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Abstract

Environmental policy aims to ensure the economic benefits of pollution abatement jus-
tify the costs. This calculation is especially challenging when considering how to account
for common minor tolls of air pollution that may vary widely in their cumulative impact
across the population. In particular, industries risk incurring costs from unhealthy work-
ers and polluted workplaces, yet they differ substantially in their workplace conditions and
operating processes. This paper evaluates the extent and variation of these costs across
manufacturing industries in India, a setting where air pollution exceeds international guide-
lines with near ubiquity. I estimate the effect of air pollution on industrial productivity using
wind velocity as an instrument for pollution. With firm panel and satellite-derived pollution
data, I find air pollution substantially lowered productivity among industries with labor in-
tensive technology, yet I find pollution had little average effect. To understand the sources
of variance, I estimate a model of profit maximization that incorporates pollution into pro-
duction. The model implies that differences in technology contribute to heterogeneity. I
estimate that a one standard deviation increase in the labor intensity of production technol-
ogy leads to a 0.6 percentage point fall in the impact of pollution on productivity. I show
that excess pollution results in costly profit reductions among adversely affected industries
but little reduction overall.
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Björkegren, David Glick, Stefano Polloni, Will Violette, and participants of the Brown Development Economics
Breakfast and Applied Microeconomics Lunch for helpful feedback. All mistakes are my own. Contact: jamie_
hansen-lewis@brown.edu.
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1 Introduction

Counteracting negative externalities is a primary rationale for government regulation. It is often
the case that the burden of an externality is not shared equally and regulators must determine
policy without full knowledge of the distribution of damages. When unobservable damages
vary widely, limited knowledge of damages may lead to inaccurate assessments that overstate
the cost or fail to find any cost. Moreover, the social costs of correcting such externalities could
be substantially lower under policies that target groups with the greatest marginal social benefit
relative to policies that ignore the distribution of marginal social benefits.

Air pollution is an important externality with these features. Although some industries
may benefit from foregoing abatement investments, many face losses from sick workers and
damaged materials. Even with evidence establishing the presence of meaningful occupational
health risks, these damages are largely unobserved as they accrue from widespread minor health
detriments that would not result in recorded illness, hospitalization, or death.1 If minor health
tolls accumulate across a large economy, air pollution may cause substantial economic losses
beyond recorded illnesses. Alternatively, air pollution may present little economic cost beyond
recorded illnesses if industries adapt to the presence of minor tolls to prevent cumulative losses.
Evaluating the cumulative impact of air pollution on industries is even more difficult if industries
vary widely in their ability to adapt or their inherent risk. Thus, it is important to consider the
diverse effects across industries over time to understand the economic costs of air pollution.

In this paper, I ask whether air pollution affects manufacturing productivity in India and how
much industries vary in their sensitivity to air pollution. In this setting, exposure to air pollution
above international guidelines is nearly universal, so a wide range of industries risk losses from
unhealthy workers. Air pollution exceeds the World Health Organization (WHO) standards for
99.5 percent of the population and results in premature deaths totaling 2.1 billion life years
(Greenstone et al., 2015). The health toll of air pollution in India is estimated to be around 8
percent of GDP (World Bank, 2016). Further, public and political attention to improving air
quality is considerable.2 Existing regulations are weak (Duflo et al., 2013, 2014) and industries
stand to benefit from productivity improvements because it lags behind developed countries
(Bloom et al., 2010; Hsieh and Klenow, 2009).

While it is plausible the economic implications of air pollution in India are meaningful,
a challenge of assessing the costs is defining a reasonable measure of sensitivity. I present a

1See Graff Zivin and Neidell (2018) for a review.
2Economic Times Bureau (2014); Moham (2015)
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model of production with pollution to illustrate how damages from pollution are reflected in
manufacturing production and to determine an appropriate benchmark. In the model, the con-
tribution of each input to output is a function of air pollution. The model shows that candidate
metrics, such as the effect of pollution on value added per unit labor, conflate the impact of
pollution on production with changes in labor intensity and input prices. By contrast, the effect
of air pollution on total factor productivity reflects the net impact of pollution on production
without the additional input adjustment and price effects present in the effect of air pollution
on the average product of labor. A key prediction of the model is that the overall effect of pol-
lution on productivity is a function of both damages to inputs and the production technology.
Thus, I expect variation in technology to generate heterogeneity in the impact of pollution on
productivity.

To estimate the model, I use a panel survey of manufacturing firms in India. I observe firms
annually from 2000/01 to 2009/10 in the Annual Survey of Industries (ASI). While the data
report the value of inputs and output, productivity is not readily observable. I use methods de-
veloped in Ackerberg et al. (2015) to obtain estimates of the production technology parameters
and calculate productivity. The approach relies on the assumptions that firms can readily hire
labor and materials with full knowledge of productivity, whereas they determine capital inputs
without full knowledge of future productivity.

Given an appropriate metric of sensitivity, the measurement of how air pollution affects
productivity is not straightforward. Two challenges I address are poor measures of air quality
and confounding factors. Comprehensive measures of air pollution are not generally available
during the period of study. The network of public air pollution monitors in India is limited to
140 cities before 2008, leaving large geographic areas where pollution might take effect unob-
served (Greenstone and Hanna, 2014; Greenstone et al., 2015). In lieu of monitor data, I use
satellite derived measures of air quality from Moderate Resolution Imaging Spectroradiometer
(MODIS) Aerosol Optical Depth (AOD). AOD is a strong proxy of particulate matter over India
(Dey et al., 2012), and daily measurements at fine spatial resolution are available for the entire
firm sample.

Moreover, even with perfect data, it is difficult to estimate the causal effect of pollution on
productivity. Pollution and productivity both reflect underlying economic conditions. For ex-
ample, decay of local infrastructure may inhibit connectivity, resulting in lower productivity, as
well as add traffic, resulting in higher pollution. To accurately measure the impact of pollution,
the econometrician requires a source of variation in air quality that is plausibly exogenous to

3



productivity.
To address bias, I measure the impact of air quality on productivity with an instrumental

variables estimation strategy. The strategy isolates variation in pollution unrelated to industrial
productivity with annual distribution of wind speed. The wind data come from an atmospheric
reanalysis model, the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-
Interim (Dee et al., 2011). The data show that wind velocity is strongly negatively correlated
with aerosols because wind disperses emitted particulates. I perform additional tests to show
that the wind velocity is plausibly not correlated with productivity except through its effect on
pollution.

Following the research design, I examine the effect of pollution on manufacturing produc-
tivity in three parts. First, I assume the effect is constant and homogeneous and estimate the
average impact of pollution on productivity. Second, I allow the impact of pollution to differ
arbitrarily across industries. I estimate industry-level impacts of air pollution on productivity
and perform an empirical Bayes shrinkage with the industry-specific sensitivity estimates to
determine the underlying sensitivity distribution. Third, I measure how industries’ technology
contributes to heterogeneity using the industry-specific impacts of pollution on productivity.
In particular, I examine the role of the labor intensity of production technology in generating
sensitivity to air pollution.

The results indicate that air pollution has widely varied impacts that reflect industries’ tech-
nology. To begin, I find air pollution had little effect on productivity overall. I fail to detect
a significant average effect of air pollution on productivity. The confidence interval is precise
enough to exclude previous estimates of the effect of air pollution on productivity. When I
consider industry-specific impacts of pollution on productivity, I find air pollution negatively
affects productivity in a substantial portion of industries. Estimation of industry-specific dam-
ages indicates that pollution has a negative toll in industries accounting for 61 percent of output.
Further, estimation of the underlying damage distribution confirms significant variance in sensi-
tivity across industries. Last, to identify sources of variation in the damages from air pollution,
I find that production technology predicts industries that are sensitive to air pollution. I estimate
that a one standard deviation increase in the labor intensity of production technology leads to
a 0.6 percentage point more negative impact of pollution on productivity. As further confirma-
tion, I detect a significant negative impact of pollution on productivity among industries with
labor intensive technology. This result is consistent with the interpretation that air pollution is
a risk to workers’ health.
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Given the impact of air pollution on productivity, it remains difficult to infer the economic
costs of air pollution for the Indian manufacturing sector. To benchmark the welfare implica-
tions of air pollution in this setting, I simulate the impact of reducing air pollution to the level
of international guidelines on average variable profits. I employ the industry-specific sensitivity
estimates in the model of production with pollution to measure counterfactual profits. Across
all manufacturing firms, reducing air pollution to the international standard would have led to a
significant increase in profits of 0.26 percent, but among sensitive industries it would have led
to increases as high as 1.07 percent.

This paper makes four primary advances from prior studies. First, it considers how pollution
affects the production function and production function estimation. In contrast to previous re-
search, the model permits firms to differ in their underlying risk and to adjust inputs in response
to pollution. This distinction is necessary in a setting where firms are diverse and have time
to adapt to the presence of pollution. Second, the evidence of manufacturing-wide impacts in
this paper is an important improvement because the set of industries in an economy exhibits a
broad range of production technologies, and each industry faces unique risks from air pollution.
I show that results for a particular industry are not representative of the overall manufactur-
ing sector. Third, rather than examining the instantaneous impact of pollution on output, this
paper explores the effect of increasing the annual average pollution measured over a decade.
Consistent with habituation abating the impact over time, the findings imply that the impact of
increasing annual average pollution is notably smaller than the effect of day-to-day variation in
pollution. Fourth, previous literature relies on the premise that short-term fluctuations in pol-
lution are quasi-random; however, this does not address the possibility that firms sensitive to
pollution anticipate and adapt. The instrumental variables approach in this paper addresses bias
from firms’ anticipation of damages.

While wind has been previously used as an instrumental variable, the formulation I employ
is novel. Schlenker and Walker (2015) and Sullivan (2015) use the direction of wind at pollution
sources as variation for pollutant concentration at downwind locations; by contrast, I rely on
the wind velocity at each location for variation in pollutant concentration at the same location.
Since winds affect atmospheric stability and the probability of highly stable conditions that trap
pollutants near the surface, my instrumental variable approach relates closely to prior studies
that employ atmospheric conditions, inversions, as an instrument for air quality (Arceo et al.,
2016; Fu et al., 2017). My approach also draws on the same meteorological principles as Broner
et al. (2012) with notable differences in the application. Broner et al. (2012) use a long-term
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average of meteorological factors as an instrument for cross-sectional variation in environmental
regulation; however, I use higher frequency variation wind velocity as an instrument for panel-
variation in air quality.

This paper joins two central questions in the study of development and environmental eco-
nomics. In development economics, much concern has been placed on the causes for low
productivity in Indian manufacturing (Sudarshan et al., 2015; Allcott et al., 2016; Hsieh and
Klenow, 2009; Bloom et al., 2012). This paper adds to evidence of barriers to production in the
developing country context. In environmental economics, a key concern has been measuring the
costs of poor air quality. A substantial literature has documented major and minor health tolls
of particulate matter pollution. Greenstone and Hanna (2014) and Cropper et al. (2015) collect
evidence for India specifically. Previous research on worker productivity has further substan-
tiated the premise that air pollution has meaningful impacts on workers in the United States
(Chang et al., 2016; Graff Zivin and Neidell, 2014, 2012; Ostro, 1983), Germany (Lichter et al.,
2017), China (Chang et al., 2016; Fu et al., 2017; Li et al., 2015), Mexico (Hanna and Oliva,
2015), Peru (Aragón et al., 2017), and India (Adhvaryu et al., 2014). While existing work has
demonstrated a pollution productivity relationship in diverse settings, prior publications report
the impact of pollution for individual workers with detailed data at a single plant or location
and short term exposure to air pollutants. By contrast, this paper comprehensively estimates the
effect of pollution on productivity across all manufacturing industries in a developing country.

2 Data and Background

2.1 Firm Survey

Data on firms are from the Annual Survey of Industries (ASI), a large administrative survey on
firms in India. The ASI is a panel of registered firms for 1995-2011. I employ a 10 year sample
from 2000-2001 to 2009-2010 inclusive. The ASI provides the most comprehensive source
available on firm attributes in this context and time frame. The data have been used previously
to study the productivity of Indian industry in Martin et al. (2017), Allcott et al. (2016), and
Hsieh and Klenow (2009) among others.

While the ASI is the main source of industrial statistics for the setting, the sample coverage
requires a few important qualifications. The survey does not include a few states and territories:
Arunachal Pradesh, Mizoram, Sikkim, and Lakshadweep. The survey also does not include un-
registered firms, the “unorganized” manufacturing sector. Although by number the ASI sample
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of registered firms covers only roughly 37 percent of industrial firms, its sample accounts for
94 percent of value added per worker by manufacturing industries while the unorganized sector
accounted for 6 percent. The unorganized manufacturing sector is composed of mainly small
firms with fewer than two workers. The ASI covers all establishments with over 50 workers.
Further, its sample better represents heterogeneity in firms’ number of employees, fixed cap-
ital, and output compared to the unorganized manufacturing sector. Manna (2010) provides
these comparisons for 2005/06, the only year in the sample data was collected for unorganized
manufacturing.

I made several important decisions in the preparation of the data. First, the data do not
distinguish a plant from a firm so I assume they are equivalent. Second, I use survey weights
so the sample is representative of the firm population. For the most part, firms with over 100
employees were surveyed every year and smaller firms were surveyed according to a random
sample. However, the details of the sampling design changed from year to year. As a result,
I weight firms by the average value of the weighting variable over the time periods. I report
robustness checks to show that the results are not sensitive to the firm weights. Third, the
classification of industries and industry codes changed twice during the sample so I aligned
them manually. Fifteen industries did not include enough firms to estimate the capital factor
share. After this procedure, my sample included 150 unique industries.

From the firm observations, I construct the location, inputs, and output of each firm for
each year. The firm observations can be located geographically in one of 524 districts, the
administrative division below a state. I map all observations to 2001 administrative districts via
name and 2001 census code because the district boundaries changed during the period of study.
After 2009-2010, the ASI no longer reports the district so I include only the prior periods in
the analysis. The main variables are the gross revenue, capital stock, labor cost, input materials
cost, investment, and number of workers. Since firms report the monetary values of inputs and
outputs instead of quantities, I deflated monetary amounts to quantities with prices. Further,
outliers were removed to correct irregularities.3 I report firm descriptive statistics of firms in the
sample in Table A1.

3This preparation replicates the preparation of Allcott et al. (2016). In particular, I repeat their procedures to
align industrial codes to the classification of 1987 at the 3-digit level, deflate values to quantities, and remove
outliers.
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2.2 Air Quality

In lieu of ground monitor data, I obtained information on air quality from Moderate Resolution
Imaging Spectroradiometer (MODIS) Aerosol Optical Depth Product (AOD). 4 Aerosols are
measured from the MODIS sensor of the Terra satellite. MODIS features a 2330km wide swath,
twice daily coverage, and high spectral resolution which enables it to detect clouds and aerosols
better than previous instruments. The data have a spatial resolution of 10 km per pixel. MODIS
reports AOD on a log scale of 0 to 5. AOD below 0.1 is considered to be clear and the maximum
possible AOD of 5 indicates that sunlight cannot pass through the air. Prior research on the
effects of air pollution has previously employed MODIS AOD (Foster et al., 2009; Greenstone
et al., 2015; Gendron-Carrier et al., 2017).

There are several important differences between AOD and traditional air quality monitor
data. First, while air quality monitors track a variety of pollutants, aerosols measure only sus-
pended particulates. Thus, AOD proxies for fine and course particulate matter and does not
represent of other pollutants such as ozone or sulfur and nitrogen oxides. Second, whereas
ground monitors measure air quality on the surface, satellites measure air quality for the entire
atmospheric column. A high measurement of AOD does not imply that there was high exposure
to aerosols at the surface if the distribution of aerosols in the atmospheric column is not uni-
form. Last, monitors are available for only a limited set of locales in India; by contrast, AOD
offers universal spatial coverage.

Despite the differences between AOD and traditional monitor data, AOD is a valid and well-
established proxy for surface air quality. Research in atmospheric science has validated MODIS
AOD as a measure of ground-level fine particulate matter globally as well as over India.5 To
supplement these studies, I conducted two validation exercises. First, I relate AOD to historical
recordings from the Central Pollution Control Board (CPCB) ground monitors (CPCB data in
Greenstone and Hanna (2014)). Figure 1a demonstrates a strong correlation between AOD and
the level of suspended particulate matter (SPM) from ground monitors. Second, I relate AOD
to estimated ground-level fine particulate matter (PM2.5) from Van Donkelaar et al. (2016).
Van Donkelaar et al. (2016) produce estimates of ground-level PM2.5 concentrations for the
entire globe at 0.01 degree resolution for each calendar year. Their method combines informa-
tion from multiple satellites, ground monitors, and chemical transport models for atmospheric

4I employ the data collected in Gendron-Carrier et al. (2017).
5See Remer et al. (2005, 2006); Ten Hoeve et al. (2012); Guazzotti et al. (2003); Dey et al. (2012).
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composition.6 Figure 1b also demonstrates a strong correlation between AOD and the surface
PM2.5 as estimated in Van Donkelaar et al. (2016). It shows that for a one unit increase in mean
AOD the average change in mean PM2.5 was 108 micrograms per cubic meter (µgm−3). The
consistency of these findings indicates that AOD is a strong proxy for variation in air quality
with the additional advantages of consistent measurement and universal spatial coverage over
the period of study.7

I take several steps to further ensure the AOD data are a valid representation of ground-level
fine particulate matter. I account for the strong seasonal patterns air pollution exhibits in India.
Since precipitation removes particulates from the air, air quality is much higher during the
summer monsoon than during the winter. July and August are the peak of the monsoon season
in India and AOD is infrequently observed during this period. To address this, I calculate the
district annual mean AOD excluding the months of July and August to ensure that missing data
from precipitation do not bias the measurement of AOD. I further limit the sample to district-
years were there at least one AOD observation for all other months to reduce bias from missing
months. I include additional controls in the analysis for the atmospheric conditions, in particular
the vapor pressure, that influence the concentration of aerosols at the surface.

Figure 2 presents the district mean AOD during the period of study. It demonstrates that the
AOD data are consistent with the main descriptive features of air pollution in India. Across In-
dia, AOD exceeds the clear air level of 0.1. The mean AOD is 0.41 (Table 1). Due to inversions
and inland accumulation, air pollution is much worse in the north. Urban centers also have poor
air quality: the highest annual averages are consistently in Delhi.

2.3 Weather

The traditional approach to construct wind data would be to collect observational data from
weather stations and interpolate the observations with a statistical procedure. However, like the
network of air quality monitors, public weather station data for this setting is limited: wind is
measured at least once per year at less than 150 stations in India in some years of the sample.8

Interpolation across stations could yield substantial measurement error Dell et al. (2014).
I use atmospheric reanalysis data to measure annual mean wind velocity in lieu of weather

station monitors. Atmospheric reanalysis data are gridded records of meteorological variables
6Since the Van Donkelaar et al. (2016) estimates correspond to the calendar year while the firm data correspond

to the ASI year, it is not feasible to use only Van Donkelaar et al. (2016) for annual PM2.5 measurements.
7In A1.2, I provide addition background on satellite measurements of aerosols.
8Available at http://www7.ncdc.noaa.gov/CDO/cdoselect.cmd.
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derived from both observational data and a meteorological model. Given the drawbacks to wind
station data, there are two distinguishing advantages of reanalysis data. First, while traditional
gridded data interpolate observations with a statistical procedure, reanalysis data interpolate ob-
servational data with a climate model (Dell et al., 2014). Second, reanalysis data integrate more
observational sources than an individual researcher could possibly collect. The sources include
radiosondes, satellites, buoys, aircraft and ship reports, and other sources from within the area
of interest and elsewhere (Dee et al., 2016). Reanalysis data provide comparable measurements
over the entire sample and are well-vetted in scientific research (Dee et al., 2016, 2011).

For the main analysis, I focus on the yearly distribution of wind velocity. Surface wind
velocity was constructed from ECMWF ERA-Interim (Dee et al., 2011).9 The dataset provides
the monthly mean component vectors of wind at 10 meters above the surface in 0.75 degree
girds. For each month, I calculate the magnitude of the wind vector, wind speed, in each
grid cell and average over the geographic district. A potential concern is spatial dependence
of observations for different districts within the same grid cell. Although this arrangement is
uncommon in the sample, I repeat the main results with standard errors clustered at the state
level to address potential dependence.10

Annual variation in the yearly distribution of wind speed is an important feature of wind
in this setting. As with unseasonably warm or cold years, annual periods exhibit substantial
variation in wind velocity. Figure 4 reports the average annual deviation from the mean wind
velocity in the sample. The data indicate that annual average wind velocity is fairly variable.
The average annual percent change in wind velocity was 3.6%. The annual wind velocity often
deviated by over 10 percent of the overall mean for many districts in the sample. Wind varies
even more at higher temporal frequencies. Figure 3 depicts a histogram of the mean wind ve-
locity for each district-month observation. The median district-month had mean wind velocity
of 1.26 meters per second (m/s). Throughout the analysis, I use the mean temperature, precip-
itation, and vapor pressure; squared mean temperature, precipitation, and vapor pressure; and
interactions of mean temperature and vapor pressure with mean precipitation for each season as
the meteorological controls.

To improve the analysis of wind and air quality, I also employ data on temperature, precip-
itation, and vapor pressure. Temperature and precipitation were obtained as monthly mean and

9I obtain the ERA-Interim monthly mean surface-wind from Wentz and J. Scott (2015).
10To summarize the count of grid centroids per district: 39 percent of districts do not contain grid centroid, 46

percent have one, and 15 percent have more than one. Clustering at the state level is a more conservative approach
than clustering at the grid point as it also allows for spatial correlation within a state Bester et al. (2016).
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monthly total respectively in 0.5 degree grids from Willmott and Matsuura (2015). Monthly va-
por pressure was also obtained in 0.5 degree grids from CRU TS Harris et al. (2014). Since the
impact of meteorology on air quality and firms in India varies seasonally, I computed the district
mean of each meteorological control variable for each of seasons January-March, April-June,
July-September, October-December. Table 1 reports descriptive statistics of wind and weather
controls.

3 Production Model

To illustrate how air pollution affects productivity and production, I model a firm with Cobb-
Douglas production facing pollution. The model allows unstructured heterogeneity across in-
dustries in the impact of air pollution on total factor productivity. The impact of air pollution on
total factor productivity differs from the impact on labor productivity because firms may change
input intensities in response to air pollution.

3.1 Production with Pollution

Each firm f is a member of industry i, located in district d, and observed in year t. Firms
produce output that is sold on a perfectly competitive market to obtain revenue Y . The inputs to
production are labor L, capital K, and materials M . Air pollution, A, and total factor revenue
productivity (TFPR) absent pollution, Ω̃, also contribute to revenue. The annual revenue Y is a
Cobb-Douglas function of inputs, TFPR, and air pollution:

Yfidt = Aλitdt Ω̃fidtL
βLit

fidtK
βKit

fidt M
βMit

fidt . (1)

I assume firms cannot control their average ambient air qualityAdt.11 Since I observe neither
the indoor pollution for each firm nor the production on each day, I focus on the role of the
annual average outdoor air quality in the broad vicinity d of the firms. This formulation is
appropriate for considering the effect of an externality.

The key distinction in this model is the inclusion of air quality as an additional factor in
production. Air pollution affects revenue though the sensitivity λit. The sensitivity to air pol-

11This assumption is consistent with studies of pollution source apportionment in India. Industry contributes
around 10% to particulate matter pollution and weather plays a large role in average concentration of particulates
(Chowdhury et al., 2007). Further, this assumption is appropriate for measuring the impacts of air pollution exter-
nalities. Firms may make production decisions that determine their indoor air quality; however, the air pollution
within the firms’ control is not an externality.
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lution varies arbitrarily across industries and time. The inclusion of air quality as a factor in
a Cobb-Douglas function supports several interpretations of how air quality affects firms. For
example, if air pollution made hired workers less productive, as would be the case if workers
took additional breaks or were slower as a result of pollution, λit would be negative. Likewise,
if air pollution caused contamination of materials or output prior to sale, then λit would be
negative.12 If air quality has no effect, λit is zero.

Firms’ objective is to maximize profits. They select the level of inputs {Lfidt, Kfidt,Mfidt}
to optimize:

Πfidt = Yfidt − pLfidtLfidt − pKt Kfidt − pMfidtMfidt (2)

where pLfidt, p
K
t , p

M
fidt represent prices for labor, capital, and materials respectively. For given

parameters and sensitivity, firms’ optimal production and input decisions are functions of prices
and air pollution: L∗fidt(Adt), M∗

fidt(Adt), K∗fidt(Adt), and Y ∗fidt.
13

3.2 Impact of Pollution on Production

An increase in air pollution affects firms revenue along several dimensions. First, akin to an in-
tensive margin, air pollution affects the TFPR. Define the TFPR in logs with lowercase variables
to denote the log of each quantity:14

ωfidt = λitadt + ω̃fidt. (3)

The impact of air pollution on log TFPR is the sensitivity λit:

dωfidt
dadt

= λit. (4)

Second, akin to an extensive margin, air pollution affects revenue because it changes the optimal
level of the inputs:

dyfidt
dadt

= λit + βLit
∂`fidt
∂adt

+ βMit
∂mfidt

∂adt
+ βKit

∂kfidt
∂adt

. (5)

Adjustments in inputs to maximize profits imply that an increase air pollution need not have
the same effect on TFPR and labor productivity. For example, given a decline in productivity

12This has been documented in the Indian salt industry (Praveen, 2015).
13I excluded {pLfidt, pKt , pMfidt} to simplify the notation.
14In levels, the definition of TFPR is: Ωfidt =

Yfidt

L
βLit
fidt K

βKit
fidt M

βMit
fidt

= Aλitdt Ω̃fidt.
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and no change in input prices, the firm lowers all inputs, and the effect of pollution on labor
productivity is greater than the effect on TFPR. Similarly, pollution may have no effect for
firms in a particular industry and time period, λit = 0, yet lead to an increase in revenue if input
prices fall. The extent to which inputs and output adjust to air pollution may depend on many
conditions that are not explicitly modeled, such as the structure of the input markets, firms’
costs to adjusting inputs, and the time horizon. In the short run limit, input adjustments are not
feasible, so the impact of pollution on TFPR, labor productivity, and output are equivalent.

4 Estimation

4.1 Production Function Estimation

The impact of pollution on log TPFR ωfidt is of interest, yet the production function parame-
ters {βLit, βKit, βMit} must be estimated to compute the TFPR. I use the method developed in
Ackerberg et al. (2015) to estimate the production function parameters. Firms face constraints
on their information set and input choice set when determining the optimal level for each input.
As with other research with this dataset, I assume throughout that the firm observations are
plants.

Static Inputs

Labor and materials are static inputs. I assume the plant can hire labor and materials from
perfectly competitive factor markets without any adjustment cost. At time t, plants select their
optimal level of labor and materials knowing their TFPR Ωfidt, sensitivity λit, and air pollution
Adt.

At the optimal levels of labor and materials, the profit maximization first order conditions
imply:

βLfidt =
pLfidtLfidt

Yfidt

βMfidt =
pMfidtMfidt

Yfidt
.

Since I observe cost of labor and materials for every firm, I compute the parameters βLfidt and
βMfidt directly from the formula for each firm. In the analysis that follows, I assign each firm
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the industry median factor share with a time trend βLit and βMit to smooth over idiosyncratic
constraints to static profit maximization.15

Non-Static Inputs

The static input approach is both infeasible and inappropriate to measure βKit.16 To begin, the
dataset does not include firm-level interest rates so the first-order condition approach would
introduce noisy proxies of investment costs. Relatedly, any exit of unproductive firms would
imply selection bias. In addition to data limitations, the assumption that firms create and destroy
capital instantaneously is implausible: it requires time to accumulate. It is also implausible to
assume under profit maximization that capital inputs and productivity are exogenous. Under
these conditions, neither the first-order condition approach nor a regression of log output on log
capital would produce consistent estimates of the capital factor share.

In lieu of the static inputs approach, I estimate βKit with GMM following Olley and Pakes
(1996) and Ackerberg et al. (2015). At time t, plants select their optimal capital stock for time
t + 1 without full information of their future TFPR Ωfidt+1 and air pollution Adt+1. I assume
that the returns to capital do not change over time, βKit = βKi and I leverage unanticipated
productivity shocks and past capital and investment to identify βKi.

Specifically, I impose three assumptions on the joint evolution of productivity and capital
accumulation. First, capital takes one year to build. Current capital is a function, κ, of the
previous period’s capital and investment, I, in logs.

kfidt = κ(kfidt−1, Ifidt−1). (A1)

(A1) is similar to the first-stage of an instrumental variables approach. Past investment predicts
future capital. Second, productivity follows an AR(1) process, with unanticipated shocks ξfidt:

ωfidt = ρiωfidt−1 + ξfidt. (A2)

(A2) isolates the shocks to productivity ξfidt that firms are not aware of when they set capital
investment. While the AR(1) assumption deviates from Ackerberg et al. (2015) in that it is less
flexible than assuming capital follows a generic non-linear process, it is common in previous

15This steps aligns with previous estimation of the production function in this setting and others (Allcott et al.,
2016; Syverson, 2011).

16The concerns and solutions outlined here are well-established in the literature of production function estima-
tion. In particular, Olley and Pakes (1996), Levinsohn and Petrin (2003), and Ackerberg et al. (2015).
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estimation with the ASI (see Collard-Wexler and De Loecker (2016); Allcott et al. (2016)).
Last, firms set past capital without full knowledge of transitory productivity shocks:

E(ξfidtkfidt−1) = 0. (A3)

(A3) follows the approach of Olley and Pakes (1996); Ackerberg et al. (2015) to address the
endogeneity of input choices to productivity. As an alternative to (A3), in robustness exercises
I employ the assumption that firms set past investment without full knowledge of productivity
shocks E(ξfidtIfidt−1) = 0 (Collard-Wexler and De Loecker, 2016). (A3) is akin to the exclu-
sion restriction of an instrumental variables approach. It implies that productivity shocks ξfidt
are not the deterministic and not related to prior capital investment decisions. Since air pollu-
tion is a component of productivity, an important implication of (A2) and (A3) for the research
design is some variation in air pollution is also not deterministic and not related to prior capital
investment decisions.

Under these conditions, I estimate βKi for each industry i with Generalized Method of
Moments (GMM). I first rewrite production net the contributions of labor and materials:

ŷfidt = yfidt − βLit`fidt − βMitmfidt

and I substitute so that for a given β̂Ki

ω̂fidt = ŷfidt − β̂Kikfidt.

Second, I estimate the AR(1) coefficient of productivity with ordinary least squares

ω̂fidt = αi + ρiω̂fidt−1 + ξfidt,

and compute the residuals ξfidt. Finally, drawing from the moment condition (A3), I select βKi
to minimize the criterion

Q(βKi) = (ι′ξ)′(ι′ι)−1(ι′ξ)

with ι = matrix of constant and kfidt−1 and ξ = vector of ξfidt.17

17The estimation is completed separately for each three digit industry. For example, for garment making, NIC =
265, there are 6573 firm-years of which 3639 have lagged capital, investment, and predicted productivity ω̂. Thus
ιfidt−1 is 3639 × 2 and ξfidt is 3639 × 1.
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Production Function Estimates

Table 2 reports summary statistics of the estimated production function parameters. The median
labor share βLit is 0.07. The median capital share βKi is 0.18. The median materials share βMit

is 0.68. The average log total factor revenue productivity, ωfidt, is 2.55. These estimates closely
replicate prior estimates in this sample (Allcott et al., 2016; Collard-Wexler and De Loecker,
2016). I cannot reject constant returns to scale.

4.2 Identification Using Wind Velocity

I wish to test whether λit < 0; however, a measurement problem arises. Specifically, were I to
estimate λit from a regression of Equation 3, I would expect the residuals to be correlated with
pollution: E(ω̃fidtadt) 6= 0. For example, the addition of nearby transportation infrastructure
could raise productivity and pollution from traffic, so the resulting estimates would understate
the impact of pollution on productivity. Besides the concern that pollution is endogenous, pol-
lution measured with AOD includes measurement error. In turn, measurement error leads to
attenuation bias. To address these concerns, I use the distribution of wind velocity as an instru-
ment for air pollution.

First Stage

There is a strong scientific rationale that wind velocity is a key factor in the atmospheric concen-
tration of particulates. Wind speed and direction are fundamental to determine how pollutants
are spatially disbursed once emitted.18 First, winds disburse pollutants over a wider horizontal
area than weak winds. Second, winds increase vertical circulation of the air. More vertical
mixing of the air allows pollutants to disburse to higher altitudes and lowers the concentration
of pollution at the surface. Relatedly, air mixing evens the temperature in the atmospheric col-
umn and prevents the formation inversions, a condition where steep temperature gradients keep
pollutants trapped near the surface. The impact of wind velocity on reducing pollution con-
centration is greater at higher wind velocities. Previous studies of air quality and meteorology
in India and elsewhere give credence to these principles (Guttikunda and Gurjar, 2012; Larissi
et al., 2010; Arceo et al., 2016).

18An accessible overview of atmospheric particulate transport, including the “Puff” model, in Jacob (1999)
Chapter 3. In the related “Box-model” of pollution dispersion, winds are inversely proportional to pollution con-
centration. Jacob (1999), Chapter 4 describes the impact of wind and the vertical temperature gradient on air
quality.
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Figure 5 shows that the frequency of high aerosol concentration observations is lower in the
half of the sample with high wind speeds. The figures display histograms of annual mean AOD
for district-years with below the median of annual mean wind velocity and above the median
respectively. Moving from below to above the 50th percentile of annual mean wind velocity
results in a 0.91 standard deviation decrease on average in annual AOD.

For the main analysis, I use a semi-parametric first stage because scientific evidence estab-
lishes the relationship between air quality and wind velocity is not linear. I estimate the first
stage with a step function of monthly district mean wind velocity.19 I fit the following equation
for each firm f in industry i, district d, and year t:

adt =
∑
j

θjVdtj + δXdt + τt + ffid + rfidt. (6)

adt is the AOD in district d year t. The variables Vdtj are the number of months in district d
during year t for which the monthly mean wind velocity was in the jth interval of the wind
velocity domain. The intervals of monthly district mean wind velocity are depicted in Figure
3. I include additional controls, Xdt, for the seasonal means, polynomials, and interactions of
weather variables as well as fixed effects for the firm, year, and state by year trends. Firm-year
AOD shocks are rfidt.20

Figure 6 confirms that the relationship between air quality and wind velocity is both highly
significant and non-linear. It plots the coefficients θj of the step function. Each coefficient
represents the effect of an additional month with mean wind velocity in the corresponding
interval on annual mean AOD relative to an additional month with mean wind velocity less
than 0.6 meters per second (m/s). A month with mean wind velocity from 1.5 to 1.8 m/s lowers
the annual mean AOD 0.0039 units (roughly 0.4 µgm−3) relative to a month with mean wind
velocity less than 0.6 m/s. Consistent with a nonlinear relationship, a month with mean wind
velocity from 2.7 to 3.0 m/s lowers the annual mean AOD 0.0076 units (0.8 µgm−3) relative
to a month with mean wind velocity less than 0.6 m/s. I reject the null hypothesis that the θj

19Equation 6 follows Deschênes and Greenstone (2011) to permit for a flexible relationship between annual AOD
and wind velocity. It classifies the underlying district-month wind velocity data so that high-wind months may
impact the annual mean AOD differently than low-wind months. I selected this specification over specifications
with polynomials of the annual mean wind velocity because it minimized the Bayesian information criterion.
Permitting the non-linear first stage yielded qualitative differences relative to a linear specification in subsequent
results. I provide comparisons with linear instrumental variables estimates for the main results in robustness
exercises.

20The first stage is performed at the firm-year level with dependent variable at the district-year level to maintain
consistent weighting of firms throughout. The first stage remains highly significant when estimated at the district-
year level.
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are jointly equal to zero (p < 0.001).21 I also reject the null hypothesis that the θj are equal
(p <0.001).

Exclusion Restriction

The assumption underlying the instrumental variables approach is that the district-year distribu-
tion of wind velocity is not correlated with manufacturing productivity through channels other
than air pollution conditional on the controls. In terms of the model, Equation 3, and first stage,
Equation 6, this assumption implies E(ω̃fidtV dt|Xfidt) = 0. The production function esti-
mation imposes additional restrictions on the instrument: variation in the distribution of wind
velocity needs to be consistent with the presence of an unanticipated shock to productivity. As
a condition for estimating the capital share, I assumed firms do not have prior knowledge of
some component productivity, ξfidt. To remain consistent with this assumption, firms must
also not have full anticipation of how winds affect pollution since pollution is a component of
productivity. In particular, assuming i) productivity shocks are unknown to firms when they
determine capital investment and ii) firms do not fully anticipate the future impact of wind on
pollution implies that the contribution of winds to air pollution must be independent of past
capital investment decisions.

While it is not possible to formally test the relationship between winds and unobservable
components of productivity, the assumption is justified for several reasons. Firms, politicians,
and people cannot manipulate wind velocity and changes in the distribution of wind velocity
are difficult to accurately predict. Even if firms avoid pollution by locating upwind from a
source, they cannot avoid changes in pollution that arise from variable wind speeds since they
can neither control nor anticipate those changes. Figure 7 demonstrates this characteristic of the
distribution of wind velocity. It plots the coefficients θj of the first stage regression (Equation
6) with the future change in AOD as the dependent variable. While the F-statistic is modestly
significant, the trend shows that an additional month with any particular wind velocity does
not change the trend in AOD next year relative to a month with near zero wind velocity. This
evidence indicates firms cannot foresee how the trend in AOD will change in the next year
knowing winds in the current year.

Table 3 further demonstrates that variation in AOD predicted from distribution of wind
velocity is consistent with the validity criteria. The regressions mirror the second stage: each

21As an additional check, I repeat this test clustering the standard errors at the state level. Again, I reject the
null: p = 0.0056.
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dependent variable is regressed on the predicted AOD from Equation 6 with controls Xdt and
fixed effects τt and ffid. Each column reports the predicted AOD coefficient. Columns 1 and
2 report that predicted AOD in t has no effect on log capital and log investment in t − 1.
Consistent with assumption (A3), this indicates that knowledge of the wind distribution did
not lead firms to anticipate future AOD when they made production and investment decisions.
A further possible concern is that the instrument is correlated with unobserved features of the
economy that the make production, and potentially productivity, more or less appealing for
firms. To examine this, column 3 shows that predicted AOD is not correlated with the number
of firms in a district-year.

The relationship between wind velocity and other meteorological and economic factors
might also factor in the instrument’s validity. One plausible channel is that wind is correlated
with temperature and rainfall, as all are components of the monsoon, and these variables could
influence productivity independently of air quality.22 To account for these potential effects, I
include controls for flexible functions and interactions of seasonal weather in the analysis. An-
other plausible channel is that winds might influence agricultural production and the agricultural
sector may have some economic spillovers to the manufacturing sector. Empirical evidence es-
tablishing this concern is limited.23 Further, Table 3 column 4 shows that predicted AOD fails
to explain log wheat production. Nevertheless, I include additional robustness exercises sepa-
rating rural and urban firms and controlling for wheat yields to examine this implications of this
possibility on the results.

5 Impact of Air Pollution on Productivity

I examine the impact of air pollution on productivity varying the assumptions of how the effect
may differ across industries in Equation 1. I start with the assumption that λit = λ so impact of
air pollution on productivity is constant and homogeneous. I subsequently assume that λit = λi

so the impact of air pollution on productivity is heterogeneous across industries and constant
within industries.

22I provide more background on the sources of wind variation in the Appendix A2.2.
23Foster and Rosenzweig (2004) find that improvements in agricultural yields do not lead to growth in rural

industry. Santangelo (2016) finds spillovers from agriculture to manufacturing only for manufacturing firms pro-
ducing local goods. Neither study looked specifically at TFP spillovers.
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5.1 Homogeneous Pollution Sensitivity
Reduced Form Evidence

Figure 8 shows the effect of the distribution of wind velocity on log TFPR, ωfidt. Like the first
stage, the plot depicts the coefficients θj from fitting Equation 6 with ωfidt as the dependent
variable. Each coefficient represents the effect of an additional month with mean wind velocity
in the corresponding interval on ωfidt relative to an additional month with mean wind velocity
less than 0.6 m/s. The coefficients are multiplied by 100. While I reject the null hypothesis
that the coefficients are jointly equal to zero (p < 0.01), the reduced form estimates show
that additional months of comparatively high wind velocity do not raise productivity even as
they consistently reduced annual mean AOD. For example, an additional month with mean
winds between 1.8 and 2.1 m/s raised productivity 0.09 percent relative to a month with mean
winds less than 0.6 m/s. An additional month with mean winds over 3 m/s resulted in an even
greater reduction in annual mean AOD but still had no significant improvement in productivity.
The negative point estimate even indicates a decrease in productivity. The lack of consistent
increases in productivity from additional months with very high winds indicates that winds do
not effect productivity even if they have a strong effect on AOD.

Instrumental Variables Estimates

I fit the following second stage equation to estimate the effect of pollution on productivity under
the assumption of homogeneous effects:

ωfidt = λâfidt + αXdt + ffid + τt + εfidt (7)

with log TFPR ωfidt, predicted AOD âfidt from Equation 6, firm fixed effects ffid, year fixed
effects τt, and additional controls Xdt.24

Several features of this specification ensure consistent estimation. First, the inclusion of
predicted AOD from the first stage in lieu of observed AOD removes the components of AOD
endogenous to productivity provided the exclusion restriction is satisfied. Specifically, given
E(ω̃fidtV dt|Xfidt) = 0, then E(âfidtεfidt|Xfidt) = 0. Second, firm fixed effects control for
time invariant features of each firm that affect productivity and might be correlated with air
pollution, such as a firm’s location, industry, and average characteristics. Given the fixed effects,

24While AOD varies at the district-year level, adt, the first stage is fit at the firm-year level to remain consistent
with the second stage. Accordingly, the predicted AOD varies at the firm-year level, âfidt.
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the estimates reflect the average impact of annual changes in air pollution on productivity within
each firm. I also include the control variables Xdt for seasonal weather and state-time trends.

Consistent with the reduced form, Table 4 column 1 shows that AOD did not have a signifi-
cant average effect on manufacturing productivity. The estimated λ implies a 0.01 unit increase
in AOD resulted in an 0.19 percent increase in TFPR. The effect is not statistically distinguish-
able from zero. In units of fine particulate matter, the estimate indicates that a one µgm3 increase
in PM2.5 resulted in a roughly 0.18 percent decrease in productivity. Adjusting for the mean
AOD the estimate implies an elasticity of -0.077 percent change in productivity per percent rise
in aerosols. The lower bound of the 95 percent confidence interval implies a one µgm3 increase
in PM2.5 resulted a 0.67 percent decrease in productivity on average at most.25

To further inspect the result of Table 4 column 1, I repeat the estimation under several
alternative assumptions. I provide more details of the checks in section A2.3 and report the
results in Table A2. In all scenarios, I fail to detect a significant deviation in the effect of
pollution on manufacturing productivity. To summarize, I check that the preparation of the
data and estimation of the production function parameters did not influence the findings. I also
consider the details of the instrumental variables approach. I show the results assuming the
first stage is linear. To ensure that selection is not driving the results, I use a control function
approach to instrumental variables with controls for polynomials of the first stage residuals and
interactions of the residuals with AOD. I also repeat the results splitting the sample by rural
and urban firms to examine how proximity to agriculture drives the results. Finally, I find that
adjusting the standard errors for spatial dependence at the state-level does not substantially
reduce the precision.26

Three distinct characteristics of the setting may explain why the data indicate a negligible ef-
fect of air pollution on productivity even when prior research has documented a robust negative
relationship. First, the estimate represents the impact of annual variation in air quality whereas
prior studies measured the impact of daily variation in air quality. For example, Chang et al.
(2016) consider the effect of PM2.5 on productivity at the level of the worker-day for a pear

25The sample is large enough to distinguish small estimates from zero. As a benchmark, under a mean log
productivity of 2.55 and standard deviation of 1.28, the minimum detectable coefficient with 95 percent power and
district clustering is 0.05, roughly one quarter of the estimate. So even with adequate power to detect a small effect
and attention to eliminating the main sources of bias, the data did not bear evidence that air pollution lowers TFPR.

26An additional concern is that Equation 7 obscures a nonlinear relationship between AOD and productivity.
Since the reduced form Figure 8 allows for nonlinearity, yet does not detect a substantial effect of wind, and
hence AOD, fitting a nonlinear second stage presents the risk of detecting a spurious relationship between AOD
and productivity that reflects the functional assumptions rather than the patterns in the data. Thus, I do report
additional variations of Equation 7 with nonlinear AOD in the robustness exercises.
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packing plant in California. At 20 µgm−3 their estimates imply that an additional one µgm−3

in PM2.5 lowers productivity 1.3 percent.27 By contrast, the lower bound of Table 4 column 1
implies a one µgm3 increase in PM2.5 resulted a 0.67 percent decrease in productivity, roughly
half the benchmark. Over the longer time periods, workers and firms have the opportunity to
adjust or simply habituate to the presence of air pollution.28 Given some adaptation, the impact
of pollution from one year to the next would be smaller than the impact from one day to the
next.

Second, the outcome of interest, total factor productivity, has not been studied separately
from labor productivity in prior work. While this distinction is not appropriate for comparing
Table 4 column 1 to studies of short run effects of air pollution such as Chang et al. (2016), it is
a reasonable concern for comparisons to settings where firms had time to adjust input intensi-
ties.29 For example, Fu et al. (2017) estimate that a one µgm−3 increase in annual mean PM2.5
lead to a 0.85 percent decrease in value added per worker in Chinese industries. For compar-
ison, Table 4 column 2 repeats column 1 with log value added per worker (ln LP), a common
measure of labor productivity, as the dependent variable.30 The estimate signifies that a 0.01
unit increase in AOD resulted in a statistically significant decline in labor productivity of 1.3
percent. In units of PM2.5, this effect translates to a 1.2 percent decline for a one µgm3 increase
in PM2.5.31 Similarly, column 3 repeats column 1 with log value of output (ln Y) as the depen-
dent variable. The estimate signifies that a 0.01 unit increase in AOD resulted in a statistically
significant decline in revenues of 1.4 percent (or 1.3 percent for one µgm3 PM2.5).32 While
the statistically weak reduced forms and modestly overlapping confidence intervals imply that
differences between the impact of pollution on TFP (column 1) and the impact of pollution

27See Chang et al. (2016) Table 3 column 3. On average, they estimate that a one µgm3 lead to 0.6 percent
decrease in productivity. In the California sample, the mean PM2.5 is 10 µgm−3; however, the PM2.5 levels in the
India sample were almost never below 15 µgm−3 so the average estimate from Chang et al. (2016) is not a suitable
comparison. Going from a day with PM2.5 between 15-20 µgm−3 to a day with PM2.5 between 20-25 µgm−3 is
a 5 µgm−3 average rise in PM2.5 that yields an additional 47 cent (=−0.53−−1.00) reduction in earnings. This
translates to 9 cents (=47/5) per µgm−3, or 1.3 percent (=0.09/6.9 * 100) of the mean.

28Adhvaryu et al. (2014) document that firms in India adapt to changes in air quality even over short time
periods.

29As discussed with Equation 5, when firms do not have time to adjust inputs the impact of pollution on labor
productivity and total factor productivity are equivalent.

30Value added is the deflated value of output minus the deflated value of materials. Value added per unit worker
is value added divided by the number of man-days. Fu et al. (2017) employ this metric.

31The reduced form effect of the wind distribution on labor productivity is statistically significant, F-test
p =0.062, and reported in Figure 9a.

32The reduced form effect of the wind distribution on log Y is statistically insignificant, F-test p =0.27, and
reported in Figure 9b.
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on labor productivity (column 2) should be interpreted with caution, the stark qualitative dis-
tinctions in the estimates nevertheless demonstrate the importance of considering a metric of
pollution sensitivity unaffected by input adjustments in this setting.

Finally, the estimates of Table 4 consider the impact of air pollution in a diverse sample of
firms representative of a range of industries while prior studies have largely focused on individ-
ual firms.33 Under heterogeneous impacts of air pollution on productivity, a plausible scenario
is that previous estimates documenting a negative impact of air pollution were internally valid,
yet not representative of the whole sector or economy. In the next section, I estimate industry-
specific effects of air pollution on productivity to further examine this scenario.

5.2 Heterogeneous Pollution Sensitivity
Instrumental Variables Estimates

I now assume that λit = λi so pollution has industry-specific impacts on productivity. I estimate
the industry-sensitivities, λi, with three steps. First, I fit the first stage, Equation 6, separately
for firms in each industry to obtain the predicted aerosols âfidt. Second, I repeat the second
stage, Equation 7, separately for firms in each industry using the predicted aerosols from the
industry’s first stage.34 Separating the industries allows variables like the time period and the
weather to influence the outcomes, AOD and log TFPR, differently for each industry. For each
industry, I obtain the λ̂i estimate from the predicted aerosols coefficient. Last, I employ the
empirical Bayes (EB) shrinkage method of (Morris, 1983) that is common in the value-added
literature to reduce noise in the λ̂i estimates.35 This step is important since the precision of the
mean λi and the variance across λi are of interest and noise in the λ̂i estimates would lead to
imprecise measurement of the mean and overestimates of the extent of heterogeneity. Some
small industries did not have enough unique firms or firm-years for the estimation. As a result,
I obtain N = 132 coefficients λ̂i. The 132 included industries account for 99.5 percent of the
output value observed in the full sample of 150 industries.

Figure 10 reports a histogram of the EB-adjusted estimated λi weighting each industry by
output. Although the histogram does not provide information on the precision of the industry
specific-estimates, it shows that air pollution adversely affects a substantial portion of industries

33See Chang et al. (2016), Chang et al. (2016), Graff Zivin and Neidell (2012), Adhvaryu et al. (2014).
34Repeating the estimation separately by industry is akin to having industry-specific coefficients for all controls

in Equations 6 and 7.
35For examples, see Kane and Staiger (2002); Jacob and Lefgren (2007); Chandra et al. (2016).
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on average. Eighty six of the industry-specific estimates, accounting for 71 percent of output
value, had estimates that imply pollution reduced productivity on average. The mean of the
output-weighted estimates was -0.21 with 90 percent confidence interval (-0.43, 0.03). Accord-
ing to the industry-specific estimates, two of the most adversely affected industries are mica and
jute and mesta pressing and baling.

Table 5 presents the estimated parameters of the underlying distribution of the impact of pol-
lution on productivity.36 The parameters show that the industry-specific estimates of the impact
of pollution on productivity were generated from a prior distribution with mean -0.11 (-0.35,
0.13) and standard deviation 0.67 (0.14 , 1.44).37 The estimated parameters of the distribution
imply that 57 percent of industries are sensitive to air pollution (ie λi < 0). They also reflect
variation in the impact of pollution on productivity. At the 25th percentile, a 0.01 unit increase
in AOD results in a 0.56 percent reduction in productivity. At the 75th percentile, a 0.01 unit
increase in AOD results in a 0.34 percent rise in productivity, an increase of 0.9 percentage
points.

Reduced Form Evidence

The industry-level estimates indicate there is meaningful heterogeneity across industries in the
impact of air pollution on productivity. In particular, the estimates imply that pollution has a
significant negative effect on productivity for some industries with λi < 0 even though there is
no average effect of air pollution on productivity. A potential concern is that differences in the
industry-level estimates represent an artifact of the estimation procedure rather than underlying
differences in the pollution and productivity trends.

To confirm that the distribution of industry-specific pollution sensitivities reflects intrinsic
differences across industries, Figures 11a and 11b repeat the reduced form estimation of the
effect of wind on productivity separately for industries in the highest quartile (most negative)
λi and industries in the bottom quartile (least negative) λi. The plots show that wind has mean-
ingfully different effects on productivity in each group. Figure 11a shows there is a statistically
significant increase in productivity from additional months with high winds among industries
with the most negative λi (p-value=0.02). By contrast, Figure 11b shows no positive effect on

36I assume that industry-specific estimates were drawn with equal probability from a normal prior distribution.
I also assume the mean of the prior distribution was equal for all industries, “grand mean” rather than “regression
surface” in (Morris, 1983), ie λi ∼ N (λ, σ2).

3790 percent confidence intervals obtained with industry bootstrapping. The parameters do not weight industries
by output.
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productivity from additional months with high winds among industries with the least negative
λi (p-value=0.09).38

The trends in Figures 11a and 11b further corroborate the results of the estimation procedure.
The comparatively large effects for additional high wind months in both reduced forms mirror
the first stage relationship between wind and pollution. For example, among industries with
the most negative λi, an additional month with average wind over 3 m/s resulted in both a
larger decline in AOD (0.009 units) and a larger increase in productivity (1.15 percent) over
the baseline month (average wind below 0.6 m/s) than an additional month with lower average
wind.

6 Determinants of Pollution Sensitivity

To distinguish what makes some industries more sensitive to air pollution than others, I turn to
establishing a foundation for heterogeneity in sensitivity to air pollution across industries. In an
extension of the model, I allow pollution to affect production by distorting the returns to hired
inputs as well as total factor productivity. I show that even if the underlying impact of pollution
on inputs and productivity was the same for all firms, there would still be heterogeneity in
the effect of pollution across industries resulting from variation in technology. I establish this
pattern in the data. I find that labor-intensive industries are most sensitive to air pollution on
average.

6.1 Model of Heterogeneous Pollution Sensitivity

To begin, I elaborate on the potential avenues by which pollution may affect productivity and
production in Equation 1. I assume pollution may cause inputs to be less effective. Specifically,
I let:

Yfidt =
(
Aγ0Ω̃fidt

)
(AγLdt Lfidt)

βLit (AγKdt Kfidt)
βKit (AγMdt Mfidt)

βMit (8)

38The somewhat negative trend in Figure 11b signals that wind (air pollution) may lower (raise) productivity
among industries in this group. One possibility is that firm adaptations lead to a positive impact of air pollution
on productivity. For example, a firm with capital or labor stocks of heterogeneous quality facing a pollution shock
may keep the most healthy and unimpeded workers and retire its least efficient capital. While this interpretation
deviates from the conceptual framework in the model, the data do not indicate that productivity improvements
explain the average effect as well as imprecision around zero. The pattern in Figure 11b is not significant at high
confidence levels (p-value=0.09) and no EB-adjusted λi was significantly greater than zero.
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where all the variables and notation remain as in Equation 1 and the distinguishing feature is
the additional parameters {γ0, γL, γK , γM}.

The key alterations from the standard model in Equation 8 are that i) some fraction (or
multiple) of each hired input contributes to output and ii) pollution determines how much each
hired input contributes to output. For example, the contribution of labor to output, AγLdt Lfidt,
differs from hired labor Lfidt in that it allows distortions in the returns to labor. Distortion
in the returns to labor occurs when some of the hired labor does not contribute to production
(Greenstone et al., 2012). For example, if a salaried worker suffers from asthma on the job
and needs additional breaks, their contributing, or effective, labor is a portion AγLdt of their
hired labor. Pollution and the underlying effect of pollution on factors of production determine
portion of hired inputs that contribute to output. In the example, as pollution increases, AγLdt
changes at rate γL, so a one percent increase in pollution yields a γL percent change in the
portion of hired labor that contributes to output. The parameter γL is akin to an elasticity of
effective labor with respect to pollution.

Equation 8 allows for ample generality in how pollution affects production. Intuition in-
dicates that labor is the most vulnerable to pollution because of the substantial human health
impacts of exposure to particulate matter. Nevertheless, Equation 8 allows for the possibil-
ity that air pollution depletes the effectiveness of capital and materials.39 Relatedly, pollution
may affect non-input factors of production, productivity, via γ0. Further, I do not impose an
assumption that γ < 0.

Collecting pollution terms in Equation 8 yields Equation 1 with the addition that sensitivity
λit now reflects the various potential distortions from air pollution. I define:

λit = γ0 + γLβLit + γKβKit + γMβMit. (9)

As before, the observed TFPR is defined in levels:

Ωfidt =
Yfidt

LβLit

fidtK
βKit

fidt M
βMit

fidt

= Aλitdt Ω̃fidt (10)

Thus, the log TFPR is equivalent to Equation 3 and the impact of pollution on log TFPR is
equivalent to Equation 4.

Equation 9 provides a foundation for sensitivity to air pollution. It implies that both the
impact of pollution on inputs and the technology determine the overall effect of pollution, λit.

39Rao et al. (2014) show that air pollution contributes to costly corrosion of infrastructure and industrial ma-
chinery in India. Additional studies are reviewed in Brimblecombe (2015).
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Air quality must negatively affect at least one input to observe sensitivity to air pollution. To
illustrate, if air pollution is a detriment to workers’ productivity and has no other effect on pro-
duction, then γL < 0 and sensitivity λit = γLβLit, the impact on each unit of labor transformed
into units of output.40 If in addition pollution corrodes materials, γM < 0, sensitivity would
lower further.

Moreover, Equation 9 demonstrates that industries can vary in their sensitivity to air pollu-
tion by virtue of technology differences alone. Two firms that hire identical workers, materials,
and capital in identical quantities may exhibit different sensitivity to air pollution λit if they use
different technology, {βLit, βKit, βMit}. More broadly, the finding that air pollution has little
effect on TFPR would be compatible with findings that pollution greatly harms workers in a
world where the detriments to labor are outweighed by intensive use of capital and materials.

6.2 Estimation of Determinants of Pollution Sensitivity

I assemble empirical evidence to corroborate the avenues by which pollution may affect produc-
tivity in the model of heterogeneous pollution sensitivity. The substantial human health impacts
of exposure to particulate matter imply that air pollution has negative effects on manufacturing
workers. If worker health impacts drive sensitivity to air pollution, the model predicts that air
pollution will have the greatest negative impact on industries with labor-intensive production
technology. I demonstrate that heterogeneity in the impact of pollution reflects differences in
the labor-intensity of production technology with reduced form evidence. I estimate the pollu-
tion distortion to each input to production. Consistent with the health-channel, I find that air
pollution negatively affects labor inputs.

Reduced Form Evidence

Given that pollution distorts labor inputs, γL < 0, the model and parameters predict a larger
effect of air pollution on productivity in industries with greater labor factor shares. In Figure
12a, I plot the reduced form estimates of the impact wind on log TFPR from Equation 7 for firms
in the highest quartile of the labor factor share βLit. The plot shows that additional months
with high average wind speeds have a significant positive effect on productivity (p-value =

40This framework subsumes a simple one-factor scenario where pollution abates the output per unit labor as in
Fu et al. (2017). Specifically, let labor be the only input and let βLit = 1, then the derivative of log output per unit
labor with respect to log pollution is λit = γL.
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0.04). Further, the reduced form trend mirrors the first-stage: the greatest improvements in
productivity are measured from additional months with the greatest declines in air pollution.

For comparison, in Figure 12b, I plot the analogous reduced form estimates of the impact
wind on log TFPR for firms in the lowest quartile of the labor factor share βLit. The plot shows
that in this sample additional months with high average wind speeds do not have a significant
effect on productivity (p-value = 0.19). These reduced form plots are consistent with the hy-
pothesis that health effects of pollution combined with labor-intensive production technology
lead to a negative effect of air pollution on productivity.

Table 6 reports the estimated impact of AOD on log TFPR from Equation 7 for firms in
each quartile of the labor factor share βLit. Column 1 shows that pollution negatively affects
productivity for firms with labor factor share in the highest quartile. The estimate indicates that
in this sample, a 0.01 unit increase in AOD (one µgm3) causes a 1.7 (1.6) percent decline in pro-
ductivity. Columns 2-4 show that air pollution does not have a significant effect on productivity
for firms with low labor factor shares.

Whereas previous work has relied on biological explanations of variation in pollution sen-
sitivity, such as higher average worker respiratory rates indicating occupations where pollution
has worse effects (Chang et al., 2016), these findings demonstrate that labor-intensive technol-
ogy plays a critical role in impact of air pollution on firms. Agricultural sectors (Graff Zivin
and Neidell, 2012) and garment making (Adhvaryu et al., 2014) will be more sensitive to air
pollution than the average manufacturing firm because they are labor intensive relative to the
average.

Declining wages may be an additional signal that pollution takes a toll on labor inputs.
Given the assumptions that firms know pollution and can adjust inputs in response to pollution,
pollution may cause wages to fall to reflect the decline in marginal product, all else equal. Con-
sistent with this hypothesis, Figure 13 demonstrates that additional months with high average
wind speeds result in a significant rise in wages. Analogously, Table 7 shows that a 0.01 unit
increase in AOD (one µgm3) causes a 1.2 (1.1) percent decline in wages. While this evidence
is consistent with the finding that pollution affects worker health, other plausible scenarios sug-
gest the pollution-wage relationship would be weaker than observed. For example, wages will
not reflect changes in the marginal product of labor if sensitive plants are wage takers. Another
possibility is that wages will not fully reflect the effect on labor when labor is mobile because
worker movement may equalize wages across locations and firms in polluted locations may
offer compensation that counteracts the productivity shock on wages.
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Structural Estimates

To measure the effect of air pollution on the inputs to production, I estimate the following
regression based on Equation 9:

λi = (γ0 − γM) + (γL − γM)βLi + (γK − γM)βKi. (11)

In this regression, βLi is the average labor factor share for each industry. I note that the data
exhibit constant returns to scale (Table 2) so the explanatory variables are nearly collinear. Thus,
thus I identify γ0−γM , γL−γM , γK−γM respectively. I continue to use the sample of N = 132
industry sensitivity estimates; however, I remove outlying estimates as a robustness exercise. I
weight the industries by their total output value so that the estimates are representative of the
manufacturing sector.

Table 8 reports the results of fitting Equation 11. The data indicate that air pollution consid-
erably reduces the contribution of labor inputs to production. The estimate implies that a 0.01
unit increase in AOD (one µgm−3 in PM2.5) reduces the portion of labor inputs that contribute
to output by 0.10 percent (0.09 percent) relative to materials, the omitted factor. The estimate is
statistically significant (p-value = 0.006). Air pollution does not have a statistically significant
effect on capital returns relative to materials.

The magnitude of the estimated input sensitivities and factor shares are consistent with the
estimated average impact of pollution on productivity. They imply that going from an industry
with technology in 5th percentile of labor intensity to an industry in the 95th percentile would
increase the sensitivity to air pollution (lower λi) 1.6 percentage points. This is estimate is in the
range of the average impact of pollution among industries with high labor factor shares (Table
6). Averaging industries in Equation 9 suggests the mean λ = γ0 + γLβL + γKβK + γMβM .
Supposing that materials are insensitive to pollution, γM = 0, and substituting in the values
of the factor shares from Table 2, the model and parameters imply that at the median industry
λi = −0.21− 10 ∗ 0.065 + 2.5 ∗ 0.18 = −0.41. This is within the confidence interval of Table
4 column 1 and Figure 10.

The negative relationship between the labor factor share and pollution sensitivity remains
significant under several alternative assumptions. Table A3 presents the results of repeating the
estimation of Equation 11 in several robustness exercises. It shows that the estimated γL remains
negative when I employ λEBi as the outcome in lieu of λi, use alternative preparations of the
data, use alternative approaches to estimating the production function, and vary the functional
forms of the first stage and control functions.
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7 Evaluating the Costs of Air Pollution

I estimate how the profits would change in a world without excess air pollution to benchmark
the overall cost of air pollution in the Indian manufacturing sector .

7.1 Estimation

The welfare-measure of interest is how air pollution changes firms’ profits. Returning to the
model of profit maximization with pollution (Equation 2), the impact of pollution on profits
depends on the change output value net the change in input costs. In turn, these objects depend
on the how pollution changes firms inputs and input prices.41

To make the computations, I maintain the assumptions from the estimation of the production
function that factor markets for labor and materials are perfectly competitive and firms can
adjust labor and materials inputs without constraint.42 I also make the assumption that there is
no capital adjustment and no change in capital prices as a result of pollution. This is consistent
with assuming prohibitive adjustment costs to capital inputs and taking average variable profits
as the measure of producer surplus.

Under these assumptions, I derive the impact of pollution on average variable profits as a
function of the change in input prices. I obtain the impact of pollution on input demand from
the first order conditions. The effect of an increase in pollution on the log input demand for
j ∈ {`,m} is:

djfidt
dadt

= βJitλi −
dpJ

dadt
(12)

A productivity shock from pollution causes demand for each input to adjust according to the
industry sensitivity and the factor share. If input prices decline to offset the negative productivity
shock of air pollution, the impact of pollution on producer surplus will be less severe than if
prices do not change.43 I consider two scenarios. First, I assume input prices do not change.
Second, I allow input prices to decline. In lieu of assuming that input prices adjust in each
industry to perfectly offset that industry’s specific sensitivity to air pollution, I assume all input
prices adjust as a function of the average effect of pollution on productivity. Given this imperfect

41I continue to assume constant output prices.
42Perfectly competitive factor markets further imply that producer surplus, profits, are sufficient to measure

welfare.
43By contrast, with enough labor mobility, compensating differentials suggest pollution would cause wages to

rise. Although I do not consider this scenario, higher input prices would make the impact of pollution on producer
surplus even be more severe than if prices did not change.
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price adjustment, the effects under price changes are not strictly lower than under no price
changes.

I simulate the effect of removing pollution in excess of the global standard on average vari-
able profits. To achieve the standard, India must reduce annual mean PM2.5 to 10 µgm−3 in
every district and year.44 I perform the estimation at the firm-year level. I assign to each firm-
year observation the change in air quality needed for its district to meet the WHO standard in
the year based on the observed air quality in each district-year.

7.2 Results

Table 9 reports the effect on profits of improving air quality to the World Health Organization
standard. Assume prices do not change, I estimate that bringing air quality to the standard would
result in a 0.36 percent rise in variable profits overall (132 industries) and a 1.18 percent rise
among the sensitive industries (86 industries). Allowing for some price adjustment, I find that
manufacturing profits would rise 0.26 percent for all industries and 1.07 percent for sensitive
industries. As expected, price adjustments attenuate the overall effect of pollution on profits.
These losses are small in comparison to other sources of productivity loss in India. Allcott
et al. (2016) estimate that electricity shortages cause a 5.6 percent reduction in variable profits
in roughly the same sample, implying the an overall cost of electricity shortages exceeds that of
air pollution by more than an order of magnitude.

The estimates further underscore the diverse effects of air pollution on industry. In both
scenarios, I find stark differences in the impact for sensitive industries in comparison to the full
sector. The sensitive industries overstate the overall effect by a factor of 3 to 4. As an additional
comparison, the losses are also small in comparison to prior estimates of the impact on PM2.5
on the economy; yet, these differences are more modest when only considering sensitive indus-
tries. Extrapolating from one plant, Chang et al. (2016) estimate that the improvement in US
PM2.5 concentrations from 1999 to 2008, a fall of 2.79 µgm−3 on average, raised manufactur-
ing revenue 2.67 percent. While this amount is many times the estimate for all manufacturing
industries in India, it is only slightly more than twice the estimate for sensitive industries. The
differences underscore the external validity challenge for studies with data from a single firm as
estimates of a single industry are not representative of the overall cost of air pollution.

44The World Health Organization guideline for annual mean PM2.5 is 10 µgm−3. So if a district’s annual mean
PM2.5 is 41 µgm−3, the counterfactual is a decline of 31 µgm−3. No observations in the data met the standard so
all counterfactual calculations involve a pollution decline.
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8 Conclusion

This study examines the costs of pollution for the manufacturing sector in India. I collate com-
prehensive geo-spatial data on weather and air quality, an improvement over prior data for the
setting, along with an administrative panel of firms. I use a model of production with air pol-
lution to illustrate the effect of air pollution on productivity and production and to establish an
analytical foundation for heterogeneity in the influence of air pollution on economic outcomes.
To address endogeneity in the pollution-productivity relationship, I use a new instrument, the
distribution of wind velocity, for as-if random assignment of pollution when estimating the
model of pollution and production.

I find the average effect of air pollution on productivity is small in comparison to previous
estimates. Guided by the model, I argue this finding reflects two features of the setting: adapta-
tions that attenuate the impact of air pollution over time and heterogeneity in the damages of air
pollution. I estimate industry-specific effects of pollution on productivity and find meaningful
differences across industries in the effect of pollution. I use the predictions of the model to ex-
plain the heterogeneity: I show that labor-intensive industries are substantially more adversely
affected than industries that rely less on labor inputs. To benchmark the welfare implications, I
simulate the effect of reducing air pollution to the level of international guidelines. I find that
the costs of air pollution are substantial for some sensitive industries, yet the effects for the
sensitive industries are not representative of the overall manufacturing sector.

The findings underscore two prominent themes in understanding the role of environmen-
tal influences on human capital and economic activity. First, the effect of long-run changes in
environmental influences may be substantially weaker than effect of short-run changes in envi-
ronmental influences. Further research in this vein includes Barreca et al. (2016), Graff Zivin
et al. (2018), and Deschênes and Greenstone (2011); a review is in Dell et al. (2014). A impor-
tant implication of this distinction is that the bulk of economic costs may arise from variation in
environmental influences and adaption during transitions rather than changes in the mean level
of environmental influences. Second, the effect of environmental influences on human capital
and economy-wide output may be highly heterogeneous. Burgess et al. (2017) underscore these
distinctions for rural and urban areas of India. Dell et al. (2012), Jones and Olken (2010), and
Hsiang (2010) find heterogeneity in the impact of climate variables by income. Heterogeneous
damages have several important implications for environmental policy and research. They in-
dicate that policy calculations that ignore heterogeneity risk vastly misrepresenting the scale of
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damages. Moreover, if unchecked, they point to the possibility of economic distortions arising
over time from unequal incidence of environmental damages.
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Figure 1: Validation of AOD

(a) Suspended Particulate Matter (SMP)

0
10

0
20

0
30

0
40

0
50

0
Ci

ty
 Y

ea
r M

ea
n 

SP
M

 (µ
gm

-3
)

0 .2 .4 .6 .8 1
Mean AOD Within 10k

Binned observations Linear fit
Local poly fit Linear 95% CI

(b) Ground-level Fine Particulate Matter (PM2.5)
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Note: In Panel A, the unit of observation is the city-calendar year. The sample includes all city-years with SPM
observed from ground monitors. In Panel B, the unit of observation is the district-calendar year. The sample
includes all districts with AOD observed in every month for 2001-2009 inclusive. The diagram depicts i) scatter
plot of mean AOD and SPM (Panel A) or PM2.5 (Panel B) for bins of 10 observations, ii) linear fit and 95
percent confidence interval, and iii) local polynomial fit. SPM from Greenstone and Hanna (2014), PM2.5 from
Van Donkelaar et al. (2016), and AOD from MODIS.
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Figure 2: District Mean AOD 2000/01 - 2009/10

Note: Boundaries depict the 2001 districts of India. Shading represents the mean of annual average AOD for ASI
years 2000/01 to 2009/10. Annual averages exclude July and August. AOD data from MODIS.
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Figure 3: Distribution of Monthly Mean Wind Velocity
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Note: The unit of observation is the district-month. The sample includes all district-months for ASI years 2000/01-
2009/10. The histogram bars depict the fraction of district-months with AOD in each interval.
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Figure 4: District Average Absolute Percent Deviation From Mean Wind Velocity 2000/01-
2009/10

Note: Boundaries depict the 2001 districts of India. Shading represents the average percent of absolute deviation
from the district mean wind velocity from ASI year 2000/01 to 2009/10. Wind velocity data are from Wentz and
J. Scott (2015).
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Figure 5: Distribution of AOD by Low and High Wind Districts
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Note: The unit of observation is a district-year. The sample includes all districts with a firm in the ASI panel
years 2000/01-2009/10. AOD data are from MODIS. Wind velocity data are from Dee et al. (2011). The plot
shows a histogram of the district annual mean AOD for i) district-years above the median wind velocity and ii)
district-years below the median wind velocity.
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Figure 6: Semi-Parametric Relationship Between AOD and Wind Velocity
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Note: The unit of observation is a firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
The figure plots the θ̂j obtained from estimating Equation 6. The depicted coefficients are 100 times the estimated
effect of an additional month with mean wind velocity in the corresponding interval relative to a month with mean
wind velocity less than 0.6 m/s on the annual mean AOD. Robust standard errors were clustered at the district
level. The confidence intervals are ± 1.96 standard errors. A solid line at zero shows estimates that are significant
at the 95 percent level. The regression uses survey weights. See text for details.
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Figure 7: The Effect of Wind Velocity on Future Change in AOD
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Note: The unit of observation is a firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
The figure plots the θ̂j obtained from estimating Equation 6 with ∆adt+1 as the dependent variable. The depicted
coefficients are 100 times the estimated effect of an additional month with mean wind velocity in the corresponding
interval relative to a month with mean wind velocity less than 0.6 m/s on the annual mean ∆adt+1. Robust standard
errors were clustered at the district level. The confidence intervals are ± 1.96 standard errors. A solid line at zero
shows estimates that are significant at the 95 percent level. The regression uses survey weights. See text for details.
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Figure 8: The Effect of Wind Velocity on Productivity

. -0.01 0.10
0.36

-0.02
0.09

0.36

-0.41
-0.25

-0.10

-2
-1

0
1

2
3

< 0.6 0.6 - 0.9 0.9 - 1.2 1.2 - 1.5 1.5 - 1.8 1.8 - 2.1 2.1 - 2.4 2.4 - 2.7 2.7 - 3 > 3
Wind Velocity

Coefficient*100 95% CI
Joint significance test p-value = 0.00; Equality test p-value = 0.00; Linear estimate = 0.01 (0.01)

Note: The unit of observation is a firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
The figure plots the θ̂j obtained from estimating Equation 6 with log total factor productivity ωfidt as the dependent
variable. The depicted coefficients are 100 times the estimated effect of an additional month with mean wind
velocity in the corresponding interval relative to a month with mean wind velocity less than 0.6 m/s on ωfidt.
Robust standard errors were clustered at the district level. The confidence intervals are ± 1.96 standard errors. A
solid line at zero shows estimates that are significant at the 95 percent level. The regression uses survey weights.
See text for details.
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Figure 9: The Effect of Wind Velocity on Output Measures
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Note: The unit of observation is a firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
The figures plot the θ̂j obtained from estimating Equation 6 with log value added per unit labor as the dependent
variable in Panel A and log output value as the dependent variable in Panel B. The depicted coefficients are 100
times the estimated effect of an additional month with mean wind velocity in the corresponding interval relative
to a month with mean wind velocity less than 0.6 m/s on the outcomes. Robust standard errors were clustered at
the district level. The confidence intervals are ± 1.96 standard errors. A solid line at zero shows estimates that are
significant at the 95 percent level. The regression uses survey weights. See text for details.
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Figure 10: Distribution of the Effects of Air Pollution on Productivity
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Note: The unit of observation is the three-digit industry. The sample includes manufacturing industries in the
ASI panel years 2000/01-2009/10. The plot shows a histogram of estimated industry-specific effects of air pollu-
tion on productivity, λi, with industries weighted by their total output. See Section 6 for details on the variable
construction.
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Figure 11: The Effect of Wind Velocity on Productivity by Sensitivity
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(b) Highest Quartile λi
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Note: The unit of observation is a firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
Panel A restricts the sample to firms in industries with λi in the lowest quartile. Panel B restricts the sample to
firms in industries with λi in the highest quartile. The figures plot the θ̂j obtained from estimating Equation 6 with
log total factor productivity ωfidt as the dependent variable. The depicted coefficients are 100 times the estimated
effect of an additional month with mean wind velocity in the corresponding interval relative to a month with mean
wind velocity less than 0.6 m/s on ωfidt. Robust standard errors were clustered at the district level. The confidence
intervals are± 1.96 standard errors. A solid line at zero shows estimates that are significant at the 95 percent level.
Regressions use survey weights. See text for details.
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Figure 12: The Effect of Wind Velocity on Productivity by Labor Share
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(b) Lowest Quartile βLit
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Note: The unit of observation is a firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
Panel A restricts the sample to firms in industries with βLit in the highest quartile. Panel B restricts the sample
to firms in industries with βLit in the lowest quartile. The figures plot the θ̂j obtained from estimating Equation
6 with log total factor productivity ωfidt as the dependent variable. The depicted coefficients are 100 times the
estimated effect of an additional month with mean wind velocity in the corresponding interval relative to a month
with mean wind velocity less than 0.6 m/s on ωfidt. Robust standard errors were clustered at the district level. The
confidence intervals are ± 1.96 standard errors. A solid line at zero shows estimates that are significant at the 95
percent level. Regressions use survey weights. See text for details.
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Figure 13: The Effect of Wind Velocity on Wages
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Note: The unit of observation is a firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
The figure plots the θ̂j obtained from estimating Equation 6 with log wage as the dependent variable. The depicted
coefficients are 100 times the estimated effect of an additional month with mean wind velocity in the corresponding
interval relative to a month with mean wind velocity less than 0.6 m/s on log wage. Robust standard errors were
clustered at the district level. The confidence intervals are ± 1.96 standard errors. A solid line at zero shows
estimates that are significant at the 95 percent level. The regression uses survey weights. See text for details.
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Table 1: Summary of AOD and Weather

mean sd p10 p50 p90 count
AOD 0.41 0.16 0.22 0.36 0.64 4809
Wind Velocity (m/s) 1.68 0.82 0.78 1.42 2.82 4809
Precipitation (cm/month)
January- March 1.85 2.43 0.07 0.99 4.56 4803
April-June 9.84 11.47 1.81 6.39 22.48 4803
July-September 24.18 15.94 8.40 21.77 40.28 4803
October-December 4.18 5.84 0.14 2.03 11.77 4803
Temperature (deg C)
January- March 21.49 4.18 17.39 21.47 26.33 4803
April-June 30.02 3.29 26.05 30.83 32.95 4803
July-September 27.79 2.62 24.77 28.32 30.20 4803
October-December 22.41 3.10 19.98 22.47 25.70 4803
Vapor Pressure (hPa)
January- March 14.52 4.91 9.50 13.47 22.06 4809
April-June 21.95 5.61 15.53 21.70 29.65 4809
July-September 29.58 3.47 25.22 29.98 33.48 4809
October-December 17.73 4.91 12.19 17.97 23.98 4809

Note: The unit of observation is the district-year. The sample includes all districts with a firm in the ASI panel
years 2000/01-2009/10. AOD data are from MODIS AOD. Wind velocity data are from Wentz and J. Scott (2015).
Precipitation and temperature data are from Willmott and Matsuura (2015). Vapor pressure data are from Harris
et al. (2014).
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Table 2: Estimation of Production Function Parameters

mean sd p5 p50 p95 count
ωfidt 2.55 1.28 0.70 2.39 4.97 207316
βLit 0.08 0.06 0.02 0.07 0.18 207316
βMit 0.68 0.15 0.42 0.68 0.91 207316
βKi 0.18 0.09 0.06 0.18 0.35 207316
CRS coefficient 0.95 0.06 0.83 0.96 1.01 207316

Note: The unit of observation is a firm-year. Data from Annual Survey of Industries 2000/01-2009/10. All statistics
use survey weights. CRS coefficient is the sum of βLit, βMit, and βKi.
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Table 3: Statistical Properties of Wind Instrumental Variable

(1) (2) (3) (4)
ln(Kfidt−1) ln(Ifidt−1) ln(Nd) ln(wheat)

âdt 0.0997 0.167 586.3 -3.024
(0.486) (1.783) (922.5) (3.536)

Observations 107,149 92,938 204,275 138,411
R-squared 0.022 0.015 0.364 0.326
Number of permid 36,144 31,511 55,790 39,046
Weather controls Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
State * year trends Yes Yes Yes Yes

Note: The unit of observation is the firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
Estimates are obtained from Equation 7 with dependent variables lagged log capital (column 1), lagged log in-
vestment (column 2), district log number of firms (column 3), and district log wheat production. The coefficient
standard error is reported in parenthesis beneath. Robust standard errors were clustered at the district level. Re-
gressions use survey weights. See text for details.
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Table 4: Impact of AOD on Productivity and Production

(1) (2) (3)
ln(TFPR) ln(LP) ln(Y)

âdt -0.189 -1.310** -1.403**
(0.276) (0.587) (0.543)

Observations 204,275 193,444 204,275
R-squared 0.194 0.023 0.056
Number of permid 55,790 54,850 55,790
Weather controls Yes Yes Yes
Firm fixed effects Yes Yes Yes
Year fixed effects Yes Yes Yes
State * year trends Yes Yes Yes

Note: The unit of observation is the firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
Estimates are obtained from Equation 7 with dependent variables log total factor productivity (column 1), log value
added per unit labor (column 2), and log value output (column 3). The sample in column 2 differs from column 1
because log value added is undefined for all firm-years with higher value materials input than value of output. The
coefficient standard error is reported in parenthesis beneath. Robust standard errors were clustered at the district
level. Regressions use survey weights. See text for details.
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Table 5: Estimated Parameters of Pollution Sensitivity Distribution

(1) (2) (3)
Mean p5 p95

λ -0.11 -0.35 0.14
σ 0.67 0.14 1.44

Note: Each parameter is a scalar. Estimates are calculated assuming a normal prior distribution of industry-specific
effects of air pollution on productivity, λi ∼ N (λ, σ2). λ is the mean of the distribution of industry-specific effects
and σ is the standard deviation. The estimates are not representative of the manufacturing sector as they do not
weight industries by output. Confidence intervals obtained with industry-level bootstrapping.

57



Table 6: Impact of AOD on Productivity by Labor Share

(1) (2) (3) (4)
Highest Quartile 3rd Quartile 2nd Quartile Lowest Quartile

âdt -1.720*** 0.186 0.571 0.345
(0.582) (0.457) (0.429) (0.364)

Observations 51,045 54,024 52,733 46,473
R-squared 0.102 0.181 0.161 0.248
Number of permid 17,502 19,933 20,453 15,774
Weather controls Yes Yes Yes Yes
Firm fixed effects Yes Yes Yes Yes
Year fixed effects Yes Yes Yes Yes
State * year trends Yes Yes Yes Yes

Note: The unit of observation is the firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
Column 1 restricts the sample to firms in industries with βLit in the highest quartile. Columns 2, 3, and 4 restrict
the sample to firms in industries with βLit in the second, third, and fourth quartiles respectively. Estimates are
obtained from Equation 7 with dependent variables log total factor productivity. The coefficient standard error is
reported in parenthesis beneath. Robust standard errors were clustered at the district level. Regressions use survey
weights. See text for details.
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Table 7: Impact of AOD on Wages

(1)
ln(wage)

âdt -1.219***
(0.268)

Observations 204,275
Number of permid 55,790
R-squared 0.032
Weather controls Yes
Firm fixed effects Yes
Year fixed effects Yes
State * year trends Yes

Note: The unit of observation is the firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
Estimates are obtained from Equation 7 with dependent variable log wage. The coefficient standard error is re-
ported in parenthesis beneath. Robust standard errors were clustered at the district level. Regressions use survey
weights. See text for details.
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Table 8: Input Contributions to λi

(1)
λi

βLi -9.982**
(4.786)

βKi 2.493
(3.307)

Constant -0.210
(0.478)

Observations 132
R-squared 0.048

Note: The unit of observation is the three-digit industry. The sample includes manufacturing industries in the ASI
panel years 2001-2010. Column 1 reports the coefficients of estimating Equation 11. Industries are weighted by
their total output. Robust standard errors reported in parenthesis.
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Table 9: Percent Change in Output of Reducing PM2.5 to WHO Standard

(1) (2)
No price adjustment Price adjustment

(1) All industries 0.36 0.26
(0.11,0.58) (0.07,0.44)

(2) Sensitive industries 1.18 1.07
(0.90,1.45) (0.84,1.34)

Note: The unit of observation is the firm-year. The sample includes firms from the ASI panel years 2000/01-
2009/10 and in 132 industries represented in Figure 10. The cell in row 1 column 1 reports the mean percent
improvement in average variable profits from reducing air pollution in every district and year to the WHO standard,
10 µgm−3 assuming no changes occur in input prices. The cell in row 2 column 1 reports repeats the estimate
in row 1 column 1 and reports the mean among firms in the subset of industries with λEBi < 0. The cell in
row 1 column 2 repeats row 1 column 1 assuming labor and materials prices adjust to perfectly reflect the output
weighted mean productivity effect (ie substituting the mean on the industry-specific effects times the factor share
for the price change in Equation 12 so the input changes are nearly zero). The cell in row 2 column 2 repeats
the estimate in row 1 column 2 and reports the mean among firms in the subset of industries with λEBi < 0. All
estimates use survey weights. 95 percent confidence intervals reported in parenthesis. Standard errors obtained
from 1000 bootstrap samples at the industry level.
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Appendices

A1 Datasets

A1.1 Annual Survey of Industries
Table A1 presents descriptive statistics of the firms in the sample. In total, there are 207,176
observations of 57,724 unique firms. The median firm earns 18 million rupees in a year and
employs 26 people. The distributions of number of workers, value of output, output per worker,
and labor cost in the sample closely match previous research with the dataset (Allcott et al.,
2016).

A1.2 MODIS Aerosol Optical Depth
MODIS Aerosol optical depth (AOD) is developed with advanced versions of basic physical
principals of remote sensing I describe here. As electromagnetic radiation travels through the
atmosphere, it can be deflected off atmospheric particles, called scattering, or it can be trans-
formed into kinetic energy, called absorption. AOD is defined as the extent to which aerosols
attenuate the transmission of light by absorption or scattering. The degree of attenuation de-
pends on the size and composition of particles in the atmosphere, the wavelength of light, and
the distance through the atmosphere that the light passed, which in turn depends on the angles
of the sun and the sensor.

Thus, the model of potential paths of light from the sun to the sensor allows for absorption
and scattering to abate the radiance measured at the sensor from the target pixel and for atmo-
spheric upwelling to increase radiance at the sensor. MODIS AOD products are derived from an
algorithm that builds on this model of light-atmosphere interaction, but also accounts for how
aerosol particle size and total amount, or load, affect the amount of light transmitted (see Re-
mer et al. (2006) page 26 for the equation). The algorithm relies on a large database where the
radiance at the sensor is calculated for many combinations of potential aerosols, angles of sun
and sensor, elevation, etc over which the algorithm “inverts” the data. The process is described
in detail in Remer et al. (2006). The following is a very simplified version:

1. Discard pixels identified as water, clouds, snow, extremely dark, or extremely light.

2. Calculate path radiance from remaining dark pixels and calculate surface reflectance.

3. Match observed path radiance to most likely aerosol combination.
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A2 Estimation Details and Robustness Checks

A2.1 First Stage Robustness
Atmospheric models predict an instantaneous relationship between meteorological conditions
and air quality; however, an instantaneous relationship does not imply annual averages reflect
the same relationship. One concern is that the instantaneous relationship between air quality
and wind velocity does not scale into annual averages and the observed pattern is instead re-
flects anomalies in data availability, such as seasonal missing AOD data. Since firm outcomes
are measured annually, I cannot relate pollution to productivity more frequently than annually.
Instead, to ensure that the annual pattern is consistent across the year and across locations, I
repeated the first stage with monthly data. Figure A1 shows that monthly mean wind veloc-
ity is significantly correlated with monthly mean AOD conditional on controls for weather in
all months except the rainy season, August, September, and October. This pattern is consis-
tent with expectations: since rain deposits aerosols, wind has little effect aerosol concentration
conditional on rain when rain is very high.

A2.2 Exclusion Restriction
Atmospheric pressure gradients determine wind velocity. In India, the primary source of annual
variation in wind velocity is the intensity and geographic distribution of the seasonal monsoon.
Districts that are closest to where pressure gradient driving the monsoon is most steep have
the greatest variation in winds. Figure 4 illustrates this pattern. The districts with the greatest
variation in wind are located at latitudes where the inter-tropical convergence zone shifts during
the monsoon, called the monsoon trough.

Many factors contribute to the pressure gradient driving the monsoon so the monsoon trough
and timing are unpredictable each year. Besides conventional anomalies, ocean-atmosphere in-
teractions contribute to year-to-year variation in the spatial distribution of atmospheric pressure.
For example, the El Nino Southern Oscillation (ENSO) and the Pacific Decadal Oscillation
(PDO) are two patterns of sea-surface temperature changes that affect the weather in India via
teleconnections.

A concern is that if patterns such as ENSO and PDO lead to changes in other meteorological
characteristics besides wind, then it is possible that the instrument, wind, is correlated with other
channels that also influence productivity, such as temperature and precipitation. In addition to
precipitation from the monsoon, temperature is a concern for inference as it is known to have
an effect on productivity (Sudarshan et al., 2015). For these reason, I allow for precipitation,
temperature, and vapor pressure to affect productivity by including their means, second degree
polynomials, and interactions by season as exogenous variables in the first stage and IV.
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A2.3 Impact of Air Pollution on Productivity Robustness
Table A2 reports the results of robustness exercises examining the impact of pollution on pro-
ductivity. Row 1 reports the predicted AOD coefficient (column 1), p-value (column 2), and
sample size (column 3) from a regression of log TFPR (Equation 7) as in Table 4. The coeffi-
cient standard error is reported in parenthesis beneath. Robust standard errors were clustered at
the district level.

Rows 2-4 and 10-11 examine the instrumental variables research design. Row 2 repeats row
1 with a linear first stage using the annual mean wind velocity as the excluded instrument. Row
3 repeats row 1 using AOD adt and a control function in lieu of fitted values, âfidt. The control
function includes the first stage residuals, r̂fidt from Equation 6, squared residuals r̂2fidt, and
interactions adt ∗ r̂fidt. This approach is less restrictive than 2SLS and allows for identification
of the average effect when the most sensitive firms avoid exposure to pollution (E(λiadt) 6= 0)
provided the relationship is linear (E(λi|adtVdt) = ψ1adt + ψ2Vdt) (Garen, 1984; Chay and
Greenstone, 2005). Row 4 repeats row 1 with the addition of wheat yields in Xidt. Although
yields are not a prefect measure of the impact of wind on agricultural markets, this specification
measures the estimate controlling for some of the relationship between wind and agriculture,
which may have spillovers to manufacturing productivity. Relatedly, rows 10 and 11 separate
the sample by rural and urban firms. If a concern is that either i) wind attenuates productivity
through agricultural yields or ii) urban areas experience substantially higher levels of local
pollution, this separation shows that even among urban firms where i) is unlikely and ii) is
likely there was still no significant effect of pollution on productivity.

To ensure the preparation of the ASI data does not influence the results, Row 5 repeats row
1 with the firm survey weights from ASI 2000-2001. Row 6 repeats specification 1 with the
firm survey weights from ASI 2009-2010.

Rows 7-9 examine the assumptions of the production function estimation. Row 7 replicates
row 1 under the assumption of constant returns to scale, βKi = 1−βLi−βMi, with βLi and βMi

the means of βLit and βMit. Row 8 repeats row 1 with the computation of capital factor share
using lagged investment in lieu of lagged capital in Equation in (A3). This variation allows
for measurement error in capital inputs Collard-Wexler and De Loecker (2016). Row 9 repeats
specification 1 allowing for adjustment costs in labor inputs in the computation of the labor
factor share.

Rows 12-13 examine how seasonality affects the results. Row 10 repeats row 1 with the
subsample of firms in the lowest 25 percent of days open and row 11 does so with the subsample
of firms in the highest 75 percent of days open. This separation shows that seasonal firms
appear substantially more sensitive to air pollution. This evidence suggests heterogeneity in
an important feature in the setting. Heterogeneity is explored further in the industry-specific
estimates.

Last, row 14 repeats row 1 with standard errors clustered at the state level. A concern is that
district level standard errors overstate the precision when the grid cells of spatial data are large
relative to the districts. This is the case in a small portion of the sample with urban districts.
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Moreover, the higher geographic level of clustering allows for additional spatial dependence in
the controls. Even with state-level clustering (31 clusters), the standard error of the estimate
increases little.

A2.4 Structural Estimates of Input Contributions
Table A3 reports the results of robustness exercises examining the impact of labor intensive
technology on the industry-specific effect of pollution on productivity. The cells of row 1 report
the coefficients of estimating Equation 11. The outcome variable is industry sensitivity to air
pollution and the explanatory variables are the factor shares. The unit of observation is the three-
digit industry. The robust standard errors are reported in parenthesis beneath. All regressions
weight industries by their total output.

Rows 2 and 3 examine the influence of noise. Row 2 repeats row 1 with EB-adjusted
industry-specific effects, λEBi , as the outcome in lieu of λi. Row 3 repeats row 1 excluding
λi more than 3.5 standard deviations from the output weighted mean. In both cases the impact
remains statistically significant.

Row 4 repeats the specification of 1 with the capital factor share omitted in lieu of the
materials factor share. This estimate shows that the labor factor share predicts a lower (more
negative) industry-specific effect of air pollution on productivity regardless of the omitted factor.

The remaining rows replicate the robustness exercises of Table A2. Rows 5-7 and 13-14
examine the instrumental variables research design. They are analogous to rows 2-4 and 10-
11. Rows 8-9 ensure the preparation of the ASI data does not influence the results. They
are analogous to rows 5-6. Rows 10-12 examine the assumptions of the production function
estimation. They are analogous to rows 5-7.
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Figure A1: Conditional Wind and AOD for Each Month
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Note: Each point represents binned of averages of district-month mean wind velocity and mean AOD. Line depicts
a linear regression of AOD on log wind velocity conditional on rain, temperature, district and year fixed effects.
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Table A1: Summary of ASI Firm Characteristics

mean sd p5 p50 p95 count
Revenues (million Rupees) 163.66 660.78 0.98 18.60 664.49 220200
Number of Employees 96.02 278.72 6.00 26.00 392.00 220200
Capital Stock (million Rupees) 51.00 379.41 0.11 2.75 165.89 220200
Materials Cost (million Rupees) 103.34 408.12 0.39 12.82 426.65 220200

Note: Data from Annual Survey of Industries 2001-2010. The unit of observation is the firm-year. All statistics
use survey weights.
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Table A2: Impact of AOD on Productivity Robustness Checks

(1) (2) (3)
λ p-value N

(1) Baseline -0.19 0.50 204,275
(0.28)

(2) Linear first stage -0.23 0.44 204,275
(0.30)

(3) Alternative control function -0.20 0.47 204,275
(0.28)

(4) Yield included -0.08 0.75 140,625
(0.26)

(5) 2001 survey weights -0.07 0.80 204,275
(0.28)

(6) 2010 survey weights -0.23 0.40 204,275
(0.28)

(7) Constant returns to scale -0.51 0.02 204,275
(0.22)

(8) Exogenous investment -0.19 0.51 204,275
(0.28)

(9) Labor adjustment cost -0.07 0.81 203,990
(0.27)

(10) Rural -0.09 0.84 88,035
(0.43)

(11) Urban -0.30 0.35 116,232
(0.32)

(12) Low working days -0.68 0.36 51,329
(0.75)

(13) High working days -0.08 0.78 152,946
(0.28)

(14) State-level clustering -0.19 0.56 204,275
(0.32)

Note: The unit of observation is the firm-year. The sample includes firms in the ASI panel years 2000/01-2009/10.
Estimates are obtained from Equation 7 with dependent variable log total factor productivity. The predicted AOD
coefficient is reported in column 1 with standard error in parenthesis beneath. Column 2 reports the p-value of
the coefficient significance test and column 3 reports the sample size. Robust standard errors were clustered at the
district level unless otherwise noted. Regressions use survey weights. See text for details.
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Table A3: Input Contributions to λi Robustness Checks

(1) (2) (3) (4) (5)
γL γK γ0 γM N

(1) Baseline -9.98 2.49 -0.21 132
(4.79) (3.31) (0.48)

(2) EB adjusted -3.83 0.79 -0.11 132
(1.28) (0.78) (0.14)

(3) Outliers excluded -10.42 3.07 -0.28 129
(4.75) (3.44) (0.48)

(4) Capital omitted -13.00 2.36 -2.80 132
(7.33) (2.59) (3.10)

(5) Linear first stage -41.48 4.03 3.48 132
(34.27) (9.26) (3.85)

(6) Alternative control function -9.96 2.18 -0.17 132
(5.03) (3.55) (0.50)

(7) Yield included -6.15 7.32 -1.30 130
(5.57) (2.33) (0.54)

(8) 2001 survey weights -8.69 2.68 -0.15 132
(5.02) (3.52) (0.50)

(9) 2010 survey weights -13.40 4.26 -0.28 132
(4.44) (2.44) (0.45)

(10) Constant returns to scale -9.74 2.75 -0.56 131
(5.12) (3.22) (0.63)

(11) Exogenous investment -8.69 1.10 -0.08 131
(4.53) (3.37) (0.58)

(12) Labor adjustment cost 3.11 -1.46 -0.86 131
(2.02) (2.25) (0.71)

(13) Rural 1.64 1.88 -1.05 117
(3.47) (4.55) (0.87)

(14) Urban -0.27 1.58 -0.59 130
(2.77) (2.50) (0.86)

Note: The unit of observation is the three-digit industry. The sample includes manufacturing industries in the
ASI panel years 2000/01-2009/10. Estimates are obtained from fitting Equation 11. Column 1 reports the βLi
coefficient with robust standard errors in parenthesis beneath. The βKi, constant, and βMi estimates are reported
analogously in columns 2, 3, and 4 respectively if applicable. Column 4 reports the sample size. All regressions
weight industries by their total output. See text for details.
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