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Encouraging students to share and compare solution methods is a key component of reform efforts in
mathematics, and comparison is emerging as a fundamental learning mechanism. To experimentally
evaluate the effects of comparison for mathematics learning, the authors randomly assigned 70 seventh-
grade students to learn about algebra equation solving by either (a) comparing and contrasting alternative
solution methods or (b) reflecting on the same solution methods one at a time. At posttest, students in the
compare group had made greater gains in procedural knowledge and flexibility and comparable gains in
conceptual knowledge. These findings suggest potential mechanisms behind the benefits of comparing
contrasting solutions and ways to support effective comparison in the classroom.
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Current educational reforms in mathematics advocate that the
teacher act more as a facilitator, encouraging students to share and
compare their own thinking and problem-solving methods with
other students (Hiebert & Carpenter, 1992; National Council of
Teachers of Mathematics, 1991, 2000). Despite an abundance of
descriptive research suggesting the promise of this approach, ex-
perimental studies that demonstrate its benefits are largely absent.
In this study, we experimentally evaluated a potentially pivotal
component of this instructional approach that is supported by basic
research in cognitive science: the value of students comparing
multiple examples. We used a unique design that allowed for
random assignment to condition within intact classrooms to in-
crease both internal and external validity. Seventh-grade students
learned about algebra equation solving by either (a) comparing and
contrasting alternative solution methods or (b) reflecting on the
alternative solution methods one at a time. The findings have
theoretical implications for when and why contrasting examples

facilitate learning and practical implications for how to support
effective comparison in the classroom.

Comparing Alternative Solution Methods

For at least the past 20 years, a central tenet of reform pedagogy
in mathematics has been that students benefit from comparing,
reflecting on, and discussing multiple solution methods (Silver,
Ghousseini, Gosen, Charalambous, & Strawhun, 2005). Case stud-
ies of expert mathematics teachers emphasize the importance of
students actively comparing solution methods (Ball, 1993; Fraiv-
illig, Murphy, & Fuson, 1999; Huffred-Ackles, Fuson, & Sherin
Gamoran, 2004; Lampert, 1990; Silver et al., 2005). For example,
having students share and compare multiple methods was a dis-
tinguishing factor of the most skilled teacher in a sample of 12
first-grade teachers implementing a new reform mathematics cur-
riculum (Fraivillig et al., 1999). Furthermore, teachers in high-
performing countries such as Japan and Hong Kong often have
students produce and discuss multiple solution methods (Stigler &
Hiebert, 1999). This emphasis on sharing and comparing solution
methods was formalized in the National Council of Teachers of
Mathematics Standards (1989, 2000).

Although these and other studies provide evidence that sharing
and comparing solution methods is an important feature of expert
mathematics teaching, existing studies do not directly link this
teaching practice to measured student outcomes. We could find no
studies that assessed the causal influence of comparing contrasting
methods on student learning gains in mathematics.

There is, however, a robust literature in cognitive science that
provides empirical support for the benefits of comparing contrast-
ing examples for learning in other domains (mostly in laboratory
settings; Gentner, Loewenstein, & Thompson, 2003; Kurtz, Miao,
& Gentner, 2001; Loewenstein & Gentner, 2001; Namy & Gent-
ner, 2002; Oakes & Ribar, 2005; Schwartz & Bransford, 1998).
For example, college students who were prompted to compare two
business cases by reflecting on their similarities were much more
likely to transfer the solution strategy to a new case than were
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students who read and reflected on the cases independently
(Gentner et al., 2003). Thus, identifying similarities and differ-
ences in multiple examples may be a critical and fundamental
pathway to flexible, transferable knowledge. However, this re-
search has not been done in mathematics, with K–12 students, or
in classroom settings.

In the current study, we extended the existing educational and
cognitive science research on contrasting examples by using a
randomized design to evaluate whether comparing solution
methods promoted greater learning in mathematics than study-
ing methods one at a time. We focused on three critical com-
ponents of mathematical competence: procedural knowledge,
procedural flexibility, and conceptual knowledge (Hiebert,
1986; Kilpatrick, Swafford, & Findell, 2001). Procedural
knowledge is the ability to execute action sequences to solve
problems, including the ability to adapt known procedures to
novel problems (the latter ability is sometimes labeled transfer;
Rittle-Johnson, Siegler, & Alibali, 2001). Procedural flexibility
incorporates knowledge of multiple ways to solve problems and
when to use them (Kilpatrick et al., 2001; Star, 2005, 2007) and
is an important component of mathematical competence
(Beishuizen, van Putten, & van Mulken, 1997; Blöte, Van der
Burg, & Klein, 2001; Dowker, 1992; Star & Seifert, 2006).
Finally, conceptual knowledge is “an integrated and functional
grasp of mathematical ideas” (Kilpatrick et al., 2001, p. 118).
This knowledge is flexible and not tied to specific problem
types and is therefore generalizable (although it may not be
verbalizable). Overall, we hypothesized that comparing solution
methods would lead to greater procedural knowledge, flexibil-
ity, and conceptual knowledge.

Importance of Algebra

We evaluated the effectiveness of comparing multiple solution
methods for learning a pivotal component of mathematics—
algebra. Historically, algebra has represented students’ first sus-
tained exposure to the abstraction and symbolism that makes
mathematics powerful (Kieran, 1992). Regrettably, students’ dif-
ficulties in algebra have been well documented in national and
international assessments (Blume & Heckman, 1997; Schmidt,
McKnight, Cogan, Jakwerth, & Houang, 1999). One component of
algebra, linear equation solving, is considered a basic skill by
many in mathematics education and is recommended as a curric-
ulum focal point for Grade 7 by the National Council of Teachers
of Mathematics (Ballheim, 1999; National Council of Teachers of
Mathematics, 2006). When introduced, the methods used to solve
equations are among the longest and most complex to which
students have been exposed. Current mathematics curricula typi-
cally do not focus sufficiently on flexible and meaningful solving
of equations (Kieran, 1992).

Examples of different equation solving methods as applied to
several types of linear equations are shown in Table 1. In the center
column of the table are conventional and commonly taught meth-
ods for solving linear equations that apply to most equations. In the
right-most column of the table are nonconventional methods that
treat expressions such as (x � 1) as composite variables (with the
exception of the fourth row). The first three methods in the
right-most column are arguably shortcuts—they are more efficient
because they involve fewer steps and fewer computations; thus
they may be executed faster and with fewer errors. Procedural
flexibility requires that students understand important problem

Table 1
Alternative Solution Methods for Four Types of Equations

Equation typea Sample solution via conventional method Sample solution via nonconventional method

a(x � b) � c 3(x � 1) � 15 3(x � 1) � 15
Divide composite 3x � 3 � 15 x � 1 � 5

3x � 12 x � 4
x � 4

a(x � b) � d(x � b) � c 2(x � 1) � 3(x � 1) � 10 2(x � 1) � 3(x � 1) � 10
Combine composite 2x � 2 � 3x � 3 � 10 5(x � 1) � 10

5x � 5 � 10 x � 1 � 2
5x � 5 x � 1

x � 1

a(x � b) � d(x � b) � c 7(x � 2) � 3(x � 2) � 16 7(x � 2) � 3(x � 2) � 16
Subtract composite 7x � 14 � 3x �6 � 16 4(x � 2) � 16

7x � 14 � 3x � 10 x � 2 � 4
4x � 14 � 10 x � 6

4x � 24
x � 6

a(x � b) � dx � e � f(gx � h) � ix � c 4(x � 2) � 2x � 10 � 2(3x � 1) � 4x � 8 4(x � 2) � 2x � 10 � 2(3x � 1) � 4x � 8
Conventional 4x � 8 � 2x � 10 � 6x � 2 � 4x � 8 4(x � 2) � 2x � 2 � 2(3x � 1) � 4x

6x � 2 � 10x � 10 4x � 8 � 2x � 2 � 6x � 2 � 4x
2 � 4x � 10 6x � 6 � 10x � 2

�8 � 4x �6 � 4x � 2
�2 � x �8 � 4x

�2 � x

a All xs stand for variables; all other letters were replaced with numbers.
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features and identify the most efficient method for solving a given
problem.

Current Study

We compared learning from comparing multiple solutions (com-
pare group) to learning from studying sequentially presented so-
lutions (sequential, or control, group) for seventh-grade students
learning to solve multistep linear equations such as 3(x � 1) � 15
and 5(y � 2) � 2(y � 2) � 12. Students in both conditions studied
worked examples of hypothetical students’ solution methods and
answered questions about the methods with a partner.

Three features of our study design merit a brief justification.
First, we chose to provide students with worked examples because
doing so insured exposure to multiple methods for all students and
facilitated side-by-side comparison of these methods for students
in the compare condition. Many studies have shown that students
from elementary school to university—both in the laboratory and
in the classroom—learn more efficiently and deeply if they study
worked examples paired with practice problems rather than solv-
ing the equivalent problems on their own (see Atkinson, Derry,
Renkl, & Wortham, 2000, for a review). Second, we chose to have
students work with a partner because past research indicates that
students who collaborate with a partner tend to learn more than
those who work alone (e.g., Johnson & Johnson, 1994; Webb,
1991), and teaching students to generate conceptual explanations
for their partners improves their own learning (Fuchs et al., 1997).
And third, we chose to prompt students to generate explanations
when studying worked examples because there is a great deal of
evidence that doing so leads to greater learning, as compared to
cases when students are not asked to provide explanations (e.g.,
Bielaczyc, Pirolli, & Brown, 1995; Chi, de Leeuw, Chiu, & La-
Vancher, 1994).

Pairs of students were randomly assigned to condition and
completed the intervention during 2 days of partner work within
their intact mathematics classrooms. We hypothesized that stu-
dents in the compare group would show greater improvements
from pretest to posttest on three outcome measures—(a) proce-
dural knowledge (particularly transfer), (b) procedural flexibility,
and (c) conceptual knowledge—than students in the sequential
group. We expected these differences to emerge as a result of
students making more explicit comparisons between methods,
which should highlight the accuracy and efficiency of multiple
solution methods and facilitate adoption of nonstandard methods.

Method

Participants

All 70 seventh-grade students at a selective, private, urban
school participated (36 girls, 34 boys). There were four seventh-
grade mathematics classes at the school; two regular and two
advanced, with 36 students in the advanced classes and 14–20
students per class. Students’ mean age was 12.8 years (range:
11.7–13.8 years); 81% were Caucasian, 10% African American,
3% Asian, 3% Indian, and 3% Middle Eastern; and approximately
10% received financial aid. About three quarters of students typ-
ically enter the school in kindergarten, in which admission is based
on basic school readiness. On the Educational Records Bureau’s

Comprehensive Testing Program (2004), seventh graders at this
school on average score above the 80th percentile nationally on the
quantitative and mathematics sections.

There was one seventh-grade mathematics teacher, who was a
Caucasian male with 5 years of teaching experience and an un-
dergraduate degree in mathematics. In all four classes, the teacher
used the Passport to Algebra and Geometry text (Larson, Boswell,
Kanold, & Stiff, 1999), and students in the advanced classes went
more in depth on a subset of lessons. In previous lessons, students
had learned about the distributive property, simplifying expres-
sions, and solving one-step and simple two-step equations. The
teacher indicated that he sometimes encouraged use of multiple
solution methods. Human subjects’ approval and all relevant con-
sents (from the head of the middle school, the teacher, the parents,
and the students) were obtained before the study began.

Design

We used a pretest–intervention–posttest design. For the inter-
vention, students were randomly paired with another student in
their class (without regard to student characteristics such as gen-
der), and then pairs of students were randomly assigned to condi-
tion, with approximately equal numbers of pairs in each condition
within each class. Pairs in the compare condition (n � 18 pairs, 8
of them mixed-gender pairs) studied sets of two worked examples
for the same problem and answered questions encouraging com-
parison of the two examples. Pairs in the sequential condition (n �
17 pairs, 8 of them mixed-gender pairs) studied the same two
worked examples on two isomorphic problems and answered
questions encouraging reflection on a single example. Students
also solved practice problems and received mini-lectures from the
teacher during the intervention.

Materials

Intervention. Four types of equations were used during the
intervention, as shown in Table 1. The worked examples illustrated
two different solution methods for each problem, typically a con-
ventional method for solving the equations and a shortcut method
for solving the equations that relied on treating subexpressions as
a composite variable and reduced the number of computations and
steps needed to solve the equation (see Table 1). The exception
was the fourth problem type (see Table 1, fourth row), where the
second method shown in the worked example was a less efficient
method that involved subtracting a term from both sides as a first
step. This fourth problem type was included so that the conven-
tional method was sometimes the most efficient method.

Packets of worked examples were created for each condition. In
the compare packets, there were 12 equations (three instances of
each of the four types), with each equation solved in two different
ways, presented side by side on the same page for a total of 24
worked examples. Each step was labeled using one of four step
labels (distribute, combine, add/subtract on both, multiply/divide
on both). On some examples, students were asked to label some of
the steps to encourage active processing of the examples. At the
bottom of the page were two questions prompting students to
compare and contrast the two worked examples. A sample page
from the packet is shown in Panel A of Figure 1. There was a

563COMPARING SOLUTION METHODS



separate packet for each of the two days of partner work; the first
two problem types in Table 1 were presented in the first packet,
and the third and fourth problem types in Table 1 were presented
in a second packet.

In the sequential packets, there were 24 equations, the 12
equations from the compare condition and an isomorphic equation
for each that was identical in form and varied only in the particular
numbers. The same solution methods were presented as in the
compare condition, but each worked example was presented on a
separate sheet. Thus, exposure to multiple solution methods was
equivalent across the two conditions. As in the compare condition,
steps were labeled or students needed to fill in the appropriate
label. At the bottom of each page was one question prompting
students to reflect on that solution. The number of reflection
questions (24) was the same across the two conditions. A pair of
sample pages from the packet is shown in Panel B of Figure 1.

There was also a packet of 12 practice problems. The problems
were isomorphic to the equations used in the worked examples,
and the same practice problems were used for both conditions.
Three brief homework assignments were developed, primarily
using problems in the students’ regular textbook, and homework
was the same for both conditions.

Assessment. The same assessment was used as an individual
pretest and posttest. It was designed to assess procedural knowl-
edge, flexibility, and conceptual knowledge. Sample items of each
knowledge type are shown in Table 2. The procedural knowledge
items were four familiar equations (one of each type presented
during the intervention) and four novel, transfer equations (e.g., a
problem that included three terms within parentheses). There were
six flexibility items designed to tap three components of flexibil-
ity—the abilities to generate, recognize, and evaluate multiple
solution methods for the same problem. There were six conceptual

Figure 1. Sample pages from intervention packet for (A) compare and (B) sequential conditions.
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knowledge items designed to tap students’ verbal and nonverbal
knowledge of algebra concepts, such as maintaining equivalence and
the meaning of variables. Both the assessment and the intervention
packets are available from Bethany Rittle-Johnson upon request.

Procedure

All data collection occurred within students’ intact mathematics
classes over four consecutive 45-min classroom periods (the ex-
perimental manipulation occurred on 2 of these days). The instruc-
tion replaced the students’ regular instruction on solving multistep
linear equations and occurred immediately after regular instruction
on solving basic two-step linear equations. On Day 1, students first
completed the pretest. Students were given 30 min to complete the
pretest, including 16 min to complete the eight procedural knowl-
edge items. Some time pressure was included for the procedural
knowledge items to encourage students to use efficient solution
methods. After students completed the pretest, the teacher pre-
sented an equation to the class, 2(y � 3) � 5y � 22, and asked
them to attempt to solve the problem on their own. Then he
presented a brief, scripted lesson to the entire class on solving the
equation using the distributive property, as this was students’ first
formal exposure to solving equations with parentheses. The

teacher noted that there were multiple ways to solve the problem,
but he only presented one way. All students were given the same
brief homework assignment.

On Day 2, the experimental manipulation was introduced (recall
that students from both conditions worked within the same class-
room). Students sat with their partner and were given the appro-
priate packet of worked examples and practice problems for the
day (covering the first two equation types in Table 1). Students
were instructed to alternate between studying two worked exam-
ples with their partner and solving a practice problem on their own.
Interleaving practice problems with worked examples helps stu-
dents to monitor their understanding of solving the problems
(Atkinson et al., 2000). When studying the worked examples, they
were instructed to describe each solution to their partner and
answer the accompanying questions first verbally and then in
writing. Partners had a single worked-example packet and were
encouraged to take turns writing their responses. The written
explanation served to push students to summarize their ideas and
come to a consensus. Student pairs’ verbal interactions were tape-
recorded to provide supplemental qualitative data.

Students had their own practice problem packet and were asked
to solve each problem on their own, compare answers with their

Table 2
Sample Items for Assessing Procedural Knowledge, Flexibility, and Conceptual Knowledge

Problem type Sample items Scoring

Procedural knowledge
Familiar (n � 4) �1/4 (x � 3) � 10 1 pt for each correct answer.

5(y � 12) � 3(y � 12) � 20
Transfer (n � 4) 0.25 (t � 3) � 0.5 1 pt for each correct answer.

�3(x � 5 � 3x) � 5(x � 5 � 3x) � 24
Flexibility

Generating multiple
methods (n � 2)

Solve this equation in two different ways: 4(x � 2) � 12 1 pt if two different, correct solutions.

Recognize multiple
methods (n � 2)

For the equation 2(x � 1) � 4 � 12, identify all possible steps
that could be done next. (4 choices)

1 pt for each correct choice.

Evaluate
nonconventional
methods (n � 2)

3(x � 2) � 12
x � 2 � 4

a. What step did the student use to get from the first line to the
second line?

a. 1 pt if correctly identify step.

b. Do you think that this way of starting this problem is (a) a
very good way; (b) OK to do, but not a very good way; (c)
not OK to do?

b. 2 pts for choice a, 1 pt for choice b.

c. Explain your reasoning. c. 3 pts if justify and say quicker/easier; 2 pts for
quicker/easier; 1 pt if don’t reject, but prefer
alternative.

Conceptual knowledge
(n � 6)

1. If m is a positive number, which of these is equivalent to
(the same as) m � m � m � m? (Responses are: 4m; m4;
4(m � 1); m � 4.)

1 pt for selecting 4m.

2. Here are two equations:
213x � 476 � 984
213x � 476 � 4 � 984 � 4

a. Without solving either equation, what can you say about
the answers to these equations? (Responses are: both
answers are the same; both answers are different; I can’t tell
without doing the math.)

a. 1 pt for selecting “both answers are the same.”

b. Explain your reasoning. b. 2 pts if justify that same thing done to both
sides doesn’t change value of x, 1 pt if note
that 4s cancel out.

Note. pt � point.
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partner, and ask for help if the answers were not the same. The
classroom teacher and two members of the project team (one of
whom was typically Bethany Rittle-Johnson) circulated through
the class, answering student questions and making sure that stu-
dents were complying with directions. The teacher and project
members provided help implementing steps (e.g., how to divide
both sides by 1/4), but not choosing solution steps or answering
reflection questions. Student pairs worked at their own pace and
were not expected to complete the packet. They were also not
aware that different pairs of students were studying different
packets. All students were given the same homework assignment
at the end of the class period.

On Day 3, the third and fourth equation types shown in Table 1
were covered. The teacher first provided a brief, scripted, whole-
class lesson on the conventional method for solving the challenge
problem from the previous day’s homework and emphasized that
there was more than one way to solve the problem. The problem,
15t � 5(2t � 7), was students’ first formal exposure to equations
with variables on both sides. Then, students sat with their same
partner and worked on the second packet of worked examples and
practice problems, under the same circumstances as Day 2. All
students were given the same homework assignment.

On Day 4, the teacher provided a brief summary lesson (ap-
proximately 10 min) to the entire class. In this scripted summary,
he emphasized that (a) there is more than one way to solve an
equation, and any way is OK as long as you always keep the two
sides of the equation equal; and (b) some ways to solve an equation
are better than others because they are easier for you or because
they make it less likely that you will make a mistake. Finally,
students were given 30 min to complete the posttest, which was
identical in content and administration to the pretest.

There were no differences in lessons or packet materials for the
regular and advanced classes. However, students in the advanced
classes completed more of the partner packets. On average, ad-
vanced students studied 22 of the available 24 worked examples
and solved 11 of the available 12 practice problems, compared to
regular students’ studying 19 worked examples and completing 9
practice problems.

To ensure fidelity of treatment, all whole-class lessons were
scripted, and a member of the project team followed along with the
script during each lesson and verified that each key idea was
presented and that additional information was not added. During
the partner work, help guidelines (as described above) were fol-
lowed by the teacher and project team members. Observations by
the first author during the intervention and when reviewing tran-
scripts of partner work for three pairs indicated that these guide-
lines were followed, that the two conditions did not receive dif-
ferent levels of help, and that the students did not notice that
different pairs were working on different packets during classwork
(homework assignments did not differ by condition).

Coding

Assessment. The eight problems on the pretest and posttest
procedural knowledge assessment were scored for accuracy of the
answer. Cronbach’s alpha was .70 at pretest and .58 at posttest.
This reliability was sufficient for making group comparisons; for
group size of at least 25, the probability of expected reversals of
two groups (i.e., the probability that the lower-scoring group

would surpass the higher-scoring group if they were tested again
with the same test) is less than .05 when Cronbach’s alpha is .50
(Thorndike, 1997). If anything, lower reliabilities lead to underes-
timates of effects (Thorndike, 1997). The test–retest correlation
was .60, and interscorer agreement, computed on 20% of responses
by two independent scorers, was 100%.

In addition to scoring accuracy, students’ solution methods were
coded into one of four categories—conventional method, shortcut
method, other method, and blank. For this coding, computational
errors were ignored. The conventional method was defined as first
distributing, then combining like terms (if possible), then adding/
subtracting from both sides, and finally dividing/multiplying on
both sides (e.g., as shown in Table 1). The demonstrated shortcut
method was defined as using one of the shortcut steps demon-
strated in the worked examples (e.g., divide composite, combine
composite, and subtract composite; see Table 1). In each shortcut,
rather than distributing first, students treated expressions of the
form (x � a) as a variable and divided, combined like terms, or
subtracted from both sides. This code was not relevant on two
problems (the 4th learning problem type and its associated transfer
problem). All other attempted solution methods were coded as
“other,” and they included use of other nonconventional methods,
methods that violated mathematical principles, and incomplete
methods that were too ambiguous to code as either conventional or
shortcut use. The fourth category was for blanks (e.g., students did
not attempt to solve the problem). Interrater agreement for solution
method was calculated for 20% of the sample at pretest and
posttest by an independent coder, and exact agreement was 100%
for use of the demonstrated shortcut and 90% for use of the
conventional method ([number of agreements/number of items] �
100).

The flexibility assessment had three components (see Table 2
for scoring details). The percentage of possible points on each
component was calculated, and the three percentages were aver-
aged to yield an overall flexibility score. Cronbach’s alpha was .72
at pretest and .78 at posttest, the test–retest correlation was .57, and
interscorer agreement on 20% of responses was 93%.

On the conceptual knowledge assessment, students received one
point for correctly answering each of the six objective questions
correctly (see Table 2 for scoring criteria). In addition, students
explained their reasoning on two items, and these explanations
were scored on a 2-point scale (interscorer agreement on 20% of
explanations was 87%). These explanation scores were added to
students’ conceptual knowledge totals. Thus, a conceptual knowl-
edge score was calculated as a percentage of possible points.
Cronbach’s alpha was .61 at pretest and .59 at posttest, and the
test–retest correlation was .65.

For each assessment, we calculated students’ gain score as
posttest minus pretest. We opted to analyze gain scores, rather than
posttest scores (with pretest score as a covariate), because either
analysis method is equally acceptable for two-wave data, and gain
scores are more straightforward to interpret.

Intervention. Recall that students solved practice problems
during the intervention and that we tallied how many problems
each student completed (students found the correct solution before
moving on, so accuracy was not scored). We also coded whether
students used the demonstrated shortcut method to solve the prob-
lems, and interrater reliability on 20% of the sample was 100%.
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Student pairs also provided written explanations during the
intervention. Two coding schemes were developed to code these
explanations, and these will be discussed in the Results section.
Exact agreement on presence of each explanation type, conducted
by two raters on 20% of the sample, ranged from 90% to 100%.

Data Analysis

Because students worked with a partner for the intervention, we
calculated intraclass correlations to test for nonindependence in
partner scores (Grawitch & Munz, 2004; Kenny, Kashy, Mannetti,
Pierro, & Livi, 2002). Indeed, partners’ gain scores were often
modestly related (rs in the .2 range), violating assumption of
nonindependence in traditional analysis of variance models. Fol-
lowing the recommendations of Kenny et al. (2002), we used
multilevel modeling, incorporating their actor-partner interdepen-
dence model (see http://davidakenny.net/dyad.htm for a tutorial
and details on implementing this approach in SPSS). As indicated
by Kenny et al. (2002), we specified the use of restricted maximum
likelihood estimation and compound symmetry for the variance–
covariance structure in the models. The significance tests used the
Satterthwaite (1946) approximation to estimate the degrees of
freedom, which generally results in fractional degrees of freedom
(see Kenny et al., 2002).

Our model had two levels—the individual level and the dyad
level. To incorporate the actor-partner interdependence model into
the model, we included the partner’s scores as predictors in the
first-stage (individual-level) analyses (Kenny et al., 2002). In other
words, both a person’s own pretest scores and their partner’s
pretest scores were used as predictors of the individual’s outcomes
in the first-stage analyses. Effect of experimental condition was
tested in the second-stage (dyad-level) analyses. Because students
were tracked by ability, and given that students of higher ability
may learn at a faster rate or respond differently to instructional
manipulations, the effect of ability group was also included in the
second-stage analyses. We did not expect ability group to interact
with experimental condition, and preliminary analyses indicated
that it did not, so the interaction term was not included in the final
models.

One student was absent on the day of the posttest. Statisticians
strongly recommend the use of imputation, rather than the tradi-
tional procedure of omitting participants with missing data, be-
cause it leads to more precise and unbiased conclusions (Peugh &
Enders, 2004; Schafer & Graham, 2002). When the data are

missing at random, and less than 5% of the data is missing, as in
this case, simulation studies indicate that single imputation leads to
the same conclusions as when there are no missing data (Barzi &
Woodward, 2004; Harrell, 2001). The student’s missing posttest
scores were imputed by regression from nonmissing values using
the IMPUTE procedure of Stata 9. The single imputation model
included all the independent and dependent variables that were
included in subsequent analyses on accuracy scores, as described
below.

To estimate the practical significance of differences between
conditions, we computed effect sizes (Cohen’s d) as the difference
in gain scores between conditions divided by the pooled standard
deviation of the gain scores.

Results

We first overview students’ knowledge at pretest. Next, we
report the effect of condition on gains in students’ knowledge from
pretest to posttest. Finally, we examine the effects of the manip-
ulation during the intervention; in particular, we report on solution
methods and explanation quality during the intervention.

Pretest Knowledge

Recall that our intervention occurred after students had com-
pleted lessons on solving basic one- and two-step equations. Thus,
at pretest, students had some algebra knowledge. As shown in
Table 3, students solved one or two of the equations correctly and
had some success on the measures of flexibility and conceptual
knowledge. When solving the equations, they most often used the
conventional method and left a fair number of the problems
incomplete or blank (see Table 4). Procedural knowledge corre-
lated with both conceptual knowledge, r(68) � 0.39, p � .001, and
flexibility, r(68) � 0.32, p � .01, but flexibility and conceptual
knowledge were not related, r(68) � 0.11, p � .38.

At pretest, there were no significant differences between con-
ditions on the procedural knowledge, flexibility, or conceptual
knowledge measures, F(1, 68) � 1.39, 2.85, and 0.94, respectively
(see Table 3), nor did the two conditions differ in their classroom
grades for the previous grading period, F(1, 68) � 0.01. Male and
female students did not differ in success on the pretest measures.

Knowledge Gains From Pretest to Posttest

Students in the compare condition were expected to make
greater gains from pretest to posttest in procedural knowledge,

Table 3
Student Performance by Condition

Condition

Pretest Posttest Gain

M SD M SD M SD Cohen’s d

Compare
Procedural 16.7 22.5 50.7 23.7 34.0 20.6 .53
Flexibility 32.3 23.7 69.1 16.6 36.7 16.7 .38
Conceptual 46.5 16.6 59.4 21.5 12.9 18.9 �.14

Sequential
Procedural 22.8 23.7 46.4 23.7 23.6 19.0
Flexibility 26.2 15.0 55.9 25.2 29.7 19.7
Conceptual 51.6 21.3 67.1 19.8 15.5 16.8
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procedural flexibility (measured via solution strategy use and via
an independent measure), and conceptual knowledge. Multilevel
modeling was used to evaluate the effect of condition on gain
scores on each of the measures. In each analysis, the individual’s
pretest score and his or her partner’s pretest score on that measure
were included as predictors at the first level (these scores were
standardized to facilitate interpretation of effects). Condition and
ability group were included as predictors at the second (dyad)
level. In the initial models, students’ gender and whether the
student was in a same-gender or mixed-gender pair were included
as predictor variables. However, neither were significant predic-
tors in any of the models (all ps � .15), so neither variable was
included in the final models. See Table 5 for a summary of the
final models. Note that when posttest scores, rather than gain
scores, were used as the dependent variable, the parameter esti-
mates and t values for the second-level predictors (condition and
ability group) were identical. The only substantive difference
between the posttest score and gain score models was that an
individual’s pretest score positively predicted posttest scores, as
expected.

Procedural knowledge. Students in the compare condition
made greater gains in procedural knowledge (see Table 3 and

Figure 2). There was a main effect for condition and for the
individual’s pretest score (see Table 5). Students in the compare
condition gained 10 additional percentage points compared to
those in the sequential condition (d � .53). In addition, lower
pretest knowledge was associated with higher gain. Those with
more to learn learned more.

Flexibility: Solution methods on procedural knowledge items.
We expected students in the compare condition to become more
flexible, as well as more accurate, problem solvers. One measure
of flexibility was using the demonstrated shortcuts rather than the
conventional method when appropriate. Indeed, as shown in Table
4, students in the compare condition were more likely to use the
demonstrated shortcuts at posttest, t(30.8) � 2.06, p � .048, d �
.34, than students in the sequential condition. This increased short-
cut use seemed to partially account for (i.e., mediate) the benefits
of the compare condition for accuracy. When frequency of using a
shortcut method at posttest was included in the model of proce-
dural knowledge gain reported above, shortcut use positively pre-
dicted accuracy gain, t(61.6) � 2.41, p � .019, and condition no
longer did, t(32.0) � 1.33, p � .19.

Flexibility: Independent measure. Students in the compare
condition also made greater gains on the independent measures of
flexibility (see Table 3 and Figure 3). There were main effects for
condition, ability group, and the individual’s pretest score (see
Table 5). Students in the compare condition gained an additional 7
percentage points (d � .39). Students in the advanced classes also
made greater gains, as did students with lower pretest knowledge.
The items asking students to generate multiple solutions to the
same problem may have been biased in favor of the compare
condition, given that these students saw (although did not gener-
ate) multiple solutions to the same problem. As a result of this
possible bias, we repeated the flexibility analyses, excluding these
items from the scores. There continued to be a main effect for
condition, t(31.5) � 2.45, p � .020, d � .14, ability group,
t(32.0) � 3.95, p � .001, and individual’s pretest score, t(64.7) �
�8.71, p � .001.

Table 4
Solution Method by Condition (Proportion of Trials)

Solution method

Pretest Posttest

Compare Sequential Compare Sequential

Conventional 0.46 0.43 0.61 0.66†

Demonstrated shortcut 0.00 0.00 0.17 0.10*

Other 0.38 0.40 0.17 0.19
Blank 0.16 0.17 0.05 0.05

Note. Differences between conditions were significant with multilevel
modeling as marked.
† p (1, 31.6) � .06. * p (1, 30.8) � .05.

Table 5
Multilevel Modeling Results for Three Student Learning Outcomes

Parameter Coefficient SE df t

Procedural knowledge gain
Intercept .20 .04 31.00 5.27***

Condition (compare) .08 .04 31.00 2.12*

Ability group (advanced) .07 .05 31.00 1.44
Own pretest score �.10 .03 64.25 �4.04***

Partner’s pretest score .04 .03 64.24 1.63
Flexibility gain

Intercept .18 .03 31.00 5.55***

Condition (compare) .10 .04 31.00 2.78**

Ability group (advanced) .20 .04 31.00 5.41***

Own pretest score �.07 .02 64.86 �3.44***

Partner’s pretest score .01 .02 64.87 0.52
Conceptual knowledge gain

Intercept .14 .04 31.00 3.41**

Condition (compare) �.04 .04 31.00 �0.91
Ability group (advanced) .04 .06 31.00 0.61
Own pretest score �.10 .02 49.85 �4.22***

Partner’s pretest score .03 .02 49.85 1.59

* p � .05. ** p � .01. *** p � .001.
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Conceptual knowledge. Students in the compare and sequen-
tial conditions did not differ in their conceptual knowledge gain
(see Table 3). The only significant predictor of gain was the
individual’s pretest score (see Table 5). Although there was no
difference between conditions, students across conditions did show
improvements in conceptual knowledge from pretest to posttest
(M � 49.0, SD � 21.9, to M � 63.2, SD � 20.9, respectively),
t(69) � 6.65, p � .001.

Effects of the Condition Manipulation on Intervention
Activities

To better understand how condition impacted knowledge gains,
we explored the effects of the condition manipulation on interven-

tion activities. Before reporting these effects, it is important to note
that the manipulation did not impact the amount of material
covered during the intervention; on average, students in the com-
pare and sequential conditions studied approximately 20 of the 24
available worked examples (M � 20.9, SD � 0.6, vs. M � 20.3,
SD � 0.41, respectively) and solved 10 of the available 12 practice
problems (M � 10.1, SD � 0.4, vs. M � 9.5, SD � 0.3, respec-
tively). In addition, students in both conditions were usually able
to comprehend the individual solution steps; they correctly labeled
almost all of the unlabeled steps in the worked examples (compare:
M � 97%, SD � 5%, vs. sequential: M � 92%, SD � 15%). We
expected the compare condition to support more explicit compar-
isons between multiple methods, including their accuracy and

Figure 2. Procedural knowledge gain for familiar and transfer problems, by condition (error bars are SE).

Figure 3. Flexibility gain for three components of flexibility, by condition (error bars are SE).
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efficiency, and to support greater adoption of the shortcut strate-
gies. Because of the exploratory nature of these analyses that
required the use of multiple tests, we adopted the more conserva-
tive alpha value of .005 when interpreting the findings.

Flexibility: Solution methods. On the practice problems, stu-
dents in the compare condition were much more likely to adopt the
demonstrated shortcut (M � 41% of intervention problems solved,
SD � 32%) than students in the sequential condition (M � 13%,
SD � 28%). Multilevel modeling was used to confirm the effect of
condition on use of shortcut methods. To better understand the role
of prior knowledge in adopting the shortcut methods, we included
procedural knowledge pretest scores for both the individual and his
or her partner at the first level of the model. Students in the
compare condition used the shortcuts much more frequently during
the intervention, t(31.0) � 4.70, p � .001, d � .93. Their partners’
procedural knowledge at pretest also positively impacted use of
shortcuts during the intervention, t(63.2) � 3.65, p � .001, but
their own pretest score did not.

Explanation quality. Student pairs also provided written ex-
planations to reflection questions when studying the worked ex-
amples. Students in the two conditions answered different ques-
tions, and our two coding schemes were designed to indicate
whether our condition manipulation had its intended effects. The
first coding scheme focused on four general characteristics of the
explanations, as shown in Table 6. Children in the compare con-
dition almost always referenced multiple methods, focused on the
solution method, and judged the efficiency or accuracy of the
methods. They sometimes mentioned the shortcut step or used
mathematical terms to justify their ideas. A representative expla-
nation from a pair in the compare condition was: “It is OK to do
either step if you know how to do it. Mary’s way is faster, but only
easier if you know how to properly combine the terms. Jessica’s
solution takes longer, but is also OK to do.” In contrast, children
in the sequential condition referenced multiple methods much less
often, focused less on the method, and were less likely to judge the
efficiency of solutions. A representative response from a pair in the
sequential group was: “Yes [I would choose this way] because he
distributed in the right way and he added and divided on both sides
correctly.” Typically, students in the sequential condition focused
on justifying a single solution method.

Looking more closely at the written explanations that referenced
multiple solutions, the second coding scheme focused on explicit

use of comparison along three dimensions (see Table 7). As
expected, students in the compare condition were more likely to
make explicit comparisons. In particular, students in the compare
group were more likely to compare answers and/or to note the
difference in the efficiency of the steps in the two solution meth-
ods. Students in the sequential condition rarely did these things, as
they were difficult to do without side-by-side comparison of mul-
tiple methods to the same problem. Surprisingly, students in both
conditions were equally likely to compare methods, either by
directly comparing solution steps (typically in the compare condi-
tion) or by suggesting alternative methods (typically in the sequen-
tial condition).

Overall, students’ explanations confirmed that the condition
manipulation had its intended effect. Students in both conditions
generated coherent explanations. The format and questions used in
the compare condition elicited consideration of multiple methods
and comparative judgments of the accuracy and efficiency of the
methods. The format and questions used in the sequential condi-
tion focused attention on a single method or answer and elicited
less judgment and greater use of mathematical terminology.

We explored whether individual differences in the frequency of
making explicit comparisons during the intervention predicted
outcomes at posttest. In this model, frequency of generating com-
parisons during the intervention, rather than condition, was used as
a predictor. Making more comparisons during the intervention was
marginally predictive of procedural knowledge gain, t(30.0) �
2.53, p � .017. However, it did not reliably predict flexibility gain
or conceptual knowledge gain ( ps � .18).

Partner interaction. The discussions of a pair of high-learning
students and a pair of modest-learning students were transcribed to
better understand how comparison supported learning. Their dis-
cussion of a set of worked examples is presented in Table 8. As
these examples indicate, both the high-learning and modest-
learning pairs carefully studied the worked examples and had a
high level of turn-taking and engagement. Throughout the ses-
sions, the high-learning pair noticed each key feature of the prob-
lems; worked to make sense of shortcut steps; compared the
solution steps; and evaluated the accuracy, efficiency, and con-
straints of the methods. In contrast, the modest-learning pair did
not generate comparisons, rejected all nonstandard solutions as
inaccurate, and did not consider efficiency. These interactions
illustrate the benefits of comparing multiple solution methods for

Table 6
Percentage of Intervention Explanations Containing Each Feature, by Condition

Explanation characteristic Sample explanation
Compare

(%)
Sequential

(%)
Cohen’s

d

Reference multiple methods “It is okay to do it either way.” 92 25*** 5.49
Focus

On method “He divided each side by 2.” 90 77*** 1.87
Shortcut “Mary combined like terms.” 11 4* 0.82

On answer “The answer is right.” 29 27 0.16
Judge

Efficiency “Jame’s way was just faster.” 47 37* 0.83
Accuracy “Sammy’s solution is also correct because she distributed correctly.” 32 26 0.50

Justify mathematically “Used the right properties at the right times.” 30 46* �0.78

Note. Differences between conditions were significant, with df � 1, 31, as marked (and adopting more conservative alpha values due to multiple tests).
* p � .05. *** p � .001.
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pushing acceptance of nonstandard methods and highlighting dif-
ferences in efficiency.

Discussion

Comparing and contrasting alternative solution methods led to
greater gains in procedural knowledge and flexibility, and compa-
rable gains in conceptual knowledge, compared to studying mul-
tiple methods sequentially. The compare condition facilitated at-
tention to and adoption of nonconventional methods by guiding

attention to solution accuracy and efficiency. These findings pro-
vide direct empirical support for one common component of
reform mathematics teaching. The present study also suggests that
prior cognitive science research on comparison as a basic learning
mechanism (e.g., Gentner et al., 2003; Namy & Gentner, 2002;
Schwartz & Bransford, 1998) may be generalizable to a new
domain (algebra), a new age group (school-age children), and a
new setting (the classroom).

These findings were strengthened by the use of a unique meth-
odology. At present there is a push by the federal government to

Table 7
Percentage of Intervention Explanations Containing Comparisons, by Condition

Explanation characteristic Sample explanations Compare Sequential Cohen’s d

Compare methods “Jessica distributed and Mary combined like terms.” or “You could have
combined first.”

11 12 �0.10

Compare answers “They end up with the same answer after all the steps.” 16 0*** 1.56
Compare efficiency of steps “Jill used more steps.” 19 2*** 2.11
Any comparison At least one of the above done 41 12*** 2.23

Note. Differences between conditions were significant, with df � 1, 31, as marked.
*** p � .001.

Table 8
Sample Dialogue of a High-Learning and a Modest-Learning Pair During the Intervention

High learners: Ben and Krista Modest learners: Allison and Matt

[Quickly describe Mandy’s solution and move to Erica’s solution] [Explaining Mandy’s solution in Figure 1]
Krista: “What’d they [Erica] do?”
Ben: “Subtracted 3(y � 1) and they had that as one whole term, so

they. . .and then over here was (y � 1). Subtracted 3(y � 1) from 5(y
� 1) to get 2(y � 1). And this wasn’t over here, so 2(y � 1) � 8.”

Ben: “That’s correct. Subtracted them on both. So then y � 1 � 4, they
divided this by two and divided this by two. . .. These are both
correct.”

Krista: “I believe, because when they divided it by two, what happened
to, they just divided it by two and that kinda makes the two go bye-
bye? Or”

Ben: “Because if you have two of this and you divide by two, you only
have one y � 1, correct? And over here you divide 8 by two and have
four.

Krista: “Right. Or you could also multiply by the reciprocal and basically
get the same thing.”

[They read the first question and clarify its meaning.]
Krista: “They both did the problem correctly. . .. But they just did

different ways, but they got the same answer. . .. Mandy just kinda did
a few extra steps, I believe. She did like”

Ben: “Mandy distributed”
Krista: “and combined.”
Ben: “but over here, Erica used, she like”
Krista: “just went right on to subtraction.”
Ben: “she used 3(y � 1) as a term for - I don’t know, how would you

say that?”
[They paused and asked the teacher for help. He helped them remember

the phrase “like terms.”]
Ben: “Mandy distributed and”
Krista: “combined. . .”
Ben: “and Erica subtracted. Subtracted”
Krista: “subtracted from the like terms. But then, they basically did the

same steps after that, but just in a different order.”
[Finally, prompted by the second question, after a brief discussion,]
Krista concluded: “It’s quicker. . .more efficient.”

Allison: “So 5y�, ok so she distributed 5y, 5” Krista: “Oh, I getcha.”
Matt: “Then she combined.”
Allison: “No, yeah, no she distributed on both sides and combined”
Matt: “Yeah, she did.”
Allison: “Where? Yeah, she combined on this side. You’re right, she did.”
Matt: “Exactly.”
Allison: “She combined these, those two on that side. And then she
subtracted on both. She subtracted 3y on both.”
Matt: “And then she subtracted again and then she subtracted 5 on both
sides.”
Allison: “Oh, yeah. OK.” [reads prompt] “Would you choose to use
Mandy’s way to solve the problem?”
Matt: “Yes.”
Allison: “Because she used all the steps in the right way, and she
combined. Yeah.”
[Start next page]
Allison: “Erica. Here’s one student’s solution.”
Matt: “Well, she did not distribute.”
Allison: [Begins to read question] “Check Erica’s solution. . .so let’s
pretend. . . 10x�30 equals 6x�18. . .she didn’t get the right answer. . .”
Matt: “Yeah, so, no.”
Allison: “No, she didn’t distribute.”
Matt: “She didn’t distribute at all,”
Allison: “which gave her the wrong answer.”
Matt: “OK.”
Allison: “. . .and she didn’t combine like terms.” [They do not substitute
answer into equations.]

Note. This is a discussion of Erica’s and Mandy’s solutions shown in Figure 1.
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use randomized field trials to demonstrate the efficacy of educa-
tional interventions (National Research Council, 2002). Such ran-
domized trials are considered the gold standard, but this method-
ology is challenging to implement in classroom settings. Our use
of random assignment of students to condition within their regular
classroom context, along with maintenance of a fairly typical
classroom environment, allowed us to provide experimental evi-
dence on the efficacy of our approach. Further, rather than com-
paring our intervention to standard classroom practice, which
differs from our intervention on many dimensions, we compared it
to a control condition that was matched on as many dimensions as
possible. This allowed us to evaluate a specific component of
effective teaching and learning. We consider the implications of
the current research for why comparison facilitates learning and
for educational practice.

Why Comparing Multiple Solutions Facilitates Learning

Comparing contrasting solutions seemed to support gains in
procedural knowledge because it facilitated students’ exploration
and use of alternative solution methods. During the intervention,
students in the compare condition were twice as likely to use the
demonstrated shortcut to solve the practice problems. At posttest,
they continued to be more likely to use the shortcut method and
less likely to use the conventional method. In fact, greater use of
shortcuts at posttest helped to explain the relation between condi-
tion and accuracy. Students in the compare condition also made
greater gains on an independent measure of flexibility. For exam-
ple, these students were better able to justify why a shortcut step
was a good way to solve a particular equation. These findings
suggest that comparison of multiple solutions helped students
move beyond rigid adherence to a single solution method to more
adaptive and flexible use of multiple methods.

How might comparing contrasting solutions support greater
procedural knowledge and flexibility? First, it seems to help stu-
dents differentiate important problem features (e.g., notice the
shortcut step and the efficiency of methods; see Table 6; Schwartz
& Bransford, 1998). Second, it seemed to help students consider
multiple methods in general. Finally, it may better prepare students
to learn from a summary lesson presented to all students (Schwartz
& Bransford, 1998).

We expected that comparison students’ greater improvements in
procedural knowledge would be accompanied by greater improve-
ments in conceptual knowledge (Baroody & Dowker, 2003; Rittle-
Johnson et al., 2001). Students in the compare condition were
better able to transfer their methods to novel problems, suggesting
these students may have greater conceptual knowledge. However,
students in both conditions made modest gains on our independent
measure of conceptual knowledge, and there was no difference
between conditions in amount of gain. In fact, analyses of stu-
dents’ explanations during the intervention indicated that the com-
pare condition reduced mathematical justifications (arguably an-
other indicator of conceptual knowledge). At the same time,
frequency of generating comparisons during the intervention was
not predictive of conceptual gain. Together, these findings do not
support our hypothesis that comparison of multiple solution meth-
ods would lead to improved conceptual knowledge. However, we
suspect that four revisions to our method would lead comparison to
support greater conceptual knowledge: (a) revising our reflection

prompts to focus more on the concepts justifying different solu-
tions methods; (b) including teacher-led discussion that highlights
underlying concepts; (c) increasing the time of the intervention and
covering a wider variety of problems; and (d) revising our con-
ceptual knowledge measure to more directly assess concepts high-
lighted by comparison, such as composite variables.

Implications for Reform Efforts in Mathematics Education

The current study provides the first experimental evidence sup-
porting the benefit of actively encouraging comparison in mathe-
matics education, at least for private middle-school students learn-
ing to solve equations. Students who studied and reflected on
varied solution methods one at a time did not learn as much as
those who compared and contrasted two methods to the same
problem. Simple exposure to multiple ways may not maximize
learning, underscoring concerns that some teachers’ attempts to
implement reform pedagogy have resulted in simple show-and-tell
of student methods without discussion or comparison of the meth-
ods (Ball, 2001; Chazan & Ball, 1999).

How can comparison be supported in the classroom? Past re-
search suggests that three features of our intervention materials
may have been particularly important. First, a written record of all
to-be-compared solution methods may be needed, preferably with
the solution steps aligned (Fraivillig et al., 1999; Richland, Zur, &
Holyoak, 2007). Second, explicit opportunities to identify similar-
ities and differences in methods seems critical; it is encouraged by
expert mathematics teachers (Fraivillig et al., 1999; Huffred-
Ackles et al., 2004; Lampert, 1990; Silver et al., 2005) and leads
to improved transfer in laboratory tasks (Catrambone & Holyoak,
1989; Gentner et al., 2003). Finally, instructional prompts may be
needed to encourage students to consider the efficiency of the
methods (Fraivillig et al., 1999; Lampert, 1990).

In the current study, scaffolds for effective comparison were
embedded in the instructional materials, rather than being provided
verbally by the teacher. Indeed, carefully crafted explanation
prompts, worked examples, and peer collaboration seemed to
support productive explanation during partner work in the class-
room (e.g., Fuchs et al., 1997); contrasting examples with explicit
comparison prompts may be one way to support effective expla-
nation. Nevertheless, we suspect that teacher-led, whole-class dis-
cussion would further enhance these benefits.

Limitations and Future Directions

The current study was an important first step in providing
experimental evidence for the benefits of comparing alternative
solution methods, but much is yet to be done. First, it is critical to
replicate these findings under more typical conditions in public
school classrooms, including students with more diverse abilities
and teachers with diverse teaching styles, fewer classroom re-
sources, and larger class sizes. For example, comparison of alter-
native solution methods is likely only effective for students with
sufficient prior knowledge (e.g., conceptual and procedural knowl-
edge for solving one- and two-step equations). In addition, in the
present study the teacher may have augmented the effects of our
manipulation via verbal prompts and explanations to students
during partner work.
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Next, it is important to evaluate when and how comparison
facilitates learning. Is comparison effective across a variety of
mathematical topics and with a wider range of ages and mathe-
matical abilities? Are some types of comparisons more important
than others? How can teachers extend student-generated compar-
isons during whole-class discussions? Does comparison lead to
lasting change on standardized measures? We are in the process of
addressing several of these issues in new studies. First, we are
working in pre-algebra classes in public schools and examining the
effectiveness of different types of comparisons. Second, we are
working with younger students (fifth-graders) in a very different
mathematical domain (computational estimation). In both of these
studies, we hope to confirm the present findings and to better
evaluate the impact of comparison on conceptual knowledge gain.

Conclusion

Comparison seems to be a fundamental learning process. In
particular, comparing multiple methods to the same problem fa-
cilitates learning, particularly procedural knowledge and flexibil-
ity. Moving beyond simple show-and-tell of different solution
methods to more active sharing-and-comparing is an important
goal in reform efforts in mathematics. This study provides direct
empirical evidence that in learning to solve equations, it pays to
compare.

References

Atkinson, R. K., Derry, S. J., Renkl, A., & Wortham, D. (2000). Learning
from examples: Instructional principles from the worked examples re-
search. Review of Educational Research, 70, 181–214.

Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of
teaching elementary school mathematics. The Elementary School Jour-
nal, 93, 373–397.

Ball, D. L. (2001). Teaching, with respect to mathematics and students. In
T. Wood, B. Scott Nelson, & J. Warfield (Eds.), Beyond classical
pedagogy: Teaching elementary school mathematics (pp. 11–22). Mah-
wah, NJ: Erlbaum.

Ballheim, C. (1999, October). Readers respond to what’s basic. Mathe-
matics Education Dialogues, 3, 11.

Baroody, A. J., & Dowker, A. (2003). The development of arithmetic
concepts and skills: Constructing adaptive expertise. Mahwah, NJ:
Erlbaum.

Barzi, F., & Woodward, M. (2004). Imputations of missing values in
practice: Results from imputations of serum cholesterol in 28 cohort
studies. American Journal of Epidemiology, 160, 34–45.

Beishuizen, M., van Putten, C. M., & van Mulken, F. (1997). Mental
arithmetic and strategy use with indirect number problems up to one
hundred. Learning and Instruction, 7, 87–106.

Bielaczyc, K., Pirolli, P. L., & Brown, A. L. (1995). Training in self-
explanation and self-regulation strategies: Investigating the effects of
knowledge acquisition activities on problem solving. Cognition and
Instruction, 13, 221–252.
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