
REPORT

DOCUMENT STORES AND COUCHBASE

December 20, 2017

George Kagramanyan

Léni Poliseno

INFO-H-415: Advanced Databases

Université Libre de Bruxelles

2017 - 2018

Contents

1 Introduction 2
1.1 Relational databases and SQL . 2

2 NoSQL 3
2.1 BASE transactions . 4
2.2 RDBMS and NoSQL recapitulation . 4

3 Document stores 7
3.1 Internal data structure . 8
3.2 Today’s most used document stores . 9

4 Couchbase 10
4.1 Architecture . 11

4.1.1 Cluster Manager . 12
4.1.2 Data Service . 12
4.1.3 Index Service . 13
4.1.4 Query Service . 13
4.1.5 Search Service . 13
4.1.6 Storage . 13
4.1.7 Cache . 13

4.2 Installation . 14
4.3 Methods of administration . 15
4.4 Querying documents . 16

4.4.1 Accessing a bucket . 17
4.4.2 Creating documents . 17
4.4.3 Updating documents . 18
4.4.4 Retrieving documents . 18
4.4.5 Deleting documents . 19
4.4.6 Operations on sub-documents . 19
4.4.7 Other useful methods . 20
4.4.8 N1QL syntax . 20
4.4.9 N1QL performance . 25

4.5 Conclusion . 26

Bibliography 27

1 -§- 28

1 Introduction

A database is simply a collection of information. This information, which can be of various
nature and storage structure, is managed via a database management system (abbreviated
DBMS). The apparition of this technology was a big advance in the field of highly scalable
data storage and retrieval. Since the size of database systems can be very large (e.g. banking
systems, national registers or YouTube platform), it is important to allow a rapid access and
efficient manipulation of its contents. The main objectives of this work are to understand
the usefulness of document-oriented databases, compare the today’s most relevant DBMSs
in this area and finally analyze one particular software called Couchbase1 to determine in
which situations it can be beneficial to turn towards this solution.

1.1 Relational databases and SQL

This section briefly introduces the first widely adopted model and which remains very used
in practice today: relational databases. It is a more powerful alternative compared to its pre-
decessors hierarchical and network database models that were inflexible and not optimized
for the INSERT operation [1].

Relational databases were designed to keep the information coherent and consistent at
all times while allowing multiple persons to work simultaneously on same data. That is,
they are following the ACID concept [2]. In this new setting, each piece of information is
represented in form of a tuple and is stored by rows into tables (also called relations). Al-
though, the internal structure of tables with their interconnections might be complex, it is
relatively easy to manage stored information by means of a high level programming lan-
guage: Structured Query Language. Initially, the objective was to create a simplistic language
that can be understood by users that do not necessary have programming skills. Nowadays,
SQL and all its variants can be seen as a standard methodology used by relational database
management systems (RDBMS).

1Official website https://www.couchbase.com/

2 -§- 28

https://www.couchbase.com/

2 NoSQL

"NoSQL is a set of concepts that allows the rapid and efficient processing of data sets with a
focus on performance, reliability, and agility." is a definition given by [3].

It might be interesting, however, first to understand why the traditional RDBMS were no
longer able to fulfill company’s needs which gave birth to search for other means of data
storage and consequently to NoSQL. As a direct consequence of Moore’s Law, processor’s
computation speeds did not improved much from around 2005. Therefore, the performance
of RDBMS could not be resolved anymore by acquiring faster processors. On the other hand,
as illustrated on Figure 2.1, the size of datasets is increasing exponentially due in some part
to a popularization of web, mobile and Internet of Things applications. Most of those appli-
cations need to handle a big number of concurrent users, be available 24h/24h, use various
formats of data and quickly adapt to new requirements to satisfy the customers. This re-
quired big enterprises to reconsider their management policy about how they deal with and
store those massive amounts of information.

The solution was then to adopt parallel processing where the workload was distributed
among multiple processors. First initiative was done by Google’s society who needed to in-
dex billions of web pages for search queries. In 2004 they revealed MapReduce framework
that allows to distribute computations on computer clusters which results into highly scal-
able and parallel system. Along with other software innovations, this was one of the most
important fundamentals for the NoSQL technology. Because, as will be mentioned below,
scaling to multiple computers is more challenging for RDBMS.

Figure 2.1: The evolution of Big Data. Image taken from [4].

3 -§- 28

Returning to the definition, we can say that NoSQL is a way of managing data in a more
open environment (i.e. there is no need for an entity-relational model). Big Data is not the
only reason where this model is preferred over RDBMS, variability (for example adding only
one extra attribute to one entry is impossible without adding a column for the whole table
in relational model, which can be seen as a waste of resources) and agility (requests time
should be minimum) are also points that must be considered. There exist many different
types of data stores available for NoSQL applications. The four main categories are: doc-
ument stores, column stores, key-value stores and graph stores. Additionally, it should be
noted that NoSQL databases also use SQL-based query languages.

2.1 BASE transactions

Like we said before, relational models follow ACID transaction rules. In other words, they
require that any change in tables (concurrent or not) leaves them consistent and preserves
data integrity. A typical example where this concept applies are bank transactions - either the
whole operation succeeds and money is transferred to another account or one of its stages
fails which results to abort the mission and return to initial state.

The reason of why NoSQL databases usually do not guarantee consistency at all times
is illustrated by the following example. Today, for the questions of performances, some
databases are distributed around the world, which means that each node maintains a copy
that is continuously synchronized. When someone posts a comment on a YouTube video,
a RDBMS would ensure that each database copy is updated before anyone could see the
written text. This can create an unnecessary latency in the sens that if one person sees the
comment a little bit earlier than someone on another side of the planet, it is not a big deal.
NoSQL tolerates some delays in the changes and assures eventual consistency which forms a
part of BASE transaction system [5, 6]. This stands for :

• Basic Availability : the data and services should be available even in the case of some
failures of requests or of the nodes holding a replicated database.

• Soft-state : temporal inconsistency and inaccuracy of information is allowed.

• Eventual consistency : sooner or later the system must reach its consistent state. Con-
trary to ACID model, there is no guarantee about when this moment will occur.

To conclude this section, ACID transactions focus on data safety while in BASE, systems
availability is put on the first place. Not all NoSQL databases use BASE proprieties. The
choice between these two transaction types is also in big part dependent on the applications
needs.

2.2 RDBMS and NoSQL recapitulation

For the sake of a better understanding and comparison, we decided to list some strong/weak
points and characteristics of the two systems.

Strong points of RDBMS:

• Based on a standard query language SQL which is portable to various databases.

• Big community of experienced users.

4 -§- 28

• Assures data integrity through ACID transactions.

Weak points of RDBMS:

• Scale well only on a single server. Spreading the load to multiple nodes increases com-
plexity.

• Lots of JOIN operations may decrease performance.

• Problematic to work with semi-structured data.

• Object-relational mapping layer can become complex.

• Schemas must be defined prior to adding data. This does not promote the agile devel-
opment approach [8].

• Failure of the main server compromises the entire database.

Strong points of NoSQL:

• Better suited for scaling across a big number of processors and scales linearly by aug-
menting the number of nodes.

• More flexible since it can handle structured, unstructured and semi-structured data.
Does not require a schema.

• Object-relational mapping layer is not needed (see Figure 2.2).

• Supports powerful full-text search libraries such as Lucene.

• JOIN operations can be avoided or minimized.

• More open source solutions.

Weak points of NoSQL:

• Databases usually have a proprietary nonstandard query language that limits porta-
bility and migration.

• Younger than RDBMS which means less experienced users and weaker community
support.

5 -§- 28

Figure 2.2: Representation of different application layers. RDBMS have integrated many
methods in the database layer allowing them to have a total control over the operations and
guarantee security and integrity of manipulated information. While NoSQL models have re-
laxed their databases by moving functionalities into the middle layer. Image taken from [3].

6 -§- 28

3 Document stores

Although many types of NoSQL databases exist, from now on we will concentrate our atten-
tion on document stores. The latter can be defined as a way of representing (semi)structured
information in a hierarchical, tree-like structure. Where the data objects are usually stored
at the end of branches of such tree in a form of documents. Each branch is associated with
a path expression allowing to navigate between nodes. To make the navigations and data
retrieval easier, documents can be grouped together into collections. Like the hierarchical
file systems used in various OS, collections provide a logical grouping of similar documents.
Moreover, representing relations, as in relational databases, between documents is usually
discouraged (but could also have advantages as we will see it later) since all the associated
data with a record can be stored in the document itself [9, 11].

Figure 3.1: Comparison of data representation in a relational model (left) and document
stores (right). Image taken from [12].

The major difference with a key-value store1 is that in document stores, every added doc-
ument is automatically indexed within the database. It means that the whole content of the
document becomes searchable allowing one to quickly extract any required part of several
documents at once. While key-value stores are not searchable and will always return an en-
tire value (or document) [7]. This also means that a document store can easily simulate a
key-value store.

In sum, document stores offer many appealing possibilities for storage of data in various
forms and types. They do not enforce a schema allowing two documents to have mutu-
ally exclusive optional values and thus reducing storage space for unnecessary arguments.
Hence, this gives them a hight flexibility and freedom. Furthermore, since documents are

1Simple database, without a query language, that maps strings (unique keys) to arbitrary large pieces of data
(values).

7 -§- 28

usually independent entities, it increases the performance for read and write operations and
facilitates replication from one server to another. Agile methodologies allow the system to
quickly adapt to the new data structures that could potentially submerge in future. Some
of the current successful applications for document stores databases include: e-commerce,
product catalogs, ratings and comments history, tweets and blog posts, in-game statistics,
web analytics, data collected from embedded devices and many more.

3.1 Internal data structure

Until now, we haven’t specifically defined the notion of a document. It is the most com-
mon concept of all document-oriented databases which can be seen as a (semi)structured
information encoded typically in XML2 or JSON3 (with its supersets) format [10]. Both use
a human readable syntax roughly consisting of a description of the data and its associated
value. Below is an example of an XML document :

<belgian_cuisine>
<food>

<name>Strawberry Belgian Waffles</name>
<price>7.95$</price>
<description>
Light Belgian waffles covered with strawberries and whipped cream

</description>
<calories>900</calories>

</food>
</belgian_cuisine>

And its copy in JSON format:

{
"belgian_cuisine": {

"food": {
"name": "Strawberry Belgian Waffles",
"price": "7.95$",
"description": "Light Belgian waffles covered with strawberries and

whipped cream",
"calories": "900"

}
}

}

JSON is often considered to be a better alternative to XML [13] and a standard format for
mobile, web and Internet of Things applications. Additionally, it allows simple interconnec-
tions between different documents such as 1-to-1, 1-to-many and many-to-many [14]. To
illustrate this, we can rewrite the above example as a combination of two documents instead
of one:

{
"belgian_cuisine": {

"food": {
"name": "Strawberry Belgian Waffles",
"details": "waffles_details"

}
}

}

2Extensible Markup Language.
3JavaScript Object Notation.

8 -§- 28

The second document is referenced via the det ai l s field:

{
"waffles_details": { // assuming this is also the key

"price": "7.95$",
"description": "Light Belgian waffles covered with strawberries and whipped

cream",
"calories": "900"

}
}

In RDBMS, doing this is a common routine. While in document stores, the choice of ref-
erencing or not depends on the application. Here are some of the advantages of this practice:

• When documents are not frequently accessed together, each one can be independently
sent over the network. Usage of cache memory and network’s load decreases.

• In the case of a 1-to-many relationship, if an update is required on the "1" side, this
is easily done without touching the "many" side. But, if it was only one document,
we then had to search the whole document for each item from the "many" part and
update the information that it uses from the "1" part. Which can decrease efficiency.

• As for RDBMS, referencing can prevent repetition of attributes and thus requires less
storage.

There are also disadvantages of referencing :

• When connected documents are often used together additional complexity and mem-
ory operations may be added.

• Many document stores provide ACID properties on document level, meaning that we
can never start manipulating partially-updated documents. Therefore, two distinct
documents, referencing one another and that must to be updated, can not take advan-
tage of a single consistent operation.

• Not all document stores support JOIN operation.

3.2 Today’s most used document stores

As of October 11, the ranking table showed in [15] contains a classification of a total of 43
different document stores and multi-models. Systems are ranked by their popularity and the
score is computed based on criteria such as number of results related to the system in search
engines, frequency of searches in Google Trends and discussions appearing in question-
answer sites such as Stack Overflow, number of job offers mentioning the system and others.
We thought it could be interesting to look closer to the top-5 systems from that list. Since
Couchbase occupies position number 3 and will be discussed in the next chapter, we se-
lected the first five other systems with highest scores. In decreasing order :

• MongoDB : Open-source, distributed and powerful document database that stores
data in a JSON-like syntax. It is not the oldest one but has a bigger community com-
pared to its rivals. Has a rich query language, tunable consistency and supports oper-
ations on geospatial data. Provides official and non-official API’s written in dozens of
languages [16, 17].

9 -§- 28

• Amazon DynamoDB : Developed at the Amazon company, is a fully managed cloud
NoSQL database that, among others, offers a service to manage triggers. Usually com-
bined with Amazon DynamoDB Accelerator (a specifically designed caching service)
that improves performance and drastically reduces response times. Documents can
be in JSON, HTML or XML encoding. However, this technology is not free [18].

• CouchDB : Open-source project under Apache License that is more oriented into mo-
bile phones and web applications since it uses a native JSON format for storage. Has
an intuitive yet powerful query engine and the whole architecture is designed to be
fault-tolerant and in a controlled environment. With focus to maximally simplify the
developers work [19].

• Azure Cosmos DB : Multi-model platform suited for document stores, key-value stores,
column stores and graph stores. Works with JSON documents and supports the well
known SQL query language. Databases have a particularity to be easy deployable in
many regions around the world and more places are continuously added to the list
[20]. Guarantees 99.99% availability for each region, zero-data losses after failures of
some servers and has a tunable consistency on five levels (from strong to eventual) that
allows clients to choose optimum trade-offs between consistency, availability, latency,
and throughput. Not free but claims to be cheaper than Amazon DynamoDB [21].

• MarkLogic : Also a commercial, multi-model NoSQL database that provides storage
for XML, JSON and RDF documents. Also supports SQL and similar query languages.
Has ACID properties that can apply to multi-document transactions across a cluster.
Can be deployed in a physical environment but can also run from a cloud provider
including Amazon Web Services, Microsoft Azure and Google Cloud Platform. Has a
bi-temporal feature allowing to differentiate between occurred (valid time) events and
recorded (system time) events [22].

All these technologies support frameworks in multiple languages, all are highly scalable, all
claim a high availability, low latency and all are evolving very quickly so the best place to
gather information about them are the official websites.

4 Couchbase

Couchbase Server, originally developed in 2010, is a distributed and document-oriented
database that stores data in JSON format. It is designed to deliver a scalable, powerful and
highly available service. The platform can also be used as a key-value store and has a very
similar to SQL query language “N1QL” which is optimized for documents having any struc-
ture written in JSON and that returns JSON as result. Couchbase is open source and is avail-
able in Enterprise Edition (paid version) and Community Edition (free version) which has
less features and is advised for non-commercial developers [23]. In order to be able to easily
increase or decrease the size of a cluster, the architecture consists of perfectly identical nodes
(in the sens of installed software) that exchange messages with each other on demand. Addi-
tionally, this simplifies physical or distant configurations and troubleshootings of a cluster.

10 -§- 28

Replication and an even workload distribution across nodes in the cluster is an automatic
process and the database size can rapidly grow simply by adding more hardware. This allows
a straightforward and transparent administration and eases the work for developers. Besides
replication, high availability is assured by excluding downtimes and keeping the system on-
line even during various maintenances, upgrading operations and addition or removal of
nodes. Moreover, fault tolerant mechanisms and cross-cluster replications1 can almost guar-
antee an uninterrupted availability in case of unexpected events and node/cluster crashes.

Figure 4.1: Replication is an important and asynchronous process during which one to three
copies of active data are transferred to another node in the cluster. At any moment, only
one copy of certain data is active and by default all the read/write operations are directed
to it. If replication is enabled, an automatic mechanism ensures that data modifications are
forwarded to the corresponding replicas in real time. Additionally, applications may specify
how many replica copies they want to keep or to request a read of one of the replicas. Image
taken from [28].

Couchbase Server can continuously handle heavy traffic from modern online and in-
teractive applications with minimal latency. Furthermore, there exists a Couchbase Mobile
platform which is simply an embedded database that runs on mobile applications (e.g. An-
droid and iOS) with and possibly without a network connection [24]. It additionally helps
customers to easily and securely synchronize data between multiple devices or the cloud
and allows big companies to efficiently combine the two solutions.

4.1 Architecture

Each Couchbase node consists of same components and services (Figure 4.2), they are de-
scribed below.

1Cross Data Center Replication (XDCR) is a technology designed to replicate the whole cluster into one or
more other locations.

11 -§- 28

Figure 4.2: Architecture of nodes within a cluster. Image taken from [26].

4.1.1 Cluster Manager

Cluster level operations such as logging, statistics collection, connection authentication,
cluster topology and data placement are all done by the Cluster Manager. Indeed, from time
to time, cluster topology constantly changes due to addition and deletion of nodes. There-
fore, nodes must be re-coordinated in order to ensure the optimal distribution of the load.
The Cluster Manager takes care that all nodes in the new setting inherit the correct cluster
configuration while keeping the system uninterrupted. This process is called rebalancing.

Another main task is failure detection of unresponsive nodes. Each Cluster Manager, of
each node within a cluster, communicate with each other by sending signals at fixed inter-
vals, called heartbeats, which simply contain some basic statistics about the node. Even if
all copies of Cluster Manager are identical, there is always one node that is elected by others
to become an orchestrator. The orchestrator maintains an authoritative copy of the cluster
configuration to avoid conflicts and distributes its changes. By keeping track of the received
heartbeats, it is essentially responsible of automatically re-directing traffic to the healthy
nodes from the ones that became unresponsive (i.e. no heartbeats were received after a
specified period of time) and activating the relevant replicas. This process is called failover
and can also be done manually by the administrator.

4.1.2 Data Service

As its name suggests, Data Service provides documents access and management. CRUD
(create/retrieve/update/delete) operations in particular, which make use of a key (or ID)
associated with each document and their value encoded in binary or JSON format. Addi-
tionally, the Data Service maintains the MapReduce view indexes where it allows developers
to define their proper map and reduce functions. Views allow to calculate the answer in ad-
vance which results into faster N1QL queries. Similarly, there are MapReduce spatial view
indexes which are adapted for geographic data.

12 -§- 28

4.1.3 Index Service

Along with these MapReduce indexes, there are Global Secondary Indexes (GSI) that can
also accelerate queries. GSI are defined by the N1QL query language on a specific subset of
documents depending on the targeted subset of fields. Independently of the Data Service,
GSI are partitioned across the nodes that have the Index Service enabled (more details about
service enabling/disabling on Figure 4.3). In sum, the Indexing Service plays a role of the
index manager and interacts with the Query Service.

4.1.4 Query Service

The Query Service receives N1QL queries, parses them and tries to optimize before execu-
tion. To satisfy a request with an appropriate result, it can only be done of course with the
help of the Data and Index services. Also, during the optimization phase, any existing keys
defined by MapReduce views or GSI are automatically loaded in order to accelerate espe-
cially "GROUP BY", "ORDER BY", and "WHERE" operations.

4.1.5 Search Service

Search Service provides a Search API that allows to perform keyword searches on the data. It
maintains full text indexes based on JSON documents and it is advised to be used instead of
queries when the returned result depends on whether a certain field contains a certain string
or not.

4.1.6 Storage

Different things that need to be stored have different storage requirements and Couchbase
offers an optimized storage engine for each of its components. For example, each entry of
GSI is represented as a ForestDB file in the file system. ForestDB is a special key-value storage
engine with a B+trie structure developed by Couchbase. On the other hand, Couchstore
engine, with a B+tree structure, assures the storage for the Data Service. Those two engines
follow the append only principle. It means that all the incoming writes are added at the
end of files and links to the previous versions are invalidated. A light compaction process
needs periodically to take place in order to clean the fragmented space and produce a new
contiguous file.

4.1.7 Cache

Couchbase is a memory-first database architecture. It moves the data to and from the disk
by request but all the key-value operations are performed through in-memory cache for ra-
pidity. Developers have even a possibility to store the documents in the memory and forbid
their storage on disk, as shown in section 4.3. Data Service, Index and Search services and
Query Service have three unique managed caching mechanisms optimized for their needs.
Moreover, each service has a defined RAM quota indicating how much memory can be allo-
cated for storage. Except the Query Service which manages its memory automatically.

The general aim is to find and keep the most frequently accessed items in the caching
layer (RAM) to minimize the operations with the persistent storage (disk).

13 -§- 28

Figure 4.3: This picture shows that nodes can be dedicated to only run a subset of services
(highlighted in blue) and disable others (in gray). It is called Multidimensional Scaling where
the architecture can be modified on the software level in order to quickly address changing
requirements by allowing each service to scale up and out independently from others. As
opposed to Symmetric Scaling where each service within a node shares an equal part of the
workload. Image taken from [26].

4.2 Installation

The easiest way to run a local instance of Couchbase Server is through Docker2 software that
offers an operating-system-level virtualization. Assuming Docker is installed, it then suffices
to execute the following command :

docker run --rm -t --name db -h 127.0.0.1 -p 8091-8094:8091-8094 -p 11210:11210 \
couchbase/sandbox:5.0.0-beta

This is advantageous because it can be run from any OS. If the server’s image exists, it will
be loaded, if not, a new copy will be automatically downloaded. Once the command has
finished, a by default configured server is up and ready to use. Here we use the latest beta
version3 which comes with several improvements [25] over previous stable 4.x versions. Al-
though, it is still in development and some issues may exist, we suppose that it should be
enough for our testings on a local single node.

We can now log-in and access via ht t p : //local host : 8091 to the Couchbase Web Con-
sole that offers a rich number of possibilities to the administrator. Starting from closely mon-
itoring each aspect of any server to managing documents and executing queries.

2Can be downloaded from https://www.docker.com/get-docker
3At time of submission of this report, the official version was already released but it was late for us to switch.

14 -§- 28

https://www.docker.com/get-docker

Figure 4.4: Couchbase Web Console showing the current state of the cluster.

One useful notion that can be defined at this stage is the notion of "buckets". The prin-
ciple is analogous to collections meaning that buckets store logical groups of items (JSON
documents) providing a centralized management (such as resource allocation and security
properties) of items that they contain. Therefore, each bucket has its own and independent
range of indexes.

4.3 Methods of administration

Besides Couchbase Web Console, monitoring and administrative tasks of clusters and servers
can be done through command-line interface (CLI) and REST API. Since in this setting,
Couchbase Server resides in a virtual environment, we do not have access to the CLI tool
that comes together with a normal installation. However, same operations but maybe in a
less intuitive manner can be done with the HTTP REST protocol4. The objective of this sec-
tion is to illustrate a couple of things that can be done with the latter.

Retrieving buckets information :

curl -X GET -u Administrator:password localhost:8091/pools/default/buckets

The curl tool allows to communicate with servers using various protocols including HTTP.
For each request to a Couchbase Server we need to provide a username and a password
which is done with −u argument. In this case, we ask information for every bucket that
exists. Of course, specifying a particular bucket is also possible. The command output is in a
JSON format :

{
"name": "travel-sample",
"bucketType": "membase",
"authType": "sasl",
"proxyPort": 0,
"uri": "/pools/default/buckets/travel-sample?bucket_uuid=1991a179c335ded1e56...
...

4More information about REST can be found here: https://en.wikipedia.org/wiki/
Representational_state_transfer

15 -§- 28

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

"replicaNumber": 1,
"threadsNumber": 3,
"quota": {

"ram": 104857600,
"rawRAM": 104857600

},
"basicStats": {

"quotaPercentUsed": 77.21810150146484,
"opsPerSec": 0,
"diskFetches": 0,
"itemCount": 31591,
"diskUsed": 35286102,
"dataUsed": 29539328,
"memUsed": 80969048,
"vbActiveNumNonResident": 10411

},
...

The result is too long to show all information here. tr avel − sample is the only bucket cur-
rently present on the server (default configuration) and we can remark for example that it
contains 31591 documents.

Similarly, a new bucket can be created with :

curl -X POST -u Administrator:password -d name=newbucket -d ramQuotaMB=200 -d\
authType=none -d bucketType=couchbase http://localhost:8091/pools/default/buckets

This command can take various other parameters and returns nothing (not counting the
HTTP response code) in case if the operation was successful. Alternatively, bucketT y pe ar-
gument can take the value "memcached" or "ephemer al". The former is designed to cache
frequently used data and thereby reduce the amount of queries. The latter was introduced in
this Couchbase’s last version and allows to store all the data completely in RAM. This might
be a faster alternative when applications require too much operations with disk, which is
much slower compared to read/write operations executed in RAM.

Other administrative tasks include : software upgrading, cluster/nodes/buckets config-
uration, security settings, recovering and backup operations, cross data center replication
and more. A complete list of REST API possible commands is described in [27].

4.4 Querying documents

REST API is also capable to execute N1QL queries. For example :

curl -u Administrator:password -v http://localhost:8093/query/service\
-d ’statement=SELECT name FROM ‘travel-sample‘ LIMIT 2’

This statement returns the value for a name field of the first two documents in the bucket as
follows :

{
"requestID": "9a4334d2-20d1-4529-891b-ff2b198ef8d4",
"signature": {

"name": "json"
},
"results": [

{
"name": "40-Mile Air"

},
{

"name": "Texas Wings"

16 -§- 28

}
],
"status": "success",
"metrics": {

"elapsedTime": "33.118629ms",
"executionTime": "32.998133ms",
"resultCount": 2,
"resultSize": 90

}
}

Usually, developers who write code for their applications would prefer an easier way to per-
form read/write operations and queries on documents within clusters. For that purpose,
Couchbase provides software development kit’s (SDK’s) supporting Java, Node.js, Python,
Go, PHP, .NET and C languages. We are familiar with three of those and for no particular
reason we have chosen Java SDK (version 2.5.1) to present some basic functionalities.

4.4.1 Accessing a bucket

After linking to the project all necessary libraries that can be found on the official website,
we write the following code to initialize a connection with a cluster and then access to a
particular bucket :

Cluster cluster = CouchbaseCluster.create("127.0.0.1");
cluster.authenticate("Administrator", "password");
Bucket bucket = cluster.openBucket("travel−sample");

For real world applications, it is recommended to pass a list of node’s IP addresses to the
cr eate() method so that in case connection to the first address fails, next IP’s can be tried.
Also, it is possible to provide a password argument to openBucket () in case if it is protected.
At the end, when all operations are done, we need to disconnect from cluster which will also
automatically close opened buckets :

cluster.disconnect();

4.4.2 Creating documents

JsonObject library = JsonObject.create()
.put("name", "BSH")
.put("address", "Campus Solbosch")
.put("opening_hours", JsonArray.from("working_days 8h − 20h",

"saturday 10h − 17h"))
.put("characteristics", JsonObject.create()

.put("floors", 8)

.put("seats", 2198));

bucket.insert(JsonDocument.create("doc_1", 20, library)); // expires after 20 sec
System.out.println(bucket.get("doc_1").toString().substring(12));

After formatting the output for readability, here is what we obtain :

{
"id": "doc_1",
"cas": 1508502003163725824,
"expiry": 0,
"content": {

"name": "BSH",

17 -§- 28

"opening_hours": [
"working_days 8h - 20h",
"saturday 10h - 17h"

],
"characteristics": {

"seats": 2198,
"floors": 8

},
"address": "Campus Solbosch"

},
"mutationToken": null

}

The i nser t () method must take two mandatory arguments : document ID ("doc_1" in this
example) and the content (a J sonDocument). Note that other formats for the content are
supported, such as J sonLong Document , Raw J sonDocument , Ser i al i zableDocument
and Bi nar yDocument (which stores binary data). One of the optional parameters is the
expiry time given in seconds (here 20). After the end of that period, the document becomes
no longer accessible and will be deleted. By default, documents are kept forever (expi r y =
0) and that is what we see in the output. This might be a little display bug of this beta version
because by looking at this document from the Couchbase Web Console, expi r y value is not
null and indeed the document is deleted after 20 seconds. There is also a touch() method
that allows to modify expi r y without changing the document.

Another value that is stored on server is CAS (Compare And Swap). This value can help
to control the behavior in case of concurrent document updates and is modified each time
there is a change in the document. It can be passed as an optional parameter to the i nser t ()
method.

4.4.3 Updating documents

The upser t () method has exactly the same objective as i nser t () with the same mandatory
and optional arguments. The difference is that, if the document with that ID already exists,
the stored content will be overwritten, while using i nser t () would have raised an error. Sim-
ilarly, a r epl ace() method can replace an existing document by another and is present to
efficiently handle concurrent modifications based on CAS value.

4.4.4 Retrieving documents

As we saw previously, we can get the information of a document by passing it’s string ID to
the g et () method. However, there are other ways to do it.

JsonDocument libraryDoc = JsonDocument.create("doc_1", library); // library is a JsonObject like used before
bucket.upsert(libraryDoc); // inserting to bucket
System.out.println(bucket.get(libraryDoc).toString().substring(12)); // retrieving

In this case, ID is extracted from the provided document and we obtain a similar output.

System.out.println(bucket.get(libraryDoc, 30, TimeUnit.SECONDS).toString().substring(12));

We can also set a custom timeout before an error is thrown in case if it takes longer to retrieve
a document than the specified time. This functionality is also available for creating, updating
and deleting operations.

System.out.println(bucket.getAndLock(libraryDoc, 10).toString().substring(12));
bucket.upsert(libraryDoc); // raises concurrent.TimeoutException if executed before 10 seconds

18 -§- 28

In addition to getting a document, we can also lock it on write operation (reading is still
possible) for a specified amount of time.

Finally, g etF r omRepli ca(Document I D) function allows to get replica copies returning
an iterator to the requested documents. We can not test replication functionality since our
virtual cluster consists of a single node.

4.4.5 Deleting documents

bucket.remove("doc_1")); // via ID
// or
bucket.remove(libraryDoc)); // via document

Nothing needs to be added here besides that these both methods will return the document’s
ID and the updated CAS value.

4.4.6 Operations on sub-documents

Sometimes, when only a small part in a document needs to be updated/added/retrieved, it
is more efficient (in terms of network bandwidth) to work with this concerning part rather
than with a whole document. A part of a document is called a sub-document and can be
accessed via a specified path. For illustration, if we retake our library JsonDocument :

{
"name": "BSH",
"opening_hours": [

"working_days 8h - 20h",
"saturday 10h - 17h"

],
"characteristics": {

"seats": 2198,
"floors": 8

},
"address": "Campus Solbosch"

}

Here, name, openi ng _hour s[1] and char acter i st i cs.seat s are all correct paths. Below
are shown some modifications that we can apply on sub-documents which by the way are
atomic operations.

boolean createParents = true; // to create paths if they not exist
bucket.mutateIn("doc_1")

.upsert("name", "BSH v.2", createParents)

.upsert("street.number", 50, createParents)

.arrayInsertAll("opening_hours[1]", "31 December 2017 holiday", "1 January 2018 holiday")

.remove("characteristics.floors")

.execute();

System.out.println(bucket.get("doc_1"));

The document now becomes :

{
"name": "BSH v.2",
"opening_hours": [

"working_days 8h - 20h",
"31 December 2017 holiday",
"1 January 2018 holiday",

19 -§- 28

"saturday 10h - 17h"
],
"characteristics": {

"seats": 2198
},
"address": "Campus Solbosch",
"street": {

"number": 50
}

}

In addition to this, we can do reading and simple existence checking operations. Exe-
cuted on the obtained document :

DocumentFragment<Lookup> res = bucket.lookupIn("doc_1")
.get("name")
.exists("characteristics.seats")
.get("opening_hours[3]")
.execute();

System.out.println(res);

Along with ID and CAS, the following information can be found in the output :

GET(name){value=BSH v.2}, EXIST(characteristics.seats){value=true},
GET(opening_hours[3]){value=saturday 10h - 17h}

4.4.7 Other useful methods

bucket.bucketManager().info(); // gets information of current bucket
bucket.bucketManager().flush(); // deletes all the contained data
bucket.bucketManager().createN1qlPrimaryIndex(true, false); // creates a primary index and is ignored if it

// already exists

4.4.8 N1QL syntax

Java SDK provides two ways for applications to execute N1QL queries. Either with domain-
specific language (DSL) or by embedding the queries into a string.

In the following examples we used the beer − sample bucket that first must be activated
from the Couchbase Web Console in the settings menu. It is composed of beer documents
(some included fields are : "abv"5, "brewery_id", "category", "description", "name", "style",
"type") and brewery documents (containing "address", "city", "country", "geo", "descrip-
tion", "name", "type", "website", etc.)

// DSL
System.out.println(bucket.query(select("brewery_id").from(i("beer−sample")).where(x("name")

.eq(s("Jupiler")).and(x("type").eq(s("beer"))))));

// same query in N1QL syntax
System.out.println(bucket.query(N1qlQuery.simple("SELECT brewery_id FROM ‘beer−sample‘ "

+ "WHERE name = ’Jupiler’ AND type = ’beer’")));

Output is the same in both cases except for the execution times that are variable and do not
allow to conclude which approach is faster.

5Alcohol by volume.

20 -§- 28

N1qlQueryResult{status=’success’, finalSuccess=true, parseSuccess=true, allRows=[{
"brewery_id": "inbev"

}], signature={"brewery_id":"json"}, info=N1qlMetrics{resultCount=1,
errorCount=0, warningCount=0, mutationCount=0, sortCount=0, resultSize=45,
elapsedTime=’801.210398ms’, executionTime=’801.138715ms’}, profileInfo={},
errors=[], requestId=’9d8a84f2-0301-49e3-ac39-7c0a1b42d40b’, clientContextId=’’}

DSL has the advantage of for example preventing to send erroneous queries since the
syntax can be checked at the compilation time. However, it might seem less intuitive for
novice users, that’s why here we will focus on the other solution which is more SQL-like.

Selecting first 2 beer documents that contain "Belgian" in their description and have more
than 7.5% of alcohol.

System.out.println(bucket.query(N1qlQuery.simple("SELECT name, abv, description " +
"FROM ‘beer−sample‘ " +
"WHERE description LIKE ’%Belgian%’ " +
"AND type = ’beer’ AND abv > 7.5 " +
"LIMIT 2")));

Result :

{
"abv": 8,
"description": "Our first anniversary release is a Belgian-style strong ale

that is amber in color, with a light to medium body. Subtle malt sweetness
is balanced with noticeable hop flavor, light raisin and mildly spicy, cake
-like flavors, and is finished with local wildflower honey aromas. Made
with 80% Organic Malted Barley, Belgian Specialty grains, Forbidden Fruit
yeast, domestic hops and Round Rock local wildflower honey, this beer is
deceptively high in alcohol. ",

"name": "One"
}, {
"abv": 10.5,
"description": "Our silver medal winning Belgian style Holiday beer brewed with

dark Belgian candied sugar and special spices. This brew has a spicy aroma
and flavor with a sweet malt taste. At 10.5% alcohol it is sure to warm

you up during the Holiday season.",
"name": "Rude Elf’s Reserve"

}

Selecting brewery_id from documents that do contain that field, in descending order.

System.out.println(bucket.query(N1qlQuery.simple("SELECT DISTINCT brewery_id FROM ‘beer−sample‘ "
+ "WHERE brewery_id IS NOT MISSING "
+ "ORDER BY brewery_id DESC LIMIT 3")));

Result :

{
"brewery_id": "zea_rotisserie_and_brewery"
}, {
"brewery_id": "yuksom_breweries"
}, {
"brewery_id": "yuengling_son_brewing"

}

Join beer documents (b1) with their corresponding breweries (b2) where the primary key to
b2 is in the brewery_id field of b1.

21 -§- 28

System.out.println(bucket.query(N1qlQuery.simple("SELECT b1.name AS beer_name, "
+ "b2.name AS brewery_name, b2.website "
+ "FROM ‘beer−sample‘ AS b1 "
+ "JOIN ‘beer−sample‘ AS b2 ON KEYS b1.brewery_id "
+ "WHERE b1.type = ’beer’ LIMIT 2")));

Result :

{
"beer_name": "21A IPA",
"brewery_name": "21st Amendment Brewery Cafe",
"website": "http://www.21st-amendment.com/"

}, {
"beer_name": "563 Stout",
"brewery_name": "21st Amendment Brewery Cafe",
"website": "http://www.21st-amendment.com/"

}

Listing breweries per beer name and skipping the first five results.

System.out.println(bucket.query(N1qlQuery.simple("SELECT beer.name, "
+ "ARRAY_AGG(brewery.name) brewery_list "
+ "FROM ‘beer−sample‘ beer "
+ "INNER JOIN "
+ "‘beer−sample‘ brewery "
+ "ON KEYS beer.brewery_id "
+ "GROUP BY beer.name LIMIT 2 OFFSET 5")));

Result :

{
"brewery_list": [

"Kiuchi Shuzou Goushi Kaisya"
],
"name": "Hitachino Nest Japanese Classic Ale"
}, {
"brewery_list": [

"Aksarben Brewing (BOP)"
],
"name": "Bourbon Imperial Stout"

}

Listing beers per breweries from Belgium.

System.out.println(bucket.query(N1qlQuery.simple("SELECT brewery.name, "
+ "ARRAY_AGG(beer.name) beer_list "
+ "FROM ‘beer−sample‘ beer "
+ "INNER JOIN "
+ "‘beer−sample‘ brewery "
+ "ON KEYS beer.brewery_id "
+ "WHERE brewery.country = ’Belgium’ "
+ "GROUP BY brewery.name LIMIT 2")));

Result :

{
"beer_list": [

"Trappist Blond",
"Trappist Bruin Bier / Biere Brune",
"Trappist Extra"

22 -§- 28

],
"name": "Brouwerij De Achelse Kluis"

}, {
"beer_list": [

"Framboise 1997",
"Geuze Boon",
"Kriek",
"Mariage Parfait 1995",
"Pertotale Faro"

],
"name": "Brouwerij Boon"

}

Number of distinct beers produced by breweries around Brussels.6

System.out.println(bucket.query(N1qlQuery
.parameterized("SELECT count(DISTINCT beer.name) AS total_beers "

+ "FROM ‘beer−sample‘ beer "
+ "INNER JOIN "
+ "‘beer−sample‘ brewery "
+ "ON KEYS beer.brewery_id "
+ "WHERE brewery.name WITHIN "

+ "(SELECT name "
+ "FROM ‘beer−sample‘ WHERE type = ’brewery’ AND "
+ "ABS(geo.lat − $1) <= 0.2 AND "
+ "ABS(geo.lon − $2) <= 0.2)",

JsonArray.from(50.8503, 4.3517)))); // Brussels coordinates

Result :

{
"total_beers": 65

}

Average time to run this queries, without the "LIMIT" parameter, is around 1.4 sec which
is rather impressive considering the dataset size (7303 documents) and our not so fast ma-
chine (Intel i3 CPU @ 1.80GHz with 4Gb of RAM). There are more intelligent ways to parse
results returned from queries as well as a possibility to set parameters to queries (for example
consistency level) but we do not cover it in this report.

To try to achieve even lower execution times of queries, like was said previously, one way
of doing it is by creating GSI. For example lets consider the following query which in best
case takes around 650ms to execute.

System.out.println(bucket.query(N1qlQuery.simple("SELECT name "
+ "FROM ‘beer−sample‘ "
+ "WHERE type = ’brewery’ AND website LIKE ’%.be/’"))
.info().executionTime());

It simply finds breweries names where the website ends by ".be/" but here we only print the
execution time. To create a GSI to index for example type and website attributes it can be
done as follows :

6One interesting question during our presentation was "What are the units?". In fact, the "geo" argument
has "lat"/"lon" fields but also has an "accuracy". The latter simply indicates the precision of the coordinates
and has values like "ROOFTOP", "RANGE_INTERPOLATED" or "APPROXIMATE". Maybe this does not answer
directly the question but probably our query should use this information to make the results more consistent
with each other.

23 -§- 28

bucket.query(N1qlQuery.simple("CREATE INDEX type_website_index "
+ "ON ‘beer−sample‘(type, website) USING GSI"));

Now, if we re-run the previous query, the execution time becomes around 150ms. This way,
we can greatly improve the rapidity of all the previous queries by creating appropriate GSI
which can take some seconds to run but this only needs to be done once. It is possible to
combine the previous command with a WHERE clause (to limit the number of documents
being indexed) and with a WITH clause (to set the number of replicas or explicitly specify the
nodes where they should be kept on). We haven’t said it before but replication mechanism is
also available for indexes.

The queries also allow to manage the database through traditional INSERT, UPDATE,
DELETE statements.

Inserting two new documents. The first has an id = ’key1’, fields ={’library’, ’campus’} and
the second has id = ’key2’ and a field ’university’.

System.out.println(bucket.query(N1qlQuery.simple("INSERT INTO ‘beer−sample‘ (KEY, VALUE) " +
"VALUES (’key1’, " +
" {’library’: ’BSH’, " +
" ’campus’: ’Solbosch’ })," +
"VALUES (’key2’, { ’university’: ’ULB’})")));

The INSERT query can also be combined with the SELECT clause allowing to insert doc-
uments formed from existing fields. The fields can also be searched from an external bucket.
In that case, UUID() parameter for KEY argument will generate unique keys for each new
created document.

If one day Belgium becomes a supreme nation that rules the world, we can then execute
the following query where all the foreign breweries will be marked as belonging to our
territory. Additionally, we return the name field of all the updated documents.

System.out.println(bucket.query(N1qlQuery.simple("UPDATE ‘beer−sample‘ "
+ "SET country = ’Belgium’ "
+ "WHERE type = ’brewery’ AND country <> ’Belgium’ "
+ "RETURNING name")));

There is also an UPSERT query that has an INSERT-like syntax, giving a key-value pair.
It is a combination of UPDATE and INSERT. If a document referenced by the provided key
already exists in the database, it is updated with the given value. Otherwise, a new document
is created.

Deleting a document by its id.

System.out.println(bucket.query(N1qlQuery.simple("DELETE FROM ‘beer−sample‘ "
+ "USE KEYS ’21st_amendment_brewery_cafe’")));

Deleting the first ten documents corresponding to a certain criteria and returning all the
deleted content.

System.out.println(bucket.query(N1qlQuery.simple("DELETE FROM ‘beer−sample‘ "
+ "WHERE type = ’beer’ and abv = 0 "
+ "LIMIT 10 "

24 -§- 28

+ "RETURNING *")));

4.4.9 N1QL performance

To study (one aspect of) the system performance, the execution time of an N1QL query is
calculated for a varying number of documents.

The chosen query selects the name, categ or y and br ewer y_i d fields of beer having their
alcohol by volume above 5.

System.out.println(bucket.query(N1qlQuery.simple("SELECT name, category, brewery_id "
+ "FROM ‘beers−sample‘ "
+ "WHERE type = ’beer’ AND abv > 5.0"))
.info().executionTime());

It is executed on the same beer s − sample dataset as before, which contains approximately
5000 documents. This dataset is multiplied artificially, simply by duplicating documents and
only changing their id. The content of the documents remains unchanged but it does not
matter for the purpose of the task. At each duplication step, the size of the dataset doubles
and the query execution time is calculated. The data are loaded into the database using the
cbdocloader tool in command line, specifying from which directory they should be taken,
and to which bucket they should be sent.

cbdocloader -n [host]:8091 -u [Admin] -p [pwd] -b [bucket-name] [directory]

Let us note that the biggest handled dataset is limited to 200000 documents, as the loading
duration was already quite long (around 30 minutes for 200000 documents). This time could
probably be reduced by tuning the loading tool or the settings of the database, for extensive
studies to be led.

The results are shown in the following graph.

10000 25000 50000 100000 200000
Number of documents

0.70
1.58

3.45

5.82

12.41

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Figure 4.5: Query execution time according to the number of documents

The shape of the graphe is linear, which is not so bad, but it means that each time the data
doubles, the time to execute the query approximately doubles too. This result is to put into

25 -§- 28

consideration that only a primary index was created at the time of the query execution. We
expect that creating a global secondary index beforehand would give better performance,
and the size of the data should not matter that much in this setting.

4.5 Conclusion

To conclude, this last chapter has outlined the core functionalities of Couchbase. We de-
scribed its general architecture along with some main properties. An emphasis was done on
the available possibilities from the programmer/administrator side. We saw that from this
point of view, Chouchbase is rather flexible (has often many solutions to do the same thing)
and offers plenty options to work with data along with the management and supervision of
cluster and nodes.

Moreover, there are many other functionalities that were not discussed or shown in this
report, such as custom MapReduce functions, manipulation of non JSON documents (i.e.
key-value storage), batching operations (where the requests and responses are done via a
pipelined communication which increases network throughput), full text search, users and
clusters management, security, replication and others.

In sum, Couchbase seems to be a good Document Store candidate for small to big busi-
nesses providing an efficient and reliable system. It may be especially suited for societies
willing to work with JSON format, willing or planning to expand their database to mobile/IoT
applications and where the developers want to get used to the tool quickly and prefer to have
an SQL like query language. It is hard to tell whether Couchbase is better than the solutions
discussed in section 3.2. All of them share similar characteristics and seem to provide more
or less similar services. To really see which solution is best for a given company, we think, it
is necessary to deploy those systems and use it for some time in a practical environment.

26 -§- 28

Bibliography

[1] Guy Harrison, "Next Generation Databases", Springer Science+Business Media New
York, 2015.

[2] ACID definition, "http://searchsqlserver.techtarget.com/definition/ACID",
consulted on 4/10/2017.

[3] Dan McCready and Ann Kelly, "Making Sense of NoSQL", Manning Publications, 2014.

[4] Big Data evolution graph, "http://www.atkearney.be/analytics/
ideas-insights/article/-/asset_publisher/hZFiG2E3WrIP/content/
big-data-and-the-creative-destruction-of-today-s-business-models/
10192", consulted on 4/10/2017.

[5] Graph Databases for Beginners: ACID vs. BASE Explained, "https://neo4j.com/
blog/acid-vs-base-consistency-models-explained/", consulted on 5/10/2017.

[6] Abandoning ACID in Favor of BASE, "https://www.thoughtco.com/
abandoning-acid-in-favor-of-base-1019674", consulted on 5/10/2017.

[7] What is a Key-Value Store?, "http://www.aerospike.com/
what-is-a-key-value-store/", consulted on 7/10/2017.

[8] NoSQL Databases Explained, "https://www.mongodb.com/nosql-explained", con-
sulted on 9/10/2017.

[9] What is a Document Store Database?, "http://database.guide/
what-is-a-document-store-database/", consulted on 9/10/2017.

[10] Document-oriented database, "https://en.wikipedia.org/wiki/
Document-oriented_database", consulted on 9/10/2017.

[11] Document Databases Explained, "http://basho.com/resources/
document-databases/", consulted on 9/10/2017.

[12] Comparing document-oriented and relational data, "https://developer.
couchbase.com/documentation/server/3.x/developer/dev-guide-3.0/
compare-docs-vs-relational.html", consulted on 10/10/2017.

[13] JSON: The Fat-Free Alternative to XML, "http://www.json.org/xml.html", consulted
on 10/10/2017.

[14] Entity Relationships and Document Design, "https://developer.
couchbase.com/documentation/server/4.6/data-modeling/
entity-relationship-doc-design.html", consulted on 10/10/2017.

27 -§- 28

http://searchsqlserver.techtarget.com/definition/ACID
http://www.atkearney.be/analytics/ideas-insights/article/-/asset_publisher/hZFiG2E3WrIP/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://www.atkearney.be/analytics/ideas-insights/article/-/asset_publisher/hZFiG2E3WrIP/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://www.atkearney.be/analytics/ideas-insights/article/-/asset_publisher/hZFiG2E3WrIP/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
http://www.atkearney.be/analytics/ideas-insights/article/-/asset_publisher/hZFiG2E3WrIP/content/big-data-and-the-creative-destruction-of-today-s-business-models/10192
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/
https://www.thoughtco.com/abandoning-acid-in-favor-of-base-1019674
https://www.thoughtco.com/abandoning-acid-in-favor-of-base-1019674
http://www.aerospike.com/what-is-a-key-value-store/
http://www.aerospike.com/what-is-a-key-value-store/
https://www.mongodb.com/nosql-explained
http://database.guide/what-is-a-document-store-database/
http://database.guide/what-is-a-document-store-database/
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
http://basho.com/resources/document-databases/
http://basho.com/resources/document-databases/
https://developer.couchbase.com/documentation/server/3.x/developer/dev-guide-3.0/compare-docs-vs-relational.html
https://developer.couchbase.com/documentation/server/3.x/developer/dev-guide-3.0/compare-docs-vs-relational.html
https://developer.couchbase.com/documentation/server/3.x/developer/dev-guide-3.0/compare-docs-vs-relational.html
http://www.json.org/xml.html
https://developer.couchbase.com/documentation/server/4.6/data-modeling/entity-relationship-doc-design.html
https://developer.couchbase.com/documentation/server/4.6/data-modeling/entity-relationship-doc-design.html
https://developer.couchbase.com/documentation/server/4.6/data-modeling/entity-relationship-doc-design.html

[15] DB-Engines Ranking of Document Stores, "https://db-engines.com/en/ranking/
document+store", consulted on 11/10/2017.

[16] MongoDB Architecture, "https://www.mongodb.com/en/mongodb-architecture",
consulted on 11/10/2017.

[17] Introduction to MongoDB, "https://docs.mongodb.com/manual/introduction/",
consulted on 11/10/2017.

[18] Amazon DynamoDB, "https://aws.amazon.com/dynamodb/", consulted on
11/10/2017.

[19] Apache CouchDB 2.1 Documentation, "http://docs.couchdb.org/en/latest/",
consulted on 11/10/2017.

[20] Regions Azure, "https://azure.microsoft.com/fr-fr/regions/", consulted on
11/10/2017.

[21] Welcome to Azure Cosmos DB, "https://docs.microsoft.com/en-us/azure/
cosmos-db/introduction", consulted on 11/10/2017.

[22] MarkLogic key features, "http://www.marklogic.com/what-is-marklogic/
features/", consulted on 11/10/2017.

[23] Couchbase product editions, "https://www.couchbase.com/products/editions",
consulted on 14/10/2017.

[24] Couchbase Mobile, "https://www.couchbase.com/products/mobile", consulted on
14/10/2017.

[25] Couchbase Server What’s New?, "https://developer.couchbase.com/
documentation/server/5.0/introduction/whats-new.html", consulted on
14/10/2017.

[26] Couchbase Server, Distributed Data Management, "https://developer.couchbase.
com/documentation/server/5.0/concepts/distributed-data-management.
html", consulted on 15/10/2017.

[27] REST API endpoint list, "https://developer.couchbase.com/documentation/
server/5.0/rest-api/rest-endpoints-all.html", consulted on 14/10/2017.

[28] Couchbase Server: An Architectural Overview, "https://info.couchbase.com/
Architectural-Overview_Guided-LP.html", consulted on 25/10/2017.

28 -§- 28

https://db-engines.com/en/ranking/document+store
https://db-engines.com/en/ranking/document+store
https://www.mongodb.com/en/mongodb-architecture
https://docs.mongodb.com/manual/introduction/
https://aws.amazon.com/dynamodb/
http://docs.couchdb.org/en/latest/
https://azure.microsoft.com/fr-fr/regions/
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
http://www.marklogic.com/what-is-marklogic/features/
http://www.marklogic.com/what-is-marklogic/features/
https://www.couchbase.com/products/editions
https://www.couchbase.com/products/mobile
https://developer.couchbase.com/documentation/server/5.0/introduction/whats-new.html
https://developer.couchbase.com/documentation/server/5.0/introduction/whats-new.html
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-management.html
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-management.html
https://developer.couchbase.com/documentation/server/5.0/concepts/distributed-data-management.html
https://developer.couchbase.com/documentation/server/5.0/rest-api/rest-endpoints-all.html
https://developer.couchbase.com/documentation/server/5.0/rest-api/rest-endpoints-all.html
https://info.couchbase.com/Architectural-Overview_Guided-LP.html
https://info.couchbase.com/Architectural-Overview_Guided-LP.html

	Introduction
	Relational databases and SQL

	NoSQL
	BASE transactions
	RDBMS and NoSQL recapitulation

	Document stores
	Internal data structure
	Today's most used document stores

	Couchbase
	Architecture
	Cluster Manager
	Data Service
	Index Service
	Query Service
	Search Service
	Storage
	Cache

	Installation
	Methods of administration
	Querying documents
	Accessing a bucket
	Creating documents
	Updating documents
	Retrieving documents
	Deleting documents
	Operations on sub-documents
	Other useful methods
	N1QL syntax
	N1QL performance

	Conclusion

	Bibliography

