
Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

169

doi:10.21311/001.39.5.23

I4Ocean: An Interactive Simulation and Scientific Visualization

Platform for Marine Application

Pengbo Ji, Fenglin Tian, Shuai Liu, Yuchi Jiang, Ge Chen

College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

Abstract

As an excellent tool for dealing with ocean issues, the marine geographic information system (MGIS) has been

attached increasing importance by people. This paper introduces a new MGIS platform of interactive simulation

and scientific visualization for marine applications named i4Ocean. It provides an intuitive 3D visual analysis
and display tool for marine researchers. The platform is not only able to simulate various elements of the marine

environment, but also visualize multi-dimensional data and oceanic model data. We design the rendering engine

and scene management framework for marine applications to meet the needs of describing and analyzing the

complicated ocean environment. In this paper we detail how to implement marine application on i4Ocean

platform through the simulation of ocean environment and 3D streamline visualization of irregular flow field

data. Several examples of ocean simulation, vector field data and scalar field data visualizations based on

i4Ocean are given to prove the feasibility of i4Ocean. The platform allows the users to write particular programs

on it to study marine phenomenon easily and shows the results in the graphical form. It also helps the

researchers and forecasters to investigate, monitor, analyze and forecast the changing marine resources and

environmental conditions.

Key words: I4Ocean, Marine Simulation, 3D Streamline, Scientific Visualization.

1. INTRODUCTION

With the concept of “Digital Ocean” being put forward, many researchers have been focusing on

constructing practical system for effective ocean management and conservation. By putting the ocean physical,

chemical, biological and geological information into a super computing system, MGIS makes the ocean a

virtual graphical system to help people develop and protect the ocean. At the same time, it supports for the

intuitive visualization of the marine data and resources sharing. However, as the advanced technology applied in

exploring the ocean, the marine data volumes are growing exponentially. Because of the spatiotemporal, three-

dimensional (3D) and intrinsically dynamic features of the marine data, it is difficult to make a breakthrough in

digital ocean domain. For many people, the ocean looks uniform or without what we think of as spatial pattern.

However, in reality, everything in the ocean, physics, chemistry, biology and human activities are explicit to a
time and place. Compared with traditional Geographic Information System (GIS), there are much

more requirements for MGIS. It should be not only able to analyze multi-dimensional and multi-

source isomerous data, but also visualize spatio-temporal data to take broad brush views of ocean processes and

human impacts on the ocean and reflect their spatiotemporal structure. There are some powerful physical

models of the oceans (E.g., many spatiotemporal models of the oceans and atmosphere make use of the concept

of “sigma coordinates” in defining their vertical dimension.) at both the global and regional levels. There seems

to be little that our current GIS tools can do to neither support their spatiotemporal analysis nor to assist in

visualizing their results. There has not yet been a popular platform that specializes in marine application and be

able to simultaneously meet the requirements of both the simulation and the visualization.

In this paper, we aim to present a practical solution aiming at making up for the

shortage of traditional GIS. We present a new MGIS platform for better visualizing the marine information and
simulating the ocean scene in real time. The platform contributes to the management of marine resource

exploitation, the protection of marine ecological environment, and the warning decisions of marine disaster, the

scientific research of marine atmospheric environment and the marine public service. The platform introduced in

this paper, which is called “i4Ocean”, meaning “eye for ocean”, is originally developed to help people to

explore, manage and exploit the ocean. The acronym “i4” represents the four features of our platform :

immersion, interaction, imagination and intelligence. Our platform is able to effectively meet the urgent needs

of integrating real-time rendering marine big data, information visualization, simulation of marine operations

and marine GIS analysis. In the meantime, secondary development and script development based on the

platform are also supported.

While simulating the real ocean environment, i4Ocean improves the rendering engine of the traditional GIS

platform. Now, it provides better support for simulating and visualizing measured data, remote sensing data and

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

170

model computing data. Meanwhile we add volume rendering for 3D scalar data and 2D or 3D streamline for 3D

flow vector data to i4Ocean. In this paper, the innovation points are listed as the following three aspects: First,

the spatio-temporal data models and application framework is established for marine data storage, data analysis

and data visualization services. Then, a rendering engine which is used for efficiently analyzing data and

managing special effects is designed to support GPU acceleration. Finally, based on the rendering engine and

the scene management framework, the scientific visualization of marine scalar field data and vector field data
are accomplished in this platform.

2. RELATED WORKS

The Google Earth, World Wind and Skyline were all good tools to show information on the earth in 3D

view. MyOcean, the EU multilateral cooperation projects, provided open and free marine analysis and

forecasting services. It combined with satellite and observation data. The open source project of OsgOcean was

part of the VENUS, which was also jointly developed by EU. It used vivid simulation method to reconstruct the

ocean and the real scene of the sea floor. Gertman et al. developed RSVP focused on the fusion of multi-source

remote sensing data and visualization (Gertman, Olsoy, Glenn and Joshi, 2012). And they did a good job on

color profile and volume rendering for LiDAR data. Rautji et al. submerged a remote sensing data visualization

system using the OpenGL graphics library and Java 3D technology to immerse users in data browsing (Rautji,
Gaur, and Khare, 2013). China digital ocean prototype system (CDOPS), which was designed and constructed

tentatively, provided a visualization, presentation and spatial analysis platform for 3D ocean monitoring data

and information(Zhang, Dong, Li, Luo and Chi, 2011).

For a MGIS platform, the integration of virtual reality scenes is indispensable. Experts and scholars have

done a lot of research on marine scene rendering, especially on water rendering. Blinn (Blinn, 1978), who was

an earlier experts working on simulating water, presented bump mapping method to obtain the real rough

surface texture, through disturbance surface normal vector. Since Fishman proposed height field method, it had

been widely used in the field of water waves simulation. Fractal noise, also known as perlin noise, was produced

by Perlin. With this method, Johanson generated sea surface height field. He presented a LOD method called

“projection grid” to create a grid mesh whose vertices were even-spaced, not in world-space (Johanson, 2004).

Bruneton et al. presented a new algorithm for water modeling, animation, illumination and rendering in real-

time, at all scales and for all viewing instances, based on a hierarchical representation, combining geometry,
normal and BRDF (Bruneton, Neyret and Holzschuch, 2010).

Another feature of i4Ocean platform is the merging of scientific data visualization methods. In the case of

vector field visualization, many methods are practical, such as direct visualization, texture-based visualization,

geometric-based visualization, feature-based visualization, partition-based visualization (Andrea, Robert,

Robert, Ivan and Helwig, 2012). Geometric-based flow visualization shows the features of data by using

streamlines, streak lines, time lines, and path lines (Rautji, Gaur and Khare, 2013). Take 3D streamline

visualization as an example. Ye et al. (Ye, Kao and Pang, 2005) extended the flow guided approach proposed by

Verma et al. (Verma, Kao and Pang, 2000)to visualize 3D flows. Marchesin et al. (Marchesin, Chen, Ho and

Ma, 2010) described the complex structure of the flow focusing on streamline addition and removal algorithms

by combining view-dependent and view-independent criteria to avoid visual clutter due to a potentially high

density of streamlines. A different strategy to avoid this problem was introduced by Chen (Chen, Yan, Yu, Max
and Ma, 2011) who combines the advantages of clustering methods and illustrative rendering techniques.

Günther et al. presented a global line selection approach based on optimization process. He obtained view-

dependent opacities of the line segments, allowing a real-time free navigation while minimizing the danger of

missing important structures (Günther, Rössl and Theisel, 2013). In another case of scalar field visualization,

volume rendering is a method of extracting meaningful information from volumetric data. Over the years many

techniques have been developed to render volumetric data, Kruger et al. (Kruger and Westermann, 2003) first

address the integration of early ray termination and empty-space skipping into texture based volume rendering

on graphical processing units (GPU). Volume classification is a major issue in volume visualization. Transfer

functions have been proved to be a powerful tool for classification (Haidacher, Patel, Bruckner, Kanitsar and

Groller, 2010). Many researches (Rautji, Gaur and Khare, 2013; Sereda, Bartroli, Serlie and Gerritsen, 2006)

focused on the transfer functions have been done. In our work we realize Ray-Casting volume rendering
algorithm based on the rendering engine of i4ocean, which can help showing the feature of the ocean.

3. SYSTEM OVERVIEW

3.1. System Framework

System framework design is a very complex work in software engineering, with the increasing demands of

visual function. Thus, the number and scale of rendering modules in engine will be getting larger, which causes

the more difficult management and extension. Comparing with the Model-View-Controller (MVC) architecture

in network platform, the underlying architecture referred in this article is similar to MVC. But we change both

https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_t/Fabrice+Neyret
https://hal.archives-ouvertes.fr/search/index/q/*/authIdHal_s/nicolas-holzschuch
https://bora.uib.no/browse?value=Carnecky,%20Robert&type=author
https://bora.uib.no/browse?value=Peikert,%20Robert&type=author
https://bora.uib.no/browse?value=Hauser,%20Helwig&type=author

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

171

the engine module partition and the subordinate function to meet the request of the ocean simulation and marine

data visualization. As shown in Figure 1, the following section introduces MVAR (model-view-adapter-

rendering engine) constructs used in i4Ocean.

Figure 1. I4Ocean system architecture diagram

View is the operational user interface. The basic structure of i4Ocean consists of node tree, property list,

output window and rendering window. These interfaces have been encapsulated into the engine core code.

Given that construction of the complex ocean environment, we created a rendering engine using a variety of
rendering effects to accomplish the marine data visualization. Every visual effect works with different drawing

states accordingly. With state-management mechanism, we could effectively manage independent states(depth

buffer, transparent channels, etc) to make them not influenced by each other. Adapter controls the realization

and identification of application function, and executes corresponding code. Adapter gets input from the user,

then calls model and view to complete the user's requirements. Finally, it determines on which view to display

the returned data.

3.2. Rendering Engine

The i4Ocean rendering engine is a programmable real-time rendering engine based on OpenGL 3D

graphics library. Figure 2 shows the architecture of i4Ocean rendering engine and how we encapsulate the

OpenGL API in the rendering engine. It takes data structure named effect as the smallest unit of rendering

process to manage the special effects separately. It supervises and controls the OpenGL states, avoiding errors in
states management. Each effect can contain one or more techniques. Technique is the approaches to accomplish

the special effects, showing in different ways of implementation on the same effect. One technique can contain

several passes while simple technique requires only one pass. Pass is rendering process with multiple render

states. One pass contains vertex shader(VS), geometry shader(GS), tessellation shader(TS), pixel shader(PS)

and some rendering states. Simultaneously, pass is a basic function unit. Geometric data, such as points and

lines, gets into graphics card and runs according to a pass. It acts similar to Photoshop layers, adding layers one

by one in order. Finally, the result can be generated. The most expensive operation is usually the code delivery

processing from CPU to GPU (all the vertices in each pass are transferred from the CPU to the GPU). If the

scene is very complex in the same case, it may result in poor performance.

3.3. Scene ManaGement Framework
With the explosive expansion in the volume of marine data, the rendering demand of visualization for big

data is also growing. We propose a kind of optimal scheduling strategy between computer's main memory and

auxiliary memory based on the memory file mapping technology(Vrolijk and Post, 2006). As a result, i4Ocean

platform can support the real-time visualization rendering of big data. We use data file storage structure based

on Itemdata in this paper, which is the minimum rendering unit. The ItemData in figure 3 mainly contains the

app:ds:result
app:ds:in

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

172

description information including the data pointer (character pointer), the data length (64 - bit integer), the

original position in data file (64 - bit integer), whether the data contains out-of-core information or not (boolean)

etc. Geometric model entities(including the vertex information, index information, texture information, etc.) are

all organized by the Itemdata.

Figure 2. Rendering engine architecture diagram

The exported peripheral storage file contains both index files and data files. When loading the data, we load
the information in the index files into memory first. According to the index information, using the windows

memory mapping technology, we can map the corresponding data section in the data file into the memory for

rendering. In the visualization process of big data, the data constantly exchanges between the inner and outer

memory. During that, we should set a certain size of memory buffer. When the data size to be loaded is bigger

than free memory buffer capacity, it is time to release some data have not been rendered in current memory, until

the size of free memory buffer meet the requirements of the new data. The principle is “first in first out”. Index

file stores the details of all the data in scene including index information of the data, the relationship between

leaf nodes and entities, the starting position of each Itemdata in peripheral storage file, etc. Based on the data

structure above, we achieved implementation to the operation of the data stream management.

Figure3. Scene management and rendering structure diagram

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

173

There is only one SceneGraph node, which is the root node of all the scene nodes. A lot of functional nodes

named Editnode are mounted under the root node. Each Editnode works as a parent node of one application

function, such as one building node, one sailing node, one typhoon phenomenon visualization node. The

EditNode contains many queues such as time list, depth list, latitude list, longitude list and attribute list. These

lists are used to store the spatio-temporal and attribute data of geographic data. And the data is stored as custom
GeoFloat or GEOInt formats according to its float or int type. A Controller used for controlling dynamic effects

of time-varying data is bound to each parent Editnode or child Editnode in the scene tree. The leaf node named

Editleaf, inheriting from Editnode, is the smallest authoring unit, providing a variety of matrix operation

interfaces including rotation and translation. The Entity is the minimum geometry data unit for drawing. It is

used to organize various geometric unit, to save description information, the geometric data and various

property description.

4. VR APPLICATIONS

In this paper, we achieved high quality scene effect and the ocean simulation while guarantee well

rendering efficiency. The sea-land virtual display system on our platform is developed based on ETOPO1 data

published by U.S. National Geophysical Data Center. On one hand, the buildings, roads, vegetation on land are
displayed in three dimensions. On the other hand, some virtual boats modeled with 3DMAX, virtual ocean

surface and underwater bubble, light shafts, caustics, and fish underwater are vividly displayed in real time after

the importing process in the last chapter.

We applied the method presented by Johanson (Johanson, 2004)easily to the engineered marine

environment simulation on i4Ocean. We write GPU's vertex shader and pixel shader code in GLSL in this

paper. First, with a periodic wave superposition, we get height field map and normal disturbance map of water

surface grid. Then, we vividly simulate the phenomenon of the ocean surface reflection, refraction, etc. Finally

we can get dynamical water surface real-time, with controllable parameter interface. We can change the surface

appearance by these interaction parameters, such as water color, wave height, wave velocity, Fresnel coefficient

etc. The implementation details of virtual interactive water is introduced in the following sections. The

rendering process is shown in figure 4 below.

Figure 4. Rendering process of virtual water scene

4.1. Ocean Waves Modeling

First, we create a 512 * 512 resolution fixed grid as shown in figure 5(b). One grid works as an Entity being

mounted at one Editleaf. Thus we can create more than one water grid. All the information of vertex and index

in the grid are respectively saved into two memory buffers which are named VBO and IBO. Then, we write

effect shader files in GLSL for generating height map, normal map, superimposed water surface. Each render

effects above is saved in the Shape data structure, which is separately applied to the three rendering passes.

When the Controller is active, all the rendering processes illustrated in figure 4 are executed in real time after

the Initializing process be finished.

There are many methods for the generation of wave height fields. Some methods are more concerned with
the efficiency of real-time implementation than the detail information. Some other methods pay attention to the

sense of reality but resulting in complex computing. We simulate the dynamic ocean by using perlin noise map

as figure 5 (a). It can further increase efficiency by using noise texture directly. The height map is calculated

according to the time parameter in real time as follows:

 (1)

 (2)

)),,/(1(ofsetoctaveswavelengthposturbulencesaturatehight

)*(* wavegushwaveDirwavespeedTimeoffset

javascript:void(0);

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

174

Where pos is the original location of the vertices. The wavelength is the length of each wave form and

octaves stands for an empirical value of 8.0. The function turbulence (x, y, z) in equation (1) is a custom

disturbance function. The vertex offset in each rendered frame is defined as equation (2). Where Time is the

system time, wavespeed is the user-defined flow velocity, waveDir is the user-defined flow direction, and

wavegush is upwelling speed of waves. In the first pass of each frame, we generate a height map according to

the above algorithm, which is shown in figure 5 (c). The normal map, shown in figure 5 (d), which is generated
in the second pass, is calculated according to the height map in real time after pass 1. By Kriging interpolation

algorithm, it is generated among every vertex height of the surface mesh. The normal map is used to guide the

vertex variation rule and the optical calculation of water surface.

Figure 5. Some rendering results during creating water surface (a)Perlin noise map (b)Created grid

(c)Generated height map (d)Generated normal map (e)Surface combined the height map and normal map

4.2. The Optical Processing of Water Surface

To build realistic virtual ocean scene, we also need to add various optical phenomena to the scene, such as
water refraction, reflection, Fresnel phenomena and underwater caustics effect. Then, we add all the texture map

to the water surface. And the height field map changes over time constantly. Coupled with optical effects, we

can generate dynamic ocean surface vividly. A formula in GLSL to generate water surface as equation (3).

 (3)

Where WaterColor is the color of the water. RefrColor is the texture of refraction, and ReflColor is the

reflection color map similarly. DeepFactor is grayscale image saving the water depth distribution information.

And fresnel parameter works as weighting parameters between RefrColor and ReflColor to simulate Fresnel

phenomenon. Through the calculation of parameters listed above, we have got all the pixel color data

contributed to the screen. After that, we can produce the final pixel color on screen by integrating all the results.

In an integrated system, the number of objects to be rendered is so big that we need try our best to reduce

the amount of calculation. Traditional reflection, refraction and caustic map generation require real-time

computing, as a result, the calculations are inefficient from performance standpoint. With some simplifications

and changes, we make the process adapt to the GPU rendering. In addition to the rendering camera, we create an

extra camera to generate the reflection images. We need do some view-culling to reduces the amount of internal
memory objects that will be rendered before paint. The extra camera locates in a symmetrical position with the

rendering camera at the bottom of the water. The rendering result, which is the reflection map, is saved as a

texture in frame buffer. Furthermore, refraction map can be generated by the rendering camera simultaneously,

with the rendering result being saved as a texture in frame buffer too. Due to the effect of surface being focused

and defocused, the beam exposure to the surface will be enhanced or attenuated when arrives at the bottom. The

grain projected onto the underwater objects surface is so called caustic. In order to simplify calculation, we

replace the calculating caustic phenomenon with transforming caustic textures.

We create a virtual physical sky scenery around to act as the actual sky. Thus it contributes to high-fidelity

of water reflection. Then put the virtual scene in the sky ball and set camera position upon the surface of the

water. Realistic simulation of sky, which plays an important role in VR scenes roaming and lighting.

Atmospheric scattering is the main factor affecting the color of the sky and it is also the main reason why
objects in the distance sank away from view. In this paper, referencing to atmospheric scattering physical model

and GPU based atmospheric scattering calculation, we analyze the principle of atmospheric scattering. In this

way, we realize the simulation of realistic sky in physical way. By controlling the direction of the sun light with

GPU parameters, we accomplish the dynamic display of sunrise and sunset finally. More specifically, we

construct sky model with uniform triangular mesh. In the pipeline of vertex shader, the outside integral and the

inner integral of a number of sampling points are finished. While in the pixel shader pipeline, we make a fusion

of the scattering integral results with the cloud image and accomplish the visual effects of sky. All the physical

),Re),,Re,((fresnelflColorDeepFactorfrColorWaterColorlerplerpfinalcolor

app:ds:algorithm

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

175

attributes, such as sun position and sky color, can be changed via the parameters in rendering effect files. The

appearance of physical sky ball is shown as figure 6 (a).

Figure 6. Some rendering results during creating virtual ocean scene (a)The appearance of physical sky ball

(b)Land-sea landscape integration application (c)GPU-accelerated simulation of shoal and caustic

5. VISUALIZATION OF MARINE IRREGULAR FLOW FIELD DATA

The characteristics of marine dynamic process are mostly reflected by marine and atmospheric vector field

data, which is of great significance for the research of large-scale ocean phenomena’s formation, evolution and

dynamic mechanism. In the visualization field for vector field data, 3D dynamic visualization of irregular data is

a difficult issue(McLoughlin, Laramee, Peikert, Post and Chen, 2010). Taking Princeton Ocean Model(POM)

computing data as the research object, we introduces a tetrahedron based 3D streamline generation approach.

The approach puts forward a solution for this problem. POM model is a 3D baroclinic shelf shallow water

numerical model for the ocean circulation. It uses sigma coordinate in vertical orientation, however, orthogonal

curve coordinates is chosen in horizontal orientation. Therefore, it does make it difficult to visualize flow field

data with streamline method. Combining the distribution-based seeds generation and tetrahedral mesh
generation algorithms for irregular vector field data, we smoothly achieve streamline visualization on i4Ocean.

A summary of our method is available as figure 7 below.

Figure 7. The major steps for our tetrahedral-based 3D streamline generation framework

http://en.wikipedia.org/wiki/Numerical_model
http://en.wikipedia.org/wiki/Ocean_circulation
app:ds:smoothly

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

176

5.1. Streamline Placement Strategy

Because the POM data comes in irregular patterns, we cannot apply the traditional method to streamline

integrals easily. We need do some preprocessing on data before. In the initialization stage, constructing

hexahedral grid for 3D irregular flow field data will be finished. Then, each hexahedral cell is decomposed into

6 tetrahedral cells. In this paper, the size of the grid may be configured according to the user's needs. To speed

up the process of points locating and values interpolating, saving the topological relationship among the
tetrahedral cells by a specific data structure is a good choice.

There is no clear judgment or definition about the quality of the streamline placement strategy at present.

Generally, the strategy that can generate longer streamline is considered better than the one with shorter. Thus,

by determining the seed point position in the flow field, we can determine the streamline placement strategy. In

this paper, we propose a seeding strategy based on spatial distribution of the probability. The specific issue

method mentality is: First, take the hexahedral grid generated in the initialization stage as control grid, initialize

each cell of control grid with empty state. Then, set all the cells being crossed by streamline to be full state.

Traverse all the grids and find the largest interconnecting region with empty state in control grid. Take the

region center as the starting point position of next streamline and set the crossed grid cell to be full state also.

Finally, repeat the process above until all the cells of control grid are filled.

Point location is very important in the flow field visualization. Generally, transforming the physical space

of flow filed into computational space in curved grid by Jacobi matrix is the most common method to solve this
problem. Our method adopts a kind of volume coordinates algorithm, which is similar to the normal vector

algorithm. It helps us to understand the relationship between point and tetrahedron and to avoid repeating

calculation.

5.2. Streamline Integral

Among the constructing numerical integration methods for fluid, the familiar ones are Euler method,

second-order runge-kutta method and fourth-order runge-kutta method. The calculation accuracy of Euler

method is not high. The fourth-order runge-kutta method has high accuracy but high complexity. The second-

order runge-kutta method is a compromise of the two methods above. It has both good precision and high

computing efficiency, so we choose the second-order runge-kutta method for streamline integral operation in

this article.
In the process of building streamline, proper integral step will greatly help improve the calculation

precision, increasing calculation speed and saving considerable time. In our research, we adopt the method of

dynamic streamline integral step. It considers two factors: 1) Control integral step size according to the change

of the velocity vector direction. If the angle between two velocity vectors of adjacent points in streamline is too

big, that means changing very rapidly. Therefore, we should make the integral step size shorter. 2) Determining

the integral step size according to the radius of largest inscribed circle within the tetrahedral cell is another

decide-consider option. When the step size is so small that generating one streamline in a tetrahedral cell costs

too many steps, we take the radius as integral step size. That way, we make the integral process jump out of the

loop in one tetrahedron.

5.3. High Perception of Streamline Visualization

The result after integral is saved in lines as shown in figure 8(a) below. The attributes of position, color and
opacity that vertices have are kept in the vertex buffer defined in memory. In order to obtain perfect dynamic

expression effect, we make the best use of GPU to accelerate the algorithm process and to transform geometric

shape of streamlines. Geometry shader, the third shader after the vertex shader and fragment shader, is formally

introduced in shader model 4 (the fourth generation of graphics shader architecture). That has become the core

in OpenGL3.X, giving programmers more freedom and flexibility. After the geometric deformation in geometry

shader, we transform the input curves into stream tubes before add arrows. Accordingly, we can express the

meaning of flow fields in streamline way. Furthermore, we also can transform it to other deformations, such as

ribbon, wafer, strips, etc.

Figure 8. Some rendering results during creating 3D streamline (a)The appearance of flow fields with lines

(b)Mapping color to velocity in streamline (c)3D flow distribution in underwater observation

app:ds:easily

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

177

However, the qualitative expression of streamline distribution can't meet the demand of the marine science

research. Considering integrated velocity distribution, we map the velocity in each point on streamline to color

distribution. By that analogy, the information of sea temperature and sea salinity all can be mapped to a color

bar with quantitative expression of marine information. Besides color mapping, we give another attribute,

opacity, to the streamlines. Using update mechanism in our application platform, combined with time control,
we add dynamic flowing effect to streamline. The method is best applied at time-varying path line and time line

visualization.

6. SOME VISUALIZATION CASES

6.1. 2D Streamline Visualization of Wind Field Data

Realistic 2D evenly-spaced streamline for 2D wind field adopts four-order Runge-Kutta integration and

cartesian orthogonal grid to keep vector field evenly-spaced. Simultaneously, it combines topology-based

feature-extracted technology and high perceptual texture mapping technology to make streamlines express the

right direction as well as look authentic. The left picture in figure 9 below is 2D streamline visualization of sea

surface wind field data in the South China Sea and the right one is 2D streamline visualization of global wind

field data.

Figure 9. Rendering results of 2D static streamline visualization for wind field data

6.2. 2D Streamline Visualization of Flow Field Data

In 2D dynamic visualization, we put massive Lagrangian advection particles to the domain. Streamlines are

generated through multi-pass primitive distortion on GPU and numerical integration, preserving spatial and

temporal continuity. Probabilistic density control based on radial basis function ensures uniform distribution of

particles and full expression of the flow field characteristics. The pictures in figure 10 below are high-precision

dynamic 2D streamline visualization of sea surface flow field data, which is inverted from the gridded maps of
sea level anomaly data. The rendering result based on the Mercator projection is shown on the left and the right

one is in global view.

Figure 10. Rendering results of 2D dynamic streamline visualization for flow field data

6.3. Visualization of Marine 3D Scalar Field Data

As an important index of physical process, chemical process, biological process and geological process, the

scalar data in marine environment (temperature, salinity, density, etc.) embodies the multi-dimensional dynamic

change characteristics of various marine parameters. Further analysis based on Ray-Casting volume rendering

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

178

algorithm and extracting the features using transfer function can help showing the inner evolution rules of the

ocean. In figure 11, the picture on the top left is the Western Pacific Warm Pool feature effect. The blue, yellow,

red areas represent the temperature areas of 11℃-13℃, 20℃-23℃, 28℃-30℃. The picture on the bottom left

corresponds to the Atlantic high-salt area. The blue, yellow, red areas represent the salt of 34,35,36. The right

side is the enlarged detail effect.

Figure 11. Feature extraction of the western pacific warm pool and the atlantic high-salt area based on global

argo data

7. CONCLUSION AND FUTURE WORKS

In this paper, we use various methods, such as management and scheduling of big marine data and

marine virtual reality simulation technology, to accomplish dynamic and multi-dimensional rendering of global

marine data. We have proposed and realized a prototype system. The system can simulate visible elements in

marine environment, for example, weather, sea surface, marine creatures, submarine model and seabed terrain.

It can also dynamically visualize important marine information from multi-angles in multi-modes, including

rainfall, water color, water vapor, sea level anomaly, sea surface wind, sea surface pressure, significant wave

height and sea surface temperature. Based on GPU programming, the prototype system uses self-developed

rendering engine to calculate various visual effect and puts it under standardized effect management modules.

Thus it leads to a bigger role in marine virtual reality technology and marine scientific visualization technology.

For marine scientific researchers, it provides effective, convenient and direct-viewing 3D virtual environment

and acts as a useful tool for visual analysis and display. We also designed data structure that is suitable for
distributed storage and parallel analysis. This data structure can be used in interactive and 3D visualization for

atmospheric and oceanographic spatio-temporal data. It is suitable for big marine data mining, efficient marine

data managing and information extracting as well.

The future research direction:

(1) For the openness of the platform, it is not enough for a global ocean application platform of multi-

type data visualization and virtual reality, which provide and collect data solely by developers. The platform

should provide open data interface and visualization methods to enable users or scientific organizations upload

their own research data or visual analyzing algorithms online.

(2) For the visualization of the platform, users want to do more than just visualize marine data, but data

mining, feature extraction, analysis and prediction on marine data. The next step in the research for improving

the platform is to study analysis method which can be used to accelerate graphic operations and data mining
theory based on GPU computing.

(3) For the simulation of the platform, taking the curvature factors of the spherical platform into account

and creating global ocean environment with optical effects are the work we need to do. By making use of

tessellation shade(TS) and compute shader(CS) in OpenGL programmable rendering pipeline, we will get view-

dependent adaptive subdivision mesh. This work will help for accelerating graphics operations and

computational efficiency in rendering.

Acknowledgements

This work has been sponsored in part by the Funds for International Cooperation and Exchange of the

National Natural Science Foundation of China (Grant No. 613111035), and by the National High Technology

Research and Development Program of China (Grant No. 2013AA09A506-4). I would like to personally thank
The First Institute of Oceanography of SOA who provides the POM data for me. I would also express my

heartfelt gratitude to Sun Miao, who helps me during this thesis.

Rev. Téc. Ing. Univ. Zulia. Vol. 39, Nº 5, 169 - 179, 2016

179

REFERENCES

Andrea, B., Robert, C., Robert, P., Ivan, V. and Helwig, H. (2012) “Illustrative Flow Visualization: State of the

Art, Trends and Challenges”, Proceedings of Eurographics, pp. 075-094.

Blinn, J.F. (1978) “Simulation of wrinkled surfaces”, Computer Graphics, 12(3), pp.245-251.

Bruneton, E., Neyret, F. and Holzschuch, N. (2010) “Real-time Realistic Ocean Lighting using Seamless
Transitions from Geometry to BRDF”, Computer Graphics Forum, 29(2), pp.487-496.

Chen, C.K., Yan, S., Yu, H.F., Max, N. and Ma, K.L. (2011) “An Illustrative Visualization Framework for 3D

Vector Fields”, Computer Graphics Forum, 30(7), pp.1941-1951.

Gertman, V., Olsoy, P., Glenn, N. and Joshi, A. (2012) “RSVP: Remote Sensing Visualization Platform for Data

Fusion”, IEEE Virtual Reality Workshop on Immersive Visualization, pp. 161-168.

Günther, T., Rössl, C. and Theisel, H. (2013) “Opacity Optimization for 3D Line Fields”, Acm Transactions on

Graphics, 32(4), pp.120:1-120:8.

Haidacher, M., Patel, D., Bruckner, S., Kanitsar, A. and Groller, M.E. (2010) “Volume Visualization Based on

Statistical Transfer-function Spaces”, The 3rd IEEE Pacific Visualization Symposium, pp. 17-24.

Johanson, C. (2004) “Real-time Water Rendering”, M.S. diss., Lund University.

Kruger, J. and Westermann, R. (2003) “Acceleration Techniques for GPU-based Volume Rendering”,

Proceedings of the 14th IEEE Visualization, pp. 38-43.
Marchesin, S., Chen, C.K., Ho, C. and Ma, K.L. (2010) “View-dependent Streamlines for 3D Vector Fields”,

IEEE Transactions on Visualization and Computer Graphics, 16(6), pp.1578-1586.

McLoughlin, T., Laramee, R.S., Peikert, R., Post, F.H. and Chen, M. (2010) “Over Two Decades of Integration-

Based, Geometric Flow Visualization”, Computer Graphics Forum, 29(6), pp.1807-1829.

Post, F.H., Vrolijk, B., Hauser, H., Laramee, R.S. and Doleisch, H. (2002) “Feature Extraction and Visualization

of Flow Fields”, The Eurographics Association, pp. 69–100.

Rautji, S., Gaur, D. and Khare, K. (2013) “Immersive 3D Visualization of remote sensing data”, Signal & Image

Processing: An International Journal, 4(5), pp.61-73.

Sereda, P., Bartroli, A.V., Serlie, I.W. and Gerritsen, F.A. (2006) “Visualization of Boundaries in Volumetric

Data Sets Using LH Histograms”, IEEE Transactions on Visualization and Computer Graphics, 12(2),

pp.208-218.
Verma, V., Kao, D. and Pang, A. (2000) “A Flow-guided Streamline Seeding Strategy”, IEEE Proceedings of

the conference on Visualization, pp. 163-170.

Vrolijk, B. and Post, F.H. (2006) “Interactive Out-of-core Isosurface Visualisation in Time-varying Data Sets”,

Computers & Graphics, 30(2), pp.265-276.

Ye, X., Kao, D. and Pang, A. (2005) “Strategy for Seeding 3D Streamlines”, 16th IEEE Visualization

Conference, pp. 471-478.

Zhang, X., Dong, W., Li, S.H., Luo, J.C. and Chi, T.H. (2011) “China Digital Ocean Prototype System”,

International Journal of Digital Earth, 4(3), pp.211-222.

https://bora.uib.no/browse?value=Brambilla,%20Andrea&type=author
https://bora.uib.no/browse?value=Carnecky,%20Robert&type=author
https://bora.uib.no/browse?value=Peikert,%20Robert&type=author
https://bora.uib.no/browse?value=Viola,%20Ivan&type=author
https://bora.uib.no/browse?value=Hauser,%20Helwig&type=author
https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_t/Eric+Bruneton
https://hal.archives-ouvertes.fr/search/index/q/*/authFullName_t/Fabrice+Neyret
https://hal.archives-ouvertes.fr/search/index/q/*/authIdHal_s/nicolas-holzschuch
http://scholar.gfsstp.com/citations?user=w87pmH4AAAAJ&hl=zh-CN&oi=sra
http://scholar.gfsstp.com/citations?user=a8YUuWwAAAAJ&hl=zh-CN&oi=sra
http://scholar.gfsstp.com/citations?user=ViR_O8sAAAAJ&hl=zh-CN&oi=sra

