
Paper ID #21699

Does Everyone Use Computational Thinking?: A Case Study of Art and
Computer Science Majors

Mr. Andreas Febrian, Utah State University

He received his bachelor and master degree in computer science (CS) from Universitas Indonesia, one
of the top university in Indonesia. He was an active student who involved in various activities, such as
research, teaching assistantship, and student organizations in the campus. He developed various CS skills
through courses and research activities, especially in computer architecture, robotics, and web develop-
ment. Through being a teaching assistant and joining student organizations, he developed an interest in
psychology and Affective Computing. Currently, pursuing the Doctoral degree in Engineering Education
at Utah State University with focuses in self-regulated learning in engineering design.

Dr. Oenardi Lawanto, Utah State University

Dr. Oenardi Lawanto is an associate professor in the Department of Engineering Education at Utah State
University, USA. He received his B.S.E.E. from Iowa State University, his M.S.E.E. from the University
of Dayton, and his Ph.D. from the University of Illinois at Urbana-Champaign. Before coming to Utah
State, Dr. Lawanto taught and held several administrative positions at one large private university in In-
donesia. He has developed and delivered numerous international workshops on student-centered learning
and online learning-related topics during his service. Dr. Lawanto’s research interests include cognition,
learning, and instruction, and online learning.

Kamyn Peterson-Rucker
Alia Melvin
Mr. Shane E. Guymon

c©American Society for Engineering Education, 2018



Does Everyone Use Computational Thinking? - A Case Study of Art and 

Computer Science Majors  

Abstract 

In this digital age, being computer literate and having computer science skills are 

essential, especially since most real-life solutions are technology-driven. Many K-12 and higher 

education institutions, states, and countries incorporate computational thinking (CT) into their 

curriculum. Although Wing describes CT as a problem-solving approach that utilizes 

fundamental computing concepts, which is applicable not only for scientists but everyone, most 

of the computational thinking instructional approaches are related to computer programming. 

Unfortunately, it is also unclear whether people use CT when solving non-programming 

problems. This study aims to answer two research questions: (1) In what ways do students use 

computational thinking skills when solving non-programming problems if any?; and (2) If 

students use CT when solving non-programming problems, in what ways do their approaches 

differ from computer science students? We conducted a qualitative multiple within-site case 

study research with three units of analysis. We recruited two students from computer science, a 

civil engineering student, an instructional design student, and an art student as cases, and asked 

them to think aloud while solving three problems. The collected think aloud data was transcribed 

and qualitatively coded to identify various CT skills. Our preliminary analysis of a computer 

science student and an art student reveals that they used various CT skills when solving all 

problems, and the application of CT skills was influenced by their background, experiences, and 

goals. Furthermore, we found that the art student was capable of utilizing various CT skills 

despite her lacked prior exposure to CS or CT, which shed new light on the nature of CT.  

Introduction 

In this computing era, various autonomous and semi-autonomous devices assist us in our 

home, work, and during travel [1], [2]. Some of these instruments can operate seamlessly, 

making us a step closer to achieve one of the digital age’s visions that identified by Weisser (see 

[3]). Incredible as it is, most people believe this is not the peak of technological advancements 

and expect science and technology will continue to grow for an indefinite time. Nowadays, many 

businesses and industries prefer to utilize technology-integrated solutions when addressing 

problems, which then shaped the expected skill set of next-generation professionals [4], [5] and 

inspired numerous state legislators [6]–[10] to integrate computer science (CS) problem-solving 

approaches in their respective K-12 curriculums. As computational thinking (CT) courses 

become common in K-12 education [11]–[18], some higher education institutions also started 

offering computational thinking courses to students from any majors [4], [19]. At its heart, this 

movement reflects that computational thinking is everywhere and for everyone [20]. 

Various studies reported using text-based computer-programming- [13], [21]–[25], visual 

computer-programming [26]–[28], and puzzle instructional approaches [11], [29]–[31] to teach 

computational thinking. Most of these studies reported a positive impact on learning computing 

principles and an increase of interest in computer science in male and female students [12], [26], 

[28]. On the other hand, one study argues that exposing children to CT through various platforms 

is more effective in increasing their interest [32]. In 2016, McGill, Decker, and Settle reported 

that engaging in any computational activities during high school influences students’ decision to 

pursue a CS degree, especially for female students [33].  



Among the above reported instructional approaches for delivering computational thinking 

in K-12 and higher education[4], [11]–[13], [29], [21]–[28], [30], [31], most of them utilize 

computer programming. In these courses, the instructors are expecting students to change their 

perspective from software users to application creators [12], and encouragingly, some students 

live up to this expectation [34]. However, solely relying on programming-based instructions may 

limit students’ ability to apply computational thinking skills in various situations, especially 

when solving non-computer programming-related problems, which is part of the computational 

thinking spirit [17], [26], [35]: in everywhere and for everyone. Still, it is also unclear whether 

these skills were used when dealing with non-programming problems. This exploratory case 

study aims to provide some insight on that issue.  

Computational Thinking and Computer Science 

Wing defines computational thinking as “an approach to solving problems, designing 

systems and understanding human behavior that draws on concepts fundamental to computing” 

(p.3717) [35]. The terms computing refers to computer science as a discipline, which is defined 

as a “systematic study of algorithmic processes that describe and transform information: their 

theory, analysis, design, efficiency, implementation, and application” (p.12) [36]. As a 

discipline, CS applies knowledge from mathematics (e.g., modeling the problem and solution), 

science (e.g., testing solution’s accuracy and reliability), and engineering (e.g., developing usable 

systems) [36], [37]. Computer science concerns with both human-made information processes 

and human’s cognitive enterprise [37].  

Table 1. Computational thinking skills 

Principle Definition 

abstraction and pattern 

generation 

Identifying, populating, and organizing characteristics from an entity 

into a set of essential characteristics [35], [38].  

systematic processing of 

information 

A step-by-step agent-dependent instruction for processing a set of 

inputs into the desired unambiguous output, which is also known as 

algorithm [35], [37].  

symbol systems and 

representations 

Develop a model to store and express the characteristics and behaviors 

of an entity in an efficient way [37].  

algorithmic notion of 

flow control 

No precise definition found so far.  

structured problem 

decomposition  

Subdividing a computational problem into a simpler, more manageable 

subproblems [39] 

iterative, recursive, and 

parallel thinking 

Identifying, populating, and organizing a set of behaviors that can 

repeatedly be performed or at the same time [40].  

conditional logic Identify a set of criteria to allow or disregard the execution of an 

instruction set [40].  

efficiency and 

performance constraint 

Identifying potential efficiency and performance issues, and developing 

a method to enhance them [36] 

debugging and systematic 

error detection 

Evaluate and improve the program’s accuracy, consistency, 

performance, and efficiency under various conditions [41], [42].  

 



Although the current application of CS is pervasive, its core problem remains the same, 

which is developing and enhancing software systems. Similar to other design problems, a 

software design problem is typically an ambiguous, complex, and ill-structured problem that has 

multiple solutions and requires incorporation of knowledge from other domains [43] to satisfy 

client’s needs and constraints [44]. In designing a software system, a computer scientist must 

represent the problem and solution as clearly as possible so that it can be efficiently executed by 

an information processing agent [17]. A computer scientists must also consider the solution’s 

simplicity, accuracy, efficiency, usability, software and hardware reliability, robustness, 

evolvability, and security [36], [37], [42], [45].  

After the former President Barack Obama wrote his first line of code during CS education 

week [46], many profit and nonprofit organizations joined the movement, for example, Google, 

which provides free computational thinking learning resources for students and instructors [47], 

[48]. Interestingly, there is no consensus on what comprised CT skills [14], [16], [49]–[51]. 

Nevertheless, Grover and Pea argue that most academicians agreed on nine computational 

thinking skills [17], and all are presented in Table 1 including the definitions. Unfortunately, we 

could not find a precise definition for ‘algorithmic notion of flow control’ yet, so we did not 

include it throughout the analysis process. 

Purpose of Study 

The purpose of this exploratory study is to provide insight on whether people use 

computational thinking skills when solving non-programming problems. We focus on assessing 

students’ application of CT, and used these research questions as guidance:  

1. In what ways do students use computational thinking skills when solving non-

programming problems if any?  

2. If students use computational thinking when solving non-programming problems, in 

what ways do their approaches differ from computer science students?  

The Research Design  

This study employs qualitative multiple within-site case study research design [52]. We 

use case study research design because this is an exploratory study, and there is limited literature 

on computational thinking in general problem-solving. This research is a multiple within-site 

case study because we recruited five students from our institution using convenient sampling 

method [53]. The bounded systems in this study are the students and their approach to solving 

given problems. There are three units of analysis for each case and are related to the first, second, 

and third problems.  

We recruited five participants, which were two computer science majors, a civil 

engineering major, an instructional design major, and an art major. Creswell argues that a typical 

qualitative case study research involves five or fewer participants [52]. Therefore, we believe 

these cases are sufficient in number and diversity for this exploratory study. At the end of the 

data collection session, each participant received a $15 gift card as a token of appreciation.  



Qualitative Instrument 

We developed three problems to assess the cases’ problem-solving approaches. These 

problems have been face-validated, pilot-tested, and revised accordingly.  

The first problem is inspired by one of the Computer Science Unplugged activities [54] 

that mimics the way a computer displays an image. The first problem consisted of two parts. In 

the first part, the participants were asked to provide verbal instructions for an amateur artist to 

redraw two patterned-images; please see Figure 1 (a) for a sample image. This problem is similar 

to computer programming because it requires the solver to provide a step-by-step instruction to 

be followed by an information-processing agent [17], [35], [39], [45], but instead of a computer, 

the agent is a human. This problem can be categorized as a design problem based on its 

similarity to programming [43], [55], [56]. When working on the first part, the artist could not 

see or talk to the participants and vice-versa, in a sense, two ways communication was 

prohibited. Thus, the participants must provide a detailed and precise step-by-step instruction so 

the artist can redraw the pattern as similar as possible. After describing an image, the participants 

were allowed to see the artist’s result and adjust their approach when providing instruction for 

the next pattern. In the second part, we gave the participants a hypothetical question where they 

were asked to describe 4 and 25 images in a limited time. The goal of this question was to assess 

whether they would use different strategies when the number of images increased rapidly.  

  

(a) An image example of the first problem (b) A puzzle example for the second problem 

Figure 1. Problem examples.  

The second problem contains two bridge-puzzles, one easy and the other of medium 

difficulty; please see Figure 1 (b) for example. The puzzle rules are (a) to connect each island, 

which is represented as a circle, with the number of bridges shown inside the circle; (b) there can 

only be two bridges connecting two islands; (c) a bridge must not overlap with other bridges or 

islands; and (d) there must be continuous link between all islands, which means there cannot be 

isolated island. Figure 1 (b) presents a solution that satisfies the puzzle’s rules.  

When solving the second problem, the participants worked on a computer because we 

used existing online bridge-puzzles from http://www.nikoli.com/en/puzzles/hashiwokakero/. The 

Nikoli website provides ten sample puzzles; all are written in Adobe action scripts. The puzzle 

application also has a button for verifying user’s solution. Since the participants answer both 

puzzles on a computer, we also recorded the computer screen. 

The bridge-puzzle is an example of a constraint satisfaction problem [57], [58], in which 

the problem required the solver to reach the solution state without compromising any given rules. 

Thus, this problem can be considered as a rule-using problem [43], [55], [56]. We expect the 



computer scientists would excel in solving the second problem because constraint satisfaction 

problems are common problems in computer science. Furthermore, puzzles are also commonly 

used in CS instructional approaches [11], [29]–[31], [59], [60].  

The third problem was a shopping task, where the participants received a hypothetical 

grocery store floor plan and a shopping list. Using the given floor plan, the participants had to 

describe their route for acquiring all items in the list including a gallon of milk, a jar of jam, a 

five-pound bag of flour, five pounds of chicken, and a bottle of fruit juice. No specific constraint 

was given to the participants. At the end of this task, the participants were asked to describe their 

usual shopping strategy. 

We believe people develop a general floor plan of their favorite stores, which was 

confirmed during the analysis. A hypothetical grocery store floor plan was given to the 

participants so we can correctly compare the participants’ shopping approaches. This problem 

can be considered as a decision-making problem [43], [55], [56].  

Data Collection 

Three researchers were present in each data collection session, where one researcher 

interviewed the participant, one acted as an amateur artist for the first problem, and the last one 

monitored various recording tools. The data collection was conducted in one of the laboratories 

at our institution. This spacious lab was selected because it provided a quiet environment and 

enabled us to have an adequate distance between the participants and the artist. The participants 

were asked to use verbal protocol so that we could assess their thinking process. Although the 

verbal protocol is widely used in research [61], sometimes the participants forget to speak or get 

more cognizant on their thought process which then helps them to think more deeply about the 

problem [62]. To minimize chances of the participants forgetting to use verbal protocol, we 

conducted a practice session to make them familiar with the protocol. Additionally, we prepared 

prompts for reminding them to think aloud.  

Data Analysis 

The analysis process started with transcribing all recorded data. Two researchers worked 

on the transcriptions, and we assumed it was conducted with minimal error. The transcriptions 

served as a method to reduce data complexity so it can be analyzed easier [63]. We then 

qualitatively coded the transcription based on Table 1 to identify participants’ CT skills and the 

contexts surrounding those identified activities. We postulated some CT skills could not be 

identified explicitly but could be inferred from its nature. Our analysis process confirmed that 

supposition, for example, when describing the first image, one participant said:  

“The square will be sectioned off into four triangles after those three previous steps. The 

triangles are on the left and right, not the top and bottom; they should be lined, like, 

would that be hatching? I think hatching is several different sets of lines; I do not know. 

You need to horizontally strip the right and left triangles inside the square.” - Amara 

Amara’s verbalization exhibited ‘structured problem decomposition’ and ‘systematic processing 

of information’ skills in which she tried to provide a clear and unambiguous step-by-step 

instruction. However, this example also displayed her ability to use ‘abstraction and pattern 



generation’ skills because she was able to identify various patterns which guided her in 

decomposing the image. Using the coded transcriptions, we will describe the nature of 

participants’ problem-solving approach and answered the research questions.  

Current Progress 

We have recruited and collected data from five participants, who voluntarily consented to 

participate in this study after hearing the research purpose and procedure, and selected aliases to 

protect their identity. We have transcribed all participants’ recorded data and coded two 

transcriptions. Some of our preliminary findings on these two transcriptions are discussed in this 

paper.  

Participants  

The first participant was Amara, an eighteen year old female undergraduate student who 

was majoring in art with an emphasis in drawing and never learned any computer programming. 

She identified herself as a mix of white Caucasian and African American. Her favorite learning 

style is kinesthetic, followed by visual and auditory learning style.  

The second participant was BeMyGuest, a forty-four year old male graduate student who 

was majoring in computer science. He identified himself as a Hispanic that preferred the 

kinesthetic learning style, followed by visual and auditory learning style.  

Preliminary Findings and Discussion  

As presented in Table 2, all participants were observed using the ‘abstraction and pattern 

generation,’ ‘systematic processing of information,’ ‘symbol systems and representations,’ and 

‘structured problem decomposition’ skills for all problems; from this point forward, we will use 

prevalent-CT skills to refer to the above-listed skills. Naturally, some differences were also 

found among the participants’ approach for each problem, which we believe was due to the 

diversity of their traits, knowledge, experiences, and personal goals. For examples, Amara 

mentioned that she has a limited short-term memory and does not like to lift heavy things, and 

BeMyGuest remarked that he is a family-man and sometimes faces difficulty in finding 

appropriate words in English.  

The First Problem  

As an art major, Amara had many experiences related to the first problem. When working 

on the first part, she tried to assess the artist’s knowledge, skills, and ability to communicate. 

Some of her assessments were so detailed, for example, she said, “I assume you know what a 

square is?” Unfortunately, the artist was prohibited from answering any questions. Amara 

elaborated the importance of such assessment by saying, “In my general experience when you 

are trying to get someone to draw an exact copy of a specific curve it varies depending on the 

artist’s skill and how you describe it.” Thus we believe that she was planning to adjust her 

instruction to match the artist’s knowledge and skills.  

When providing the instruction, Amara always started with the basic shapes. She said, 

“When you are drawing, you have to start with the basic shapes, and the most basic and easiest 

shape to understand in this particular drawing is the square.” Starting out with a basic shape was 

very important for her because it helped in laying out the entire drawing correctly; she 



mentioned, “You could probably get the right shape by drawing a cross; you will have to erase it 

later, but it would get the basic layout.” We believe her instructions were the product of utilizing 

the prevalent CT skills. 

Table 2. Utilization summary of participants’ computational thinking skills on each problem 

CT Skill 
Amara’s CT on  BeMyGuest’s CT on  

#1 #2 #3 #1 #2 #3 

abstraction and pattern generation x x x x x x 

systematic processing of information x x x x x x 

symbol systems and representations x x x x x x 

structured problem decomposition x x x x x x 

iterative, recursive, and parallel thinking x x 
 

x x 
 

conditional logic 
 

x 
  

x 
 

efficiency and performance constraint x 
 

x 
 

x 
 

debugging and systematic error detection x 
  

x 
  

 

Amara also sometimes exploited repeating patterns, for example, “Once you have drawn 

that on each prong, on the inside of the first petal you drew, about halfway down the cross, do it 

again.” She also utilized the ‘debugging and systematic error detection’ skill when dealing with 

analogies; she said, “It is shaped like a lotus, except it does not have enough leaves. Perhaps, 

they are more like petals?” Furthermore, she was observed using the ‘efficiency and performance 

constraint’ skill by trying to shorten her instruction. She explained, “Because I know for a fact 

that if you try to describe how to draw something to someone and you use too many words, they 

will get confused very easily.” 

When working on the second part of this problem (i.e., describing multiple pictures), 

Amara used different approaches because the goal of the first and second part is different; she 

said:  

 “When you are describing something so someone can draw it, you are not describing it 

in its entirety; you are describing the steps it takes to create the image. Describing an 

image without the intent of drawing is completely a different thing.”  

Thus, by developing an accurate interpretation of a problem, Amara was able to choose the most 

appropriate approach.  

As a computer scientist, BeMyGuest might not have a lot of practice in providing 

drawing instructions, but he had extensive experience in programming. When working on the 

first part, he assessed the artist’s ability to communicate, which we believe, would allow him to 

handle this problem as a debugging process. When debugging, a computer programmer develops 

familiarity with the assumed inputs, information processing method, and outputs of the program, 

and based on that familiarity, an experienced programmer identifies problematic code segments 

[64], [65]. Similarly, the artist’s communication ability would allow BeMyGuest to develop 

familiarity and identify potential issues. 



When providing instructions, he did not mention any specific approach like Amara. 

However, we observed that he started by describing the general image shape, for example, “This 

is like a geometry figure, a hexagon” and “This looks like a flower with many leaves, with four 

leaves.” We believe his instructions were the product of utilizing the prevalent CT skills. He was 

observed using the ‘iterative, recursive, and parallel thinking’ skill; he said, “So take one 

triangle, go from the edge to the center, and draw as many parallel lines as you can to fill the 

triangle.” Additionally, BeMyGuest was observed employing the ‘debugging and systematic 

error detection’ skill when he was correcting himself using the word leaves instead of petals.  

BeMyGuest also tried to keep his instruction short, but he did not consider it as a 

performance constraint. We believe that strategies are most effective when being used 

consciously [66][67]. Thus, we also did not consider his short instruction as a performance 

constraint. After providing instruction for the first image, BeMyGuest reported that he was not 

satisfied with his instruction. He said, “I am 8% satisfied with my description because I was not 

able to describe these things and the curvy branches.”  

When working with the second part, BeMyGuest did not change his approaches. Based 

on his descriptions, he assumed that the artist still would have to draw the images by following 

his instructions; he said, “Then I would try to make the other person draw the figure that is the 

base and then the pyramid that is over here.” We believe his assumption was because English 

was his second language.  

The Second Problem 

Amara started by reading and understanding the puzzle’s rules. She then began solving 

the first puzzle while developing a familiarity with the application. Her approach was to 

complete the islands with the biggest number first, and then continue to the second largest. We 

believe her approaches to solving the problem were the products of utilizing the prevalent CT 

skills. Furthermore, she repeated some of her approaches on several islands, which then we 

considered as the application of the ‘iterative, recursive, and parallel thinking’ skill. Amara was 

also observed using the ‘conditional logic’ skill, for example, Amara incorporated surrounding 

islands’ states to determine her next move; she said, “So if it has two possible bridges, which 

means this one maybe not here. However, this number five has to be tied to an island, so the only 

option for this.” When applying this skill, Amara tested her assumptions so she can move 

forward. In the end, she was able to solve the first puzzle but failed to solve the second because 

she was heavily depended on the trial-and-error approach. 

We believe the second problem was more natural for BeMyGuest because puzzles are 

commonly used in CS instructional approaches [11], [29]–[31], [59], [60]. BeMyGuest’s 

familiarity was apparent after he successfully solved the first puzzle, in which he deemed himself 

taking too much time to solve it. Such feeling implied that time was one of his success criteria in 

this problem, which then we considered as his ‘efficiency and performance constraint.’ He 

managed to solve the second puzzle faster, which indicates that he learned something from 

solving the first puzzle. 

Similar to Amara, he started by reading and understanding the puzzle rules, and then 

developing familiarity with the application. His initial approach was to deal with the biggest and 

smallest number (i.e., eight and one respectively). He also repeatedly using the same approach to 



numerous island, for example, “I am trying to get the eight-numbers for this one, so all the eight-

links are done.” He was also observed using ‘conditional logic.’ BeMyGuest reported that he 

changed his approach when solving the second puzzle. He reported that he tried to minimize 

utilizing the trial-and-error approach and that he also considered the significance of even 

numbers; he said, “The main thing that changed was the even numbers. So I tried to complete the 

8s, then 6s, then trying to see what are the 4s doing.”  

The Third Problem 

In the third problem, aside from the prevalent-CT skills, Amara reported using the 

‘efficiency and performance constraint’ skill. After checking the shopping list, Amara decided 

that time was her constraint and she said, “I would want this [shopping task] to go as quick as 

possible, and I would want to get the heavier items at the end.” On the other hand, BeMyGuest 

did not determine any specific constraint and just cruised along the aisles to get the items.  

Both participants reported that their shopping experience would change depending on 

their goals and budget. If they have no specific goal or budget, then they will take their time; as 

BeMyGuest said, “I am a family man, so I like to go shopping with my family and try to go 

everywhere when I have money. If I do not have money, I will directly get the items and then 

leave.”  

Limitations  

The first limitation is related to the design of this study, which is the qualitative multiple 

within-site case study research design. Since case study research typically does not involve many 

participants [52], including this study, the findings are not generalizable. However, that does not 

mean this study has no benefit. Teague argues that CS can always benefit from detailed 

descriptions of students, perception, and attitudes in learning and applying various computing 

principles [68]. Furthermore, academic scholars start to understand that findings from 

educational studies that involves a huge number of participants cannot be applied broadly to 

students [66]. Thus this study enriches our understanding and relatedness on the nature and 

application of computational thinking in various situations. The second limitation is related to 

participant diversity that our study did not assess people’s computational thinking skills from all 

disciplines and profession. Furthermore, our study did not assess people CT skills for all types of 

problems in varying contexts. The third limitation is we do not assess participants’ prior 

exposure to computer science and computational thinking thoroughly.  

Preliminary Conclusion and Implication 

Our preliminary analysis suggests computer scientists and artists used computational 

thinking skills when dealing with various problems. The preliminary answer to the first question 

was provided in the Preliminary Findings and Discussion section. In summary, we observed that 

our participants used ‘abstraction and pattern generation,’ ‘systematic processing of 

information,’ ‘symbol systems and representations,’ and ‘structured problem decomposition’ 

skills and that the application of those skills was adjusted based on the problem. We also found 

that the problem characteristics also affect what other computational thinking skills are used by 

the participants, for example, we observed that all participants used the ‘conditional logic’ skill 

when solving the second problem but not in the first and third problems. Furthermore, the 

solver’s characteristics influence the computational thinking skills used in solving the problem. 



For example, when dealing with the shopping problem, Amara was observed using ‘efficiency 

and performance constraint’ due to her preference for not lifting heavy items, and we did not 

observe any constraints used by BeMyGuest.  

The preliminary answer to the second question is that students’ background knowledge 

and experience influence their approaches, including using CT skills. The differences between 

Amara’s and BeMyGuest’s approaches when solving the first and second problem were evidence 

of this. However, there is a possibility that when dealing with daily problems, such as shopping, 

no fundamental differences can be observed between CS and non-CS students. Therefore, 

knowing computational thinking skills does not imply the utilization of those skills. Some 

researchers argue that students’ learned actions will be bounded to the contexts surrounding that 

learning [69], [70]. Thus, applying known skills in a certain context to another context requires a 

competence in learning transfer, which is also a skill in itself.  

The fact that Amara utilized various CT skills when solving problems suggests that some 

computational thinking skills are applicable in various contexts, as claimed by many [17], [26], 

[35]. We argue that CT is a problem-solving approach [71], and like other techniques, its 

applicability constrained by contexts surrounding a problem and the solver. Furthermore, the fact 

that Amara had no experience in computer science suggests that one does not have to be a 

computer scientists to acquire computational thinking skills. Therefore, exposing students to 

programming and various CS problems might not be the only way to teach computational 

thinking. Lye and Koh argue that helping students to reflect on their learning experience is an 

essential step for acquiring CT skills [15]. Perhaps helping students to be reflective and more 

aware of their thinking process could be used as an alternative approach, such as teaching them 

various metacognition and self-regulation strategies [72]–[74]. After all, CS also draws 

knowledge from human’s cognitive process [37].  

In regards to education, we need to reexamine our purpose and method of teaching CT 

skills. It is true that technology has become an essential part of our daily life and employers 

prefer to use technology-driven solutions. However, one does not need to know computer 

programming to be literate in using a computer or other software applications.  

Future Task 

We will focus further endeavors on analyzing data from the rest of the participants (i.e., 

third, fourth, and fifth), and then integrate all the analysis results.  

Bibliography  

[1] A. Bundy, “Computational Thinking is Pervasive,” J. Sci. Pract. Comput., vol. 1, no. 2, 

pp. 67–69, 2007. 

[2] Q. Bui, “Will Your Job Be Done By A Machine?,” Planet Money - The Economy 

Explained, 2015. [Online]. Available: 

http://www.npr.org/sections/money/2015/05/21/408234543/will-your-job-be-done-by-a-

machine. [Accessed: 25-May-2015]. 

[3] M. Weisser, “The Computer for the Twenty-First Century,” Sci. Am., vol. 3, no. 265, pp. 

94–104, 1991. 



[4] S. Hambrusch, C. Hoffmann, J. T. Korb, M. Haugan, and A. L. Hosking, “A 

Multidisciplinary Approach Towards Computational Thinking for Science Majors,” ACM 

SIGCSE Bull., vol. 41, no. 1, p. 183, Mar. 2009. 

[5] P. B. Henderson, “Ubiquitous computational thinking,” Computer (Long. Beach. Calif)., 

vol. 42, no. 10, pp. 100–102, Oct. 2009. 

[6] M. Chaudhry, “Your Kids Aren’t Robots, And That’s Exactly Why They Must Know 

How To Code,” Forbes, Washington, DC, 26-Aug-2015. 

[7] J. Carpenter, “Chicago private schools lead ‘high-tech, high-touch’ movement,” Chicago 

Tribune, Chicago, 28-Aug-2015. 

[8] A. O. Stallings, S.B. 107 Computer Science Initiative for Public Schools (Filed). 2015, p. 

S.B. 107. 

[9] E. Kao, “Exploring Computational Thinking,” Google Research Blog, 2010. [Online]. 

Available: http://googleresearch.blogspot.com/2010/10/exploring-computational-

thinking.html. [Accessed: 28-Aug-2015]. 

[10] K. Wilson, “STEM in K-5: Start computational thinking early!,” International Society for 

Technology in Education, United States, 2014. 

[11] D. Isayama, M. Ishiyama, R. Relator, and K. Yamazaki, “Computer Science Education for 

Primary and Lower Secondary School Students,” ACM Trans. Comput. Educ., vol. 17, no. 

1, pp. 1–28, Sep. 2016. 

[12] I. Lee, F. Martin, and K. Apone, “Integrating computational thinking across the K--8 

curriculum,” ACM Inroads, vol. 5, no. 4, pp. 64–71, Dec. 2014. 

[13] I. Fronza, N. El Ioini, and L. Corral, “Teaching Computational Thinking Using Agile 

Software Engineering Methods: A Framework for Middle Schools,” ACM Trans. Comput. 

Educ., vol. 17, no. 4, pp. 1–28, Aug. 2017. 

[14] A. Yadav, H. Hong, and C. Stephenson, “Computational Thinking for All: Pedagogical 

Approaches to Embedding 21st Century Problem Solving in K-12 Classrooms,” 

TechTrends, vol. 60, no. 6, pp. 565–568, Nov. 2016. 

[15] S. Y. Lye and J. H. L. Koh, “Review on teaching and learning of computational thinking 

through programming: What is next for K-12?,” Comput. Human Behav., vol. 41, pp. 51–

61, Dec. 2014. 

[16] N. Senske, “A Curriculum for Integrating Computational Thinking,” in ACADIA Regional 

2011 Parametricism, 2011, pp. 91–98. 

[17] S. Grover and R. Pea, “Computational Thinking in K−12 : A Review of the State of the 

Field,” Educ. Res., vol. 42, no. 1, pp. 38–43, Feb. 2013. 



[18] J. V. Ernst and A. C. Clark, “Fundamental Computer Science Conceptual Understandings 

for High School Students Using Original Computer Game Design,” J. STEM Educ. Innov. 

Res., vol. 13, no. 5, pp. 40–45, 2012. 

[19] B. C. Czerkawski and E. W. Lyman, “Exploring Issues About Computational Thinking in 

Higher Education,” TechTrends, vol. 59, no. 2, pp. 57–65, Jan. 2015. 

[20] J. M. Wing, “Computational Thinking,” Commun. ACM, vol. 49, no. 3, p. 33, 2006. 

[21] J. C. Adams, “Alice, middle schoolers & the imaginary worlds camps,” ACM SIGCSE 

Bull., vol. 39, no. 1, p. 307, Mar. 2007. 

[22] A. Ruf, A. Mühling, and P. Hubwieser, “Scratch vs. Karel: impact on learning outcomes 

and motivation,” in Proceedings of the 9th Workshop in Primary and Secondary 

Computing Education on - WiPSCE ’14, 2014, pp. 50–59. 

[23] J. Cao, S. D. Fleming, M. Burnett, and C. Scaffidi, “Idea Garden: Situated Support for 

Problem Solving by End-User Programmers,” Interact. Comput., vol. 27, no. 6, pp. 640–

660, Nov. 2015. 

[24] M. Resnick, B. Silverman, Y. Kafai, J. Maloney, A. Monroy-Hernández, N. Rusk, E. 

Eastmond, K. Brennan, A. Millner, E. Rosenbaum, and J. Silver, “Scratch: Programming 

for All,” Commun. ACM, vol. 52, no. 11, p. 60, Nov. 2009. 

[25] B. Aynsley, “Coding as part of school curriculum a matter of time and resources,” The 

Australian, Sydney, 25-Aug-2015. 

[26] E. B. Witherspoon, R. M. Higashi, C. D. Schunn, E. C. Baehr, and R. Shoop, “Developing 

Computational Thinking through a Virtual Robotics Programming Curriculum,” ACM 

Trans. Comput. Educ., vol. 18, no. 1, pp. 1–20, Oct. 2017. 

[27] D. Weintrop and U. Wilensky, “Comparing Block-Based and Text-Based Programming in 

High School Computer Science Classrooms,” ACM Trans. Comput. Educ., vol. 18, no. 1, 

pp. 1–25, Oct. 2017. 

[28] A. Theodoropoulos, A. Antoniou, and G. Lepouras, “How Do Different Cognitive Styles 

Affect Learning Programming? Insights from a Game-Based Approach in Greek 

Schools,” ACM Trans. Comput. Educ., vol. 17, no. 1, pp. 1–25, Sep. 2016. 

[29] J. Krauss, Computer Science-in-a-Box: Unplug Your Curriculum. Boulder, CO: The 

National Center for Women & Information Technology, 2008. 

[30] A. S. Marzocchi, “Using the Tower of Hanoi puzzle to infuse your mathematics classroom 

with computer science concepts,” Int. J. Math. Educ. Sci. Technol., vol. 47, no. 5, pp. 

814–821, Jul. 2016. 

[31] F. Jordan, “CS Unplugged - Creating a Butter and Jam Sandwich,” 2014. [Online]. 

Available: https://www.youtube.com/watch?v=6iPfSIxrP18. [Accessed: 28-Mar-2015]. 



[32] A. Merkouris, K. Chorianopoulos, and A. Kameas, “Teaching Programming in Secondary 

Education Through Embodied Computing Platforms,” ACM Trans. Comput. Educ., vol. 

17, no. 2, pp. 1–22, May 2017. 

[33] M. M. McGill, A. Decker, and A. Settle, “Undergraduate Students’ Perceptions of the 

Impact of Pre-College Computing Activities on Choices of Major,” ACM Trans. Comput. 

Educ., vol. 16, no. 4, pp. 1–33, Jun. 2016. 

[34] D. A. Fields, Y. B. Kafai, and M. T. Giang, “Youth Computational Participation in the 

Wild: Understanding Experience and Equity in Participating and Programming in the 

Online Scratch Community,” ACM Trans. Comput. Educ., vol. 17, no. 3, pp. 1–22, Aug. 

2017. 

[35] J. M. Wing, “Computational Thinking and Thinking About Computing,” Philos. Trans. A. 

Math. Phys. Eng. Sci., vol. 366, no. 1881, pp. 3717–25, Oct. 2008. 

[36] P. J. Denning, D. E. Comer, D. Gries, M. C. Mulder, A. Tucker, A. J. Turner, and P. R. 

Young, “Computing as a Discipline,” Commun. ACM, vol. 32, no. 1, pp. 9–23, Feb. 1989. 

[37] P. J. Denning, “Computer Science,” in Encyclopedia of Computer Science, 4th ed., A. 

Ralston, E. D. Reilly, and D. Hemmendinger, Eds. Chichester, UK: John Wiley and Sons 

Ltd., 2003, pp. 405–419. 

[38] TechTarget, “What Is.” [Online]. Available: http://whatis.techtarget.com. [Accessed: 24-

Apr-2017]. 

[39] K. D. Lee, Foundations of Programming Languages. Cham: Springer International 

Publishing, 2014. 

[40] Computer Hope, “Free Computer Help and Information.” [Online]. Available: 

http://www.computerhope.com. [Accessed: 22-Apr-2017]. 

[41] P. J. Denning and P. A. Freeman, “The Profession of IT Computing’s Paradigm,” 

Commun. ACM, vol. 52, no. 12, p. 28, Dec. 2009. 

[42] P. J. Denning, “Great principles in computing curricula,” ACM SIGCSE Bull., vol. 36, no. 

1, pp. 336–341, Mar. 2004. 

[43] D. H. Jonassen, “Toward a design theory of problem solving,” Educ. Technol. Res. Dev., 

vol. 48, no. 4, pp. 63–85, Dec. 2000. 

[44] Engineering Accreditation Commission, “Criteria for accrediting engineering program,” 

ABET Report E1 11/19, vol. 3. Baltimore, Md, 2003. 

[45] M. Clark, “Computer Science: A hard-applied discipline?,” Teach. High. Educ., vol. 8, no. 

1, pp. 71–87, Jan. 2003. 

[46] E. Mechaber, “President Obama Is the First President to Write a Line of Code,” White 



House Website, 2014. [Online]. Available: 

https://www.whitehouse.gov/blog/2014/12/10/president-obama-first-president-write-line-

code. [Accessed: 30-Aug-2015]. 

[47] Google Inc., “Computational Thinking for Educators - Course.” [Online]. Available: 

https://computationalthinkingcourse.withgoogle.com. 

[48] Google, “Google: Exploring Computational Thinking.” [Online]. Available: 

http://www.google.com/edu/computational-thinking/. [Accessed: 28-Mar-2015]. 

[49] K. Brennan and M. Resnick, “New frameworks for studying and assessing the 

development of computational thinking,” …  2012 Annu. Meet.  …, 2012. 

[50] J. Moreno-León, G. Robles, and M. Román-González, “Dr. Scratch: Automatic Analysis 

of Scratch Projects to Assess and Foster Computational Thinking,” RED. Rev. Educ. a 

Distancia, vol. 15, no. 46, 2015. 

[51] The CSTA Standards Task Force, CSTA K-12 Computer Science Standards, Revised 20. 

New York, New York, USA: ACM, 2011. 

[52] J. W. Creswell, Qualitative Inquiry and Research Design: Choosing Among Five 

Approaches, 3rd ed. SAGE Publications, 2012. 

[53] I. T. Coyne, “Sampling in qualitative research. Purposeful and theoretical sampling; 

merging or clear boundaries?,” J. Adv. Nurs., vol. 26, no. 3, pp. 623–630, Sep. 1997. 

[54] CS Education Research Group, “Computer Science Unplugged.” [Online]. Available: 

http://csunplugged.org/. [Accessed: 28-Mar-2015]. 

[55] D. H. Jonassen, Learning to solve problems: A handbook for designing problem-solving 

learning environments. Routledge, 2010. 

[56] D. H. Jonassen, Learning to Solve Problems: An Instructional Design Guide. John Wiley 

& Sons, 2004. 

[57] D. Andersson, “Hashiwokakero is NP-complete,” Inf. Process. Lett., vol. 109, no. 19, pp. 

1145–1146, Sep. 2009. 

[58] R. F. Malik, R. Efendi, and E. A. Pratiwi, “Solving Hashiwokakero Puzzle Game with 

Hashi Solving Techniques and Depth First Search,” Bull. Electr. Eng. Informatics, vol. 1, 

no. 1, 2012. 

[59] H. Geffner, “Artificial Intelligence: From programs to solvers,” AI Commun., vol. 27, no. 

1, pp. 45–51, 2014. 

[60] R. Jeffries, P. G. Polson, L. Razran, and M. E. Atwood, “A process model for 

Missionaries-Cannibals and other river-crossing problems,” Cogn. Psychol., vol. 9, no. 4, 

pp. 412–440, Oct. 1977. 



[61] L. Bainbridge and P. Sanderson, “Verbal Protocol Analysis,” in Evaluation of Human 

Work, 3rd Edition, 3rd ed., J. R. Wilsom and N. Corlett, Eds. CRC Press, 2005, p. 1048. 

[62] M. T. H. Chi, N. De Leeuw, M.-H. Chiu, and C. Lavancher, “Eliciting Self-Explanations 

Improves Understanding,” Cogn. Sci., vol. 18, no. 3, pp. 439–477, 1994. 

[63] J. C. Lapadat and A. C. Lindsay, “Transcription in Research and Practice: From 

Standardization of Technique to Interpretive Positionings,” Qual. Inq., vol. 5, no. 1, pp. 

64–86, Mar. 1999. 

[64] M. Weiser, “Programmers use slices when debugging,” Commun. ACM, vol. 25, no. 7, pp. 

446–452, Jul. 1982. 

[65] Y.-T. Lin, C.-C. Wu, T.-Y. Hou, Y.-C. Lin, F.-Y. Yang, and C.-H. Chang, “Tracking 

Students’ Cognitive Processes During Program Debugging—An Eye-Movement 

Approach,” IEEE Trans. Educ., vol. 59, no. 3, pp. 175–186, Aug. 2016. 

[66] W. Lake, W. Boyd, and W. Boyd, “Understanding How Students Study: The Genealogy 

and Conceptual Basis of A Widely Used Pedagogical Research Tool, Biggs’ Study 

Process Questionnaire,” Int. Educ. Stud., vol. 10, no. 5, p. 100, Apr. 2017. 

[67] J. B. Biggs, Study Process Questionnaire Manual. Melbourne, Australia: Australian 

Council for Educational Research Ltd., 1987. 

[68] D. Teague, “A People-First Approach to Programming,” in ACE ’09 Proceedings of the 

Eleventh Australasian Conference on Computing Education, 2009, pp. 171–180. 

[69] L. Reder, J. R. Anderson, and H. A. Simon, “Situated Learning and Education,” Educ. 

Res., vol. 25, no. 4, pp. 5–11, 1996. 

[70] C. Bereiter, “Situated Cognition and How to Overcome It,” in Situated Cognition: Social, 

Semiotic and Psychological Perspectives, D. Kirshner and J. A. Whitson, Eds. Hillsdale, 

NJ: Erlbaum, 1997, pp. 281–300. 

[71] R. L. Glass, “Call It Problem Solving, Not Computational Thinking,” Communications of 

the ACM, vol. 49, no. 9, p. 3, 2006. 

[72] J. H. Flavell, “Metacognitive Aspects of Problem Solving,” in The Nature of Intelligence, 

L. B. Resnick, Ed. Hillsdale, NJ, USA: Erlbaum, 1976, pp. 21–64. 

[73] D. L. Butler, L. Schnellert, and N. E. Perry, Developing Self-Regulating Learners. 

Toronto, ON, Canada: Pearson Education Inc., 2017. 

[74] S. P. Lajoie, “Metacognition, Self Regulation, and Self-regulated Learning: A Rose by 

any other Name?,” Educ. Psychol. Rev., vol. 20, no. 4, pp. 469–475, Sep. 2008. 

 


