

Documenting DevOps: Agile, Automation,

and Continuous Documentation

Table of Contents

Executive Summary .. 2

Birth of Agile and DevOps .. 3

Documentation before DevOps ... 4

Documentation’s Impact on Modern Teams 5

Continuous Documentation .. 7
Opportunity and innovation .. 9
Centralization .. 10
Governance & Security ... 10

Building in continuous documentation 10

Use Cases and Examples ... 13
A Cloud Provider: ... 13

Best Practices .. 16

Key takeaways ... 17

About Chris Riley ... 18

About DevOps.com ... 18

Documentation in the Modern Software Delivery Pipeline

Executive Summary

Productivity is the key driver in the modern software delivery pipeline –DevOps. But the

creation of IT documentation – documents explaining systems and their configuration – is not

traditionally associated with productivity. Many have come to view the process of

documentation a drag on DevOps and similar methodologies, and some consider it

counterproductive and unnecessary.

Still, faster-paced development organizations face increasing complexity in applications and

infrastructure. If traditional documentation is not going to provide support, something has to fill

the gap. The gap of helping organizations know what they have, how it’s configured, and how to

plan for the future. To meet those needs, a “modern documentation” is beginning to emerge,

built on the same pillars of efficiency and automation as the DevOps methodology it supports.

Modern documentation is fundamentally different from traditional documentation in that its

creation requires almost no human interaction, but the creation and management of the process

that builds it requires a substantial amount of planning.

Key findings include:

• Even the definition of documentation is subjective. Despite several decades of

implementation, the methods, drivers, and even language of documentation are

nearly limitless. Standards such as ITSM help stabilize the look, feel, and process

of documentation, but it does not help an organization understand how to use

that documentation and integrate it into development.

• The modern software delivery pipeline introduces new complexities in

administration. New tooling in the DevOps space has improved application

efficiency and quality, but in some cases, this has also reduced the manageability

of the environment. This creates new challenges to knowing what you have, how

it functions, and how to extend it into the future.

• As the delivery pipeline moves to a continuous stream of releases, classic

documentation processes become impossible. Documentation must happen

automatically within the process, or not at all.

• In order for documentation to be useful, it needs to be actionable.

Documentation in the Modern Software Delivery Pipeline

Birth of Agile and DevOps

Ever-increasing customer demand and competition has stressed businesses to the point where

traditional, monolithic waterfall methodologies no longer make sense for a great many tasks.

Requirements change too fast, and the competitive landscape rarely allows for major releases

that can be months or years apart. This need for speed and speed and flexibility continues to

drive more businesses toward Agile methodologies and the DevOps mindset.

Agile introduced many new practices, from shorter, standup meeting formats to more specific

“user stories” functioning as a spec to a far more iterative, responsive development process.

Software developers can add new features quickly, so they are more engaged in product

roadmaps, and increased speed and frequency of delivery helps attract and retain satisfied

customers.

The DevOps framework supports the culture demanded by Agile’s fast-moving environment – a

culture that, in theory, unites people, process and tools, creating a continuous stream of

application releases. In this world of Continuous Integration and Continuous Delivery, software

goes from developer’s hands to production as soon as they press commit.

But speed also creates problems. It’s harder to manage due to a lot of moving parts. And unit,

functional, integration, and end-to-end testing have to happen faster as well in order to keep up

with the higher volume of changes thrown at them in a shorter amount of time, and other, more

manual processes, may not be able to keep pace.

Documentation in the Modern Software Delivery Pipeline

Documentation before DevOps

The very nature of IT operations requires documentation to know where assets are and how they

are configured. However, the very documentation that provides this information has often been

considered an afterthought. Rather than treating documentation as an integral part of building

value, it is often an afterthought, managed only at the beginning and end of any deployment

project, with periodic updates of only the most critical components.

Documentation tends to be created in waterfall-based sequential chunks, leaving a large window

of time before it is updated and creating significant potential synchronization problems. In

waterfall-based documentation, recent entries may reflect the current state of software

development, but months-old early entries may be entirely wrong. Because classic software

development also followed a waterfall model, it mitigated these weaknesses, as application

infrastructure could be set up well in advance of any deployment and did not change frequently.

There are few documentation standards. Traditionally, most ISVs and enterprises have viewed

documentation as only an insurance policy, designed to resolve disputes, recover from disasters,

or assist in troubleshooting. Even that limited take on documentation has been interpreted in

many different ways. The same processes of cataloging components and their configurations has

been referred to as “Asset Management,” “Change Control,” “Topology Mapping,”

“Configuration Management” and countless others. Since many documents are deliverables

Documentation in the Modern Software Delivery Pipeline

requested by specific company divisions (e.g., application support or product marketing), there

is very little consistency within organizations, and even less consistency in the broader market.

This inhibits internal productivity and limits the ability of businesses to use documentation in

creative, growth-supportive ways.

Over time, some standards began to emerge. Information Technology Information Library

(ITIL) / IT Service Management (ITSM) introduced an assembly line process to documentation,

and also started the trend of orchestration – a big step toward increasing the efficiency of

Operations teams. The standard has continued to evolve to a more proactive process,

incorporating workflow and steps to consume documentation and update architectures to meet

new demands. But the new process focus is on change management only, not software delivery.

Regardless of methodology, documentation is also prone to human error, particularly when

those responsible for creating the documentation are also coders, operations staff, or others with

time-sensitive tasks competing for attention. Partial and error-filled documentation during rush

periods is extremely common, since creating that documentation is directly at odds with

revenue-generating efforts.

Documentation’s Impact on Modern Teams

Modern software development is substantially different. Demands for new functionality,

ongoing product enhancements, and reduced development costs have pushed developers away

from traditional waterfall methodologies toward a more flexible, delivery-centered approach. In

the new approach, the software delivery pipeline pushes an active, steady stream of code from

delivery to release on a much faster schedule. Therefore there is less opportunity to detail assets

and their configurations.

As the pipeline inevitably converges on continuous deployment, traditional documentation is

not an option. Even in the intermediate move to sprints (which could be compared to a faster

“IT Service Management (ITSM) is the process-based delivery
and management of IT services to employees and customers. It
aligns the delivery of IT services with business goals.”

- Margaret Rouse, Tech Target

Documentation in the Modern Software Delivery Pipeline

http://searchcio.techtarget.com/definition/ITSM

waterfall), IT does not have the time to document changes to infrastructure while preparing for

new releases and addressing production issues.

Some would question if there is even a need for documentation in a true continuous deployment

model. However, it is important to remember that many of the benefits documentation has

brought to waterfall development can also be transferred to a fully automated development and

deployment process. Among those benefits are:

• Training and change control: Onboarding new team has always been a

challenge, and businesses have often addressed this by limiting the scope of the

operation they expose to new hires and creating a slower, more expensive “ramp

up” process to allow employees to learn over time. A robust, interactive

documentation could allow new team members to learn on the fly and reduce

their time-to-value, while targeting educational resources in a much more logical

manner.

• Historical data on the performance of the pipeline: One of the key

reasons projects and teams stagnate a lack of a historical understanding. With

visibility into where the team has been, where the weak points of an application

are and what is going well, teams can resolve stalls more effectively and optimize

the development and release process to avoid them in the future.

• Better understanding of resource spend: Organizations use multiple

private and public clouds at the same time, and DevOps provides the opportunity

for a large number of employees to spin up and down environments on their own

authority. Resource sprawl is a huge problem that impacts the cost of the

operation. Knowing what is being utilized, for what, and for how long is critical to

understanding and optimizing infrastructure spending.

• Building a common language: The goal of DevOps is to get everyone on the

same page. While responsibilities are not heterogeneous, the understanding of

the team and its goals must be. Technical teams need to communicate internally,

but they must also communicate with business units, as well.

Documentation in the Modern Software Delivery Pipeline

• Reduced Time to Resolution (TTR): Finding the expert who can address a

problem is never as easy as it should be. People are out of town, issues come up

on off hours, and the experts are already busy with other tasks. Active

documentation allows the team to find the answer without needing manual

interactions with experts.

• Expanded participation in infrastructure: Relevant, accessible

documentation extends knowledge of critical systems throughout the

organization, widening the potential number of employees capable of resolving

any given issue.

Without making a change, operations will lose control of new systems and their rapid evolution.

Developers will not be able to leverage some modern software components that span code and

infrastructure. For the team as a whole, the hunt for configuration subject matter experts will

become worse as they add new technologies and complexities to the system.

Fortunately, modern processes and tools enable modern documentation. Modern

documentation introduces itself somewhat accidently out of new tools, and a metrics driven

development team.

Continuous Documentation

While traditional documentation cannot survive the demands of modern development,

abandoning documentation altogether equally unviable. An ongoing, automated processes folds

modern documentation into the DevOps framework and prevents documentation from

becoming a bottleneck to rapid releases. Just as traditional documentation slipstreamed into

waterfall software releases, modern documentation does the same for DevOps. It melds to the

continuous delivery and deployment of applications as “continuous documentation.” Modern

documentation becomes an active participant in the software delivery pipeline, which enhances

the oversight, metrics, and responsiveness.

Documentation in the Modern Software Delivery Pipeline

http://devops.com/blogs/cloud-based-documentation-speed-devops/

In this model, regular processes and systems themselves should be the one source of truth. They

will directly provide information about what, and how all systems are operating. And there will

no longer be a repository of documents. In fact, other than periodic excerpts from the system,

the entire delivery chain is one massive document.

The contents of continuous documentation are the collection of all data from multiple systems,

typically aggregated into a single system for analysis and reporting. The implementation is done

with minimal effort, and sometimes on its own, which can pose several challenges. If an

organization takes steps into DevOps, it is likely whatever tools they procure will provide some

level of analytics. And that alone starts the creation of documentation. But it takes more than

accepting the results that are there. As stated above, the documentation is a constant stream of

information. And value is obtained by asking specific questions, bringing answer results into

reports, and setting up alerts for critical events.

“The purpose of a version control repository is to manage changes to
source code and other software assets (such as documentation) using
a controlled access repository. This provides you with a “single
source point” so that all source code is available from one primary
location.”

- Paul M. Duval et al, Continuous Integration: Improving Software
Quality and Reducing Risk

Documentation in the Modern Software Delivery Pipeline

With modern, automated documentation, the burden on the organization is no longer on

creating documents, but on planning how to consume them. This will inform the process of

setting up the proper style and parameters for generating reports, as well as setting up the

responsive systems that will alert the team of changes, deviations and other issues.

Documentation will be created continuously with development and infrastructure deployments,

rather than by ad-hoc manual efforts.

Modern documentation will improve the awareness and abilities of the entire team, expanding

everyone's confidence in the system and its setup and allowing more active engagement from

everyone. Over time, increased content engagement and accessibility will lead to revisions in the

process, which will refine content to better support real-world scenarios in an automated

fashion.

Modern documentation will offer fringe benefits, as well, including:

Opportunity and innovation
Development and Operations teams are often focused on pushing the latest clean releases, at the

expense of examining the broader chain of software delivery for potential improvements. It is

not common for teams to experiment with configuration changes, or cutting edge software

components unless necessary to sustain loads or new functionality. Continuous documentation

reduces the risk of experimentation. If changes do break a build, continuous allows teams to

record and examine the break in almost real-time, while providing precise instructions on how

to reverse the changes.

Support and documentation are development’s customers just as
much as end users. Development needs to produce documentation
and training that helps customer support understand the applications
they’re supporting. Support, in turn, needs to provide feedback that
helps development understand customers’ problems with the
applications they’re building.

- Jeff Sussna, Continuous Quality

Documentation in the Modern Software Delivery Pipeline

Centralization
Because continuous documentation is to a living thing produced through automation, its

potential coverage is dramatically increased. In theory, it can be completely comprehensive,

limited only by a lack of planning or misconfigured systems and logging. However, if led by a

strong analytics and alerting platform, ongoing tuning and the addition of new data sources is

not difficult, leading to a centralized repository that grows in relevance, with all data available to

alerting tools and other enterprise applications.

Governance & Security
Because continuous documentation is automated, always on, and not subject to human error, it

provides an automatic audit trail. And because it has the ability to correlate all components of

the development environment, it can help pinpoint security exploits. Systems acting on the data

repository also should permit the creation of policies specifying proper configurations and

spawning alerts when configurations are out of compliance

Building in continuous documentation

Continuous documentation is created automatically, and IT’s effort is spent on its presentation

only. This also means that without deliberate consideration there will be a collection of data

from most DevOps tools, and the organization will not know how to leverage it.

The primary challenge of continuous documentation is that it cannot be an afterthought. Unlike

traditional documentation, which can be taken up and changed at any point in time, continuous

documentation needs to be inserted in monitoring, delivery, and alerting mechanisms when

they are first implemented. As a result, documentation readiness must factor into tool choice.

Ideally at the very beginning of designing a modern delivery pipeline, interested parties should

ask the following questions.

1) What sorts of questions do we need answered about our system setup and usage?

2) Where is our system of record for infrastructure details?

3) What is our communication standard for discussing system details?

This pre-mortem will help the organization identify expectations of documentation prior to

building it into the system. These questions must precede any process adoption, as

Documentation in the Modern Software Delivery Pipeline

implementing continuous documentation retroactively is difficult. Once the organization knows

what it expects as an output, it can select the system of record for the majority of content. The

need for visiting many tools for documentation should also be avoided, so the aggregation of

that data to a single reporting and alerting system is ideal.

Once an organization knows the questions, the output, the system, it can standardize on a

communication style. The standard might differ depending on the technical depth of the

recipient. For example, technical teams may require a query interface, while non-technical

workers might require canned reports in PDF format for easy viewing and sharing. Additionally,

different audiences might require different sets of language to describe similar phenomena.

After the drivers and value is determined the processes and tools can be implemented to mold to

the desired outcome. This will result in a system that automatically builds documentation on the

fly with value. The relevant components are:

Continuous Documentation Processes:

 Continuous Integration

 Continuous Delivery (CD)

 Continuous Deployment (CD)

 Production Monitoring

It should be noted that there is a subtle difference between Continuous Delivery and Continuous

Deployment, and it is in process only. Delivery takes software to the point just before release,

after which a release manager performs a manual deployment following acceptance.

Deployment is automatic delivery of code to production. This requires additional measurement,

alerting, A/B Testing, and revert mechanisms. Deployment is not for every application.

Continuous Documentation Tools:

 Issue and Project tracking

Log Analysis

Orchestration

 Configuration Management

 Deployment Automation

 Testing Automation

Documentation in the Modern Software Delivery Pipeline

 Application Performance Monitoring

 Alerting

Most often the log analysis platform is the system of record and the alerting tool responsible for

making the “documentation” responsive.

Orchestration and configuration management in the modern software delivery pipeline is driven

by scripts. Those scripts themselves are documentation. They are versioned in a source

repository, and their details contain information about the servers, their network configuration,

their installed operating system, the operating systems configuration, and installed packages

and their configuration. The scripts themselves can be stored in a log analysis platform or search

tool, so the organization has the ability to query configurations at any time. More advanced use

cases will adopt anomaly detection, which would allow the examination of script runs, to see if

one provision event deployed a configuration that did not match the normal.

The deployment automation tools manage pipeline states, often containing all of the CI and CD

stages and mechanism. The status updates from these systems can be used as triggers in the

alerting platform to note timestamps in major stage changes, and their logs can be stored to

provide historical data on the number of releases, reverts, or other factors.

Testing automation tools handle the automated testing from Unit, Integration, Functional and

End-to-End testing. At all of the stages of Integration and End-to-End testing, documentation is

useful, but optional. In other stages, most of the activity in testing is short lived and not relevant

to overall process. However, storing data about test runs can help the development and test

teams understand quality trends, and making simple calls from test script exceptions can get a

failed test back on track automatically, avoiding costly test reruns.

A set of automated deployment scripts serves as documentation, and
it will always be up-to-date and complete, or the deployment will not
work.

- Jez Humble & David Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation

Documentation in the Modern Software Delivery Pipeline

Application Performance Monitoring (APM) interacts with the application and the alerting

layers to measure and report on performance issues. It also serves to store logs in the log

analysis platform for historical performance details, which later can be used to correlate

performance to infrastructure changes. Real time issues can be spotted when the APM tool takes

events and pushes them to an alerting mechanism. This will also allow the team to drill down

into the APM system for details, and waste less time tracking down root cause.

This subset of examples of how tool data, their configuration, and their integration into alerting

systems allows the continuous documentation to push interesting information to the team. And

allows the team to run simple queries to learn about any component of the system.

Use Cases and Examples

While often not named as such, continuous documentation has been leveraged in organizations

for several years. Adopters tend to be large enterprises with a mix of both traditional and

modern development teams, or software companies whose web application has been in

production for 5 or more years.

The users of continuous documentation have streamlined and unified their data collection. They

have built analytics, reporting and alerting layers. And they have benefited the entire team with

faster TTR, better communication, and greater awareness.

A Cloud Provider:

A niche cloud provider founded in 2009 has identified a need to change. The company offers

virtual machines for organizations to use as sandboxed testing environments. Its value is the

rapid provisioning of multi-tier environments, which organizations will use for short times, and

then let them de-provision automatically.

A comprehensive automated test suite even provides the most
complete and up-to-date form of application documentation, in the
form of an executable specification not just of how the system should
work, but also of how it actually does work.

- Jez Humble & David Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation

Documentation in the Modern Software Delivery Pipeline

To offer this, the company owns and manages its own datacenter, with more than 2,000 VMs

provisioning at any moment in time. IT is comprised of a traditional networks operation center,

and support, which is closely tied with Development and Product Management.

As the application and adoption grew, the provider ran into large challenges. Their application

development team needed to understand how their infrastructure was working. Because their

code interacted directly with the hypervisor layer, and because their offering was worldwide

their infrastructure and VMs were prone to hacking, Development had to manage security

policies across the entire inconsistent collection of VMs, regardless of whether they were truly

being used.

The provider knew it needed to put all its system data and events in one place to provide better

communication and visibility. It built a reporting engine from commercial DevOps tooling, and

an alerting platform for on-call support staff. And the entire development team was able to

investigate issues that cross both code and infrastructure without interacting with operations

directly.

Top 5 US Bank:

Large banks are engines built on top of documentation and governance, but they must also

respond decisively to their ever demanding customer base. They have to combine traditional

waterfall development teams with consumer facing mobile and web application development

teams. The technologies need to interact, but the speed of the traditional team cannot impact

the release cycles of the modern one. Mobile banking is highly competitive and fast-moving.

Because of their security and governance requirements, one large bank found it very hard to

balance the old with the new. Its approach was to start with strategy, through a new IT unit

called Shared Services. This unit then eventually owned all documentation. It reported to

operations, but its customers were development. The unit was a facilitator and conduit for

Development to IT, and members were able to use continuous documentation to provide active

feedback to development teams.

Documentation in the Modern Software Delivery Pipeline

Consumer High-Tech:

One of the largest High tech consumer device manufacturers in the world has no choice but to

balance the rapid development with an integration backbone that is slow and immutable.

They want and need to embrace DevOps but are faced with challenges brought about by their

size. Their answer to the adoption of DevOps was to build separate DevOps units for each

application team. The units consisted of a DevOps manager (responsible for automation and

releases) and a small, very focused development team. These units were built for both public and

internal applications.

They did have access to some tooling from IT services, but IT services mostly served to regulate

the groups.

This structure helped developers move quickly, but sacrificed cross-team communication to do

so. The company’s biggest challenge was tool overlap. Each team had some amount of

autonomy, and each selected and used tools in its own way. Standardization seemed futile, thus

the original answer was heavy management layer to police it. That helped reduce the problem

but did not stop it, and overhead started leaking back to old release processes.

Eventually the company deployed a massive analytics system, in which there was not only data

on tools being used and their configuration, but also a collaboration system that had

documentation of systems being used and the problems they solved. Allowing teams to identify

an existing tool to their problem. With internal subject matter expertise to help if needed.

eCommerce Retailer:

A top retailer of athletic shoes has recently shifted a good deal of focus to its ecommerce

platform. In order to be competitive, they needed to grow their eCommerce site rapidly, while

still providing pricing, sizing and availability data to other large eCommerce sites.

The business was a victim of its own successful strategy. It grew too fast, and operations staff

found that their tools sprawled out of control. As they did not have a single window into the

Documentation in the Modern Software Delivery Pipeline

entire operation, visibility suffered, and their eCommerce call center was the identifier of 90% of

all bugs and issues.

Development and Operations decided to implement an “APM plus alerting” system. This

allowed them to find and respond to bugs before customers did, and finally brought every

employee together “on the same page” in their understanding of systems and processes. The

retailer expects to expand to include a full analytics platform so that they can look at the

development processes, as well as production. This will further increase awareness and help the

business release faster.

Best Practices

The concept of continuous documentation is new, but its practice is not. It has naturally evolved

out of the implementation and move to DevOps. That natural evolution, without deliberate

oversight has created a number of issues. Steps to avoid these complications include:

1) Be aware of a tool’s reporting functionality: Often, organizations do not

realize the availability or power of reporting that comes with tools.

2) Pushing for tool integration: In order to get all the value of continuous

documentation, all variables/assets need to be able to relate to each other. This

can be done with manual integration and log design. But pre-built integrations

help tremendously. The alerting system is the most critical point of focus, with

log analysis and delivery systems providing key inputs.

3) Involve the entire technical team in alerting and log analysis: Siloed

continuous documentation inhibits the realization of benefits.

4) Build use cases for your DevOps environment: Detail the answers you want from

the documentation in advance.

5) Avoid data memorization: Data can be paralyzing to teams that have not set

boundaries. Paralysis can be avoided by designing queries, reports, and alerting

in advance so that manual queries are not necessary. Otherwise, teams will waste

time searching and designing ad-hoc reports for small, non-recurring concerns.

6) Prepare for business’ involvement: Once the power of continuous

integration is unleashed, other teams may become interested. Carve out a place

for Product Management or Marketing to do reporting, or a way to regularly

Documentation in the Modern Software Delivery Pipeline

deliver standard reports in advance. This can bolster Operations’ reputation, and

also mitigate the distraction requests can cause.

The surprising element of continuous documentation is that it cannot require manual effort,

abut this places a larger burden on the planning stage To fully realize the benefits of CD, the

team needs to be aware that documentation does exist, and that it’s an entirely different creature

than it was before.

Key takeaways

Not only is the modern delivery pipeline moving faster, but the complexity of infrastructure and

applications is also increasing with it.

• Traditional documentation was successfully implemented, but only periodically

used. It was subjective and prone to human error, and required waterfall

development.

• Traditional documentation will remain for some time, as waterfall development

remains. This is particularly true for business applications like Enterprise

Content Management (ECM), and Enterprise Resource Planning (ERP). The

nature of this type of development and its reliance on third party systems out of

their control means traditional documentation may remain the only option.

• DevOps brings processes and tools that introduce new complexities and

complicate administration. But it also provides more data and new ways to look

at documentation.

• For all other web and mobile applications, documentation has to follow the shift

into faster development, greater software quality and a stream of releases.

• Traditional documentation is simply not possible as delivery pipelines move to

DevOps.

• Documentation in modern systems has to be responsive and interactive

compared to the reactive approach employed in waterfall development.

• The need for documentation has not gone away, but its value has changed.

Documentation in the Modern Software Delivery Pipeline

About Chris Riley

Chris Riley is a coder turned market analyst. He is co-founder of Fixate IO a market analysis

firm. Riley has spent 15 years helping organizations transition from traditional development

practices to a modern set of culture, processes and tooling. He is an O’Reilly author, regular

speaker, and subject matter expert in the areas of DevOps strategy and culture and Enterprise

Content Management. Chris believes the biggest challenges faced in the tech market is not tools,

but rather people and planning.

Throughout Chris’s career he has crossed the roles of marketing, product management, and

engineering to gain a unique perspective of how the deeply technical is used to solve real-world

problems. By working with both early adopters and late, he has watched technologies mature

from rough solutions to essential and transparent. In addition to spending his time

understanding the market he helps ISVs selling B2D and practitioner of DevOps Strategy. He is

interested in machine-learning, and the intersection of BigData and Information Management.

About DevOps.com

Launched in 2014, DevOps.com has quickly established itself as an indispensable resource for

DevOps education and community building. We make it our mission to cover all aspects of

DevOps—philosophy, tools, business impact, best practices and more.

Our site is the largest collection of original content related to DevOps on the web and one of the

top result for DevOps-related search terms. Our content includes in-depth features, bylined

articles, blog posts and breaking news about the topics that resonate with IT readers interested

in DevOps: teamwork through improved IT culture, continuous integration, automated

deployment, agile development and infrastructure-as-code among them.

Documentation in the Modern Software Delivery Pipeline

	rileycover
	ContinuousDocumentation-Underwritten_4
	Executive Summary
	Birth of Agile and DevOps
	Documentation before DevOps
	Documentation’s Impact on Modern Teams
	Continuous Documentation
	Opportunity and innovation
	Centralization
	Governance & Security

	Building in continuous documentation
	Use Cases and Examples
	A Cloud Provider:

	Best Practices
	Key takeaways
	About Chris Riley
	About DevOps.com

