0 \\
& C_{3}: x^{2}+y^{2}+D_{3} x+E_{3} y+F_{3}=0
\end{align*}
$$

Then equations of the common chords of C_{1} and C_{2}, C_{2} and C_{3}, and C_{1} and C_{3} are, respectively,

$$
\begin{aligned}
& L_{1}:\left(D_{1}-D_{2}\right) x+\left(\dot{E}_{1}-E_{2}\right) y+F_{1}-F_{2}=0 \\
& L_{2}:\left(D_{2}-D_{3}\right) x+\left(E_{2}-E_{3}\right) y+F_{2}-F_{3}=0 \\
& L_{3}:\left(\dot{D}_{1}-D_{3}\right) x+\left(E_{2}-E_{3}\right) y+F_{1}-F_{3}=0
\end{aligned}
$$

The family of lines through the intersection of L_{1} and L_{2} has as an equation
$-a\left(\left(D_{1}-D_{2}\right) x+\left(E_{1}-E_{2}\right) y+F_{1}-F_{2}\right)+b\left(\left(D_{2}-D_{3}\right) x+\left(E_{2}-E_{3}\right) y+F_{2}-F_{3}\right)=0$
For the values $a=1$ and $b=1$ this equation becomes

$$
\left(D_{1}-D_{3}\right) x+\left(E_{1}-E_{3}\right) y+F_{1}-F_{3}=0
$$

But this is exactly the equation we had for L_{3}; hence the lines are concurrent.
(Note: This is, o:. course, not the only way to make this proof. It is possible to assigr. coordinates to the vertices of the triangle, and $i: n d$, in terms of thene coordinates equations of the common chords and coordi--.-nates of their point of intersection.)
2. The proof given siere for Challenge Problem l also polds here; so would any other that did rint use the fact that in Problem l the circles intersect.

The student is asked to explain the variation in shape of the ellipse from the fact that $b=a \sqrt{1-e^{2}}$. He should be able to see that the nearer the value of e is to zero, the closer $\sqrt{1-e^{12}}$ is to 1 ; in such cases the minor axis differs very little from the major axis. But if values close to, 1 (but less than 'ill) are selected for $e, \sqrt{1-e^{2}}$ can be made as small as one wishes, and hence the minor, axis can be made small as compared with the major axis.

Exercises 7-7

1. $\frac{(x-3)^{2}}{36}+\frac{(y-2)^{2}}{16}=1 ; F(3+2 \sqrt{5}, 2), F^{\prime}(3-2 \sqrt{5}, 2) \cdot, \quad v(9,2)$, $V^{2}(-3,2) ; x=3 \pm \frac{28}{5} \sqrt{5} ; e=\frac{\sqrt{5}}{3}$.
2. $\frac{x^{2}}{9}+\frac{y^{2}}{5}=1$

3. (a) $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
(b) $\frac{x^{2}}{5}+\frac{y^{2}}{x}=1$
(c) $\frac{(x-3)^{2}}{\cdot 25}+\frac{(y-5)^{2}}{\frac{600}{49}}=1$
(d) $\frac{(x-1)^{2}}{16} * \frac{(y-4)^{2}}{12}=1$
4. The laius rectum of an ellipse is either of the two chords of an ellipse perpendicular to the major axis at a focus:

If in -Equation. (a) of Figure 7-4, we set $x=a e$, we find $y= \pm b \sqrt{1-e^{2}}= \pm \frac{n^{2}}{a}$; thus, the length of a lakes rectum is $\frac{2 b^{2}}{a}$. (The same result is' obtained in each of. the other forms.-)
6. 'For the ellipse with equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$,'

$$
\begin{aligned}
& r+\cdots=\sqrt{(x,=a)^{2}+y^{2}}+\sqrt{(x+a e)^{2}+y^{2}} \\
& =\sqrt{(x-a e)^{2}+\left(1-e^{2}\right)\left(a^{2}-x^{2}\right)}+\sqrt{(x+a e)^{2}+\left(1-e^{2}\right)\left(x^{2} \cdot x^{2}\right)} \\
& =\sqrt{a^{2}-2}+e^{2} x^{2}+\sqrt{a^{2}+2 a e x+e^{2} x^{2}} \\
& =a-e x+a+e x \text {. } \\
& =2 a
\end{aligned}
$$

It should be noted that the first radical expression is equal to 'a - ex rather than' ex a because the largest possible x, is a, and e is less than one; hence a - ex is positive'.
7. If $P(x, y)$ is any point on the ellipse, the fixed points are $F(c, 0), F^{\prime}(-\dot{c}, 0)$, and the constant is $2 a(a>c)$, then

$$
\begin{array}{r}
\dot{\mathrm{PF}+\mathrm{PF}}=2 a \tag{1}\\
\sqrt{\left(\mathrm{x}^{\prime}-\mathrm{c}\right)^{2}+\mathrm{y}^{\hat{c}}}+\sqrt{(\mathrm{x}+\mathrm{c})^{2}+y^{2}}=2 a
\end{array}
$$

:. After eliminating radicals in the usual way, this becomes $\left(-a^{2}-c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(a^{2}-c^{2}\right)$.
or, we 'let

$$
\begin{gathered}
b^{2}=a^{2}-c^{2} \\
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2} \\
\ddots \frac{x^{2}}{z^{2}}+\frac{y^{2}}{b^{2}}=1
\end{gathered}
$$

(2) ${ }^{\text {or }}$.

This sketches the proof that if the coordinates of a point satisfy (1), they satisfy (2). For the converse, we retrace our steps, but must use both signs when the square root is taken, so that there are four equations,

$$
\pm \sqrt{(x-c \cdot)^{2}+y^{2}} \pm \sqrt{(x+1 c)^{2}+y^{2}}=2 a
$$

It can easily be dhow, because of the requirement that $a,>c$ and the fact that the fo radicals represent two sides of a triangle of which the third size has length $2 c$, that only the positive signs can be used:
8. "Each point is located so that the sum of its d 'stances from the fixed
 length of FF^{\prime}):
'9. See Prubleri 8. As the distance between the tacks increases, the ellipse becomes more elongated; as it decreases, the ellipse becomes more like a circle.
10. (a) $5 x^{2}+9 y^{2}-40 x-54 y+216=0$
(b) $.8 x^{2}-4 x y+5 y^{2}-38 x-58 y+242=0$
11. $e=0$; the foot -directrix definition cannot be used for a circle.
12. The ellipse has equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and is symmetric with respect to, the origin and to both of the coordinate axes. Therefore $(-c, 0)$ and the line $x=-\frac{a}{e}=-\frac{c}{e^{2}}$ are also a focus and directrix of the ellipse. (See Figure 7-4 part (a)).
13. We may recognize $r=\frac{6}{2-\cos e}$ as an equation of an ellipse, and rewrite the equation in rectangular form for the purpose of discussion as ir Example 1. Instead, we shall carry out the discussion in polar coordinates in order to illustrate the procedure in that system. We may rewrite the equation as

$$
r=\frac{\frac{1}{2}(6)}{1-\frac{1}{2} \cos \theta}
$$

and see that the graph is an ellipse with one focus at the pole, with eccentricity $e=\frac{1}{2}$, and with directrix six units to the left of the pole and perpendicular to the line along the polar axis. From the definition of éccentricity we have $e=\frac{1}{2}=\frac{d\left(F_{1}, V_{1}\right)}{d\left(V_{1}, Q\right)}=\frac{d\left(F_{1}, V_{2}\right)}{d\left(V_{2}, Q\right)}$.

Since $d\left(F_{1}, Q\right)=6$, we have $d\left(F_{1}, V_{1}\right)=2, d\left(F_{1}, V_{2}\right)=6$: Therefore the yextices are $V_{1}=(2, \pi)$ and $V_{2}=(6,0)$. Since $d\left(F_{2}, \dot{V}_{2}\right)=d\left(F_{1}, V_{1}\right)=2$, we have the coordinates of the other focus, $F_{2}=(4,0)$. Since the center of the ellipse is the midpoint of $\overline{F_{1} F_{2}}$, we have $C=(2,0)$. We readily find the major axis, $2 a=d\left(V_{1}, V_{2}\right)=8$; - and the focal distance, $2 \dot{c}=d\left(F_{1}, F_{2}\right)=4$. (We verify that $e=\frac{c}{a}=\frac{2}{4}=\frac{1}{2} \cdot$) From the relationship $b^{2}=a^{2}-c^{2}$, we have \%
$b^{2}=44^{2}-2^{2}=12$ and $b=2 \sqrt{3}$, which gives the minor axis, $2 b=4 \sqrt{3}$. The length of a latus rectum (only one, RS, is draw in the figure) can be found from the fact that it is twice the polar distance to the point R, for which $6=\frac{\pi}{2}$. Substitution in the original equation gives for this distance -

$$
d\left(F_{1} R\right)=\frac{6}{2-\cos \frac{\pi}{2}}=3 ;
$$

therefore each latus rectum is of length 6 . Using these values, we complete the sketch.
14. Using the representation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}\left(1-e^{2}\right)}=1$, the desired proportion is

$$
2 a \mathrm{a}: 2 \mathrm{a}=2 \mathrm{a}: 2 \frac{\mathrm{a}}{\mathrm{e}} .
$$

This can be verified immediately.

In the first four problems in Exercises 7-8, you will notice that the location of the transverse axis has been specified, but it has not been indicated which of the lengths given for the semi-axes is that of the transverse axis. This is deliberate, and it is suggested that you not make any adaitional specification in assigning the problems to the students. They : should discover for themselves that two different hyperbolas meet the conditions in each problem, and should realize how this case differs from that of the ellipse, where the longer of the two axes must be the major axis.

Exercises 7-8

1. $\frac{\mathrm{x}^{2}}{4}-\frac{\mathrm{y}^{2}}{9}=1, \mathrm{e}=\frac{\sqrt{13}}{2}, V(2,0), V^{\prime}(-2,0), F=(\sqrt{13}, 0), F_{0}^{\prime}=(-\sqrt{13}, 0)$

D: $x=\frac{4}{13} \sqrt[i]{13}, D^{\prime}: x=-\frac{4}{13} \sqrt{13}$
$A: y=\frac{3}{2} x, A^{\prime}: y=-\frac{3}{2} x$
$\stackrel{\text { or }}{ }$
$\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$

$C=\frac{\sqrt{13}}{3}, V(3,0), V^{\prime}(-3,0), F(\sqrt{13}, 0), F^{\prime}(-\sqrt{13}, 0)$
D : $x=\frac{9}{13} \sqrt{13}, D^{\prime}: x=-\frac{9}{13} \sqrt{13}$.
$A: y=\frac{2}{3} x, A^{\prime}: y=-\frac{2}{3} x$
2. $: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$,

$$
\begin{aligned}
& \mathrm{e}=\frac{\frac{\sqrt{13}}{3}^{\cdots} ; \mathrm{V}(0,3), V^{\prime}(0,-j), F(0, \sqrt{13}), F^{\prime}(0,-\sqrt{13})}{\mathrm{D}:} \mathrm{y}=\frac{9}{13} \sqrt{13}, D^{\prime}: y=-\frac{9}{13} \sqrt{13} \\
& A: y=\frac{3}{2} x, A^{\prime}: y=-\frac{3}{2} x
\end{aligned}
$$

or

$$
-\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

$$
\therefore \quad e=\frac{\sqrt{13}}{2}, V(0,2), V^{\prime}(0,-2), F(0, \sqrt{13}), F^{\prime}(0,-\sqrt{13})
$$

$$
\dot{D}: y=\frac{4}{13} \sqrt{13}, D^{\prime}: y=-\frac{4}{13} \sqrt{13}
$$

$$
A: y=\frac{2}{3} x, A^{\prime}: y=-\frac{2}{3} x
$$

3. $\frac{(x+2)^{2}}{16}-\frac{(y-3)^{2}}{9}=1$
$e_{0}=\frac{5}{4}, v(2,3), v^{\prime}(-6,3)$

$$
\dot{F}=(3,3) ;(-7,3)
$$

$$
D: x=\frac{6}{5}, x=-\frac{\frac{26}{5}}{5}
$$

$$
A:-3 x-4 y+18=0
$$

$$
A^{:}: 3 x+4 y-6=0
$$

$\xrightarrow{\text { or }}$

$\frac{(x+2)^{2}}{9^{2}}-\frac{(y-3)^{2}}{16}=1$
$e=-\frac{5}{3}, V=(1,3), V(-5,3), F(3,3), F^{\prime}(-7,3)$
$D: x=-\frac{1}{5}, D^{\prime}: x=-\frac{19}{5}$.
$A: 4 x=3 y+17=0, A^{\prime}: 4 x+3 y-1=0$

$$
4: \quad-\frac{(x+2)^{2}}{10}+\frac{(y-3)^{2}}{9}=1
$$

$e=\frac{5}{3}, . . V(-2,6), V^{\prime}(-2,0), F(-2,8), F^{\prime}(=2,-2)$
D : $y=\frac{24}{5}, D^{\prime}: y=\frac{6}{5}$
$A^{-}: 3 x^{\prime}-4 y+13=0, A^{\prime}: 3 x+4 y^{\prime} . .6=0$
or
$-\frac{(x+2)^{2}}{9}+\frac{(y-3)^{2}}{16}=1$
$e=\frac{5}{4} ; V=(-2 ; 7), V^{\prime}(-2,-1) ; F=(-2,8), F^{\prime}(-2,-2)^{\prime}$
D: $y=\frac{31}{5} ;$ D $^{\prime}: ~ y=-\frac{1}{5}$
$A: 4 x=3 y+17=0, A^{\prime}: 4 x+3 y-1=0$
5. See thě next page:
6. (a) $-x^{2}+y^{2}=4$
(b) $x^{2}-y^{2}=4$
(c) $=4 x^{2}+9 y^{2}=36$
(d) $25 x^{2}-144 y^{2}=3600$
(e) $x^{2}=4 y^{2}-4 x+24 y-48=0$
7. $i 6 x^{2}=9 y^{2}=144$
8. $2 x y=1 ; e=\sqrt{2}$
9. It will be easier to do this proof. If the coordinate system is chosen in such a fashion that the origin is the midpoint of the line segment determined by the two fixed points.
10: The latus rectum of a hyperbola is either of the two focal chords perpendicular to the transverse axis; its length is $\frac{20^{2}}{a}$.
11. The points located by the construction lie on a hyperbola because the construction determines each one so that there is a constant difference (2a) in its distances to the two fixed points.
12. Mimination of the parameter gives $\frac{x^{2}}{a^{2}}-\frac{\dot{y}^{2}}{b^{2}}=1$.

13. Draw concentric circies, center ($0 ; 0$), radil a and b, any angle θ. Draw tangent at B (intersecting G o. at C) and tangent at D (intersecting x-axis at E) . Fron: C and - E draw parallels to the x - and. y-axes respectively, intarsecting at $P(x, y)$. Then
$x=O E=a \sec \theta$ and \because
$\mathrm{y}=\mathrm{CB}=\mathrm{b} \tan \theta$.

Hence $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\sec ^{2} \theta-\tan ^{2} \theta=1$.
14. (a) xy $\ddagger-21$
(b) $-x^{2}+y^{2}=40$
15. Locus is a pair of intersecting lines (the asymptotes of

$$
\left.-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\right)
$$

sa

Review Exercises

1. (a) Circle with center at pole and radius of $\frac{2}{3}$.
(b) Circle with center at $\left(1,0^{\circ}\right)$ and radius of 1 .

(c) Parabola with vertex at ($4, \pi$), focus at 0 and directrix perpendicular to polar axis and 8 units to left of pole.

(d) Hyperbole with eccentricity of $\frac{3}{2}$, center at $\left(-\frac{12}{5}, 0^{\circ}\right)$, fool at $\left(0,0^{\circ}\right)$ and $\left(-\frac{24}{5}, 0^{\circ}\right)$, vertices at $\left(\frac{4}{5}, 180^{\circ}\right)$ and $\left(-4,0^{\circ}\right)$, and directrices $r \cos e=-\frac{4}{3}$ and $r \cos \theta=-\frac{52}{15}$.

(e) Ellipse with eccentricity of $\frac{1}{2}$, center at ($1,0^{\circ}$), foci at $\left(2,0^{\circ}\right)$ and $\left(0,0^{\circ}\right)$, directrices $r \cos \theta=5$ and $r \cos \theta=-3$, vertices $\left(3,0^{\circ}\right)$ and $\left(1,180^{\circ}\right)$.

*

$=$
(f) Parabola with eccentricity of 1 , focus at pole, vertex at $\left(2,180^{\circ}\right)$, and airectrix r ços $\theta=-4$.

(g) Ellipse with eccentricity $\frac{3}{4}$, center at $\left(\frac{72}{7}, 0^{\circ}\right)$, foci at $\left(0,0^{\circ}\right)$ and $\left(\frac{144}{7}, 0^{\circ}\right)$, vertices at $\left(24,0^{\circ}\right)$ and $\left(\frac{24}{7}, 180^{\circ}\right)$, the length of the minor axis is $\frac{48}{\sqrt{7}}$, and the directrices ${ }^{-}$are $\therefore r \cos \dot{\theta}=\frac{200^{\circ}}{7}$ and $\dot{r} \cos \theta=-8$.

(h) Pärabola with eccentricity 0 , vertex $\left(2,90^{\circ}\right)$, focus at the pole, and directrix the line $r \sin \theta=4$:

(1) Hyperbola with eccentricity 2 , center at $\left(2,180^{\circ}\right)$, vertices at $\left(1,180^{\circ}\right)$ and $\left(-3,0^{\circ}\right)$, the fo $\begin{aligned} & \text { are at }\left(4,180^{\circ}\right) \text { and at, the pole, }\end{aligned}$ and the directrices are $r \cos \theta=-\frac{3}{2}$ and $r \cos \theta=-\frac{5}{2}$.

(j). The graph is the point $(2,-3)$.
(k) Hyperbola with center at $(0,0)$, vertices at $(\sqrt{2}, 0)$ and $(-\sqrt{2}, 0)$,

- foci ε ($\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$, eccentricity of $\sqrt{\frac{5}{2}}$, directrices - $x=\frac{2}{\sqrt{5}}$ and $x=-\frac{2}{\sqrt{5}}$, and asymptotes $y=\sqrt{\frac{3}{2}} x$ and $y=-\sqrt{\frac{3}{2}} x$.
(i) Farabola with vertex at $(-2,3)$, focus at $(-4,3)$ and directrix $\dot{x}=0$.
(m). Ellipse with center at $(-2,-4)$ vertices at $(-8,-4)$ and $(4,-4)$, . foci at $(-2 \pm \sqrt{11},-4)$, eccentricity of $\frac{\sqrt{11}}{6}$, and directrices $x=-2 \pm \frac{30^{\prime}}{\sqrt{11}}$.
(n) Ellipse with"center at $(1,-2)$, vertices aṭ $(1 \pm \sqrt{5},-2)$, .eccentricity of $\frac{\sqrt{10}}{5}$, foci at $(1 \pm \sqrt{2},-2)$, and directrices $x=1+\frac{5}{\sqrt{2}}$ and $x=i-\frac{5}{\sqrt{2}}$.
(0) The graph is the point $(3,-5)$.
(p) Hyperbola with center at. $(-4,-1)$, vertices at $(-4 i \sqrt{27},-1)$, foci at $(2,-1)$ and $(-10,-1)$, eccentricity of $\frac{2}{\sqrt{3}}$, directrices $x=\frac{1}{2}$ and $x=-\frac{27}{2}$, and asymptotes $x+4 \pm \sqrt{3}(y+1)=0$.
(a) Hyperbola with center at $(-2,3)$, vertices at $(3,3)$ and $(-i, 3)$, eccentricity of $\frac{13}{5}$, foch at $(11,3)$ and $(-15,3)$, directrices $x=-\frac{1}{13}$ and $x=\frac{-51}{13}$, and asymptotes $y=\frac{12}{5} x+\frac{39}{5}$ and $y=-\frac{12}{5} x-\frac{9}{5}$.

2. (a) $-y^{2}=-20 x$
(b) $\cdot(x-7)^{2}=32(y-6)$
(c) Four circles, centers ($\pm j, \pm 5)$,

Equations: $x^{2}+y^{2}-10 x \pm 10 y+25=0, x^{2}+y^{2}+10 x \pm 10 y+25=0$.
(d) $r=2 \sqrt{2}$. Equation: $x^{2}+y^{2}-2 x+8 y+9=0$
(e) $c=(0,4), x=2 \sqrt{5}$. Equation: $x^{2}+y^{2}-8 y=4=0$
$(f) \cdot x^{2}+y^{2}-12 x+8 y-48=0$
(g) $\frac{(x-2)^{2}}{9}+\frac{4(y=3)^{2}}{27}=1$
(h) $\frac{(x+3)^{2}}{2}+\frac{(y-3)^{2}}{6}=1$.
(i) $\frac{(x-2)^{2}}{4}+\frac{(y-1)^{2}}{5}=1$
(j) $\frac{-9 x^{2}}{319}+\frac{16 y^{2}}{319}=1$
(k) $: 2 x^{2}-x-y+5=0$

3, $(x+1)^{2}=16 y$
4. $\left(y_{1}+1\right)^{2}=-4(x-2)$. Each center is equality distant from a fixed point $(1,-1)$ and a fixed line (the line $x=3$).
5. $\frac{\sqrt{5}}{2}$
6. Elimination of the parameter gives $\frac{x^{2}}{2}+\frac{y^{2}}{b^{2}}=1$.
$7 x^{2}+3 y^{2}+6 x-14 y+6=0$.
Choose axes so that equation
of curve is $b^{2} x^{2}=a^{2} y^{2}=a^{2} b^{2}$; then. asymptotes are $y= \pm \frac{b}{a} x$. Then write expressions for.distances from $P=(x, y)$ to asymptotes;

$$
\begin{gathered}
d(P, Q) \cdot d(P ; R)=\frac{|b x-a y|}{\sqrt{a^{2}+b^{2}}} \cdot \frac{|b x+a y|}{\sqrt{a^{2}+b^{2}}} \\
=\frac{\left|b^{2} x^{2}-a^{2} y^{2}\right|}{a^{2}+b^{2}}=\frac{-a^{2} b^{2}}{a^{2}+b^{2}}
\end{gathered}
$$

9. (a) $\operatorname{If} \cdot \frac{b}{a}=2, b=2 a \cdot$ Then $^{2} \quad e=\frac{\sqrt{a^{2}+b^{2}}}{a}=\frac{\sqrt{5 a^{2}}}{a}=\sqrt{5}$
$\because:(b){ }^{\prime}$ In similar fashion; $e=\sqrt{1+k^{2}}$
10. (a) Since $x^{2}+y^{2}=\frac{t^{2} r^{2}+t^{2} r^{2}}{7+t^{2}}$, we gët $x^{d}+y^{2}=r^{2}$
(b) If only positive (or only negative) signs are used, the graph is only one-fourth' of a olrcie; which part 'depends on the signs used, . and also on whether r and t are positive or negative. If + signs are used, and r and t are both, positive, it is the part 'in the first quadrant; if + signs are used, and $r>0, \bar{t}<0$, .Itis the part in the second quadrant; and so on.
(c) In order for \hat{x} to be $\underset{\sim}{t r}, \frac{t}{\sqrt{1+t^{2}}}=+1$, This is impossible, for $\sqrt{7+t^{2}}=t$ only if $t \neq 0^{\prime}$, and then $x=0:$ Thus to be : - precise we would say that the parametric equations represent a circle with two points missing.

11: $e=\frac{\sqrt{a^{2}+b^{2}}}{a}, e^{t}=\frac{\sqrt{a^{2}+b^{2}}}{b^{2}} \cdot \frac{1}{e^{2}}+\frac{1}{e^{2}}=\frac{a^{2}+b^{2}}{a^{2}+b^{2}}=1$
12. $\frac{(x-a)^{2}}{k^{2}}+\frac{(y-b)^{2}}{k^{2}}=1$. This is a circle with center (a, b) and radius $|k|$.
If k were zero, then the locus would be reduced to the point (a, b)
23. Computed height.at eàge of road is $\frac{20 \sqrt{5}}{3} \mathrm{ft}$. ($\approx 14.9 \mathrm{ft}$.) ,
14. 20 feet
(2) Let the equation of the hyperbola be $x^{2}-y^{2}=a^{2}$; then $e=\sqrt{2}$, $F=(a e, 0), F^{2}=(-a e, 0)$, and for a point (x, y) on the curve,

$$
r=\sqrt{(\bar{x}-a e)^{2}+y^{2}}=\sqrt{(x-a \sqrt{2})^{2}+x^{2}-a^{2}}=\sqrt{\left(2 x^{2}+a^{2}\right)-2 a \sqrt{2} x}
$$

similarly

$$
\begin{aligned}
r^{r} & =\sqrt{\left(2 x^{2}+a^{2}\right)^{2}+2 a \sqrt{2} x} \\
-r^{i} & =\sqrt{\left(2 x^{2}+a^{2}\right)^{2}-8 a^{2} x^{2}} \\
& =\sqrt{4 x^{4}-4 a x+a^{4}} \\
& =\left|2 x^{2}-a^{2}\right|=2 x^{2}-a^{2} .
\end{aligned}
$$

The square of the distance from the point to the center $(0,0)$ is $x^{2}+y^{2}=x^{2}+x^{2}-a^{2}=2 x^{2}-a^{2}$
16. (a) One possible form is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{\frac{16}{25} a^{2}}=1$
(b) $\frac{4 x^{2}}{225}+\frac{y^{2}}{36}=1$
(c) $\frac{x^{2}}{25}+\frac{y^{2}}{36}=1$
17. (a) The equation of the circle is $x^{2}+y^{2}=a^{2}$ and the equation of the chord is $y=p$. If $\bar{y}=p$, then $x^{2}=a^{2}-p^{2}$ or $x= \pm \sqrt{a^{2}-p^{2}}$

Then $d(P, N)=\sqrt{a^{2}-p^{2}}$ and $d(P, M)=\sqrt{a^{2}-p^{2}}$.
(b)

$$
\begin{aligned}
& x^{2}+y^{2}=a^{2} \\
& d(P, N)=\sqrt{a^{2}-p^{2}}, d(M, P)=a-p, \\
& \text { and } d(P, Q)=a+p . \\
& \text { Then } \frac{d(M, P)}{d(P, N)}=\frac{d(P, N)}{d(P, Q)} .
\end{aligned}
$$

(c) Let $(0,0)$ be one point and $P=(p, q)$ be the other.

$$
\begin{aligned}
\sqrt{(x-\dot{p})^{2}+(y-q)^{2}} & =k^{2} \sqrt{x^{2}+y^{2}} \\
\left(k^{2}-1\right) x^{2}+\left(k^{2}-1\right) y^{2}+2 p x+2 q y & =p^{2}+q^{2} \\
\left(x+\frac{p}{k^{2}-1}\right)^{2}+\left(y+\frac{q}{k^{2}-1}\right)^{2} & =\frac{k^{2}\left(p^{2}+\dot{q}^{2}\right)}{\left(k^{2}-1\right)^{2}}
\end{aligned}
$$

This is the equation of a circle.
We must restrict k so that is positive and not equal to one.

Challenge Problems

1. Lett the hyperbola have equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$: Then the equations of the three lines named are, in order, $y=\frac{b}{a} x, x=\frac{a}{e}, y^{*}=\frac{-a}{b}\left(x^{\prime}-a e\right)$. These lines can be proved concurrent in any of a variety of ways.
2. If. $P=(x, y)$ is the point where the explosion takes place, the 5-second - time difference at A and B. gives the condition

$$
\sqrt{x^{2}+y^{2}}-\sqrt{(x-2)^{2}+y^{2}}=5(.2)
$$

which becomes

$$
\frac{(x-1)^{2}}{.25}-\frac{y^{2}}{.75}=1
$$

The 8-second difference at A and C gives the condition
which becomes

$$
\begin{gather*}
\sqrt{x^{2}+y^{2}}-\sqrt{x^{2}+(y-4)^{2}}=8(.2) \\
\frac{(y-\ddot{2})^{2}}{.64}-\frac{x^{2}}{3.36}=1
\end{gather*}
$$

If we write equations of the appropriate asymptotes (the ones we want häve positive slope), we have $y=\sqrt{3}(x-1)$ and
$y=\frac{2}{\sqrt{2 L}} \dot{x}+2$. Solving these equations simultaneously, we find that the point of intersection is approximately $(2.9,3.3)$. While a point of intersection of the asymptotes is not a point of intersection of the curves, i.t is probably satisfactory here since there was only one significant figure in the times given.
3. If the suggestion is followed, the condition is

$$
d\left(P, \dot{W}_{2}\right)-d\left(P, W_{1}\right)^{\prime} \geq 20
$$

which is $\quad \sqrt{(x+15)^{2}+y^{2}}-\sqrt{(x-15)^{2}+y^{2}} \geq 20$.
This becomes $\frac{x^{2}}{100}-\frac{y^{2}}{125} \geq 1$. The locus has as its boundary the part of the hyperbola for which x is positive.
4. From the statement of the problem and the diagram, we must show $m<O P Q=\alpha$. But $m<O P Q=\theta_{0}-\alpha$. Therefore we must show $\alpha=\theta-\alpha$ or $\theta=2 \alpha$, Rectengular coordinates of P are ($r \cos \theta^{-}, \dot{r} \sin \theta$) ; the equation of the parabola in rectangular coordinates is $y_{4}=12(x+3)$, The point-siope form of the equation of a line through P with slope m is $y-r \dot{\sin } \theta=\bar{m}(\dot{x}-r \cos \theta)$,
or

" $\dot{y}=m x+r(\sin \theta-\dot{m} \cos \theta)^{c}$.
This line will in general intersect
the parabola in two points, but if
It is a tangent line there will be just one such point. The coordinates of the intersection points can bet found by solving simultanegusly the equations of the line and parabola.

Thus by substituting we get a single equation for the x-coordinate,

$$
(m x+r(\sin \dot{\theta}-m \cos \theta))^{2}=12(\alpha+3)
$$

or
$\left.m^{2} x^{2}+\left(2 m r^{\prime} \sin \theta-m \cos \theta\right)-12\right) x+r^{2}(\sin \theta-m \cos \theta)^{2}-36=0$.
Tangency requires that the roots of this equation be equal; therefore, the discriminant of the equation must equal zero. Hence
$\left(2 m r\left(\sin \theta-m \cos ^{\circ} \theta\right)-12\right)^{2}-4 m^{2}\left(r^{2}(\sin \theta-m \cos \theta)^{2}-36\right)=0$.
This equation can be eventually simplified to

$$
3 m^{3}-m r(\sin \theta-m \cos \theta)+3=0
$$

But for this parabola $r=\frac{6}{1-\cos \varphi}$; substituting this in the equation just above, we obtain, with some more simplification,

$$
(1+\cos \theta) m^{2}-(2 \sin \theta) m+1-\cos \theta=0
$$

Solving this for m gives the single value, $m=\frac{\sin \theta}{I+\cos \theta}$.
But this is identically equal to $\tan \frac{\theta}{2}$. Since m is the tangent of the angle of inclination, L, we have $\alpha=\frac{\theta}{2}$ or $\theta=2 \alpha$, which is what we wanted tr prove.
5. We indicate here one possible position \therefore of the triangle ${ }^{\prime}$ and indicate a method of proof. There are many other possibilites.

In triangle $A B C$, we select one altitude as y-axis, and place the origin at the foot of the altitude. Then let the vertices be. $A=(2 a, 0), B=(0,2 b), \quad$, $\mathrm{C}=(2 c, 0)$. The midpoints are $A^{i}=(c, b), B^{1}=(a+c, 0)$, : $\mathrm{C}^{\prime}=(\mathrm{a}, \mathrm{b})$.

Altitude $\overline{\overline{C F}}$ lies in the line

with equation

$$
y=\frac{a}{b}(x-2 c)
$$

It intersects altitude $\overline{\mathrm{BO}}$ in point $H=\left(0, \frac{-2 a c}{b}\right)$. Hence the midpoints of $\overline{\mathrm{CH}}$ and $\overline{\mathrm{AH}}$ are $\mathrm{R}=\left(\mathrm{c}, \frac{-a c}{b}\right)$ and $\mathrm{P}=\left(\mathrm{a},-\frac{a c}{b}\right)$.

The center of the circle through R, P, and C^{\prime} would lie on the perpendicular bisectors of $\overline{\mathrm{RP}}$ and $\overline{\overline{P C}}$; the point in which they intersect is

$$
N=\left(\frac{a+c}{2}, \frac{b^{2}-a c}{2 b}\right)
$$

Now we verify that the remaining six points ($0, D, F, Q, B^{\prime}, A^{\prime}$) lie on the same circle. One way would be to find the radius,

$$
r=\frac{1}{2 b} \sqrt{\left(a^{2}+b^{2}\right)\left(b^{2}+c^{2}\right)}
$$

and verify that it is equal to the distance from N to each of these points.

Illustrative Têst Items

I:- Identify and sketch the curves whose equations are given.
(a) $r-5=0$
(g) $x^{2}-4 y-4=0$
(b) $\mathrm{r}=2 \sin \theta$
-(h) $16 x^{2} \mp 25 y^{2}=400$
(c) $r=\frac{3}{1-\cos \theta}$
(i) $9 x^{2}+4 y^{2}-36 x+32 y+100=0$
(d) $r=\frac{4}{2-\cos \theta}$
(j). $x^{2}: 25 y^{2}+2 x+100 y-99=0$
(e) $r=\frac{6}{4-8 \cos \theta}$
(k) $16 x^{2}-9 y^{2}+32 x+54 y-209=0$
(f) $3 y^{2}-4 x^{2}=12$
(l) $9 x^{2}+4 y^{2}-18 x+16 y-11=0$
2. Sketch the graphs of the following polar equations:

Write the equations in rectangular form.
(a) $\overline{\mathbf{r}}-7=0$
(c) $\underline{x}-r \sin \theta-2=0$.
(b) $r=\frac{3}{1-2 \cos \theta}$
(a). $r=\frac{5}{3-2 \cos \theta}$
3. Identify the following conic sections; give the eccentricity.
(a) $r=\frac{6}{3-\cos \theta}$
(c) $2 r^{3}-5=0$
(b) $2 r-3 r \cos \theta-12=0$
(a) $r=4-r \cos \theta$
-4. The directrix of a parabola is the line $y=x$, and the focus is ($4,-4$). What are the coordinates of the yertex?
5. The eccentricity of a hyperbola is 2 and the-distance between the foci is 8 . Find the lengths of the semi-axes.

社
6. Write an equation of the tangent to the circle $x^{2}+y^{2}=2$, at the point ($-3,4$) .
7. Find an equation of the radical axis of the circles with equations $(x-3)^{2}+(y+2)^{2}=4$ and $x^{2}+y^{2}=9$.
8. What kind of symmetry do the graphs of the following equations have? If there is point-symmetry, give the coordinates of the point; if linesymmetry, give an equation of each axis of symmetry.
(a) $r=\frac{6}{3-3 \cdot \cos \theta}$
(d) $\frac{(x-2)^{2}}{4}+\frac{(y+4)^{2}}{36}=1$
(b) $r=\cos \theta+\sin \theta$
(e) $\frac{(x+3)^{2}}{25}-\frac{(y-1)^{2}}{4}=1$.
(c) $25 x^{2}-4 y^{2}=100$
(f) $x^{2}-6 x-y+7=0$
9. Write an equation of a circle with center $(3,-1)$ and tangent to the line with the equation $2 x+5 y-5=0$.
10. The axes of an ellipse have lengths 10 and 6 ; what is its eccentricity?
11. Find the distance, belween the foci of the conic section with equation $\frac{x^{2}}{4}-\frac{y^{2}}{9}=1$.
12. The vertex of a parabolais $\left(\frac{1}{7}, 5\right)$ and the focus $1 s,(4,5)$. What $1 \mathrm{~s}^{\text {s }}$ an equation of the directrix?
13. The directrix of a parabola is the line with equation $x=2$, and the" endpoints of the latus rectum are $(6,6)$ and $(6,-2)$. Write an equation of this parabola.
14. Write an equation of the circle having the segment with endpoints $(-1,3)$ and $(3,-3)$ as a diameter.
15. What is an equation of the conice with eccentricity of $\frac{3}{2}$ and foci at $(3,8)$ and $(3,2)$?
16. (a) Write an equation of the family of hyperbolas with center at ($2,-3$) and asymptotes with slopes $* \frac{2}{5}$ and $-\frac{2}{5}$:
(b) Find an equation of the member of that family which contains the point $(22,7)$.

Answers for Illustrative Test Items

1.: (In some routine cases the graphs are omitted.)
(a). Circle, center $(0,0)$, radius $5 \cdot$
(b) Circle, center ($1, \frac{\pi}{2}$), radius 1 .
(c) Parabola $r=\frac{3}{1-\cdot \cos ^{\prime} \theta}$

(d) Ellipse $r=\frac{2}{1-.0 .5 \cos \theta}$

(e) Myperbola $r=\frac{1.5^{3}}{1-2 \cos \theta}$
(f) Hyperbola $-\frac{x^{2}}{3}+\frac{y^{2}}{4}=1$

(g) Parabola $x^{2}=4(y+1)$
\qquad
\qquad
\qquad
(h) Ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=\cdot 1$

- (i) 'Point-ellipse $(2,-4)$

$$
9(x-2)^{2}+4(y+4)^{2}=0
$$

(j) $(x+1)^{2}-25(y-2)^{2}=0$ or $(x+5 y-9)(x-5 y+11)^{2}=0$ Tho lines, equations $x a+5 y-9=0$ and $x=5 y+11=0$.
(k) Hyperbóla $\frac{(x+1)^{2}}{9}-\frac{(y-3)^{2}}{16}=1$

$$
\text { (l) } \frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{9}=1 \text {. }
$$

Ellipse

2 (a) Circle; $x^{2}+y^{2}=\frac{49}{4}$
(b) Hyperbolp;

$$
\frac{(x+2)^{2}}{1}-\frac{y^{2}}{3}=\frac{1}{2}
$$

(c) Parabola $x^{2}=4(y+1)$

(d) Elluse

$$
\frac{(x-2)^{2}}{9}+\frac{y^{2}}{5}=1
$$

3. (a) Ellipse; $e=\frac{1}{3}$.
(b) Hyperbola; e $=\frac{3}{2}$.
(c). Circle; no eccentricity for $e=0)$.
(d) Parabola; $\dot{e}=1$
4. $V=(2,-2)$
5. $a=2, b=2 \sqrt{3}$
6. $y-4=\frac{3}{4}(x+3)$, or $3 x-4 y+25=0^{\circ}$
7. $3 x^{\prime}-2 y-9=0$
8. (a) Parabola; line symmetry, $\theta=0$
(b). Circle; point symmetry, $\left(\frac{\sqrt{2}}{2}, \frac{\pi}{4}\right)$; line symmetry, every line through the center.
(c) Hyperbola; point symmetry, $(0,0)$; line symmetry, $x=0$ and $y=0$.
(d) Ellipse; point symmetry; (2,-4); line symmetry, $x=2, y=-4 *$.
(e) Hyperbola: pint symmetry, ($-3,1$) ; line symmetry, $x=-3$ and $. y=1$.
(f) Parabola; line symmetry, $x=3$.
9. $(x-3)^{2}+(y+1)^{2}=\left(\frac{\lfloor 2(3)+5(-1)-5 \mid}{\sqrt{4+25}}\right)^{2}=\frac{16}{29}$
or $29 x^{2}+29 y^{2}-174 x+58 y+274=0$
10. $e=\frac{i}{5}$
11.' $2 a e=2 \sqrt{13}$
12. $x=-2$
13. $(y-2)^{24}=8(x-4)$ -
14. $c=(1,0) ; r^{*}=\sqrt{13}$
$(x=1)^{2}+y^{2}=13$
15. Hyperbola; ae $=3, a=2, b=\sqrt{5} ; c=(3, b)$

$$
-\frac{(x-3)^{2}}{5}+\frac{(y-5)^{2}}{4}=1
$$

16.

(a) $\frac{(x-2)^{2}}{25}-\frac{(y+3)^{2}}{4}=k$
(b) $\frac{(x-2)^{2}}{25}-\frac{\left(y^{\prime}+3\right)^{2}}{4}=-9$
$3 \hat{14}$
$312 / 312$
preachers ${ }^{\prime \prime}$ commentary
Chapter 8

- THE LINE AND THE PLANE TN 3-SPACE

Parts of this. chapter will be familiar to some classes. Time saved when this is the ease may permit study of some of the supplementary chapters.

Many teachers have a favorite, method of teaching students to make sketches of solids. . If you do not have such a preferred method, you might like to try this . Have the students use squared paper.; tell them to draw of horizontal, OZ vertical, and ox at ain angle of 45° with the negative end of the y-axis: Choose ae suitable length for the unit on the $y=$ and z-axis, and on the $\bar{x}=a x i s^{4}$ let the diagonal of the unit square measure two units: pis is a convenient way of getting units, and makes a rather satisiffactörỳz drawing.

The formulas for point of division in Section 8 a apply for both internal and external points of divisions. In Exercise 9; parts (b) to (f); of Exercises $8-2$, the distances are considered to be directed, and two points are found:

Exercises 8-2

$?$
(c)

(f)

t (d)

(g)

$\because:$
(e)

2. $d(0, P)=\sqrt{17}, d(0, Q)=\sqrt{14}, d(P, R)=\sqrt{30}, d(Q, R)=5 \sqrt{2}$.
3. Midpoint of $\overline{\mathrm{OP}}=\left(\frac{1}{2}, 1, \frac{3}{2}\right)$, midpoint of $\overline{\mathrm{PR}}=\left(\frac{3}{2},-\frac{1}{2}, 2\right)$.
4. (a)

(b)

5.

8. (a)
(b) Projections

v
(c) $\mathrm{d}\left(\hat{P}_{1}, \stackrel{P}{P}_{2}\right)=\sqrt{161}$
lengths of projections
on $x-, y-$, and z-axes .6, 5, 10
on $x y-, y z-$, and $x z$-planes $\sqrt{61}, 5 \sqrt{5}, 2 \sqrt{3{ }^{14}}$
9. (a) ($\left.\frac{1}{2},-\frac{1}{2}, 2\right)$
(b) $\left(\frac{4}{3},-\frac{5}{3}, \frac{10}{3}\right)$ or $(8,-11,1475$
(c) $\left(\frac{9}{8},-\frac{11}{8}, 3\right)$ or $\left(\frac{21}{2},-\frac{29}{2}, 18\right)$
(d) $\left(-\frac{1}{8}, \frac{3}{8}, 1\right)$ or $\left(-\frac{19}{2}, \frac{27}{2},-14\right)$
(e) $\left(0, \frac{1}{5}, \frac{6}{5}\right)$ or $\left(6,-\frac{41}{5}, \frac{54}{5}\right)$
(घ) $\left(\frac{34}{3},-\frac{47}{3}, \frac{58}{3}\right)$ or $\left(-\frac{16}{3}, \frac{23}{3},-\frac{22}{3}\right)$
10. $d(A, B)=\sqrt{14}$
$d(A, C)=\sqrt{34}$
$\therefore \quad d(B, C)=\sqrt{20}$
Right' triangle.

Challenge Problem

The question of how we know there are three mutually perpendicular lines through a point in space is intended as a warning to the students against the uncritical use of intuition. It is not a trivial question. In terms of the development in the SMSG Geometry it can be answered as follows. By a postulate, there are at least four points in space, so we can select Q and another point, P. By another postulate there is a unique line L_{1}, containing 0 and P.. By a theorem, there exists a unique plane α through O perpendicular to $\overrightarrow{O P}$. By a postulate there is another point Q in α. By a postulate there is a unique line L_{2} through O and Q, and it is perpendicular to $\stackrel{\rightharpoonup}{0}$. Finally, by a theorem there is a unique fine in a through 0 perpendcular to L_{2}, and by another theorem it is perpendicular to L_{1} too.

The argument by which the parametric representation is obtained is rather tricky and should probably be gone over in class very carefully. It ${ }^{\wedge}$ may help to show that

$$
z=z_{Q}+s\left(z_{1}-z_{0}\right)
$$

for suitable s, by noting that $z_{1}-z_{0} \neq 0$ and hence $s=\frac{2-z_{0}}{z_{1}-z_{0}}$ will do: In the final step the argument is that from the parametric equations for L^{i} and $\mathrm{L}^{\text {UN }}$ we see that

$$
y=y_{0}+s\left(y_{1}-y_{0}\right)
$$

for suitable t and that

$$
y=y_{0}+s\left(y_{1}-y_{0}\right)
$$

for suitable s. Since- $y_{1}=y_{0} \neq 0$,

$$
s_{s}=\frac{y-y_{0}}{y_{1}-y_{0}}=t
$$

Students are often intrigued by the idoa-o a thensional space, so they may enjoy our brief discussion of the notion. If it is taken up, you should try to make it clear that we are not introducing a coordinate system into: space which is given (by a system of postulatẻs) tut instead are defining a "space" wiich is in many ways like the space of ordinary geometry.

In 3 -space, as in 2-space, a line las not just one, but many representations. Only one is given in this commentary, except where the direetions specificaily ask for two. A student should be allowed to write any correct representation, but should be able to show that his representation is equivalent to any desired representation.

In Exercise 2 of Exercises 8-3, you may want to have the students consider further the cases in which symmetric representation is not possible. In part (d), for example, since one of the direction numbers is zero, symmetric equations cannot be written. However, t can be eliminated and the equations of two planes containing the line written: $z-1=0$, $x+5 y+13=0$. In part (a), with two direction numbers equal to zero, we have at once the equations of two such planes: $y_{0}=2, z=3$.

Exercises 8-3

1. (a)

$$
\left\{\begin{array}{l}
x=1+t(1) \\
y=2+t(0) \\
z=3+t(0)
\end{array}\right.
$$

(f)

$$
\left\{\begin{array}{l}
x=0+t(5) \\
y=0 . \dot{x} t(-1) \\
z=0+t(0)
\end{array}\right.
$$

-(b.) $\left\{\begin{array}{l}x=-3+t(0) \\ y=-2+t(0) \\ z=1+t(1)\end{array}\right.$
(g)

$$
\left\{\begin{array}{l}
x=0+t(1) \\
y=0+t(2) \\
z=0+t(3)
\end{array}\right.
$$

(c) $\left\{\begin{array}{l}x=7+t(-4) \\ y=\dot{3}+t(-4) \\ z=3+t(-2)\end{array}\right.$
(h)

$$
\left\{\begin{array}{l}
x=1+t(-1) \\
y=2+t(-2) \\
z=3+t(0)
\end{array}\right.
$$

(a) $\left\{\begin{array}{l}x=-3+t(5) \\ y=-2+t(-1) \\ z=1+t(0)\end{array}\right.$
(i.)
(e) $\left\{\begin{array}{l}\dot{x}=0+t(-4) \\ y=0+t(-4) \\ z=0+t(-2)\end{array}\right.$
(j) $\left\{\begin{array}{l}x=2+t(-4) \\ y=-3+t(-4) \\ z=1+t(-2)\end{array}\right.$
2. The symmetric form exists in parts, (c), (e), (g) and (j)
(c) $\frac{x-1}{-4}=\frac{y-2}{-4}=\frac{2-3}{-2}$
(e) $\frac{x}{-4}=\frac{y}{-4}=\frac{2}{-2}$
($\underset{\text { g }) ~}{x}=\frac{y}{2}=\frac{z}{3}$
(j) $\frac{x-2}{-4}=\frac{y+3}{-4}=\frac{2-1}{-2}$.
3. (a) $(1,0,0)$
(b) $(0,0,1)$
\therefore (c) $\left(-\frac{2}{3},-\frac{2}{3},-\frac{1}{3}\right)$
(d) $\left(\frac{5}{\sqrt{26}}, \cdots \frac{1}{\sqrt{26}}, 0\right)$
(e) $\left(-\frac{2}{3},-\frac{2}{3},-\frac{1}{3}\right)$
(f) $\left(\frac{5}{\sqrt{26}},-\frac{1}{\sqrt{26}}, 0\right)$
(g) $\left(\frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}} ; \frac{3}{\sqrt{14}}\right)$
x: $\left.\quad \frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}, 0\right)$
(i) $\left(\frac{5}{\sqrt{26}},-\frac{1}{\sqrt{26}}, 0\right)$
(j) $\left(-\frac{2}{3},-\frac{2}{3},-\frac{1}{3}\right)$
4.
(a) $\quad\left\{\begin{array}{l}\dot{x}=1+t(-1) \\ y=1+t(-2) \\ z=-2+t(1)\end{array}\right.$
$\left\{\begin{array}{l}x^{\prime}=0+t(1) \\ y=-1+t(2) \\ z=-1+t(-1)\end{array} \quad(-1,-3,0)\right.$
(b). $\quad\left\{\begin{array}{l}x=-1+t(-1) \\ y=-1+t(0) \\ z=-1+t(2)\end{array}\right.$
$\left\{\begin{array}{l}x=-2+t(1) \\ y=-1+t(0) \\ z=1+t(-2)\end{array}\right.$
(c) $\quad\left\{\begin{array}{l}x=4+t(-3) \\ y=2+t(-4) \\ z=1+t(3)\end{array}\right.$
$\left\{\begin{array}{l}x=1+t(3) \\ y=4+2, \\ z=4+t(-3)\end{array}\right.$
(d) $\because\left\{\begin{array}{l}x=-3+t(4) \\ y=1+t(1) \\ z=1+t(-2)\end{array}\right.$
$\left\{\begin{array}{l}x=1+t(-4) \quad(5,3,-3) \\ y=2+t(-1) \\ z=-1+t(2)\end{array}\right.$
(a) $\left(\frac{-1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right): 114^{\circ}, 145^{\circ}, 66^{\circ} \cdot\left(\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, \frac{-1}{\sqrt{6}}\right) ; 66^{\circ}, 35^{\circ}, 114^{\circ}$.
(b) $\left(\frac{-1}{\sqrt{5}}, \frac{0}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right) ; 117^{\circ}, 90^{\circ}, 27^{\circ} .\left(\frac{1}{\sqrt{5}}, \frac{0}{\sqrt{5}}, \frac{-2}{\sqrt{5}}\right) ; 63^{\circ}, 90^{\circ}, 153^{\circ}$.
(c) $\left(\frac{-3}{\sqrt{34}}, \frac{-4}{\sqrt{34}}, \frac{3}{\sqrt{3 k}}\right) ; 121^{\circ}, 133^{\circ}, 59^{\circ}\left(\frac{3}{\sqrt{34}}, \frac{4}{\sqrt{34}}, \frac{-3}{\sqrt{34}}\right) ; 59^{\circ}, 47^{\circ}, 121^{\circ}$.
(d) $\left(\frac{4}{\sqrt{21}}, \frac{1}{\sqrt{21}}, \frac{-2}{\sqrt{21}}\right) ; 29^{\circ}, 77^{\circ}, 116^{\circ} .\left(\frac{-4}{\sqrt{21}}, \frac{-1}{\sqrt{21}}, \frac{2}{\sqrt{21}}\right) ; 151^{\circ}, 103^{\circ}, 64^{\circ}$
6. x-axis $(1,0,0)$
y-axis $(0,1,0)$
z-axis $(0,0,1)$
7. $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
8. (a) No
(b) Yes
(c) Yes
(d) Yes
9. Lines with equations (a) and (f) are parallel; so are (b) and (d).
10. $I_{1}: \frac{x-2}{3}=\frac{y-1}{-2}=\frac{z+1}{-1}$
$L_{3}: \frac{x-3}{2}=\frac{y+5}{-3}=\frac{2}{4}$
$L_{2}: \frac{x+1}{1}=\frac{y-2}{2}=\frac{2-4}{-1}$
L_{4} cannot be written in symmetric form.

$$
\begin{aligned}
\text { 11. } d\left(P_{1}, P_{2}\right) & =\sqrt{\left[\left(x_{0}+\ell t_{1}\right)-\left(x_{0}+\ell t_{2}\right)\right]^{2}+\left[\left(y_{0}+m t_{1}\right)-\left(y_{0}+m t_{2}\right)\right]^{2}+} \\
& =\sqrt{\left.\left(l t_{0}+n t_{1}\right)-\left(z_{0}+n t_{2}\right)\right]^{2}} \\
& =\sqrt{\left(l^{2}+m^{2}+n^{2}\right)\left(t_{2}-t_{2}\right)^{2}} \\
& =\sqrt{\ell^{2}+m^{2}+n^{2}}\left|t_{1}-t_{2}\right|
\end{aligned}
$$

The distance between any two points on a line with the given parametirc representation is a constant multiple $\left(\sqrt{l^{2}+m^{2}+n^{2}}\right)$ of the absolute value of the difference of the values of the parameter that give the points". If the direction numbers are normalized, the distance is equal to the absolute value of the difference of the parameters,
12. Suppose L is in or parallel to the $x y$-plane. In that plane, I would have the parametric representation,

$$
\begin{aligned}
& x=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y=y_{0}+t\left(y_{1}-y_{0}\right)
\end{aligned}
$$

The z-coordinate of every point on L would be the same number, so $z=z_{0}$. Thus Equations (3) would represent the line \dot{z}; similarly, they would represent a line parallel to either of the other coordinate planes.

Challenge Problems

1. For all values of t the x-coordinate of the point on L will be 2 so the line is in the plane $x=2$. Similarly for every point $P(x, y, z)$ in the plane $3 y-2=-5$ there is a value of t such that $y=-1+t$ and $z=2+3 t$.
Som : $x=2, y=-1+t, z=2+3 t$ lies in the intersection or the planes $x=2$ and $3 y=2=-5$.
2. $x=2 \quad z=-1$
3.

$$
\left\{\begin{array}{l}
x=x_{0}+t\left(x_{1}-x_{0}\right) \\
z=z_{0}+t\left(z_{1}-z_{0}\right) \\
w=w_{0}+t\left(w_{1}-w_{0}\right)
\end{array}\right.
$$

3. $\left\{\begin{array}{l}x^{2}=x_{0}+t\left(x_{1}-x_{0}\right) \\ 2=z_{0}+t\left(z_{1}-z_{0}\right) \\ z=w_{0}+t\left(w_{1}-w_{0}\right)\end{array}\right.$

If. $P_{2}\left(x_{2}, y_{2}, z_{2}, w_{2}\right)$ is on L then there is a number
(

But then

$$
\begin{array}{ll}
\because & \ddots \\
\therefore & \\
\therefore & \\
& \\
& \\
& \\
y_{1}=y_{0}+\left(\frac{1}{t_{2}}\right)\left(y_{12}-y_{0}\right) \\
z_{1}=z_{0}+\left(\frac{1}{t_{2}}\right)\left(z_{2}-z_{0}\right) \\
w_{1}=w_{0}+\left(\frac{1}{t_{2}}\right)\left(w_{2}-w_{0}\right)
\end{array}
$$

So P_{1} is on the line through P_{0} and P_{2}.
4. On the coordinate axes, $\left(x_{0}, 0,0,0\right),\left(0, y_{0}, 0,0\right),\left(0,0, z_{0}, 0\right),\left(0,0,0, w_{0}\right)$. . On the coordinate planes, $\left(x_{0} ; y_{0}, 0,0\right),\left(0, y_{0}, z_{0}, 0\right),\left(0,0, z_{0}, w_{0}\right)$,

$$
\left(z_{0}, 0,0, w_{0}\right),\left(x_{0}, 0, z_{0}, 0\right),\left(0, y_{0}, 0, w_{0}\right)
$$

On the coordinate hyperplanes; $\left(x_{0}, y_{0}, z_{0}, 0\right),\left(0, \dot{y}_{0}, z_{0}, W_{0}\right),\left(x_{0}, 0, \underline{y}_{0}, z_{0}\right)$, $\left(x_{0}, y_{0}, 0, w_{0}\right)$.
ERIC
5.

In 3-space $V-E+F=2$. where : V is the number of vertices, E, the number of edges, F, the number of faces.

In 4 -space the polyhedron is made up of vertices (0 -dimensional), edges (l-dimensional), faces (2-dimensional), and hyperfaces (3-dimensional). In the picture the hyperfaces are represented as truncated pyramids with bases on faces of the figures that appear as inner and outer cubes. . $\mathrm{V}-\mathrm{E}+\mathrm{F}^{-}-\mathrm{H}=0$

Exercises 8-4

$$
\begin{aligned}
& \text { 1. } 2 x-y-4 z+6=0 \\
& \text { 2. } x+4 y=5 z-6=0
\end{aligned}
$$

3.

(a) $6 x+4 y+3 z-12=0$

(b) $2 x+5 y+z-10=0$

(c) $-4 x-2 y-5 z-10=0$

(d). $3 x-2 y+z+6=0$

(e) $3 x-4 y-12=0$

(f) $5 y-8 z_{-}+20=0$

ERIC
$324 \quad 326$.

(h) $3 y^{x}-5 z=0$

4: (a) $a x+b y+c z=0$
(b) $\mathrm{cz}+\mathrm{d}=0$
(c) $a x+d=0$
(d) $a x+b y+d=0$
(e) by $+* c z+d=0$
(f) $a x+c z \pm d=\dot{0}$
-5. (a)

(b)
6. (a)

(b)

7. $(\underline{b}, \mathrm{~m}, n)=(3,-2,5) ;(\lambda, \mu, v)=\left(\frac{3}{\sqrt{38}}, \frac{-2}{\sqrt{38}}, \frac{5}{\sqrt{38}}\right)$
8. $(b, m, n)=(4,-1,0) ;(\lambda, \mu, v)=\left(\frac{4}{\sqrt{17}}, \frac{-1}{\sqrt{17}}, 0\right)$
9. (a) $\frac{4}{\sqrt{61}}$
(f) $\frac{14}{\sqrt{89}}$
(b) $=0$
(g) $\frac{11}{7}$
(c) $\frac{28}{\sqrt{45}}$
(h) $\frac{4}{\sqrt{34}}$
(d) $\frac{1}{\sqrt{14}}$
(i) 8
(e) $\frac{23}{5}$
(3) $\frac{13}{2}$
$\cdots 10$ (a) $\frac{7}{\sqrt{61}}$
(f) $\frac{49}{\sqrt{89}}$
(b) $\frac{11}{\sqrt{30}}$
(g) $\frac{23}{7}$
(c) $\frac{3}{\sqrt{5}}$
(h) $\because \frac{17}{\sqrt{34}}$
(a) 0
(i) 6
(e) 5
(j) $\frac{7}{2}$
11. (a) $-8 x+3 y=7 z+23=0$
(b) $2 x-3 z-1=0$
ie. (a) $3 x-2 y+z+4=0$
(b) $x-2 z+5=0$
13.- Let the equation of the plane be: $A x+B y+C z+D=0$.

Since the plane contains $(a, 0,0),(0, b, 0)$, and $(0,0, c)$, we have

$$
\begin{array}{lll}
A a+D=0 & \text { or } & A=-\frac{D}{a}, \\
B b+D=0 . & \text { or } & B=-\frac{D}{b},
\end{array}
$$

and

$$
\mathrm{C} c \div \mathrm{D}=0
$$

or
${ }^{\circ} \mathrm{C}=-\frac{\mathrm{D}}{\mathrm{c}}$.
Thus if $D=-1$, an equation is $\frac{x}{a}+\frac{y}{b} \div \frac{c}{z}=1$.
14. (a) $\frac{x}{I}+\frac{y}{3}+\frac{z}{4}=1$
(b) $\frac{x}{-2}+\frac{y}{5}+\frac{z}{-3}=1$
15.- (a) $x-12 y+3 z-7=0$
(b) $-3 x+8 y+2 z-15=0$
16. One method would be to find an equation of the plane determined by points $A, B_{,}, C(2 x-y+z-1=0)$ and then check that point D is a point of this plane.

17: (a) $x+y+2 z-2=0$
(b) $3 y-2 z+1=0$
18. The proof given in Intermediate Mathematics may be familiar; it follows.

Let $P=(x, y, z)$ be any point on the plane that is the set of points equidistant from $0=(0,0,0)$ and $Q=(k a, k b, k c)$ where

$$
k=\frac{-2 d}{a^{2}+b^{2}+c^{2}}
$$

Then, since $d(P, 0)=d(P, Q)$,

$$
x^{2}+y^{2}+z^{2}=(x-k a)^{2}+(y-k b)^{2}+(z-k c)^{2},
$$

or $\quad 0=-2 k a x+k^{2} a^{2}-2 k b y+k^{2} b^{2}-2 k c+k^{2} c^{2}$,
which becomes $a k(a x+b y+c z)=k^{2}\left(a^{2}+b^{2}+c^{2}\right)$
or

$$
a x+b y+c z=\frac{k}{2}\left(a^{2}+{ }^{c} b^{2}+c^{2}\right)
$$

By substituting the value of k, this equation becomes

$$
a x+b y+c z+d=0
$$

.This argument is reversible. This means that any point P whose coordinates satisfy $a x+b y+c z+d=0$ is equidistant from the points $\dot{0}$ and \bar{Q}. Hence $a x+b y \div c z \div d=0$ is the équation of a plane.

Note. If $d=0$, it follows that $k=0$; the two points coincide, and no plane is determined. In this case we use the symmetric points (a, b, c) and ($-a,-b,-c$) and carry through the same steps as above.
, 8-5 The definition of a vector as, a set of equivalent directed segments makes the extension to 3 -space almost triviel. Since any member of the set may represent the vector, we are free to choose those representatives which mast simplify our models or diagrams. In Chapter 3 we stressèd the freedom, but we did not attempt initially to pursue ali the consequences of this freedom. At this point it may be helpful to review the earlier material briefly and to point out that all vectors which have representatives on parallel lines also have representatives on the same line. Once this property of vectors is understood, the approach to. 3 -space should follow more easily.

The proof of Example 1 assumes no more knowledge of prisms than the .material presented in the SKSG Geometry. . If students have had qdaitional training in solid geometry, they should be atle to develop a more concise proof.

In Chapter 3^{-}we approached vectors from a purely geometric point of view before introducing any analysis using components. Here we have adopted the same approach, but in almost any application of vectors it is more convenient to use representations in"component form.

For simplicity we use $1 ., j$, and k_{\searrow} to represent basis vectors without the usual symbols indicating vector quantities. Consequently it may be necessary to stress that these are indeed vectors.

Exercises $8-5$

1. (a) 0
(e) 1
(b) 0
(i) 1
(c) 0
(g) 0
(d) 1
(h) 7
2. (a) 0 .
(e) 1
(b) 0
(f) 1
(c) 0
(g) 0
(d) 1
(h) $\frac{\sqrt{7}}{2 \sqrt{3}}$ or $\frac{\sqrt{21}}{6}$
3. $r= \pm \frac{1}{3}$.
4.

(a) $[14,-3,3]$
(d) $[6,0,2]$
(b) $[-7,16,-9]$
(e) $[14,10,-2]$
(c) $[-2,17,-9]$
(f) $[-18,-4,-6]$
5. (a) $[6 ;-2,2]$
(d) $\left[0,-\frac{2}{3}, 0\right]$
(b) $\left[\frac{17}{5},-\frac{12}{5}, \frac{9}{5}\right]$
(e) $[-7,0,1]$
(c) $\left[-\frac{1}{3},-\frac{1}{3},-\frac{2}{3}\right]$
(f) $\left[-\frac{13}{6}, 0,-\frac{1}{6}\right]$.
6. (a) -1
(f),-70
(b) -6
(g) 257
(c) 24
(h) 4
(d) -50
(i) $\simeq 231$
(e) 0
(j) 42
7. $\vec{A} \cdot \vec{A}$ is a real number defined $|\vec{A}||\vec{A}| \cos \theta$ where θ is the angle between \vec{A}. and $\cdot \vec{A}$; i.e., $\theta=0^{\circ}$: So $\vec{A} \cdot \vec{A}=|\vec{A}| \cdot|\vec{A}|=|\vec{A}|^{2}$. $|\vec{A}|^{2}$ and $|\vec{A}|^{3}$ are real numbers. $\vec{A} \cdot \vec{A} \cdot \vec{A}$ is not defined unless ${ }^{\text {a }}$ convention about the order of mutliplication is made, but in any case, e.g., $(\vec{A} \cdot \vec{A}) \cdot \vec{A}=|\vec{A}|^{2} \vec{A}$, the product is a vector, not a number.
8. $\frac{P}{|P|}=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} i+\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} j+\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}} k$.

A vector -of magnitude ane in the direction of P.
'9. $k=-\frac{9}{2}$
10. $\frac{1}{\sqrt{3}}$
11. The line segment joining the endpoint of \vec{A} and \vec{B} is parallel to $\vec{A}-\vec{B}$. But $\vec{A}-\vec{B}=1+4 j$ which lies in the xy-plane. Hence $\overrightarrow{A B}$ is parallel to the $x y$-plane.
12. If $\vec{c} \mid \vec{a}$ and $\vec{c} \mid \vec{b}$, we must show that $\vec{c}\rfloor(\vec{a}+\vec{b})$ or that $\vec{c} \cdot(\vec{a}+\vec{b})=0$. But $\vec{c} \cdot(\vec{a}+\vec{b})=\vec{c} \cdot \vec{a}+\vec{c}, \vec{b}$. Since $\vec{c} \mid \overrightarrow{\vec{p}}, \vec{c} \cdot \vec{a}=0$, and since. $\vec{c}\left\lfloor\vec{b} ; \vec{c} \cdot \vec{b}=0^{\circ}\right.$. Therefore, $\vec{c} \cdot(\vec{a}+\vec{b})=0$ and $\vec{c}\lfloor(\vec{a}+\vec{b})!$
1;3. $[0,0, \pm 1]$ or $\pm k$.
14. $-7 i+6 j-k$

- $7 \mathrm{ci}-6 \mathrm{c} j+\mathrm{ck}$, where . $\mathrm{c} \neq 0$.

15. $\angle A=124^{\circ}$
$\angle B=32^{\circ}$
$\angle C=24^{\circ}$
16. $\vec{P}+\dot{r}\left[0,1,-\frac{b}{c}\right]$ is a parametric representation of a line through $\vec{P}=\{a, b, c\} \neq[0,0,0]$ which is perpendicular to $\vec{P} ;$ i.e., there is such a line for each r.
17. We wish to prove that $\overrightarrow{r A}=\left\{r a_{2}, r a_{2}, r a_{3}\right\}$.

Since $\vec{A}=\left[a_{1}, a_{2}, a_{3}\right]$,

$$
\overrightarrow{\mathrm{A}}=\mathrm{r}\left[\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right]
$$

Does $r\left[a_{1}, a_{2}, a_{3}\right]=\left[r a_{1}, r a_{2}, r a_{3}\right]$?
If two vectors are equal, their magnitudes and directions are equal.
magnitude of $r\left[a_{1}, a_{2}, a_{3}\right]=|r| \sqrt{a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}}$
magnitude of $\left[r a_{1}, r a_{2}, r a_{3}\right]=\sqrt{r^{2} a_{2}{ }^{2}+r^{2} a_{2}{ }^{2}+r^{2} a_{3}{ }^{2}}$

$$
|r| \sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}
$$

If r is positive or negative the directions of the two sere equal. Therefore the vectors are equal.
18. (a) We wish to prove that

$$
\stackrel{\rightharpoonup}{X} \cdot(\stackrel{\rightharpoonup}{Y}+\stackrel{\rightharpoonup}{Z})=\stackrel{\rightharpoonup}{X} \cdot \vec{Y}+\dot{\vec{X}} \cdot \stackrel{\rightharpoonup}{Z}
$$

We expand the left-hand'member to obtain

$$
\begin{aligned}
& \quad\left[x_{1}, \ddot{x}_{2}, x_{3}\right] \cdot\left[y_{1}+z_{1}, y_{2}+z_{2}, \hat{y_{3}}+z_{3}\right] \\
& \quad=x_{1}\left(\dot{y_{1}}+z_{1}\right)+x_{2}\left(y_{2}+z_{2}\right)+x_{3}\left(y_{3}+z_{3}\right) \\
& \quad=x_{1} y_{1}+x_{1} z_{1}+x_{2} y_{2}+x_{2} z_{2}+x_{3} y_{3}+x_{3} z_{3} \\
& \quad=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{1} z_{1}+x_{2} z_{2}+x_{3} z_{3} \\
& \quad-\vec{X} \cdot \vec{y}+\vec{x} \cdot \overrightarrow{2} .
\end{aligned}
$$

This is the right-hand side of the equation and the proof is $\%$ complete.
(b) To prove $(t \vec{X}) \cdot \vec{Y}=t(\vec{X} \cdot \vec{Y})$.

The ieft-hand member is expanded to obtain

$$
\begin{array}{r}
{\left[t x_{1}, t x_{2}, t x_{3} j \cdot\left[y_{1}, y_{2}, y_{3}\right]\right.} \\
\quad=t x_{1} y_{1}+t x_{2} y_{2}+t x_{3} y_{3} \\
=t\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)
\end{array}
$$

which, by Theorem $8-3$, is $t(\vec{X} \cdot \vec{Y})$.
Proở is complete.

Corollary. To prove that

$$
\vec{X} \cdot(a \vec{Y}+b \vec{Z})=a(\vec{X} \cdot \vec{Y})+b(\vec{X} \cdot \vec{Z})
$$

\therefore - $\quad \therefore$ we expand the left-hand member to obtain

$$
\begin{aligned}
& {\left[x_{1}, x_{2}, x_{3}\right] \cdot\left[a y_{1}+b z_{1}+a y_{2}+b z_{2}+a y_{3}+b z_{3}\right] } \\
&\left.=a x_{1} y_{1}+b x_{1} z_{1}{ }^{*}+a x_{2} y_{2}+b x_{2} z_{2}+a x_{3} y_{3}+b x_{3} z_{3}\right] \\
&=a\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)+b\left(x_{1} z_{1}+x_{2} z_{2}+x_{3} z_{3}\right) \\
& \because a(\vec{X} \cdot \vec{Y})+b(\vec{X} \cdot \vec{Z}), \text { or the right-hand member. }
\end{aligned}
$$

8-6 Although there are not many new ideas in this sectica, some of the arguments require close attention. The postulates and definition mentioned are from the SMSG Geometry.

We note that even though., P and P_{1} are in the plane $M, \vec{P}-\stackrel{\rightharpoonup}{P}_{1}$, denotes an oxigin-vector which does not lie in M unless M also contains the origin.

Example 3 through Example 6 are not essential to the development, but are included to show students that entire regions or their boundaries may be described concisely with vectorst

Exercises 8-6

1. (a) $7 x-3 y+.5 z=15$.
2. We assume the plane in question contains the given points in each of the following.
(a) $2 x-3 y+z-14=0$
(b) $2 x-4 y+7 z+69=0$
(c) $3 x-5 y+4 z-50=0$
(d) $x+y-6 z+38=0$
3. (a) $\frac{5}{\sqrt{14}}$ or $\frac{5 \sqrt{14}}{14}$
(b) $\frac{8}{\sqrt{38}}$ or $\frac{4 \sqrt{38}}{19}$
$!$

$$
\begin{aligned}
& \text { (c). if } d=0: 0 \\
& \text { if } a \neq 0: \frac{|d|}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

A, B, C, and D are the four vertices of the tetrahedron and P, Q, R, S, T and U are the midpoints of $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \dot{\mathrm{CD}}, \overline{\mathrm{DA}}, \overline{\mathrm{BD}}$, and $\overline{\mathrm{CA}}$ respectively. Thus $\vec{P}=\frac{1}{2}(\vec{A}+\vec{B}) \quad \vec{Q}=\frac{1}{2}(\vec{B}+\vec{C})$
$\cdot \vec{R}=\frac{1}{2}(\vec{C}+\vec{D}) \quad \vec{S}=\frac{1}{2}\left(\vec{D}_{1}+\vec{A}\right)$
$\vec{T}=\frac{1}{2}(\vec{B}+\vec{D}) \quad \vec{U}^{\prime \prime}=\frac{1}{2}(\vec{A}+\vec{C})$.
(a) To show that $\overleftrightarrow{Q S}, \overrightarrow{U T}$, and $\overleftrightarrow{P R}$ are concurrent. $\overleftrightarrow{Q S}$ is represented by ${ }^{x} \vec{Q}+(1-x) \vec{S}$ or $\frac{1}{2}((1-x) \vec{A}+x \vec{B}+x \vec{C}+(1-x) \vec{D})$. $\overrightarrow{U T}^{\circ}$ is $\stackrel{y}{\text { represented by } y \vec{U}}+(1-y) \vec{T}$ or $\frac{1}{2}(y \vec{A}+(1-y) \vec{B}+(1-y) \vec{C}+y \vec{D})$.
For these to intersect there must be x and, y such that ($(x-x)=y$ and $(1-y)=x$. But $x=y=\frac{1}{2}$ meets this condition so $\frac{1}{4}(\vec{A}+\vec{B}+\stackrel{\rightharpoonup}{C}+\vec{D})$ is on both $\stackrel{Q}{Q}$ and $\stackrel{\leftrightarrow}{U T}$. But
$\frac{1}{4}(\stackrel{\rightharpoonup}{A}+\vec{B}+\vec{C}+\vec{D})=\frac{1}{2}\left(\frac{1}{2}(\vec{A}+\vec{B})+\frac{1}{2}(\stackrel{\rightharpoonup}{C}+\vec{D})\right)=\frac{1}{2} \vec{P}+\left(1-\frac{1}{2}\right) \vec{R}$
which is on $\stackrel{\leftrightarrow}{\mathrm{PR}}$. Hence the three lines are concurrent.
(b). We wish to show that QUST and PURT are parallelograms. First we must show that QUST and PURT are plane figures. However,
 UT , so we have coplanarity.
Then $\vec{Q}-\vec{U}=\frac{1}{2}(\vec{B}-\vec{A})=\vec{T}-\vec{S}$, so $d(Q, U)=d(B, A)_{\text {, }}$
and $\vec{Q}-\vec{T}=\frac{1}{2}(\vec{C}-\vec{D})=\vec{U}-\vec{S}$, sQ $d(Q, T)=d(U, S)$.
Thus QUST has two pairs of opposite sides of equal length and is thus a parallelogram. We could not get from $\stackrel{\rightharpoonup}{Q U}|\mid \overrightarrow{B A}$ and $\stackrel{\rightarrow}{T S}| \mid \overrightarrow{B A}$ to ' $\stackrel{Q U}{\mathrm{QU}} \mid \overrightarrow{T S}$ without assuming or proving the theorem in solid geometry that for any lines a, b, and $c, a \| b$ and $b \| c$ imply all. The proof that PURT is a parallelogram procedes similarly. $\xrightarrow[\mathrm{PR}]{\rightarrow}$, intersects $\stackrel{H}{\mathrm{UP}}$, so $\mathrm{P}, \mathrm{U}, \mathrm{R}$, and T are coplanar. We show that $\vec{P}-\vec{T}=\frac{1}{2}(\vec{A}-\vec{D})=\vec{U}-\vec{R}$

$$
\text { and } \quad \vec{P}-\vec{U}=\frac{1}{2}(\vec{B}-\vec{C})=\vec{T}-\vec{R} \text {, }
$$

so that $\cdot d(P, T)=d(U, R)$ and $d(P, U)=d(R, T)$.
Hence PURT is a parallelogram.
(c) Since in (a) we show, that $x=y=\frac{1}{2}$, the point of concurrency is the midpoint of the segments involved.
5. Let \vec{D} be the normal vector from P_{1} to M.

$$
\cdot \dot{\vec{D}}=\left[x-x_{1}, y_{r}-y_{1}, \dot{z}-z_{1}\right] .
$$

The unit. vector normal to M is

$$
\overrightarrow{\mathrm{n}}=[\lambda, \mu, \nu] .
$$

Then the distance from ${ }^{\prime} P_{1}$ to M is found from

$$
\begin{aligned}
a & =|\vec{n} \cdot \vec{D}|=\dot{\mid}[\lambda, \mu, \nu] \cdot\left[x-x_{1},\left[y-y_{1}, z-z_{1}\right] \mid\right. \\
& =\left|\lambda x-\lambda x_{1}+\mu y-\mu y_{1}+\nu_{z}-\nu z_{1}\right|=\left|\lambda x_{1}+\mu y_{1}+\nu z_{2}-p\right|
\end{aligned}
$$

6. ${ }^{\prime \prime}$ (a) $\underset{A B}{\leftrightarrow}=\{x: \vec{x}=[4,9 p-7,-\dot{c} \dot{p}+5]\}$.
(b) $\overline{A B}=\left(x: \dot{\vec{x}}=\left[3^{\circ}-5 p, 4-p, ?+p\right], 0 \leq p \leq 1\right)$
(c) $\overrightarrow{A B}=\left\{x_{1}: \vec{x}=[3-5 p ; 4-p, 2+p], p \geq 0\right\}$
(d) $\overrightarrow{B A}=\{x: \stackrel{\rightharpoonup}{x}=[3-5 p, 4-p, 2+p], p \leq 0\}$

7: (a) Midpoint $\vec{M}=\left[3,6,7 \frac{1}{2}\right]$ trisection points $\vec{T}_{1}=[2,4,5]$ and $\vec{T}_{2}=[4, \dot{8}, 10]$.
(b)

$$
\begin{gathered}
\vec{M}=\left[3 \frac{1}{2},-4 \frac{1}{2}, 13\right] \\
\vec{T}_{1}=\left[2 \frac{1}{3},-2 \frac{1}{3}, 8 \frac{2}{3}\right] \text { and } \vec{T}_{2}=\left[5 \frac{2}{3},-6 \frac{2}{3}, 15\right]
\end{gathered}
$$

(c): $\vec{M}=\frac{1}{2}\left[a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right]$

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{T}_{1}=\frac{1}{3}\left[2 a_{1}+b_{1}, 2 a_{2}+b_{2}, 2 a_{3}+b_{3}\right] \text { and } \\
& \\
& \vec{T}_{2}=\frac{1}{3}\left[a_{1}+2 b_{1}, a_{2}+2 b_{2}, a_{3}+2 b_{3}\right]
\end{aligned}
$$

8. (a) $\vec{X}=[0,0,0]$
(b) $\overrightarrow{\mathrm{x}}=\left[\frac{2}{3}, 2 \frac{1}{2},-5 \frac{1}{2}\right]$.
(c) $\vec{X}=\left[1 \frac{1}{4},-\frac{3}{4}, 3 \frac{1}{4}\right]$
9. (a) The triangular region is $\{\underline{Y}: \vec{Y}=[1+p-2 q+2 p q$, $4-\mathrm{p}-2 \mathrm{q}+2 \mathrm{pq},-2+3 \mathrm{p}+6 \mathrm{q}-6 \mathrm{pq}]$ where $0 \leq \mathrm{p} \leq 1$ and $0 \leq q \leq i]$.

The interior is the same except $0<p<1$ and $0<q<1$.
The triangle is $\left(Y: \vec{Y}=\left[1+p-2 q+2 p q, 4-p-2 q+2 p q^{\circ}\right.\right.$, $\left.-2+3 p_{i}^{-1}+6 q-6 p q\right]$ where $(p=0$ and $0 \leq q \leq 1)$ or $(q=0$ and $0 \leq p \leq 1)$ or $(q=1$ and $0 \leq p \leq 1)\}$.
(b) $p=q=\frac{1}{2}$ in the above gives the-desired point $[1,3,1]$. Hence [1,3,1] must be an interior point.
(c) If $[-4,-5,-6]$ is in the triangular region, then $p-\dot{2} q+2 p q=-4$ and $4-p-2 q+2 p q=-5!$ If we solve this, we find $p=2$ and hence $[-4,-5,-6]$ cannot be in the triangular reṣion.

Review Exercises.

1. $2 \div 5$
2. $x^{2}=25$.
3. $x^{2}=z^{2}$

4: $y^{2}+z^{2}=4$
5. $x^{2}+y^{2}+z^{2} \equiv a^{2}$
6. $(x-2)^{2}+(y+1)^{2}+z^{2}=r^{2}$
7. $(x-1)^{2}+(y-2)^{2}-4 z+5=0$
8. $x+y+z-6=0$

$90 x+y-4=0$
为
11. $4 x+9 y-6 z+36=0$.

12. $x-y+z+3=0$

13. $x=5-3 t$
$y=2+t$
$z_{v}=3-i_{t}$

14. $\frac{x-5}{1-3}=\frac{y-2}{-2}=\frac{z-3}{4}$.
15.

One-space: a point 3 units to the right of the origin.

- 2-space: a line perpendicular to the x-axis and 3 units to the right of .the origin.
3-space: a plane perpendicular
to the x-axis and 3
units in the positive direction from the origin.

16.

One space: a segment between, but not including, the points $x=-1$ and $x=3$.

2-space: a portion of the $x y-p l a n e$ between, but not including, the lines $x=-1$ and
 $x=3$.

3-space:
a portion of space between, but not including, the planes $x=-1$ and $x=3$. (It may be visualized as the path made by moving a plane parallel to the yz-plane.).
17.

One-space: , two points, $x=3$ and, $x=-3$.
2-space: two lines, $x=3$ and $x=-3$.
3-space: two planes, $x=3$ and
 $x=-3$.

One-space: the portion of the x-axs \circ to the right of and including $x=3$, and to the left of and including $x=-3$. the portion of the p ?ane to the right of and including the line $\dot{x}=3$, and to the left of and including $x=-3$.
3-space: the portion of space beyond (in the positive direction) and including the plane $x=3$, and the portion beyond (in the negative direction) and including the plane $x=-3$.
19.

One-space: a segment between and including the points $x=-5$ and $x=5 \prime$.
2-space:
a portion of the $x y$-plane between and including the lines $x=-5$ and $x=5$.
3-space: a portion of space between and including the planes $x=-5$
 and. $x=5$.

One-space: the points ${ }^{\prime} \mathrm{x}=-2$, $x=0$, and $x=1$.
2-space: the lines $x=-2, x=0$,
and ' $x=1$.
3-space: : the planes $x=-2$, $x=0$, and $x=1$.

21. $R_{1} \doteq\{(x, y):|x|<2\}$

One-space: 'a segment between but excluding the points $x=-2$ and $x=2$.

2-space: a portion of space between but excluding the lines $x=-2$ and $x=2$.

3-space: a portion of space between but excluding the planes $x^{3}=-2$ and $x \doteq 2$.

One-space (if we choose the y-axis):
a segment between but excluding the points $y=-2$ and $y=2$.

-
2-space: a portion of the plane between but excluding, the lines $y=-2$ and $y=2$ \therefore

3-space: a portion of space between but excluaing the planes $y=-2$ and $y=2$.

2-space: the interior of the square bounded by $x=-2, x=2$ $y=-2, y=2$.

3-space: the interior oi the prism bounded by the plane $x=-2, x=2, y=-2$, $y=2$.
22. If, in Exercise 21, < is changed to \leq the graphs include the points, lines, and planes which are only boundaries and are not included in Exercise 21. $R_{1} \cup R_{2}$ is the union of the first two graphs and would include all points in R_{1} or R_{2}.
23.

The graph of $x^{2}+y^{2}+z^{2} \leq 1$ represents a sphere with the center at the origin and all the points within the sphere. (Only a portion of the graph is shown.) If \leq is changed to <, the graph includes only the points within the sphere.
24.

Distance
(a) M_{2}
(b) M_{2}.
(c) $\mathrm{K}_{3}{ }^{\prime}$
(d) M_{4}
$\frac{7}{\sqrt{14}}$
$\frac{5}{\sqrt{14}}$
$\xrightarrow[{\sqrt{14}}]{\sqrt{14}} \quad \frac{1}{\sqrt{14}}$ $\frac{7}{\sqrt{14}} \quad \frac{13}{\sqrt{14}}$

B

0
A
-

C
D
0
$\begin{array}{lll}\frac{2}{\sqrt{14}} & \frac{17}{\sqrt{14}} & \frac{4}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} & \frac{7}{\sqrt{14}} & \frac{3}{\sqrt{14}}\end{array}$
$\cdot \frac{13}{\sqrt{14}}$
$\frac{9}{\sqrt{1^{14}}}$ $\frac{2}{\sqrt{14}}$ $\frac{1}{\sqrt{3}} \quad \frac{3}{\sqrt{3}}$ $\frac{1}{\sqrt{3}}$
25. (a) $\frac{x+11}{5}=\frac{y}{1}=\frac{z-18}{-7}$
(d) $\frac{x}{-1}=\frac{y-5}{11}=\frac{z-4}{7}$
(b) $\frac{x}{\frac{1}{3}}=\frac{y-2}{1}=\frac{z-2}{1}$
(e), $\frac{x-2}{3}=\frac{y-3}{5}=\frac{z}{2}$
(c) $\frac{x-1}{4}=\frac{y-2}{3}=\frac{z}{2}$
(f) $\frac{x-2}{5}=\frac{y-1}{2}=\frac{z-2}{3}$

26: (a) $[x, y, z]=[-11,0,18]+t[5,1,-7]$
(b) $[x, y, z]=[0,2, \dot{2}]+t[1,1,1]$
(c) $[x, y, z]=[1,2,0]+t[4,-3,1]$
(d) $[x, y, z]=[0,5,4]+t[-1,11,7]$
(e) $[x, y, z]=[2,3,0]+t[3,5,-2]$
(f) $[x, y, z]=[2,1,2]+t[5,2,3 j$
27. One method is to find direction numbers; for $\overrightarrow{A B}$ and $\overrightarrow{D C}$ direction. numbers are $(-2,2,6)$, hence they are parallel. Direction numbers for $\overleftrightarrow{B C}$ and $\overleftrightarrow{A D}$ are $\left(5,-4,-\frac{4}{4}\right):-$
28. Parametric equations of the medians
from $A, x=-t_{1}, y=3 t_{1}, \quad z=-t_{1}$.

- from B, $x=2-4 t_{2}, y=4-3 t_{2}, z_{1}=6-10 t_{2}$.
from $C, \quad \hat{x}=-4+5 t_{3}, y=2, z=-8+11 t_{3}$.
The medians are concurrent in the point $\left(-\frac{2}{3}, 2,-\frac{2}{3}\right)$.

29. $a=7$.
30. $a=-3$

Teachers: Cómmentary
Chapter 9 r .
QUADRIC SURFACES

Since many of the students who study this course are likeiy candidates for college-level mathematics, this chapter has been included to give the students help in vizualizing and handing the types of objects they will encounter in later courses. Our sights are particûarly set on the calculus. Even in the elementary applications of calculus, one encounters solid, or 3 -space, figures of the non-rectangular variety. It might aid some students if you were to roughly describe calculus as a sort enables us to handle areas of objects with curved sides and volumes of objects .with curved surfaces. Ordinary algébra is generally powerless with objects which do not have straight sides or flat surfaces. Of course, this would not Be a complete description of the power of the calculus, but some such discussion could be used to motivate the s.tudy of this chapter.

Except for the Challenge , Problems, and an occasional natural extension in the Exercises, we have limited the discussion to very simple forms of surfaces. In most cases the origin is chosen as the center oi the figure, and the axes or elements of the figure are oriented along some coordinate axis. This simplifies the drawing techniques and the algebraic manipulations. More complicated forms are obtained by "simple extensions.

Quadrics hold much the same place amóng surfaces that the conics occupy among curves and, next to the plane, are by far the rmost important types of surfaces.

It is usual to identify nine species of quadric surfaces, but in order to keep life in this chapter simple we rave presented only six of these in the students' text. The other three types (numbers 5, 7 , and 8 in the ly \ddagger below) appear in Challengé Probléms. For completeness we list the nine.species with an example equation for each.
(1. Ellipsoid.

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1 \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-c z=0 . \\
& \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-c z=0 \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 .
\end{aligned}
$$

2. Hyperboloid of one sheet:
3. Hyperboloid of two sheets.
4. Elliptic paraboloid.
5. Parabolic cylinder.
$x^{2}-c z=0$.
$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$.
6. Elliptic cone.
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=0$.
It is of considerable interest to note how the surface changes when the equation is altered by changing a sign, or by changing the power of a variable, or by changing the value of one or more of the constants. However, we felt that this material would make the course tou long, so we somewhat reluctantly restricted the quadrics to the six simplest ones.

For the sake of variety, some of the spheres in Exercises 9-2 have been located away from the origin. If the coefficients of x^{2}, y^{2}, and z^{2} are all equal, then the quadratic represents a sphere. One may then complete the square for each variable and obtain an equation of the fform

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=x^{2}
$$

The point $\left(x_{0}, y_{0}, z_{0}\right)$, is the center and $-r$ is the radius.
3.

A point-sphere.
Center: origin
Radiųs: 0
The origin is the only point of the locus.
4.

A prolate spheroid.
Center: origin
The xy - and yz -traces are ellipses.
The xz-trace is a_{a} circle.

r

A prolate spheroid.
Center: origin
The $x z$ - and yz-traces are ellipses. The $x y$-trace is a circle.
6.

A prolate spheroid.
Center: origin
The $x y$ - and $x z$-traces are ellipses. The yz-trace is a circle.
. $9-2$

$8:-$
i

An oblate spheroid.
Center: origin
The $x z$ - and $y z$-traces are ellipses. The $x y$-trace is a circle:
9.

A prolate spheroid.
Center: - origin
The $x y$ - and $x z$-traces are elitipses. The y'z-trace is a circle.
i

An ellipsoid

Center: origin
All traces are ellipses,

An ellipsoid:
Center: origin
All traces are ellipses.
12.

An ellipscid.
Center: orịgín
All traces are ellipses.
13. $\sqrt{\left(-x-x_{0}\right)^{2}+\left(y-\dot{y}_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}=r$,
" or $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$.
14. $x^{2}-\pi x x_{0}+x_{0}^{2}+y^{2}-2 y_{0}+y_{0}^{2}+z^{2}-2 z z_{0}+z_{0}^{2}-r^{2}$, - or $x^{2}+y^{2}+z^{2}-\left(2 x_{0}\right) x-\left(2 y_{0}\right) y-\left(62 z_{0}\right) z+\left(x_{0}^{2}+y_{0}^{2}+z_{0}^{2}-r^{2}\right) \cdot 0$: Since $\left(x_{0}, y_{0}, z_{0}\right)$ represents any point and $r>0$, the given equation represents a sphere with radius r and center at $\left(x_{1}, y_{0}, z_{0}\right)$.
15. ('a) $x^{2}+y^{2}+z^{2}-4 x-2 y-6 z-11=0$.
(b) $x^{2}+y^{2}+z^{2}+2 y-4 z+1=0$.
(c) $x x^{2}+y^{2}+z^{2}-2 x-6 y+11 z+12=0$.
(d) ${ }^{\prime} x^{2}+y^{2}+z^{2}-\frac{2}{3} x+2 y-z+\frac{13}{36}=0$,
\therefore oz $36 x^{2}+36 y_{z}^{2}+36 z^{2}-24 x+72 y-36 z i 13=0$.
(e) $x^{2}+y^{2}+z^{2}-x-\frac{1}{2} y+z+\frac{b}{16}=0$,

$$
\text { or } 16 x^{2}+16 y^{2}+16 z^{2}-16 x-8 y+16 z+5=0 .
$$

(f) $\overline{x^{2}}+y^{2}+z \cdot \frac{2}{2}-3 x+y-5 z-.25=0$ or $4 x^{2}+4 y^{2}+4 z^{2}-12 x+4 y-20 z^{2}-1=0$.
16. (a) Center: origin. Radius: $\sqrt{3}$.
(b) Center: $(1,-2,3) \because$ Radius: $\dot{2}_{1}$
(c) Center: $(0,2,-1) \because$ 'Radius: 5 .
(d), Center: $(-3,4,-7):$ Radius: $\sqrt{2}$.
(e) Center: $(-2,3,0):$ Radius: 0 . (a point-sphere.)
(f) Not a sphere.
(g) Center: $\left.\quad \frac{1}{2}, \frac{2}{3},-1\right)$ Radius: $\frac{1}{2}$.
(h) Center: $\left(\frac{3}{4}, 2, \frac{3}{2}\right)$. Radius: $\frac{3}{2}$.
17. Center: $(0,1,5)$. Radius:. $\sqrt{6}$ Equation of the sphere: $x^{2}+y^{2}+z^{2}-2 y-10 z+20=0$.
$-18: \frac{x^{2}}{9}+\frac{y^{2}}{49}+\frac{z^{2}}{25}=1$, or $1225 x^{2}+225 y^{2}+441 z^{2}=11025$.

Challenge Problems

$1 . \cdots \frac{(x-3)^{2}}{36}+\frac{(y+1)^{2}}{16}+\frac{(z-2)^{2}}{144}=1$,
or $4 x^{2}+9 y^{2}+z^{2}-24 x+18 y-4 z-95=0$.
2. Substituting the coordinates of the four points into the eqıat; is of general form, $x^{2}+y^{2}+z^{2}+D x+E y+F z+G^{2}=0$, results in
(2)

$$
\begin{equation*}
-2 \mathrm{D} \quad \circ+2 F+G=-8, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
D+E+4 F+G=-18, \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
-3 D+3 E \cdot 2 F+G=-22 . \tag{4}
\end{equation*}
$$

From these ve obtain
(2).
$-2 D+2 F+G=-8$,
(5)
(1) - (4)
$3 D^{\circ}-F=12$,
(6) $3 \cdot(3)-(1)$
$3 D+11 F+2 G=-144$.
,Then we have
(7)
(6) $-2 \cdot(2)$
$7 D+7 F=-28$,
(8)
7. (5)
$21 D-T F=84$, and
(9)
$(7)+(8)$ $28 \mathrm{D}=56$.

Therefore, $D=2, F=-6, G=8, E=-4$, and the equation is $x^{2}+y^{2}+z^{2}+2 x-4 y-6 z+8=0$. This can be written $(x+1)^{2}+(y-2)^{2}+(z-3)^{2}=6$, showing the center and radius of the sphere.

As an alternate method, find the center of the sphere as the intersection of the perpendicular bisecting planes determined by pairs of the given points. The radius may then be found as the distance between the center and one of the given points.

Four points determine a sphere if the points are not coplanar and if no three points are collinear.
1.:

A paraboloid of revolution. Axis: x-axis Vertex: origin
The $x y$ - and $x z$-truces are parabolas. Sections parallel to the yz-pladne are circles. (These sections are not draw because they interfere with other parts of the figure.)
2.

A paraboloid of revolution.
Axis: z-axis
Vertex: origin
The xu- and yz-traces are parabolas. Sections parallel to the xy-plane are circles (not shown).

A paraboloid of revolution.
Axis: y-axis
Vertex: origin
The $x y$ - and $y z$-traces are parabolas.
Sections parallel to the $x z-p l a n e$ are circles.

An elliptic paraboloid.
Axis: y-axis
Vertex: origin
The ky- and yz-traces are parabolas. Sections parallel to the $x z-p l a n e$ are ellizses (not shown).

An elliptic paraboloid.
Axis: y-axis
Vertex: origin
The $x y$ - and yz-traces are parabolas.
Sections paralleln to the xz-plane are ellipses (not shown).

An slliptic paraboiloid.

Axis: x-axis

Vertex: origin
The $x y$ - and $x z$-traces are parabolas. Sections parallel to the $y \dot{y}$-plane are ellipses.
7.

A hyperboloid of revolution (one sheet). Axis: z-axis

The xy-trace is a circle of radius ? . The x - and $y z$-traces are hyperbolas.

A hyperboloid of revolution (one sheet). Axis: y-axis The xz-trace is a circle of radius 2 . The $x y$ - and yz-traces are hyperbolas.

10.

An elliptic hyperboloid (one sheet). The xz-trace is an ellifpse The $x y$ - and yz-traces are hyperbolas.

A hyperboloid of revolution (one sheet). Axis: y-axis
The xz-trace is a circle of radius j. The xy'- and $y z$-traces are hyperbolas.
11.

An elliptic hyperboloid (one" sheet).
The xp-trace is an ellipse.
The $x y$ - and yz-traces are hyperbolas.

A hyperboloid of revolution (one sheet). Axis: y-axis

The xz-trace is a circle of radius 1 . The $x y$ - and yz-traces are hyperbolas.

1
3
13. In Section $7-7$ we have $e=\frac{\sqrt{a^{2}-b^{2}}}{a}<1$ as the eccentriclty of an ellipse. Applying this to the equation of the $x y$-trace of Equation (3), $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$, we find $e=\frac{\sqrt{3}}{3}$. For any section of the hyperboloid parallel to the $x y$-plane, say when $z=k$, we have
$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1+\frac{k^{2}}{25}$. Let $1+\frac{k^{2}}{25}=q^{2}, q>0$, the equation then becomes $\frac{x^{2}}{4 q^{2}}+\frac{y^{2}}{9 q^{2}}=1$. Evaluating the eccentricity gives us
$e=\frac{\sqrt{9 q^{2}-4 q^{2}}}{3 q}=\frac{\sqrt{5}}{3}$.

The Challenge Problems which follow contain work on hyperbolic paraboloids, which were omitted from the basic text. An aia to identifying sevcral of these surfaces is in thedr names. The first part of the name (an adjective) indibate.; the kind of sections we find parallel to one coordinate flanc; the se ond word (a noun' indicates the type of sections which are parallel to the sther two coordinate planes.

Challenge Problems

1. (a)

It will be noted that these "saddle'. shapes' ${ }^{\prime \prime}$ are difificult to sketch. The yz-trace and the sections parallel to it are parabolas opening downward. The xz-trace and the sections parallel to it are parabolas opening upward. The sections parallel to the $x y-p l a n e$ are hyperbolas, which degenerate to a pair of intersecting lines as the xy-trace.

"

The planes shown in part (b) intersect on the z-axis and are determined by this axis and the xy-trace. These planes serve in an asymptotic capacity with respect to the hyperbolic paraboloid. A section parallel to the $x y-p l a n e$ (a hyperbola) will have as asymptotes the section of these two planes formed by the horizontal cutting plane.

If students encounter difficulty vizualizing this surface, have them look at the region between two knuckles of a clenched fist.
2.

The sections parallel to the xz-plane are parabolas opening downward. The sections parallel to the yz-plane are. parabolas opening upward.
The sections parallel to the $x y$-plane are hyperbolas, except for the xy-trace which is a pair of intersqcting lines.
$36+305$
" 3.

The sections parallel to the $x y$ - and $x z-\rho l a n e s$ are parabolas; the sections parallel to the $y z$-plane are hyperbolas, except for the degenerate $y z$-trace.
\geqslant

364
A cylinder need not be "round". Any curva (or line) may be a directrix. We have purposely included in the basie text only losed eylinders. other. types, including sinusoidal ones, are found in the Challenge Problems.

Exercises: 9-4.
2.

Axis of revolution: z-axis
The-xy-trace and sections parallel to the $x y$-plane are circles of radius 8 The $x z$ - and $y z$-traces are lines parallel to the z-axis.

Axis of revolution: y-axis
The xa-trace is ${ }_{s}$ circle of radius 5 . The $x y$ - and yz-traces are lines parallel to the y-axis.
3.

0

ERIC--
4.

5.

The $x y$-trace (and sections parallel to $1 t)$ is an ellipse.

The $x z$ - and yz-traces are lines parallel to the z-axis.

The xz-trace is an ellipse. The $x y$ - ánd $y z$-traces are lines parallel to the y-axis:
6.

The yz-trace is an ellipse.
The, $x y-$ and $y z$-traces are lines - parallel to the x-axis.

The $x y$-trace is an ellipse.
The ${ }_{x}^{2}$ - and yz-traces are lines parallel to the z-axis.
8.

9.

The xz-trace is an ellipse. The $x y$ - and $y z$-traces are lines parallel to the y-axis.

5

The xy-trace (una sections parallel to it) is a hyperbola.
The xz-trace is a pair of lines parallel to the z-axis.
There is no yz-trace, but planes parallel to the yz-plane which intersect the surface cut off lines parallel to the z-axis.

11. (a) $y^{2}+z^{2}=81$.
(b) $x^{2}+z^{2}=36$.
(c) $x^{2}+y^{2}=16$.

- 12. (a) $y^{2}+z^{2}=9$.
(b) $x^{2}+z^{2}=25$.
(c) $x^{2}+y^{2}=100$.

13. $x^{2}+z^{2}=100$
14. $: y^{2}+z^{2}=144$.
15. $x^{2}+z^{2}=4$.
16. $25 y^{2}+4 z^{2}=100$.

A parabolic cylinder.
The elements are parallel to the y-axis,
The directrix is a parabola.

A parabolic cylinder.
The elements are parallel to the x-axis.

The directrix is a parabola.
3.

A hyperbolic cylinder.
The elements are parallel to the x-axis. The directix is a hyperbola.

A hyperbolic cylinder (only one branch shown).
The elements are parallel to the z-axis.

The directrix is an equilateral hyperbola.

A circular cylinder.
The elements are parallel to the y-axis.
A directrix is a circle of radius 4 having its center at $(0,0,3)$.

A circular cylinder.
The elements are parallel to the z-axis. .

A directrix is a circle of radius having its center at ($-1,2,0$) .

The elements are parallel to the y-axis.

The directrix is a sine curve.
8.

9.

$$
\begin{aligned}
& (y+2)^{2}+(z-5)^{2}=16, \text { or } \\
& y^{2}+z^{2}+4 y-10 z+13=0
\end{aligned}
$$

Exercises 9-5
1.

Axis: x-axis
Intercept: origin
Sections parallel to the yz-plane are circles. (One nappe only is shown.)

- Axis: y-axis

Intercept: origin
.Sections parailel to the xz-plane are circles.

Axis: y-axis
Intercept: origin
Sections parailel to the xz-plane are circles.
4.

Axis: x-axis
Intercept: origin
Sections parallel to the yz-plane are circles.

Axis: z-axis

Intercept: origin
Sections parailel to the $x y-p l a n e$ are ellipses.
6.

Axis: y-axis
Intercept: origin
Sections parallel to the xz-axis are ellipses.
7. $x^{2}-4 y^{2}+z^{2}=0$.
8. $-4 x^{2}+4 y^{2}+9 z^{2}=0$.
9. $16 x^{2}+16 y^{2}-9 z^{2}=0$.
ió. $225 x^{2}-16 y^{2}+25 z^{2}=0$.
11. The section in the plane $y=1$ has the equation $\frac{x^{2}}{4}+\frac{z^{2}}{9}=1$. The eccentricity, of this ellipse is $e=\frac{\sqrt{9-4}}{3}=\frac{\sqrt{5}}{3}$. For any section of the cone parallel to the $x z-p l a n e$, say when $y=k$, we have $\frac{x^{2}}{4}+\frac{z^{2}}{9}=k^{2^{\circ}}$, or $\frac{x^{2}}{4 k^{2}}+\frac{z^{2}}{9 k^{2}} \bar{z}=1$. Evaluating the eccentricity gives us $e=\frac{\sqrt{9 k^{2}-4 k^{2}}}{3 k}=\frac{\sqrt{5}}{3}$.

Challenge Problems

1. Since $a=6, e=\frac{4}{6}=\frac{\sqrt{36-20}}{6}$; therefore, the elij.pse in the plane $x=1$ either has equation $\frac{y^{2}}{36}+\frac{z^{2}}{20}=1$, or has equation $\frac{y^{2}}{20}+\frac{z^{2}}{36}=1$. The cone is either $-180 x^{2}+5 y^{2}+9 z^{2}=0$ or $-180 x^{2}+9 y^{2}+5 z^{2}=0$.
2. Since $a=8, e=\frac{4}{8}=\frac{\sqrt{64-48}}{8}$; therefore, the ellipse in the plane $z=2$ either has equation $\frac{x^{2}}{16}+\frac{y^{2}}{12}=1$ or has equation $\cdot \frac{x^{2}}{12}+\frac{y^{2}}{16}=1$. The cone is either $4 x^{2}+3 y^{2}-48 z^{2}=0$ or $3 x^{2}+4 y^{2}-48 z^{2}=0$.

An interesting oral exercise might be interposed in this section. Have the students try to describe the surface generated by revolying about an axis of symmetry the printed capital form of certain letters of the English alphabet.

Exercises 9-6

9-6
2.

$$
x^{2}+y^{2}=2 z \ldots
$$

\&.

$$
-9 x^{2}+4 y^{2}+4 z^{2}=0
$$

${ }^{\text {ERIC }}{ }^{-}$

$$
x^{2}+y^{2}+z^{2}=25
$$

7.

$$
9 x^{2}+4 y^{2}+4 z^{2}=36
$$

ERIC
8.

$$
9 x^{2}<4 \dot{y}^{2}+9 z^{2}=.36:
$$

$$
x^{2}-4 y^{2}+z^{2}+16=0
$$

$9-6$
10.
11.

385

$$
x^{2}+y^{2}-4 z^{2}=100
$$

16.

$$
\begin{equation*}
9 x^{2}+9 y^{2}-z^{2}=36 \tag{4}
\end{equation*}
$$

${ }^{2}$

$$
\left(x^{2}+y^{2}\right)^{3}-z^{2}=0
$$

$$
x^{2}-y^{6}+z^{2}=0
$$

19. Since this is a surface of revolution about the y-axis, any section parallel to the $x 2-$ lane will be a circle of radius k with equation $x^{2}+z^{2}=k^{2}$. The number k is the ordinate, i, of any point on the curve $f(y, z)=0$ Sin the $y z-p l a n e ;$ hence, since $k=\sqrt{x^{2}+z^{2}}$, the equation of the surface is $f\left(y ; \sqrt{x^{2}+z^{2}}\right)=0$.

372 Projecting cylinders, although time consuming to draw, can be very helpful in locating a space intersection. Look, for example, at Number 48(a) of the Review Exercises. We have the intersection of a spheroid and a hyperboloid; this is extremely difficult to visualize.' But when we employ projecting cylinders, we see that the curve lies in a pair of planes through the y-axis and that its projection on the horizontal xy-plane is a circle. This is murks easier to visualize. By the way, even if a student should use a different pair of projecting cylinders than we have used, he will obtain the same intersection:

Exercises 9-7

1. (a) $x^{2}+z^{2}=12$,

$$
y=-2
$$

(b) $y^{2}+z^{2}=-5$

$$
x=3
$$

(c) $x^{2}+y^{2}=4$, $-\quad z=0$.
(d) $\bar{x}^{2}+y^{2}=4$,
$\mathbf{z}=0$.
(e) $x^{2}+z^{2}=5, \quad$,

$$
y=5
$$

(f) $x^{2}=25$,

$$
z=0 .
$$

(g) $x^{2}=25$,

$$
x-y=0 .
$$

-(h) $x^{2}+8 y^{2}=16$,

$$
z=1 .
$$

(i) $3 y^{2}-4 z^{2}=12$,

$$
x=0 .
$$

(j) $2 y^{2}+8 z^{2}=8$,

$$
x=0 .
$$

(k),$x^{2}+8 z^{2}=0$,

$$
\bar{y}=2
$$

A circle; radius, $\sqrt{12}$; center on y-axis; parallel to and 2 units left of the xz-plane.
No intersection. (This first .equation represents an imaginary cylinder.)

A circle; radius, 2 ; center at origin; in the xy-plane.

Same locus as part (c).

A circle; radius, $\sqrt{5}$; center on y-axis; parallel to and 5 units right of the xz -plane.
A pair of lines; (parallel to the y-axis; 5 units on opposite sides of the y-axis in the $x y$-plane.

A pair of lines; parallel to the z-axis; 5 units on opposite sides of the z-axis in the plane which bisects the first octant.

An ellipse; center on 2-axis;
parallel to and 1 unit above the xy-plane.

A hyperbolä: center at the origin;
in the yz-plane:
An ellipse; center at the origin; in the $y z$-plane.

The point $(0,2 ; 0)$. (This first equation represents a degenerate elliptical cylinder--the y-axis.),
(1) $x^{2}+y^{2}=2$,
A circle; radius, $\sqrt{2}$; center on the

$$
0
$$

$$
z=1
$$ 2-axis; parallel to and one unit above the $x y$-plane. (Hint: subtract the second equation from the first, aft substitute for 2.)

(c.)

2.

(b)
(d)

(f).

3.

$$
\begin{aligned}
& y^{2}+z^{2}=6 ; \\
& -x^{2}+3 z^{2}=9 ; \\
& x^{2}+3 y^{2}=9 .
\end{aligned}
$$

ERIC.

5.

The point is .14 units above the $x y-p l a n e$. By eliminating x, the equation of the projecting cylinder with elements parallel to the x-axis is $z-14=-2(y-1)^{2}$. The yztrace of this parabolic cylinder is a parabola, which shọws the projection of the highest point of the space curve, $\left(\frac{1}{2}, 1,14\right)$ Interested students may wish to find this point by observing the projection in the xz-plane.
$z^{2}=x^{2}+y^{2}$ represents one projecting cylinder, and eliminating x from the other equation gives
$z^{2}=2 y=0$, which represents a pro- "
jecting (paraboiic) cylinder with
elements parallel to the x-axis. "The resulting space curve together with the $x y$ - and $y z$-traces completes the outline of the figure:

377 Since cylindrical and spherical, coordinates make use of polar forms, the remarks made previously about the ambiguity of this type of representation apply here as wells"

There is nothing (except. custom) to prevent us from applying the polar. designations to one of the other coordinate planes. Thus, in Figure 3-23, we might have designated the point as $P=(\gamma, y, \theta)$ or $P_{-}=(\dot{x}, x, \theta)$:

- We chose the form which is in common use.'

Exercises $9-8$

1. $\dot{r}=\rho \sin \theta$,
$\theta=\theta_{a}$,
or

$$
\begin{aligned}
& \rho^{\dot{2}}=r^{2}+z^{2} \\
& \theta=\theta
\end{aligned}
$$

$$
z=p \cos \dot{p}:
$$

These may be obtained•by, equating the cylindrical and spherical "forms. in terms of rectangular coordinates. For example,

$$
\begin{aligned}
\dot{\cos \theta} & =x=\rho \sin \phi \cos \theta, \\
r & =\rho \sin \phi: \\
\tan \theta & =\frac{y}{x}=\frac{\rho \sin \phi \sin \theta}{\rho \sin \phi \cos \theta}, \quad \because \\
\tan \theta & =\frac{\sin \theta}{\cos \theta},(\text { an identity) } ; \text { therefore } \\
\theta & =\dot{\theta} .
\end{aligned}
$$

2. (a) $(\sqrt{2}, \sqrt{6}, 2 \sqrt{2}) ; \quad\left(2 \sqrt{2}, \frac{\pi}{3}, 2 \sqrt{2}\right)$
(b) $\left(\frac{3}{2} \sqrt{3}, 0, \frac{3}{2}\right) ;\left(\frac{3}{2} \sqrt{3}, 0, \frac{3}{2}\right)$.
(c) $(0,2,0) ;{ }^{\prime}\left(2, \frac{\pi}{2}, 0\right)$.
(d) $(0.239,3.335,2.160):\left(3.364, \frac{3}{2}, 2.160\right)$.
3. (a) $(\sqrt{3}, 1 ; 3) ;\left(\sqrt{13}, \frac{\pi}{6}, .59\right)$.
(b) $(0,5, \dot{0}) ;\left(5, \frac{\pi}{2}, \frac{\pi}{2}\right)$:
$=-(c)\left(0,0,8^{2}\right) ;\left(8, \frac{\pi}{4}, 0\right)$.
(d) $(2.160,3.364,2) ;(2 \sqrt{5}, i, 1,11)$.
4. $\rho^{2}=x^{2}+y^{2}+z^{2}$, $\tan \theta^{\circ}=\frac{y}{x}$,
$\dot{\prime} \tan \phi=\frac{\sqrt{x^{2}+y^{2}}}{2 \cdot}$
(a) $(\sqrt{13}, 98,0) ;\left(\sqrt{13}, .98, \frac{\pi}{2}\right)$.
(b) $\left(\dot{6}, \frac{\pi}{2}, 3\right) ;\left(3 \sqrt{5}, \frac{\pi}{2}, i . \dot{11}\right)$
(c) $-\left(4, \frac{\pi}{6}, 4\right) ;\left(4 \sqrt{2}, \frac{\pi}{6}, \frac{\pi}{4}\right)$.
(d) $(\sqrt{17}, .24,2) ;\left(\sqrt{21}, \frac{\vdots}{2}, \overline{1}, 34.\right)$
5. (a) $r^{2}=25$, or simply $r=5 ; \rho^{2} \sin ^{2} \varphi=25$, or $\rho \sin \phi=5$.

- (b) $z=4 \tan \theta_{0} ; \dot{p} \cos \dot{\phi} \cot \theta^{\circ}=\dot{4}^{\circ}$
(c) $r=8 \cos \theta ; \ddot{p i n} \phi=8 \cos \theta$.
(d) $\dot{r}^{2}-3 z ; \rho \sin \theta \tan \theta=3$
$6 \therefore(a) x^{2}+y^{2}+z^{2}=36$.
(b) $x^{2}+y^{2}=36$.

一. (c) $x^{2}+y^{2}-(z-6)^{2}=0$.
(d) $x^{2}+y^{2}+z^{2}=9$. \because
7. (a) A cylinder of ràdius 3 whose axis is the z-axis.
(b) A plane ccontaining the zaxdis and bisecting the first octant.
(c) A sphere of radius 2 with center at the origin.
(d) A circular cone whose vertex is at the origin and whose axis is the z-axis: f :
(e) A plane parallel to and 7 units above the xy-plane.
(f) A plane containing the y-axis and bisecting the first octant.
(g) A circular cone whose vertex is at the'origin and whose axis is the z -axis.
(h) A plane parallel to and 2 units in front of the $y z$-plane.

8．（a）Let the center of the sphere be the origin and the axds of the－ cylinder have rectangular equations $x=\dot{2}, y=0$ ；then the cylinder have rectangular equations x
bounding surfaces are

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}=16 \\
& (x-2)^{2}+y^{2}=4
\end{aligned}
$$

（b）

$$
\begin{aligned}
& \dot{r}^{2}+\dot{z}^{2}=16, \\
& r=4 \cos \theta .
\end{aligned}
$$

（c）${ }^{\circ} p_{0}=4$ ，

$$
\rho \sin \theta_{0}=4 \cos \theta_{1}
$$

－Reviev；Exercises

A prolate spheroid．
Sections parallel to the xz－plane are circyes：Sections parallel to the other coordinate planes are ellipses．
2.

A sphere. Radius: 3 .
All sections are circles:

A paraboloid of revolution:
Sections parallel to the xy-plane "are circles.
Sections parallel to f the other. coordinate planes are parabolas.

An-elliptic paraboloid.
Gections parallel to the $x y$-plane are ellipses.
Sections parallel to the otiner
coordinate planes are parabolas.

An elliptic paraboloid.
Sections parallei to the xy-plane are eilipses.
Sections parallel to the other. coordinate planes are parabolas.
6.

An oblate spheroid.
Sections parallel to the $y z-p l a n e$ are circles.

Sections parallel to the other coordinate planes are ellipses. i

0 客 $\stackrel{4}{4}$

A sphere. Radius: $\frac{4}{3}$

A hyperboloid of revolution (one sheet).

Sections parallel to the xz-plane are circles.
Sections parallel to the other coordinate planes are hyperbolas.
9.

An elliptic cylinder.
Sections parallel to the $x z$-plane are ellipses.
Sections parallel to the other
coordinate planes are parallel lines.
10.

A hyperbolic cylinder (two parts). Sections parallel to the xz-plane are hyperbolas.
Sections parallel to the other coordinate planes are parallel lines.

\because

A pair of planes intersecting on the 2-axis.

些

$\because '$
$\stackrel{3}{5}$
401

15.

A sphere; center: ($1,0,0$) ; redius: 2.
16.

The point $(0,0,0)$.

-

in 8.

$(x+4)^{2}+(y-3)^{2}+(z+5)^{2}=16$.
A sphere with radius 4 and center at $(-4,3,-5)$ ．

An elliptic cylinder．
－Sections parallel to the xz－plane are ellipses．
Sections parallel to the other coordinate planes are parailel $̈$ ines．

\qquad
\qquad A

A circular cone.
Sections parallel to the yz-plane are circles.
Sections parallel to the other coordinate planes are hyperbolas.

$$
x^{2}+y^{2}+z^{2}=100
$$

W, \therefore N

24.

25.

Assume the spheroid located as shown.

$$
\begin{array}{r}
\frac{x^{2}}{64}+\frac{y^{2}}{4}+\frac{z^{2}}{4}=2, \text { or } \\
x^{2}+16 y^{2}+16 z^{2}=64
\end{array}
$$

Assume the spheroid located as shown.

$$
\begin{aligned}
& \frac{x^{3}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{9 ;}=1 ; \text { or } \\
& 9 x^{2}+4 y^{2}+4 z^{2}=36:
\end{aligned}
$$

408
$9-8$.

A hyperboloid or one sheet.

$$
\begin{aligned}
& \therefore \frac{x^{2}}{9}=\frac{y^{2}}{16}+\frac{z^{2}}{9}=1 ; \text { or } \\
& 16 x^{2}-9 y^{2}+16 z^{2}=144 .
\end{aligned}
$$

A paraboloid.

$$
\because x^{2}+y^{2}=142
$$

98

- A hyperboloid of two sheets.

$$
25 x^{2}-36 y^{2}-36 z^{2}=900
$$

31.

hyperboloid of two sheets,

$$
16 x^{2}=9 y^{2}-9 z^{2}=144
$$

: \quad ! ,

:

38.

A circular cone.
$x^{2}+y^{2}-4 z^{2}=0.0$
39. $x^{2}+y^{2}+z^{2}-6 x+4 y-2 z-86=0$.
40. $x^{2}+z^{2}=25$.
41. $y^{2}+z^{2}=12 x-36$.
42. (a) Elilpsoidà.

- (b) A point.
(c) No locus.
(d) Elliptic hyperboloid of one sheet.
(e) Elliptic coñe.
(f) Eliliptic hyperboloid of two sheets.
(g). Elliptic hyperboloid of two sheets.
(h) Elliptic cone.
(i) Eilliptic hyperbolof of one sheet.

43.

Diet the points be $A=(2,0,0)$ and \therefore. $B=(-2,0,0)$. The equation is

$$
\sqrt{(x-2)^{2}+y^{2}+z^{2}}+\sqrt{\left.(x+)^{2}\right)^{2}+y^{2}+z^{2}}=6
$$

This simplifies to

$$
5 x^{2}+.9 y^{2}+9 z^{2}=45
$$

an equation'of a prolate spheroid.
vi s
\therefore
44.

The equation is
$\sqrt{(x-2)^{2}+y^{2}+z^{2}}-\sqrt{(x+2)^{2}+y^{2}+z^{2}}=2$,
or. $3 x^{2}-y^{2}-z^{2}=3$,
an equation of a hyperboloid of two sheets.
45. Since the blades of the sharpener. generate a circular cone and the sides of the pencil are portions of planes parallel to the axis of the cone, the intersection will be, under ideal conditions, portions of six congruent hyperbolas.

9-8
46.

Since the plane contains: the point ($\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$), the equation of the plane

- in normal form is.
$\frac{1}{2} x+\frac{1}{2} y+\frac{1}{2}=\frac{3}{4} ; \operatorname{or}^{2}$ $x+y+z=\frac{3}{2}:$ The intersection wht the cube is a regular hexagon fith sides of length $\frac{1}{2} \sqrt{2}$.

47.

The second equation represents a circular cylinder whose $x y$-trace is. shown. Subtracting the second equation from the first gives $z^{2}+4 y=4$; this equation represents a parabolic cylinder whose yz-trace is show. The space curve is the intersection of the sphere and cylinder.

An oblate spheroid and an elliptic hyperboloid of one sheet.
Two -projecting cylinders have equations
$x^{2}-z^{2}=0, x^{2}+y^{2}=4$.

An oblate spheroid and an elliptic hyperboloid of two sheets. Equations, bf two projecting cylinders are
$3 x^{2}+3 y^{2}=2,3 y^{2}+3 z^{2}=10^{2}$

50. (a) $\quad z=5 \cdots \cos \phi=5$.
(b) $r=4 \cos \theta ; p \sin \phi=4 \cdot \cos \theta$.
(c) $x^{2}+y^{2}=49 ; \rho \sin \phi=7$.
(a). $\dot{r}^{2}+z^{2} \equiv 25 ; \rho=5$.
(e) $x^{2}+y^{2}+z^{2}=9 ; \rho=3$.
(f) $z=-6 ; z=6$.
(g) $r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=16 ; \rho^{2} \sin ^{2} \phi\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=16 \therefore$
(h) $x^{2}+y^{2}=2 x ; \rho$ sin $\phi=2 \cos \theta$.
(i) $x^{2}+y^{2} \equiv 2 z ; r^{2}=2 \bar{z}$:
(j). ${\underset{\sim}{x}}^{x^{2}}+y^{2}=9 ; r=3$.
(k) $r=8 ; \rho \sin \phi=8$.
(l) $x=y z ; z=\cot \theta$.

Challenge Problems:

A cylinder inth eiements parallel töthe x-axis and whose directrix is a sine curve.

A cylinder with elements parallel to the maxis and whose directrix is a of cosine curve.

3
$\therefore \quad 3$.

A parabolic cylinder with elements parallel to the y-axís.

422
-421

5.

6.

\downarrow •

424

423.1424

Teachers' Commentary

Chapter 10

GEOMETRIC TRANSFORMATION

10-1. Why Study Geometric Transformations?

* , Most of this -chapter is an extension of Chapters 5-7 on curve tracing and conics. Although the principles presented in Sections $10-2$ and $10-5$ are applicable to all curves, we emphasized the straight line and the confess because of their importance and because the students are more familiar with fl theme.

The treatment of geometric transformations in this text differs from most. other texts in that we look upon geometric transformations from two points of view. 'We first move the axes; keeping the figure fixed; then we move the figure, keeping the axes fixed. "We feel that the student should become acquainted with both types. The point transformation has much wider applicatron than the transformation of axes and Section 6 was included to show its possibilities.

Groups of transformations are discussed in a supplementary chapter. You will recall that in 1872 , Professor Felix Klein (1849-1925) presented his famous "Hin ger Program in which he classified all geometries on the basis of those properties invariant under groups of transformations. Mention is made in this chapter of the set of rigid motions which character ae Euclidean Geometry without designating them as a group. You wii find a good treatment of this subject in Courant and Robbins? book entitled What is Mathematics?

10-2. Translations.
Sufficient motivation may be provided for this section by requiring the - students, to graph each pert of the equations listed in the first section.
ort.

You will note that there are two forms given for the equations of translation.: The form $\left\{\begin{array}{l}x^{\prime}=x+h \\ y^{\prime}=y+k\end{array}\right.$ is more useful for the translation of axes because more applications are similar to those presented in Examples 3 and 4.
. "NOTE: . Almost all solutions for thi's chapter are presented without graphs since they are so familiar to you.

Exercises 10-2

1. $\left\{\begin{array}{l}x^{y}=x+3 \\ y^{2}=y-4,\end{array}\right.$
$0)=(-3,4)$
2. The equations of translation are $=\left\{\begin{array}{l}x=\dot{x}^{\prime}+3 \\ y=y^{\prime}-\hat{2}^{\prime}\end{array}\right.$

The new equation is:

$$
2\left(x^{2}+3\right)^{2}-\left(y^{2}-2\right)^{2}-12\left(x^{2}+3\right)-4\left(y^{2}-2\right)+12=0
$$

which simplifies to $2 x^{\prime 2}-y^{2}=2$.
3. (a) $\left(x^{\prime}-4\right)^{2}+\left(y^{\prime}-6\right)^{2}=r^{2}$. This is a circle with the same rădíus, and center at $(4,6)$.
(b) $\frac{\left(x^{\prime}-4\right)^{2}}{a^{2}}-\frac{\left(y^{2}-6\right)^{2}}{b^{2}}=1$.

This is a congrient hyperbola with its center at $(4,6)$ and with its axes parallel to the x - and y-axes.

Neither of the curves undergo a change. They merely have a new equation relative to the new axes.
4. The equations of translation are $\left\{\begin{array}{l}x^{\prime \prime}=x+4 \\ y^{\prime}=y+2\end{array}\right.$. The new coordinates of the vertices of the triangle are $A=(5,2), B=(9,0)$, and $c=(7,6)$ with reference to the new origin. Two suggested methods are:
(a) Application of the Pythagorean Theorem.
(b) Proof that the product of the slopes of $\overline{\mathrm{AB}}$. and $\overline{\mathrm{AC}}$ equals -1.
5.. By completing the square, the equation of the hyperbola becomes

$$
\begin{equation*}
(x+5)^{2}-(y-2)^{2}=16 \tag{1}
\end{equation*}
$$

Substituting x^{\prime} for $(x+5)$ and y^{2} for ($\left.y-2\right)$ into (1), we have

$$
\begin{equation*}
x^{2}-y^{z^{2}}=16 \tag{2}
\end{equation*}
$$

Equation.(2) represents the same hyperbola with reference to the new axes with origin $0^{\prime}=(-5,2)$.

To graph, translate the origin to. 0^{2}. Draw the $x^{2}=$ and y^{2}-axes through 0^{\prime}. Then draw the graph of Equation (2) with respect to the x^{8} - and y^{8}-axeś.
6. The students may select any three points. We choose $A=(5,0)$, $B=(3,4)$, and $C=(0,5)$. After'translation, the coordinates of $A_{1}=(4,1), B=(2,5)$, and $C=(-1,6)$ with respect to the new origin. The transformed eqration is $\left(x^{2}+1\right)^{2}+\left(y^{2}-1\right)^{2}=25$. The new coordinates satisfy this equation.
7. After the first translation, L has the equation $3 x^{2}-2 y^{2}+11=0$ with respect to the x^{2} - and y^{2}-axes. After the second translation, I has the equation $3 x^{\prime \prime}-2 y^{\prime \prime}+13=0$ with respect to the $x^{\prime \prime}-$ and $y^{\prime \prime}$-axes. The transformation

$$
\left\{\begin{array}{l}
x=x^{\prime \prime}+7 \\
y=y^{\prime \prime}+7
\end{array}\right. \text { would have the same effect as the two }
$$ successive ones.

There would be no difference in the final result if these transiations were commuted. (This is true of all translations.)
8. (a) Completing the square, the equation becomes $(y-3)^{2}=12(x+1)$. The equations of translation are therefore:

$$
\left\{\begin{array}{l}
x^{2}=x+1 \\
y^{2}=y-3
\end{array}\right.
$$

The parabola now has the equation $y^{2}=12 x^{2}$ with respect to the new origin at $0^{\prime}=(-1,3)$. To graph, draw the x^{2} - and y^{2}-axes through $0^{\prime \prime}$ and sketch the new equation with respect to those axes.

The solution of the other parts is similar to part (a). The new equations and origin are:
(b) $\frac{x^{x^{2}}}{4}+\frac{y^{z^{2}}}{3}=1 ; 0^{2}=(1,-1)$.
(c) $x^{2} \cdot=\frac{3}{2} y^{2} ; 0^{i}=\left(-\frac{3}{2}, \frac{5}{2}\right)$.
(d) $x^{2} y^{2}=12 ; 0^{2}=(-3,4)$.
(er), $\mathrm{y}^{2}=\mathrm{x}^{2}{ }^{3} ;^{\prime} ; 0^{\prime}=(-2,-2)$.
The graph of. (e) looks like the figure to the right. It is called a semi-cubic parabola. There is no "asymptote." Δ

$\dot{9}$.

From the figure, $\left\{\begin{array}{l}x=x^{2}+h \\ y=y^{z}+k\end{array}\right.$ or.$\left\{\begin{array}{l}x^{z}=x-h \\ y^{z}=y-k .\end{array}\right.$

10-3. Rotation of Axes: Rectangular Coordinates.

Motivation for this section, as for Section 10-2, could be provided by asking the students to graph the pair of equations

$$
x^{2}+2 \sqrt{3} x y-y^{2}=8 \text { and } x^{2}-y^{2}=y^{2}
$$

Then point out, to them or have them discover that the graphs are identical except for position.

You will note that we present two forms for the equations of rotation. The form chosen for use in solving a given problem depends upon the nature and form of the problem. The four examples presented in the text should. clarify this point.'

Your better students should be encouraged to study the Supplement to Chapter 7 where the topic is discussed in detail. Among other things, the student will learn how to determine the angle of rotation in order to arrive at a new set of axes and an equation containing no xy-term.

The "digression" on this page, which discusses the merits of one form of an equation over another for the same curve when both are simple, has an * ulterior motive. That purpose is to indicate several scientific areas in which the equilateral hyperbola, in the form $x y=k$, is studied." As a rule, students are more acquainted with the other conics.

403
We recommend that the details of this rotation be carried out in class \% by the instructor: The students may then carry out the details of rotating. the axes through an angle of measure α, and arrive at the equation of the circle

$$
x^{z^{2}}+y^{z^{2}}+D x^{2}+E y^{\prime}+F=0
$$

With respect to the new $x^{7} y^{1}$-axes. No $x^{7} y^{7}$-term should appear. A complete discussion of the general equation of the second degree is found in the Supplementary Chapter for Chapter 7 .

Because of the nature of polar coordinates, the rotation of the polar axis leads to a very simple result. Once again we have restricted ourselves to the conics. If time permits, you may like to discuss the rose curves, - lemiscates, spirals, and other curves."

Exercises 10-3

1. Since $\alpha=150^{\circ}$, $\sin \alpha=\frac{1}{2}$ and $\cos \alpha=-\frac{\sqrt{3}}{2}$. The equations of
rotation are $\left\{\begin{array}{l}x^{\prime}=\frac{1}{2}(-\sqrt{3} x+y) \\ y^{\prime}=\frac{1}{2}(-x-\sqrt{3} y)\end{array}\right.$. The new coordinates of the vertices
of the triangle are $A=\left(\cdot \frac{\sqrt{3}}{2},-\frac{1}{2}\right), D=\left(\frac{-5 \sqrt{3}-2}{2}, \frac{-5+2 \sqrt{3}}{2}\right)$, and $c=\left(\frac{-3 \sqrt{3}+4}{2}, \frac{-3-4 \sqrt{3}}{2}\right)$. Using the original coordinates, we
have $d(A, B)=\sqrt{20}, d(A ; C)=\sqrt{20}$. Area of $\triangle A B C=10 . \quad$ Using the new coordinates, we have

$$
\begin{aligned}
\mathrm{d}(A, B) & =\sqrt{\left(\frac{-5 \sqrt{3}-2}{2}+\frac{\sqrt{3}}{2}\right)^{2}+\left(\frac{-5+2 \sqrt{3}}{2}+\frac{1}{2}\right)^{2}} \\
\because & =\sqrt{(-2 \sqrt{3}-1)^{2}+(-2+\sqrt{3})^{2}}=\sqrt{20} .
\end{aligned}
$$

Similarly $d(A, C)=\sqrt{20}$; and the area of $\triangle A B C=10$.
2. \therefore Since $\alpha \pm-30^{\circ}, \sin \alpha=-\frac{1}{2}$ and $\cos \alpha=\frac{\sqrt{3}}{2}$: The equations of rotation are therefore:

$$
\left\{\begin{array}{l}
x=\frac{1}{2}\left(\sqrt{3} x^{\prime}+y^{1}\right) \\
y=\frac{1}{2}\left(-x^{2}+\sqrt{3} y^{\prime}\right)
\end{array}\right.
$$

The equation of the line with respect to the new axes is:

$$
\frac{3}{2}\left(\sqrt{3} x^{2}+y^{1}\right)+1\left(-x^{2}+\sqrt{3} y^{8}\right)-8=0
$$

which simplifies to $(3 \sqrt{3}-2) \dot{x}^{\prime}+(2 \sqrt{3}+3) y^{\prime}-16=0$.
The slope is $-\frac{3 \sqrt{3}-2}{2 \sqrt{3}+3}=\frac{13 \sqrt{3}-24}{3}$.
3. $\left\{\begin{array}{l}x^{2} \cos \alpha-y^{2} \sin \alpha=x \\ x^{2} \sin \alpha+y^{2} \cos \alpha=y\end{array}\right.$
$\therefore x^{2} \cos ^{2} \alpha-y^{2} \sin \alpha \cos \alpha \cdot \bar{F} x \cos \alpha$. $x^{\prime} \sin ^{2} \alpha+y^{8} \sin \alpha \cos \alpha=y \sin \alpha$

Adding corresponding members, awe have,
or
Likewise,
$\alpha)=x \cos \alpha+y \sin \alpha$ $x^{2}=x^{\prime} x \cos \alpha+y \sin \alpha$. $y^{2}=-x \sin \alpha+y \cos \alpha$.
4. Since $\alpha=45^{\circ}$; the equations of rotation are

$$
\left\{\begin{array}{l}
x=\frac{1}{\sqrt{2}}\left(x^{i}-y^{i}\right) \\
y=\frac{1}{\sqrt{2}}\left(x^{i}+y^{i}\right)
\end{array}\right.
$$

The new equation is $\frac{\left(x^{8}-y^{2}\right)^{2}}{2}=\frac{x^{8}+y^{8}}{\sqrt{2}}$ which simplifies to $x^{2}-2 x^{2} y^{\prime}+y^{2}-\sqrt{2} x^{2}-\sqrt{2} y^{\prime}=0$.
5. The solution is similar to that of Exercise (4). The answers are:
(a) $x^{2}+5 y^{2}=6$.
(b) (Here $\left.\sin \theta=\frac{\sqrt{5}}{5}, \cos \cdot \theta=\frac{2 \sqrt{5}}{5}\right)$.
$25 x^{2}+13 y^{2}=25$.
(c) $y^{t^{2}}-x^{2}=8$.
(d) $x^{2}=-4 y^{2}$

6. After rotation, we have

$$
\left(x^{y} \cos \alpha-r^{r t} \sin \alpha\right)^{2}+\left(x^{2} \sin \alpha+y^{\prime} \cos \alpha\right)^{2}=r^{2}
$$

- or

$$
\begin{aligned}
& x^{2^{2}} \cos ^{2} \alpha-2 x^{i} y^{2} \sin \alpha \cos \alpha+y^{2} \sin ^{2} \alpha+ \\
& x^{z^{2}} \sin ^{2} \alpha+2 x^{2} y^{2} \sin \alpha \cos \alpha+y^{2} \cos ^{2} \alpha=r^{2}
\end{aligned}
$$

Thus, $x^{2}+y^{2}=x^{2}$.
7. $(a)_{:} r=r \frac{6}{2-\cos \left(\dot{\theta}-60^{\circ}\right)}$.
(b) $r=\frac{10}{5^{5}+3 \cos \left(\theta-120^{\circ}\right)}$

431
431.

1. The proof is as follows: after rotation of axes, the new equátion is.

$$
\begin{aligned}
& A^{2} x^{2}+B^{2} x^{2} y^{2}+C^{2} y^{2}+D^{2} x^{2}+E^{2} y^{2}+F^{2}=0 \text { where } \\
& B^{2}=-2 \cos ^{2} \alpha+B \sin \alpha \cos \alpha+C \cos \alpha+B \sin ^{2} \alpha \\
& B^{2}=-B \sin ^{2} \alpha+2 C \sin \alpha \cos \alpha \\
& C^{2}=A \sin ^{2} \alpha-B \sin \alpha \cos \alpha+C \cos ^{2} \alpha \\
& D^{2}=D \cos \alpha+E \sin \alpha . \\
& E^{2}=-D \sin \alpha+E \cos \alpha \\
& F^{2}=F
\end{aligned}
$$

When you perform tre indicated operations and simplify, you find that $B^{2}-4 A^{2} C^{z}=B^{2}-4 A \dot{C}$.
2. $x=x^{\prime} \cos \alpha-y^{\prime} \sin \alpha=\left(x^{\prime \prime} \cos \theta-y^{\prime \prime} \sin \dot{\theta}\right) \cos \alpha$ $-\left(x^{\prime \prime} \sin \theta+y^{\prime \prime} \cos \theta\right) \sin \alpha$
$x^{\prime \prime \prime}\left(\cos \theta \cos \alpha-\sin \theta^{\prime} \sin \alpha\right)-y^{\prime \prime}(\sin \theta \cos \alpha+\cos \theta \sin \alpha)$
$\therefore x=x^{\prime \prime} \cos (\theta+\alpha)-y^{\prime \prime} \sin (\theta+\alpha)$.
Likèwise, $y=x^{\prime \prime} \sin (\theta+\alpha)+y^{\prime \prime} \cos (\theta+\alpha)$

10-4. "Invariànt Properties.

We have aiready touched upon the significance of the study of the geometric properties invariant under certain transformations. When the axcs are rotated or translated, and the figure remains fixed, the question of invariant properties has meaning only with respect to observers using different point s or lines of reference. then we study point trensformations in the next tivo sections, the question of invariant properties has many more and varied aspects. When the points of a figure are moved, we are frequently not certain about, the appearance of the image; it may or may not be congruent. to the original figure.

You may wish to omit the discussion following Theorem 10-3." It is included to show a second approach to the problem and to lead to an interesting challenge exercise.

The exercises for this section were deliberately selected to point out properties other than distance and angle which remain invariant under the set of translations and rotations. We encourage you to discuss these other properties carefully on the basis of the exercises. The students should be encouraged to find more invariants than are indicated.

Exercises $10-4$

1. (a) $3 x+2 y-8=0$
(b) The equations of translation are

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = \dot { x } + 4 } \\
{ y ^ { \prime } = y + 6 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=x^{\prime}-4 \\
y=y^{\prime}-6
\end{array}\right.\right.
$$

Thus $A=(6,7)$ and $B=(4,10)$ with respect to the new origin. .Also, with respect to the new origin, the line has the equation. $3\left(x^{\prime}-4\right)+2\left(y^{\prime}-6\right)-8=0$, which simplifies to $3 x^{3}+2 y!-3 e^{2}=0$.
(.c) $d(A, \dot{B})=\sqrt{13}$ with respect to either set of axes.
2. The equations of rotation are

$$
\left\{\begin{array}{l}
x^{\prime}=x \cos \alpha+y \sin \alpha=y \\
y^{\prime}=-x \cos \alpha+y \cos \alpha=-x
\end{array}\right.
$$

Thus $A=(1,-2)$ and $B=(4,0)$ with respect to the new axes. $\dot{d}(A, B)=\sqrt{13}$ with respect to either set of axes.
3. The equations of translation are

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = x + 1 } \\
{ y ^ { \prime } = y + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=x^{2}-1 \\
y=y^{2}-1
\end{array} .\right.\right.
$$

(a) $A^{2}=(1,-3), B^{\prime}=\left(3,-\frac{1}{3}\right)$, and $\quad C^{\prime}=(4,1)$.

Is lifis the equation $4\left(x^{8}-1\right)-3\left(y^{z}-1.\right)-12=0$, which reduces to $4 x^{2}-3 y^{2}-13=0$.
(b) B is between A and C since $d(A, B)+d(B, C)=d(A, C)$. B^{2} is between A^{1} and C^{\prime} since $d^{\prime}\left(A^{8}, B^{\prime}\right)+d\left(B^{1}, C^{1}\right)^{1 /}=d\left(A^{1}, C^{8}\right)$.
(c). Since $d\left(A^{\prime}, B^{r}\right)+d\left(B^{y}, C^{r}\right)=d\left(A^{\prime}, C^{l}\right)$, the points are collinear. Another way to prove coliinearity is to show that the slopes of .
 $\overline{\mathrm{A}^{2} \mathrm{~B}^{\frac{1}{2}}}$ and $\overline{\mathrm{B}^{\top} \mathrm{C}^{\boldsymbol{T}}}$
4. (a).The lines. are concurrent since the point $(2,1)$ lies on all three lines.
(b) The equations of translation are:

$$
\left\{\begin{array}{l}
x^{2}=x-3 . \\
y=y+2 . \quad \text { or } \quad . \quad\left\{\begin{array}{l}
x=x^{4}+3 \\
y=y^{t}-2
\end{array} .\right.
\end{array}\right.
$$

The equations of the three lines with respect to the new axes are:

$$
\begin{aligned}
& L_{1}: \therefore 4 x^{2}-3 y^{2} \div 13=0 \\
& I_{2} 2^{\prime}: x^{2}-2 y^{2} \div 7=0 \\
& L_{3}: 5 x^{2}-3 y^{2} \div 14=0
\end{aligned}
$$

(c) The lines are concurrent. since the point $(-1,3)$ lies on all three ines.
(d) Point (2,1) maps into ($-1,3$) under this translation.
(e) When the axes are rotated through an angle of 45°, the equations of rotation are

$$
\left\{\begin{array} { l }
{ x ^ { 2 } = \frac { 1 } { - \sqrt { 2 } } (x + y) } \\
{ y ^ { 2 } = \frac { 1 } { \sqrt { 2 } } (- x + y) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=\frac{1}{\sqrt{2}}\left(x^{2}-y^{2}\right) \\
y=\frac{1}{\sqrt{2}}\left(x^{2}+y^{1}\right)
\end{array}\right.\right.
$$

(1) The equations of the three lines with respect to the new exes ate:

$$
\begin{aligned}
& L_{1}^{2}: x^{2}-7 y^{2}-5 \sqrt{2}=0 \\
& L_{2}: x^{2}+3 y^{2}=0 \\
& L_{3}: 2 x^{2}-8 y^{2}-7 \sqrt{2}=0
\end{aligned}
$$

(2) The lines are concurrent since the potent $\left(\frac{3}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ lies on all three lines.
(3) Point,$(2,1)$ maps into $\left(\frac{3^{\circ}}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)$ under this rotation.
(a) $m_{1}=-\frac{3}{2}, m_{2}=5$
$\cos \theta=\frac{1+m_{1} m_{2}}{\sqrt{1+m_{1}^{2}} \cdot \sqrt{1+m_{2}^{2}}}=-\frac{\sqrt{2}}{2}$
$\therefore \theta=\frac{3 \pi}{4}$ and its supplement is $\frac{\pi}{2} \cdot 0$
(b) The equations of translation are

$$
\left\{\begin{array}{l}
x=x^{z}+2 \\
y=y^{z}+2
\end{array}\right.
$$

With respect to the new axes, the equations of the lines are:

$$
\begin{aligned}
& -I_{1}^{z}+3 x^{2}+2 y^{z}+2=0 \\
& \dot{L}_{2}^{z}: 5 x^{z}-y^{z}-1=0
\end{aligned}
$$

Since $m_{1}^{2}=-\frac{3}{2}, m_{2}^{2}=5, \theta^{2}=\frac{\pi}{4}\left(\right.$ and $\left.\frac{3 \pi}{4}\right) \therefore$

Challenge Problem.

The proof that the measure of angle is invariant under rotation may be presented as follows: ${ }^{\prime}$
(1) Consider the angle between the lines

$$
\begin{align*}
& L_{1}: a_{1} x+a_{2} y+a_{3}=0 \\
& L_{2}: b_{1} x+b_{2} y+b_{3}=0
\end{align*}
$$

It will be convenient to use the formula for the angle between two lines $\%$ in the form: $\tan \alpha=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}$ which is equivalent to the cosine form developed in this text: Thus:
\therefore

$$
\tan \alpha=\frac{\frac{\dot{b}_{1}}{b_{2}}+\frac{a_{1}}{a_{2}}}{1+\frac{a_{1} b_{1}}{a_{2} b_{2}}}=\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1} b_{1}+a_{2} b_{2}}
$$

(.2) The equations of rotation are

$$
\begin{aligned}
& x=x^{y} \cos \theta-y^{t} \sin \theta \\
& y=x^{z} \sin \theta+y \cos \theta
\end{aligned}
$$

Substituting in L_{1} and L_{2}, we have

$$
\begin{aligned}
& L_{1}:\left(a_{1} \cos \theta \div a_{2} \sin \theta\right) x^{2}+\left(a_{2} \cos \theta-a_{1} \sin \theta\right) y^{8}+a_{3}=0 \\
& L_{2}:\left(b_{1} \cos \theta+b_{2} \sin \theta\right) x^{2}+\left(b_{2} \cos \theta-b_{1} \sin \theta\right) y^{8}+b_{3}=0 .
\end{aligned}
$$

The angle between \dot{L}_{1} and L_{2} is given by

$$
\tan a^{2}=\frac{\left(a_{1} \cos \theta+a_{2} \sin \theta\right)\left(b_{2} \cos \theta-b_{1} \sin \theta\right)-\left(a_{2} \cos \theta-a_{1} \sin \theta\right)\left(b_{10} \cos \theta+b_{2} \sin \theta\right)}{\left(a_{1} \cos \theta+a_{2} \sin \theta\right)\left(b_{1} \cos \theta+b \sin \theta\right)+\left(a_{2} \cos \theta-a_{1} \sin \theta\right)\left(b_{2} \cos \theta-b_{1} \sin \theta\right)}
$$

(3) This complicated expression reduces to

$$
\tan \alpha^{s}=\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1} b_{1}+a_{2} b_{2}}=\tan \alpha .
$$

after several applications of the identity $\sin ^{2} \alpha+\cos ^{2} \alpha=1$. Thus $\alpha=\dot{\alpha}^{\prime}$ for the principal values of $\tan \alpha$ and $\tan \alpha^{\prime}$.

NOTE: Before offering this problem, you may wish to show the equivalence
of the two formulas: $\cos \alpha=\frac{1 . \div m_{1} m_{2}}{\sqrt{1+m_{1}^{2}} \sqrt{1+m_{2}^{2}}}$ and $\tan \alpha=\frac{m_{2}-m_{1}}{1+m_{2} m_{1}}$.
The equivalence follows from the Pythagorean Theorem and the definitions of the trigonometric functions.

$$
x^{2}+\left(1 \div m_{1} m_{2}\right)^{2}=\left(1+m_{1}^{2}\right)\left(1+m_{2}^{2}\right)
$$

Thus $x_{1} \pm\left(m_{2}-m_{1}\right)$ and $\tan \alpha=\frac{ \pm\left(m_{2}-m_{1}\right)}{1+m_{2} m_{1}}$. This formula gives us the angle and its supplement. We chose $+\left(m_{2}-m_{1}\right)$ arbitrarily.

10-5: Point Transformations.

Most of the transformations studied by mathematicians are considered as point transformations or mappings. The reason for dicussing the transformslion of axes first is that this type is most useful in reducing, a complicated equation to a simpler form for sketching, Considerable care has been taken to distinguish between the two sets of transformations and to indicate that translations and rotations can bee effected by either type.

The material included here on reflections relates so closely to the difscussion of symmetry in Section 6-2 that a review of that topic may be appropriate before proceeding with this subject.

Euclidean geometry in characterized by the fact that the measures of both distance and angle are preserved under translation and rotation. In elementary geometry this statement is expressed in the "Postulate for Rigid Motion" which stảtes thåt an object may be moved in space without changing its size and shape. We now see that all rigid motion can be performed by a series of no more than three reflections:

The SMSG : Geometry, Appendix 8, has an excellent discussion on rigid motion.

The students may wonder why the third reflection is necessary in Exaraple 3. THG yeflections are sufficient if the sequence of points on the line is not considered. You might label seiveral points on $\overline{A^{\prime} B^{7}}$, see where they fall on $\overline{C D}$, and then observe what happens after the second and third reflections.

An interesting result is Dbtained by subitracting the corresponding members of the equations of circles C and C^{\prime} described on this page. The result is $8 x+12 y \doteq 0^{\circ}$ or $y=\frac{2}{3} x$. This is the equation of the common chord (or radical axis) thom:

A reflection is an example of what is called an "involutory transformation". A transformation is called an involutory transformation if it has the property that, if repeated once, it produces the identity transformation. This can be written analytically as follows: Let $(x, y) \rightarrow\left(x^{7} y^{8}\right) \rightarrow\left(x^{\prime \prime}, y^{\prime \prime}\right)$. If $x^{\prime \prime}=x^{\prime}$ and $y^{\prime \prime}=y$; then the transformation is involutory.

Exercises 10-5

1. (a) $A=(1,2)$ maps into $A^{\prime}=(1,-2)$ and $B_{1}=(3,-4)$ maps into $B!=(3,4)$ after reflection with respect to the x-axis.

$$
d(A, B)=2 \sqrt{10}=d\left(A^{\prime}, B^{\prime}\right)
$$

(b) $A=(1,2)$ maps into $A!=(-1,2)$ and $B=(3,-4)$ maps into . $B^{\prime}(-3,-4)$ after reflection with respect to the y-axis.

$$
d(A, B)=2 \sqrt{10} \div d\left(A^{i}, B^{i}\right)
$$

(c) $A=(1,2)$, maps into $A^{\prime}=(-1,-2)$ and $B=(3,-4)^{\circ}$ maps into $B^{\prime}=(-3 ; 4)$ after reflection with respect to the origin.

$$
\backslash(A, B)=\dot{2} \sqrt{10}=d\left(A^{i}, B^{y}\right)
$$

(d) $A=(1,2)$ maps into $A^{\prime}=(11,2)$ and $B_{1}=(3,-14)^{f}$ maps into $\therefore B^{i_{n}}=(9,-4)$ after reflection with respact to the line $x=6$.

,

$$
V(A), B)=2 \sqrt{10}=d\left(A^{\prime}, B^{\prime}\right)
$$

2. We choose the points $A=(2,0), B=(4,0), C=(7,0)$, Under this transformation, the images of these points are $A^{\dagger}=(4,0), B^{2}=(6,0)$, and ' $C^{\prime}=(9,0)^{\prime}$. Two invariant properties are the measure of distance and the order of the points on the line. The three points on the line also remain collinear (a thirdinvariant property).
3. Under the transformation $x^{\prime}=2 x$, the images of the three points are $A^{\prime}=(4,0), B^{\prime}=(8,0)$, and $C^{\prime}=(14,0)$. Three invariant properties are: the origin remains fixed, i.e., $(0,0) \longrightarrow(0,0)$, the order of the three points on the fine, and collinearity. (Note tha't distance is not an invariant property under this transformation.),
4. The angle between L_{1} and L_{2} has measure 45°. When both lines are rotated-through an ancle of measure $\frac{\pi}{4}$, the requation of L_{1} becomes $y^{2}=x^{\prime}$ and the equation of I_{2} becomes " $x^{2}=0$. The angle between' ,these lines also، has measure 45°.

GNOTE: This problem can, of course, be solved by using the equations of rotation. Since the lines are rotated through an angle of measure $\frac{\pi}{4}$, the axes must be rotated through angle of measure $-\frac{\pi}{4}$ to achieve . the same result.).
5. The images are:
(a) $y^{2}=-\dot{x}$.
(b) $x^{2}=-y!$
(c) $: x y=6$.
(d) $x^{2}-y^{2}=1$
(e) $x^{2}+y^{2}+2 x+4 y+4=0$
(f) $y=-x^{3}$
$(g)^{x} \dot{y}=-\sin \cdot x$
(h) $y=-\tan \cdot x$
(1) $y=e^{-x}$

It is rectomended that the graph for the original curve and its image be dram on the same set of axes.
6. In this problem the points are rotated about the origin through an angle, θ such that, $\tan \theta=\frac{3}{4}$. In order to achieve the same result, we rotate the axes through an angle θ such that $\tan \theta=\frac{-3}{4}$. Thus $\sin \theta=-\frac{3}{5}, \cos \theta=\frac{4}{5}$, and the equations of' rotation are

$$
\left\{\begin{array}{l}
x^{2}=\frac{1}{5}(4 x-3 y) \\
y^{z}=\frac{1}{5}(3 x+4 y)
\end{array}\right.
$$

Ünder̈ this rotation $A=(-2,1)$ maps into $A^{\prime}=\left(-\frac{11}{5},-\frac{2}{5}\right)$, $B^{*} \stackrel{\circ}{=}(5,-2)$ maps into $B^{\prime}=\left(\frac{26}{5}, \frac{7}{5}\right)$, and $C=(3,3)$ maps into ${ }^{\circ} C^{:}=\left(\frac{3}{5} ; \frac{21}{5}\right)$.
Invariant properties are:
(a). Measure of Distance. For example, $\mathrm{d}(\mathrm{A}, \mathrm{B})=\sqrt{58}=\mathrm{d}\left(\mathrm{A}^{2}, \mathrm{~B}^{\prime}\right)$.
(b) Measure of Angle. For example,
$\mathrm{m}_{\overline{\mathrm{AB}}}=-\frac{3}{7}, \mathrm{~m}_{\overline{A C}}=\frac{2}{5}, \cos A=\frac{1}{\sqrt{2}}$, and $m / A=\frac{\pi}{4}$.
$m_{\overline{A^{\top} B^{7}}}=\frac{9}{37}, m_{\overline{A^{2} C^{2}}}=\frac{23}{14}, \cos A^{2}=\frac{1}{\sqrt{2}}$, and $m / A^{2}=\frac{\pi}{4}$.
(c), Area of $\triangle A B C=$ Area of $\triangle A^{2} B^{\prime} C^{\prime}$.

Apply the formula $s=\sqrt{s(s-a)(s-b)(s-c)}$ where s is the semi-perimeter.
7. We. do not present the constructions here since the procedure is shown. in the text. In part (b), each corresponding pair of lines must be mapped separately.
8.. Since the points on the curves are rotated through an angle of measure $\frac{\pi}{6}$, the axes must be rotated through an angle of measure $-\frac{\pi}{6}$. The equations of rotation are, therefore:

$$
\left\{\begin{array}{l}
x=\frac{x^{\prime}}{2}\left(\sqrt{3} x^{t}+y^{t}\right) \\
y=\frac{1}{2}\left(-x^{t}+\sqrt{3} y^{t}\right)
\end{array}\right.
$$

(a) The, image of the line $3 x+2 y-8=0$ is

$$
\begin{aligned}
& \frac{3}{2}\left(\sqrt{3} x^{1}+y^{1}\right)+\frac{2}{2}\left(-x^{2}+\sqrt{3} y^{\prime}\right)-8=0, \text { which simplifies to } \\
& (3 \sqrt{3}-2) x^{2}+(2 \sqrt{3}+3) y^{2}-16=0 .
\end{aligned}
$$

(b) The image of the circle $x^{2}+y^{2}=25$ is $x^{2}+y^{2}=25$.
(c.) The image of the parabola $y^{2}=4 x$ is

$$
x^{2^{2}}-2 \sqrt{3} x^{7} y^{2}+3 y^{2}-8 \sqrt{3} x^{2}-8 y^{2}=0
$$

(NOTE: You may wish to excuse your students from sketching this parabola.)
9. Another way to write this transformation is

$$
\left\{\begin{array} { l }
{ x ^ { 2 } = - y + 3 } \\
{ y ^ { i } = x + 1 }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=y^{2}-1 \\
y=-x^{\prime}-3
\end{array}\right.\right.
$$

The images of the curves in Exercise 8 are:
(a) The image of the line $3 x+2 y-8=0$ is $3\left(y^{\prime}-1\right)+2\left(-x^{\prime}-3\right)-8=0$; which simplifies to $2 x^{\prime}-3 y^{1}+27=0$. Note that these lines are perpendicular.
(b) The imace of the circle $x^{2}+y^{2}=25$ is the circle. $x^{2}+y^{1^{2}}+6 x^{2}-2 y^{2}-15=0$ which has its center at $(-3,1)$ and a radius of 5 .
(c) The image of the parabola $y^{2}=4 x$ is $x^{1^{2}}+6 x^{2}-4 y^{1}+13=0$.
io. Another way: to write this transformation is:

$$
\left\{\begin{array}{l}
x^{\prime}=\dot{x}+y \\
y^{2}=2 x-y^{4}
\end{array} \quad \text { or } \quad=\left\{\begin{array}{l}
x=\frac{1}{3}\left(x^{2}+y^{2}\right) \\
y=\frac{1}{3}\left(2 x^{2}-y^{v}\right)
\end{array}\right.\right.
$$

The line $L_{1}: 3 x-2 y+5=0$ maps into the line
$\mathrm{i}_{1}{ }^{2}: x^{\prime}-5 y^{2}-15=0$.
The ine $L_{2}: 3 x-2 y-3=0$ maps into the line
$L_{2}^{2}: x^{2}-5 y^{2}+9=0$ 。
$L_{1}:^{\prime} \| L_{2}^{\prime}$ since they have the same slope.

10-6. Inversions.

The jüstification for Section 6 was presented in Section.10-1 and in Scction 10-5 of this commentary. This transformation has been studied by many outstanding mathematicians and plays a role in thé Poincaré moiel of non-Euclidean geometry. You will find an excellent discussion of inversion geometry in Introduction to Higher Geometry by William C. Graustein.

An inversion is an involutory transformation as defined in Section io-5 of this commentary. If an inversion T carries $P \longrightarrow P$, a second application of T wilf carry $P!\longrightarrow P$.

You may like to point out to the class that as point P approaches the origin, the image P^{t} will recede farther and farther out in the plane. For this reason it is often stated that the center of the circle of inversion corresponds to the "point at infinity" under the inversion. "This is a useful concept since we can now. say that an inversion sets up a one-to-one correspondence between the points of the plane and their images:

One of the most important properties of an inversion is that it trans. forms straight lines and circles into straight lines and circles. Specifically, , we show that, after an inversion:

1. A line through the origin inverts into the same inne through the origin, although the points on the line are interchanged.
2. A line not through the origin inverts into a circle through the origin:
3. A circle through the origin inverts into a straight line not throilgh the origin.
4. A circle not through the origin inverts into a circle not through the origin. .

You may want to precede Example 1 by a similar problem wherein the constants à b, c are specified. You could then draw the unit circle of inversion, the straight line, and its inverse on the same set of coordinates. You can thus verify that the inverse really does pass through the origin.

This same comeñt holds for Examples 2 and 3 . In Example í, let $x= \pm 1, x= \pm 2 ; y= \pm i, y= \pm 2$ and observe what happens; It may also be profitable and interesting to explore with your class the inverses of a family of circles concentric to the unit circle; for example $x^{2}+y^{2}=4, x^{2}+y^{2}=9, \ldots$. This could be followed by a set of * concentric circles with their centers at $(2,4)$ or some other point.

If you hạve stuadied projective geometry or non-Euclidean geometry you uñaoubtedly recall the cross-ratio which appears in Exercise 9. The crossratio is invariant under a projective transformation and certain other transformations as well as under the inversion transformation. This property plays a very important role in the proof of the consistency of non-Euclidean geometry. If interested, you may like to read Chapter 4 of Fountations and Fundamental Concepts of Mathematics by Newsom and Eves،

1. The inverse of the line $3 x+2 y-6=0$ is

$$
\frac{3 x^{4}}{x^{2}+y^{2}}+\frac{2 y^{\prime}}{x^{2}+y^{2}}+6=0
$$

which simplifies to $x^{4^{2}}+y^{t^{2}}-\frac{x^{2}}{2}-\frac{y^{1}}{3}=0$. This represents a circié with ceater at $\left(\frac{1}{4}, \frac{1}{6}\right)$ and radius $\frac{\sqrt{13}}{12}$. The circle passes through the origin:
2. The inverse of th: line $y=5 x$ is the line $y^{\prime}=5 x^{1}$. The line inverts into itself.
3. The inverse of the line $y=3$ is the curve $\frac{y^{2}}{x^{2}+y^{2}}=3$, which simplifies to $x^{\prime 2}+y^{2} z^{2}-\frac{1}{3} y^{z}=0$. It is a circle which has its "center 'at $\left(0, \frac{1}{6}\right)$ and radius $\frac{1}{6}$. The circle passes through the origin.
4. The inverse of the parabola $y^{2}=4 x$ is the curve $\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{4 x^{2}}{\left(x^{2}+y^{2}\right)}$, which simplifies to $y^{2}{ }^{2}=\frac{4 x^{3}}{1-4 x^{2}}$.

NOTE: The graph of this curve may be left as a challenge exercise. It is a cissoid with the following properties:
(1).' Symmetry with respect to the x-axis."
(2) Intercept at $(0,0)$.
(3) Asymptote: $x^{2}=\frac{1}{4}$.
(4) Extent: $0<x^{t}<\frac{1}{4}$.

The curve has this appearance

5. The inverse of the circle $(x-4)^{2}+(y-4)^{2}=16$ is found as follows: The equation simplifies to $x^{2}+y^{2}-8 x-8 y^{i}+16=0$: Apply the transformation and obtain:
$\left(\frac{x^{2}}{\left(x^{t^{2}}+y^{2}\right)^{2}}+\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)-\frac{8 x^{2}}{x^{2}+y^{2}}-\frac{8 y^{2}}{x^{t^{2}}+y^{2}}+16=0$
or $\frac{1}{\dot{x}^{2}+y^{2}}-\frac{8 x^{1}}{x^{2}+y^{2}}-\frac{8 y^{2}}{x^{2}+y^{2}}+16=0$
or $j-8 x^{2}-8 y^{2}+i 6\left(x^{2}+y^{2}\right)=0$.
.or $x^{2}+y^{2}-\frac{x^{2}}{2}-\frac{y^{2}}{2}+\frac{1}{16}=0$ which represents a circle with center at $\left(\frac{1}{4}, \frac{1}{4}\right)$ and radịus $\frac{1}{4}$:
6. This problem is essentially solved in Example 2 of the text.
7. The inverse of the line $L: 3 x+12 y=6=0$ is the circle. $L^{2}: x^{2}+y^{2}-\frac{x^{2}}{2}-\frac{y^{i}}{3}=0$.
We now apply the inverse transformation

$$
\left\{\begin{array}{l}
x^{3}=\frac{x}{x^{2}+y^{2}} \\
y^{\prime}=\frac{x}{x^{2}+y^{2}}
\end{array} \text { to } x^{3}\right. \text { and obtain: }
$$

$$
\left(\frac{x^{2}}{\left(x^{2}+\dot{y}^{2}\right)^{2}}+\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right)-\frac{x}{2\left(x^{2}+y^{2}\right)}-\frac{y}{3\left(x^{2}+y^{2}\right)}=0
$$

$\stackrel{\text { or }}{\text { or }} \frac{1}{x^{2}+y^{2}}-\frac{x_{3}}{2\left(x^{2}+y^{2}\right)}-\frac{y}{3\left(x^{2}+y^{2}\right)}=0$,
or $3 x+2 y-6=0$, which we recognize asxthe original line L.
A reasonabie conjecture is that a second appiication of the same inverse transformation yields the original curve. This verifies the fact that
an inversion is an involutory transformation. :
$\stackrel{\rightharpoonup}{\text { 8. If }}$. If had not used, a unit circle, we would have had $a(0, p) \cdot d\left(0, p^{2}\right)=r^{2}$ or $d(0, P)=\frac{r^{2}}{d\left(0, p^{1}\right)}$.
Since $\frac{d(0, P)}{d\left(0, P^{t}\right)}=\frac{x}{x^{3}}=\frac{r^{2 \cdot r}}{\left(d\left(0, P^{i}\right)\right)^{2}}=r^{2}(d(0, P))^{2}$,
we have $x=\frac{r^{2} x^{8}}{x^{2}+y^{2}}$ and $x^{\prime}=\frac{r^{2} x}{x^{2}+y^{2}}$,
Likewise, $y=\frac{r^{2} y^{i}}{x^{2}+y^{2}}$ and $y^{\prime}=\frac{r^{2} y}{x^{2}+y^{2}}$.
9. Since $r=2$, the inverse transformation is,

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{4 x}{x^{2}+y^{2}} \\
y^{i}=\frac{4 y}{x^{2}+y^{2}}
\end{array}\right.
$$

The inverse points are as follows:

$$
\begin{aligned}
& A=(0,-3) \rightarrow A^{\prime}=\left(0,-\frac{4}{3}\right) \\
& B=(1,-1) \rightarrow B^{\prime}=(2,-2) \\
& C=(2,1) \rightarrow C!=\left(\frac{8}{5}, \frac{4}{5}\right) \\
& \\
& D=(3,3) \rightarrow D^{\prime}=\left(\frac{2}{3}, \frac{2}{3}\right)
\end{aligned}
$$

$d(A, C)=2 \sqrt{5}, d(A, D)=3 \sqrt{5}, d(B, C)=\sqrt{5}, d(B, D)=2 \sqrt{5}$.
$\frac{d(A, C)}{d(A, D)} \div \frac{d(B, C)}{d(B, D)}=\frac{2 \sqrt{5}}{3 \sqrt{5}} \div \frac{\sqrt{5}}{2 \sqrt{5}} \div \frac{4}{3}$.
$\mathrm{d}\left(\mathrm{A}^{\mathrm{t}}, \mathrm{C}^{\mathrm{t}}\right)=\frac{8}{3}, \mathrm{~d}\left(\mathrm{~A}^{\mathrm{t}}, \mathrm{D}^{\mathrm{t}}\right)=\frac{2}{3} \sqrt{10}, \mathrm{~d}\left(\mathrm{~B}^{t}, \mathrm{C}^{2}\right)=\frac{2}{2} \sqrt{2}, \mathrm{~d}\left(\mathrm{~B}^{\mathrm{t}}, \mathrm{D}^{\mathrm{t}}\right)=\frac{4}{3} \sqrt{5}$.
$\frac{d\left(A^{4}, C^{2}\right)}{d\left(A^{7}, D^{t}\right)} \div \frac{d\left(B^{2}, C^{t}\right)}{d\left(B^{t}, D^{t}\right)}=\frac{\frac{8}{3}}{\frac{2}{3} \sqrt{10}} \div \frac{2 \sqrt{2}}{\frac{4}{3} \sqrt{5}}=\frac{4}{3}$.
The above verifies that an inversion is a cross-ratio preserving transformation.
10. The instructions for the construction are given in the text. As in the proof in the 'text for the first construction:

$$
\angle O R P=\angle \mathrm{POR}=\angle O \mathrm{PR}^{2} .
$$

Thus ${ }^{-} \triangle R P^{\prime} O \sim \triangle O R P$ and

$$
\frac{d\left(0, p^{i}\right)}{d(0, R)}=\frac{d(0, R)}{d(0, P)} \text { or } d(0, P) \cdot d\left(0, P^{t}\right)=r^{2}
$$

$\therefore \frac{\text { Review Exercises }}{}$

Before proceeding with the solutions of this set of problems, we feel it important to point out that there are two ways to interpret the mapping symbol, such as $(x, y) \rightarrow(2 x ; 3 y)$, which appears in the rirst exercise.

In this text, we haye adoptedं the convention.that ${ }^{\dagger}(x, y) \longrightarrow(2 x, 3 y)$ is merely another way of writing the transformation

$$
\left\{\begin{array} { l }
{ x ^ { 2 } = 2 x } \\
{ y ^ { 2 } = 3 y ; }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=\frac{x^{2}}{2} \\
y=\frac{y^{2}}{3}
\end{array}\right.\right.
$$

A second interpretation, which is often used (but not in this text), is, the following: wherever an x appears in the equation, replace it by, $2 x$; wherever a y-appears, replace it by $3 y$.

The first interpretation leads to the result $x^{\prime 2}=\frac{8}{3} y$; the second interpretation leads to the result $x^{2}=\frac{3}{2} y$ when applied to Exercise $1(a)$.

Solutions

i. (a) $x^{\prime}{ }^{2}=\frac{8}{3} y^{\prime} \quad$ (See above)
(b) The transformation can be written as

$$
\left\{\begin{array} { l }
{ x ! = x + 2 } \\
{ y ^ { i } = 3 y }
\end{array} \text { or } \left\{\begin{array}{l}
x=x^{2}-2 \\
y=\frac{y^{2}}{3}
\end{array}\right.\right.
$$

Applying this transformation to the parabola $x^{2}=2 y ;$ we have $\left(x^{2}-2\right)^{2}=2 \frac{y^{2}}{3}$, which simplifies to $3 x^{2}-12 x^{2}-2 y^{i}+i 2=0$: An invariant property of this transformation is that a parabola maps into a parabola; i.e., the type of curve is invariant.
(c) The tranaformation can be written as

$$
\left\{\begin{array} { l }
{ x ^ { 2 } = x - 1 } \\
{ y ^ { 2 } = y + 2 }
\end{array} \quad \left\{\begin{array}{l}
x=x^{2}+1 \\
y=y^{2}-2
\end{array}\right.\right.
$$

The parabola $x^{2}=2 y$ transforms into the curve:
$\left(x^{2}+1\right)^{2}=2\left(y^{2}-2\right)$ wich ve winge as the equation of the same parabola ith respect to a nevingin at ($-1,2$) :
2. The mapping $(x, y) \rightarrow(k x, k y)$ can be written as the transformation

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = k x } \\
{ y ^ { \prime } = k y ^ { \prime } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
x=\frac{x^{\prime}}{k} \\
y=\frac{y^{\prime}}{k}
\end{array}\right.\right.
$$

In this case, we let $s \equiv 2$. Applying this transformation, in turn, to each of the curves, we have:
(a) The line $2 x+3 y-6=0$ transforms to $2 x^{\prime}+3 y^{2}-12^{*}=0$, a line parallel to the original line.
(b) The circle $x^{2}+y^{2}=25$ transforms to $x^{2}+y^{2}=100$, a circle with the same center but with a radius twice as large,
(c) The parabola $y^{2}=-4 x$ transforms to the parabola $y^{\prime 2}=-8 x$; which is "parallel" to the original curve.

The title is well justified since ε figure "similar" to the original appears after the transformation.
3. Under this transformation, the image of L_{1} is the line $I_{1}{ }^{i}: x-5 y-8=0$, and the image of L_{2} is the line $L_{2}^{\prime}: 5 x+y-12=0 . L_{1} \perp L_{2}$ since $m_{1}^{\prime} * m_{2}{ }^{\prime}=-1$.
4. Applying the transformation \dot{T} to each" of the curves, we obtain the following images:
(a) $13 x^{t^{2}}-4 x^{\prime} y^{2}+20 y^{2}-20 x^{\prime}-24 y^{2}+13=0 . \quad$ (An ellipse)
(b) $65 x^{2}+172 x^{2} y^{2}-28 y^{2}+232 x^{2}+112 y^{\prime}-176=0$. (A hyperbola)
(c) $x+22 y-28=0$.
(d) $x+22 y-17=0$.

Lines (c) and (d) are parallel and their images are paralilel. A reasonable conjecture is that an affine transformation preserves the property of parallelism. (It does.)
5. The proof follows that given in the text for the mapping $(x, y) \longrightarrow(x,-y)$ in Section 10-5.

Supplement-to Chapter ?

Exercises S2-1a

1. $p^{\prime}=8$
$q^{\prime}=0$
$r^{z}=-4$
order reyersing
2. $p^{\prime \cdot}=-22$

$$
\begin{aligned}
\mathbf{q}!= & 10 \cdot \quad f^{\prime}=26 \\
& \text { order preserying }
\end{aligned}
$$

.scele decreasing,
3. $\dot{p}^{\prime}=-1$
scale increasing,
$q^{\prime}=1$
$x^{3}=2$ orderitpreserving
4. $\mathrm{p}^{\mathrm{s}}=\mathrm{E}=15$
scale decreasing,

$$
r^{\prime}=-21
$$

order feversing
5. $p^{2}=\frac{17}{3}$
scale increasing,
 order reversing
6. $p^{\prime}=2$
scale preserving,
$q^{\prime}=10$ $\dot{r}^{\prime}=14$
order preserving
7. Let ' p b be the origin point, q the unit' point in the original systems i.e., $p=0 \quad q=1$,
(5) $p^{\prime}=3 \quad q^{\prime}=2$
(6) $p^{\prime}=-2$
$q^{\prime}=2$
(7) $\mathrm{p}^{\prime \prime}=\frac{1}{4}$
$q^{\prime}=\frac{1}{2}$
(8) $\mathrm{p}^{\prime}=0$
$q^{\prime}=-3$
(9) $p^{\prime}=\frac{7}{3}$
$q^{\prime}=\frac{5}{3}$
(10) $p^{\prime}={ }^{*} 7$
$q^{\prime}=8$

8, Let P be the origin of the new system, Q the new unit point; ide;, $\mathrm{p}^{2}=0 \quad \mathrm{~g}^{4}=-1$

(5) $\mathrm{p}=3$	$\mathrm{q}=2$
(6) $\mathrm{p}=\frac{1}{2}$	$\mathrm{q}=\frac{3}{4}$
(7) $\mathrm{p}=-1$	$\mathrm{q}=3$
(8) $\mathrm{p}=0$	$\mathrm{q}=-\frac{1}{3}$
(9) $\mathrm{p}=\frac{7}{2}$	$\mathrm{q}=2$
(10) $\mathrm{p}=-7$	$\mathrm{q}=-6$

9. - Suppose $\mathrm{a}^{\prime}=0$ in $x^{\prime}=a x+b$.

Then for any point P with coordinate p, we wound get $p^{\prime}=0 ; p+b$ 。 So every point in the new system would have coordinate b_{j} thus preserving neither measure nor order hor betweenness:
10. $x^{4}=a x^{3}+b$

Let p and p^{\prime} be the intrinsic and the new coordinates of P, and
 $d^{i} \cdot(P, Q)=\left|a p^{3}+b\right|{ }^{2}{ }^{2} a q^{3}-b f=|a|\left|p^{3}-q^{3}\right|$

$$
=|a||p-q|\left|p^{2}+p q+q^{2}\right|
$$

Similarly

$\mathrm{d}^{4}(\mathrm{R}, \mathrm{S})=|\mathrm{a}||r-\mathrm{s}| \dot{,}\left|r^{2}+r s+s^{2}\right|$.
Suppose $\stackrel{\overline{P Q}}{\cong} \cong \overline{R S}$. Then $|p \neq q|=|r-s|$. However, $d^{\prime}(P, Q) \equiv d^{\prime}(R, S)$.
only if $\left|p^{2}+p q+q^{2}\right|=\left|r^{2}+r s+s^{2}\right|$, which in general is false:
For example, if $p^{\prime}=1, q=2, r=3$ and $s=4$, then $\left|p^{2}+p q+q^{2}\right|=7$ while $\left|r^{2}+r s+s^{2}\right|=37$. It is also true that we can have $d^{\prime}(P ; Q)=d^{\prime}(R, S)$ although $\overline{P Q}$ and $\overline{R S}$ are not -congruent. The example $p=0, q=\frac{3}{3}, r=1$ and $s=2$ shows this. $p<q<r$ always implies: $\mathrm{p}^{3}<\mathrm{q}^{3}<\mathrm{r}^{3}$, so betweenness is preserved.
iI. $x^{\prime}=e^{x}$

$$
\begin{aligned}
& d^{d}(\dot{P}, Q)=\left|e^{p}-e^{q}\right| \\
& d^{d}(R, S)=\left|e^{r}-e^{s}\right|
\end{aligned}
$$

So $\stackrel{\rightharpoonup}{P Q} \cong \overline{R S}$ does not always imply $d^{g}(P, Q)=d^{i}(R, S)$ $p<q \mid<r$ does always imply $e^{p}<e^{q}<e^{r}$, so betweenness is preserved.

$$
\text { 12. } \begin{aligned}
\dot{x}^{2} & =\frac{1}{x} \quad \text { if } r^{\prime} \neq 0 \\
\because x^{2} & =x
\end{aligned} \quad \text { if } x=0
$$

If none of p, q, r, s is zeró

$$
\begin{aligned}
& d^{\prime}(P, Q)=\frac{1}{|p q|}|p-q| \\
& d^{\prime}(R, S)=\frac{1}{|r s|}|r-s|
\end{aligned}
$$

.So $P Q \underset{\mathcal{E}}{\sim} R S$ does not always imply $d^{i}(P, Q)=d^{i}(R, S)$. However, if $' P=R=0$ and $\overline{P Q} \cong \overline{R S}$, then $|q|=|s|$ and $d^{*}(P, Q)=d^{\prime}(R, S)$. Let $p<q<r$. Then betweenness is preserved only if $q=0$ or $r^{\prime}<0^{*}$ or $p>0$.
13. $x^{2}=\log _{10} x$

This cannot handle points on negative side of the origin since $\log _{10}$. is not defined for negative numbers or 0 . Where it is defined

$$
\begin{aligned}
d^{\prime}(P, Q) & =\left|\log _{10} \frac{p}{q}\right| \\
& \left.=\log _{10} \frac{r}{s} \right\rvert\,
\end{aligned}
$$

So, $\overline{P Q} \cong \overline{R S}$: does not always imply $d^{\prime}(P, Q)=d^{\prime}(R, \dot{S})$. Betweenness is preserved where $\log _{10}$ is defined.

The notion of a group will mean very little to the students unless they consider many examples. They should study carefully all those mentioned in the text and try to think of others. If they know something about complex number's, they cạ́n be asked to prove that the three cube roots of 1 form a group under multiplication, as do the four fourth roots. These examples show that a group may be finite. If the students are asked for other finite groups," some" of them may suggest the kind" of arithmetic that suits clock faces. "Finally, no complicaited mathematical definition becomes clear to students until they have thought of examples that don't quite fit. What about the integers under multiplication, the non-negative integers under addition, and the rational numbers under multiplication?

Exercises S2-1b

I. Let " f . be the function defined by $\mathrm{f}(\mathrm{x})=\mathrm{ax}+\mathrm{b} \quad \mathrm{a} \neq 0$.

Let g be the function defined by $g(x)^{\prime}=c x+d \quad c \neq 0$.
We wish to prove, $f(g)$ is a function defined by $(f(g))(x)=0 \quad s x+t$ for real numbers $s \neq 0$, and t.

$$
\begin{aligned}
(\dot{f}(g))(x) & =f(g(x)) \\
& =\dot{a}(c x+d)+b \\
& =(a c) x+(a d+b)
\end{aligned}
$$

Since -a- $\hat{0}$, and $c \neq 0$ we know that (ac) $\neq 0$.
Thus there do exist real numbers $s=a c \neq 0 ; \quad t=a d+b$ such that. $\because(f(g))(x)=s x+t . f$
2. Consider f, g, h, as three functions in our set:

$$
f(x)=m x+n, \quad g(x)=p x+q, \quad h(x)=r x+s \quad m, p, r \neq 0
$$

We, Wish-to show $(f(g))(h)=f(g(h))$
We find that $f(g)$ is defined by $(f(g))(x)=(m p) x+(m q+n)$ and that $g(h)$ is defined by $(g(h))(x)=(p r) x+(p s+q)$

Then for all $x(f(g))(h)(x)=(n i p) r x+(m p) s+m q+n$
for all $x f(g(h))(x)=m(p r) x+m(p s+q)+n$
Hence for all $x \quad(f(g))(h)(x)=(f(g(h)))(x)$. which is the necessafy and sufficient condition that the functions S, or for each x, $(f(g))(h)=(f(g(h))).$.

Note: this is a special case of the theorem that if. h maps set A into, set \dot{B}, G maps B into C, and, \dot{f} maps C into D then $(f(g))(h)=f(g(h))$. The general proof follows: If $x \in \dot{A}$, let $g^{\prime}=h(x) \in B, f=g(y) \in C$, and $f(z) \in D$. Let $k=f(g)$ mapping ' B into.. $D,{ }^{\prime} \ell=\sigma(H)$ mapping A into C. Then $(f(a))(h)(x)=k(h)(x)=k(h(x))=k(y)$ but $k(y)^{\prime}=f(z)(y)=f(y)$. Aiso $f(g(h))(x)^{\dot{\prime}}=(f(\ell))(x)=f(z)$ since $(x)^{\dot{\prime}}=g(h)(x)=g(y)=2$. Therefore $(f(g))(h)=f(g(h))$.
3. Let if The defined by $f(x)=a x+b$, $f \neq 0$
g be defined by $G(x)=c x+\cdot d \quad c \neq 0$.
Then $(f(b))(x)=f(c x+d)=a(c x+d)+b=(a c) x+(a d+b)$

$$
\begin{aligned}
& a(g(f))(x)=g(a x+b)=(c a) x+(c b+a) \\
& f(g)=g(f) \text { only if } a d+b=c b+d .0
\end{aligned}
$$

Th show that the combative property does not holds. we need simply exhibit one cause, when it doesn't. Take $\frac{1}{a} \doteq 1, c \underset{t}{\text { a }} 2, d=1, b=1$; then $a d+b=1: 1+1=2, \quad c b+d=2 \cdot 1+1=3$

$$
(f(g))(x)=2 x+2 \quad \cdot(g(f))(x)=2 x+3 \quad \dot{f}(g) \neq g(f)
$$

4. To show that in any group the identity is unique.
. Let e and e^{\prime} be identity elements.
-Then for all" $a, a(e)={ }^{\prime} e(a)=a$

$$
\begin{equation*}
a\left(e^{\prime}\right)=e^{2}(a) a \tag{1}
\end{equation*}
$$

$\dot{\mathrm{S}}$ o in particular $e^{t} \cdot(e)=e\left(e^{t}\right)=e^{t}$
from (1) letting $\dot{a}=\cdot e^{\prime}$

$$
e\left(e^{l}\right)=e^{x}(e)=e .
$$

from (2) letting $a=e$
Which gives us $e=e^{f}$.
5. To show that in any group's G the inverse is unique. Let $a \in G$. Suppose b and b^{\prime} are both inverses; i.e.,

$$
\begin{aligned}
& a(b)=b(a)=e \\
& a\left(b^{2}\right)=b(a)=e
\end{aligned}
$$

Now consider $b\left(a\left(b^{2}\right)\right)=(b(a))\left(b^{2}\right)$ by associativity; but \star.

$$
\begin{aligned}
b(a) & =e \\
b(e) & =e\left(b^{2}\right) ;
\end{aligned}
$$

but e, is the identity element, so

$$
j=b^{2} .
$$

6. To show that the inverse of the identity is the identity, let e be the identity, a its inverse.

Then $a(e)=e$ since a is the inverse of e, but $a(e)=a$ since, e is the identity, therefore $a=e$.
7. (a) $a^{2} x+a b+b$.
(g) $\frac{1}{\mathrm{p}} \mathrm{x}-\frac{\mathrm{q}}{\mathrm{p}}$
(b) $a p x+a q+b$
(h) $\frac{l}{a p} x-\frac{q+b p}{a p}$
(c): $a p x+b p+q$
(1) $\frac{1}{a p} x-\frac{b_{c}+a q}{a p}$
(d). $p \cdot{ }^{2} x+p q+q$
(j) $\frac{1}{a p} x-\frac{b+a q}{a p}$
(e) $a^{3} x+a^{2} b+a b+b$
(k) $\frac{p}{a} x-\frac{b p}{a}+q$
(f) $p^{3} x+p^{2} q+\dot{p} q+q$
(l) $\frac{a}{p} x-\frac{a q}{p}+b$

* 8. Let. fin be defined by, $f(x)=a x+b$. $a \neq 0$.

If $h(h)=f$ we must have $p \neq 0$ and q such that
$h(h(x))=p^{2} x+p q+q=a x+b=f(x)$
Thus p and q must satisfy

$$
p^{2}=a, \quad p q+q=i
$$

Case 1. a<0
There is no real number whose square is negative so there is no function h such that $h(h)=f$.

Case 2. $a>0$ and $a \neq 1$
Both $p=\sqrt{8}$ and $p=-\sqrt{a}$ satisfy $p^{2}=a$. So we have, in general, two solutions to $h(h)=f$.
h_{1} defined by $h_{1}(x)=\sqrt{a} x+\frac{b}{i+\sqrt{a}}$
\bar{h}_{2} defined by $h_{2}(\dot{x})=-\sqrt{a} x+\frac{b}{1-\sqrt{a}}$
h_{1} is defined for all values of $a \neq 0$ and b. However, in the: special case $a=1, \dot{h}_{2}$ is not defined because i- $\sqrt{a}=1-1=0$. So then $a^{t}=1$ veg get, the unique solution $h(x)=x+\frac{b}{2}$.

Although Section $52-2$ can be omitted witheat serious loss of continuity, there are a good many ideas in it which are important in other branches of mathematics. If you do not think there is time to cover it in class, periaps the better students could study it and do some of the exercises. *x,
In earifor courses, students have studied various number systems and learned to consider them as sets closed under certain operations but not under others. 'The fundamenici operations of addition and multiplication
are commatative. In the set of linear transformations of a line onto itself we have an algebraic operation whose elements are not numbers but functions. The oniy operation--composition of functions-is not commutative. Nevertheless, the operation is associative. There is an element which plays the same role for composition as zero does, for addition and one for multiplication. For each linear transformation there is a transformation which "undoe.s" the first, and thus acts like the reiprocal of a nonzero number when the cperation is multiplication and like the negative of a number when the operation is adaition.

It is the fact that so many different algebraic systems share these properties that led mathematicians to define a group. This concept was defined earlier, and the example treated here is one which is very important in advanced mathematics.

If the exercises on cardinal number are to be assigned, it will probably be necessary to prepare the way with a brief discussion in class. It can be pointed out that when we are asked whether two finite sets, have the same number of members, we can count them. Now counting a set can be described as setting up a one-to-one correspondence between the set and part of a stanuard seq̌ience of noises. If we do this for sets A and B and discover that we used the same part of the standard sequence of noises in both cases, we have set up a one-to-one correspondence detween A and' B. We could have done this without counting. Since we can't, in any ordinary sense, count the members of an infinite set, it is natural to define what we mean when we say that two such sets have, the same number of members, in terms of one-to-one correspondences. Although the students will probably be a bit disturbed by the fact that the set of positive integers and the set of odd positive integers have the same number of members; they will soon come to realize that no other definition seems reasonable.

The students should be asikel to give detailed proofs, in class, for one or two cases of the theorem that an image is vetween two other images if and only if its pre-image is between the pre-images of the other two images. This will prepare them for the first exercise in the next set. Since we are dedling with a necessary and sufficient condition, two implications must be proved. . The proof can be shortened, however, by noting that the inverse of a transformation of any of the four types' is of the same type.

Exercises 3-6 of the following set fustify that the linear transformation of a line onto itself forms a group under the operation of composition.

Exercises S2-2a

Let Q be between P and R; i.e., either $p<q<r$ or $p>q>r$ where p, q, r are coordinates of P, Q, R on line $\overrightarrow{P R}$. If T is a linear transformation, then there are numbers $a \neq 0$ and b such that the coordinate of $T(X)^{\circ}=a x+b$ where x is the coordinate of X.

$$
T(P) \sim p^{2}=a p+b \quad T(Q) \sim q^{2}=a q+b \quad T(R) \sim r^{2}=a r+b
$$

If $p<q<r$ and $a>0$ then $a p<a q<a r$ and $p^{\prime}<q^{2}<r^{2}$. If $p<q<r$ and $a<0$ then $a p>a q>a r$ and $p^{\prime}>q^{2}>r^{\prime}$ If $p>q>r$ and $a>0$ then $a p>a q>a r$ and ${ }^{\prime} p$ ' $>q$: $>\mathrm{r}$: If $p>q>r$ and $a<0$ then $a p<a q<a r$ and $p^{\prime}<q^{2}<r^{2}$ Hence in all cases $T(Q)$ is between $T(P)$ and $T(R)$.
Let $\overline{P Q}$ and $\overline{R S}$ be congruent segments; i.e., $|p-q|=|r-s|$. Let T bé a Iinear transformation, defined: $T(X)=X^{2}$ has coordinate $x^{2}=a x+b$.
$T^{T}(p) \sim p^{2}=a p+b \quad T(Q) \sim q^{2}=a q+b \quad\left|p^{2}-q^{2}\right|=|a p+b-a q-b|=|a|,|p-q|$
$(R) \sim r^{2}=a r+b \quad T(S) \sim s^{2}=a s+b \quad\left|r^{2}-s^{2}\right|=|a r+b-a s-b|=|a||r-s|$
But $\overrightarrow{P Q}=\bar{i}$ which means $\overline{P^{2} Q^{2}} \cong \overline{R^{2} S^{2}}$.
3. Let T_{1}, I_{2} be arbitrary linear trancformations of the line into itself defined by coordinate equations: $T_{1}(X)=X^{2} \cdot x^{2}=a x+b, T_{2}(X)=X^{2}$ $x^{\prime}=c x+d$. We wish to know whether $T_{1}\left(T_{2}\right)$ is a linear transformation of the line.

$$
\begin{aligned}
& T_{2}(X) \text { is a point } Y \text { with coordinate } c x+d \\
& T_{1} \text { is defined at } Y ; T_{1}(y) \text { is a point with coordinates } \\
& (a c) x+(a d+b) .
\end{aligned}
$$

But ac $\neq 0$ since $a \neq 0$ and $c \neq 0$. And ($a d+b)$ is a mumber. So $T_{1}\left(T_{2}\right)$ is defined for all points X by coordinate equation $x^{2}=(a c) x+(a d+b)$. Thus it is a linear transformation of the Iine.
4. To show that composition of linear transformations is associative let $\mathrm{T}_{1} ; \mathrm{T}_{2}, \mathrm{~T}_{3}$ be defined by coordinate equations $\mathrm{I}_{1}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$, , $T_{2}(x) \stackrel{\prime}{=} c x+d, \quad T_{3}(x)=e x \div f$. Then $T_{2}\left(T_{3}\right)$ is the linear transformation taking x to (ce) $x+(c f+d)$ and $T_{1}\left(T_{2}\right)$ is the linear transformation taking x to $(a c) x+(a d+b)$. Let x_{0} be an arbitrary point with coordinate x_{0}.
$T_{3}\left(X_{0}\right)=Y$ with coordinate $\left(e x_{0}+\dot{f}\right)$,
$\left(T_{1}\left(T_{2}\right)\right)(Y)=2$ with coordinate $(a c)\left(e x_{0}+f\right)$

So $\left.\quad\left(\dot{S}_{1}\left(\mathrm{~T}_{2}\right)\right) \mathrm{T}_{3}\right)\left(\mathrm{X}_{0}\right)=Z$ with coordinate $($ ace $) \dot{x}_{0}+(\mathrm{acf}+\mathrm{ad}+\mathrm{b})$.
Now $\left(T_{2}\left(T_{3}\right)\right)\left(x_{0}\right)=y$ with coordinate $v=(c e) x_{0}+(c f+d)$,

$$
T_{1}(v)=2^{z} \text { with coordinate } a\left((c e) x_{0}+(c f+d)\right)+b,
$$

So $\left(T_{1}\left(T_{2}\left(T_{3}\right)\right)\right)\left(X_{0}\right)=Z^{\prime}$ with coordinate (ace) $x_{0}+(a c f+a d+b)$.
Therefore $Z=Z^{\prime}$ since both have the same coordinate which means

$$
T_{1}\left(T_{\widehat{2}}\left(T_{3}\right)\right)=\left(T_{1}\left(T_{2}\right)\right)\left(T_{3}\right)
$$

5. 'To show that the set of linear transfoimaions of a line has an identity with respect to composition, consider line $O \tilde{O}$ and the transposition I such that $I(X)=X, I$ is given by the coordinate equation $I(x)=x=1 \cdot x+0$ so I is a member of the set of linear transformations, This I is an identity, By the definition of I we know

$$
\begin{array}{ll}
& (I(T))(X)=I(T(X))=T(X) \\
\text { or } & (T(I))(X)=T(I(X))=T(X) \\
\text { so } & I(T)=T(I)=T
\end{array}
$$

Suppose I' were any other identity.

Then
but
Therefore
$I^{\prime}(I)=I\left(I^{\prime}\right)=I$ since I^{\prime} is an identity, $I\left(I^{s}\right)=I^{\prime}(I)=I^{\prime}$ since I is an identity, $I^{\prime}=I$ which means I is the unique identity,

6, To show that each element on the set S of linear transformations of the line has an inverse with respect to composition, let T be an arbitrary element of $\mathrm{S} \cdot \mathrm{T}(\mathrm{X})$ is the point Y such that $\mathrm{y}=\mathrm{asc}+\mathrm{b}$, $b \neq 0$.
If there were an inyerse T^{-1} to T we would have to have

$$
\mathrm{T}^{-1}(\mathrm{~T})=T\left(\mathrm{~T}^{-1}\right)=\mathrm{I}
$$

There would have to be numbers . $c \neq 0$ and d, such that for all points S, with coordinate x,

$$
c(a x+b)+d=a(c x+d)+b=1 x+0,
$$

This requires

$$
\begin{align*}
& c a x=a c s=l x \tag{1}\\
& c b+d=a d+b=0 \tag{2}
\end{align*}
$$

Since $a \neq 0$ we can choose $c=\frac{1}{a} \neq 0$ to satisfy (I) and then $d=-b$ along with $c=\frac{1}{a}, y-\frac{a}{b}$ wiil be the inverse of T, and is θ linear transformation.
7. We exhibit one counter example to show that composition is not commutative, Consider

Therefore

$$
\begin{aligned}
& T_{1}: T_{1}(X)=Y, \quad y=2 v+2\left[\begin{array}{l}
\text { ": " is read } \\
\text { "defined by"] }
\end{array}\right. \\
& T_{2}: T_{2}(X)=Y, \quad y=1 \cdot x+1 \\
& T_{1}\left(T_{2}\right):\left(T_{1}\left(T_{2}\right)\right)(x)=2(x+1)+0=2 x+2 \\
& T_{2}\left(T_{1}\right):\left(T_{2}\left(T_{1}\right)\right)(x)=1(2 x+0)+1=2 x+1 \\
& \mathrm{~T}_{2}\left(\mathrm{~T}_{1}\right) \neq \mathrm{T}_{1}\left(\mathrm{~T}_{2}\right) . \\
& T_{1} ; T_{1}(X)=Y, \quad y=a x+b \text { and } \\
& T_{2} ; T_{2}(X)=Y, \quad y=c x+d \\
& T_{1}\left(T_{2}\right)=T_{2}\left(T_{1}\right), \text { i.e., } a(c x+d)+b= \\
& c(a x+b)+d, b x .
\end{aligned}
$$

Suppose we require
to be such that

So we must have $a c x=c a x$ and $a d+b=c b_{c}+d$.
The conditions are (1) $a=c=1$ and b and d any real numbers.
(2) $a \stackrel{\circ}{\circ} c \neq 1 ;$ and $b=d$ any real number,
(3) a, c any real'numbers and $b=d=0$.
8. Let $F: F(X)=Y, \quad y=a x+b$ be a transformation.

Case (I) a $50 . \quad F=T(E)$ where $E: y=a x \quad T: y=x+b$ $\forall X, E(X)$ hàs ccurainate $a x, T(E(X))$ has coordinate $a x+b$.

Cáse (2) $a<0 . F=T(E(R))$ where $R: y=-l x \quad E: y=|a| x \quad T: y=x+b$ $\forall X, R(Y)$ has coordinate $-x, E(R(X))$ has coordinate $|a|(-x)=a x$ $T(E(R(X))$ has coordinate $a x+b$ hence $T(E(R))=F$.

Exercises $\mathrm{S} 2-2 \mathrm{~b}$

1. Let the points be R and S. We may assume $r<s$. The ratio of two non-zero numbers is positive if and only if both numbers have the same sign. $r<s$ means $r-s<0$. Therefore $\frac{r^{2}-s^{2}}{r-s}>0$ if and only if $r^{2}-s^{2}<0$. But we have $r^{2}-s^{2}<0$ if and only if $r^{2}<s^{2}$ which is the condition that the coordinate change be order preserving. Similăarly: $-\frac{r^{2}-s^{2}}{r-s}<0$ if and only if $r^{2}-s^{2}>0$ which is true if and only if the coordinate change is order reversing.
2. The coordinate change f determines an equation of the form $f(x)=x^{2}=a x+b$. From $r^{\prime}=a r+b, s^{\prime}:=a s+b$. We find $a=\frac{r^{2}-s^{2}}{r-s}, \quad b=\frac{r s^{2}-r^{2}}{r-s}$
(a) fincludes a contraction if and only if $0<a<1$ which is the condition $0<\frac{r^{2}-s^{1}}{r-s}<2$.
(b) if includes a contraction and reflection if and only if $-1<a<0$ which is the condition $-1<\frac{x^{2}-s^{2}}{r-s}<0$.
(c) f includes an expansion if and only if $a>1$ which is the condition $\frac{r^{2}-s^{2}}{r-s}>1$.
(d) f includes an expansion and reflection if and only if $a<-1$ Which is $\frac{r^{2}-s^{2}}{r-s}<-1$.
3. The coordinate change f determines an equation of the form $f(x)=a x+b$. From $p^{2}=a p+b, \quad q^{2}=a q+b$ we find $a=\frac{p^{2}-q^{\prime}}{p-q}, \quad b=\frac{p q^{2}-p^{2} q}{p-q}$.
(a) f includes a translation if and only if $a=1$ which is the condition $\frac{p^{1}-q^{1}}{p-q}=1$.
(b) f includes a reflection if and only if $a=-1$ which is the condition $\frac{p^{2}-q^{2}}{p-q}=-1$.
4. We wish to show that the intrinsic coordinate systems are identical to the coordinate systems whose defining functions have the form ${ }^{\text {c }}$ $x^{y}=x+b$ or $x^{2}=-x+b$ with b any real number.

Pick one intrinsic coordinate system, call ins origin $: P_{0}$ and rêer to it as the P_{0}-system.

Consider any other intrinsic coordinate system (one having the same unit length) with origin P_{1} and the same positive direction.

$$
\begin{array}{r}
x<y \text { if and only if } X \text { is left of } Y \\
x^{\prime}<y^{\prime} \text { if and only if } X \text { is left of } Y
\end{array}
$$

So $\overrightarrow{\mathrm{d}}\left(\mathrm{P}_{\mathrm{O}^{2}}, \mathrm{P}_{1}\right)=0-\mathrm{P}_{0}=\mathrm{P}_{1}-0$ since unit of measure is the same.
Solving $\dot{P}_{0}^{\prime!}=a \cdot 0+b$ and $0=a \cdot P_{1}+b$ we get $x^{2}=x+\left(-P_{1}\right)$.
So this (intrinsic) coordinate system has defining function of the form $x^{\prime}=x+\bar{b}$ relative to the P_{0}-system. Conversely for any equation $x^{\prime}=x+b$ we can, find the intrinsic coordinate system whose origin has P_{0} coordinate $(-b)$ and the P_{0} positive direction.

Similarly we establish an identity between coordinate systems with positive sense opposite to that of the P_{0}-system and systems with defining functions $x^{\prime}=-x+b$. Notice
P_{0}-system $0 \quad P_{1} \quad x<y$ if and only if X is left of Y
new system $P_{0}^{\prime} \quad 0 \quad x^{\prime}<y^{\prime}$ if and only if X is right of Y $\vec{d}\left(P_{0}, P_{1}\right)$ is $p_{1}-0$ in P_{0}-system, but $p_{0}^{\prime}-0$ in system with opposite positive sense.
5.

6. (a) Domain of $F(G(H))=$ domain of $H=\{W$: W is real $\}$
range of $F(G(H))=\{z: 0<z<1\}$

Transformation $\mathrm{F}\{(\mathrm{G}(\mathrm{I}))$ is into the line, not onto, It is one-to-onc.
(b)

(c) The cardinality of the interior of a segment is the same as the cardinality of the line.
7. (a). Domain $D(\mathbb{E}(F))=(W: W$ is real $)$

Range $D(F(P))=\{2 ; 0<z<1\}$
$D\left(E\left(F^{\prime}\right)\right.$ maps the reals. into but not onto the reals,
It is one-to-one,
(b) The" cardinality of B is infinite,
8. Let the caorìinate change be given by $x^{\prime}=a x+b$, Then $\frac{p^{\prime}-a^{\prime}}{r^{\prime}-s^{2}}=\frac{(a p+b)-(a q+b)}{(a r+b)-(a s+b)}=\frac{a(p-q)}{a(r-s)} \quad(b-b) \quad \frac{p-g}{(b-b)}$

The operations are justified since $r \neq s$ and $a \neq c$ so that $r-s \neq 0$ and $\frac{a}{a}=1$.
9. $\mathrm{x}=\frac{11}{2}$

This may be obtained from the change of coordinate formula, or, using Problem 8, from ratios of directed distances (letting $A=P$, $B=R=Q, \quad C=S)$.
70. $x^{2}=x\left(\frac{b^{2}-a^{2}}{b-a}\right)+\left(\frac{a^{2} b-a b^{2}}{b-a}\right)$
11. Tet f be a linear transformation of the line into itself such that for two distinct points X and $Y, f(X)=X$ and $f(X)=Y \cdot$ We. . wish to show that for all points $Z, f(Z)=Z$.

$$
\begin{gathered}
f(X)=X \text { and } f(Y)=Y \text { yield coordinate equations } \\
x=a x+b \text { and } y=a y+b
\end{gathered}
$$

which implies $\mathrm{a}=1$ and $\mathrm{b}=0$. So for any point Z with coordinate 2, $f(z)$ has coordinate

$$
z^{\prime}=i \cdot z+0=2
$$

So f keeps all points fixed.

Supplement D
(Supplement to Chapters $2,3,8$)

POINTS, LINES, AND PLANES.

In this chapter the student will face many problems arising from the relative positions of points, lines, and planes in space. Among these are thë measurements of angies and distances, matters of parallelism and perpendicuiatuty, and questions of incidence and separation.

Various schemes and devices are suggested as being appropriate in certain cases, but in the last analysis we believe that a student should not be told too much. He has many tools; therefore, he should be encouraged to find his own solution 'for any given situation.

Here is where a student begins to need some facility with determinants. There is help in Appendix A.

If the equ tion of a line is written in the form $a x+b y+c=0$, then the equations

$$
\begin{aligned}
& a x_{1}+b y_{1}+c=0 \\
& a x_{2}+b y_{2}+c=0 \\
& a x_{3}+b y_{3}+c=0
\end{aligned}
$$

may be considered a system of 3 linear homogeneous equations in the 3 unknowns a , b, c. Equation (3) in the student's text is the necessary and sufficient condition that there are non-trivial solutions of the system.

Exercises D-2

1. (a) collinear
(b) $k=46.5$
(c) $|b c-a d|$
(d) collinear
2. ac; -ac; ac; -ac; yes; no. The direction of traverse of the triangle affects the sign (positive for counter-clockwise, negative for clockwise); the vertex at which one starts does not.
3. Consider the triangle with vertices $\dot{P}_{i}=\left(x_{i}, y_{i}\right), i=1,2,3$. We know that the area is

$$
\begin{aligned}
K & =\frac{1}{2}| | \begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}| | \\
& =\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)-x_{2}\left(y_{1}-y_{3}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& =\frac{1}{2}\left|x_{1} y_{2}-x_{1} y_{3}-x_{2} y_{1}+x_{2} y_{3}+x_{3} y_{1}-x_{3} y_{2}\right| \\
& =\frac{1}{2}\left|\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\left(x_{3} y_{1}-x_{1} y_{3}\right)\right| \\
& =\frac{1}{2}\left(\left|\begin{array}{ll}
x_{1} & y_{1} \\
x_{2} & y_{2}
\end{array}\right|+\left|\begin{array}{ll}
x_{2} & y_{2} \\
x_{3} & y_{3}
\end{array}\right|+\left|\begin{array}{ll}
x_{3} & y_{3} \\
x_{1} & y_{1}
\end{array}\right|\right)
\end{aligned}
$$

4. $18 \frac{1}{2}$
5. (a) $\left.\underset{\substack{3 \\ \vdots \\ \vdots}}{\frac{-2}{2}} \begin{array}{rrr}1 & 1 \\ 2 & -2 & 1 \\ 6 & -5 & 1\end{array} \right\rvert\,=-2(3)-2(6)+6(3)=0$
(b) $\vec{B}-\vec{A}=[4,-3], \quad \bar{C}-\vec{A}=[8,-6]$

Hence $\vec{B}-\vec{A}=\frac{1}{2}(\stackrel{\rightharpoonup}{C}-\vec{A})$
But $\overrightarrow{A B}$ is parallel to the line of $\vec{B}-\vec{A}$, and $\stackrel{\rightharpoonup}{\mathrm{AC}}$ is parallel to the line of $\stackrel{\rightharpoonup}{\mathrm{C}}-\overrightarrow{\mathrm{A}}$ which is the line of $\bar{B}-\bar{A}$.

So. $\overrightarrow{A B}$ coincides with $\stackrel{\rightharpoonup}{A C}$.
(c) $\alpha(A, B)=5, \alpha(B, C)=5 ; \alpha(A, C)=10$ By the triangle inequality, this implies B

If Lines $\dot{L}_{1}, I_{2}, \dot{L}_{3}$, meet in a point $\left(x_{1}, y_{1}\right)$, then

$$
\begin{aligned}
& a_{1} x_{1}+b_{1} \dot{y}_{1}+c_{1}=0 \\
& a_{2} x_{1}+b_{2} y_{1}+c_{2}=0 \\
& a_{3} \dot{x}_{1}+b_{3} \dot{y}_{1}+c_{3}=0
\end{aligned}
$$

This system of three linear equations in the two unknowns (x_{1}, y_{1}) has a common solution only if the determinant of the coefficients is zero; this condition is Equation (3) in the student's text.

It might be worthwhile to place considerable emphasis on the idea of . families. This concept will appear later in connection with curves in the plane and in space.

Exercises D-3

1: (a) No
(b) Yes, $\left(\frac{1}{2}, \frac{5}{2}\right)$
(c) No, (the lines are parallel)
(a) 4
(b) $k^{3}+4 k-16=(k-2)\left(k^{2}+2 k+8\right)=0$; real value, $k=2$.
3. General form, $3 x-2 y+5+n(x+4 y-1)=0$
(a) $21 x-28 y+43=0$
(b) $14 x+21 y+6=0$
(c) $4 x+9 y=0$
(d) $5 x-22 y+19=0$
(e) $\mathrm{x}-3 \mathrm{y}+3=0$
4. $9 \ddot{x}-3 y^{-}+8=0$
5. This exercise may be done in a variety of ways. If students use the , methods in this section, some of the following may be useful in checking their work,
-
(a) Centroid $\left(\frac{a+c}{3}, \frac{b}{3}\right)$
(b) Orthocenter, ($0,-\frac{a c}{b}$)
(c) Circus. ter; $\left(\frac{a+c}{2}, \frac{b^{2}+a c}{2 b^{\circ}}\right)$
(d) Eyaluate determinant in (3) of text by factoring out $\frac{a+c}{60}$ from. $c_{1}, \frac{1}{6 b}$ from C_{2}, multiplying elements.of \underline{R}_{2} by $-\frac{3}{2}$ and adding ton elements of R_{3}.

$$
\begin{aligned}
\left|\begin{array}{ccc}
0 & \frac{-a c}{b} & 1 \\
\frac{a+c}{3} & \frac{b}{3} & 1 \\
\frac{a+c}{2} & \frac{b^{2}+a c}{2 b} & 1
\end{array}\right| & =\frac{a-+c}{6 b+6 b}\left|\begin{array}{ccc}
0 & -6 a c & 1 \\
2 & 2 b^{2} & 1 \\
3 \cdot 3 b^{2}+3 a c & 1
\end{array}\right| \\
& =\frac{a+c}{36 b^{2}}\left|\begin{array}{ccc}
0 & -5 a c & 1 \\
2 & 2 b^{2} & 1 \\
0 & 3 a c & -\frac{1}{2}
\end{array}\right| \\
& = \\
& =\frac{a+c}{36 b^{2}-2}(3 a c=3 a c) \\
& =0
\end{aligned}
$$

(e) Yes, because by appropriate choice of coordinates any triangle can have vertices with the cogrdinates given for A, B, C.
6. Consider trapezoid ABCD and ohoose coordinate system so that $A=(a, 0)$, $B=(b, 0), c=(0, c), D=(d ; c)$. The diagonals are $c x+a y-a c=0$, $c x+(b-d) y+b c=0$, Joining midpoințs of bases is the line

$$
\begin{aligned}
& 2 c x+(a+b=d) y-(a+b) c=0 \\
& \left|\begin{array}{lcc}
c & a & \text { nac } \\
c & b-d & -b c \\
2 c & a+b-d & -(a+b) b
\end{array}\right|=0
\end{aligned}
$$

The subject matter of this course can be grouped and developed in various ways. Although we have used some of the conients of this section in earlier sections, we now consider, in a more systematle way, the general topic of intersections and parallelisms.

We make extensive use of determinants, with which we assume some reasonable familiarity. An appendix presents a brief-treatment of the topic, which was considered too algebraic to be part of the text. Matrices also, would have facilitated our development, particularly the concept of the rank of a matrix, and an augmented matrix; but' these ideas were considered to be too far afield from our central theme, and so do not appear, even in an appendix. Teachers and interested students' are referred to the SNSG text on Matrix Algebra, or to any of the recent elementary texts on matrices. We recommend strongly that students be encouraged to gain some competence in those aspects of matrix algebra which apply to the present content, and perhaps prepare oral or written reports on these applications.

Authors; as well as students and teachers, are not pleased with pages that seem overloaded with letters and subscripts. However, in three dimensions, equations of lines and planes do require many symbols. We chuse to use fewer letters with different subscripts, rather than many different letters, because we felt that, with a bit of effort, the patterns of relationships could be more easily seen. Students should be encouraged to see these patterns, and to try to extend them to corresponding situations in higher dimensions, where subscripts become more significantly necéssary. We have avoided here, and generally throughout the text, the use of Σ notation. If students have the proper background and ability, they might be encouraged to state, as far as possible, the results of this section that could be generalized to n dimensions, using whatever symbolism they think nost appropriate.

Solutiors 'to Exercises D-4

1. (a) parallel
(b) skew
(c) skew
(d) skew
(e) skew
(f) skew̉
2.

(a) $\left\{\begin{array}{l}x=i+3 t \\ y=2-t \\ z=3-2 t\end{array}\right.$
(c) $\left\{\begin{array}{l}x=1+3 t \\ y=22-2 t \\ z=3-8 t\end{array}\right.$
(b) $\left\{\begin{array}{l}x=1-6 t \\ y=2+2 t \\ \dot{z}=3+4 t\end{array}\right.$
(d) $\left\{\begin{array}{l}x=1-3 t \\ y=2+4 t \\ z=3-6 t\end{array}\right.$

3: (a) $M_{1}: 4 x+18 y-3 z-34=0$

$$
M_{2}: 4 x+18 y-3 z-69=0
$$

\therefore (b) $M_{1}: 24 x+24 y+9 z+69=0$

$$
\therefore \quad \operatorname{cog}^{M}: 24 x+24 y+9 z-35=0
$$

4. $(a)^{4} 4 x+18 y-3 \dot{z}-34=00^{\circ}$
(ii) $24 x+24 y+9 z-35=0$

Note ${ }^{\prime} L_{1} \| L_{2}$
5. (a). $2 x-8 y+7 z=0$
(b) $11 x+9 y+12 z=0$
(c) $22 x+y+8 z=0$
(d) $3 y+2 z=0$
6. (a) I_{2} goes over L_{4}
(c) L_{2} goes under I_{4}
(b)
7. if L_{A} goes over \dot{I}_{B} and L_{B} goes over L_{C}, then it is sometimes true that I_{f} goes over $L_{C_{n}}$.
(d) I_{3} goes under I_{4}
8. It is false that if L_{A} and L_{B} are distinct, then L_{A} goes over ${ }^{\text {f }} L_{B}$. or L_{B} goes over L_{A}. Consider the lines $L_{A}: x=1, L_{B}: x=2$. It is never the case that P_{1} ' on L_{A}, and \dot{P}_{2} on ' L_{B} " have the same -x-coordinate, ${ }^{\text {h }}$ hence; ; one criterion is never met.
9. (a) $[1,0,2],+t[5,11,7]=[x, y, z]$
(b) $[0,-11,-17]+t[1,7,7]=[x, y, z]$
(c) $[1,-1,0]+t[5,8,1]=[x, y, z]$
(d) $[3,2,4]+t[7,1,5]=[x, y, z]$
ie) $[1,-3,1]+t[5,2,4] \stackrel{2}{=}[x, y, z]$
(f) $[-5,-1,-6]+t[8,2,7]=[x, y, z]$

10:. (a) $\left[\frac{11}{6}, \frac{11}{6}, \frac{19}{6}\right]$
(b) $\left[\frac{-2}{3}, \frac{-11}{3},-\frac{1}{3}\right]$
(c) $\left(\frac{14}{9},-\frac{1}{9}, \frac{1}{9}\right)$
(d) $\left(\frac{58}{3}, \frac{13}{3}, \frac{47}{3}\right)$
11. (a.) $3 x-2 y+z=\varphi$
(b) $2 x+y-3 z=0$.
(c) $x+3 \dot{y}-2 z=0$
(d) $-2 x+y+2 z=0$
22. (a) $\left[\frac{7}{3}, \frac{14}{9}, \frac{10}{9}\right]$
$\therefore(c)\left[-\frac{23}{13}, \frac{50}{13}, \frac{57}{13}\right]$
(i) $\left[\frac{27}{11}, \frac{-53}{11}, \frac{15}{17}\right]$
(d). $\left[\frac{11}{2},-4,6\right]$
13. $L_{1} \cdot \left\lvert\, \begin{aligned} & x=a_{1}+l_{1} t \\ & \dot{y}=b_{1}+m_{1} t\end{aligned} \quad \therefore\right., \quad L_{2}\left\{\begin{array}{l}x=a_{2}+\ell_{2} t \\ y=b_{2}+m_{2} t\end{array}\right.$
I_{2} and I_{2} are coincident if and only if

$$
\left|\begin{array}{cc}
l_{1} & \ell_{2} \\
m_{1} & m_{2}
\end{array}\right|=0
$$

- and there exists an such that

$$
\left.\quad|\quad| \begin{array}{lll}
a_{1}-a_{2} & \ell_{2} s_{0} \\
b_{1}-b_{2} & m_{2} s_{0}
\end{array} \right\rvert\,=0
$$

Note: This is equivalent to the existence of ${ }^{t_{0}}$ such that

$$
\left|\begin{array}{ll}
a_{2}-a_{1} & t_{1} t_{0} \\
b_{2}-b_{1} & m_{1} \\
t_{0}
\end{array}\right|=0
$$

I_{1} and I_{2} aras parallel if and only if

$$
\left.|\quad| \begin{array}{ll}
\ell_{1} & f_{2} \\
m_{1} & m_{2}
\end{array} \right\rvert\,=0 \quad \because
$$

ERIC
and there is no s_{0} such that

$$
\left|\begin{array}{lll}
a_{1}-a_{2} & b_{2} & s_{0} \\
b_{1}-b_{2} & m_{2} & s_{0}
\end{array}\right|=0
$$

I_{1} and L_{2} intersect in a unique point if and only if

$$
\left|\begin{array}{cc}
b_{1} & l_{2} \\
m_{1} & m_{2}^{\prime}
\end{array}\right| \neq 0
$$

It is traditional to talk about the angle between two lines, but present standards of precision require that we take account of the fact that at legst four angles are formed when two lines intersect © These angles can be distinguished in a diagram by various methods, but all of these methods must induce a sem - along each of the lines. We indicate explicitly in the text that suich a sensing must underly any method of distinguishing these angles analytically.

It is convenient to carry through the development in the text using the parametric forms of equations for lines. We leave to an exercise (Problem 16) at the end of this section the develoment of some of these ideas, using the usual general forms of the equations of these lines, in 2-space. Students should be encouraged here, as in other places in the text, to use the corrdinate system and method of representation, that seems most natural, and, to 'be prepared to show the equivalence of the results obtained in different ways.

It is not expected that any class complete all the exercises at the end of this section. We have supplied sufficient exercises to give some variety in assignments, testing, etc.

Solutions to Exercises D. 5

1. (a) $\sim 172^{\circ} \quad \cos \theta=\frac{-7 \sqrt{2}}{10} \sim 0.9898$
(b) $-75^{\circ} \quad \cos \theta=\frac{3 \sqrt{130}}{130} \approx 0.263$
(c). $083^{\circ} \quad \cos \theta=\frac{-\sqrt{65}}{65} \sim-0.124$
2. (a) $\left\{\begin{array}{l}x=3+3 t \\ y=5+t\end{array}\right.$ or $y-5=\frac{1}{3} x-\frac{1}{3}$
(b) $\left\{\begin{array}{l}x=3+2 t \\ y=5+t\end{array}\right.$ or $y-5=\frac{1}{2} x-\frac{3}{2}$
(c) $\left\{\begin{array}{l}\dot{x}=3-2 t \\ y=5+3 t\end{array}\right.$ or $y=\frac{-3}{2} x+\frac{19}{2}$.
3. Lines $L_{1}: y+3 x-11=0$

$$
L_{2}: y^{-}+2 x-5=0
$$

direction pairs $\vec{I}_{I}=[-1,3]$

$$
\overline{\mathrm{L}}_{2}=[-1,2]
$$

Bisectors $B_{1}:(3-2 \sqrt{2}) x+(1-\sqrt{2}) y-11+5 \sqrt{2}=0 \quad \vec{B}_{1}=[1-\sqrt{2},-3+2 \sqrt{2}]$

$$
B_{2}:(3+2 \sqrt{2}) x+(1+\sqrt{2}) y-11-5 \sqrt{2}=0 \quad \vec{B}_{2}=[-1-\sqrt{2}, 3+2 \sqrt{2}]
$$

Let. θ be one angle determined by L_{1} and B_{2}
$\$$ be one angle determined by L_{2} and B_{2}
Since \vec{I}_{1}, \vec{I}_{2} and \vec{B}_{2} are in the same quadrant we can be sure that $\cos \theta^{\prime}=\cos \phi^{\circ}$ implies that $\dot{\angle} \theta \cong \neq \angle$.

$$
\begin{aligned}
& \cos \theta=\frac{\stackrel{\rightharpoonup}{B}_{2} \cdot \stackrel{\rightharpoonup}{L}_{1}}{\left|\stackrel{\rightharpoonup}{B}_{2}\right|\left|\stackrel{I}{L}_{1}\right|}=\frac{10+7 \sqrt{2}}{(\sqrt{20+14 \sqrt{2}}) \sqrt{10}} \\
& \cos \phi=\frac{\stackrel{\rightharpoonup}{B}_{2}: \vec{L}_{2}}{\left|\stackrel{\rightharpoonup}{B}_{2}\right|\left|\stackrel{L}{L}_{2}\right|}=\frac{7+5 \sqrt{2}}{(\sqrt{20+14 \sqrt{2}}) \sqrt{5}}=\frac{10+7 \sqrt{2}}{(\sqrt{20+14 \sqrt{2}}) \sqrt{10}}
\end{aligned}
$$

This can also be checked by noticing that $\cos \theta$ is the cosine of half the angle between $\overrightarrow{\mathrm{I}}_{1}$ and $\stackrel{\rightharpoonup}{\mathrm{I}}_{2}$.
4. (a) $\cdot P_{1}=\left[\frac{11}{4}, 3\right] \quad P_{2}=\left[\frac{-40}{11}, \frac{43}{11}\right] \quad P_{3}=[6,-7]$
(b) Alt. from $P_{1}=\left[\frac{11}{4}, 3\right]+t[3,1]$ line through $P_{1} \perp L_{1}$ Alt. from $P_{2}=\left[\frac{-40}{11}, \frac{43}{11}\right]+t[2,1]$ line through $P_{2} \perp L_{2}$ Alt. from $P_{3}=[6,-7]+t[-2,3]$ line through $P_{3} \perp I_{3}$
5. The lines are parallel. Therefore, $\theta=0^{\circ}$.
6. (a) $\arccos \frac{2}{\sqrt{15 T^{4}}} \approx \arccos 0.161 \approx 80.5^{\circ}$ and 99.5°
(b) $\arccos \left(\frac{-11}{14}\right) \approx 180^{\circ}-\arccos (0.786) \approx 141.7^{\circ}$ and 38.3°
(c) $\arccos \left(\frac{-8}{\sqrt{.54}}\right) \approx 180^{\circ}-\arccos (0.654) \approx 130^{\circ}$ and 50°
7. (a) $[x, y, z]=[1,2,3]+t[a, 3 a-2 c, c]$
(b) $\{x, y, z]=[1,2,3]+t[a, a+3 c, c]\}$ for any a and c not
(c) $[x, y, z]=[1,2,3]+t[a, \cdot 3 c-2 a, c]$ both zero.
8. (a) $N_{1}:[x, y, z]=t[0,3,1]$
(b) $N_{2}:[x, y, z]=t[1,1,1]$
(c) $\mathrm{N}_{3}:[\mathrm{x}, \mathrm{y}, \mathrm{z}]=\mathrm{t}[5,11,2]$
9. (a) $-3 x+y+2 z-10=0$
(b) $x-y+3 z-19=0$
(c) $2 x+y-3 z+10=0$
10. (a) $5 x+11 y+2 z-51=0$
(b) $x+y+z-9=0$
(c) $5 x+11 y+2 z-53=0$
(d) $3 y+z-14=0$
(e) $x+y+z-7=0$
(f) $3 y+z-10=0$
11. (a) 86° and 94°
(b). 69° and 111°
(c) 60° and 120°
12. (a) $7 \mathrm{x}-\mathrm{y}+11 \mathrm{z}-55=0$
(b) $x+3 y+0 z-11=0$
(c) $3 x-12 y+7 z+2=0$
(d) $-8 x+7 y+5 z-62=0$
(e) $x+7 y+2 z-35=0$
(f) $3 x+0 y-z-7=0$
(g) $2 x-y .+z-4=0$
(h) $x+13 y+5 z-47=0$
(i) $3 x-3 y_{i}+z-1=0_{j}$
$13:(a) \quad 5 x-7 y-11 z=0$
(b) $11 x:-7 y+z=0$
(c) $\ddot{x}+y=z=c$

14: (a) 21°
(d) 29.2°
(g) 45.6°
(b) 25.3°
(e) 53.6°
(h) 4°
(c) 4°
(f) 40.4°
(i) 21°
15. , with xaxis
(a) 32.3°
y=axis
53.2°
z-axis
15.5°
(b) 53.2^{8}
15.5°
(c) 15.5°
32.3°
32.3°
53.2°
16. \quad Cos $=\frac{a_{1} a_{2}+b_{1} b_{2}}{\sqrt{a_{1}^{2}+b_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}}}$

$$
\therefore \quad 471
$$

ERIC

Supplement to Chapter 7

Exercises 57:6

1. (a) 27°
(b) 60°
(c) 22.5°

2: (a) $\dot{X}^{2}+4 Y^{2}=4$
rotation through 45° ellipse

(b) $x^{2}+4 y^{2}=4$ rotate 45°.
translate $X=x+\sqrt{2}$ ellipse

(d) 36°
(e) 30°
(f) 63°
(c) $2 X^{2}+Y^{2}=4$ rotation through 30° ellipse

(d) $2 x^{2}+Y^{2}=1$
rotate $\theta=45$
translate $X=x+\sqrt{2} \circ$
ellipse

$$
\begin{aligned}
& \left(e^{\prime}\right)^{\prime} 4 X^{2}-8 Y^{2}=99 \\
& ,^{\prime} \text { rotate } 45^{\circ} \\
& \text { translate } X=x-3 \sqrt{2} \\
& Y
\end{aligned}
$$

hyperbola

(g.) $X^{20}-i^{2}=1$ rotate 45°
translate $X=X, Y^{\prime}=y+2 \sqrt{2}$ hyperbola

(f) $4 X^{2}-Y^{2}=4$
rotate marcos $\frac{4}{5}$
translate $x=x-\frac{8}{5}$,

$$
y=y+\frac{6}{5}
$$

$\because(h) y^{2}=-6 x$
rotate $\arccos \frac{4}{5}$
translate $X=x-\frac{1}{6}, Y=y+1$
parabola

473

Exercises S7-7a

1. Given that $x^{t}=x+h$
and $\quad y^{\prime}=y+k$
and $4 x^{2}+y^{2}-8 x+4 y+4=0$
Find h and k such that the first-degree terms will be eliminated.

$$
\begin{align*}
& 4 x^{2}+y^{2}-8 x+4 y+4=0 \tag{1}\\
& x=x^{\prime}-h \\
& y=y^{\prime}-k
\end{align*}
$$

Substituting in (1) and grouping terms, we find that the transformed equation is

$$
4 x^{t^{2}}+y^{t^{2}}+(-8 h-8) x^{t}+(-2 k+4) y^{t}+\left(4 h^{2}+k^{2}+8 h-4 k+4\right)=0
$$

Solving simultaneously

$$
\begin{array}{ll}
-8 h-8=0 & h=-I \\
-2 k+4=0 & k=2
\end{array}
$$

The transformed equation becomes

$$
\begin{aligned}
4 x^{t^{2}}+y^{t^{2}} & =4 \\
F^{\prime} & =-4
\end{aligned}
$$

2:
(a) $8 x^{2}-4 x y+5 y^{2}-24 x+24 y=0$

Translate to center ($1,-2$)

$$
8 x^{\prime}-4 x^{\prime} y^{\prime}+5 y^{\prime}-36=0
$$

Rotate through arctan 2

$$
4 x^{2}-9 y^{2}=36
$$

(b) $3 x^{2}+10 x y+3 y^{2}-6 x+22 y-53=0$

Translate to center $(-4,3)$

$$
3 x^{2}+10 x^{\prime} y^{2}+3 y^{\prime}-8=0
$$

Rotate through 45°

$$
4 x^{2}-Y^{2}=4
$$

(c) $7 x^{2}-24 x y+120 x+144=0$

Translate to center $(0,5)$

$$
7 x^{\prime 2}-24 x^{\prime} y^{\prime}+144=0
$$

Rotate through arctan $\frac{4}{3}$

$$
9 x^{2}-16 Y^{2}=144
$$

(d) $4 x^{2}-8 x y+4 y^{2}-9 \sqrt{2 x} \quad 7 \sqrt{2 y}+14=0$

Translate to (3,7 ?

$$
x=2 \dot{Y}^{2}+2
$$

Rotate through 45°

$$
4 y^{2}-8 y^{2}-2 x^{2}+14=0
$$

- Parabola: $\delta=0$

Exercises S7-7b

1. Center $(2,-5)$ Axes of symmetry $(y+5)= \pm(x=2)$
2. Center $\left(-\frac{11}{7},-\frac{5}{7}\right)$ Axes of symmetry $\left(y+\frac{5}{7}\right)=(\sqrt{17}-4)\left(x+\frac{11}{7}\right)$

$$
\left(y+\frac{5}{7}\right)=-(\sqrt{17}+4)\left(x+\frac{11}{7}\right)
$$

Exercises S7-8

1. (a) $0 x^{2}+6 x y+0 y^{2}+3 x-8 y-4=0$
$\Delta=\left|\begin{array}{rrr}0 & 6 & 3 \\ \cdot 6 & 0 & -8 \\ 3 & -8 & -8\end{array}\right|=-6(-24)-6(24)=0$
Thus it is a degenerate conic: $(2 y+1)(3 x-4)=0$
Ines: $2 y+1=0,3 y-4=0$
(b) $2 x^{2}+8 x y+0 y^{2}-x+4 y-1=0$
$\Delta=\left|\begin{array}{ccc}4 & 8 & -1 \\ 8 & 0 & 4 \\ -1 & 4 & -2\end{array}\right|=4(-16)-8(-12)-32=0$
Thus it is a degenerate conic: $(2 x+1)(x+4 y-1)=0$
Lines: $2 x+1=0, x+4 y-1=0$.
(c) $4 x^{2}-5 x y+9 y^{2}-1=0$
$\Delta=\left|\begin{array}{rrr}8 & -5 & 0 \\ -5 & 18 & 0 \\ 0 & 0 & -2\end{array}\right|=8(-36)+.5(10)=-288+50 \neq 0$
Thus it is not a degenerate conic.
(d) $2 x^{2}-1 x y-6 y^{2}=0$
$\Delta=\left|\begin{array}{ccc}4 & -1 & 0 \\ -1 & -12 & 0 \\ 0 & 0 & 0^{2}\end{array}\right|=0$
So it is a degenerate conic: $(2 x+3)(x-2 y)=0$
Lines: $2 x+3=0, x-2 y^{\prime}=0$

476
2. Consider $A x^{2}+B x y+C y^{2}+D x+E y+F=0$

- - where $\Delta=0$ and $\delta \neq 0$.

Case 1. Suppose the factors of the left member represent dependent linear. equations. Then we could write the left member as
$(M x+N y+P)(k M x+k N y+k p)=0$ where $k \neq 0$.
-mananas then we get

$$
k M^{2} x+2 k M M x y+k N^{2} y^{2}+2 k M P x+2 k N P y+k P^{2}=0
$$

$\delta=4\left(k M^{2}\right)\left(k N^{2}\right)-(2 k M N)^{2}=.0$ which contradicts our hypothesis $\delta \neq 0$. A.

Case 2. Supposing the factors represent inconsistent equations, we get that

$$
(M x+N y+P)(k x f x+k N y+h P)=0 \text { for } k \neq 0, h \neq k
$$

But' again this implies that $\delta=0$ contrary to our hypothesis, $\delta \neq 0$.
3. Consider $A x^{2}+B x y+C y^{2}+D x+E y+F=0$
where

$$
\Delta=\left|\begin{array}{ccc}
2 A & 3 B & D \\
B & 2 C & E \\
D & E & 2 F
\end{array}\right|=2 F-E(2 A E .-B D)+\bar{D}^{\prime}(B E-2 C D)=0
$$

and

$$
\delta=\left|\begin{array}{rr}
2 A & B \\
B & 2 C
\end{array}\right|=\hat{0}
$$

Then

$$
-2 A E^{2}+B D E+B D E-2 C D^{2}=0
$$

$$
-2 A E^{2}+B D E=2 C D^{2}-B D E=\dot{0}
$$

Expression (5) is $\left(B^{2}-4 A C\right) x^{2}+2(B E-2 C D) x+E^{2}-4 C F$.
$\delta=4 A C-B^{2}=0$ makes the coefficient of x^{2} vanish. It remains to show that the coefficient of x is 0 .
From $\Delta=0$ and $B^{2}=4 A C$ re get

$$
0=-K \mathrm{I}^{\beta}+\mathrm{BDE}-\mathrm{CD}^{2}
$$

Multiply by -4 A and use $B^{2}=4 \mathrm{AC}$ to get

$$
\begin{aligned}
& 0=4 A^{2} F^{2}-4 A B D E+4 A C D^{2} \\
& 0=4(A E)^{2}-4(A E)(S D)+4(B D)^{2} \\
& 0=(2 A F-B D)^{2}
\end{aligned}
$$

Hence" $B D=2 A E=0^{\circ}$ which completes the proof.

Exercises 57-10

1. $8 x^{2}-12 x y+17 y^{2}-20=0$
$\delta=400 \quad \Delta=-16000$
Rotate through $\frac{1}{2}$ arctan $\frac{4}{3}^{\circ}$

$$
x^{2}+4 y^{2}=4
$$

ellipse

$\begin{array}{ll}\text { ellipse } & \\ \cdots Y & \%\end{array}$

$$
x^{2}+4 y^{2}=4
$$

$\delta=64 \cdot \Delta=-1024$
Translate $\mathrm{h}=1 ; \mathrm{i} \cdot \mathrm{k}=-1$
Then rotate through 45°

$$
\text { 2. } \begin{aligned}
& 3 x^{2}+12 x y-13 y^{2}-135^{\prime}=0 \\
& =5^{\prime}=-300 \quad \Delta=81000
\end{aligned}
$$

Rotate through $\frac{1}{2}$ arctan $\frac{3}{4}$

$$
x^{2}-3 Y_{1}^{2}=27
$$

hyperbola

5. $9 x^{2}-24 x y+16 y^{2}+60 x-80 y+100=0$ $\delta=0 \quad \Delta=0$
Rotate through arccos $\frac{4}{5}$ Translate $Y=y-2, X=x$ $Y=0$
coincident lines
 $\delta=-64 \quad \Delta=512$
Rotate through 45°
Translate $Y=y, X=x+\sqrt{2}$ $y^{2}-4 x^{2}=4$
hyperbola

7. $5 x^{2}+6 x y+5 y^{2}-16 x-16 y+8=0$
$\}=64 \quad \Delta=-1024$
Rotate through 45°
*Translate $X=x-\sqrt{2}, Y=y$

$$
4 x^{2}+y^{2}=4
$$

ellipse

8. $27 x^{2}-48 x y+13 y^{2}-12 x+44 y-77=0$
$\delta=-900 \quad \Delta=-196200$
R -Rotate through argos $\frac{3}{5}$
$x=x-\frac{14}{5}, y=y+\frac{2}{5}$
$9 y^{2}-x^{2}=9$
hyperbola

$479 /$
9. $12 x^{2}-7 x y-12 y^{2}-41 x+38 y+22=0$ $\delta=-6 \div 5 \quad \Delta_{1}=0$. Rotate t rough marcos $\frac{1}{5 \sqrt{2}}$
Translate $x=x-\frac{9}{5 \sqrt{2}} ;$
$Y=y+\frac{13}{5 \sqrt{2}}$
$(X+Y)(X-Y)=0$
Intersecting lines

11. $9 x^{2}-24 x y+16 y^{2}+90 x-120 y+200=0$
$\delta=0 \quad \Delta=0$.
Rotate through arccos $\frac{4}{5}$
Translate $X=X, Y=y-3$

$$
(Y-1)(Y+1)=0_{1}
$$

Parallel lines

10. $13 x^{2}+48 x y+27 y^{2}+44 x+12 y-77=0$ 12. 10xy $+4 x-15 y-6=0$ $\ddot{\delta}=-900 \quad \Delta=-196200$
Rotate $\arccos , \frac{3}{5}$
Translate $X=x+\frac{2}{5}, Y=y+\frac{14}{5}$

$$
9 x^{2}-y^{2}=9
$$

hyperbola

f
$\dot{\delta}=-100 \quad \Delta=0$
Rotate 45°
Translate $X=x-\frac{17 \sqrt{2}}{20}$,

$$
\ddot{y}=y+\frac{19 \sqrt{2}}{20}
$$

$$
(X+Y)(X-Y)=0
$$

- intersecting lines

GEOMETRIC TRANSFORMATIONS

In a sense, this chapter can be thought of as a review of the early chapters. It is essentially a summary of the various treatments of transformalions, i ut now they are observed from a more sophisticated point of view. The concepts of mappings and groups constitute the background for the discussion.

The writers would be interested in knowing how the teachers feel about including this: type of material and also, if it is included, whether it should come earlier in the presentation--perhaps even near the front of the book.

/

Exercises S10-2

1. The reflection about the $x=1$ line is $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right)=(-x+2, y)$. The reflection about the $x=4$ line is $\left(x^{\prime}, y^{3}\right) \rightarrow\left(x^{\prime \prime}, y^{\prime \prime}\right)=\left(-x^{i}+8, y^{2}\right)$; Taking $x=1$ then $x=4$.we get

$$
x^{\prime \prime}=x+6, y^{\prime \prime}=y
$$

Taking $x=4$ then $x=1$ we get

$$
x^{\prime \prime}=-x^{2}+2=-(-x+8)^{\prime \prime}+2=x-6 \quad y^{\prime \prime}=y
$$

So they dons comminute.

481
2. Mapping of reflection about $x=h$

$$
(x, y) \rightarrow\left(x^{2}, y^{2}\right)=(-x+2 h, y)
$$

Mapping of reflecttion about $y=k$

$$
(x, y) \rightarrow\left(x^{2}, y^{2}\right)=(x,-y+2 k)
$$

3. TTwo successive reflections about horizontal lines:

$$
\begin{aligned}
(x, y) & \rightarrow\left(x^{2}, y^{2}\right)=(x,-y+2 k),\left(x^{1}, y^{\prime}\right) \rightarrow\left(x^{\prime \prime}, y^{\prime \prime}\right)=\left(x^{2},-g^{2}+2 n\right) \\
x^{\prime \prime} & =x^{i}=x \\
y^{\prime \prime} & =-y^{\prime \prime}+2 n=\dot{x}=\begin{array}{r}
x^{\prime \prime}=\dot{x} \\
y+2(n-k)=y^{\prime \prime}
\end{array}
\end{aligned}
$$

Two successive reflections about vertical.lines:

$$
\begin{aligned}
&\left(x, y^{\prime}\right) \rightarrow\left(x^{z}, y^{2}\right)=(-x+2 h, y),\left(x^{2}, y^{1}\right) \rightarrow\left(x^{\prime \prime}, y^{\prime \prime}\right)=\left(-x^{2}+2 m, y^{2}\right) \\
& x^{\prime \prime}=-x^{2}+2 m=\begin{array}{r}
x+2(m-h)=x^{\prime \prime} \\
y^{\prime \prime}
\end{array}=y^{2}=y \\
& y^{\prime \prime}=y
\end{aligned}
$$

4. $(x, y) \longrightarrow\left(x^{2}, y^{2}\right)=(-x+2 h) y,\left(x^{2}, y^{2}\right) \longrightarrow\left(x^{\prime \prime}, y^{\prime \prime}\right)=\left(x^{\prime},-y^{2}+2 k\right)$
5. The mappings in (3) will comnute only if $k=n$ and $h=m$. The mappings in (4) will commute.

Exercises sio-3

1. Suppose they have the rotation

$$
\begin{aligned}
\phi^{\prime \prime} & =\phi+2\left(\theta_{2}-\theta_{\perp}\right) \\
\mathbf{r}^{\prime \prime} & =\mathbf{r}
\end{aligned}
$$

'Then rewrite

$$
\begin{aligned}
& \Phi^{\prime \prime}=2 \theta_{2}-\left(2 \theta_{1}-\Phi\right) . \\
& \mathbf{r}^{\prime \prime}=\mathbf{r}
\end{aligned}
$$

Then let $r=r^{3}$ and $2 \theta_{7}-\phi=\phi^{\prime}$ and we have $\phi^{\prime \prime}=2 \theta_{2}-\phi^{\prime}, r^{\prime \prime}=r$.
Then we see that the rotation is the product of the line reflections

$$
\begin{aligned}
& (r, \phi) \longrightarrow\left(r^{2}, \phi^{2}\right)=\left(r, 2 \theta_{1}-\phi\right) \text { and } \\
& \left(r^{8}, \phi^{p}\right) \longrightarrow\left(r^{\prime \prime}, \phi^{\prime \prime}\right)=\left(r^{i}, 2 \theta_{2}-\Phi^{\prime}\right)
\end{aligned}
$$

2. $R_{L} R_{M}$ where $R_{m}:(r, \phi) \longrightarrow\left(r^{2}, \phi^{2}\right)=\left(r, 2 \theta_{2}-\phi\right)$,

$$
R_{L}:\left(r^{\prime}, \phi^{\prime}\right) \rightarrow\left(r^{\prime \prime}, \phi^{\prime \prime}\right)=\left(r^{v}, 2 \theta_{1}-\phi^{2}\right)
$$

$$
\left.\begin{array}{rl}
\phi^{\prime \prime} & =2 \theta_{1}^{\prime}-\phi^{\prime}= \\
\mathbf{r}^{\prime \prime *} & =r
\end{array} \quad \begin{array}{r}
\phi+2\left(\phi_{1}-\phi_{2}\right) \\
=\phi^{\prime \prime} \\
r
\end{array}\right) .
$$

Exercisies S10-4

1. $(x, y) \rightarrow\left(x^{2}, y^{2}\right)=(a x+b y, c x+d y)$ where $a d-b c \neq 0$

Now solve for x and y in iexus of x^{2} and y^{\prime}.
Then $y=\frac{c x^{2}-a y^{2}}{b c-a d}$ and $x=\frac{d x^{2}-b y^{2}}{a d-b c}$.
Now substitute these into the line $k x+\ell y+m=0$ and we see that

$$
k d x^{2}-k b y^{2}+\ell c x^{2}-\ell a y^{2}+m=0
$$

or

$$
(k d+\ell c) x^{2}+(-k b-\ell a) y^{2}+m=0
$$

which means that any transformation of the group in Theorem. SlO-3 will map a line inta a line.
2. $(a)(x, y) \rightarrow(2 x, 2 y)$
$x^{2}=12 x, y^{2}=2 y$
$x^{2}+y^{2}=4\left(x^{2}+y^{2}\right)$ so the circle $x^{2}+y^{2}=1$
maps into x^{2}. to $y^{i 2}=4$.
(b) $(x, y) \rightarrow(2 x, 3 y)$
$x^{\prime}=2 x, y^{2}=3 y$
$x^{2}+y^{2}=\frac{1}{4} x^{2}+\frac{1}{9} y^{2}=1$ so the circle $x^{2}+y^{2}=1$
maps into the ellipse $\frac{1}{4} x^{t^{2}}+\frac{1}{9} y^{t^{2}}=-1$
3. $(x, y) \longrightarrow\left(x^{1}, y^{2}\right)=(x+y, 2 x+2 y)$
$x^{\prime}=x+y, y^{2}=2 x+2 y$
Consider the point $a, 2 a$ on $2 x=\dot{y}$, then $a=x+y$ and $2 a=2 x+y \quad$ so all points mapped into a point on $2 x=y$ satisfy the equation $x+y-a=0$. This is the equation of a line.
4. Show that the angle is preserved between two lines through the origin under $z \rightarrow z^{\prime}=k z$.

Let $z \cong r(\cos \theta+i \sin \theta)$, then let L_{1} be $r\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and L_{2} be $r\left(\ddot{\cos } \theta_{2}+i \sin \theta_{2}\right)$. Now the angle between L_{2} and L_{1} will simply be $\left|\theta_{2}-\theta_{1}\right|$: Under the mapping $I_{1} \rightarrow I_{1}{ }^{\prime}$ where $L_{1}{ }^{\prime}$, is $\mathrm{Kr}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $\mathrm{L}_{2} \rightarrow \dot{L}_{2}^{\prime}$ where I_{2}^{\prime} is
$K r\left(\cos \theta_{2}+i \sin \dot{\theta}_{2}\right)$. So we see the angle between L_{1}, and L_{2}^{\prime} again equals $\left|\theta_{2}-\dot{\theta}_{1}\right|$. Therefore the angle is preserved.
5. Discuss $z-z^{i}=\frac{1}{z}$

$$
z=x+i y, \frac{1}{z}=z^{y}=\frac{1}{x+i y}=\frac{x-1 y}{x^{2}+y^{2}}
$$

so $x^{2}=\frac{x}{x^{2}+y^{2}}$ and $y^{\prime}=\frac{-y}{x^{2}+y^{2}}$ in non-linear coordinates.
Then the circles $\left(x-\frac{1}{k}\right)^{2}+y^{2}=\frac{1}{4 k^{2}}$ are mapped onto $x^{2}=k$ and the circles $x^{2}+\left(y+\frac{1}{k}\right)^{2}=\frac{1}{4 k^{2}}$ are mapped onto $y^{2}=k$. Also we have $x^{2}+y^{2}=\frac{x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{1}{x^{2}+y^{2}}$, hence the circles $x^{2}+y^{2}=r$ are mapped onto the circles $x^{2}+y^{2}=\frac{1}{r}$, in the. z^{2} plone.
6. (a) It is simplest to consider this problem in polar coordinates then the solution is $(r, \phi) \rightarrow\left(r^{\prime}, \phi^{\prime}\right)=\left(\frac{l}{r^{\prime}}, \Phi^{\prime}\right)$ where the origin is defined to map onto the origin.
(b) Á second form would be $\overrightarrow{i x} x, y) \rightarrow\left(x^{\Downarrow}, y y^{2}\right)=\left(\frac{1}{x\left(1+a^{2}\right)}\right.$, y) where $y=a x$ is the ine involved. Again the origin would have to be defined as mapping onto the origin.

Exercises S10-5a

1. $R_{x} R_{y}$

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

2. (a) Reflection about $y=x$

$$
\begin{aligned}
& x^{y}=y=0 \cdot x+1 \cdot y \\
& y^{z}=x=1 \cdot x+0 \cdot y
\end{aligned}
$$

$$
\left(\begin{array}{ll}
0 & 1 \\
i & 0
\end{array}\right)
$$

(b) Reflection about $y=-x$

$$
\begin{aligned}
& x^{2}=-y=0 \cdot x+-1 \cdot y \\
& y^{\prime}=-x=-1 \cdot x+0 \cdot y
\end{aligned} \quad\left[\begin{array}{rr}
0 & -1 \\
-1 & 0
\end{array}\right)
$$

3. Reflection in $y=x$

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) 。
$$

rotation $\frac{\pi}{2}$

$$
\left(\begin{array}{c|c}
0 & -1 \\
1 & 0
\end{array}\right)
$$

composition is

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

4. $\left(\begin{array}{cc}\cos \theta_{2} & -\sin \theta_{2} \\ \sin \theta_{2} & \cos \theta_{2}\end{array}\right) \cdot\left(\begin{array}{cc}\cos \theta_{1} & \sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1}\end{array}\right)$

$$
\begin{aligned}
& =\binom{\cos \theta_{2} \cos \theta_{1}-\sin \theta_{2} \sin \theta_{2},-\sin \theta_{1} \cos \theta_{2}-\sin \theta_{2} \cos \theta_{1}}{\cos \theta_{1} \sin \theta_{2}+\cos \theta_{2} \sin \theta_{1}, \sin \theta_{1} \sin \theta_{2}+\cos \theta_{1} \cos \theta_{2}} . \\
& =\left(\begin{array}{ll}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+e_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right)
\end{aligned}
$$

This mapping is the same as a mapping of a; single rotation through $\theta_{1}+\theta_{2}$ radians.

485
5.

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \cdot\left[\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right) \cdot\left(\begin{array}{cc}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)\right]=k \\
& K=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \cdot\left(\begin{array}{ll}
b_{1} c_{1}+b_{2} c_{2} & b_{2} c_{2}+b_{2} c_{4} \\
b_{3} c_{1}+c_{3} b_{4} & b_{3} c_{2}+b_{4} c_{4}
\end{array}\right) \\
& K=\left(\begin{array}{ll}
a_{1} b_{1} c_{1}+a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{2} c_{3} b_{4} & a_{1} b_{1} c_{2}+a_{1} b_{2} c_{4}+a_{2} b_{3} c_{2}+a_{2} b_{4} c_{4} \\
a_{3} b_{1} c_{1}+a_{3} b_{2} c_{3}+a_{4} b_{3} c_{1}+a_{4} c_{3} b_{4} & a_{3} b_{1} c_{2}+a_{3} b_{2} c_{4}+a_{4} b_{3} c_{2}+a_{4} b_{4} c_{4}
\end{array}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \cdot\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)\right] \cdot\left(\begin{array}{ll}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right)=K^{\prime}} \\
& K^{\prime}=\left(\begin{array}{ll}
a_{1} b_{1}+a_{2} b_{3} & a_{1} b_{2}+a_{2} b_{4} \\
a_{3} b_{1}+a_{4} b_{3} & a_{3} b_{2}+a_{4} b_{4}
\end{array}\right) \cdot\left(\begin{array}{cc}
c_{1} & c_{2} \\
c_{3} & c_{4}
\end{array}\right) \\
& K^{\prime}=a_{1} b_{1} c_{1}+a_{2} b_{3} c_{1}+a_{1} b_{2} c_{3}+a_{2} b_{4} c_{3} \\
& a_{1} b_{1} c_{2}+a_{2} b_{3} c_{2}+a_{1} b_{2} c_{4}+a_{2} b_{4} c_{4}
\end{aligned}
$$

E. and so we see that $K=K^{\prime}$ and matrix multiplication is associative.

$$
\begin{aligned}
&\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right) \cdot\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} b_{1}+a_{2} b_{3} & a_{1} b_{2}+a_{2} b_{4} \\
a_{3} b_{1}+a_{4} b_{3} & a_{3} b_{2}+a_{4} b_{4}
\end{array}\right)=I \\
&\left(\begin{array}{ll}
b_{1} & b_{2} \\
b_{3} & b_{4}
\end{array}\right) \cdot\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)=\left(\begin{array}{ll}
b_{1} a_{1}+b_{2} a_{3} & b_{2} a_{1}+b_{4} a_{2} \\
b_{3} a_{1}+b_{4} a_{3} & b_{3} a_{2}+b_{4} a_{4}
\end{array}\right)=L^{\prime}
\end{aligned}
$$

and so we see that $L \neq L^{\text {s }}$ hence matrix multiplication doesn't commute.
6. In polar coordinates

$$
r^{*}=r \text { and } \phi^{\prime}=2 \theta-\phi
$$

$x^{2}=r \cos (2 \theta-\phi)=r \cos \phi \cos 2 \theta+r \sin \phi \sin 2 \theta=x \cos 2 \theta+y \sin 2 \theta$ $\dot{y}^{\prime \prime}=r \sin (2 \theta-\phi)=r \sin 2 \theta \cos \phi_{r}^{-r} \cos 2 \dot{\theta} \sin \phi=x \sin 2 \theta-y \cos 2 \theta$ hence the matrix is:

$$
\left(\begin{array}{lll}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)
$$

When $\dot{\theta}=0$, ge get $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ which was previously shown to be a reflection about the x-axis; when $\theta=\frac{\pi}{4}$ we get $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ which was previously shown to be a reflection in $y=x$, when $\hat{a}=\frac{\pi}{2}$ we get $\left(\begin{array}{c:c}-1 & 0 \\ 0 & 1\end{array}\right)$ which is a reflection in the y-axis, when $\theta=\frac{3 \pi}{4}$ we get $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ which is a reflection in the $y \doteq-x$-axis.
7. $\left(\begin{array}{cc}\cos 2 \theta_{2} & \sin 2 \theta_{2} \\ \sin 2 \theta_{2} & -\cos 2 \theta_{2}\end{array}\right) \cdot\left(\begin{array}{cc}\cos 2 \theta_{1} & \sin 2 \theta_{1} \\ \sin 2 \theta_{1} & -\cos 2 \theta_{1}\end{array}\right)=$.
$\binom{\cos 2 \theta_{2} \cos 2 \theta 1+\sin 2 e_{2} \sin 2 \theta_{1} \quad \cos 2 e_{2} \sin 2 e_{1}-\cos 2 \theta_{1} \sin 2 \theta_{2}}{\cos 2 \theta_{1} \sin 2 \theta_{2}-\cos 2 \theta_{2} \sin 2 \theta_{1}+\sin 2 \theta_{1} \sin 2 \theta_{2}+\cos 2 \theta_{1} \cos 2 \theta_{2}}$
$=\left(\begin{array}{ll}\cos 2\left(\theta_{2}-\theta_{1}\right) & -\sin 2\left(\theta_{2}-\theta_{1}\right) \\ \sin \left(\theta_{2}-\theta_{1}\right) & \cos 2\left(\theta_{2}-\theta_{1}\right)\end{array}\right)$
This is the matrix of a rotation where $\theta=2\left(\theta_{2}-\theta_{1}\right)$

Exercises S10-50.

1. $\left(\begin{array}{rr}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right)$ or $\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$

By Problem 7 (S10-5a) we saw that the product of two matrices of the form $\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha^{2} & -\cos \alpha\end{array}\right)$ is of the form $\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$.
By Problem 4 (Sl0-5a) we saw that the product of two matrices of the form. cbs $\alpha-\sin \alpha^{\alpha}$ is another matrix of the same form.
$\sin \alpha-\cos \alpha$
We see that the product $\quad\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right) \cdot\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & +\cos \alpha\end{array}\right)$. is of the form $\left(\begin{array}{lr}\cos \beta & \sin \beta \\ \sin \beta & -\cos \beta\end{array}\right)$.
Finally $\left(\begin{array}{ll}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right) \cdot\left(\begin{array}{ll}\cos \beta & +\sin \beta \\ \sin \beta & -\sin \beta\end{array}\right)$ is of the form
$\left(\begin{array}{cc}\cos \alpha+\beta & \sin \alpha+\beta \\ \sin \cdot \ddot{\alpha}+\beta & -\cos \alpha+\beta\end{array}\right)$.
Hence we see that the matrix multiplication is closed. From Problem 5 (S10-5a) we see that the multiplication obeys the associative law, and. because- $\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right|$ is included in this set and it is the identity matrix, that this set forms a group.
2. $\left(\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right) \cdot\left(\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right)=\left(\begin{array}{ll}a_{1} b_{1}+a_{2} b_{3} & a_{1} b_{2}+a_{2} b_{4} \\ a_{3} b_{1}+a_{4} b_{3} & a_{3} b_{2}+a_{4} b_{4}\end{array}\right)$
$\left\lvert\, \begin{aligned} & \left|\begin{array}{ll}a_{1} b_{1}+a_{2} b_{3} & a_{1} b_{2}+a_{2} b_{4} \\ a_{2} b_{1}+a_{2} b_{3} & a_{3} b_{2}+a_{4} b_{4}\end{array}\right|=\left(a_{1} b_{1}+a_{2} b_{3}\right)\left(a_{3} b_{2}+a_{4} b_{4}\right)-\left(a_{3} b_{1}+a_{4} b_{3}\right) \\ & \left(a_{4} b_{2}+a_{2} b_{4}\right)\end{aligned}\right.$
$=a_{1} b_{2} a_{4} b_{4}+a_{2} a_{3} b_{2} b_{3}-a_{2} a_{3} b_{1} b_{4}-a_{1} a_{4} b_{2} b_{3}$
$=\left(a_{1} a_{4}-a_{2} a_{3}\right)\left(b_{1} b_{4}-b_{2} b_{3}\right)$
$=\left|\begin{array}{cc}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right| \cdot\left|\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4}\end{array}\right|-$
3. The matrix $\left(\begin{array}{ll}5 & 2 \\ 2 & 1\end{array}\right)$ isn't an' isometry as, the vector $(0,1) \longrightarrow(2,1)$, and hence distance isn't preserved, yet the aet $=1$
4. The matrix music be of the form $\left(\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right)$ or $\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha\end{array}\right)$ by Theorem 10-5.

$$
\begin{aligned}
& \left|\begin{array}{rr}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right|=\cos ^{2} \alpha+\sin ^{2} \alpha=\dot{1} \\
& \left|\begin{array}{rr}
\cos \alpha & \sin \alpha \\
\sin \alpha & -\cos \alpha
\end{array}\right|=-\cos ^{2} \alpha-\sin ^{2} \alpha=-1
\end{aligned}
$$

Hence the deft of the matrix that represents an isometry is 1 or -1 .
5. If. $\left|\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4}\end{array}\right|= \pm 1$ then $a_{1} a_{4}-a_{2} a_{3}= \pm 1 ; \quad$ also, we have
$a_{1}{ }^{2}=a_{3}{ }^{2}=1, a_{1}{ }^{2}+a_{2}{ }^{2}=1, a_{3}{ }^{2}+a_{4}{ }^{2}=1$ and $a_{2}{ }^{2}+a_{4}{ }^{2}=1$. Now, if the sum of two squares $=1$, the numbers can be written as \sin and cos of some angle θ. Hence we have $a_{1}= \pm \sin \alpha$ or $\pm \sin \alpha$, $a_{2}= \pm \cos \alpha$ or $\pm \sin \alpha, a_{3}= \pm \sin \alpha$ or $\pm \cos \alpha$,
$a_{4}= \pm \cos \alpha$ or $\pm \sin \alpha$. Now, from these, we obviously get matrices that belong to S but we get other as well:
${ }^{*} a_{3}= \pm \sin \alpha$ or $\pm \cos \alpha, a_{4}= \pm \cos \alpha$ or $\pm \sin \alpha$. Now from these. . we obviously get matrices that belong to S but we get others as well: $\left(\begin{array}{cc}-\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right),\left(\begin{array}{cc}\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha\end{array}\right),\left(\begin{array}{cc}\sin \alpha & \cos \alpha \\ -\cos \alpha & \sin \alpha\end{array}\right),\left(\begin{array}{cc}\sin \alpha & \cos \alpha \\ \cos \alpha & -\sin \alpha\end{array}\right)$ $\left(\begin{array}{cc}\sin \alpha & -\cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right)$, and $\left(\begin{array}{cc}-\sin \alpha & \cos \alpha \\ \cos \alpha & \sin \alpha\end{array}\right)$. All of these cases can be reduced to members of S by letting $\alpha=-\beta, \alpha=\beta+\frac{\pi}{2}$ or $\alpha=\beta+\pi$, Hence, these conditions are enough to make the matrix belong to S.

Exercises S10-6

1. Answersitiven in text
2. Answers given in text
3. I-1 Reflection in $x-y$ plane

I-2 Reflection in $y-z$ plane
I-3 Reflection in $x-2$ plane
I-4. Identity -
I-5 Reflection in plane through x-axis with 45° to y-axis
I-6 Reflection in plane through y-axis with 45° angle to z-axis
I-7 Refiection in plane through 2-axis with $4_{4} 5^{\circ}$ angle to x-axis
I-8 Reflection in plane through x-axis with ${ }^{\circ} 135^{\circ}$ angle to y-axis
I-9 Reflection in plane through y-axis with 135° angle to z-axis.
I-lo Reflection in plane through z-axis with 135° angle to x-axis

[^0]: **:

 * Documents acquired by ERIC include many informal unpublished *
 * materials not available from other sources. ERIC makes every effort *
 * to obtain the best copy available. Nevertheless, items of marginal *
 * reproducibility are often epcountered and this affects the quality *
 * of the microfiche and hardcopy reproductions ERIC makes available *
 * via the ERIC Document Reproduction Service (EDRS). EDRS is not *
 * responsible for the quality of the original dccument. Reproductions * supplied by EDRS are the best that can be made from the original.

[^1]: Stanford, California
 Distributed for the School Mathematics Study Group
 by A. C. Vroman, Inc., 367 Pasadena Avenue, Pasadena, California

