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1 Introduction

This article deals with an empirical Bayes modeling approach (by which is meant

latent ability random sampling in the IRT context) to the item response theory (IRT)

modeling of psychological tests. Suppose we randomly sample N persons from a

specified population, and then administer a test consisting of n items. The data

structure for a randomly selected examinee can be expressed by a random vector

( X1,...,Xn,6),

where X1, , Xn denote item responses and 0 denotes examinee ability, which is

unobservable. Abstractly, in an empirical Hayes problem the data is modeled by

independent identically distributed (i.i.d.) random vectors

One important measurement goal is the estimation/prediction of each examinee's 0.

Clearly one should use the first examinee response X11), ..., XV to predict the actual

value of 01. However, unless the distribution of 0 is completly specified, there is useful

information in

the second through Nth examinee responses, about the unknown distribution of 0 and

thus about the unknown ability 01 in particular, which we want to estimate. Thus an

alternative approach to using only (X11), ..., XII)) is to use all of the test responses in

making inferenses about 01.

Let X.; be the score for a randomly selected examinee on the jth item; X) = 1 if

the answer is correct, X) = 0 if in correct, and let

{1 with probability P;(0)

0 with probability 1 P3(0)
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where PAO) denotes the probability of correct response for a randomly chosen exam-

inee of ability 0, that is,

PO) = P{Xj = 1(0),

where 0 is unknown and has the domain (oo, oo) or some subinterval on (oo, oo).

We make two assumptions about the IRT models of this paper:

(a) Local Independence (also called Conditional Independence)

Pn( , xn10)
def

11( X1, Xn) = ( x11... xn)10)

flP{Xj = xj10}
J=1

H pofip. Pi(0)rx .

(b) Monotonicity: each PAO) is strictly increasing in 0.

Lord (1980) makes an interesting remark about the existence of a prior distribution

for ability:

"In work with published tests, it is usual to test similar groups of ex-

aminees year after year with parallel forms of the same test. When this

happens, we can form a good picture of the frequency distribution of ability

in the next group of examinees to be tested."

This suggests taking an empirical Bayes approach to IRT modeling, in particular

assuming partial knowledge about the distribution of 0 and thereby being able to

make efficient use of the response data to make inferences about the distribution of 0

and thus make inferences about the unobservable examinee abilities. The distribution

of a test response X1, , Xn is indexed by 0, which belongs to the parameter space

0; that is, each 0 E 0 governs a test response distribution. Let Ln(0) denote the

log-likelihood, that is

Ln(0) = log {Pn(

2



If we assume that the prior distribution has density 11(0), according to Bayes' theorem,

the posterior density for each given

can be written as

where

( X11. ,Xn) = In)

Pn( xl, ...,xn10)11(0)
Pn(

exp{Ln(0)}11(0)

fin( x,,...,xn)=L pn(

(1)

Notice that, the "prior" and "posterior" refer to the relationship between the

distributions and the observation xl, , xn. E.g., P(0) is prior to xl, , xn and

lin(01 xl, xn)

is posterior to x1, . , xn These ideas can be easily extended to the study of the

asymptotic behaviou- of *IT posterior distribution. In particular, for each xl, xn,

what can be said about the posterior probability of 0 as n tends to infinity?

It has long been part of the IRT folklore t' ..` under the usual empirical Bayes

unidimensional IRT modeling approach, the posterior distribution of 0 given test

response is approximately normal for a long test. Holland (1990) indicates:

"At present I know of no through discussion of the asymptotic posterior

normality of latent variable distributions and this would appear to be an

interesting area for further research."

In classical statistics, when Xn) are i.i.d., an important result (informally

stated) is that, for n large, the posterior density IIn(OI X1, , Xn) is approximately

3



equal to the normal density N(0, 'it!), where on is the maximum-likelihood estimator

(or MLE) of 0 and ?I! V {L:(6)}-1, where Ln" (k) is the second derivative with

respect to 0 of the log-likelihood evaluated at ön. in and ii.2 here are functions of

( X1, , X) only. Intuitively, el.! o 0 in applications, usually like 1/n.

Lin lley(1965) proposed a heuristic approach to prove the above result by expand-

ing the log-likelihood in Taylor series in 0 about önl

L(0) = L(0) + 120 611)2 L:(On)

where R is a remainder term. Since the log-likelihood has a maximum at en the first

derivative vanishes there. As shown above the posterior density viewed as a function

of 0 fur fixed xl, , xn is proportional to

Therefore,

II(0)exp{L(0)}.

1111(01 x11...,xn) ix II(0)exp{Ln(on) (O ön)2 Rn}.
Var2

Since L(ö) does not involve 0, it may be absorbed into the omitted constant of

proportionality so that

ILA x11 xn) 11(0)exp{
(0 .6)2

+ Rn } ,
20.2

where the remainder, Rn, is claimed to be negligible when compared with the other

term in (2). Because 6.,2, 0 like 1/n, the density in (2) becomes concentrated at

on in the limit, thus allowing II(0) to also be absorbed into the omitted constant of

proportionality. Thus,

(2)

11(0I x1,...,x) a exp{

4



as desired. However, Lindley (1965) did not give a rigorous proof.

Walker(1969) proved that under certain conditions, the posterior probability of

en + arn < 0 < On + Van, namely

in+bein

IL(0! X1, . . . , X)d0,
fen+aern

converges in probability Poo to

(270-1/2 fb e4112 dy
Ja

as n -- oo. Here, as the notation Poo indicates, in the generation of X1, ... , Xn

we assume 00 is the true value of 0. That is X1, ... , Xn is generated according to

the distribution Pn( x1,...,x100). Then, using the rules of conditional probability

computation, it is easy to show that one way to interpret Walker's result is that

P[O + (tern < 00 < On + bern I X1 1 .. . 1 Xn 1 00]

converges in probability to

(270-1/2 fb -1eY2dy
a

as n * oo. That is, for each fixed (but unknown) 00 we have an asymptotic confi-

dence interval for each choice of a < b.

As we know, for all realistic applications, the item characteristic curves are not

identical. Therefore, the {Xi} we have are merely independent, conditional on 0, but

not identically distributed. However, the general IRT model enables us to prove, by

adapting the approach that Walker (1969) applied to i.i.d. random variables,

(a) The "wzak" convergence, that is, for oo < a < b < 00,

On +bein

An r---- .1. Iln(01 X1, ... , Xn)d0
On+aan

5



converges in probability Peo to

A s--. (270'12 lb e- 1'12 dy
a

as n oo. That is,

Peo{IAn AI < 6} ---' 1, as n oo, for arbitrary E > O.

(b) The strong convergence of An: that is,

1390{,!inl An = A} = 1;

(c) Convergence in "manifest" probability, or "00 free" convergence, that is, An con-

verges to A in the manifest (or marginal in the sense that 00 is integrated out)

probability P, which is defined, for any fixed n

P{(X11...1Xn) = (x11...Ixn)}

= Pn( xn10)71.(0)d0.
Je

This result is also easily interpretable as 1...o asymptotic confidence inteval for

ability. That is, it assures that

P{ in + abn < 0 < + bbnI IX'}

converges in probability to

(270-1/2 C4v2dy
a

as n oo. That is, for any randomly sampled examinee, we have an asymptotic

confidence inteval for each choice of a < b. Here in (c), in contrast to (a), the

value of 0 for the randomly sampled examinee is not fixed.

(d) The weak and strong consistency of the MLE in, which are intermediate results

in the proofs of (a) and (b).

Proving (a)-(c) is the main purpose of this paper, thereby meeting the Holland

challenge quoted above.



2 Further Notation and Assumptions

2.1 Basic Notation

00: The true parameter. In saying that X; is a random variable we infer that Xj has

the density

Pi(0)' [1 Pj(0)]', x1 = 0,1,

for some fixed value of 0. Denote this value by 00, which we refer to as the true

parameter.

en: The Maximum Likelihood Estimator(MLE) of 0, which is defined as a solution

(in general non-unique), of

Jan ( x11 . , lOn) =
TP/Eaex

{Pn
...1X1110)}1 (3)

if it exists, or equivalently, of

L(0) = rex{Ln(0)}. (4)

/AO): The item information function of item j, which is equal to

{P;(0)}2
= F, pi(0)]'

where Psj(0) is the first derivative of P1(0) with respect to 0.

/(n)(0): The test information function

1(n)(0) =
1=1

0'n

frn2 ci ipn)(én)
(5)

noting that our definition of 6.! used hereafter in the paper differs from the often

used F41-1 {Ln"(en)}-1 mentioned above.

7
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A;(0): The logit function of item j

Z;(0):

p3(0) 1.
A3 (0) = log{ 1 _

Z,(0) = I
P,(0)x3[1 13,(0)]1-x'

log P3(001(3[1 13.7(00)]1x)

2.2 Regularity Conditions

(6)

(7)

Some "regularity" conditions and their explanations will be stated before going

into details about our theorems. Fix 00 E 0: There are five basic assumptions:

(A1): Let 0 E 0, where 9 is (oo, oo) or a bounded or unbounded interAll in

(oo, co). Let the prior density II(0) be continuous and positive at 00, where

00 is assumed be the true value of 0.

(A2): P, (0) is twice continuously differentiablo and P;(0) and P;(0) are bounded in

absolute value uniformly with respect to both 0 and j in some closed interval

No of 00 E o.

(A3): For every fixed 0 0 00, assume fot some given c(0) > 0

hm n-1 E Ea° Z;(0) < c(0)
n--oo

and

(See Footnotel.) Note that

j=1

sup IA;(0)I < oo.

Ln(0) Ln(00) = z,(0).
i=1

(8)

1For a sequence of real number {an}, if an does not exist, then {an} must have more

than one limit point. limn....00an denotes the largest limit point (or upper limit).

8
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(A4): { ti(0)} and {A;(0)} and {A(0)} are bounded in absolute value uniformly in

j and in 0 E No, No specified in (A2) above.

(A5):

lim inf
I(n)00)

> CPO > 0.
n--oo

That is, asymptotically, the average information at 00 is bounded away from 0.

Although 0 may be (oo,00), we always azsume without loss of generanality that

00 is contained in a finite interval, e.g. [a, a] for some fixed a > 0. This is because

from the psychometric viewpoint, taking var(0) =1 for convenience, the same edu-

cational decision is made about people with 0 = 4 and people with 0 = 24. Thus,

assuming 5 < 0 < 5 does no practical damage.

The condition (8) of assumption (A3), perhaps, looks unfamiliar. But it plays

an important role in the proof of Lemma 3.1 below, ensuring the identifiability of

00. That is, when 00 is the true value of 0, E{L(0) Ln(00)} should be sufficiently

negative for all values of 0 0 00 . In other words, this condition allows us to "identify"

00 by maximizing the likelihood function. (A3) acts as a remedy in the case that {Xi}

are merely independent but not, identicaily distributed. In other words, if they are

i.i.d., as is the case in Walker's proof, then (A3) is automatically satisfied. To see

this, note in the i.i.d. case that

E00{Z;(0)} = E00{Z1(0)}.
j=1

Note that

P1(0) 1 P1(0)
E00exp{4(0)} = Pl(0o) pi(00+ (1 P1(00))1 pi(90) 1.

Thus, since logs is strictly convex, Jensen's inequality (Lehmann, p50) shows that

for arbitrary 0

E90Z1(0) E90[log{Y(0)}] < log{E90 [Y(0)]} 0, (10)

9
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where

Thus (8) is satisfied by taking

Y(0) = exp{Z1(0)} .

c(0) = 4{Z1(0)}.

Unfortunately {Z3(0)} in IRT models are not identically distributed, so we have to

impose some supplementary condition. According to (10), n-1 E7,.1 Eeo Z;(0) will be

negative, however, this does not enable 1 3 to obtain (8). For what classes of IRT

models then does (8) hold? Consider the case in which each Eeo Z;(0) satisfies, for

some c(0),

Z3(0) < c(0) < 0. (11)

It is obvious that (8) holds. However, this condition is stronger than needed. It would

suffice to merely require that a "certain proportion" of the E90Z3(0)s satisfy

condition (11), say one in every K, no matter how large the K is. Mathematically

speaking, this would imply

n'EE,oz,(e) n-

and so

(0)= = (0) < 0,
K K

lim E Eeo Z;(0) < Z(0) < 0.
nocc

3=1

Actually, (8) does not seem very restrictive in IRT models incurred in practice. As

evidence, consider a "typical" IRT model of 40 3PL items, in which the item parame-

ters are precalibrated from a real ACT math test. The graphs illustrated in Figure 1

are the E90Z3(0)s computed from this model. Clearly (8) seems to be holding.

(A4) and (A5) are used to make L:(0) behave sufficiently well for 0 near 00. Con-

dition (A5) implies that the test information function evaluated at 00 tends to infinity

with the same speed as n. These five conditions would not be difficult to verify in

10



0 2 .2 0 2

Figure 1: Eon {Z3(0)}s for 40 items, ACT-MATH Test (Drasgow, 1987).

particular applications and hence are really fairly mild modeling assumptions.

3 The Main Theorems

In this section we will introduce three theorems and the major steps of the proof

cf Theorem 3.1, the basic theorem. The rigorous proofs of these theorems, as well as

their related lemmas and corollaries, are contained in an appendix.

3.1 Convergence in Probability

Theorem 3.1 Suppose that conditions (A l) through (A5) hold. Let en be an MLE

of 00, and 171, be the square root of {IN(On)}-'. Then, for oo < a < b < oo, the

posterior probability of On + a& < 0 < + Ihn, namely

nn(OI X1, . . . Xn)dO,

11



tends in Poo to

(27-1/2 fb0 e-tu2d111
a

as n oo.

Theorem 3.1 is the basic result in our asymptotic posterior normality work. Note

that An is a random variable depending on X1, , X. Thus its distribution is

determined by the parameter 00 and An A in Poo means

lim PeoflAn Al < = 1, for arbitrary > 0.neo

Outline of Proof. To prove the theorem, write

where

on+ban

fen+aan ri(01 ,X)d0
Pn( X11...1Xn)

nn
G

Pn( X1, ... ,Xnfin)eln Pn( ,Xni4)&n)

On+ban
G =

e
II(0)P( X1,... ,X10)dO,

n+aan

and

Pn( X1, ,X) = j r1(0)Pn( x1, ,x10)d0.

It suffices to prove
Pn( ,Y1 . xn)

AI( xi . . xn Ion )ern
2 )1/211(00)

as n oo, in Pe°, and

Pn( X1, ... ,XnIOn)an

as n oo, in Peo, where (I)(x) = (27r)-V2 f'03 ciu2du.

(12)

(13)

(27)1/21I(00){(1)(a) 41)(b)} (14)



In the following we will present the general idea to prove (13). ((14) is proved by

the similar method.) First expand L(0) at on by Taylor expansion: we have

L(0) Ln( on )
(0 002 /sin*

2 linty°
(0 tjn)2

2fr,2,
(1 Rn), (15)

where 01,`, is a point between U and on, and 6.,2, is defined by (5) and R is defined by:

R, = 1 + 6:121Lnis(tri)

= {L:(07)

Split Pn( X1, , Xn) into two parts as follows

Pn( Xi, . . Xn) 11(0)1°( X1, . XIO)dO
.11.0-801>8

11(0).13( X1, ... XIO)dO
110-80

def
G2.

Therefore, recalling that L(0) = log Pn( X1, 7 Xn10)7

Pn( , xnionyern
= expgn(00) Ln(on)}{i(n)con)}112

(16)

(17)

11(0)exp{L(0) L(00)}dO (18)

and, using (15),

G2 II(00) f II(0) - 602

Pn( Xnlen)ern A8-0010 11(00) exPl
(1 Rn)}dO. (19)

Thus, if

and

G1 0 in Peo
Pn( Xi,...1Xnlen)&n

(20)

G2 (2r)V2II(00) in Pao, (21)
Pn( Xn len )bn

13
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then (13) holds. For establishing (20), first consider (18): If en is consistent then

exp{L.,(00)Ln(k)} goes to a constant as n approaches oo. On the other hand, since

{/(n)(6n)P/2 approaches oo like n112, we need to make L(0) Ln(00) "sufficiently

negative" so that the integral of (18) approaches 0 faster than n-1/2 and hence the

left hand side of (20) can be neglected outside the 45 region of 00. As for establishing

(21), consider (19): Since II(0) is continous, II(0)/II(00) will be close to one for ö

sufficiently small, and we need to make ity, "sufficiently small" inside the 6 region

so that we can estimate the integral by

exp{ (0 in)2
fle-sol<6 26.2

Mathematically speaking, we need the following two lemmas.

Lemma 3.1 Suppose that conditions (A I) through (A3) hold. For any 45 > 0, there

exists k(0) > 0 such that

lim P00{ sup n' [Ln(0) Ln(00)] < k(6)} = 1.n.00 10.401,5

Lemma 3.2 Suppose that conditions (Al) through (A5) hold. Then

bnLn(0) L(Ô) = (0 b,,)2L:(14)/2
(0 )2

(22)

where 0; is a point between 0 and en, and Rn is defined by (16). Also, for any e > 0,

there exists 45 such that

lim P{ sup IXI(0, X11. ,Xn)I < = 1. (23)
n--*°° le-eol<5

As a by-product, Lemma 3.1 ensures the consistency of the MLE 'an, which is

labeled as Corollary 3.1.

Corollary 3.1 Suppose that conditions (A I) through (A3) hold. Than 'en is weakly

consistent, namely

lim b = 00 in P00.
1.1-400

14
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It can be shown that (22) of Lemma 3.2 makes it possible for us to use the

reciprocal of the test information as the variance estimate (see (5)), instead of

as Lindley (1965) and Walker (1969) each suggested. The variance estimate (5) we

have chosen has the following advantages:

The information function 1(n)( ) is always positive. L( ), by contrast, could

be negative, especially when the sample size is not large enough. So, some times

{Ln" ( )}1/2 may not exist.

The information function is easier to calculate, while the calculation of Ln" ( ) is

more complicated.

Future study should be undertaken to compare the speed of the convergence and to

explore any further advantages.

3.2 Convergence Almost Surely

As discussed in the preceding subsection, the posterior distribution for if1=9- de-bn 9

rived from a proper prior density II(0), converges in probability to the standard

normal distribution. In this subsection we will see that a stronger result, conver-

gence almost surely, (also referred to as strong, almost everywhere, or with

probability one convergence), can be achieved under the same assuniptirms.

Theorem 3.2 Suppose that conditions (A1) through (A5) hold. Let en be an MLE

of 00, and bn be the square root of {1(n)(6,)}-'. Then, for oo < a < b < oo, the

posterior probability of On abn < 0 < On + b&n, namely

in+birn
An a- j. II(01 . . . Xn)dO,

On+aan

15
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tends to

n oo.

A = (27)-1/2 e4u2 du almost surely,
a

What is the difference between the conclusions of Theorem 3.1 and Theorem 3.2?

It is instructive to look at the following two statements which are equivalent to these

two theorems respectively:

The sequence {An} is said to converge in probability Pa, to A if and only if for

each > 0,

or equivalently

lim Poo {On Al > f} = 0)
n000

lim Poo {On Al < c} = 1.n.co (25)

The sequence {An} is said to converge to A almost surely (or in probability one,

strongly, almost everywhere, etc.) if and only if, for each > 0,

lirn Peo {max Al 5 E} = 1. (26)
n000 vrt>n

Since (26) clearly implies (25), we have the immediate conclusion that Theorem 3.2

implies Theorem 3.1.

In order to have a better understanding about convergence almost surely, it

is interesting to quite the following example by Stout (1974, p9):

"In statistics there are certain situations where almost sure conver-

gence seems a more relevant concept than convergence in probability. Con-

sider a physician who treats patients with a drug having the same unknown

cure probability of p for each patient. The physician is willing to continue



use of the drug as long as no superior drug is found. Along with admin-

istering the drug, he estimates the cure probability from time to time by

dividing the number of cures up to that point in time by the number of

patients treated. If n is the number of patients treated, denote this esti-

mating random variable by fC(n). Suppose the physician wishes to estimate

p within a prescribed tolerance c > 0. He asks whether he will ever reach a

point in time such that with high probability, all subsequent estimates will

fall within c of p. That is, he wonders for prescribed 5> 0 whether there

exisis an integer N such that

Pfrvrgic 14) pl el 1 5.

The weak law of large numbers says only that

P{ig(n) pi 5. f} 1 as n oo

and hence does not answer his question. It is only by the strong law of

large numbers that the existence of such an N is indeed guaranteed."

3.3 Convergence in Manifest Probability

Perhaps it may seem confusing to some readers to simultaneously have 0 fixed

at 00 and have 0 be a random variable governed by II(0), as is the case in Theorems

3.1 and 3.2. Thus some sort of clarification seems needed. The idea that leads to the

adoption of the notation 00 is the following: For any given response vector

( X1, .. , Xn ) = ( xi, . . . ,

if it comes from a randomly selected examinee we can always assume that he or she

has specific ability , say 00. However, in most cases 00 is unknown but hypothetically

specified. Under this assumption, the distribution of Xi, , Xn is induced by Oo.

On the other hand, the given xi, ... can also be interpreted just as a pattern.

17



Our interest is to know the proportion of examinees in the population who would

produce response vector xl, , sn. Denote this proportion number as

Pf( X11...1X)= (s11...Isn))

and call ;t the manifest probability. It is clearly that

PI( , Xn) = ( , sn)} 0

and

(27)

E= so} = 1.
ri,..,x.

Since we know the prior density II(0), (27) can be obtained by integrating the joint

probability with respect to 0, that is

11( Xl, , Xn) = ( xe, ... sn)) = Pn( Xi, , xn10)11(0)a.
Jo

According to Theorem 3.1,

in+06.
11(0I , Xn)d0 ) 4)(a) (I)(b) (28)

in probability Peo. It is very interesting to notice that the right hand side of (28) is

free of 00, which suggests that we can further prove that the convergence is "free of

00". Sifice (28) holds for "every" 00, intuitively speaking, it should be true that (28)

holds under the "average of 00s". Therefore, we ought to be able to substitute the

manifest probability P for Peo:

Theorem 3.3 Suppose that conditions (A1) through (A5) hold. Let ön be defined by

(3) or (4), and ern be the square root of {I(n)(en)}-1. Then, for oo < a < b < oo,

the posterior probability of en + abn < 0 < en + Urn, namely

J.
nnoi Xn)d0,

en+airn

tends to

(270-1/2 b CP1 2

du
a

18



in manifest probability P.

Summarizing the last few paragraphs, Theorem 3.1 implies that the asymptotic

posterior normality holds for any randomly chosen examinee with ability 00. On

the other hand, Theorem 3.3 ensures that this asymptotic property holds for any

randomly sampled examinee from the population. In other words, one is sampled from

the subpopulation and the other is sampled from the whole population. Therefore,

Theorem 3.3 has more general meaning. (The original idea of Theorem 3.3 was

proposed by Brian Junker in personal conversation with one of the authors.)

4 Conclusions

The asymptotic posterior normality of latent variable distributions has been es-

tablished under very general and appropriate hypotheses. This result has (at least)

two important implications. First, it provides a probabilistic basis for assessing ability

estimation accuracy in the long test case. Second, it provides an important first step

in making rigorous the Dutch Identity conjecture (Holland, 1990), which, roughly

speaking, claims that only 2 parameters per item are required in order to obtain good

long test model fit for unidimensional test data.

Further, the consistency of MLE of 0 has been discussed. It is very interesting

to mention that our proof of the consistency of the On is very similar to the Wald's

proof(1949) for the X1, , Xn i.i.d. case. It is worth remarking that the general

I RT model (that is, non identically distributed responses) yields as powerful asymp-

totic results as the i.i.d. model the favorite model of most statisticians, which has

so many good qualities.

19
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Finally we should indicate that for general multidimensional IRT models the

asymptotic posterior normality can be proved for the random vector 0 given test

response X1, ... , Xn, under suitable regularity conditions.
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Ap7endix: Proofs of Main Theorems
In this appendix we will prove the results introduced in Section 3.

A The Proof of Convergence in Probability

The proof of Theorem 3.1 is based on Lemma 3.1, Lemma 3.2, and Corollary

3.1. Before going to the proofs , two important theorems, from real analysis and

probability theory respectively, should be introduced here:

Theorem A.1 (Heine-Borel covering theorem) (Billingsley, p566)

If [a,b] c nr...1(ak,bk), then [a,bJ c n7,3 (ak, bk) for some n.

Remark: Equivalent to the above theorem is the assertion that a bounded, closed set

is compact2.

Theorem A.2 (Strong law of large number (Serfling, p27))

Let X11 X21... be independent with means pi, p2, ...and variances erl2 , a.22 ,.... If the

series Eitl al/ j2 converges, then

n-i E X; n-i -4 o with probability one.
J=1 2=1

Proof of Lemma 3.1:

Remark The proof of Lemma 3.1 is an improvement over Walker's result, which only

covers the i.i.d. case. The strategy used in the proof can be described by two steps:

(a) to prove, for any 0, 00, there exists 6; > 0 such that

lim Poo{ sup n-1[4(0) Ln(00)] < c1(b,)} = 1.
nioo

We put the subscript i here because we only need finite number of such Ois.

2A set C is defined to be compact if each cover of it by open sets has a finite subcover that is,

if [Go :0 Ee] covers C and each Go is open, then some finite subcollection {Ge...,Ge.}covers C.
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(b) to use Theorem A.1 to cover {10 - 001> n C , where C i a compact set, by a

finite number of open sets 10 - Od < bi, i=1,..,m.

For any 0 0 00, recalling from (7), the definition of Z1(0), and (9), it follows that.

72-1[Ln(0) - Ln(00)] = Z3(0). (29)
3=1

Now, from (7),

; 1 - ;
441(0) = P;(00) log{

P(0)groi) + [1 - P3(00)] log{
P(0)
3(00)}.

(30)

In order to apply Theorem A.2 to {Z3(0)}, we need to estimate var(Z3(0)). Writ-

ing Z3(0) using logit function (see (6)),

Z3(0) = X3[A3(0) A3(0o)j + log{ 1 P3(0)

it follows that

var(Z3(0)) = var(X3)[A3(0) - MOO?

= P3(00)(1 P3(00))[A3(0) MOO?.

Since, for any fixed 0, A3(0) is bounded in absolute value uniformly in j (assumption

(A3)), this implies that there exists a constant 0 < M(0) < oo such that

Ivar(Z3(0))I 5 M(0) for all j,

and hence
var(Z;(0))

< oo.

Thus we can use the law of large numbers to get

n'' E Z3(0) - E0,,Z;(0) 0 wp1 .

i=1 j=i

From (29), (32) and assumption (A3) it follows that

P{ lirroion-1[L(0) Li,(00)] < -c(0) < 0) = 1

22
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for some c(0) > 0.

Suppose No is the closed interval assumed in condition (A2). For any fixed 0' E

No C.: 0 and for any 0 satisfying 10 0'1 < 6, define II3(0' ,0) by the following:

P;(0) , 1 133(0) ,

113(0' ,0) = I pi(0,)1 Ilog pivol.

Since P3(0) is strictly increasing in 0, P3(0') = 1 and P3(0') = 0 can be ruled out.

113(0' ,0), as a continuous function of 0, will achieve a maximum value over [0' 6, 0' +

6J. Denote this maximum value as A(5, 0'), that is, there exists 0(0' '6) E [0' a 5 , +6]

such that

A(i5, ) = 11;(0(°%j'6) , ) = max {H ;(0', 0)) .

10-evo

Clearly, for each j

lim 113(5,0') = 0.
6-0

Now we have

I
1oglc,(0)x2 [1 133(e)]l-xJ) logu33(0)x,[l

Xilopgjy-377HIP)30)}

I logliTi7( }I+11

= 113(0' ,0)

Xi) log{
1 P;(0)
1 P;(0')

1 P;(0)
1 P;(0')

(34)

(35)

(36)

We shall now prove that {P3(0)} is equicontinuous3. From (A2), P;(0) is continuous

and bounded in absolute value uniformly in j and in 0 E No. By the mean value

theorem,

IPJ(0) P.i(0)1 = IP;()(0 0')I (PIO O'I for all ..11 (37)

'A function P defined on (oo, oo) is said to be equicontinuous if, given c > 0, there exists a

number 6 > 0 such that Ix' x" I < 6 implies IP(z') P (x" )1 < e for all x', x".

23



where (3 is a point between 0 and 0' for each j, and Cp =sup3lIP;(0I1 which is finite.

Let b = CF. for > 0, then

if le < IP3(9) P;(9' )I < f or all j.

Recall that 0' here is any fixed point in No. Note that

A(c5, ) < max {I log P3(9) I) + max {I log 1 133(0) I} .

ece' +.5] P3(0') ece' -610' +6] 1 P3(0')

Since P3(0) is strictly increasing in 0 ,

P (0' + 6)?AO'
O) < rnax {I log og (0'13; )

max Illog -FT!! Pm')eEte' 4-6] J k

and

P3' + 45 )
max {I log

1 P3(0
,

(0)
I) < max{I log

1 P3' 45)

Ilog
1 (0

OE[O' -6,e' +6] 1 P;(0 ) 1 P1(0') 1 P;(0 )

Therefore,

n
Ina, Pi(0' ,n-1 n 1ng PAO' + 15)rt-1 4,(5,o) < --0 - Pi(Ot)

j=1 Jr

n 1 P;(0' b) tz 1 P;(0' + b)
E I log n og I.
J=1

From the equicontinuity of {P3(0)}, for arbitrary > 0, there exist a sufficiently small

b > 0 such that

P;(0' + ) 1 P.(0' + b')
I log I <

4
and 'log <

Pi(0') 1 P;(0 )

where either b' = b or b. Thus, for all n and for all 6 sufficiently small

n

n-1 E (b, 0' ) < c.
J=1

Therefore
n

lirn n-1 E H,(b,e ) = 0 a 6 0.

3=1

24
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We shall now prove that for any 0; 0 00, there exists a sufficiently smz'l 5; > 0

and sufficiently small ci > 0 such that

lirn P{ sup 72-1[L(0) Ln(00)] < ci} =1. (39)
11-4c° 10-021<51

For 0 E {0 : 0 Oil < b}, according to (29),(7), and (36),

n-1[L(0) n(00]

So we have

= n1[Ln(01) Ln(001 n-1[Ln(0) Ln(01)]

< n-1[Ln(01) Ln(00)] 71-1 ii;0700.
J=1

Sllp 7171[Ln(0) LON] n-1[Ln(0i) Ln(0o)] n-1 E
IOOd<6 3=1

Substituting 0; for 0 in (33), we will have

Pf1irrcion1L,(01) Ln(00)) < --COO E = 11

where ei is positive for all i, and from (38) we will have for all i

hill 72-1 Ao, to -4 0 as b 0.
n-400

.7 =I

(40)

So there is an open interval 10 0,1 < 45, and a positive number c, e.g. c.; = f2L, such

that (39) holds.

Recall that in assumption (Al) 0 can be defined by two different dornins. In the

following, we will discuss these two cases respectively.

Case 1: If 0 is a bounded closed subset of (oo, oo), then 0 {0 :10 Ool < 61 is

compact, according to Theorem A.1 it can be covered by finitely many, say m,

such open intervals

(01 b17 01 + fit )7 (02 62102 + 052)7 (Om bm,Om+ bm).
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Define event AN by

A(in) = { sup n1L(0) Ln(Oo)] <
10-0,10,

From P{A!n)} 0 1 for each i as n 4 oo, we have

P{nr_lA} 0 1.

Now we replace cj in (39) with

k(6) = min{ci,c2c.}.

Therefore, (39) holding for all i implies (24).

Case 2: If 0 is not bounded, such as 0 = (oo,00), we will show

(41)

lim P{ sup n-Vn(0) Ln(00)]< < 0} = 1 (42)
n-*co

for a sufficiently large positive number A. Now

0 {0 :10 001 < 6} fl {0 : 101 > A}

is bounded compact set, so finally we can get (24) from (42) by defining

k(6) = min{ci, c2, ...., ca).

To complete the proof, we have to prove that (42) is correct. Let 10,0,1 = A, rewrite

suP n-l[Ln(0) Ln(00)] = n-1 [L n(0 ) Ln(00)] + sup n-1[Ln(0) Ln(0,)], (43)
161>a I91>a

where

1 P;(0) +10 1 P;(0)
-7-[Ln(0) Ln(0,0,)]

n 1);(0a) n " g

Since X, = 0 or 1, and P2(0) is strictly increasing in 0, then for 0 > A,

n P;(0)
sup n'[Ln(0) Ln(0 a)] 5. sup n-1 E log
PI> 0> 3=1 Pi(A)1

26
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and for 0 < -A,
.L.,1 (0)1 - Pi

sup n-I[Ln(9) - Ln(0a)j 5_ sup n 2_, log , pj(A).
iel>4° 0<-40 j=1

Since each item response function has horizontal asymptotes as 0 -Foo and 0 -

-oo, we can prove that

lirn sup n-1 E log Pj (0) 0
n.00 0>a j=1 P.0(60)

and
1 P3(0)

lirn sup r/-1 E log -0 0
3=1 1 -

as A -0 oo. Therefore we have

lirn sup n-I[Ln(0) - Ln(0p)i 0 0 as A oo. (44)
n``c4) lei>40

Substituting Op for 0 in (33), we have

Pflinolon' [Ln(OL, ) - Ln(00)) < --Cp} = 1. (45)

Formulas (44) and (45) can be used to (43) to get (42). Therefore (42) holds.

Proof of Corollary 3.1: The MLE, if it exists, obviously satisfies

Pn( X1,.
Ln(On) - Ln(00) = log{

Pn( X1, Xn(00)1
(46)

for all n and for all , Xn. It is sufficient to prove that for any e > 0 and 45 > 0,

there exists N(e,45) such that

Prob{lOn 001 < 45) > 1 - c for all n > N(f,(5).

Suppose 14 is not consistent, then there exist co and bo such that, for any N there

exists some n > N,

Probl 601> 6} > co.
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Therefore we can obtain a subsequence {0} such that

Thus,

Prob{ len, 0o1> 5o} > fo for all ni. (47)

< lim Prob{Ik Ool > bo} Prnb{ lirn [1en 001 >n-oo n-000

It is obvious that the event

M-111 [I'On 001 > 50]

implies that for infinitely many n

sup [Ln(0) Ln(On)] 0 for infinitely many n,
le-eol>6o

because 0 = On 1S a possible value. But then according to (46) the event

sup [Ln(0) - n(0 0] 0 for infinitely many n
le-eol>6o

has a probability greater than or equal to fo. This contradicts (24), which implies

that for any > 0, there exists N such that

Prob{ sup [Ln(0) Ln(0o)] < for all n > N.
10-001>6o

This completes the proof.

Proof of Lemma 3.2: Without loss of generality, we first consider that On E

[10 Ool < 6] C No. Since the on is consistent, the probability of on being con-

tained in the neighborhood of Oo will be close to one, when n is sufficiently large.

The second derivative of the log likelihood function can be written as

L:(0) = E A;(0)[X3 - P3(0)] - /j(0). (48)
3=1 3=1
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To prove (48), first notice that it suffices to prove for n=1, dal is

4(0) = A';(0)[X1 P1(0)] /1(0).

Note that

L1(0) = A'(0),Y1 + log(1 P1(0)),

so that

1:1' (0) = A';(0)X1 + [log(1 AM)J".

Comparing this with (49) it remains to show that

[log(1 PON" = As; (0)P1(0) + 11(0).

However by definition,

/1(0) = E00[ L; (0)J = A' (0)P1(0) [log(1 NOM" ,

which is equivalent to (50).

(49)

(50)

Consider the numerator of IRni :

IL:(0:) + I(n)(in)I = I t[A;(0:) A; (00)][X.; PA)] 4- t A;(0o)[X P3(00)]
J=1 i=i
n

+ E ),;(00[Pi(eo) PA)] + imen) Ii(0)} I
3=1 j=1

< It 1,V;(0) A;(001
J-:1

+ 1E A; (00)[xi Pi(00A1

+ 1E A;(00)[Pi(00) Pice:Ai
J=1

+ t uon) /i(0:)I.
3=1
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Note that 0: depends on 0 and On through the Taylor expansion and that the distri-

bution of On depends on 00. From (37)

A;(00)[];(00) PAM 5 10: Ooln(p. (52)

From the meal value theorem

and

IA;(0:) A;(00)I = (éem)(047: 00)I

vicon) 1.i(e:)1 = iti(tP))(on ea,
whet,: o;,A.i) is a point between 0: and 00, and OW4) is a point between on and 0.

According to assumption (A4), the third derivative of the logit function, )jm(0), and

the first derivative of the information function, 1i(0), are bounded in absolute value

uniformly in j and in 0, therefore,

A;(00)1 5 I o ooInCAI (53)
J=1

and
n

E ion) - I;(0:)1 len InCi. (54)

Note that (p, (A, and (i are finite positive numbers and they are independent of j.

We shall now prove

E );(00)[X P;(00)1I = op(n1/2). (55)
=1

(See Footnote 4.) Assumption (A4) ensures that {A;(00)} is bounded in absolute

value uniformly in j. By Chebyshev's inequality, for some M > 0,

I 3{It A; (00)[X P j(9 > n112 K E7=1[A; (00)]2 P)(00)(1 P)(00))

3=1 nK2
< MK-2,

4The notation of an = O(b) means that an is bounded stochasticly by bn in probability, that

is, a,, = O(b) if and only if for arbitrary c > 0 there exist Mc and Arc such that

Pflon/bnl < Mc) > 1 c for all n > N.
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that is, for arbitrary c > 0, take K = (M/6)1/2, then we have

n

P3(0011n1121 < K1 > 1 f for all n
J=1

that means we have (55).

Formulas (52), (53), (54), and (55) can be applied to (51) to get

+ /(n)(ön)1 5_ {10: 001+ 16 0:1}nC + Op(nh/2), (56)

where

We shall now prove

C = (p + (.> + (1.

lirn P{ /(n)(tin)/n > c/2 > 0) = 1.
n--.00

By assumption (A4)

n-11/(n)(On) I(n)(00)I 71.-It 113(k) I;(00)I
J=1

.. 1On 0o1Cr.

By using the consistency of 'On and (58), we get

IN(en)/n IN(00)In , 0 in Poo as n oo.

Thus, by assumption (A5), we have (57).

From (56) and (57) we obtain

sup IR-n(0, X11...)(01 <
10-0010

V-

(57)

(58)

1/2001+ len 0:1)nCI /-1sup + lip 1 n--7.---
1(n)(in ) l(n)(0n)

1 ( IOn 001 + len 0*1)nC
sup

10-001<8 /(n)(0)n
. fH + Op(n-112).
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Note that

1 en' 1 5. 1 00 1 + 1 On 001 and 10; 01:41510 Oot + len 001,

where the second inequality follows from the fact that On* is between 0 and in. There-

fore

(316 001 + 210 001)Csup IRn(0, X1, , X)1 sup n Op(n-1/2).
le--001<6 10--001<5

For any > 0, choose

6

(C -1

T12)

then we have (23), recalling that bn 00 in P00 and (36).

The above proof is based on the assumption that in is in the neighborhood (0o

6, 00 + 15), so we just proved that the conditional probability approaches to one:

where

and

lim P[UnWn] = 1,nco

Un { sup 1Rn(0, <
10--0010

Vn F- {ÔnE 001 < 151C No}

Since Corollary 3.1 implies

lirn P[V] =1,
n-*oo

it is obvious that (59) and (60) implies limn.c.0 P[U]

(59)

(60)

= 1. Thus we finish the proof.

Proof of Theorem 3.1:

Remark: The following proof will use a similar methodology as Walker's(1969). The

proof itself will not use any assumption gbout i.i.d.. Instead, it will just depend on
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the results of Lemma 3.1 and Lemma 3.2.

As we discussed in section 3.1, it suffices to prove (13) and (14). To prove (13) it

suffices to prove (20) and (21). Let us start with (20). Rewrite G1 as

G1 = Pn( XnIen)
18

11(0)exp{Ln(0) Ln(On)}dO
-801>6

= Pn( X11 X nib n)exp{ Ln(Oo) L n(0 n)}
10

11(0)exp{Ln(0) Ln(00)}dO.
-ool?6

Since On is an MLE,

Ln(00) L(0) < o, (61)

and therefore exP{Ln(Oo) Ln(On)} 5- 1. SO we have

{/(n)(on)}1/2 Ho) exp{Ln(e) Ln(6)}de
Pn( dY11 , lenrern I0-0016

= exp{Ln(00) H(0)expfLn(0) Ln(00)}dO
18-0016

< {I(n)(en)}1/2Gol (62)

where

Go = f IRO) exp{Ln(0) Ln(00)}dO.
18-001>6

By Lemma 3.1, for any b > 0, there exists k(b) > 0 such that

where

Define

notice that

nlia Pe0 {Un} = 1

Un = [ sup n-1[Ln(0) Ln(00)] < k(ö) < 0]. (63)
10-001>6

Vn = [Go 5_ expfnk(b)th

exp{nk(b)} H(0)dO < exp{ nk(b)}.
18-801>6
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Because Un c Vn, we have

Since

lim Poo{Go exp{nK(45)}} =1.

{I(n)(On)}112 exp{nk(b)} 0 0 in Poo,

it follows, (using (62))

Thus (20) holds.

as n 0,

urn = 0 in Peo.
Pn( X1, , Xn10) 1frn

Now we prove (21). From (15), rewrite G2 as

G2 = Pn( Xn len) 11(0)exp{Ln(0) Ln(On))c/O
10-0010

= Pn( MO) exp{ (0 i)n)2 (1 Rn)}a
19-e01<6 2&

II(0) (0 on )2
= Pn( Xl . . . Xn 0011(0o) fi 11,61 and&

e-eol<6(00)
exp{ (1 R

We shall now observe 02
Pn( xi,..nxnlen)an*

G2

Pn( Xi, , XnlOn)(5.n

(65)

MOO I1(0)

On

(0 ön)2
(1 Rn)}d0 (66)

1OOol<6 r1(0o)
exp{

From condition (Al), in particular the continuouity of 11(0), for any > 0 we can

choose b such that {0 :10 001 < 45} C No and

1 < inf II(0) < sup 11(0) < 1 + 6. (67)
10-0010 II(0o) le-eol<6 HMO

Then, using (66)

(1 6)11(00) G2 (1 + E)11(00)

ern Pn( X1, . . . , XnIOn)('n Cr"n
u3 (68)
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where

G3 = (0 On )2
exp{ (1 - Rn)}dO.

19-eol<5 21r2

For any c > 0, define

en = [ sup IRn(0, X1,...1Xn)f < f],
le-eol<6

and

(69)

(70)

Dn = [I exp{ (1 + c)}dO < G3
le-00 l<5 < 110-00 I <6 expf

(0 ö 2

(1 + c)}d0]
261

(71)

Now we should get rid of /?,n, Since Cn C Dn, and for any c > 0, from Lemma

3.2,

lim Poo{Cn} =1, this implies lirrIP.90{Dn} =1.
n-oo

That is, the probability of the event

(0 - 0,)2 (0 0,02
exp{ (1 + < G3

10-0131<6 < 4-61(6
exp{ (1 - OW (72)

2b !

converges to 1 as n oo. Therefore, recalling (17),(65),(68), and (69), the only

thing left to establish (13) is to observe that

(0 - on )2

1<6
exp{

2b
(1+ *)}dO.110-0072,

= (2701/2(1+ f*)-1/2ern[cD{Oneo On)(1 e)112)-(1){6;1(0o-b-On)(1+e)1/2}11

(73)

where c* = c or - c. Since on is consistent and er,71 -0 oo in probability, when c < 1,

00 + - on 6 in Poo,

00 - - in Poo,

in Poo,

OVA,- 6 - 60(1+ f*)112 -oo in Poo.

35

:111



So

4){&;1(003 + 05 in)(1 EI)112} 1 in P00,

0 in P90.

Therefore, the difference in the square brackets of (73) converges to unity in proba-

bility. Since the e is arbitrary, this proves (13).

Now we prove (14). First of all we consider (12) and (17) again: G and G2 are

the same except for their rigions of integration: one is (en + a&, en + bern) and the

other is{0 :10 001 < 6}. For the same e and b given by (67), if (on + a ern 1 'On + bbs )

is a subset of {0 : 10 001 < b}, we must have

11(0) [I(0)
1 f < inf T,In < sup < 1 + e. (74)

(en+aan, On+ban) Illoo) (6+alin, ia+ban)liktro)

Define

En E [On aiin bn bbn {0 10 4.)1 < 15)].

Since "On 0 00 in Poo and e'rn -- 0 in Poo. Thus,

Poo (Es) -4 1 as n ---) oo, (75)

and hence the probability of (74) converges to 1 as n oo. Consider (68) again. If

(in + (Cern, Ô, + Van) is a subset of {0 :10 001 < 05}, and if we substitute the rigions

of integration of (68) by (6,1 + afr, ön thn), then the new inequality (76) below will

still hold.

where

(1 011(0 0) (1 +

"an 3 Pn( X11...1XnIen)&11
G3,

G13 =
On+aan

exp{ (1 Rn)}d0.
in+ber
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Because of (75), the probability of the event indicated by (76) converges to 1 as

n 0 oo. For the same e given by (72) define

sup IR11(01
(in+aan, en +Urn)

and

(78)

D:, =
in+aern

(o
^n +lin a

< G; (O .6, n)2 )}d0].exp{
.16+ba

;,314.1,2,n)2(1 + eildO 5, JO exp{
en+ernb

(1
2cryi

From (75) and En C Cln C

Peo{Dn' } o 1 as n 0 oo.

Similar to (73), now we shall estimate

ion
+(Ian

hn+ban

(0 on )2
exp{ (1 + c*)}d0,

2F4,

where * = c or c. It is obvious that the quantity in (80) is equal to

(2701/2b.n(1 c.)-1/2[41,{a(1 c.)1/2} 4){b(1 e0)1/2}].

(79)

(80)

Since we can make arbitrarily small, therefore, using (76) and (77) we can finally

obtain
G

. 0 (27011211(00){(1)(a) (1)(1)))
Pn( X1, ... ,XnI0n)ein

in probability Peo.

B The Proof of Strong Convergence

The proof of Theorem 3.2 is analogous to that of Theorem 3.1 and is also based

on two lemmas and one corollary. However, these intermediate results are stronger

than those used in proving Theorem 3.1.
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Lemma B.1 Under the assumptions of Lemma 3.1, for any given 5> 0, there exists

k(ö) > 0 such that

PeollirT1 sup 72-1[L(0) Ln(Oo)] < kb)} = 1. (81)

Proof: The proof of (81) analogous to that of Lemma 3.1 except the following two

changes:

(1) replacing (39) by

Poo{ lim sup n'[Ln(0) n(00)] < Ci} = 1; (82)
nc)c) 10Os 1<6

(2) replacing (41) by

Ar) = lim sup n1Ln(0) Ln(00)] < c1).
10-0.10

Now we only need to prove (82). Since

limn'[L(O1) Ln(do)]nco

is measureable with respect to the tail a field

a(Zn(O;), Zn+1(01),

by the Kolmogorov's 0 1 law (Billingsley, p295) it must be a "nonrandom"

constant with probability 1. Denote this constant as 77. According to (40),

Peo {77 = jincion-1[Ln(01) Ln(00)] 5. c(01) < 0) = 1.

Choose
C(0 71

=
2

and choose 5 small enough such that

n

limn_'J-f)(&O1) <nco
j=1
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(see (34) for the definition off:1,(5,0i)), thus

iit-Tri sup n-1 [L,i(0) LT,(00)] lim n-1[Ln(0i) Ln(001 + lirn n-1
n-6°3 le-ed<6

n--oo n-oo

< n < COO almost surely.

n

E Ha(5,0i)
J=1

Thus (82) holds.

Corollary B.1 Lemma B.1 ensures that

Peo { rir,Pcio = 00} = 1.

Proof: Analogous to that of Wald (1949) and omitted.

Lemma B.2 Under the assumptions of Lemma 3.2, for any c > 0, there exists

such that

P90{ lim sup IRn( X11 Xn 0)1 < E} = 1. (83)
n-oo

Proof: Analogous to that of Lemma 3.2 and omitted.

Proof of Theorem 3.2: Based on Lemma BA, Lemma B.2 and Corrollary B.1. The

basic steps are analogous to those of Theorem 3.1 and omitted.

C The Proof of Convergence in Manifest Proba-

bility

Proof of Theorem 3.3: Theorem 3.1 implies that for arbitrary 0 and arbitrary

c >

PeflAn(
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as n 4 oo. Define

Hn(0,E) = Po{I An( Al? f}

h is clear that for any 0 and e > 0 that

0 < lin(0,E) <1 and lirn Hn(0,E) = 0.n-*3

By Lebesgue's bounded convergence theorem (Billingsley, p214),

Hn(0,011(0)dO 0.

That is,

P{1,411( X11...1Xn) Al> e}

This proves Theorem 3.3.

J. P{lAn( Al CIO}11(0)dO

= LH(0,011(0)dO 0.
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