```
AUTHOR Roth, Jeffrey; Crans, Gerald S.; Carter, Randy L.; Ariet,
    Mario; Resnick, Michael B.
TITLE Effect of High School Course-taking and Grades on Passing a
    College Placement Test.
PUB DATE 1999-04-00
NOTE
PUB TYPE
EDRS PRICE
DESCRIPTORS
IDENTIFIERS
Roth, Jeffrey; Crans, Gerald S.; Carter, Randy L.; Ariet, Mario; Resnick, Michael B.
TITLE Effect of High School Course-taking and Grades on Passing a College Placement Test.
1999-04-00
39p.; Paper presented at the Annual Meeting of the American Educational Research Association (Montreal, Quebec, Canada, April 19-23, 1999).
Reports - Research (143) -- Speeches/Meeting Papers (150)
MF01/PC02 Plus Postage.
Academic Achievement; *Community Colleges; *Computer Assisted Testing; High School Students; High Schools; *Performance Factors; *Predictor Variables; *Standardized Tests; *Student Characteristics; Student Evaluation; Student Placement; Two Year Colleges Florida
```

ABSTRACT
This study examined the effects of high school course choices, grades, and Grade Ten Assessment Test scores (GTAT) in math and reading, along with race and gender, on student performance on a computerized placement test (CPT) administered upon entry to community colleges in Florida. The sample consisted of 19,736 African-American, white, and Hispanic high school graduates, who graduated in the spring of 1994 , and took the CPT in the fall. A High School Performance (HSP) variable for math and English was constructed from the number of English and math courses taken, the difficulty level of the courses, and the grades achieved. Student scores on the three subsets of the CPT, in math, reading, and writing, composed the outcome variables. Results include the following: (1) Math HSP had a larger positive effect on passing the Math CPT than did high school GPA or scores on the GTAT; (2) GTAT scores had the largest effect on the Reading and Writing CPT scores, and the magnitude of English HSP and GPA was about equal; (3) Blacks, Hispanics, and women had significantly lower odds of passing the Math and Reading CPT than Whites and males; and (4) Whites and women demonstrated higher passing rates on the Reading CPT. Appended are HSP scenario examples and two graphs illustrating Math CPT scores for entering community college students. (Contains 13 references, 7 tables and 3 figures.) (CAK)

```
********************************************************************************
*
Reproductions supplied by EDRS are the best that can be made

\section*{Running Head: HIGH SCHOOL COURSE-TAKING}

Effect of High School Course-taking and Grades on Passing a College Placement Test

\author{
Jeffrey Roth
}

Gerald G. Crans

\section*{Randy L. Carter}

\section*{Mario Ariet}

\section*{Michael B. Resnick}

University of Florida
```

PERMISSION TO REPRODUCE AND DISSEMINATE THIS MATERIAL HAS BEEN GRANTED BY
J. Roth
TO THE EDUCATIONAL RESOURCES
0

```

Paper presented at the meeting of the American Educational Research Association

Montreal, Quebec
April 22, 1999
Word Count: 3942
BEST COPY AVAILABLE

\begin{abstract}
Transcripts of 19,736 students who consecutively attended Florida high schools for four years and graduated in the spring of 1994 were analyzed to determine how course choice, grades, tenth grade standardized test score results, race, and gender affected performance on a computerized placement test (CPT) administered upon entry to community college in the fall of 1994. A High School Performance (HSP) variable for math and English was constructed to account for differences in number of courses completed, degree of course difficulty, and course grade. Math and English HSP, 4-year cumulative grade point average (GPA), percentile rank on Grade Ten Assessment Test (GTAT) in math and reading, race and gender all had significant effects on the probability of passing the CPT. Math HSP had a larger positive effect on passing the Math CPT than GPA or GTAT. This was not the case for the Reading or Writing CPT subtests where GTAT had the larger effect and the magnitude of English HSP and GPA was about equal. Students can raise the probability of passing the Math CPT if they take more difficult math courses in high school, even at the expense of lowering their GPA.
\end{abstract}
[Word count 193]

\section*{Introduction}

The unpreparedness of recent high school graduates to do college-level work, as measured by high failure rates on placement tests given on entry to community college, has aroused the ire of many state legislators who are increasingly reluctant to allocate funds for remediation classes of any kind (Ignash, 1997). Critics of public education frequently interpret these high failure rates and the subsequent proliferation of post-secondary "developmental education" courses as further evidence that secondary school curricula and standards have become unacceptably diluted. A recent report by the National Center for Education Statistics estimated that \(68 \%\) of 1992 high school graduates who enrolled in public 2-year institutions were not academically prepared (Berkner and Chavez, 1997). In Florida, \(64 \%\) of the 1994-95 cohort of degree-seeking students who enrolled in the state's 28 community colleges through a policy of open-door admissions failed to pass all three sections (math, reading, and writing) of the computerized placement test (CPT). More than two years later (at the end of summer, 1996-97), \(50 \%\) of the students who had been directed into remedial "college preparation" courses still had not successfully completed them (Florida State Board of Community Colleges, 1998). National longitudinal data show that at the end of five years, only \(30 \%\) of community college students complete the associate degree (Cuccaro-Alamin, 1997)

This low completion rate has fueled critics' charges that unprepared high school students are not being effectively remediated in community college. They point out that the entry-level tests like the CPT benchmark the capacity to do first-year college work with acceptable performance on math, reading, and writing subtests set at the tenth grade level. In response, community college officials claim it is not feasible to correct major academic deficiencies within the time frame of one-semester developmental courses.

State departments of education have responded in several ways to make students and districts more accountable for the high percentage of high school graduates requiring postsecondary remediation courses. One strategy has been to raise the minimum GPA necessary to graduate high school. In Florida the minimum GPA necessary for earning the diploma has been raised from 1.5 to 2.0. Another policy change has been to increase the number of courses necessary to graduate. Florida now stipulates a minimum of 24 credits be accumulated before a high school diploma is issued, up from 20 credits 10 years ago. At the exit end of the pipeline, community college students are required to pass the CPT or complete their remediation courses before they can be awarded the two-year associate degree.

The explanation most commonly given by community college officials for the high failure rate on the CPT is that students' course-taking choices in high school did not equip them with the skills needed to do college-level work. For example, students who did not take Algebra 1 would not be able pass the math subtest of the CPT, even if they correctly answered all remaining items that did not require algebraic reasoning. Similarly, students selecting English courses in which regular testing of reading comprehension and writing mechanics was not part of the instructors' assessment scheme would most likely score below the cutpoints indicative of competency on the Reading and Writing CPT subtests.

This study analyzes the results of the CPT taken by students who graduated from Florida public high schools in 1994. To understand the extent of students' unpreparedness and what might be done about it, the course-taking patterns and achievement of recent high school graduates in Florida were explored in depth.

High school course-taking patterns have been the subject of a growing number studies over the last decade. The High School Transcript Study data set which is part of the 1994

National Assessment of Education Progress has been analyzed by several researchers (e.g., Lee, Croninger \& Smith, 1997; Chaney, Burgdorf, \& Atash, 1997) while others have confined themselves to students within a single school district (e.g., Guskey, 1997). These studies routinely use some marker of school wealth (e.g., percent of students participating in subsidized lunch program) to control for differences in students' achievement that may be due to differences in facilities and resources. However, placement procedures and course offerings are known to vary even in schools serving similar socioeconomic populations (Spade, Columba, \& Vanfossen, 1997).

The analysis in the present paper focuses on student-level variables and does not include such school- and district-level characteristics as enrollment size, curriculum tracking policies, minority concentration, or urbanicity (Finn, 1998). Such contextual factors no doubt influence the probability of students enrolling in the kinds of challenging courses that would equip them to do well on a college placement test (Smittle, 1995). However, this study investigated the probability of passing a community college entrance exam using only those variables most directly influential and predictive of outcome, namely the individual student variables of gender and ethnicity, course-taking, course load, and grades in math and English, overall GPA, and tenth grade standardized test score results in math and reading.

\section*{Method}

\section*{Sample}

Table 1 supplies information on the number of 1994 Florida high school graduates who enrolled in community college in the fall of 1994 and took the CPT, and the percent who passed the entry level test. The sample was restricted to students who had consecutively attended a Florida high school during the preceding four years and were in their appropriate grade level, i.e.,
first year 1990-91, second year 1991-92, third year 1992-93, and fourth year 1993-94. This restriction was imposed to eliminate contamination of the sample by students who were retained in grade or who had incomplete records because they had attended high school in other states. The total number of students who received a standard high school diploma in 1994 was 91,489 , with 81,495 having attended for four consecutive years. Of those, nearly 20,000 enrolled in a Florida community college in the fall of the same year.

Two exclusion criteria were used when constructing the study sample. The first is that only students of Black, White, and Hispanic ethnicity were studied. This criterion was set because the number of students in other ethnic categories was too low to perform statistical tests. The second criterion pertained to cumulative GPA. The Florida Department of Education requires that students have a minimum cumulative GPA of 1.5 in order to graduate; thus only those students whose cumulative high school GPA was at least 1.5 were included in this study.

\section*{Measures}

Students' scores on the three subtests of the CPT served as the study's outcome variable. Definitions of outcome (response) and predictor variables are given in Table 2. The Math and English HSP variables deserve elaboration. They were constructed to serve as an index measuring students' degree of academic accomplishment. The variables combine number of math or English courses taken, the courses' difficulty level, and grades achieved. Appendix A contains eight scenarios which illustrate how variations in course load, course difficulty, and course performance produce different values for Math and English HSP. The GTAT consisted of subtests in reading comprehension and mathematics. The reading section sampled both textbook and everyday literacy. The math section covered computational, algebraic, geometric, and statistical concepts and problem-solving.

\section*{Data}

Four separate statewide data sets maintained by the Florida Department of Education were merged for use in this study. A brief description of each data set is given in Table 3.

Details of data merging strategy. The final sample used for the analysis was formed by merging the four data sets described in Table 3. First, the CC data set was merged to the DOE data set by social security number and Florida student ID number, with a 99.9 percent match rate. Next, the data set resulting from the first merge was merged to the HS Transcript data set, with a 99 percent match rate. For the final merge to the GTAT data set, only those students who had attended a Florida high school for all four years were considered. This restriction was set for two reasons. First, it was necessary to ensure that each student was fairly represented with respect to HSP. Second, since the GTAT was administered in February 1992, students who left the Florida school system before their senior year would not be able to be matched. Clearly this attrition should not be represented as a problem with the merge rate, but simply that the student was no longer in the Florida school system and was not available to be matched. Therefore, before merging the GTAT data set to the previous data set (that resulting from the merge of the DOE, CC, and HS Transcript data sets), the previous data set was reduced to those students who were in Florida public high schools for four consecutive years prior to graduating in 1994. This resulting data set was merged to the statewide GTAT data set, and there was a 100 percent match rate.

\section*{Statistical Methods}

The response variable CPT result was modeled as a function of race, gender, GPA, GTAT, and the HSP variable appropriate for the subtest being analyzed. The variable was analyzed for each of the three CPT subtests—Math, Reading, and Writing. Since CPT result is a
dichotomous variable having the values Pass/Fail, it was appropriate to perform logistic regression analyses.

The effects of the qualitative variables of gender and ethnicity were measured using adjusted odds ratios. The estimates of these odds ratios and their respective confidence intervals were calculated using the parameter estimates and covariance matrix of the model.

The effects of the continuous variables GPA, GTAT, and Math and English HSP were measured as follows. For each of these variables, a low and high setting was determined as the 1st and 3rd quartiles respectively, for each gender and ethnicity subgroup. Henceforth, in this paper, the terms low and high refer to the group-specific 25 th and 75 th percentile values. Thus, the effect of a given factor for fixed levels of the other two factors was the difference in the estimated probability of passing the CPT as the given factor goes from its low to high level. There were four possible levels at which the other factors could be fixed, namely, all possible cross-classifications of low and high for each respective factor. All estimated probability calculations were determined from the model-based estimates.

These analyses were conducted using the LOGISTIC procedure of the Statistical Analysis System's software package. A backward selection stepwise method was employed starting from a model with all main effects and first order interactions. The significance level for deletion from the model was set at 0.05 . Because standardized beta weights are scale-independent estimates of population parameters, they were used to make direct comparisons of effects among the continuous variables.

\section*{Results}

\section*{Descriptive Statistics}

Table 4 gives the percent pass rates, GPA, GTAT scores, and Math and English HSP values for the major cross-classifications of race and gender. Black and Hispanic students scored lower than Whites on both the GTAT and CPT, and males scored lower than females (with the exception of Math GTAT). The percentage of students passing the Math CPT appeared to be more related to Math GTAT and Math HSP than to GPA. Similarly but less emphatically, the percent of students passing the Reading CPT appeared to be more related to Reading GTAT than to English HSP or GPA. To verify the apparent relationships in Table 4, the data were formally analyzed with inferential statistical techniques to model CPT score as a function of HSP, GTAT, GPA, and two qualitative variables, race and gender.

\section*{CPT Math Subtest}

Significant effects of race ( \(p=.0013\) for Hispanics and \(p=.0001\) for Blacks), gender ( \(p=\) \(.0107)\), GTAT \((\mathrm{p}=.0001)\), Math \(\operatorname{HSP}(\mathrm{p}=.0001)\), and GPA \((\mathrm{p}=.0001)\) were observed for the CPT Math subtest. A GPA-by-Math HSP interaction was also significant ( \(\mathrm{p}=.0394\) ).

Table 5 presents the standardized model parameter estimates (beta weights) for all CPT subtests. The Math column indicates that the effect of Math HSP was considerably higher than that of GPA or Math GTAT ( 2.32 vs. 0.159 for GPA and 0.465 for GTAT). Table 6 provides the adjusted odds ratios for the qualitative risk factors on all three CPT subtests. The estimates indicate that Blacks and Hispanics had significantly lower odds of passing the Math CPT than Whites and that males had significantly higher odds of passing than females.

Table 7 presents comparisons of the effects of GTAT, GPA, and Math HSP based on the difference in estimated probability of passing the Math CPT as a given factor goes from its low
to high level, for fixed levels of the other two (e.g., fixing GPA and GTAT as Math HSP goes from low to high). The maximum and average difference between high and low pass rate probabilities are reported for each gender-by-ethnicity combination. To illustrate, consider the first row, Black females: The value .035 in the Maximum Difference GPA column (i.e., \(31 / 2 \%\) ) is the most that the Math CPT pass rate probability improves as GPA moves from low to high and GTAT and Math HSP vary over their possible values (i.e., low-low, low-high, high-low, and high-high). The next column value .25 is the maximum difference that Math CPT pass rate probability improves.(i.e., \(25 \%\) ) as GTAT moves from low to high and GPA and Math HSP vary. The key finding in Table 7 is that the effect of Math HSP, considered either at maximum or average difference, was consistently higher than either GPA or GTAT across all race-bygender combinations. This finding indicates an increase in Math HSP had a greater positive effect on their probability of passing the Math CPT than similar increases in either GPA or GTAT scores.

Figure 1 graphically represents the estimated probability of passing the Math CPT across combinations of students with high and low GPAs and GTATs. For all six race-by-gender groups, an increase in Math HSP dramatically increased the probability of passing the test. In fact, any student, regardless of race or gender, who achieved a value of 15 on Math HSP was virtually assured of passing the CPT.

\section*{CPT Reading Subtest}

Significant race ( \(p=.0001\) for Blacks and Hispanics), gender ( \(p=.0001\) ), GTAT ( \(p=\) \(.0001)\), English \(\operatorname{HSP}(\underline{p}=.0001)\), and GPA \((\underline{p}=.0001)\) effects were observed. Also, the standardized model parameter estimates given in Table 5 clearly indicate that GTAT reading score (.692) was greater than GPA (.076) and English HSP (.195). The odds ratios given in

Table 6 indicate that Blacks and Hispanics had significantly lower odds of passing the Reading CPT than Whites and that males had significantly higher odds of passing the Reading CPT than females.

The effects of the English HSP variable, GTAT score, and GPA can be seen in Table 7. Unlike the Math CPT, where the Math performance variable had the greatest impact on passing, Reading CPT success was primarily dependent on GTAT score. An increase in Reading GTAT. score had a greater positive effect on the probability of passing the Reading CPT than similar increases in cumulative high school GPA or English HSP.

Figure 2 illustrates the estimated probability of passing the Reading CPT across combinations of high and low GPA and GTAT. The curves plotted for English HSP were noticeably different than those plotted for Math HSP in Figure 1: (a) the probability of passing the Reading CPT was considerably less steep as students raise their English HSP; (b) High GTAT was clearly associated with higher pass rates than low GTAT; and (c) the pass rates for Whites was considerably higher that those of Blacks and Hispanics.

\section*{CPT Writing Subtest}

Significant race \((\underline{p}=.0001\) for Blacks and \(p=.0320\) for Hispanics \()\), GTAT \((p=.0001)\), English HSP \((\underline{p}=.0001)\), and GPA \((\underline{p}=.0224)\) effects were observed. Also, the standardized model parameter estimates given in Table 5 clearly indicate that GTAT reading score (.626) was greater than GPA (.038) and English HSP (.291). The odds ratios given in Table 6 indicate that Blacks and Hispanics had significantly lower odds of passing the Writing CPT than Whites.

The effects of the English HSP variable, GTAT score, and GPA can be seen in Table 7. Similar to the Reading CPT, success on the Writing CPT was primarily dependent on GTAT score. An increase in Reading GTAT had a greater positive effect on the probability of passing
the Writing CPT than similar increases in cumulative high school GPA or English HSP.
Figure 3 illustrates the estimated probability of passing the Writing CPT across combinations of high and low GPA and GTAT. The curves plotted for English HSP for this subtest was similar to those for the Reading CPT. A major difference was that females of all three races consistently demonstrated higher pass rates than males.

\section*{Summary}

The Math HSP variable had a larger positive effect on passing the CPT than the English HSP variable. Indeed, the graphs of the estimated CPT pass probabilities clearly showed that an increase in Math HSP had a dramatic effect on the estimated probability of passing the Math CPT. Math HSP had a larger effect on passing the CPT Math than either GPA or Math GTAT. Although the English HSP variable had a positive effect on the estimated probabilities of passing both the Reading and Writing CPT, it was not nearly as influential as the Math HSP variable. For the Reading and Writing CPT, Reading GTAT score was the dominant predictor of success or failure.

\section*{Discussion}

Previous research has consistently shown that students who take more difficult courses in high school score higher on standardized achievement tests administered in high school (e.g., Lee, Burkam, Chow-Hoy, Smerdon \& Geverdt; 1998; Rock \& Pollack, 1998; Spade, Columba, \& Vanfossen, 1997). None of these earlier studies, however, explored the connection between high school course-taking and performance on the College Board's CPT, an entry-level test which community colleges routinely use to determine readiness to do postsecondary academic work.

Taking more higher-level math courses in high school has long been known to be an
accurate predictor of scoring well on aptitude tests commonly required for admission into fouryear baccalaureate institutions (Noble \& McNabb, 1989). That association also holds true for community college students. Appendix B contains a graph contrasting the Math CPT pass rates of students who completed Algebra 1 versus students who completed Algebra 2. The graph illustrates that even though only \(49 \%\) of the students who enrolled in Florida community college in the fall of 1994 had taken Algebra 2 in high school, those who did far exceeded the average Math CPT pass rate of \(50 \%\) achieved that year by all test takers. Even students who did very poorly in Algebra 2 (receiving a grade of D ) achieved a pass rate of nearly \(75 \%\). This finding supports the increasingly mandated curriculum requirement that all students complete at least one year of algebra, and suggests that phasing in Algebra 2 as a requirement for high school graduation may be warranted. Even if the resultant knowledge is shaky, course exposure itself seems to assist students in passing the math portion of a college placement test.

The finding that Math HSP had a larger effect than GPA on the probability of passing the Math CPT suggests that taking more challenging math courses, even at the risk of lowering GPA, would benefit most students. This finding has important implications for counselors and parents advising students planning to pursue postsecondary education. Students with average grades who take challenging courses would be better prepared to do college level work than students who achieve high grades through taking undemanding courses. The first group of students would more likely not need placement in non-credit, remedial math classes when they matriculate to postsecondary education.

The finding that tenth grade scores on a standardized test (the GTAT) is the strongest predictor of success in passing the Reading and Writing portions of the CPT holds out promise that such a test can serve to detect college unpreparedness early, alerting students, parents, and
counselors that closer monitoring of course selection and grades is needed. The diagnostic power of the test is evident in the graphs where a ranking in the \(25^{\text {th }}\) percentile (low GTAT) indicates almost no chance of passing the CPT whereas a ranking in the \(75^{\text {th }}\) percentile (high GTAT) virtually guarantees passing the CPT. Tracking tenth grade standardized test scores and math and English performance constitute a short-term, feasible strategy that school officials can implement to increase the readiness of students to do college-level work.

One troubling finding did emerge from this study. As Figures 2 and 3 indicated, Blacks and Hispanics did not pass the Reading and Writing CPT at the same rates as Whites, even when controlling for English HSP, GTAT and GPA. The finding implies that minority students at the same level of accomplishment as White students experienced more difficulty acquiring and demonstrating mastery in their high school English courses. This discrepancy was emphatically not the case for students passing the Math CPT where, for a given level of accomplishment, no race effect was noted.

What inference may be drawn from this finding? Curriculum specialists have consistently distinguished mathematics as the academic subject matter most sensitive to school instruction, in contrast to the language arts of reading and writing which are substantially influenced by and amenable to out-of-school experiences. Moreover, the internally structured and cumulative nature of mathematics lends itself to being taught outside the cultural parameters that mark the study of language and literature. The study finding suggests that minority students seem to encounter some sort of disadvantage in high school English classes; in mathematics, students at the same level of accomplishment, regardless of race, master its logical sequencing of topics. Clearly more research is needed to understand the etiology of these differences in math and English performance. What we can be sure of now, however, is that the poorer performance
of minorities on the CPT Reading and Writing subtests has serious consequences as these students matriculate to community college.

In 1998 the state of Florida inaugurated a policy stipulating that students who failed to complete a community college remedial course on their first try would have to pay out-of-state tuition to enroll a second time and no student would be allowed to take a non-credit course more than three times. Since out-of-state tuition is four times higher than in-state tuition, it is anticipated that the financial burden of paying for courses that don't count toward the completing the associate degree will likely increase the attrition from community college especially by lowincome minority students.

Community colleges can take several steps to counteract the threat of greater attrition which is not confined to Florida's system of higher education: (a) they can partner with feeder school districts and adjacent universities to analyze course-taking patterns of students currently in high school to estimate the number of incoming students who are likely to require remediation; (b) In collaboration with their state department of education, they can implement a system of evaluating high school students' performance in math and English, similar to the weighting system described in this study. This system of combining course load, course difficulty, and course grade would serve to alert students in the pipeline that performance in math and English will determine whether they spend their first year in college paying for non-credit remedial classes. Whether more precise information about the consequences of course-taking and grades will persuade high school students and their families to give the issue serious consideration remains an open question. However, not to make the information available would betray the spirit of cooperation that underlies the articulation agreement in place between secondary and tertiary educational institutions.

\section*{Acknowledgments}

The authors wish to thank the following individuals for their cooperation and assistance in the completion of this research: Tom Fisher, Lynn Jozefczyk, and Julia Smith, Assessment and Evaluation Services Section, Florida Department of Education; Pat Smittle, Academic Resources and Assessment, Santa Fe Community College; and Patricia Windham, Division of Community Colleges, Florida Department of Education.

This research was supported in part by a contract with the Florida Department of Education, Bureau of Curriculum, Instruction and Assessment (Project No. 011-9.0950-80001).

\section*{References}

Berkner, L., \& Chavez, L. (1997). Access to postsecondary education for the 1992 high school graduates. (Report No. NCES 98-105). Washington, DC: U. S. Department of Education, National Center for Education Statistics.

Cuccaro-Alamin, S. (1997) Findings from the Condition of Education 1997: Postsecondary persistence and achievement. (Report No. NCES 97-984). Washington, DC: U. S. Department of Education, National Center for Education Statistics.

Chaney, B., Burgdorf, K., \& Atash, N. (1997). Influencing achievement through high school graduation requirements. Educational Evaluation and Policy Analysis, 19, 229-244.

Finn, J. D. (1998, April). Course-taking in high school: Mathematics and foreign languages.
Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.

Florida State Board of Community Colleges. (1998). College preparatory success rate report:
Fall 1994-95 cohort tracked through summer 1996-97. Tallahassee, FL: Department of Education.

Ignash, J. M., (1997). Who should provide postsecondary remedial/developmental education? In J. M. Ignash (Ed.). Implementing effective policies for remedial and developmental education (pp. 5-20). San Francisco, CA: Jossey-Bass.

Lee, V. E., Burkam, D. T., Chow-Hoy, T., Smerdon, B. A., Geverdt, D. (1998). High school curriculum structure: Effects on course-taking and achievement in mathematics for high school graduates. (NCES Working Paper No. 98-09). Washington, DC: U. S. Department of Education, National Center for Education Statistics.

Lee, V. E., Croninger, R. G., and Smith, J. B. (1997). Course-taking, equity, and mathematics learning: Testing the constrained curriculum hypothesis in U. S. secondary schools. Educational Evaluation and Policy Analysis, 19, 99-121.

Noble, J. P., \& McNabb, T. (1989). Differential coursework and grades in high school: Implications for performance on the ACT Assessment. (ACT Research Report Series 895). Iowa City, IA: American College Testing Program.

Rock, D. A., \& Pollack, J. M. (1998). Course-taking course and growth in mathematics and science in the high school years. Paper presented at the annual meeting, of the American Educational Research Association, San Diego, CA.

Smittle, P. (1995). Academic performance predictors for community college student assessment. Community College Review, 23(2), 37-46.

Smittle, P. (1996). Impact of high school courses and grades on placement in remedial courses in community college. Unpublished Technical Report. Gainesville, FL: Santa Fe Community College, Office of Academic Resources and Assessment.

Spade, J. Z., Columba, L., \& Vanfossen, B. E. (1997). Tracking in mathematics and science: Courses and course selection procedures. Sociology of Education, 70, 108-127.

\section*{Table 1.}

Number and Percentage of \(12^{\text {th }}\) Grade Florida High School Students Taking and Passing

\section*{Computerized Placement Test (CPT), Fall 1994}
\begin{tabular}{llll}
\hline & \multicolumn{3}{c}{ CPT } \\
\cline { 2 - 4 } & \begin{tabular}{l} 
Number took \\
test
\end{tabular} & \begin{tabular}{l} 
Number passed \\
test
\end{tabular} & \begin{tabular}{c} 
Percent passed \\
test
\end{tabular} \\
\hline Math & 19457 & 12485 & 64.1 \\
Reading & 19736 & 14294 & 72.4 \\
Writing & 19637 & 14242 & 72.5 \\
\hline
\end{tabular}

Table 2
Variable names and description
Variable Name Description
\begin{tabular}{ll} 
Response & \\
\hline CPT & Result on Computerized Placement Test (CPT). The CPT was developed by
\end{tabular} the College Board of Princeton, NJ to provide students with an individualized examination that adjusts to their skill levels. All entering community college students take the CPT as part of registration to ensure that their skill levels in math, reading, and writing are adequate. If they are not, students are placed in non-credit-accruing remediation classes. CPT scores are derived by comparing correct answers with the answers' difficulty rating. The CPT is an adaptive test meaning the computer continuously adjusts the difficulty level of successive questions based on the test taker's answers to previous questions.
\begin{tabular}{ll}
\hline Predictor & \\
\hline GPA & Four-year cumulative high school grade point average (GPA). \\
\hline GTAT & Grade Ten Achievement Test. GTAT is a standardized norm-referenced test
\end{tabular} that measures the performance of Florida tenth-grade students in math and reading comprehension. The test consists of two 40 -minute multiple-choice subtests. Reading comprehension contains 58 items (covering facts, inferences, and generalizations). Mathematics contains 48 items (covering algebra, geometry, and statistics). Test scores are reported by national percentile rank (NPR). In 1994 the test was administered to approximately 100,000 tenth-grade students. The state median NRP was 47 in reading comprehension and 50 in math.

Table 2

Variable names and description (continued)
Variable Name Description

High School Based on the Florida Department of Education 1993-94 high school course
Performance code directory, a difficulty level was assigned to each math and English (HSP) course available to students. Difficulty levels ranged from 0.5 to 5.0 in increments of 0.5 For example, a one semester basic algebra course received a difficulty level of 1.0 , while a one semester of advanced placement calculus received a 4.5. Also, a number score was given for the grade received in the course. The scale used for grades was typical. For example, an A grade received a 4.0, a B 3.0, etc. For each math and English course these two values were multiplied together, and then for each student a Math and English High School Performance (HSP) variable was calculated by summing these products across all math and English courses, respectively. The calculation also took into account whether a particular course was assigned a value of one credit or a half credit. (See Appendix A for scenarios in which these different factors combine to form an index of academic accomplishment.)

Table 3
Description of data sets
\begin{tabular}{ll}
\hline Data Set & Description \\
\hline DOE & A statewide data set maintained by the Florida Department of Education \\
& containing information on gender, ethnicity, and cumulative high school GPA. \\
CC & A community college data set containing results on the Math, Reading, and \\
& Writing CPT subtests. \\
& Results of Florida's Grade Ten Assessment Test in reading comprehension \\
GTAT math administered in February 1992, expressed as a national percentile \\
& rank. There was no writing subtest on the GTAT. \\
HS Transcript & The complete course selection and grades of the study sample of students who \\
& graduated from Florida high schools in June, 1994. This data set was used to \\
& calculate Math and English HSP.
\end{tabular}
Table 4
Percent Pass Rates, GPA, GTAT Scores, and Math and English High School Performance (HSP) by Race and Gender
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Race & Gender & Percent & \begin{tabular}{l}
Percent \\
Pass \\
Math
\end{tabular} & Percent Pass Reading & Percent Pass Writing & GPA & \begin{tabular}{l}
GPA \\
Interquartile Range
\end{tabular} & Math GTAT Perctl. & Math Interquartile Range & Reading GTAT Perctl. & Reading Interquartile Range & Math HSP & Math HSP Range & English HSP & \begin{tabular}{l}
English HSP \\
Range
\end{tabular} \\
\hline Black & Female & 9.9 & 43.1 & 43.8 & 49.4 & 2.5 & 2.2-2.8 & 32.5 & 15-46 & 30.8 & 15-43 & 7.7 & 4.0-9.5 & 20.5 & 16.5-24.0 \\
\hline Black & Male & 5.4 & 44.0 & 46.2 & 44.6 & 2.3 & 2.0-2.6 & 35.0 & 15-50 & 30.5 & 14-43 & 7.2 & 3.8-9.3 & 17.4 & 14.0-20.3 \\
\hline Hispanic & Female & 9.5 & 54.3 & 56.7 & 66.1 & 2.6 & 2.2-2.9 & 40.9 & 21-55 & 39.0 & 20-57 & 9.5 & 4.5-11.5 & 21.0 & 16.5-25.0 \\
\hline Hispanic & Male & 6.5 & 60.1 & 59.6 & 62.2 & 2.4 & 2.1-2.6 & 47.0 & 30-64 & 39.6 & 22-57 & 9.1 & 4.5-10.5 & 17.8 & 14.0-20.9 \\
\hline White & Female & 39.4 & 70.2 & 82.7 & 84.0 & 2.8 & 2.5-3.1 & 54.4 & 40-73 & 56.6 & 38-73 & 11.5 & 5.8-14.0 & 24.0 & 19.3-28.3 \\
\hline White & Male & 29.2 & 72.6 & 82.7 & 78.1 & 2.6 & 2.3-2.9 & 59.5 & 43-79 & 55.7 & 38-73 & 10.9 & 5.5-13.0 & 20.9 & 16.3-24.5 \\
\hline
\end{tabular}

Table 5
Standardized Parameter Estimates (Beta Weights) for three CPT Subtests
\begin{tabular}{llll}
\hline Variable & Math & Reading & Writing \\
\hline Hispanic & -0.040 & -0.111 & -0.025 \\
Black & -0.061 & -0.155 & -0.122 \\
GTAT & 0.465 & 0.692 & 0.626 \\
HSP & 2.320 & 0.195 & 0.291 \\
GPA & 0.159 & 0.076 & 0.038 \\
Gender & 0.033 & 0.086 & -0.024 \\
GPA*HSP & -1.396 & & \\
\hline
\end{tabular}

Table 6

Adjusted Odds Ratios for Passing the Three CPT Subtests by Qualitative Risk Factors
Math CPT
\begin{tabular}{llll}
\hline Risk factor & Odds ratio & Estimate & \(95 \%\) C.I. \\
\hline Race & Black/White & 0.735 & \((0.650,0.833)\) \\
Race & Hispanic/White & 0.820 & \((0.727,0.926)\) \\
Gender & Male/Female & 1.129 & \((1.029,1.240)\) \\
\hline
\end{tabular}

Reading CPT
\begin{tabular}{llll}
\hline Risk factor & Odds ratio & Estimate & \(95 \%\) C.I. \\
\hline Race & Black/White & 0.458 & \((0.408,0.515)\) \\
Race & Hispanic/White & 0.576 & \((0.515,0.646)\) \\
Gender & Male/Female & 1.371 & \((1.248,1.505)\) \\
\hline
\end{tabular}

Writing CPT
\begin{tabular}{llll}
\hline Risk factor & Odds ratio & Estimate & \(95 \%\) C.I. \\
\hline Race & Black/White & 0.542 & \((0.483,0.608)\) \\
Race & Hispanic/White & 0.882 & \((0.786,0.989)\) \\
Gender & Male/Female & 0.915 & \((0.836,1.001)\) \\
\hline
\end{tabular}

Table 7
Difference in the Estimated Probability of Passing the CPT as a Given Factor goes from its Low to High Level, for Fixed Levels of the Other Two

Math Subtest
\begin{tabular}{lllllllll}
\hline \multirow{2}{*}{ Race } & Gender & \multicolumn{3}{c}{ Maximum Difference } & \multicolumn{3}{c}{ Average Difference } \\
& & GPA & GTAT & Math & GPA & GTAT & Math \\
HSP & & & HSP \\
\hline B & F & 0.035 & 0.252 & 0.430 & 0.028 & 0.211 & 0.363 \\
B & M & .0 .033 & 0.275 & 0.443 & 0.026 & 0.237 & 0.381 \\
H & F & 0.032 & 0.248 & 0.513 & 0.035 & 0.213 & 0.448 \\
H & M & 0.036 & 0.273 & 0.472 & 0.026 & 0.221 & 0.394 \\
W & F & 0.040 & 0.263 & 0.455 & 0.021 & 0.151 & 0.331 \\
W & M & 0.032 & 0.275 & 0.425 & 0.019 & 0.170 & 0.300 \\
\hline
\end{tabular}

Reading Subtest
\begin{tabular}{llllllll}
\hline Race & Gender & \multicolumn{3}{c}{ Maximum Difference } & \multicolumn{3}{c}{ Average Difference } \\
& & GPA & GTAT & \begin{tabular}{c} 
English \\
HSP
\end{tabular} & GPA & GTAT & \begin{tabular}{c} 
English \\
HSP
\end{tabular} \\
\hline B & F & 0.042 & 0.333 & 0.101 & 0.037 & 0.321 & 0.089 \\
B & M & 0.039 & 0.344 & 0.083 & 0.034 & 0.336 & 0.075 \\
H & F & 0.045 & 0.428 & 0.111 & 0.037 & 0.409 & 0.093 \\
H & M & 0.039 & 0.402 & 0.093 & 0.026 & 0.375 & 0.069 \\
W & F & 0.040 & 0.232 & 0.094 & 0.022 & 0.186 & 0.057 \\
W & M & 0.036 & 0.218 & 0.082 & 0.021 & 0.176 & 0.050 \\
\hline
\end{tabular}

Table 7
Difference in the Estimated Probability of Passing the CPT as a Given Factor goes from its Low to High Level, for Fixed Levels of the Other Two (continued)

Writing Subtest
\begin{tabular}{lllllllll}
\hline \multirow{2}{*}{ Race } & Gender & \multicolumn{3}{c}{ Maximum Difference } & \multicolumn{3}{c}{ Average Difference } \\
& & GPA & GTAT & English & GPA & GTAT & English \\
& & & HSP & & & HSP \\
\hline B & F & 0.018 & 0.299 & 0.140 & 0.017 & 0.297 & 0.138 \\
B & M & 0.017 & 0.313 & 0.125 & & 0.015 & 0.299 & 0.111 \\
H & F & 0.019 & 0.367 & 0.171 & 0.015 & 0.273 & 0.129 \\
H & M & 0.016 & 0.366 & 0.139 & 0.014 & 0.340 & 0.114 \\
W & F & 0.028 & 0.208 & 0.124 & 0.014 & 0.160 & 0.079 \\
W & M & 0.019 & 0.257 & 0.138 & 0.011 & 0.207 & 0.091 \\
\hline
\end{tabular}
Figure 1. Estimated Probability of Passing the Math CPT by Gender and Ethnicity

BESTI COPY AVARLABEE


Figure 3. Estimated Probability of Passing the Writing CPT by Gender and Ethnicity


\section*{Appendix A}

\section*{Examples of Math and English High School Performance (HSP)}
1. Low Math HSP: Minimum course load, minimum course difficulty, and above average grades
\begin{tabular}{lllllr} 
Course number & Course name & \begin{tabular}{l} 
Difficulty \\
level
\end{tabular} & Grade & \begin{tabular}{l} 
Grade \\
score
\end{tabular} & \begin{tabular}{c} 
Math \\
HSP
\end{tabular} \\
1205310 & Basic Math Skills & 1.0 & B & 3.0 & 3.0 \\
1205370 & Consumer Math & 1.0 & B & 3.0 & 3.0 \\
1207310 & Integrated Math I & 1.0 & C & 2.0 & 2.0 \\
1208300 & Liberal Arts Math & 1.0 & C & 2.0 & 2.0
\end{tabular}

Total Math HSP \(=10.0\)
2. Average Math HSP: Minimum course load, average course difficulty, and above average grades
\begin{tabular}{lllllr} 
Course number & Course name & \begin{tabular}{l} 
Difficulty \\
level
\end{tabular} & Grade & \begin{tabular}{l} 
Grade \\
score
\end{tabular} & \begin{tabular}{c} 
Math \\
HSP
\end{tabular} \\
1200310 & Algebra I & 1.5 & B & 3.0 & 4.5 \\
1200330 & Algebra II & 2.0 & C & 2.0 & 4.0 \\
1206310 & Geometry & 1.5 & B & 3.0 & 4.5 \\
1211300 & Trigonometry & 2.0 & C & 2.0 & 4.0
\end{tabular}

Total Math HSP \(=17.0\)
3. Above average Math HSP: Minimum course load, average course difficulty, and high grades
\begin{tabular}{llllll} 
Course number & Course name & \begin{tabular}{l} 
Difficulty \\
level
\end{tabular} & Grade & \begin{tabular}{l} 
Grade \\
score
\end{tabular} & \begin{tabular}{l} 
Math \\
HSP
\end{tabular} \\
1200310 & Algebra I & 1.5 & A & 4.0 & 6.0 \\
1200330 & Algebra II & 2.0 & A & 4.0 & 8.0 \\
1206310 & Geometry & 1.5 & A & 4.0 & 6.0 \\
1211300 & Trigonometry & 2.0 & B+ & 3.3 & 6.7
\end{tabular}

Total Math HSP \(=26.7\)

\section*{Appendix A \\ Examples of HSP scenarios continued)}
4. High Math HSP: Above average course load, high course difficulty, and high grades
\begin{tabular}{|c|c|c|c|c|c|}
\hline Course number & Course name & Difficulty Level & Grade & Grade score & Math HSP \\
\hline 1200310 & Algebra I & 1.5 & A & 4.0 & 6.0 \\
\hline 1200330 & Algebra II & 2.0 & B & 3.0 & 6.0 \\
\hline 1206310 & Geometry & 1.5 & A & 4.0 & 6.0 \\
\hline 1211300 & Trigonometry & 2.0 & B & 3.0 & 6.0 \\
\hline 1202340 & Pre-Calculus & 3.0 & A & 4.0 & 12.0 \\
\hline \multicolumn{6}{|c|}{Total Math HSP \(=36.0\)} \\
\hline
\end{tabular}

English
5. Low English HSP: Minimum course load, minimum course difficulty, and above average grades
\begin{tabular}{llllll} 
Course number & Course name & \begin{tabular}{l} 
Difficulty \\
Level
\end{tabular} & \begin{tabular}{l} 
Grade Grade \\
score
\end{tabular} & \begin{tabular}{l} 
English \\
HSP
\end{tabular} \\
1001300 & English skills I & 1.0 & & & \\
1000300 & Func. Comm. I & 1.0 & B & 3.0 & 3.0 \\
1001460 & App. Comm. I & 1.0 & C & 2.0 & 3.0 \\
1001470 & App. Comm. II & 1.0 & C & 2.0 & 2.0 \\
& & & &
\end{tabular}

Total Reading HSP \(=10.0\)
6. Average English HSP: Minimum course load, moderate course difficulty, and high grades
\begin{tabular}{llllll} 
Course number & Course name & \begin{tabular}{l} 
Difficulty \\
Level
\end{tabular} & \begin{tabular}{l} 
Grade
\end{tabular} \\
& & & \begin{tabular}{l} 
Grade \\
score
\end{tabular} & \begin{tabular}{l} 
English \\
HSP
\end{tabular} \\
1001300 & English skills I & 1.0 & A & 4.0 & 4.0 \\
1000300 & Func. Comm. I & 1.0 & A & 4.0 & 4.0 \\
1001460 & English I & 1.5 & B & 3.0 & 4.5 \\
1001470 & English II & 2.0 & B & 3.0 & 6.0
\end{tabular}

Total English HSP \(=18.5\)

\section*{Appendix A \\ Examples of HSP scenarios (continued)}
7. Above average English HSP: Normal course load, average course difficulty, and above average grades
\begin{tabular}{lllll} 
Course number & Course name & \begin{tabular}{l} 
Difficulty \\
Level
\end{tabular} & \begin{tabular}{c} 
Grade Grade \\
score
\end{tabular} & \begin{tabular}{l} 
English \\
HSP
\end{tabular} \\
& & & & \\
1001310 & English I & 1.5 & B & 3.0 \\
1001340 & English II & 2.0 & B & 3.0 \\
1001370 & English III & 2.5 & B & 3.0 \\
1001400 & i. English IV & 3.0 & B & 3.0 \\
\hline
\end{tabular}

Total English HSP \(=26.5\)
8. High English HSP: Extended course load, average course difficulty, and moderately high grades
\begin{tabular}{lllll} 
Course number & Course name & \begin{tabular}{l} 
Difficulty \\
Level
\end{tabular} & \begin{tabular}{c} 
Grade
\end{tabular} \begin{tabular}{l} 
Grade \\
score
\end{tabular} & \begin{tabular}{l} 
Engl \\
HSP
\end{tabular} \\
& & & & \\
1001310 & English I & 1.5 & A & 4.0 \\
1001340 & English II & 2.0 & A & 4.0 \\
1001370 & English III & 2.5 & B & 3.0 \\
1001400 & English IV & 3.0 & B & 3.0 \\
1005300 & World Lit & 2.5 & \(\mathrm{~B}+\) & 3.3 \\
1005310 & American Lit. & 2.5 & \(\mathrm{~B}+\) & 3.3
\end{tabular}

Total English HSP = 47.1

\(14,841(77.6 \%)\) high school studenis attended four years of high school in Florida and graduated in 1993-94 look algebral and entered Florida's community colleges in 1994.95

Percentage Passing Math CPT for Entering Community College Students Who Took Algebra 2 in High School

\(9,324(48.8 \%)\) high school sludents attended four years of high school in Florida and graduated in 1993-94 took algebra 2 and entered Florida's community colleges in 1994-95


\author{
U.S. Department of Education \\ Office of Educational Research and Improvement (ORT) \\ National Library of Education (NLE) Educational Resources Information Center (ERIC)
}
\(\frac{\text { ERIC }}{5 C 990179}\)

\section*{Reproduction Release}
(Specific Document)

\section*{I. DOCUMENT IDENTIFICATION:}
\[
\begin{aligned}
& \text { Efitioit of high school course-taking andgrades on passing a college placement four }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Corporate Source: } \\
& \text { Henlusity of Florida }
\end{aligned}
\]
in order to disseminate as widely as possible timely and significant materials of interest to the educational community. documents announced in the monthly abstract journal of the ERIC system, Resources in Education (RIE), are usually made available to users in microfiche, reproduced paper copy, and electronic media, and sold through the ERIC Document Reproduction Service (EDRS). Credit is given to the source of each document, and, if reproduction release is granted, one of the: following notices is affixed to the document.
permission is granted to reproduce and disseminate the identified document, please CHECK ONE of the following three options and sign in the indicated space following.


Documents will be processed as indicated provided reproduction quality permits
If permission to reproduce is granted, but so box is checked documents will ie processed at level 1 .
 ainsemimate this document as indicated above Reproduction from the ERIC microfiche or electronic media by persons which than ERK＇employees and its sw contractors requires permission from the copyright holder．Exception is moat： fir non－proft reproduction by libraries and other service agencies to satisfy information needs of educators in response to discrete inquiries．


\section*{II．DOCUMENT AVAILABILITY INFORMATION（FIRM NON－ERIC SOURCE）：}

If permission to reproduce is not granted to ERIC，or，if you wish ERIC to cite the availability of the document from another source，please provide the following information regarding the availability of the document．（ERIC will not announce a docurnent unless it is publicly available，and a dependable source can be specified．Contributors should also be aware that ERIC selection criteria are significantly more stringent for documents that cannot be made available through EDRS．）

Publisher／Distributor：

Address：

Price

\section*{IV．REFFIRRAI，OF ERIC TO COPYRIGHT／REPRODUCTION RIGHTS HOLDER：}

If the right to grant this reproduction release is held by someone other than the addressee，please provide the appropriate name and address：

\section*{Name：}

Address：

\section*{V．WHERE，TO SEND THIS FORM：}

Send this form to the following ERIC Clearinghouse：


However，if solicited by the ERIC Facility，or if making an unsolicited contribution to ER te，tatum this form（and the document being contributed）to：

\author{
ERIC Processing and Reference Facility \\ 1100 West Street，and Floor \\ Laurel，Maryland 20707－3598
}```

