

U.S. NUCLEAR WASTE TECHNICAL REVIEW BOARD

DOE-MANAGED SPENT NUCLEAR FUEL

OVERVIEW

U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) comprises a broad range of fuels, resulting mostly (85% by mass) from defense-related nuclear activities (primarily weapons plutonium production reactors and naval propulsion reactors). A smaller amount is from DOE research and development activities, domestic and foreign research reactors, and commercial sources.

STORAGE AND LOCATION

Nearly all DOE-managed SNF is stored at four locations: the Hanford Site in Washington State, the Idaho National Laboratory in Idaho, the Savanah River Site in South Carolina, and the Fort St. Vrain Independent Spent Fuel Storage Installation in Colorado. Approximately 2,500 metric tons of heavy metal (MTHM)¹ of DOE-managed SNF are stored at those sites as of January 2013 (NWTRB 2017). A small amount (~10 MTHM) is stored at over 30 other domestic locations. Figure 1 shows the four major storage locations and the total mass of DOE-managed SNF at each of those locations.²

Figure 1. Major Storage Locations of DOE-Managed Spent Nuclear Fuel and Mass of Spent Nuclear Fuel Stored at Each Site in Metric Tons of Heavy Metal (MTHM). Mass Data from NWTRB (2017).

¹ Metric ton of heavy metal is a commonly used measure of the mass of nuclear fuel. Heavy metal refers to elements with an atomic number greater than 89 (*e.g.*, thorium, uranium, and plutonium) in the fuel. The masses of other constituents of the fuel, such as cladding, alloy materials, and structural materials (and fission products in spent nuclear fuel), are not included in this measure. A metric ton is 1,000 kilograms, which is equal to about 2,200 pounds.

² Board fact sheets providing summary information on DOE-managed SNF stored at the Hanford Site, Idaho National Laboratory, Savannah River Site, and Fort St. Vrain can be found at the Board website: http://www.nwtrb.gov/our-work/fact-sheets. A more detailed description of DOE-managed SNF and SNF storage facilities is provided in the Board report, *Management and Disposal of U.S. Department of Energy Spent Nuclear Fuel* (NWTRB 2017).

About 98% by mass of the DOE-managed SNF is in dry storage, mostly at the Hanford Site inside multicanister overpacks (MCOs), which are welded stainless steel canisters designed for storage, transportation, and eventual disposal at a geologic repository.

Approximately 22 MTHM of DOE-managed SNF currently remain stored in spent fuel pools at the Idaho National Laboratory and 30 MTHM in spent fuel pools at the Savannah River Site (NWTRB 2017). The amount of DOE-managed SNF in dry storage will increase as DOE and the Navy transfer SNF at the Idaho National Laboratory from wet storage to dry storage. Most of the DOE-managed SNF is planned to be packaged into MCOs or other standardized canisters prior to transport from the site where it is stored to storage elsewhere or disposal in a geologic repository.

COMPOSITION AND CHARACTERISTICS

DOE-managed SNF comes from a variety of reactor types and has a wide range of geometries, fuel matrices, cladding types, fissile materials, enrichments, and burnups³ (SNL 2014). The fissile materials in DOE-managed SNF include uranium-233, uranium-235, and plutonium-239 (Carter et al. 2013). The uranium-235 enrichment or mass percent in DOE-managed SNF ranges from less than 0.71% to over 93%. Uranium that contains less than 0.71 mass percent uranium-235 is referred to as "depleted uranium" because the uranium-235 content is less than that of natural uranium. The burnup of DOE-managed SNF ranges from very slightly irradiated to over 500 GWd/MTHM (SNL 2014).

DOE-managed SNF comprises over 250 distinct fuel types and includes over 200,000 fuel pieces or assemblies of varying structures and sizes (NWTRB 2017). The sizes and shapes of some of the DOE-managed SNF are illustrated in Figure 2. To facilitate analysis of the different SNF types, such as in evaluations of geologic repository performance, DOE categorized the

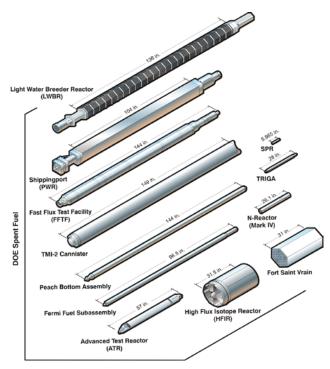


Figure 2. Examples of DOE-Managed SNF Fuel Types (INL 2007).

DOE-managed SNF into 34 fuel inventory groups based on fuel matrix, cladding types, cladding condition, and enrichment (SNL 2014). These are the fuel characteristics that DOE determined to have major impacts on the release of radionuclides from DOE-managed SNF and to affect evaluations of potential nuclear criticality. Table 1 shows the main characteristics of the DOE-managed SNF groups containing the most mass and lists their main sources and total mass.

A substantial amount of DOE-managed SNF is damaged. Causes of the damage include experimental activities and destructive examinations; incidents during packaging, handling, and transportation; or degradation during storage (Carlsen *et al.* 2005). In some cases, the SNF was damaged on purpose to protect proprietary SNF designs. Examples of damaged SNF components include failed cladding, failed

_

³ Burnup is the amount of energy extracted per unit mass of the fuel. Typical units for burnup are gigawatt-days per metric ton of heavy metal (GWd/MTHM) originally contained in the fuel.

Table 1. Main Characteristics, Sources, and Mass of Some DOE-Managed Spent Nuclear Fuel Groups*

	Mass	% of Total		
Group	(MTHM)	Mass	Fuel Characteristics	Main source
1	2,100	84	Low-enriched uranium-metal SNF with zirconium cladding	Hanford Site N Reactor
13	108	4	Low-enriched uranium oxide SNF with failed non-aluminum cladding or with the cladding removed	About 75% by mass is core debris from Three Mile Island Unit-2 reactor accident
7	82	3	Low-enriched uranium oxide SNF with intact zirconium cladding	Commercial power reactors
31	56	2	SNF with sodium bonding between the fuel matrix and the cladding	Experimental fast-neutron breeder reactors
25	43	2	Thorium oxide and uranium oxide SNF with zirconium cladding	Shippingport Atomic Power Station with light water breeder reactor core
32	28	1	Naval SNF	Naval pressurized water reactors
19	25	1	Thorium carbide and uranium carbide SNF with tristructural isotropic- or buffered isotropic-coated particles embedded in a graphite matrix	Fort St. Vrain reactor
Other†	71	3	Variety of fuel types	Variety of sources

^{*}Mass data as of January 2013 (NWTRB 2017)

fuel material, sectioned test specimens, partially reprocessed SNF, and dismantled fuel assemblies (Carlsen *et al.* 2005). A significant fraction of the Hanford N Reactor SNF inventory (Group 1, the largest listed in Table 1) has cladding that is visibly damaged and exposed uranium metal fuel surfaces that show extensive corrosion. The inventory of damaged SNF also includes the ~81.6 MTHM of nuclear reactor core debris from the Three Mile Island Unit 2 reactor.

MASS AND RADIOACTIVITY

As indicated above, there are approximately 2,500 MTHM of DOE-managed SNF as of January 2013 (NWTRB 2017). For comparison, the U.S. inventory of commercial SNF was projected to be 79,389 MTHM by the end of 2017 (Vinson and Metzger 2017). The estimated radioactivity of the DOE-managed SNF inventory as of 2010 was 191 million curies (Carter *et al.* 2013), which is less than 1% of the estimated radioactivity of the commercial SNF inventory, 23 billion curies in 2012 (Carter *et al.* 2013). The total mass of DOE-managed SNF is projected to increase only slightly in the future as SNF is removed from naval nuclear propulsion units and, to a lesser extent, as SNF from domestic and foreign research and test reactors is returned to DOE. By 2048, the total mass of DOE-managed SNF is projected to increase by approximately 37 MTHM, or less than 2% of the 2013 inventory (NWTRB 2017), while its total radioactivity is projected to decrease to about 160 million curies due to radioactive decay.

STABILITY AND RADIONUCLIDE RELEASE IN A GEOLOGIC REPOSITORY

With dozens of different fuel groups, hundreds of different fuel types, and much of the fuel damaged, the dissolution processes and rates for this SNF are likely to vary significantly in a geologic repository. For most of the fuel types, there are no experimental data on the degradation and dissolution of the SNF in repository groundwater (BSC 2004a). A DOE study (BSC 2004a) examined the available data on the

^{+&}quot;Other" includes the other 27 SNF groups that each contribute <1 % to the total mass of DOE-managed SNF.

dissolution kinetics of DOE-managed SNF to develop models for assessing the performance of a geologic repository at Yucca Mountain, Nevada. With the exception of naval SNF, the study recommended applying an "instantaneous" degradation model—the complete release of radionuclides upon exposure to groundwater—to DOE-managed SNF in repository performance assessments. The instantaneous degradation model was selected as a conservative estimate because the damaged and corroded Hanford N Reactor fuel, which constitutes the majority of the DOE-managed SNF (see Table 1), has a very high degradation rate and there are insufficient data to support a less conservative approach.

For naval SNF, the DOE study (BSC 2004a) recommended applying the dissolution model developed for commercial SNF. The commercial SNF dissolution model takes account of the effects on dissolution rate of temperature, pH, and dissolved concentrations of oxygen and carbonate species (BSC 2004b). It provides an upper bound on the degradation rate of naval SNF based on the results of a study conducted under the Naval Nuclear Propulsion Program (BSC 2001).

The DOE study (BSC 2004a) did not evaluate the degradation of sodium-bonded SNF (Group 31 in Table 1) from the operation of experimental fast-neutron breeder reactors. Disposal of this type of fuel in a geologic repository could present a significant technical challenge because, depending on the state of degradation of the SNF canister and the fuel cladding, groundwater may come into contact with the sodium in the fuel elements and result in an energetic chemical reaction. The energetic chemical reaction may have a significant impact on the timing of radionuclide release from the SNF and, thus, on repository performance. DOE plans to treat all of the sodium-bonded fuel, except the blanket fuel from the Enrico Fermi Nuclear Power Plant (Fermi-1)⁴ that operated in Monroe, Michigan, using an electrometallurgical treatment and to dispose of the resulting metallic and ceramic waste forms as high-level radioactive waste (DOE 2000). The Fermi-1 blanket fuel has different physical characteristics than the rest of the sodium-bonded fuel inventory. DOE will continue to store the Fermi-1 blanket fuel while alternative treatment options for this fuel are evaluated (DOE 2000).

REFERENCES

BSC (Bechtel SAIC Company, LLC). 2001. Performance Assessment of U.S. Department of Energy Spent Fuels in Support of Site Recommendation. CAL-WIS-PA-000002, Revision 0. Las Vegas, NV: Bechtel SAIC Company, LLC.

BSC. 2004a. *DSNF and Other Waste Form Degradation Abstraction*. ANL-WIS-MD-000004, Revision 04. Las Vegas, NV: Bechtel SAIC Company, LLC. November.

BSC. 2004b. CSNF Waste Form Degradation: Summary Abstraction. ANL-EBS-MD-000015, Revision 02. Las Vegas, NV: Bechtel SAIC Company, LLC. August.

Carlsen, B., D. Fillmore, R. McCormack, R. Sindelar, T. Spieker, and E. Woolstenhulme. 2005. *Damaged Spent Nuclear Fuel at U.S. DOE Facilities, Experience and Lessons Learned*. INL/EXT-05-00760. Idaho Falls, ID: Idaho National Laboratory. November.

Carter, J.T., A.J. Luptak, J. Gastelum, C. Stockman, and A. Miller. 2013. *Fuel Cycle Potential Waste Inventory for Disposition*. FCR&D-USED-2010-000031, Rev. 6. Washington, D.C.: U.S. Department of Energy. July.

_

⁴ The Fermi-1 unit of the Enrico Fermi Nuclear Power Plant was a prototype fast breeder reactor that was officially decommissioned in 1975. The reactor core, which consisted of assemblies of uranium fuel enriched in uranium-235, was surrounded by a "blanket" of additional assemblies containing depleted uranium. The blanket fuel was used to create or "breed" plutonium-239, which is a fissile material.

DOE (Department of Energy). 2000. "Record of Decision for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel." *Federal Register*, 65 (182), 56565-56570. September.

INL (Idaho National Laboratory). 2007. *Spent Fuel Database*. Accessed December 1, 2015.

https://inlportal.inl.gov/portal/server.pt/gateway/PTARGS_0_1647_9934_0_0_18/Spent%20Fuel%20Database.pdf

NWTRB (Nuclear Waste Technical Review Board). 2017. *Management and Disposal of U.S. Department of Energy Spent Nuclear Fuel*. Arlington, VA: U.S. Nuclear Waste Technical Review Board. December.

SNL (Sandia National Laboratories). 2014. Evaluation of Options for Permanent Geologic Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste in Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volumes I and II (Appendices). SAND2014-0187P (Vol. 1), SAND2014-0189P (Vol. II). Albuquerque, NM: Sandia National Laboratories. April.

Vinson, D. and K. Metzger. 2017. *Commercial Spent Nuclear Fuel and High-Level Radioactive Waste Inventory Report*. FCRD-NFST-2013-000263, Rev. 5. Washington, D.C.: U.S. Department of Energy. June.

The U.S. Nuclear Waste Technical Review Board is an independent federal agency established in the 1987 amendments to the Nuclear Waste Policy Act (NWPA).

The Board evaluates the technical and scientific validity of U.S.

Department of Energy activities related to implementing the NWPA and provides objective expert advice on nuclear waste issues to Congress and the Secretary of Energy.

The eleven Board members are nominated by the National Academy of Sciences and are appointed by the President.