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1 Introduction

This article deals with an empirical Bayes modeling approach (by which is meant
latent ability random sampling in the IRT context) to the item response theory (IRT)
modeling of psychological tests. Suppose we randomly sample N persons from a
specified population, and then administer a test consisting of n items. The data

structure for a randomly selected examinee can be expressed by a random vector
( le o 7Xn70)7

where Xi,...,Xn denote item responses and § denotes examinee ability, which is
unobservable. Abstractly, in an empirical Bayes problem the data is modeled by

independent identically distributed (i.i.d.) random vectors
( 9)7 seey Xy(;l)701)7 (sz)a ooy X7(;2)7 02)7 vey (XI(N)7 veey Xy(;N)7 0N)°

One important measurement goal is the estimation/prediction of each examinee’s 6.
Clearly one should use the first examinee response X fl), ..., X1 to predict the actual
value of 6;. However, unless the distribution of 6 is completly specificd, there is useful

information in
(X1(2)7 cesy X1(;2))7 (X1(3)7 ceey Xr(;a))7 eeey (XfN)7 cevy Xr(tN))’

the second through Nth examinee responses, about the unknown distribution of § and
thus about the unknown ability 6, in particular, which we want to estimate. Thus an
alternative approach to using only (Xfl), ey XY is to use all of the test responses in

making inferenses about 6.

Let X; be the score for a randomly selected examinee on the jth item; X; = 1 if

the answer is correct, X; = 0 if in correct, and let

1 with probabiiity P;(6)
0 with probability 1 — P;(0)

j=

i

J



where P;(8) denotes the probability of correct response for a randomly chosen exam-
inee of ability 0, that is,
F;(6) = P{X; = 1|6},

where 6 is unknown and has the domain (—o00,00) or some subinterval on (—o0, 00).

We make two assumptions about the IRT models of this paper:
(a) Local Independence (also called Conditional Independence)

Pu( 1,00 52000) ¥ P{( Xiy..., Xn) = (21,...,24)|60)
= [I P{X; = =,l6}
1

Jj=

1 P(O)[1 - B
i=1

(b) Monotonicity: each P;(8) is strictly increasing in 6.

Lord (1980) makes an interesting remark about the existence of a prior distribution

for ability:

“In work with published tests, it is usual to test similar groups of ez-
aminees year after year with parallel forms of the same test. When this
happens, we can form a good picture of the frequency distribution of ability

in the next group of examinees to be tested.”

This suggests taking an empirical Bayes approach to IRT modeling, in particular
assuming partial knowledge about the distribution of § and thereby being able to
make efficient use of the response data to make inferences about the distribution of 8
and thus make inferences about the unobservable examinee abilities. The distribution
of a test response Xj,...,X, is indexed by 8, which belongs to the parameter space
O; that is, each § € © governs a test response distribution. Let L,(@) denote the
log-likelihood, that is

Ln(0) = log{Pu( X1,...,Xal0)}.

2



If we assume that the prior distribution has density I1(f), according to Bayes’ theorem,

the posterior density for each given
( X1y Xa) = (21,....20)

can be written as

Po( z1,...,2,|0)I1(9)
Pn( Tlyeee ,mn)
exp{La(0)}11(0)
Pn( 31,---,-’”7;)

nn(ol T1y.0 ,xn)

Il
—
[y
—

where
Pa( z1,...,20) = /e Pa( z1,...,2a|0)T1(8)d8.

Notice that, the “prior” and “posterior” refer to the relationship between the

distributions and the observation =z,,...,z,. E.g., I'(8) is prior to z,,...,z, and
nn(ol Tlyeeey mn)

is posterior to z;,...,Z,. These ideas can be easily extended to the study of the
asymptotic behaviov- of the posterior distribution. In particular, for each z1,...,2zn,

what can be said about the posterior probability of § as n tends to infinity?

It has long been part of the IRT folklore t'-.* under the usual empirical Bayes
unidimensional IRT modeling approach, the posterior distribution of 8 given test

response is approximately normal for a long test. Holland (1990) indicates:

“At present I know of no through discussion of the asymptotic posterior
normality of latent variable distributions and this would appear to be an

interesting area for further research.”

In classical statistics, when ( Xi, ..., Xs) are i.i.d.,an important result (informally

stated) is that, for n large, the posterior density I1,(0] Xi,...,X,) is approximately

3



equal to the normal density N(6,,,52), where 6, is the maximum-likelihood estimator
(or MLE) of 6 and 62 & {—L:;(én)}-l, where L (6,) is the second derivative with
respect to @ of the log-likelihood evaluated at 6,. 6, and 62 here are functions of

( X1,...,Xy) only. Intuitively, 52 — 0 in applications, usually like 1/n.

Lin ley(1965) proposed a heuristic approach to prove the above result by expand-
ing the log-likelihood in Taylor series in 8 about 6,

1

L.(0) = L.(6,) + 5

(0= 0.)*L,,(0,) + Ra,

where R, is a remainder term. Since the log-likelihood has a maximum at é,, the first

derivative vanishes there. As shown above the posterior density viewed as a function

of 8 for fixed z,...,z, is proportional to
11(6)exp{Ln(0)}.
Therefore,
s (0=0,)
II.(8| z1,...,2s) ox I1(0)exp{Ln(0n) — 5z T R.}.

Since Ln(é,,) does not involve @, it may be absorbed into the omitted constant of

proportionality so that

(0 - 0,)?

Ma(6] 1., @a) o M(B)ezp{——z—— + Ru}, (2)
where the remainder, R,, is claimed to be negligible when compared with the other
term in (2). Because 62 — 0 like 1/n, the density in (2) becomes concentrated at
0, in the limit, thus ailowing I1(8) to also be absorbed into the omitted constant of
proportionality. Thus,

(0 - 0,)°
262

n

}

M.(0| z4,...,2,) x exp{—



as desired. However, Lindley (1965) did not give a rigorous proof.

Walker(1969) proved that under certain conditions, the posterior probability of

én +ad, <0 < én + b6y, namely
fn+bén
/ (0] Xy, ..., X,)do,
On+adn
converges in probability Py, to

(2x)~1/2 /b e dy

a

as n — 0. Here, as the notation Py, indicates, in the generation of Xj,...,Xn
we assume 0 is the true value of 4. That is Xj,...,X, is generated according to
the distribution P,( 1,...,%q|00). Then, using the rules of conditional probability

computation, it is easy to show that one way to interpret Walker’s result is that
Pl + abn < 8 < 0, + b6, Xu, ..., Xn, 00]

converges in probability to

b
(2#)'1/2/ e~V dy

a

as n — oo. That is, for each fixed (but unknown) 6, we have an asymptotic confi-

dence interval for each choice of a < b.

As we know, for all realistic applications, the item characteristic curves are not
identical. Therefore, the {X;} we have are merely independent, conditional on 6, but
not identically distributed. However, the general IRT model enables us to prove, by

adapting the approach that Walker (1969) applied to :.i.d. random variables,
(a) The “wsak” convergence, that is, for —00 < a < b < o0,

én'*'b&n
nE n [ IR | n 0
A /0 I(8] Xy, ..., Xn)d

ntadn



converges in probability Py, to

A= (2r) 12 / b e dy

as n — 00. That is,

Py {|An — Al <€} =1, asn— 0o, for arbitrarye>0.

(b) The strong convergence of A,: that is,
Pao{nli.rgo A, = A}=1;

(c) Convergence in “manifest” probability, or “f free” convergence, that is, A, con-
verges to A in the manifest (or marginal in the sense that 6, is integrated out)
probability P, which is defined, for any fixed n

P{( ‘Yle"-,Xn) = ( T1y. -wxn)}
= je Pu( 21,...,2a|0)7(0)db.

This result is also easily interpretable as w.. asymptotic confidence inteval for

ability. That is, it assures that
P{b, + aén < 0 < b, + b6, Xa,..., X0}
converges in probability to

(2r)~V/? /b e'%"zdy

as n — 0o. That is, for any randomly sampled examinee, we have an asymptotic
confidence inteval for each choice of @ < b. Here in (c), in contrast to (a), the

value of 8 for the randomly sampled examinee is not fixed.

(d) The weak and strong consistency of the MLE 0,,, which are intermediate results
in the proofs of (a) and (b).

Proving (a)-(c) is the main purpose of this paper, thereby meeting the Holland
challenge quoted above.

LU



2 Further Notation and Assumptions

2.1 Basic Notation

6y: The true parameter. In saying that X; is a random variable we infer that X; has
the density
Pi(0)[1 - Pj(o)]l_r’v zj=0,1,

for some fixed value of 6. Denote this value by 6y, which we refer to as the true

parameter.

f.: The Maximum Likelihood Estimator(MLE) of 8, which is defined as a solution

(in general non-unique), of
Pn( Xl,---sxnlén)':rgleaéx{Pn( Xl»--wxnlo)}, (3)
if it exists, or equivalently, of

La(6a) = max{La(6)}. (4)

I;(6): The item information function of item j, which is equal to

{P;(0))?
P;(0)i1 - P;(0))

I;(6) =
where P;(O) is the first derivative of P;(8) with respect to 6.

I(™(6): The test information function

17(0) = 3" 1,(0).

=1

-1

52 & {1"(4,)) (5)

noting that our definition of &2 used hereafter in the paper differs from the often

used 52 &' {v—L::(é,,)}~l mentioned above.
7
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A;(0): The logit function of item j

3(0) = log{ =25, ©)

700\ — P;(6)*:[1 - P(O)]'~%
Z;(0) = log{ B 60— P (6% (7)

2.2 Regularity Conditions

Some “regularity” conditions and their explanations will be stated before going

into details about our theoremnus. Fix 8y € ©: There are five basic assumptions:

(Al): Let § € O, where © is (—00,00) or a bounded or unbounded intervai in
(—o0,00). Let the prior density II(6) be continuous and positive at 6o, where

0o is assumed be the true value of 6.

(A2): P;(0) is twice continuously differentiabl~ and P; (6) and P;'(O) are bounded in
absolute value uniformly with respect to both  and j in some closed interval

No Of 00 € 9
(A3): For every fixed 8 # 6, assume for some given ¢(6) > 0

T S EuZi0) < <0 ®

and

sup |A;(0)] < oo.
j

(See Footnote!.) Note that

n

Ln(6) = La(60) = 3_ Z;(6)- o

j=1

For a sequence of rea! number {a,}, if limy_.o @, does not exist, then {a,} must have more

than one limit point. limg_c06n denotes the largest limit point (or upper limit).

8
12



(A4): {IJ'(0)} and {A:(())} and {,\;."(0)} are bounded in absolute value uniformly in
j and in @ € Ny, Ny specified in (A2) above.

(A5): (
n)
lim inf I"(6o)

N=—+00 n

> c(fp) > 0.

That is, asymptotically, the average information at g is bounded away from 0.

Although © may be (—00,00), we always assume without loss of generanality that
0o is contained in a finite interval, e.g. [—a, a] for some fixed a > 0. This is because
from the psychometric viewpoint, taking var() =1 for convenience, the same edu-
cational decision is made about people with # = 4 and people with 6 = 24. Thus,

assuming —5 < 6 < 5 does no practical damage.

The condition (8) of assumption (A3), perhaps, looks unfamiliar. But it plays
an important role in the proof of Lemma 3.1 below, ensuring the identifiability of
0o. That is, when 0p is the true value of 8, E{L,(0) — Ln(60)} should be sufficiently
negative for all values of 8 # 6y . In other words, this condition allows us to “identify”
0o by maximizing the likelihood function. (A3) acts as a remedy in the case that {X;}
are merely independent but not identicaily distributed. In other words, if they are
i.i.d., as is the case in Walker’s proof, then (A3) is automatically satisfied. To see
this, note in the i.i.d. case that

n"}éﬂao{z,-w)} = Ea{Z:(0)}.
Note that

Py(0) 1 - P(0)
P1(60) 1 — Pi(6o)

Thus, since —logz is strictly convex, Jensen’s inequality (Lehmann, p50) shows that

E'goexp{Z,‘(ﬂ)} = P1(00) + (1 - Pl(oo)) = 1.

for arbitrary
E4,21(8) = Eg,[log{Y (8)}] < log{Eq,[Y ()]} =0, (10)

9
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where
Y (6) = eap{Z:(0)}.

Thus (8) is satisfied by taking

c(8) = —Eg, {2:(6)}.

Unfortunately {Z;(8)} in IRT models are not identically distributed, so we have to
impose some supplementary condition. According to (10), n™! 37, Eg, Z;(0) will be
negative, however, this does not enable 13 to obtain (8). For what classes of IRT
models then does (8) hold? Consider the case in which each Eg,Z;(0) satisfies, for
some c(4),

Es,Z;(8) < —c(6) < 0. (11)

It is obvious that (8) holds. However, this condition is stronger than needed. It would
suffice to merely require that a “certain proportion” of the Ey Z;(0)s satisfy
condition (11), say one in every K, no matter how large the K is. Mathematically
speaking, this would imply

o(9)
K

n1Y By Z;(0) < n~{n =

i=1

} = = —&(6) < 0,

and so

;Er};l.jn_l Z Ey, ZJ'(O) < -€é(0) <0.
i=1
Actually, (8) does not seem very restrictive in IRT models incurred in practice. As
evidence, consider a “typical” IRT model of 40 3PL items, in which the item parame-
ters are precalibrated from a real ACT math test. The graphs illustrated in Figure 1

" are the Es, Z;(0)s computed from this model. Clearly (8) seems to be holding.

(A4) and (A5) are used to make L, (0) behave sufficiently well for 8 near 6. Con-
dition (A5) implies that the test information function evaluated at 6, tends to infinity

with the same speed as n. These five conditions would not be difficult to verify in

10
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Figure 1: Eg,{Z;(0)}s for 40 items, ACT-MATH Test (Drasgow, 1987).

particular applications and hence are really fairly mild modeling assumptions.

3 The Main Theorems

In this section we will introduce three theorems and the major steps of the proof
cf Theorem 3.1, the basic theorem. The rigorous proofs of these theorems, as well as

their related lemmas and corollaries, are contained in an appendix.

3.1 Convergence in Probability

Theorem 3.1 Suppose that conditions (A1) through (A5) hold. Let 0, be an MLE
of 6y, and 6, be the square root of {I(")(én)}"‘. Then, for —c0 < a < b < oo, the

posterior probability of b, + a6, < 0 < 0, + bé,, namely

bn+bon
/é (6] Xu,. .., Xn)do,

n+adn

11



tends in Py, to
b
(2«)'1/2/ e"%"zdu,

a

asn— 00.

Theorem 3.1 is the basic result in our asymptotic posterior normality work. Note
that A, is a random variable depending on Xj,...,X,. Thus its distribution is

determined by the parameter 6y and A, —» A in Py, means
lim Py, {|An — A| <€} =1, for arbitrary . > 0.

Outline of Proof. To prove the theorem, write

bn+bin i i G
/é..m,, (6] X1, Xa)dt = B X1yeo 1 Xn)
_ G Pi( X1, .., X)) \7!
 Pu( X1y..., Xul0a)on (Pn( xl,...,xnsén)&n)
where .
G = /8"“’6" TO)P.{ Xs,..., Xa|0)do, (12)
On+adn
and

Pu( Xl,...,Xn)=/eII(0)P,,( X1,..., Xa|0)do.
It suffices to prove
Pn( Xls“'sxn)
Po( X1y.. .y Xn|00)5n

as n — oo, in Py, and

— (27)Y%11(6,) (13)

G
Pn( Xl,“-axnlén)&n

~ (2r)'/*1(60){®(a) - @(})} (14)

as n — oo, in Py, where ®(z) = (2r)7/2 [%_ =%’ du,

ERIC

Full Tt Provided by ERIC.



In the following we will present the general idea to prove (13). ((14) is proved by

the similar method.) First expand L, (0) at 8, by Taylor expansion: we have

A - ) 2 "
Ln(o) - Ln(oﬂ) = (0 20“) Ln(o:.)
(0 - 6,)?

~2
202

where ;, is a point between ¢ and 0., and &2 is defined by (5) and R, is defined by:
Ra ¥ R0, Xu,...,Xa) = 1465L,(67)
= {La(67) + ™00}/ 1™ (6s). (16)
Split Po( Xi,...,X,) into two parts as follows
Pu( X1y Xa) = /|9-0o|25n(0)Pn( Xi,..., Xn|0)d0
N6)P.( Xi,...,Xn|0)d0
Joan s OPR Xa o, Xal0)

d:‘.!:f Gl + Gzo (17)

Therefore, recalling that L,(0) = log Po( Xi,...,Xxl0),

G

P.(X X |é )6 = exp{La(6o) —Ln(én)}{[(ﬂ)(én)}llz

/I0-00|_>_6 1(6)exp{Ln(0) — Ln(60)}d6 (18)

and, using (15),

G T1(6o) I1(6) (0 6,)?
AV ——(1- do. (19
P"( X1, ’Xﬂlon)&n On /|0-9o|<6 H(OO) X { 20,2‘ ( Rﬂ)} (19)
Thus, if
Gy _
—— — 0 in Py, (20)
Pﬂ( Xl, ) ,anon)on
and
o — (2r)/*11(8o) in Py, (21)

Pn( Xl,- ' ,anén)&n

13

o 1 7
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then (13) holds. For establishing (20), first consider (18): If 6, is consistent then
exp{L(00) — Ln(0,)} goes to a constant as n approaches co. On the other hand, since
{I™)(0,)}*/? approaches oo like n!/?, we need to make L,(8) — L.(6o) “sufficiently
negative” so that the integral of (18) approaches 0 faster than n~/2 and hence the
left hand side of (20) can be neglected outside the é region of 6. As for establishing
(21), consider (19): Since II(8) is continous, IT1(6)/II(8,) will be close to one for §
sufficiently small, and we need to make R, “sufficiently small” inside the 6 region

so that we can estimate the integral by

0 - 6,)
-/|0—00|<6 exp{ 27 }dé.

Mathematically speaking, we need the following two lemmas.

Lemma 3.1 Suppose that conditions (A1) through (A83) hold. For any é > 0, there
exists k(6) > 0 such that

lim Py { sup n~'[La(8) — La(60)] < —k(6)} = 1.

mT 166028
Lemma 3.2 Suppose that conditions (A1) through (A5) hold. Then
0 2 \21" (0" (0 - éﬂ)z
Ln(6) = Lal(fn) = (6=0.)°La(67)/2 = —"—5—(1 = Ra), (22)

where 07, is a point between 0 and 0,,, and R, is defined by (16). Also, for any € > 0,

there ezists 6 such that

lim P{ sup |R.(0, Xi,...,Xs)|<e€} = L (23)

=00 T 19~8g <6

As a by-product, Lemma 3.1 ensures the consistency of the MLE 6., which is
labeled as Corollary 3.1.

Corollary 3.1 Suppose that conditions (A1) through (A3) hold. Than 6, is weakly
consistent, namely

lim 6, = 6, in Py, (24)

4
I



It can be shown that (22) of Lemma 3.2 makes it possible for us to use the

reciprocal of the test information as the variance estimate (see (5)), instead of
.2 def { L n)}-la

as Lindley (1965) and Walker (1969) each suggested. The variance estimate (5) we

have chosen has the following advantages:

e The information function I™( ) is always positive. ~L.( ), by contrast, could
be negative, especially when the sample size is not large enough. So, some times

{—=L.()}*/* may not exist.

o The information function is easier to calculate, while the calculation of L,,( ) is

more complicated.

Future study should be undertaken to compare the speed of the convergence and to

explore any further advantages.

3.2 Convergence Almost Surely

As discussed in the preceding subsection, the posterior distribution for g’,ﬁg, de-
rived from a proper prior density I1(8), converges in probability to the standard
normal distribution. In this subsection we will see that a stronger result, conver-
gence almost surely, (also referred to as strong, almost everywhere, or with

probability one convergence), can be achieved under the same assuniptins.

Theorem 3.2 Suppose that conditions (AI ) through (A5) hold. Let 6, be an MLE
of 8o, and &, be the square root of {I'™(8,)}'. Then, for —o0 < a < b < oo, the
posterior probability of 0, + abn <0< b, + b6, namely

bntbin
An = /o I,(8] X1, ..., Xn)db,

n+adn

15
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tends to

b
A= (2#)"/2/ e~ du  almost surely,

a

csn — 00,

What is the difference between the conclusions of Theorem 3.1 and Theorem 3.27
It is instructive to look at the following two statements which are equivalent to these

two theorems respectively:

o The sequence {A,} is said to converge in probability P, to A if and only if for

each ¢ > 0,
lim Py, {|An — A| > €} =0,
or equivalently
lim Py, {|An - A| < €} = 1. (25)

o The sequence {A,} is said to converge to A almost surely (or in probability one,

strongly, almost everywhere, etc.) if and only if, for each ¢ > 0,

lim Py {max|Am — A| < ¢} = 1. (26)

Since (26) clearly implies (25), we have the immediate conclusion that Theorem 3.2

implies Theorem 3.1.

In order to have a better understanding about convergence almost surely, it

is interesting to quite the following example by Stout (1974, p9):

“In statistics there are certain situations where almost sure conver-
gence seems a more relevant concept than convergence in probability. Con-
stder a physician who treats patients with a drug having the same unknown

cure probability of p for each patient. The physician is willing to continue

16,
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use of the drug as long as no superior drug is found. Along with admin-
istering the drug, he estimates the cure probability from time to time by
dividing the number of cures up to that point in time by the number of
patients treated. If n is the number of patients treated, denote this esti-
mating random variable by X(n). Suppose the physician wishes to estimate
p within a prescribed tolerance ¢ > 0. He asks whether he will ever reach a
point in time such that with high probability, all subsequent estimates will
fall within ¢ of p. That is, he wonders for prescribed 6 > 0 whether there

extsis an integer N such that
X —p| <€} >1-06.
P{max| X —pl < e} 21-6
The weak law of 'arge numbers says only that
P{IX(n)—pISC}-—)l as n— oo

and hence does not answer his question. It is only by the strong law of

large numbers that the existence of such an N is indeed guaranteed.”

3.3 Convergence in Manifest Probability

Perhaps it may seem confusing to some readers to simultaneously have 0 fixed
at 0y and have 0 be a random variable governed by II(6), as is the case in Theorems
3.1 and 3.2. 'Thus some sort of clarification seems needed. The idea that leads to the

adoption of the notation 8y is the following: For any given response vector

(Xl,...,xn) = (xl,--wxn),

if it comes from a random!ly selected examinee we can always assume that he or she
has specific ability , say 8. However, in most cases o is unknown but hypothetically
specified. Under this assumption, the distribution of Xj,..., X, is induced by fo.

On the other hand, the given z,...,z, can also be interpreted just as a pattern.

17



Our interest is to know the proportion of examinees in the population who would

produce response vector z,...,Z,. Denote this proportion number as
P{( X1,..., Xn) = (21,...,2n)} (27)
and call it the manifest probability. It is clearly that
P{( X1,...,Xn)=(21,...,20)} 20

and

S P{(Xnyeo s Xn) = (21, 03m)) = L.

Ty yoanydny

Since we know the prior density I1(8), (27) can be obtained by integrating the joint

probability with respect to 8, that is
P{( Xl7°° . ,Xn) = ( T1y... w'rn)} = ~/9 Pn( L1y 7xn|0)n(0)d0°
According to Theorem 3.1,

én‘f‘b&n

LT ] Xy Xa)d0 - @(a) - €(b) (28)
n+adn

in probability Py,. It is very interesting to notice that the right hand side of (28) is

free of 6o, which suggests that we can further prove that the convergence is “free of

6o”. Since (28) holds for “every” 6, intuitively speaking, it should be true that (28)

holds under the “average of 8ys”. Therefore, we ought to be able to substitute the

manifest probability P for Py,:

Theorem 3.3 Suppose ihat conditions (A1) through (A5) hold. Let 6, be defined by
(3) or (4), and G, be the square root of {I(")((jn)}‘l. Then, for —o0 < a < b < o0,
the posterior probability of 0, + aéyn < 0 < 0, + b6, namely
én'*'b&n
L7 0] Xy Xa)dB,
On+aon

tends to

(2m)"1/2 /b e~ dy

a

18



in manifest probability P.

Summarizing the last few paragraphs, Theorem 3.1 implies that the asymptotic
posterior normality holds for any randomly chosen examinee with ability fo. On
the other hand, Theorem 3.3 ensures that this asymptotic property holds for any
randomly sampled examinee from the population. In other words, one is sampled from
the subpopulation and the other is sampled from the whole population. Therefore,
Theorem 3.3 has more general meaning. (The original idea of Theorem 3.3 was

proposed by Brian Junker in personal conversation with one of the authors.)

4 Conclusions

The asymptotic posterior normality of latent variable distributions has been es-
tablished under very general and appropriate hypotheses. This result has (at least)
two important implications. First, it provides a probabilistic basis for assessing ability
estimation accuracy in the long test case. Second, it provides an important first step
in making rigorous the Dutch Identity conjecture (Holland, 1990), which, roughly
speaking, claims that only 2 parameters per item are required in order to obtain good

long test model fit for unidimensional test data.

Further, the consistency of MLE of 0 has been discussed. It is very interesting
to mention that our proof of the consistency of the 8, is very similar to the Wald’s
proof(1949) for the Xj,...,X, ii.d. case. It is worth remarking that the general
IRT model (that is, non identically distributed responses) yields as powerful asymp-
totic results as the 7.i.d. model - the favorite model of most statisticians, which has

so many good qualities.
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Finally we should indicate that for general multidimensional IRT models the
asymptotic posterior normality can be proved for the random vector 8 given test

response Xj,..., Xy, under suitable regularity conditions. \
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Apnendix: Proofs of Main Theorems

In this appendix we will prove the results introduced in Section 3.

A The Proof of Convergence in Probability

The proof of Theorem 3.1 is based on Lemma 3.1, Lemma 3.2, and Corollary
3.1. Before going to the proofs , two important theorems, from real analysis and

probability theory respectively, should be introduced here:

Theorem A.1 (Heine-Borel covering theorem) (Billingsley, p566)
If [a,b) € N, (ax, by), then [a,b] C N}, (ak, bi) for some n.

Remark: Equivalent to the above theorem is the assertion that a bounded, closed set

is compact®.

Theorem A.2 (Strong law of large number (Serfling, p27))
Let X1, X3,... be independent with means p1, iz, ...and variances 012, 02® ,.... If the
series 30, 02 /)% converges, then
n n
n"'Y X;—n7tY ) p; — 0 with probability one.
=1 =1
Proof of Lemma 3.1:

Remark: The proof of Lemma 3.1 is an improvement over Walker’s result, which only

covers the i.i.d. case. The strategy used in the proof can be described by two steps:

(a) to prove, for any 0; # 0o, there exzists 6; > 0 such that

lim Py { sup n~'[La(0) = Lu(B0)] < —ci(é)} = 1.

nmoe |0-6,]<8,

We put the subscript i here because we only need finite number of such 0;s.

2A get C is defined to be compact if each cover of it by open sets has a finite subcover - that is,

if [Go : 0 € ©) covers C and each Gy is open, then some finite subcollection {Gs,,...,Ga, }covers C.
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(b) to use Theorem A.1 to cover {|0 —0y| > 6} NC , where C is a compact set, by a

finite number of open sets |0 — 6| < &;, i=1,..,m.
For any 0 # 0y, recziing from (7), the definition of Z;(8), and (9), it follows that
™ [La(6) = Ln(00)] = n™" 3_ Z;(6). (29)
Now, from (7),
EaZ,(0) = P0o)logl g5} + 11~ PGalllogl{ —pogh).  (60)

In order to apply Theorem A.2 to {Z;(6)}, we need to estimate var(Z;(0)). Writ-

ing Z;(0) using logit function (see (6)),

P;(6)

Z;(0) = X;[A;i(0) = A;(00)] + log{—m}

it follows that

var(Z;(0)) = wvar(X;)[X;(8) — A;(6o))*
= Pj(60)(1 = P;(60))[;(8) = Ai(0)]".

Since, for any fixed 8, A;(9) is bounded in absolute value uniformly in j (assumption

(A3)), this implies that there exists a constant 0 < M(6) < oo such that

lvar(Z;(0))] < M(8) for all j,

and hence
Z&(jzzj@ < oo. (31)
i=1

Thus we can use the law of large numbers to get

n”! znj Z;(0) ~n"? Zn: E¢,Z;(0) — 0 wpl. (32)

i=1 i=1

From (29), (32) and assumption (A3) it follows that

P{Timn™Y[L,(0) — La(80)] < —¢(6) < 0} =1 (33)

n—+00
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for some ¢(6) > 0.

Suppose Nj is the closed interval assumed in condition (A2). For any fixed 9 €

N, = © and for any 0 satisfying |0 — 6| < &, define H;(8',6) by the following:

) P;(6 1 - P8
Hy(6,0) = | log T 4 |10g L= 50),|
X0 T=P,(0)

Since P;j(6) is strictly increasing in 6, P;(6') = 1 and P;(6") = 0 can be ruled out.
H;(6',0), as a continuous function of 8, will achieve a maximum value over [0'-6, 0'+
6). Denote this maximum value as H;(6,0'), that is, there exists 9% ) ¢ [0'-6, 6'+6)
such that

7.6,0') = H;(6© .6 0.0 4
H;(6,0') H;(6 0) = Ior_r})al’is{ﬂ )} (34)

Clearly, for each j
lim H,(6,6') = O.

Now we have

|log{P;(6)%:[1 — P;(0)]'~*1} — log{P;(6')*'[1 — P;(6)]'~ "}

Y 1 () oy 1- P;(6)
= | X; log{ P;(6 ,)} +(1 X,)log{l —P,-(o’)}l
J (9) 1 - P5(6)
< | log{ g+ llog{ =5 gy (35)
= HJ(o ao) 5 HJ(6a0) (36)

We shall now prove that {P;(6)} is equicontinuous®. From (A2), P;(0) is continuous
and bounded in absolute value uniformly in j and in & € No. By the mean value

theorem,

|P;(8) = P;(6')| = |P{(¢;)(6 — 6 S Cplo = 9| for all j, (37)

3A function P defined on (—00,0) is said to be equicontinuous if, given ¢ > 0, there exists a

number 6 > 0 such that |z —z" | < 6 implies |P(z') - P(z")] < ¢ for all 2,z .
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where (; is a point between 6 and 8' for each j, and (p =sup,{|P;({;)|} which is finite.
Let 6§ = ¢/(p for ¢ > 0, then

if 10-06| < 6 |P;j(6)—P;(0)] < € forallj.

Recall that @' here is any fixed point in Np. Note that

o (9) 1 — P;(0)
H;(6,60) < {|108P 1} + “Mm”-

oe[o -6 o +6) oe[o -6 0’+6]

Since P;(6) is strictly increasing in 6 ,
P;(9)

P(0 6) P;(6' +6)

06[0,_60,+6]{|l°gp(9o)|} < maz{|log ———— P,0) |, |log W)_l}
and
1-Fi(0) l—P( ) P(() +6)
oe[a-60+6]{“0g1 P(o’)l} < maz{|log 1 - ) |, [log ~P0) |}.
Therefore,
-IZH 60 < n_lZ“ogP )l + —IZ“ 0 +6)|
=1 P;(0") = )
1 P;(0' -6 _ PO +6
+ n” JZ:Ilog l—I(Jj(o)) 1?;“ (J(0+))|'

From the equicontinuity of {P;(6)}, for arbitrary € > 0, there exist a sufficiently small

6 > 0 such that

P;(6' +6) € 1- P06 +6) €
|log X0 |<4 and |log = P9) |<4,

where either § = § or — 6. Thus, for all n and for all § sufficiently small
n! Z ﬁj(&, 0') <
=1

Therefore

hmnIZH\tﬁO =0 as 6 — 0. (38)

n-—00
J=1
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We shall now prove that for any 6; # 0o, there exists a sufficiently sms'l §; > 0
v and sufficiently small ¢; > 0 such that
lim P{ sup n~'[Ln(6) — La(f0)] < —ci} = 1. (39)
nTOO T e-6i|<é

For 0 € {0:10 — 6;| < 6}, according to (29),(7), and (36),

n'l[Ln(0) — La(60)] = n-I[Ln(oi) — L(60)] + n'l[Ln(O) — La(6))]
< 07V La(6;) = La(60)] + n7'Y H;(6,6)).

i=1
So we have

n

Iofg?dn“[Ln(())—L,,(()o)] < n Y La(6:) - La(60)) + n7'S H;(6,6:).

i=1
Substituting 8; for 4 in (33), we will have
P{'}Lrgon"[Ln(og) — La(80)] < —c(6) = -é} =1, (40)

where & is positive for all ¢, and from (38) we will have for all ¢

nlltgon-lZﬂj(é,oi) — 0 asé — 0.
i=1

So there is an open interval |§ — 6;| < é; and a positive number ¢;, e.g. ¢ = ﬁ;l, such

that (39) holds.

Recall that in assumption (A1) © can be defined by two different domuins. In the

following, we will discuss these two cases respectively.

Case 1: If © is a bounded closed subset of (—00,00), then @ — {8 : |§ — 0o| < 8} is
compact, according to Theorem A.1 it can be covered by finitely many, say m,

such open intervals
(0, — 61,01 + 61), (02 = 62,02+ 62), <oy (Om — Oy Om + 6n).
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Define event A™ by

AM = { sup 7' [La(6) ~ La(60)] < —ci} (41)
|6—-6i|<6;

From P{A™} — 1 for each i as n — 0o, we have
P{N: AMY S 1.
Now we replace ¢; in (39) with
k(6) = min{e;,c2y.e0nneym}
Therefore, (39) holding for all ¢ implies (24).
Case 2: If O is not bounded, such as © = (~o0, ), we will show
lim P{sup n™Y[L,(0) — La(60)] < —ca < 0} =1 (42)

for a sufficiently large positive number A. Now
O—-{0:10—6] <6}n{6:]0|> A} .
is bounded compact set, so finally we can get (24) from (42) by defining
k(6) = min{¢c,,cz,....,cm, ca }.
To complete the proof, we have to prove that (42) is correct. Let 0| = A, rewrite

sup n™' [Ln(6) — Ln(60)] = 27" [Ln(6a) — Ln(60)] + sup n™"[Ln(6) — La(8a)), (43)

161>a 161>4
where
1 1, & P;(9) 1 1-Pi(6)
—[Ln(0) = La(0a)] = =X;) log—— +— log
n[ ( ) ( A)] n sz=:l 8 5 A PJ(OA) n J"Zl (oA)
Since X, = 0 or 1, and P;(0) is strictly increasing in 6, then for 6 > A,
- . P;(0)
n"[Ln(8) = La(6a)] <supn™'Y log SLx,
sup 17 {La(0) = LalBa)] < supn™ 2 log B
26
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and for § < —A,

_ L& 1= Pi(8)
sup n” Y La(0) — L,.(04)] < n 'Y log ——L——.
sup [Ln(6) = La(6a)] < sup J}___f; BT P (- A)

Since each item response function has horizontal asymptotes as § — +o0 and § —

—00, we can prove that

. e P;(9)
lim supn™ Y log==% — 0
w110, SUP ; Py T
and
: e 1 — P;(6)
| 1Y log ———— 0
Jim, sup v 2 lB TR Ay
as A — 0c. Therefore we have
lim sup n™Y[Ln(0) = Ln(8a)] — 0 as A — oo. (44)
n—+00 16j>4
Substituting 4 for 6 in (33), we have
P{limn™![Ln(0a) = Ln(60)] < —ca} =1. (45)

Formulas (44) and (45) can be used to (43) to get (42). Therefore (42) holds. u

Proof of Corollary 3.1: The MLE, if it exists, obviously satisfies

Pu( X1,..., Xnl62)
Pn( Xla J °°1Xn|00)

La(6.) = La(60) = log{ } 20 (46)

for all n and for all Xi,...,X.. It is sufficient to prove that for any ¢ > 0 and 6 > 0,
there exists N(¢,8) such that

Prob{|6, — 6| < 6} >1—¢ for all n > N(e,6).

Suppose én is not consistent, then there exist € and &y such that, for any N there
exists somen > N,

PT‘Ob{'én - 00' > 60} > €.
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Therefore we can obtain a subsequence {6,,} such that
Prob{|0n, — 06| > b0} > € for all n;. (47)

Thus,
€0 < Tim Prob{|0, — 8o > o} < Prab{Tim||6 — 60| > &]}.

It is obvious that the event
Tim |05 — 66| > 60)
n=—=+00
implies that for infinitely many n

sup [Ln(8) — La(6,)] 2 0  for infinitely many n,
|6~601>60

because § = én is a possible value. But then according to (46) the event

sup [Ln(0) — La(60)) 20 for infinitely many n
|6~601260

has a probability greater than or equal to ¢o. This contradicts (24), which implies

that for any ¢ > 0, there exists N such that

Prob{ sup [La(6)— Ln(6o)] 20} <€ foralln>N.
16601260

This completes the proof. ]

Proof of Lemma 3.2: Without loss of generality, we first consider that b, €
10 — 80| < 6] C No. Since the 6, is consistent, the probability of f, being con-

tained in the neighborhood of fy will be close to one, when n is sufficiently large.

The second derivative of the log likelihood function can be written as

L) = SO - BO) - 210 (45)
28



To prove (48), first notice that it suffices to prove for n=1, that is

L,(6) = X (8)[X1 - Pi(6)) - L1(6).

Note that
L,(8) = X' (8) X, + log(1 — P,(9)),

so that
Ly(8) = M (8)X, + [log(1 — P,(6))]".

Comparing this with (49) it remains to show that
— [log(1 = A(B))]" = N (B)Pr(6) + 11(6).

However by definition,

$,(8) = Eg [~ Ly (8)] = = (6)P1(6) — [log(1 — Py(6))]",

which is equivalent to (50).

Consider the numerator of |R,| :

L, (62) + I™(6,)] =
J=1 j=1
+ Y X(60)[Pi(06) - P;(6)] + ;{Ij(én) -
s=1 i=
< §|A;-‘(0;)-A;‘(oo)|
+ IS X )X; — P00
Jj=1
" |$;A;-‘(oo)[P,-(oo) ~ P())
+ ilu,-(én)—l,-w;n-
29
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Note that 0; depends on 6 and 0, through the Taylor expansion and that the distri-
bution of 6, depends on 6. From (37)

13~ A (60)[P;(60) — P;(B;)] < 16}, — Bolnlp. (52)
j=1
From the meun value theorem

|X;(62) — X;(60)| =

| Ill

(0)(6;, — 6o)|

and

|1i(6a) = 1;67)] = | ;05 (0n - 6;)1,
whei §) is a point between 02 and 8y, and 6U+) is a point between 6, and 6.
According to assumption (A4), the third derivative of the logit function, /\;"(0), and
the first derivative of the information function, I;(8), are bounded in absolute value

j
uniformly in j and in 0, therefore,

S IN(82) = X, (80)| < | 65 — Bo|nCa, (53)
Jj=1
and
Y \Li(8a) = 1;(83)| < |6n — 63InC. (54)
i=1

Note that (p, (), and (; are finite positive numbers and they are independent of j.

We shall now prove

|30 X (001X, - B(Ga)ll = Oyn”) (55)

(See Footnote .) Assumption (A4) ensures that {);(6o)} is bounded in absolute
value uniformly in j. By Chebyshev’s inequality, for some M > 0,

721[4; (60)]*P;(80)(1 — P;(60))

P{IY. X (60)lX, - P,Bo)ll > n'/*KY} < 2

i=1

< MK,

4The notation of a, = Op(b,) means that an is bounded stochasticly by by, 1n probability, that
is, an = Op(bn) if and only if for arbitrary ¢ > 0 there exist M, and N, such that
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that is, for arbitrary € > 0, take K = (M/e)!/?, then we have

P{|fj)\;’(oo)[x,--P,-(oo)]/n‘/2| <K} >1-¢ foralln

i=1

that means we have (55).
Formulas (52), (53), (54), and (55) can be applied to (51) to get

Lo (6) + 1™ (8,)] < {165 — 60| + |65 — 6,13nC + Oy(n'/?), (56)
where
C=(p+C+r

We shall now prove

lim P{ I™(6,)/n >¢/2>0}=1. (57)

n=—00

By assumption (A4)

nYI™(8,) - I™ ()] < n7' Y [1i(6a) — I;(6o)|

i=1

< 160 Golr. (58)
By using the consistency of 6, and (58), we get
I™@,)/n — I™(B)/n — 0 in Py asn— oo

Thus, by assumption (A5), we have (57).

From (56) and (57) we obtain

(|0‘—00|+|én—0‘|)n0} { nl/? }
sup |Rn(0, X1,...,Xn)| £ su { L - L + 0, ——
|0-00I|)<6 1B (0, X ) |0-ool|)<6 1)(8,) LIt (6,)

(16, — 6ol + 16, — 651)nC -1/2
{ 10)(8,) +0pn ™)

= sup
|0~85|<6
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Note that
107 = 0a| <165 ~ 80| + 10, — 0] and |05 — Bo| < |6 — Bo] + |65 — o,

where the second inequality follows from the fact that 87, is between 6 and én. There-

fore

sup |Rn(6, Xi,...,Xz)| £ sup
|6-6o |<6 |0-81<6

=i(5)

then we have (23), recalling that 6, — 6 in Py, and (36).

316, — 00| + 2|0 — 6,|)C _

For any ¢ > 0, choose

The above proof is based on the assumption that 0, is in the neighborhood (8o —
6,00 + 6), so we just proved that the conditional probability approaches to one:

nl-l-[go P[Unlvn] =1, (59)
where
Uo={ sup |Ru(0, X1,...,X3)| <€}
|0-65|<6
and

Vo = {0, €[i0 -8 <8 C No}.

Since Corollary 3.1 implies

nl_!_,rgo P[Vn] =1, (60)
it is obvious that (59) and (60) implies lim,_.o P[U,] = 1. Thus we finish the proof.

Proof of Theorem 3.1:
Remark: The following proof will use a similar methodology as Walker’s(1969). The

proof itself will not use any assumption about i.i.d.. Instead, it will just depend on
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the results of Lemma 5.1 and Lemma 3.2.

As we discussed in section 3.1, it suffices to prove (13) and (14). To prove (13) it
suffices to prove (20) and (21). Let us start with (20). Rewrite G as

G, = Pa( X1,...,Xnlbn) / T1(6)exp{Ln(8) — Ln(64)}db

|6—-60|28

= Pu( X1,..., Xn|0)ezp{Ln(80) — Ln(6:)} osaios T1(0)exp{ Ln(6) — Ln(60)}d0.

Since én is an MLE,
Ln(oo) - Ln(én) S 0, (61)

and therefore exp{Ln(60) — Ln(6,)} < 1. So we have

Gl = {J\" 1/2 a
TS A A L S5 (O exPALa(0) = Lu(Gn)}d8

= exp{ Ln(00) = La(6) {1 (8,) }1/2/|o a5 11(6) exp{Ln(6) — Ln(60)}d0
< {IM(6,)}Go, (62)
where

Go = /w_mzs 1(6) exp{ Ln(8) — Ln(60)}db.

By Lemma 3.1, for any 6 > 0, there exists k(6) > 0 such that

lim Poo{U } =1,

where
Us = [ sup n"YLa(6) = La(60)] < —k(6) < 0]. (63)
|6—60128
Define
Vi = [Go < exp{—nk(§)}]; (64)
notice that
- < -
exp{—nk(é }/-00I>5 (6)dl < exp{—nk(6)}.
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Because U,, C V,,, we have
lim Py, {Go < exp{-nK(6)}} =1.

Since

{I™(8,)}/*exp{—nk(6)} — 0 in Py, asn — 0,

it follows, (using (62))

lim Gy —— =0 n Py, (65)
n=eo n( Xl,”wxnlon)an

Thus (20) holds.

Now we prove (21). From (15), rewrite G, as

Gy = Pu( Xuy..., Xalfn) /w_aoldn(o)exp{z;,,(o)-Ln(on)}do
= ) _M'I_
= P Ko Xalb) [ TO) exp{=55 (1~ Ra)}dd
_ ;1 () (8 = 6,)?
= Bl Koo XalBaU) [ s expl=gmt= (1~ Ra)}o.
We shall now observe Gz

Po( X1y0Xn|0n)on "

G, _ 11(6) TI(8) _(0_én)2 _
Po( X1y..., Xul00)6n  On /,a_ookm(oo)ew{ 55z (1= Ra)}d6  (66)

n

From condition (A1), in particular the continuouity of II(6), for any € > 0 we can

choose 6 such that {8 : |60 — 6y| < 6} C Ny and
1(e) < 1(8)

1—¢< inf <1+e. 67
©= 10 20i<s TI(B0) = ppoguies TM(B0) = (67)
Then, using (66)
G Pa( X1, -+, Xul0n)ow On
34
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where

= _(0 - én)z _
Go= /Io-oo|<s ezp{ 252 (1 = Ra)}db. (69)
For any € > 0, define
C" =1 sup |Rﬂ(07 Xlw 7Xn)| < 6], (70)
|6~00|<8
and
(0 _ én)2 (0 - n)2
n= T T aso < < _— 0
P [~/I€-00|<5exp{ 252 (1+¢€)}df < Gy < ]|0_00|<6 exp{ 957 (1+¢€)}do)
(71)

Now we should get rid of R,. Since C, C Dy, and for any ¢ > 0, from Lemma
3.2,

Jim P, {Cn} =1, this implies  lim Py, {D,} = 1.

That is, the probability of the event

exp{—w(l + 6)}d0 < G3 _<_ exp{_

—(1 —¢€)}do (72
S10-6]<5 262 16601 <6 552 (1 —€)}dd (T2)

converges to 1 as n — o0o. Therefore, recalling (17),(65),(68), and (69), the only
thing left to establish (13) is to observe that
(0 - éﬂ)z -
- 1 dé
/|o-oo|<s ezp{ 202 (1+e)}

n

= (2m)/3(1 + &)V, @{57" (60 + 6 — 6.)(1 + €)'/} = 0{67 (Bo—8~0n) (1+€") /%),
(73)

where ¢ = ¢ or —e. Since 0, is consistent and ;! — oo in probability, when € < 1,
0o + 6 — 6, — 6 in Py,
p — 6 — 0, — =6 in Py,
670+ 6—0,)1+€¢)? = 0o in Py,
57 00— 6—0,)(1 + €)Y = —oco in Py,
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So
{6 B+ 06— 0)(1+ €)Y} = 1 in Py,

{6700~ 6—0,)1+ )V} = 0 in Py,

Therefore, the difference in the square brackets of (73) converges to unity in proba-

bility. Since the € is arbitrary, this proves (13).

Now we prove (14). First of all we consider (12) and (17) again: G and G are
the same except for their rigions of integration: one is (0, + a6y, 0, + bs,) and the
other is{0: | — 6o| < 6}. For the same ¢ and & given by (67), if (6, + aGn, O, + b6)
is a subset of {0 : |6 — o| < 6}, we must have

. I1(6) 11(0)
l1-e<  inf < su
(bt but530) THOO) ™ (G 4ase, dusbon) 11(00)

<l+e (74)
Define
En = [(0n + 06, 0, +b5,) C{0:]0 - ¢,| < 6}].

Since én — 0y in Py, and 6, — 0 in Py,. Thus,
Py (En) — 1 asn — oo, (75)

and hence the probability of (74) converges to 1 as n — oco. Consider (68) again. If
(én + ao,, (3,, + b6,) is a subset of {0 : |0 — 0o| < 6}, and if we substitute the rigions
of integration of (68) by (0 + a&y, 0n + b,), then the new inequality (76) below will
still hold.

On Pn( Xla”'axnlon)an On
where . .
, phaken (0 ,)?
Ga= [ P51 = Ru)}do. (1)
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Because of (75), the probability of the event indicated by (76) converges to 1 as

n — oo. For the same ¢ given by (72) define

C,=| sup |Rn(6, Xi,...,Xn)| < ¢, (78)

(On+adn, On+bon)

D, = [/én+05n exp{_(o - én)z(l + 6)}d0 < G; < ‘/:n'i'&na exp{_(o - én)z(l _ 6)}(10] .

fn+b6n 202 n+6nb 252
(79)
From (75) and E, C C, C D,,
Py{D,} = 1 as n — oo.
Similar to (73), now we shall estimate
n+adn (6 - én)2 .
fio exp- 51+ <)}, (80)

where & = ¢ or —c. It is obvious that the quantity in (80) is equal to
(27) 25, (1 + )~ V?[@{a(1 + €)'/?) — &{b(1 +¢)V?}].

Since we can make ¢ arbitrarily small, therefore, using (76) and (77) we can finally

obtain

G
Pn( le . °1Xn|én)&n
in probability Py, . u

— (2)'/*T1(60){ ®(a) — @(})}

B The Proof of Strong Convergence

The proof of Theorem 3.2 is analogous to that of Theorem 3.1 and is also based
on two lemmas and one corollary. However, these intermediate results are stronger

than those used in proving Theorem 3.1.
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Lemma B.1 Under the assumptions of Lemma 8.1, for any given 6 > 0, there exists
k(6) > 0 such that

Pao{Tim sup n ' [La(0) - La(60)] < —k(6)} = 1. (81)

Proof: The proof of (81) analogous to that of .emma 3.1 except the following two

changes:
(1) replacing (39) by

Py, {m sup n_l[Ln(0) - Ln(00)] < —-C.'} = 1; (82)

=00 19-0,|<6

(2) replacing (41) by

A = {Tm  sup n~'[La(8) - La(60)] < —ci}.

N0 19-6;| <6

Now we only need to prove (82). Since

Tim n™'[Ln(6:) — La(do)]

n=—00

is measureable with respect to the tail o field

o(Za(6:), Zns1(6;),....),

by the Kolmogorov’s 0 — 1 law (Billingsley, p295) it must be a “nonrandom”
constant with probability 1. Denote this constant as 5. According to (40),

Poy{n = T 0~ [La(8:) — La(00)] S —c(8;) < 0} = 1.

Choose

and choose é small enough such that
Tmn™' Y H;(5,60) <,
=1
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(see (34) for the definition of H;(6,6:)), thus

Tm sup n~[L.(0) — La(6)] £ Timn~'[Lna(6:)— La(80)) + Tmn™t ) H;(6,6;)
n—00 19_g:|<5 n—0oo n—00 prt

< n+e<—c(f;) almost surely.

Thus (82) holds. n

Corollary B.1 Lemma B.1 ensures that
Po{ lim 0, = 6o} = 1.

Proof: Analogous to that of Wald (1949) and omitted. n

Lemma B.2 Under the assumptions of Lemma 3.2, for any ¢ > 0, there exists 6

such that

P T sup |Ba( Xiyeors Xn,0)| <€} = 1. (83)
n=00 |90 | <6
Proof: Analogous to that of Lemma 3.2 and omitted. n

Proof of Theorem 3.2: Based on Lemma B.1, Lemma B.2 and Corrollary B.1. The

basic steps are analogous to those of Theorem 3.1 and omitted. n

C The Proof of Convergence in Manifest Proba-
bility

Proof of Theorem 3.3: Theorem 3.1 implies that for arbitrary 8 and arbitrary
e>0,
P@{lAn( X17°°°7Xn)_ Al Z 5} — 07
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as n — 00. Define
Hu(b,¢) = Pof{| An( X1,...,Xn) — Al 2> €}
Ii is clear that for any 6 and € > 0 that

0< Ha(6,) <1  and  lim H,(6,¢) = 0.

n=—+00

By Lebesgue’s bounded convergence theorem (Billingsley, p214),
| /@ H,(0,¢)TI(0)d0 — 0.
That is,

P{ldn( X1y Xa) - A2 ¢} = /GP{|A,,( X100 Xn) = A| > €|0}T1(6)d0
= /e Ha(0,€)1(8)d0 — 0.

This proves Theorem 3.3. n
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