DOKUMENSILABUS MATAKULIAH BERBASIS KKNI PROGRAM STUDI FISIKA IPB 2018

Copyright : Departemen Fisika IPB 2018

Namamk : Fisika Dasar 2 Kode mk /sks : FIS 102 3(2-

3) Peserta :

Deskripsi Mata Kuliah

Mata kuliah ini merupakan mata kuliah pokok fisika yang membekali mahasiswa dengan pemahaman mengenai konsep dasar fisika yang terkait dengan fenomena kelistrikan, kemagnetan, dan optik. Mata kuliah ini juga membekali mahasiswa dengan keterampilan dasar baik teoritik maupun praktik dalam penyelesaian problem-problem fisika yang terkait dalam kehidupan sehari-hari seperti masalah rangkaian listrik, kemagnetan, generator listrik, optika geometri (cermin dan lensa), serta optika fisis (difraksi).

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa dapat memahami fenomena kelistrikan, kemagnetan, dan optis di alam serta mampu mngaplikasikan pngetahuannya tersebut untuk mnyelesaikan permasalahan sederhana yang terkait dengan fenomena tersebut.

Penilaian	Indikator	Bentuk Pembelajaran	Bahan Kajian	Dukungan thd CP	Kemampuan Akhir Yang Diharapkan	Minggu Ke	Bobot Nilai (%)
Tes , Non tes		Ceramah Diskusi, kuis	Kontrak perkuliahan, wawasan terkini mengenai aplikasi dari kelistrikan, kemagnetan, dan optik	CP1 CP2 CP3 CP6 CP7 CP8	Memahami pentingnya mempelajari dan memahami konsep dasar dari fenomena kelistrikan, kemagnetan, serta optik	1	4%
Tes , Non tes		Ceramah, diskusi, kuis, aktivitas grup	Fenomena kelistrikan, meliputi asal-usul muatan listrik, jenis muatan listrik, serta, gaya antar muatan	CP1 CP3 CP6 CP7 CP8 CP9	Mahasiswa mampu memahami interaksi antara muatan, induksi listrik, mahasiswa mampu menghitung gaya	2	4%

		(Coulomb), pemuatan melalui kontak dan non kontak (induksi)	CP10	listrik untuk sistem muatan sederhana.		
Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Konsepmedanlistrik, garis medan listrik, dipol listrik.	CP1 CP3 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu menggambarkan garis medan listrik untuk berbagai macam konfigurasi muatan. Mahasiswa mampu menghitung medan listrik untuk berbagai macam konfigurasi muatan.	3	4%
Tes Non Tes	Ceramah, Diskusi, kuis	Konsep potensial listrik, dan energi potensial listrik.	CP1 CP3 CP6 CP7 CP8	Mahasiswa mampu memahami konsep potensial listrik serta membandingkan dengan konsep potensial gravitasi	4	4%
Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Distribusi muatan kontinyu	CP1 CP3 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu menggunakan teknik kalkulus untuk penyelesaian problem medan dan potensial listrik dari berbagai macam distribusi muatan kontinyu seperti cincin, bola, silinder dan lain-lain.	5	5%
Tes Non tes	Ceramah, Aktivitas Grup	Kapasitor dan medium dielektrik	CP1 CP3 CP6	Mahasiswa mampu memahami konsep kerja kapasitor serta	6	5%

			CP7 CP8 CP9 CP10	perhitungan nilai kapasitansinya untuk susunan seri dan paralel, serta pengaruh material dielektrik terhadap nilai kapasitansi dan medan listriknya.		
Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Arus listrik dan rangkaian listrik sederhana	CP1 CP3 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu memahami konsep arus listrik, hukum Ohm, rangkaian hambatan seri dan paralel, serta hukum Kirchchoff	7	4%
Tes tulis				UTS	8	30%
Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Arus bolak-balik, Rangkaian RL, RC, dan RLC, impedansi, diagram phasor, resonansi	CP1 CP3 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu memahami pengertian arus dan tegangan bolak-balik, serta konsekuensi dari penggunaan kapasitor dan induktor terhadap siklus arus dan tegangan, serta perbedaan fasanya.	9	5%
Tes	Ceramah	Fenomena	CP1	Mahasiswa mampu		

Non tes	Diskusi, kuis, aktivitas grup	kemagnetan	CP2 CP3 CP6 CP7 CP8 CP9 CP10	memahami asal usul kemagnetan, sifat magnetik bahan, jenis interaksi magnetik.	10	5%
Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Interaksi medan magnet dan muatan bergerak, gaya magnetik (Lorentz force). Hubungan antara medan listrik dan medan magnet. Biot-Savart, hukum Ampere	CP1 CP3 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu terampil berlatih menyelesaikan problem interaksi muatan bergerak dan arus listrik dengan medan magnet.	11	5%
Tes Non tes	Ceramah Diskusi, kuis	Hukum Faraday, Hukum Lenz, prinsip generator listrik. Hukum Maxwelldan konsep gelombang elektromagnetik	CP1 CP3 CP4 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu memahami dan melakukan perhitungan yang terkait dengan aplikasi dari teori elektromagnetik seperti GGL induksi, generator listrik, perambatan Gelombang elektromagnetik, dan lain-lain.	12	5%
Tes Non tes	Ceramah,Diskusi, kuis, aktivitas grup	Optika geometri 1 Cermin, pembentukan citra	CP1 CP3 CP6	Mahasiswa mampu memahami dan menghitung	13	5%

		pada cermin datar dan lengkung (cekung dan cembung), perbesaran citra, jenis citra (nyata dan maya),	CP7 CP8 CP9 CP10	pembentukan citra dari berbagai macam kondisi dan konfigurasi cermin.		
Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Optika Geometri 2 Lensa (konvergen dan divergen), instrumen optik (mata, kacamata, tleskop, mikroskop)	CP1 CP3 CP5 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu memahami dan menghitung pemebentukan citra dari berbagai instrumen optik, termasuk mata manusia dan kondisinya (myopi, hypermetrop, dan lain-lain).	14	5%
Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Optika fisis	CP1 CP3 CP6 CP7 CP8 CP9 CP10	Mahasiswa mampu memahami prinsip serta menyelesaikan persoalan yang terkait dengan superposisi gelombang cahaya, pelenturan gelombang cahaya, percobaan celah tunggal, celah ganda, difraksi, kisi difraksi, intensitas cahaya	15	5%
Tes tulis				UAS	16	30%

Matriks Implementasi LO pada kegiatan Pembelajaran

	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9	CP10
Kuliah/ceramah	V	1	V	V		V	V	V		
Kuis harian										
Praktikum	V	1	V	V	V	1	V		V	1
PR mingguan			V		V	V	V			
Aktivitas Grup	V	1	V	V	V	V	V	$\sqrt{}$	V	1
UTS	V		V			V	V			
UAS	V		V			V	V			

Namamk: Fisika Matematika 1

Kodemk/sks : FIS 243

Peserta :

Deskripsi Mata Kuliah

Mata kuliah ini merupakan mata kulia pokok fisika yang membekali mahasiswa dengan perangkat analisis matematik yang diperlukan untuk memahami dan menyelesaikan problem yang terkait dengan fenomena fisis di alam.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa dapat m.enggunakan berbagai metoda matematik untuk memodelkan dan menyelesaikan aneka problem fisika yang terkait dengan fenomena fisis di alam.

Bobot Nilai (%)	Penilaian	Indikator	Bentuk Pembelajaran	Bahan Kajian	Dukungan thd CP	Kemampuan Akhir Yang Diharapkan	Minggu Ke
4%	Tes , Non tes		Ceramah Diskusi, kuis	Deret geometri, deret konvergen dan divergen, tes konvergensi	CP7	Mahasiswa mampu memahami pengertian tentang deret dan mengkaitkannya dengan fenomena fisis di alam	1
4%	Tes , Non tes		Ceramah, Aktivitas Grup (mini whiteboard activity)	Deret bolak-balik, ekspansi deret, deret Taylor, deret binomial, aplikasi deret dalam fisika	CP2 CP7 CP10	Mahasiswa mampu: a. menyelesaikan permasalahan fisika yang dapat diselesaikan dengan pendekatan deret. b. aktif bekerjasama dalam suatu kelompok untuk menyelesaikan problem yang diberikan	2

4%	Tes Non tes	Ceramah Diskusi, kuis	Bilangan kompleks, aljabar kompleks, deret kompleks, fungsi bilangan kompleks, metoda grafis	CP2 CP7	Mahasiswa mampu memahami pengertian tentang bilangan kompleks dan mengkaitkannya dengan fenomena fisis di alam	3
5%	Tes Non Tes	Ceramah, Aktivitas Grup (mini whiteboard activity	Pers.Euler, pangkat dan akar bilangan kompleks, fungsi trigonometri, logaritmik, aplikasi bilangan kompleks dalam fisika	CP2 CP7 CP10	Mahasiswa mampu : a. menyelesaikan permasalahan fisika yang diselesaikan dengan bilangan kompleks b. aktifbekerjasama dalam suatu kelompok untuk menyelesaikan problem yang diberikan.	4
5%	Tes Non tes	Ceramah Diskusi, kuis	Aljabar linear, matriks, reduksi baris, determinan, Aturan Cramer, Vektor, operasi matrik, kombinasi linier, bergantung linier, bebas linier, matrik khusus	CP2 CP7	Mahasiswa mampu memahami pengertian tentang matriks dan penyelesaian persamaan linier menggunakan aljabar linier.	5
5%	Tes Non tes	Ceramah, Aktivitas Grup (mini whiteboard activity	Nilai Eigen dan vector Eigen, diagonalisasi matriks, Aplikasi Aljabar matriks (linier) dalam fisika.	CP2 CP7 CP10	Mahasiswa mampu : a. menyelesaikan permasalahan fisika yang diselesaikan dengan bilangan kompleks	6

					b. aktif bekerjasama dalam suatu kelompok untuk menyelesaikan problem yang diberikan.	
4%	Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Diferensiasi parsial,diferensiasi total, aturan rantai, diferensiasi implicit, aplikasi diferensiasi parsial dalam fisika	CP2 CP7 CP10	Mahasiswa mampu memahami pengertian tentang diferensiasi parsial serta mampu menggunakannya untuk memecahkan berbagai problem fisika	7
Total 30%	Tes tulis				UTS	8
5%	Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Problem maksimum dan minimum, pengali Lagrange. Problem titik batas, perubahan variable, diferensiasi dari integral, aturan Leibniz, aplikasi pada berbagai problem fisika	CP2 CP7 CP10	Mahasiswa mampu memahami pengertian tentang diferensiasi parsial serta mampu menggunakannya untuk memecahkan berbagai problem fisika	9
5%	Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup (mini whiteboard activity	Integral lipat, lipat dua dan tiga, aplikasi integral lipat, Perubahan variable, Jacobian, integral permukaan, aplikasi pada problem fisika	CP2 CP7 CP10	Mahasiswa mampu memahami pengertian tentang integral lipat serta mampu menggunakannya untuk memecahkan berbagai problem fisika	10

5%	Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Analisis vector, perkalian vector, triple products, diferensiasi vector, medan. Turunan berarah (gradient)	CP2 CP7 CP10	Mahasiswa mampu memahami pengertian vector serta operasinya	11
5%	Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup (mini whiteboard activity)	Operator vector, Laplacian, integral garis, Teorema Green pada bidang, Divergensi dan teorema divergensi, Curl dan Teorema Stokes, aplikasi dari Analisa vector pada aneka problem fisika	CP2 CP7 CP10	Mahasiswa mampu melakukan perhitungan yang terkait operasi vector, terutama yang terkait dengan fenomena fisika di alam	12
5%	Tes Non tes	Diskusi, kuis, aktivitas grup	Analisis vector, aplikasi pada berbagai problem fisika (medan elektromagnetik dan gravitasi)		Mahasiswa mampu menyelesaikan problem fisika yang men.ggunakan analisa vektor	13
5%	Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Deret Fourier dan Transformasi Fourier, aplikasi deret Fourier, Nilai rata-rata suatu fungsi, koefisien Fourier, kondisi Dirichlet	CP2 CP7 CP10	Mahasiswa mampu memahami pengertian Deret Fourier serta aplikasinya dalam berbagai macam problem fisika.	14

5%	Tes Non tes	Ceramah Diskusi, kuis, aktivitas grup	Bentuk kompleks dari deret Fourier, fungsi ganjil genap, teorema Parseval, Transformasi Fourier, aplikasi dalam fisika	CP2 CP7 CP10	Mahasiswa mampu memahami pengertian Deret Fourier serta aplikasinya dalam berbagai macam problem fisika.	15
	Tes tulis				UAS	16

Matriks Implementasi LO pada kegiatan Pembelajaran

	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9	CP10
Kuis harian							V	V		
PR 1			$\sqrt{}$		V		V			
PR 2			$\sqrt{}$		V		V			
PR 3			$\sqrt{}$		V		V			
PR 4			$\sqrt{}$		V		V			
PR 5			$\sqrt{}$		V		V			
PR 6			$\sqrt{}$		$\sqrt{}$		V			
PR 7			$\sqrt{}$		V		V			
Aktivitas Grup	V	$\sqrt{}$	$\sqrt{}$	V	V	V	V	V	V	V
UTS			$\sqrt{}$			V	V			
UAS			$\sqrt{}$			V	V			

Namamk: GELOMBANG Kodemk/sks: FIS216/3(2-3)

Peserta: mhs program S1, mayor fisika, sm 4.

Deskripsi Mata Kuliah

Mata kuliah Gelombang termasuk mata kuliah dasar fisika dengan prasyarat FIS101 (Fisika TPB). Materi yang diberikan meliputi gerak osilasi, gerak gelombang, interferensi, energy, reflektansi, transmitansi, difraksi. Untuk dapat memahami materi tersebut mahasiswa harus sudah menguasai dasar-dasar matematika dan mekanika.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat menjelaskan dan menyelesaikan persoalan gelombang mekanik dan cahaya serta dapat menganalisis peristiwa alam yang berkaitan dengan gelombang.

Minggu	Dukungan Tarkadan CD*	Kemampuan Akhir Yang	Bahan Kajian	Bentuk	Indikator	Penilaian	Bobot
Ke 1 & 2	CP3 CP7 CP 10	Diharapkan Mahasiswa dapat : a. menyelesaikan penjumlahan fungsi sinus dan cosinus b. menjelaskan persamaan diferensial & solusinya c. menurunkan persamaan gerak harmonik (sederhana, teredam, terpaksa).	Trigonometri, kalkulus (diferensial, integral), matriks, determinan, deret Taylor, gerak harmonik.	Pembelajaran SCL, diskusi	 a. Dapat melakukan penjumlahan fungsi sinus dan cosinus. b. Dapat menentukan moda-moda gerak harmonik. c. Dapat menurunkan persamaan gerak harmonik (sederhana, teredam, terpaksa). 	Non Tes (tugas & aktivitas harian) Tes (QUIZ) Tes (UTS)	Nilai (%) 5 0
		Mahasiswa dapat :			Dapat menurunkan persamaan diferensial		

3 & 4	CP2 CP3 CP7 CP 10	 a. menurunkan persamaan gelombangtali. b. Menentukan dan memahami: simpangan, amplitudo, kecepatan, frekuensi, perioda, panjang gelombang. 	Gelombang mekanik pada tali	SCL, diskusi	pada gelombang tali dan mencari solusinya. Dapat menentukan dan menjelaskan : simpangan, amplitudo, kecepatan, frekuensi, perioda, panjang gelombang.	Non Tes Tes (UTS)	10
5	CP3 CP7 CP 10	Mahasiswa dapat : Menentukan titik-titik simpul dan perut gelombang	Standing Waves	SCL, diskusi	Dapat menentukan interferensi konstrutif dan destruktif	Non Tes Tes (UTS)	5 10
6	CP2 CP3 CP7 CP 10	Mahasiswa dapat : a. menurunkan persamaan gerak gelombang bunyi di udara. b. Menentukan kecepatan gelombang bunyi di udara	Gelombang bunyi	SCL, diskusi	Dapat menurunkan persamaan gelombang bunyi, menentkan kecepatan, amplitudo, frekuensi, perioda, panjang gelombang.	Non Tes Tes (UTS)	5 10
7	CP 3 CP 10	Review materi minggu ke 1 – 6		SCL, diskusi			
8	CP3 CP7	UTS				Tes Tulis	
9	CP2 CP3 CP7 CP 10	Mahasiswa dapat : menurunkan persamaan Doppler menggunakan	Effek Doppler	SCL, diskusi	Dapat menurunkan menurunkan persamaan Doppler menggunakan	Non Tes	5

		mekanika (GLB)			mekanika (GLB)		
10	CP2 CP3 CP7 CP 10	Mahasiswa dapat : Menentukan reflektansi dan transmitansi gelombang	Enenrgi, reflektansi, transmitansi	SCL, diskusi	Dapat menentukan koeifisen pantulan dan transmisi, energi gelombang pantul, energi gelombang transmisi.	Tes (UTS)	5
11 & 12	CP2 CP3 CP7 CP 10	Mahasiswa dapat : a. menjelaskan interferensi gelombang mekanik. b. Menjelaskan interferensi cahaya	Diagram fasor dan Interferensi	SCL, diskusi	Dapat menjumlahkan2 atau lebih gelombang yang berbeda fasa, berbeda amplitudo. Dapat menggambarkan pola-pola interferensi cahay pada layar.	Non Tes Tes (UTS)	5 10
13	CP2 CP3 CP7 CP 10	Mahasiswa dapat : c. menjelaskan deret Fourier d. menjelaskan transformasiFourier	Transformasi Fourier	SCL, diskusi	Dapat menentukan konstanta-konstanta pada deret Fourier,	Non Tes Tes (UTS)	5
14	CP2 CP3 CP7 CP 10	Mahasiswa dapat : menjelaskan difraksi gelombang cahaya.	Difraksi	SCL, diskusi	Dapat menentukan persamaan interfernsi celah banyak. Dapat menggambarkan pola difraksi cahaya pada layar (untuk celah	Non Tes Tes (UTS)	5 10

				tunggal dan celah banyak)		
15	CP 3 CP 10	Review materi minggu ke 9 – 14	SCL, diskusi			
16	CP 3 CP 10	UAS			Tes Tulis	

*CP : capaian pembelajaran (learning outcome)

Nama mk : Termodinamika Kode mk/sks : FIS217/3(2-3)

Peserta : Mahasiswa Departemen Fisika

Deskripsi Mata Kuliah

Diberikan pada semester 3 tanpa mata kuliah prasyarat. Mata kuliah ini mempelajari mengenai temperatur yaitu pandangan makroskopis, pandangan mikroskopis, ruang lingkup termodinamika, kesetimbangan termal dan konsep temperatur; sistem termodinamika sederhana yaitu, persamaan keadaan, perubahan diferensial keadaan, teorema matematis, kuantitas intensif dan ekstensi; kerja yaitu, proses kuasi-statik, kerja dalam proses kuasi statik dan kerja dalam sistem sederhana; kalor dan hukum pertama termodinamika; persamaan sistem hidrostatik yaitu, penghantar kalor konduktivitas termal, hukum Stefan-Boltzman; gas ideal yaitu, energi internal gas,persamaan gas ideal, diagram TS, siklus carnot, penerapan prinsip entropi; entalpi dan energi yaitu, entalpi, fungsi Helmholtz dan Gibbs, persamaan Maxwell, persamaan T dS, persamaan energi; perubahan fase yaitu, persamaan Clapeyron, peleburan dan penguapan, sublimasi; persamaan Kirchoff; fungsi gamma dalam pemecahan termodinamika, fungsi gamma; penerapan fungsi gamma dalam distribusi Maxwell yaitu, penerapan fungsi gamma; mekanika statistik, statistik Bose-Einstein, statistik Fermi-Dirac dan statistik Maxwell-Boltzmann.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat menjelaskan mengenai temperatur yaitu pandangan makroskopis, pandangan mikroskopis, ruang lingkup termodinamika, kesetimbangan termal dan konsep temperatur; sistem termodinamika sederhana yaitu, persamaan keadaan, perubahan diferensial keadaan, teorema matematis, kuantitas intensif dan ekstensi; kerja yaitu, proses kuasistatik, kerja dalam proses kuasi statik dan kerja dalam sistem sederhana; kalor dan hukum pertama termodinamika; persamaan sistem hidrostatik yaitu, penghantar kalor konduktivitas termal, hukum Stefan-Boltzman; gas ideal yaitu, energi internal gas,persamaan gas ideal, diagram TS, siklus carnot, penerapan prinsip entropi; entalpi dan energi yaitu, entalpi, fungsi Helmholtz dan Gibbs, persamaan Maxwell, persamaan T dS, persamaan energi; perubahan fase yaitu, persamaan Clapeyron, peleburan dan penguapan, sublimasi; persamaan Kirchoff; fungsi gamma dalam pemecahan termodinamika, fungsi gamma; penerapan fungsi gamma dalam distribusi Maxwell yaitu, penerapan fungsi gamma; mekanika statistik, statistik Bose-Einstein, statistik Fermi-Dirac dan statistik Maxwell-Boltzmann.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat : a. Menjelaskan materi perkuliahan Termodinamika b. Menjelaskan konsep dasar temperaturdan pandangan secara makroskopis dan mikroskopis c. Menjelaskan ruang lingkup termodinamika d. Menjelaskan tentang kesetimbangan termal dan konsep temperatur	CP1, CP2, CP6	Kontrak perkuliahan Konsep dasar temperatur dan ruang lingkup termodinamika	Ceramah, Diskusi	Dapat memahami konsep dasar temperatur serta pandangan makroskopis dan mikroskopis, memahami ruang lingkup termodinamika	Pekerjaan Rumah	2
2	Mahasiswa dapat : a. Menjelaskan sistem termodinamika sederhana meliputi persamaan keadaan, perubahan diferensial keadaan serta teorema matematis b. Menjelaskan kuantitas intensif dan ekstensif	CP1, CP2, CP6, CP10	Persamaan keadaan, perubahan diferensial keadaan dan teorema matematis untuk sistem termodinamika sederhana Kuantitas intensif dan ekstensif dalam suatu sistem sederhana	Ceramah, diskusi	Dapat menjelaskan persamaan keadaan sistem termodinamika sederhana serta menjelaskan perubahan diferensial keadaan dan teorema matematis Dapat menjelaskan definisi kuantitas intensif dan ekstensif dalam sistem sederhana	Pekerjaan Rumah	2
Minggu	Kemampuan Akhir Yang	Dukungan	Bahan Kajian	Bentuk	Indikator	Penilaian	Bobot Nilai
Ke	Diharapkan	thd CP		Pembelajaran			(%)

3	Mahasiswa dapat : Menjelaskan konsep kerjadalamproseskuasi- statik dansistem sederhana	CP1, CP2, CP6, CP9	Kerjadan proses kuasi- statik serta konsep kerjadalam kuasi-statik dan sistem sederhana	Ceramah, Diskusi	Dapat menjelaskan kerja dalam proses kuasi-statik dan sistem sederhana	Pekerjaan Rumah	2
4	Mahasiswa dapat: Menjelaskan definisi kalor dan hukum pertama termodinamika	CP1, CP4, CP6, CP10	Kalor, Hukum I Termodinamika dan bentuk diferensialnya, kapasitas kalor dan pengukurannya, persamaan untuk sistem hidrostatik, pengahantaran kalor meliputi konduktivitas termal, konveksi kalor dan Hukum Stefan Boltzman	Ceramah, Diskusi	Dapat menjelaskan definisi kalor dan Hukum I Termodinamika serta bentuk diferensialnya. Dapat menjelaskan jenis-jenis penghantaran kalor	Pekerjaan Rumah	2
5	Mahasiswa dapat: Menjelaskan Persamaan Gas IDeal	CP1, CP2, CP6, CP10	Gas ideal meliputi energi internal gas, persamaan gas ideal, proses adiabatik kuasi statik, metode ruchhardt untuk mengukur γ	Ceramah, Diskusi	Dapat menjelaskan energi internal gas, persamaan gas ideal, proses adiabatik kuasistatik dan metode ruchhardt untuk mengukur γ	Pekerjaan Rumah	2

Minggu		Dukungan	Bahan Kajian	Bentuk	Indikator	Penilaian	Bobot Nilai
Ke	Diharapkan	thd CP		Pembelajaran	5		(%)
6	Mahasiswa dapat: Menjelaskan definisi dan konsep entropi	CP1, CP2, CP6, CP10	Konsep entropi dan entropi gas ideal beserta diagram TS dan perubahan entropi semesta (dalam proses reversible dan irreversible)	Ceramah, Diskusi	Dapat menjelaskan konsep entropi dan entropi gas ideal serta dapat menjelaskan diagram TS dan perubahan entropi semesta (dalam proses reversible dan irreversible)	Pekerjaan Rumah	2
7	Mahasiswa dapat: Menjelaskan mesin carnot dan refrigerator	CP1, CP2, CP4, CP6	Konsep mesin Carnot dan refrigerator	Ceramah, Diskusi	Dapat menjelaskan mesin Carnot dan refrigerator	Pekerjaan Rumah	3
8	UTS					Tes Tulis	35
9	Mahasiswa dapat: Menjelaskan definisi entalpi	CP1, CP2, CP6, CP7	Entalpi, Fungsi Helmholtz, Fungsi Gibbs, Hubungan Maxwell, Persamaan T dS,	Ceramah, Diskusi	Dapat menjelaskan Entalpi, Fungsi Helmholtz, Fungsi Gibbs, Hubungan Maxwell, Persamaan T dS,	Pekerjaan Rumah	2
10	Mahasiswa dapat: Menjelaskan definisi zat murni	CP1, CP2, CP6, CP10	Persamaan Energi dan Persamaan kapasitas kalor	Ceramah, Diskusi	Dapat menjelaskan Persamaan Energi dan Persamaan kapasitas kalor	Pekerjaan Rumah	2

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
11	Mahasiswa dapat: Menjelaskan perubahan fase dalam termodinamika	CP1, CP2, CP4, CP6	Peleburan, Penguapan (Persamaan Trouton), Sublimasi (Persamaan Kirchoff)	Ceramah, Diskusi	Dapat menjelaskan perubahan fase terkait peleburan, penguapan (Persamaan Trouton) dan sublimasi (Persamaan Kirchoff)	Pekerjaan Rumah	2
12	Mahasiswa dapat: Menjelaskan fungsi Gamma dalam Termodinamika	CP1, CP2, CP6, CP7	Fungsi Gamma (fungsi faktorial)	Ceramah, Diskusi	Dapat menjelaskan Fungsi gamma (fungsi faktorial)	Pekerjaan Rumah	2
13	Mahasiswa dapat: Menjelaskan penerapan fungsi gamma dalam distribusi Maxwell (Teori Kinetik Gas)	CP2, CP6, CP7, CP10	Penerapan fungsi gamma dalam distribusi Maxwell (Teori Kinetik Gas)	Ceramah, Diskusi	Dapat menjelaskan penerapan fungsi gamma dalam distribusi Maxwell (Teori Kinetik Gas)	Pekerjaan Rumah	2
14	Mahasiswa dapat: Menjelaskan prinsip pokok mekanika statistik dan distribusi Statistik Bose-Einstein	CP3, CP8	Prinsip pokok mekanika statistik, perlakuan statistik dari gas ideal, peluang termodinamika suatu keadaan makro tertentu, Statistik Bose- Einstein	Ceramah, Diskusi	Dapat menjelaskan prinsip pokok mekanika statistik, perlakuan statistik dari gas ideal, peluang termodinamika suatu keadaan makro tertentu, Statistik Bose-Einstein	Pekerjaan Rumah	2

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
15	Mahasiswa dapat: Menjelaskan distribusi Statistik Fermi-Dirac dan Maxwell-Boltzmann	CP3, CP8, CP10	Statistik Fermi-Dirac dan Statistik Maxwell- Boltzmann	Ceramah, Diskusi	Dapat menjelaskan Statistik Fermi- Dirac dan Statistik Maxwell- Boltzmann	Pekerjaan Rumah	3
16	UAS					Tes Tulis	35

Namamk : Biomaterial Kodemk/sks : FIS435/2(2-0)

Peserta :

Deskripsi Mata Kuliah

Diberikan pada semester 3 tanpa mata kuliah prasyarat. Mata kuliah ini mencakup biokompatibilitas, drug delivery, biosensor, biomaterial logam, biomaterial polimer dna biomaterial keramik.

Standar Kompetensi

Setelah menyelesaikan perkuliahan ini dapat menjelaskan definisi biomaterial, jenis-jenis dan karakteristik biomaterial, respon tubuh terhadap biomaterial, dan trend riset biomaterial.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat : Menjelaskan materi perkuliahan Biomaterial	CP4 CP8	 Kontrak perkuliahan Perkembangan riset biomaterial 	Diskusi, S	Dapat memahami pembelajaran materi dan manfaat dari perkuliahan biomaterial	Non tes	0
2	Mahasiswa dapat menjelaskan : a. definisi biomaterial b. Menjelaskan sejarah perkembangan biomaterial	CP4 CP5 CP9	 Definisi biomaterial Sejarah perkembangan biomaterial Contoh aplikasi 	Ceramah, diskusi,	Dapat mendefisikan biomaterial, sejarah perkembangannya, dan contoh aplikasi	Non tes	0

			biomaterial		biomaterial terkini		
3	Mahasiswa dapat menjelaskan: Prinsip biokompatibilitas Prinsip in vitro dan in vivo	CP4 CP5 CP9	Evolusi konsep biokompatibilitas 1. Faktor penentu biokompatibilitas 2. Kasus biokompatibilitas pada aplikasi klinis 3. Uji in vitro dan in vivo biomaterial	Ceramah, diskusi,	Dapat menjelaskan : 1. latar belakang terjadinya evolusi definisi biokompati bilitas 2. Faktor- faktor penentu biokompati bilitas biokompati bilitas	Tes	5
4	Mahasiswa dapat menjelaskan reaksi tubuh terhadap biomaterial	CP4 CP5 CP9	 Inflamasidan penyembuhan luka Respon immune terhadap benda asing Tumorigenesis dan biomaterial 	Ceramah, diskusi,	Dapat menyebutkan beberapa reaksi tubuh terhadap biomaterial	Tes	5
5	Mahasiswa dapat menjelaskan mekanisme drug delivery	CP4 CP5 CP9	 Difusi terkontrol Kontrol kimia Sistem teregulasi 	Ceramah, diskusi,	Dapat menjelaskan mekanisme drug delivery	Tes	10
6	Mahasiswa dapat menjelaskan: a. Jenis-jenis sensor biomedis	CP4 CP5 CP9	Sensor biomedis kimia dan fisika	Ceramah, diskusi	Dapat menjelaskan: 1. Jenis-jenis sensor	Tes	10

	b. Prinsip kerja sensor				biomedis 2. Prinsip kerja sensor biomedis		
7	Mahasiswa dapat menjelaskan: definisi alloy biometal sifat karakteristik alloy biometal	CP4 CP5 CP9	1. Definisi alloy biometal 2. Jenis-jenis alloy biometal yang diaplikasikan sebagai material implan (Tibased, stainless steel, Co-Cr-Mo)	Ceramah, diskusi	Dapat menjelaskan: 1. definisi alloy biometal 2. sifat karakteristik alloy biometal	Tes	10
8	UTS					Tes tulis	
9	Mahasiswa dapat: Menjelaskan polimer dan aplikasi biodegradable polymer dalam bidang medis	CP4 CP5 CP9	1. Definisi polimer, jenis dan karakteristik polimer serta sumber-sumber yang dapat digunakan untuk sintesis polimer. 2. Aplikasi biodegradable polymer dalam bidang medis	Ceramah, Diskusi	Dapat menjelaskan: 1. Definisi polimer serta jenis dan karakteristik nya. 2. Aplikasi biodegradab le polymer dalam bidang medis	Tes	10
	Mahasiswa dapat:	CP 4	1. Definisi keramik,	Ceramah,	Dapat	Tes	

10	Menjelaskan keramik dan sifat-sifatnya serta interaksinya dengan jaringan tubuh	CP5 CP9	jenis dan sifat karakteristik keramik sebagai material biomedis. 2. Interaksi biokeramik dengan jaringan tubuh	Diskusi	menjelaskan: 1. Definisi keramik, jenis dan sifat karakteristik nya. 2. Interaksi biokeramik dengan jaringan tubuh		10
11	Mahasiswa dapat: Menjelaskan proses sintesis dan sifat material biokeramik (Kalsium fosfat)	CP4 CP5 CP9	1. Jenis-jenis kalsium fosfat dan sifat-sifat karakteristiknya. 2. Sintesis kalsium fosfat dan aplikasinya dalam bidang ortopedik	Ceramah, Diskusi	Dapat menjelaskan: 1. Jenis-jenis kalsium fosfat dan sifat-sifat karakteristik nya. 2. Sintesis kalsium fosfat serta aplikasinya dalam bidang ortopedik	Tes	10
12	Mahasiswa dapat: Menjelaskan sintesis lapisan biokompatibel pada material implan	CP4 CP5 CP9	Proses pelapisan hidroksiapatit pada logam seperti titanium atau stainless steel serta sifat-sifat	Ceramah, Diskusi	Dapat menjelaskan proses pelapisan hidroksiapatit pada logam serta sifat- sifat hidroksiapatit	Tes	10

			hidroksiapatit sebagai		sebagai bahan		
			bahan pelapis		pelapis		
13	Mahasiswa dapat: Menjelaskan mikrostruktur dan sifat- sifat gelas-keramik	CP4 CP5 CP9	1. Fabrikasi gelaskeramik dengan perlakuan suhu tinggi dan sifatsifat karakteristiknya. 2. Mikrostruktur gelaskeramik sebagai material restorasi gigi	Ceramah, Diskusi	Dapat menjelaskan proses fabrikasi gelas-keramik dengan perlakuan suhu tinggi, sifatsifat karakteristik dan mikrostruktur gelas-keramik sebagai material restorasi gigi	Tes	10
14	Mahasiswa dapat: Menjelaskan konsep desain pengembangan material baru sebagai bioimplan	CP 4 CP 5 CP 9	1. Sifat karakteristik yang dibutuhkan dalam desain material baru dan proses pembuatannya. 2. Konsep desain kombinasi antara sifat fisika dan biologi suatu material baru	Ceramah, Diskusi	Dapat menjelaskan sifat karakteristik yang dibutuhkan dalam desain material baru serta proses pembuatannya. Dapat menjelaskan konsep desain kombinasi berdasarkan sifat fisika dan biologi material.	Tes	10
15	Mahasiswa dapat: Menjelaskan sejauh mana penelitian kalsium fosfat yang telah dilakukan di Departemen Fisika IPB	CP 4 CP 5 CP 9	State of the art penelitian kalsium fosfat Departemen Fisika IPB	Ceramah, Diskusi	Dapat menjelaskan penelitian yang sudah dilakukan di Departemen Fisika IPB	Non tes	10

16	UAS					Tes tulis	
----	-----	--	--	--	--	-----------	--

Nama Mata Kuliah : Elektronika Analog

Kode Mata Kuliah/SKS : FIS253 / 3(2-3)

Peserta : Mahasiswa Program S1, Mayor Fisika, Semester 3

Deskripsi Mata Kuliah

Diberikan di semester 3 dengan materi: Teori rangkaian listrik,. Rangkaian dioda semikonduktor, transistor sambungan bipolar (BJT), penguat transistor sambungan bipolar, Transistor FET, Penguat daya kelas B, Rangkaian berbasis IC Op-Amp dan Osilator.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat melakukan proses pengolahan sinyal listrik analog yang dibangkitkan dari besaran fisis baik dengan menggunakan Transistor maupun IC Op-Amp seperti penguatan dan penyaringan sinyal.

Minggu	Kemampuan Akhir	Bahan Kajian	Bentuk	Indikator	Penilaian	Bobot
Ke	Yang Diharapkan		Pembelajaran			Nilai (%)
1 & 2	Mahasiswa dapat: 1. menyelesaikan beberapa persoalan rangkaian listrik de-ngan menggunakan Hukum Kirchoff, Teorema Thevenin, Norton, Millman dan Konversi Jaringan Delta-T 2. menyelesaikan persoalan rangkaian transien RC dan rangkaian RC untuk sinyal AC	Hukum Kirchoff, Teorema Thevenin, Teorema Norton, Teorema Superposisi, Teorema Millman, Konversi Jaringan Delta-T, Rangkaian AC dan Kapasitor	SCL, diskusi	Dapat menghitung arus atau tegangan pada suatu cabang dari sebuah rangkaian dengan menggunakan Hukum Kirchoff, Teorema Thevenin , Norton, Millman dan Konversi Jaringan Delta-T, menghitung periode, frekuensi, nilai rms dan ratarata dari sebuah sinyal AC, menghitung konstanta waktu	Tes (UTS), non tes	30 %

				pada rangkaian trasien RC, reaktansi kapasitif, impedansi, melakukan analisis pembentukan sinyal pada proses filtering dengan rangkaian RC		
3	Mahasiswa dapat 1. menjelaskan mekanisme pembentukan sinyal dari berbagai macam rangkaian dioda 2. menggunakan dioda sebagai komponen rangkaian pengolah sinyal	Teori Semikonduk-tor, Dioda semikon- duktor, Rangkaian Penyearah Dioda Semikonduk-tor, Dioda Zener, Rangkaian Clipper, Rangkaian Clamper	SCL, diskusi	Dapat menentukan bentuk sinyal keluaran dari sebuah rangkaian dioda, jika sebuah sinyal masukan diinjeksikan ke dalam rangkaian.	Tes (UTS), non tes	15 %
4 & 5	Mahasiswa dapat mengkonstruksi rangkaian catu daya sesuai dengan kebutuhan tegangan keluaran yang diinginkan	Blok-blok rangkaian pembentuk catu daya, Trafo, Rangkaian Penyearah, Rangkaian Perata Tegangan, Rangkaian Regulator	SCL, diskusi	Dapat menghitung nilai tegangan keluaran dari sebua trafo, tegangan keluaran puncak dari sebuah penyearah, nilai kapasitor dalam sebuah rangkaian perata tegangan, nilai komponen resistor dan zener dalam rangkaian regulatorzener dan IC	Tes (UTS), non tes	25 %
6 & 7	Mahasiswa dapat :	Sumber	SCL, diskusi	Dapat menentukan	Tes (UTS),	30 %

	1. menggunakan rangkaian transistor sebagai saklar dan penguat 2. menganalisis titik kerja transistor dan menentukan daya yang didisipasi 1. menggunakan transistor sebagai saklar dan penguat 2. menganalisis titik kerja transistor dan menentukan daya yang didisipasi	Tegangan/Arus Dependent dan Independent, Prinsip Kerja Transistor Sambungan Bipolar (BJT), Model-model Rangkaian Setara Transistor BJT, Konfigurasi Rangkaian Transistor, Pengantar Analisis dan Disain Penguat Transistor Common-Emittor dan Emittor- Follower		kondisi on atau off dari sebuah transistor yang difungsikan sebagai saklar saat diberi masukan, dapat menghitung nilai- nilai komponen dalam rangkaian setara transistor, dapat menghitung nilai titik kerja dan kondisi sinyal keluaran pada rangkaian penguat transistor common- emittor sederhana dengan atau tanpa coupling AC, dapat menghitung nilai resistor-resistor masukan jika diinginkan nilait titik kerja dan kondisi sinyal	non tes	
				kondisi sinyal keluaran tertentu		
8	UTS				Tes tulis	
9 & 10	Mahasiswa dapat merancang rangkaian penguat transistor common-emittor dan emitter-follower berdasarkan nilai penguatan tegangan dan arus yang diinginkan	Formulasi Faktor Penguatan Tegangan dan Arus Rangkaian Dua-port, Parameter- parameter Hybrid, Paramenter- parameter Rangkaian	SCL, diskusi	Dapat menghitung nilai penguatan tegangan, penguatan arus, impedansi masukan, impedansi keluaran dari rangkaian penguat transistor common-emittor dan emitter-	Tes (UAS), non tes	30 %

		Penguat Common-emittor, Paramenter- parameter Rangkaian Penguat Emitter- follower, Penguat Tergandeng, Penguat Bertingkat		follower, dapat merancang rangkaian penguat transistor common- emittor dan emitter-follower jika diinginkan nilai penguatan tegangan dan arus tertentu		
11	Mahasiswa dapat menganalisa dan mendisain rangkaian transistor efek medan sederhana	Jenis-jenis Transistor Efek Medan (FET), Konstruksi dan operasi JFET, Membias JFET, Rangkaian setara JFET, Konstruksi dan operasi MOSFET	SCL, diskusi	Dapat menghitung nilai penguatan tegangan, penguatan arus, impedansi masukan, impedansi keluaran dari rangkaian penguat JFET dan MOSFET, dapat merancang rangkaian penguat JFET dan MOSFET jika diinginkan nilai penguatan tegangan dan arus tertentu	Tes (UAS), non tes	15 %
12 & 13	Mahasiswa dapat menggunakan rangkaian Op-Amp sebagai rangkaian pengolah sinyal	Rangkaian Penguat Differensial, Sifatsifat Ideal Op- Amp, Rangkaian Penguat Inverting dan Non- Inverting, Rangkaian Pengubah Tegangan ke Arus, Rangkaian Pengubah Arus ke Tegangan, Rangkaian	SCL, diskusi	Dapat menghitung nilai CMMR dari sebuah rangkaian penguat differensial, dapat menghitung nilai tegangan keluaran dari sebuah rangkaian penguat inverting atau non- inverting, dapat menentukan frekuensi cut-off, dapat menentukan frekuensi minimum	Tes (UAS), non tes	30 %

		Penguat Arus, Rangkaian Integrator, Rangkaian Differensiator		integrator dan frekuensi maksimum differensiator, dapat merancang rangkaian pengolah sinyal.		
14 & 15	Mahasiswa dapat menganalisa dan merancang beberapa jenis rangkaian osilator	Umpan Balik Positif, Syarat Barkhausen, Osilator Jembatan Wien, Osilator T Kembar	SCL, diskusi	Dapat menghitung frekuensi kerja, faktor penguatan dan faktor umpan balik dari beberapa jenis osilator, dapat merancang beberapa jenis osilator	Tes (UAS), non tes	25 %
16	U A S				Tes tulis	

Nama mk : Elektronika Digital Kode mk/sks : FIS254 /3(2-3)

Peserta: Mhs S1 Mayor Fisika smt4

Deskripsi Mata Kuliah

Matakuliah ini membahas konsep dasar sistem digital seperti sistem bilangan biner, aljabar boole, peta karnaugh dan penggunaan rangkain elektronika digital berbasis ICTTL dan CMOS untuk pembentukan sistem kombinasional dan sekuensial seperti decoderencoder, multiplexer-demultiplexer, rangkaian register, counter dan memori serta pengenalan teknologi VLSI seperti PLD.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat membangun sistem elektronika digital untuk menyelesaikan permasalahan fisis sederhana serta memberi landasan untuk dapat memahami sistem kerja komputer.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat : a. membedakan besaran analog dandigital b. menjelaskan perkembangan teknologi digital		Pendahuluan Teknologi Digital	Ceramah, Diskusi	dapat membedakan besaran analog dan digital dan dapat menerangkan perkembangan dunia digital	Non tes	
2	Mahasiswa dapat : a. memahami sistem bilangan dan konversinya		Sistem Bilangan dan Pengkodean	Ceramah, diskusi,	dapat melakukan konversi bilangan biner, oktal, heksa	Tes	5%

	b. mengerti sistem pengkodean alphanumerik			dan desimal serta memahami kode BCD,ASCII dan paritas		
3	Mahasiswa dapat : a. memahami Aljabar Boolean b. menggunakan Gerbang Logika untuk menyatakan persamaan Boolean	Aljabar Boolean dan Gerbang Logika	Ceramah, diskusi	dapat mendiskripsikan rangkaian logika berdasarkan aljabar boole, mampu membuat tabel kebenaran dan memahami fungsi gerbang OR, AND, NOT dan kombinasinya.	Tes	10%
4	Mahasiswa dapat: a. memahami karakteristik IC TTL dan CMOS b. menggunakan IC TTL atau CMOS untuk membentuk rangkaian digital.	Gerbang Logika TTL dan CMOS	ceramah, diskusi	dapat mengetahui karaktristik IC TTL danCMOS dan menggunakannya dalam pembentukan rangkaian digital	Tes	10%
5&6	Mahasiswa dapat : a. melakukan analisa dan sintesa rangkaian kombinasional b. melakukan penyederhanaan dengan peta Karnaugh	Rangkaian Kombinasional	ceramah, diskusi	dapat melakukan proses analisa dan sintesa rangkaian kombinasional dan melakukan minimalisasi rangkaian dengan	Tes	20%

				peta Karnaugh		
7	Mahasiswa dapat : a. melakukan proses aritmetika biner b. membangun rangkaian aritmetika biner	Aritmetika Digital	ceramah, diskusi	dapat melakukan operasi jumlah, kurang, kali dan bagi pada bilangan biner serta mampu membuat rangkaian Full Adder sebagai dasar rangkaian ALU.	Tes	10%
8	UTS				Tes tulis	
9	Mahasiswa dapat : a. Membangun rangkaian multiplex dan demultiplex b. membangun rangkaian dekoder dan enkoder	Rangkaian Logika MSI	ceramah, diskusi	dapat memahami rangkaian Multiplexer dan Dekoder serta penerapannya pada 7segmen, keypaddanlainnya	tes	10%
10	Mahasiswa dapat : a. memahami rangkaian sekuensial b. memahami cara kerja Flip-Flop	Rangkaian Sekuensial dan Flip-Flop	ceramah, diskusi	dapat membedakan rangkaian sekuensial dan kombinasional dan mengerti rangkaian RS FF. D FF, JK FF sebagai elemen	Tes	10%

				memori		
11	Mahasiswa dapat: a. memahami cara kerja rangkaian Register b. memahami cara kerja rangkaian Counter	Register dan Counter	ceramah, diskusi	dapat menjelaskan macam-macam regiater PIPO, SIPO,PISO,SISO dan menjelaskan cara kerja counter dan modulonya.	Tes	10%
12	Mahasiswa dapat : a.menjelaskan teknologi memori dan jenisnya b.menjelaskan ROMdan RAM	Memori	ceramah, diskusi	dapat menjelaskan cara kerja memori dan membedakannya antara RAM dan ROM	Tes	5%
13	Mahasiswa dapat : Membangun aplikasi rangkaiandigitaldengan PLD	PLD	ceramah, diskusi	dapat memahami arsitektur PLD dan dapat memprogram PLD	Tes	5%
14	Mahasiswa dapat: memahami cara kerja ADC dan DAC	ADC/DAC	ceramah, diskusi	dapat menyebutkan macam-macam ADC dan cara kerjanya serta memahami cara kerja DAC	Tes	5%
15	Mahasiswa dapat : menjelaskan cara kerja mikrokomputer	Pengantar Mikrokomputer	ceramah, diskusi	dapat menjelaskan mikroprosesor sebagai CPU sistem	non tes	

			mikrokomputer		
16	UAS			Tes tulis	

Nama Mata Kuliah : Mekanika I Kode Mata Kuliah / SKS : FIS211 / 3(2-2)

Peserta : Mahasiswa Program S1, Mayor Fisika, Semester 3

Deskripsi Mata Kuliah

Diberikan pada semester 3 dengan prasyarat mata kuliah Fisika Dasar dan Kalkulus. Kuliah ini merupakan pendalaman dari materi kuliah Fisika Dasar dengan bantuan perangkat analisis Kalkulus.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini diharapkan mahasiswa dapat menyelesaikan persoalan gerak benda dengan penyebab (gaya/momen gaya) yang bergantung waktu dengan bantuan kalkulus vektor dan persamaan diferensial.

MINGGU KE	KEMAMPUAN YANG DIHARAPKAN	BAHAN KAJIAN	BENTUK PEMBELAJARAN	KRITERIA PENILAIAN (Indikator)	BOBOT NILAI
1	Mahasiswa dapat meyelesaikan persoalan: a. besaran, b. analisi dimensi dan c. sistem inersial	Pendahuluan Mekanika Newtonian	Ceramah, SCL, Responsi, Tes (UTS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	7%
2	Mahasiswa dapat menyelesaikan persoalan dalam hal: a. gaya konstan, b. gaya yang bergantung waktu, c. gaya bergantung kecepayan, dan d. gaya bergantung posisi	Dinamika Partikel Satu Dimensi	Ceramah, Diskusi, Responsi, Tes (UTS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	7%
3-5	Mahasiswa dapat menyelesaikan persoalan dalam hal: a. osilasi linear dan non linear, b. osilasi harmonic, c. osilasi teredam, d. osilasi paksa, e. quality factor, f. amplitude resonansi, g. energi resonansi,	Osilator Harmonik	Ceramah, Diskusi, Responsi, Tes (UTS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	15%

	h. laju disipasi energy				
6-7	Mahasiswa dapat menyelesaikan persoalan dalam hal a. osilasi harmonik, b. prinsip super posisi dan deret fourier, c. gerak harmonic dan fungsi green, d. sistem osilasi non linier	Sistem Osilasi	Ceramah, Diskusi, Responsi, Tes (UTS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%
		UTS			
8	Mahasiswa dapat menyelesaikan persoalan dalam hal: a. sifat vektor, b. perkalian scalar dan vektor, vektor satuan, c. vektor kalkulus, operator d. differensial vektor dan transformasi	Analisa Vektor, Operasi dan Transformasi Vektor	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	7%
9	Mahasiswa dapat menyelesaikan persoalan dalam hal a. gerak dalam dua dan tiga dimensi, b. sistem koordinat yang berbeda dan c. gerak peluru / proyektil	Gerak dalam Dua dan Tiga Dimensi	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%
10	Mahasiwa dapat menyelesaikan persoalan yang berkaitan dengan gaya terpusat	Gaya Terpusat	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	7%
11-12	Mahasiswa dapat menyelesaikan persoalan terkait a. Hukum umum gravitasi Newton b. gaya dan potensial gravitasi, c. Garis gaya dan permukaan ekipotensial d. hukum gauss, dan e. persamaan medan gravitasi	Gaya dan Potensial Gravitasi	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	15%
13-14	Mahasiswa dapat menyelesaikan persoalan dalam hal a. sistem koordinat yang bertranslasi b. sistem koordinat yang berotasi c. Deskripsi gerak dalam rotasi bumi d. Sirkulasi angin: sistem cuaca	Sistem Koordinat Nonlinear	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%

Nama Maka Kuliah : Mekanika II Kode Mata Kuliah / SKS : FIS212 / 3(2-2)

Peserta : Mahasiswa Program S1, Mayor Fisika, Semester 4

Deskripsi Mata Kuliah

Diberikan pada semester 4 dengan prasyarat mata kuliah Mekanika I dan Fisika Matematika I. Kuliah ini merupakan pendalaman dari materi kuliah Mekanika I dengan bantuan perangkat Fisika Matematika.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini diharapkan mahasiswa dapat menyelesaikan persoalan gerak benda (partikel, benda tegar, maupun fluida) dengan penyebab (gaya/momen gaya) yang bergantung waktu dengan pendekatan dinamika Lagrangian dan Hamiltonian.

MINGGU KE	KEMAMPUAN YANG DIHARAPKAN	BAHAN KAJIAN	BENTUK PEMBELAJARAN	KRITERIA PENILAIAN	BOBO T NILAI
1-2	Mahasiswa dapat menyelesaikan persoalan dalam hal a. sistem banyak partikel, b. kekelan momenbtum sudut dan momentum linear, c. kekalan energi, d. tumbukan elastik dan tumbukan non elastik	Sistem Banyak Partikel	Ceramah, SCL, Responsi, Tes (UTS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%
3-4	Mahasiswa dapat menyelesaikan persoalan dalam hal a. pusat massa benda tegar, b. gerak rotasi terhadap sumbu, c. menghitung momen inersia, d. pendulum sederhana dan fisis, e. elastisitas, f. keseimbangan benda tegar	Gerak Benda Tegar I	Ceramah, Diskusi, Responsi, Tes (UTS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%

5-7	I ggrange lintilk nartikel tilnggal dan I	Dinamika Lagrangian dan Hamiltonian	Ceramah, Diskusi, Responsi, Tes (UTS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	22%
		UTS			
8-9	Mahasiswa dapat menyelesaikan persoalan dalam hal a. momentum sudut dan energi kinetik, b. tensor inertia, c. teorema Steiner, d. Principal Axes, e. Persamaan gerak Euler untuk Benda Tegar	Gerak Benda Tegar II	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%
10-11	Mahasiswa dapat menyelesaikan persoalan dalam hal a. dua osilator terkopel dan koordinat normal, b. teori osilasi kecil, osilasi kecil dalam koordinat normal, c. perumusan tensor untuk osilasi kecil, d. vibrasi molekul, e. sistem terdisipasi dan osilator terpaksa	Teori Osilasi Kecil dan Osilator Terkople	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%
12-13	Mahasiswa dapat menyelesaikan persoalan dalam hal a. vibrasi kawat, b. persamaan gelombang, c. penjalaran gelombang, d. persamaan Lagrange untuk vibrasi kawat, e. sistem partikel: kawat terbebani, f. karakter gelombang pada media tidak kontinue	Vibrasi Kawat	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	14%

14	Mahasiswa dapat menyelesaikan persoalan dalam hal a. fluida statik, b. fluida dinamis, c. persamaan navier stokes, d. viskositas	Fluida	Ceramah, Diskusi, Responsi, Tes (UAS)	Kelengkapan analisa, Kebenaran Metode, Kelancaran Komunikasi	8%	
		UAS				

Nama mk : Biofisika Membran

Kode mk/sks : FIS234/3(2-3)

Peserta :

Deskripsi Mata Kuliah

Diberikan pada semester 6 tanpa mata kuliah prasyarat. Mata kuliah ini mencakup teori dan konsep tentang fenomena fisika pada sistem membran baik membran biologi maupun membran sintetik. Materi mata kuliah ini meliputi: sintesis dan karakterisasi membran, fenomena transport materi pada membran, filtrasi pada membran, dan aplikasi teknologi membran.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat menjelaskan berbagai fenomena dan aplikasi teori biofisika yang terjadi pada membran.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat : Menjelaskan materi perkuliahan Biofisika membran	CP4 CP5 CP9	 a. Kontrak perkuliahan b. General view tentang membran. c. Perkembangan riset biofisika membran terutama di Departemen Fisika 	Ceramah	Dapat memahami manfaat dari perkuliahan biofisika membran	Non tes	2
2	Mahasiswa dapat : a. Menjelaskan definisi membran	CP4 CP5 CP9	a. Definisi membranb. Sejarahperkembangan	Ceramah, diskusi,	a. Dapat mendefisikan membran.	Tes	2

	b. Menjelaskan sejarah perkembangan membran		membran c. Contoh aplikasi membran		b. Dapat menjelaskan sejarah perkembangan nyadan contoh aplikasi membran		
3	Mahasiswa dapat : Menjelaskan struktur dan fungsi dasar membran	CP4 CP5 CP9	Struktur membran dan fungsi dasar membran	Ceramah, Diskusi	Dapat menjelaskan struktur dan fungsi dasar membran	Tes	2
4	Mahasiswa dapat: Menjelaskan karakteristik membran	CP4 CP5 CP9	Karakteristik fisik dan karakteristik listrik dari membran	Ceramah, Diskusi	Dapat menjelaskan karakteristik membran baik fisik maupun listrik	Tes	2
5	Mahasiswa dapat: Menjelaskan lipid di dalam membran	CP4 CP5 CP9	Geometri dan struktur lipid dalam membran.	Ceramah, Diskusi	Dapat menjelaskan geometri dan struktur lipid dalam membran	Tes	2
6	Mahasiswa dapat: Menjelaskan protein membran	CP4 CP5 CP9	Kategori dasar protein membran dan fungsinya		pat menjelaskan kategori dasar protein membran dan fungsinya	Tes	2
7	Mahasiswa dapat: Menjelaskan membran biologi dan membran buatan	CP4 CP5 CP9	Sifat membran alami dan membran buatan. Sintesis dan fabrikasi membran buatan.	Ceramah, Diskusi	Dapat menjelaskan sifat membran alami dan buatan serta memahami sintesis dan fabrikasi membran buatan	Tes	3

8	UTS					Tes tulis	35
9	Mahasiswa dapat: Menjelaskan jenis membran buatan dan modul membran	CP4 CP5 CP9	Jenis-jenis membran berdasarkan teknologi fabrikasi. Jenis-jenis modul membran	Ceramah, Diskusi	Dapat menjelaskan jenis-jenis membran buatan dan modul membran	Tes	2
10	Mahasiswa dapat: Menjelaskan transport pada membran biologi	CP4 CP5 CP9	a. Major classes of proteins in transport. b. Prinsip utama dalam fenomena transport dan proses mekanisme transport	Ceramah, Diskusi	a. Dapat menjelaskan jenis protein dalam mekanisme transport. b. Dapat menjelaskan prinsip utama fenomena transport dan proses mekanisme transpor	Tes	2
11	Mahasiswa dapat: Menjelaskan fenomena mekanisme transport pada membran biologi	CP4 CP5 CP9	Osmosis, calcium pumps, exocytosis, endocytosis	Ceramah, Diskusi	Dapat menjelaskan fenomena mekanisme transport pada membran alami seperti osmosis, exocytosis dan endocytosis	Tes	2
12	Mahasiswa dapat: Menjelaskan fenomena	CP4 CP5	a. Fixed Charge Membrane.		a. Dapat menjelaskan	Tes	2

	transport ion pada membran biologi	CP9	C.	Sistem transport molekul, elektron dan ion. Ion channels and ion pumps serta jenis-jenis channels.		C.	fixed charge membrane dan jenis-jenisnya. Dapat menjelaskan sistem transport molekul, elektron dan ion. Dapat menjelaskan proses transport ion pumps dan ion channels serta jenis-jenis channels.		
13	Mahasiswa dapat: Menjelaskan transport membran (biochemistry of metabolism)	CP4 CP5 CP9	b.	and general classes of transporter. Classes of carrier proteins.	Ceramah, Diskusi		Dapat menjelaskan katalis dalam mekanisme transport dan jenis-jenis transporternya Dapat menjelaskan jenis-jenis carrier proteins dan mekanisme transport dalam membran alami.	Tes	2
14	Mahasiswa dapat: Menjelaskan filtrasi membran dan aplikasi	CP4 CP5 CP9	a	ltrasi membran dan olikasi teknologi nembran	Ceramah, Diskusi	fil	apat menjelaskan trasi membran an aplikasi	Tes	2

	teknologi membran				teknologimembran		
15	Mahasiswa dapat: Mereviewmateri-materi fenomena teori biofisika yang terjadipada membran	CP4 CP5 CP9	Review materi fenomena biofisika pada membran (mekanisme transport)	Ceramah, Diskusi	Dapat menjelaskan mekanisme transport pada membran dan pemodelannya	Tes	3
16	U A S					Tes tulis	35

Nama mk : Eksperimen Fisika Lanjut 1

Kode mk/sks : FIS 256 / 2(1-3)

Peserta : 70 orang

Deskripsi Mata Kuliah

Mata kuliah ini memuat beberapa topik percobaan fundamental yang membangun teori kuantum seperti percobaan tetes minyak Milikan, percobaan Thompson (rasio e/m), percobaan Frank-Hertz, radiasi benda hitam, percobaan spektrum atom Hidrogen, kecepatan cahaya, karakteristik laser, dan cacah radioaktif.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat mendemonstrasikan berbagai percobaan yang mendasari pembentukan formulasi fisika kuantum dan fisika lanjut.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajara n	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat mengetahui tujuan dan karakterisitik mata kuliah Eksperimen Fisika Lanjut 1	CP1 CP3 CP6 CP7	- Kontrak perkuliahan - Ruang lingkup perkuliahan	Ceramah			
2	Mahasiswa dapat: a. Menjelaskan kuantisasi energi atom hidrogen b. Menentukan konstanta Rydberg c. Menetukan level- level energi atom Hidrogen	CP1 CP7 CP9 CP10	 Kuantisasi muatan Spektrum garis Tingkat-tingkat energi atom Hidrogen 	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan konstanta Rydberg dan tingkat-tingkat energi atom Hidrogen	Quiz Laporan Praktiku m	3

3	Mahasiswa dapat: a. Menjelaskan prinsip Interferometer Michelson b. Menentukan panjang gelombang laser dan indeks bias udara dan komponen optik	CP1 CP7 CP9 CP10	 Prinsip interferensi Interferometer Michelson Pergeseran frinji Indeks bias udara dan komponen optik 	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan panjang gelombang Laser, indeks bias udara dan kaca melalui pengamatan pergeseran frinji	Quiz, laporan praktiku m	3
4	Mahasiswa dapat: a. Menjelaskan prinsip modulasi gelombang b. Menentukan kecepatan cahaya dengan metode pergeseran fase	CP1 CP7 CP9 CP10	 prinsip modulasi gelombang penjalaran gelombang pergeseran fase gelombang 	Ceramah, diskusi, SCL (praktikum	Dapat menentukan kecepatan cahaya melalui pergeseran fase	Quiz, laporan praktiku m	3
5	Mahasiswa dapat : a. Mendemonstrasikan Percobaan Thomson b. Memahami fenomena Gaya Lorentz c. Menentukan rasio e/m	CP1 CP7 CP9 CP10	- Induksi elektromagnetik - Emisi termionik - Gaya Lorentz pada muatan (elektron) - Rasio e/m	Ceramah, diskusi, SCL (praktikum)	Dapat melakukan Percobaan Thomson dan menentukan rasio e/m	Quiz, laporan praktiku m	3
6	Mahasiswa dapat: a. Mendemonstrasikan gejala Efek Fotolistrik b. Menentukan konstanta Plank c. Menentukan fungsi kerja logam	CP1 CP7 CP9 CP10	 Sifat kuantum cahaya Prinsip efek fotolistrik Konstanta Planck Fungsi kerja logam 	Ceramah, diskusi, SCL (praktikum)	Dapat melakukan percobaan Efek Fotolistrik dan menentukan konstanta Planck dan konstanta Rydberg.	Quiz, laporan praktiku m	3
7	Mahasiswa dapat: a. Mendemonstrasikan Percobaan Frank-	CP1 CP7 CP9	- Interaksi antara elektron bergerak dengan atom	Ceramah, diskusi, SCL (praktikum)	Dapat melakukan Percobaan Franck- Hertz menentukan	Quiz, laporan praktiku	3

	Hertz b. Memahami kuantisasi energi atomik c. Menentukan tingkat-tingkat energi eksitasi atomik	CP10	Neon - Kuantisasi muatan - Tingkat-tingkat energi atomik		tingkat-tingkat energi atomik	m	
8	Ujian Tengah Semester					Tes Tulis	30
9	Mahasiswa dapat: a. Memahami fenomena interaksi materi dengan gelombang elektromagnetik b. Mendemonstrasika n Hukum Beer- Lambert c. Menentukan transmitansi, absorbansi, dan absorpsivitas	CP1 CP7 CP9 CP10	- Prinsip penyerapan - Hukum Beer- Lambert - Transmitansi - Absorbansi - Koefisien penyerapan (Absorpsivitas)	Ceramah, diskusi, SCL (praktikum)	Dapat menjelaskan prinsip penyerapan (absorpsi) dan menentukan nilai Transmitansi (T), Absorbansi (A), dan absorpsivitas	Quiz, laporan praktiku m	3
10	Mahasiswa dapat : a. Mendemonstrasika n Percobaan Tetes minyak milikan. b. Memahami kuantisasi muatan c. Menentukan muatan materi (tetes minyak)	CP1 CP7 CP9 CP10	- Dinamika Tetes minyak di dalam medan gravitasi minyak di dalam medan gravitasi dan medan listrik - Kuantisasi muatan tetes minyak	Ceramah, diskusi, SCL (praktikum)	Dapat melakukan Percobaan Tetes Minyak Milikan dan menentukan muatan tetes minyak	Quiz, laporan praktiku m	3
11	Mahasiswa dapat: a. Menggunakan perangkat detektor radiasi inti	CP1 CP7 CP9 CP10	- Reaksi dan peluruhan inti - Distribusi partikel - Counting partikel	Ceramah, diskusi, SCL (praktikum)	Dapat menggunakan detektor inti dan menentukan sifat distribusi radiasi	Quiz, laporan praktiku m	3

	b. Memahami reaksi dan distribusi radiasi inti c. Menentukan prinsip penyerapan radiasi inti	an.	- Radiation shielding		inti serta menentukan sifat material shielding		
12	Mahasiswa dapat: a. mendemonstrasika n hukum-hukum radiasi termal meliputi hukum kuadrat terbalik dan hukum Stefan- Boltzmann	CP1 CP7 CP9 CP10	 Hukum kuadrat terbalik pada radiasi termal Hukum radiasi Stefan-Boltzmann 	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan hubungan antara radiasi termal dengan variasi suhu bahan	Quiz, laporan praktiku m	3
13	Mahasiswa dapat: a. Mengamati dan mendemonstrasika n sifat dan karakteristik laser b. Menentukan besaran internal laser berupa kecerahan, penyebaran, dan koherensi. c. Menentukan besaran fisika yang terlibat pada peristiwa kolimasi laser.	CP1 CP7 CP9 CP10	- proses stimulated emition dan inversi populasi - karakteristik internal laser meliputi kecerahan, penyebaran, serta koherensi - peristiwa kolimasi pada laser	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan besaran yang menjadi karakteristik internal laser seperti kecerahan, dan penyebaran, koherensi, serta menentukan set up untuk peristiwa kolimasi laser	Quiz, laporan praktiku m	2
14	Mahasiswa dapat: a. Mengamati dan mendemonstrasika	CP1 CP7 CP9	- prinsip difraksi cahaya - prinsip polarisasi	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan panjang gelombang laser melalui prinsip	Quiz, laporan praktiku	3

	n fenomena difraksi gelombang cahaya (optik) b. Mengamati fenomena polarisasi gelombang optik	CP10	cahaya		difraksi serta menentukan hubungan antara sudut dan intensitas pada peristiwa polarisasi laser	m	
15	Mahasiswa dapat: a. mereview dan lebih memahami materi-materi eksperimen Fisika	CP1 CP7 CP9 CP10	- materi eksperimen fisika lanjut 1	SCl (ujian praktikum)	Dapat menjelaskan prinsip-prinsip yang melandasi dan teramil dalam melakukan eksperimen Fisika.	Nilai Ujian Praktikum	5
16	Ujian Akhir Semester					Tes tulis	30

Nama mk : Eksperimen Fisika Lanjut 2

Kode mk/sks : FIS 359 / 2(1-3)

Peserta : 70 orang

Deskripsi Mata Kuliah

Mata kuliah ini memuat percobaan-percobaan fisika zat padat meliputi penentuan parameter-parameter transport seperti pada percobaan efek Hall dan konduktivitas, karakteristik piranti semikonduktor, piranti konversi energi dan serat optik

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat menguasai percobaan-percobaan yang berkaitan dengan sifat transport pada zat padat dan semikonduktor, serta terbiasa dengan suasana eksperimen dan penelitian.

Mingg u Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajar an	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat mengetahui ruang lingkup perkuliahan Eksperimen Fisika Lanjut 2	CP1 CP3 CP6 CP7	KontrakperkuliahanRuang lingkupperkuliahan	Ceramah			
2	 Mahasiswa dapat: a. Memahami prinsip prcobaan efek Hall b. Menentukan parameter-parameter transport dalam zat padat 	CP1 CP3 CP7 CP9 CP10	- Gaya elektrostatik dan gaya Lorentz - Tegangan Hall (V _H) - Konstanta Hall (R _H) - Tipe dan konsentrasi pembawa muatan	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan tegangan Hall (V _H) dan Konstanta Hall (R _H) serta menentukan parameter-parameter transport di dalam zat padat	Quiz, laporan praktikum	3
3	Mahasiswa dapat: a. Memahami fenomena	CP1 CP3 CP7	- Semikonduktor intrinsik dan	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan besaran besaran- besaran fisika yang	Quiz, laporan praktiku	2

	persambungan semikonduktor (Dioda) b. Menentukan celah energi semikonduktor	CP9 CP10	ekstrinsik (tipe-n dan tipe-p) - Persambungan semikonduktor - Bias dioda dan karaktersitik I-V dioda		terlibat dalam persambungan semikonduktor p-n, dan menentukan nilai celah 3energi semikonduktor	m	
4	Mahasiswa dapat a. Mengamati pengaruh suhu terhadap resistivitas semikonduktor b. Menentukan energi celah (Eg) semikonduktor dengan metode termal	CP1 CP3 CP7 CP9 CP10	- Persambungan semikonduktor - Persamaan diode ideal - Persamaan I-V dioda	Ceramah, diskusi, SCL (praktikum)	Dapat mengamati pengaruh suhu terhadap resistivitas semikonduktor dan menentukan celah energi dengan metode termal	Quiz, laporan praktiku m	3
5	Mahasiswa dapat menentukan sifat optik dan konduktivitas semikonduktor	CP1 CP3 CP7 CP9 CP10	- Bahan semikonduktor - Sifat optik bahan semikonduktor - Persamaan arus dan tegangan semikonduktor	Ceramah, diskusi, SCL (praktikum)	Dapat menentukan sifat-sifat optik bahan semikonduktor dan fotokonduktivitas semikonduktor	Quiz, laporan praktiku m	3
6	Mahasiswa dapat: a. Memahami prinsip monokromator dan spektorfotometer b. Menentukan spektrum emisi lampu dan spektrum absorpsi larutan	CP1 CP3 CP7 CP9 CP10	 Dispersi cahaya pada prisma dan kisi Monokromator Spektrofotometer Spektrum emisi, transmisi, dan absorpsi 	Ceramah, diskusi, SCL (praktikum)	Dapat menjelaskan prinsip monokromator dan spektrofotometer serta mengukur spektrum emisi, transmitansi dan absorbansi sampel	Quiz, laporan praktiku m	3
7	Mahasiswa dapat:	CP1 CP3	- Prinsip dan karakteristik sel	Ceramah, diskusi, SCL	Dapat menjelaskan prinsip sel surya dan	Quiz, laporan	3

	a. Memahami prinsip sel surya b. Mengukur parameter dan performa sel surya	CP7 CP9 CP10	surya - Parameter dan performa sel surya	(praktikum)	mengukur karakterisk serta menentukan parameter sel surya	praktiku m	
8	Ujian Tengah Semester					Tes Tulis	30
9	Mahasiswa dapat: a. Memahami prinsip penjalaran gelombang dalam serat optik b. Mengukur parameter serat optik	CP1 CP3 CP7 CP9 CP10	 Struktur serat optik Pelemahan dalam serat optik 	Ceramah, diskusi, SCL (praktikum)	Dapat menjelaskan prinsip penjalaran cahaya di dalam serat optik dan pelemahannya serta mengembangkan aplikasi serat optik	Quiz, laporan praktiku m	3
10	Mahasiswa dapat mempelajari prinsip penjalaran dan modulasi gelombang optik pada serat optik	CP1 CP3 CP7 CP9 CP10	 prinsip penjalaran gelombang optik modulasi dan demodulasi gelombang elektromagnetik 	Ceramah, diskusi, SCL (praktikum)	Dapat menjelaskan prinsip penjalaran cahay dan mendemonstrasikan aplikasi modulasi cahaya melalui serat optik	Quiz, laporan praktiku m	3
11	Mahasiswa dapat : d. Memahami prinsip termoelektrik (efek Seebeck dan Peltier). e. Menentukan besaran listrik dan suhu yang terlibat dalam proses termoelektrik	CP1 CP3 CP7 CP9 CP10	- Efek Seeback - Efek Peltier - Persamaan I-V	Ceramah, diskusi, SCL (praktikum)	Dapat melakukan percobaan termoelektrik dan menghitung besaran listrik dan suhu pada proses termoelektrik	Quiz, laporan praktiku m	3

12	Mahasiswa dapat: d. Mempelajari prinsip elektrolisis e. Menentukan karakteristik dan efisiensi konversi energi dengan prinsip elektrolisis	CP1 CP3 CP7 CP9 CP10	 Prinsip elektrolisis (konstanta Faraday) Voltameter gas letup	Ceramah, diskusi, SCL (praktikum)	Dapat melakukan percobaan elektrolisis dan menghitung efisiensi konversi energi pada peristiwa elektrolisis	Quiz, laporan praktiku m	3
13	Mahasiswa dapat: b. Menjelaskan prinpsi fuel cell c. Mengukur dan menganalisa karakteristik sebuah piranti fuel cell	CP1 CP3 CP7 CP9 CP10	- Prinsip fuel cell - Karaketristik I-V fuel cell	Ceramah, diskusi, SCL (praktikum)	Dapat menjelaskan prinsip sebuah fuel cell dan mengukur dan menganalisa karakteristik fuel cell berupa I-V dan efisiensi	Quiz, laporan praktiku m	3
14	Mahasiswa dapat: d. Memahami proses pemvakuman e. Mengoperasikan peralatan pemvakuman, f. Mengkalibrasi dan menganalisa tekanan residu pada system vakum	CP1 CP3 CP7 CP9 CP10	- Prinsip teknik vakum - Struktur mesin vakum - Pompa mekanik - Pompa difusi - Pompa Ion	Ceramah, diskusi, SCL (praktikum)	Dapat memahami dan melakukan proses pemvakuman serta mampu mengkalibrasi tekanan pada system vakum	Quiz, laporan praktiku m	2
15	Mahasiswa dapat:Memperkuat pemahaman tentang materi-materi eksperimen Fisika Lanjut 2	CP1 CP7 CP9 CP10	- materi eksperimen fisika lanjut 2	SCl (ujian praktikum)	Dapat menjelaskan prinsip-prinsip yang melandasi pada materi eksperimen fisika lanjut 2	Nilai Ujian Praktikum	5
16	Ujian Akhir Semester					Tes tulis	30

Nama mk : Fisika Komputasi Kodemk/sks: FIS314/3(2-3)

Peserta: mhs program S1, mayor fisika, sm 5

Diskripsi Mata Kuliah

Matakuliah ini termasuk dalam matakuliah perangkat analisis dengan prasyarat Fisika Matematika I (FIS241) dan Fisika Matematika II (FIS242). Materi yang diberikan adalah penggunaan berbagai solusi numerik dengan menggunakan bahasa pemrograman MATLAB dalam menyelesaikan persoalan Fisika.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini, mahasiswa diharapkan dapat menyelesaikan dan menjelaskan persoalan-persoalan fisika dengan menggunakan solusi numerik serta dapat menganalisis peristiwa persoalan-persoalan fisika yang berkaitan dengan peristiwa alam yang sebenarnya.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Dukungan thd CP	Bentuk Pembelajaran		Indikator	Penilaian	Bobot Nilai (%)
1	a. memahami bahasa pemrograman MATLAB. b. membuat program sederhana dengan bahasa pemrograman MATLAB. c. membuat flowchart dan algoritma dengan bahasa pemrograman MATLAB. MATLAB.	Pengenalan Bahasa Pemrograman MATLAB.	CP 1, CP 2, CP 7, CP 10	Ceramah dan Diskusi.	a. b. c.	Dapat melakukan pemrograman dengan Bahasa Pemrograman MATLAB. Dapat menjalankan dan memperbaiki hasil pemrograman MATLAB tersebut dengan baik. Dapat menterjemahkan flowchart dan algoritma yang telah dibuat ke dalam Bahasa Pemrograman MATLAB.	Tugas Projek Mingguan.	10

2 & 3	Mahasiswa dapat:	a. Pengenalan	CP 1, CP 2, CP	Ceramah dan	a.	Dapat membuat flowchart dan algoritma	Tugas Projek	10
	a. memahami persamaan non-linier. b. memahami perumusan Newton-Raphson dan modifikasi perumusan Newton-Raphson, yang biasa disebut Secant. c. memahami penggunaan metoda Newton-Raphson dan Secant untuk mencari satu akar persamaan non-linier. d. memahami penggunaan metoda Newton-Raphson dan Secant untuk mencari satu akar persamaan multi non-linier. e. memahami pemggunaan metoda Newton-Raphson dan Secant dengan Bahasa Pemrograman MATLAB. f. memahami penggunaan metoda Newton-Raphson dan Secant untuk persoalan fisika, misalkan pencarian tingkat-tingkat energi atom.	persamaan non- linier dan multi non- linier. b. Pengenalan perumusan Newton- Raphson dan Secant. c. Pembelajaran pembuatan program Newton-Raphson dan dan Secant dengan Bahasa Pemrograman MATLAB	7, CP 10	Diskusi.	b.	pencarian akar persamaan non-linier dan multi non-linier dengan dengan metoda numerik Newton-Raphson dan Secant. Dapat menterjemahkan flowchart dan algoritma yang telah dibuat tersebut ke dalam Bahasa PemrogramanMATLAB. Dapat menjalankan dan memperbaiki hasil pemrograman MATLAB tersebut dengan baik.	Mingguan.	
4, 5 & 6	a. memahami persamaan diferensial biasa. b. memahami perumusan metoda Euler dan metoda Runge-Kutta c. memahami penggunaan metoda Euler dan metoda Runge-Kutta untuk mencari solusi numerik persamaan diferensial biasa. d. memahami pemrograman metoda Euler dan metoda Runge-Kutta dengan Bahasa Pemrograman MATLAB e. memahami penggunaan metoda Euler dan metoda Runge-Kutta untuk persoalan fisika, misalkan penyelesaian solusi numerik persamaan gelombang harmonik sederhana.	a. Pengenalan persamaan diferensial biasa b. Pengenalan perumusan metoda Euler dan metoda Runge-Kutta untuk mencari solusi numerik persamaan diferensial biasa. c. Pembelajaran pembuatan program metoda Euler dan metoda Runge-Kutta untuk menyelesaikan solusi numerik persamaan diferensial biasa dengan Bahasa Pemrograman MATLAB	CP 1, CP 2, CP 7, CP 10	Ceramah dan Diskusi	a. b. c.	Dapat membuat flowchart dan algoritma perumusan metoda Euler dan metoda Runge-Kutta untuk mencari solusi numerik persamaan diferensial biasa. Dapat menterjemahkan flowchart dan algoritma yang telah dibuat tersebut ke dalam Bahasa PemrogramanMATLAB. Dapat menjalankan dan memperbaiki hasil pemrograman MATLAB tersebut dengan baik.	Tugas Projek Mingguan.	10
7	memahami fungsi ODE (ordinary differential equation) dari Bahasa Pemrograman MATLAB memahami penggunaan fungsi ODE di Bahasa Pemrograman MATLAB untuk menyelesaikan solusi numerik	Pembelajaran pembuatan program fungsi ODE (ordinary differential equation) dari Bahasa Pemrograman	CP 1, CP 2, CP 7, CP 10	Ceramah dan Diskusi	a. b.	Dapat menterjemahkan flowchart dan algoritma yang telah dibuat tersebut ke dalam fungsi ODE dari Bahasa Pemrograman MATLAB. Dapat membuat solusi numerik persamaan diferensialbiasa pemrograman dengan fungsi ODE dari Bahasa Pemrograman MATLAB dengan baik.	Tugas Projek Mingguan.	10

	persamaan diferensial biasa.	MATLAB untuk menyelesaikan solusi numerik persamaan diferensial parsial.					
8	UTS					Tugas Projek	30
9, 10 & 11	 Mahasiswa dapat: a. memahami persamaan diferensial parsial bergantung pada waktu. b. memahami perumusan metoda finite diferensial secara eksplisit, implisit dan Crank Nicolson. c. memahami penggunaan metoda finite diferensial secara eksplisit, implisit dan Crank Nicolson.untuk mencari solusi numerik persamaan diferensial parsial. d. memahami pemrograman metoda finite diferensial secara eksplisit, implisit dan Crank Nicolson.dengan Bahasa Pemrograman MATLAB. e. memahami metoda finite diferensial secara eksplisit, implisit dan Crank Nicolson untuk persoalan fisika, misalkan penyelesaian solusi numerik persamaan perambatan gelombang tali. 	a. Pengenalan persamaan diferensial parsial b. Pengenalan perumusan metoda finite diferensial secara eksplisit, implisit dan Crank Nicolson untuk mencari solusi numerik persamaan diferensial parsial. c. Pembelajaran pembuatan program metoda finite diferensial secara eksplisit, implisit dan Crank Nicolson untuk mencari solusi numerik persamaan diferensial parsial dengan Bahasa Pemrograman MATLAB.	CP 1, CP 2, CP 7, CP 10	Ceramah dan Diskusi	 a. Dapat membuat flowchart dan algoritma perumusan metoda finite diferensial secara eksplisit, implisit dan Crank Nicolson untuk mencari solusi numerik persamaan diferensial parsial. b. Dapat menterjemahkan flowchart dan algoritma yang telah dibuat tersebut ke dalam Bahasa PemrogramanMATLAB. c. Dapat menjalankan dan memperbaiki hasil pemrograman MATLAB tersebut dengan baik. 	Tugas Projek Mingguan.	10
12 & 13	a. memahami kumpulan data suatu eksperimen. b. memahami perumusan regresi linier dan regresi non-linier. c. memahami penggunaan metoda regresi linier dan regresi onn-linier untuk menganalisis kumpulan data eksperimen. d. memahami pemrograman metoda regresi linier dan regresi non-linier untuk menganalisis kumpulan data eksperimen dengan Bahasa Pemrograman MATLAB. e. memahami penggunaan metoda regresi linier dan regresi non-linier	a. Pengenalan perumusan regresi linier dan regresi non-linier untuk menganalisis kumpulan data eksperimen. b. Pembelajaran pembuatan program regresi linier dan regresi non-linier untuk menganalisis kumpulan data eksperimen dengan Bahasa Pemrograman MATLAB	CP 1, CP 2, CP 7, CP 10	Ceramah dan Diskusi	Dapat membuat flowchart dan perumusan regresi linier dan regresi non-linier untuk menganalisis kumpulan data eksperimen. Dapat menterjemahkan flowchart dan algoritma yang telah dibuat tersebut ke dalam Bahasa PemrogramanMATLAB. Dapat menjalankan dan memperbaiki hasil pemrograman MATLAB tersebut dengan baik.	Tugas Projek Mingguan	10

	untuk menganalisis kumpulan data eksperimen untuk persoalan fisika, misalkan pengolahan data eksperimen fisika dasar atau fisika lanjut.						
14 & 15	a. memahami persamaan diferensial parsial bergantung pada waktu. b. memahami perumusan metoda finite elemen. c. memahami penggunaan metoda finite elemen untuk mencari solusi numerik persamaan diferensial parsial. d. memahami pemrograman metoda finite elemen dengan Bahasa Pemrograman MATLAB. e. memahami metoda finite elemen untuk persoalan fisika, misalkan penyelesaian solusi numerik persamaan perambatan panas di logam konduktor	a. Pengenalan persamaan diferensial parsial b. Pengenalan perumusan metoda metoda finite elemen untuk mencari solusi numerik persamaan diferensial parsial. c. Pembelajaran pembuatan program metoda finite elemen untuk mencari solusi numerik persamaan diferensial parsial dengan Bahasa Pemrograman MATLAB.	CP 1, CP 2, CP 7, CP 10	Ceramah dan Diskusi	 a. Dapat membuat flowchart dan metoda finite elemen untuk mencari solusi numerik persamaan diferensial parsial. b. Dapat menterjemahkan flowchart dan algoritma yang telah dibuat tersebut ke dalam Bahasa PemrogramanMATLAB. c. Dapat menjalankan dan memperbaiki hasil pemrograman MATLAB tersebut dengan baik. 	Tugas Projek Mingguan	10
16	UAS					Tugas Projek	30

Nama mk : Fisika Atom dan Molekul

Kode mk/sks : FIS326 / 3(2-2)

Peserta: Mahasiswa Program S1 Mayor Fisika, Semester 6 dan Supporting Course

Deskripsi Mata Kuliah

Mata kuliah ini diberikan pada semester 6 untuk membekali seluruh mahasiswa dengan kompetensi umum lulusan yang terkait dengan program keahlian yang ditekuni. Secara khusus memberikan pemahaman terkait dengan struktur materi dan perkembangan model atom, teori kuantum atom berelektron tunggal dan berelektron dua atau lebih, interaksi atom berelektron tunggal dua atau lebih dengan radiasi magnetik, struktur molekul dan spektra molekul, laser dan interaksinya dengan molekul, aplikasi fisika atom dan molekul.

Standar Kompetensi

Setelah menyelesaikan kuliah ini, mahasiswa dapat menjelaskan konsep atom dan molekul, perkembangan teori atom, teori atom hidrogen dan teori atom berelektron banyak, emisi dan absorbansi radiasi gelombang elektromagnetik oleh atom, diatomik dan poliatomik molekul serta mampu menjelaskan dasar teori berbagai teknik eksperimen di dalam fisika atom dam molekul.

M	/linggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai
	1	Mahasiswa dapat menjelaskan	CP 1	- Kontrak Perkuliahan - Ruang lingkup	Ceramah	Dapt menjelaskan perkembangan	Pre-Test	

	perkembangan teori atom.	CP2 CP6	perkuliahan - Pentingnyafisika atom dan molekul - Perkembangan teori atom		teori atom		
2	Mahasiswa dapat menjelaskan struktur atom (1)	CP3 CP6 CP8	- Model Atom Rutherford - Hamburan Partikel Alfa - Rumus Hamburan Rutherford - Dimensi Inti - Orbit Elektron - Spektrum Atomik	Ceramah dan Diskusi	Dapat menjelaskan: - Model Atom Rutherford	Tes UTS	
3	Mahasiswa dapat menjelaskan struktur atom (2)	CP3 CP6 CP7	- Atom Bohr - Tingkat Energi dan Spektrum - Prinsip Korespondensi - Gerak Inti - Eksitasi Atomik - Laser	Ceramah dan Diskusi	Dapat menjelaskan: - Model atom Bohr	Tugas 1	
4	Mahasiswa dapat menjelaskan tentang teori atom hidrogen dan fisika kuantum (1)	CP3 CP6 CP7	- Fungsi dan persamaan gelombang - Persamaan Schrodinger bergantung waktu - Persamaan Schrodinger untuk atom Hidrogen - Pemisahan Variabel - Bilangan Kuantum	Ceramah dan Diskusi	Dapat menjelaskan: - Teori atom hidrogen - Mengaplikasikan persamaan Schrodinger pada atom hidrogen	Tugas 2	

5	Mahasiswa dapat menjelaskan tentang teori atom hidrogen dan fisika kuantum (2)	CP1 CP2 CP8	- Bilangan Kuantum Utama - Bilangan Kuantum Orbital - Bilangan Kuantum Magnetik - Kerapatan Peluang Elektron - Transisi Radiatif - Kaidah Seleksi - Efek Zeeman	Ceramah dan Diskusi	Dapat menjelaskan: - Bilangan kuantum dan radiasi yang muncul dari atom. - Manfaat efek zeeman	Tugas 3	
6	Mahasiswa dapat menjelaskan tentang atom dengan elektron lebih dari satu (1)	CP1 CP2 CP8	 Spin Eeektron Kopling spin-orbit Prinsip ekslusi Fungsi gelombang simetrik dan antisimetrik Tabel periodik Konfigurasi elektron 	Ceramah dan Diskusi	Dapat menjelaskan: - Tabel periodik dan bagaimana struktur elektron dalam atom menentukan sifat kimiawi	Tugas 4	
7	Mahasiswa dapat menjelaskan tentang atom dengan elektron lebih dari satu (2)	CP1 CP3 CP6	- Momentum sudut total - Kopel L-S - Kopel J-J - Spektrum satu elektron - Spektrum dua elektron - Spektrum sinarX		Dapat menjelaskan: - Bagaimana spektrum atom dapat muncul.	Tugas 5	
8						UTS	
	Mahasiswa dapat	CP1	- Gaya listrik mengikat	SCL, ceramah	Dapat	Tugas 1	

9	menjelaskan Ikatan molekul: ionik dan kovalen (1)	CP2 CP5 CP6	atom - Mekanisme ikatan kovalen		menjelaskan mekanisme ikatan molekul		
10	Mahasiswa dapat menjelaskan Ikatan molekul: ionik dan kovalen (2)	CP1 CP2 CP5 CP6	- Molekul Hidrogendan Ikatan kovalen - Molekul ikatan Iainnya	SCL, ceramah	Dapat menjelaskan mekanisme ikatan molekul		
11	Mahasiswa dapat menjelaskan tentang tingkat energi vibrasi molekul (1)	CP1 CP6	 Vibrasi partikel tunggal Vibrasi dua partikel terkoneksi oleh pegas Fungsi energi potensial untuk ikatan kimia Solusi mekanika kuantum dari osilator harmonik Spektra absorbsi vibrasi dari molekul diatomik 	SCL, ceramah	Dapat menjelaskan: Mekanisme Vibrasi molekul dari molekul denganduaatom	Tugas 2	
12	Mahasiswa dapat menjelaskan tentang tingkat energi vibrasi	CP1 CP3	- Jumlah vibrasi independen dari molekul poliatomik	SCL, ceramah	Dapat menjelaskan vibrasi molekul	Tugas 3	

	molekul (2)	CP4 CP8	Keadaan alamiah vibrasi normal dan koordinat normal Perlakuan mekanika kuantum untuk vibrasi molekul poliatomik		dari molekul dengan lebih dari dua atom		
13	Mahasiswa dapat menjelaskan tentang tingkat energi rotasi molekul (1)	CP1 CP6	Spektrum rotasional molekul dalam daerah gelombang mikro Pendekatan klasik untuk sistem linier rotasi Pendekatan kuantum untuk rotasi sistem linier Energi rotasi - level populasi	SCL, ceramah	Dapat menjelaskan tingkat energi rotasi.	Tugas 4	
14	Mahasiswa dapat menjelaskan tentang tingkat energi rotasi molekul (2)	CP1 CP2 CP3 CP6	 Aturan seleksi rotasi Efek Stark pada spektra rotasi molekul Spin kopling-Inti- Elektron 	SCL, ceramah	Dapat menjelaskan aturan seleksi dan penggunaannya.		
15	Mahasiswa dapat menjelaskan tentang Spektrim elektronik molekul	CP 1 CP 6	Bagaimana Fluoresensi dan Fosforensi terjadi - Spektra elektronik - Spektra rotasi - Spektra vibrasi-rotasi	SCL, ceramah	- Dapat menjelaskan bagaimana spektrum elektronik, vibrasi dan rotasi	Tugas 5	

			terbentuk.		
16	UAS			UAS	

Nama Mata Luliah : Fisika Matematika 2

KodeMata Kuliah /SKS : FIS244 / 3(2-2)

Peserta : Mahasiswa Program S1, Mayor Fisika, Semester 4

Deskripsi Mata Kuliah

Mata Kuliah Fisika Matematika II termasuk mata kuliah dasar fisika. Materi yang diberikan adalah penggunaan perangkat matematika untuk memformulasikan gejala-gejala fisika.

Standar Kompetensi

Mahasiswa dapat menyelesaikan persoalan fisika melalui pendekatan matematika.

Minggu ke	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat : a. Menjelaskan prinsip dasar kalkulus variasi b. Menjelaskan penurunan persamaan Euler- Lagrange	 Pengantar Prinsip variasi Persamaan Euler-Lagrange Definisi koordinat umum. 	Ceramah, diskusi	Dapat memformulasika n persamaan Euler-Lagrange untuk kasus sederhana	Tes (PR)	5
2	Mahasiswa dapat : Menggunakan formulasi kalkulus variasi untuk menyelesaikan persoalan mekanika sederhana	Penggunaan persamaan Euler- Lagrange untuk persoalan 1. Brachistochrone 2. Pendulum	Ceramah, diskusi	Dapat menyelesaiakn persoalan mekanika sederhana berdasarkan formulasi Euler- Lagrange	Tes (PR & UTS)	10

	Mahasiswa dapat:	1.	Pengantar		1. Mengetahui	Tes (PR &	
	a. Menjelaskan	2.	Definisi fungsi	Ceramah,	penggunaan	UTS)	
	definisi fungsi-		Gamma	diskusi	fungsi		
	fungsi khusus	3.	Definisi fungsi		khusus		
	seperti Fungsi		Error		2. Dapat		
	Gamma, Fungsi	4.	Definisi formula		menggunak		
	Error, Formula		Stirling		an fungsi		
3	Stirling dan Fungsi	5.	Definisi integral		khusus		10
	dan Integral Eliptik.	J.	dan fungsi		dalam		
	b. Menjelaskan		Eliptik		memecahka		
	penggunaan	6.	Contoh kasus		n persoalan		
	beberapa fungsi	0.	penggunaan		fisika		
	khusus dalam		fungsi khusus.		sederhana		
	fisika.		luligsi kilusus.		terkait		
	Mahasiswa dapat:	1.	Pengantar.		Dapat	Tes (PR)	
	a. Menjelaskan	2.	Ekspansi	Ceramah,	menyelesaikan	103 (110)	
	formulasi solusi	۷.	polinom solusi	diskusi	persamaan		
	deret untuk		deret.	uiskusi	diferensial biasa		
	memecahkan	3.	Metode		sederhana		
	persamaan	ی.	frobenius.		Scacinana		
4	diferensial biasa.	4	Contoh				5
	b. Menggunakan	4.	penyelesaian				
	solusi deret untuk						
	menyelesaikan		persamaan diferensial				
	persamaan		biasa.				
	diferensial biasa					T (DD 0	
	Mahasiswa dapat:	1.	Persamaan	a 1	Dapat	Tes (PR &	
	a. Menjelaskan		diferensial dan	Ceramah,	menyelesaikan	UTS)	
	penurunan		polinom	diskusi	persamaan		
	persamaan		Legendre.		diferensial		
	diferensial	2.	Persamaan		khusus dan		
	Legendre, Hermite		diferensial dan		penerapannya		
5	dan Bessel serta		fungsi Bessel.		pada fisika.		10
	polinomial dan	3⋅	Persamaan				
	fungsi terkait.		diferensial dan				
	b. Menggunakan		fungsi Hermite.				
	formulasi solusi	4.	Contoh				
	deret pada		penggunaan				
	persoalan di listrik		polinom				

6	dan mekanika. Mahasiswa dapat: a. Menjelaskan mengenai penting transformasi koordinat dalam fisika. b. Menggunakan transformasi koordinat untuk menyederhanakan persoalan fisika. c. Menyelesaikan persoalan harga dan nilai eigen.	Legendre dan fungsi Bessel 1. Pengantar 2. Transformasi koordinat umum 3. Transformasi rotasi 4. Persoalan harga eigen. 5. Contoh penggunaan transformasi koordinat	7	Review	Ceramah, diskusi	
8	UTS				Tes tulis	
9	Mahasiswa dapat: a. Menjelaskan definisi fungsi dengan variabel kompleks dan syarat analitiknya b. Menjelaskan teorema-teorema Cauchy c. menyelesaikan integral kontur dengan memanfaatkan teorema Cauchy	 Pengantar Fungsi kompleks Definisi sifat analitik fungsi kompleks Teorema Cauchy I s.d V Integral kontur 	Ceramah, diskusi	Dapat menggunakan formulasi integral kontur untuk menyelesaikan integral tak- wajar	Tes (PR)	5
10	Mahasiswa dapat: a. Menggunakan integral kontur untuk menyelesaikan beberapa bentuk integral tak-wajar	Penggunaan integral kontur. Definisi pemetaan konformal dan pemanfaatanny	Ceramah, diskusi	Dapat menggunakan formulasi analisis kompleks untuk menyelesaikan	Tes (PR & UTS)	10

	b. Menjelaskan dan menerapkan pemetaan konformal untuk menyederhanakan persoalan tertentu di fisika	3.	a Contoh penggunaan integral kontur pada fisika.		problem fisika		
11	Mahasiswa dapat: a. Menjelaskan definsi transformasi Laplace. b. Menggunakan formulasi transformasi Laplace untuk menyelesaikan persamaan diferensial biasa. c. Menjelaskan definsi transformasi Fourier dan menggunakannya untuk menyelesaikan persoalan analisis spektrum sinyal.	1. 2. 3. 4.	Pengantar Definisi transformasi Laplace Penyelesaian persamaan diferensial biasa menggunakan transformasi laplace Definisi transformasi Fourier Pemanfaat transformasi Fourier untuk analisa sinyal.	Ceramah, diskusi	1. Dapat menyelesaik an persamaan diferensial biasa dengan syarat awal 2. Dapat melakukan analisa sinyal sederhana	Tes (PR & UTS)	10
12	Mahasiswa dapat: a. Menjelaskan pengertian persamaan diferensial parsial dan macamnya dalam fisika. b. Mengerti penurunan persamaan diferensial terkait	1. 2. 3.	Pengantar Persamaan Laplace dan Poisson Persamaan diferensal parsial untuk gelombang, difusi. Penurunan persamaan	Ceramah, diskusi	Dapat menyelesaikan persamaan diferensal parsial dengan teknik separasi variabel	Tes (PR)	5

	perambatan	diferensial				
	gelombang.	parsial untuk				
		perambatan				
		gelombang				
		pada tali.				
	Mahasiswa dapat:	1. Penyelesaian		Dapat	Tes (PR &	
	a. Menyelesaikan	persamaan	Ceramah,	menyelesaikan	UTS)	
	persamaan	diferensial	diskusi	persamaan		
	diferensial parsial	parsial		diferensial		
13	terkait perambatan	gelombang dan		parsial yang		15
-5	gelombang dan	difusi dengan		memeiliki syarat		10
	vibrasi senar	menerapkan		batas		
	b. persamaan	syarat batas.				
	diferensial parsial					
	terkait difusi.					
	Mahasiswa dapat:	1. Pengantar	Ceramah,	Dapat	Non tes	
	a. Menjelaskan	2. Definisi peluang	diskusi	menggunakan		
	konsep peluang	3. Permutasi dan		konsep peluang		
	dan statistik dalam	kombinasi		untuk		
14	fisika.	4. Definisi ruang		menghitung		5
	b. Menjelaskan	konfigurasi		permutasi dalam		
	penggunaan			ruang		
	konsep peluang			konfigurasi		
	dalam fisika.			sistem partikel		
			Ceramah,			
15	Review		diskusi			
			uiskusi			
16	UAS				Tes tulis	

Nama mk : Fisika Kuantum Kode mk/sks : FIS 321 / 3(2-2)

Peserta : Mahasiswa Semester V Mayor Fisika

Deskripsi Mata Kuliah

Mata kuliah ini disajikan sebagai pendahuluan mekanika kuantum, untuk membawa mahasiswa yang telah menyelesaikan kuliah fisika modern kepada pengembangan yang lebih formal. Mata kuliah ini diawali dengan kemunculan fisika kuantum untuk menjawab bermunculannya fenomena dan fakta-fakta yang berkaitan dengan dunia mikro yang tidak dapat dapat dijelaskan melalui fisika klasik, kemudian dilanjutkan dengan dualitas partikel-gelombang, persamaan Schrödinger dalam satu dimensi, persamaan harga eigen, potensial-potensial satu dimensi, struktur umum mekanika gelombang, metoda operator dalam mekanika kuantum, persamaan Schrödinger untuk partikel banyak, persamaan Schrödinger dalam tiga dimensi dan atom Hidrogen.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat menyelesaikan persamaan harga eigen $H\Psi = E\Psi$ dalam berbagai bentukdan dapat menjelaskan dan menyelesaikan persoalan yang terkait dengan fenomena kuantum sederhana di alam..

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Dukungan thd CP	Bahan Kajian	Bentuk Pembela- jaran	Indikator	Penilai an	Bobot Nilai (%)
1	Mahasiswa dapat menjelaskan latar belakang kemunculan fisika kuantum	CP 2 CP 10	Kemunculan Fisika Kuantum	Diskusi, SCL	Dapat menjelaskan fenomena radiasi benda hitam, efek fotolistrik, efek Compton, gelombang de Broglie dan spektrum atom hidrogen.	Tes, Non tes	5%
2 & 3	Mahasiswa dapat menganalis sifat-sifat	CP2 CP4 CP6	Fungsi Gelombang	Diskusi, SCL	Dapat menentukan $\langle x \rangle, \langle x^2 \rangle, \langle p \rangle, \langle p^2 \rangle, \ \sigma_x \ \mathrm{dan} \ \sigma_p$	Non tes	15%

	fungsi gelombang	CP 10			jika fungsi gelombang $\psi(x)$ diketahui.	UTS,	
4 & 5	Mahasiswa dapat a. Menyelesaikan persoalan partikel dalam kotak. b. Menentukan fungsi gelombang total partikel bebas Ψ(x,t) jika Ψ(x,0) diketahui	CP2 CP4 CP6 CP8 CP 10	Persamaan Schroedinger tak Bergantung Waktu	Diskusi, SCL	Dapat menentukan solusi terpisahkan serta nilai eigen energi pada potensial sumur tak hingga, dapat menentukan peluang mendapatkan partikel dalam suatu keadaan serta harga ekspektasi energi jika $\psi(x)$ diketahui, dapat menentukan $\phi(k)$ energi jika $\Psi(x,0)$ diketahui dan menentukan $\Psi(x,t)$ jika $\phi(k)$ diketahui.	Non tes UTS,	15%
6-7	Mahasiswa dapat menentukan solusi persamaan Schroedinger untuk beberapa kasus potensial satu dimensi sederhana.	CP2 CP4 CP6 CP8 CP 10	Potensial Satu Dimensi	Diskusi, SCL	Dapat menentukan solusi persamaan Schroedinger untuk tangga potensial, sumur potensial terbatas, dinding potensial dan bentuk potensial kombinasinya serta potensial delta Dirac.	Non tes UTS,	15%
8	UTS					Tes tulis	
9	Mahasiswa dapat menganalisis sifat-sifat persamaan harga eigen dan operator hermitian	CP2 CP4 CP6 CP10	Struktur Umum Mekanika Gelombang	Diskusi, SCL	Dapat memeriksa apakah suatu operator merupakan operator hermitian atau bukan, dapat menyelesaikan relasi komutasi dari berbagai macam operator, dapat menjelaskan observabel simultan, dapat menjelaskan		5%

					adanya degenerasi.	
10	Mahasiswa dapat menentukan nilai eigen dan fungsi eigen dari osilator harmonik dengan menggunakan metoda operator	CP2 CP4 CP6 CP10	Metoda Operator dalam Mekanika Kuantum	Diskusi, SCL	Dapat menyatakan operator Hamiltonian dalam bentuk operator tangga serta mendapatkan nilai-nilai eigennya, dapat menentukan fungsi gelombang pada tingkat dasar dan pada tingkat eksitasi pertama, dapat menyatakan operator x , x^2 , p , dan p^2 dalam bentuk operator tangga serta mendapatkan harga ekspektasinya.	
11	Mahasiswa dapat a. mengkonstruksi spherical harmonics b. menentukan nilai- nilai eigen momentum sudut	CP2 CP4 CP6 CP10	Momentum Sudut	Diskusi, SCL	Dapat menyelesaikan relasi komutasi antara operatoroperator terkait momentum sudut, dapat mengkonstruksi Y_{ll} melalui persamaan $L_+ l,l\rangle=0$, dapat mengkonstruksi Y_{lm} melalui persamaan $L l,m\rangle=C(l,m) l,m-1\rangle$, dapat menentukan nilai-nilai eigen terkait suatu fungsi eigen "spherical harmonic" tertentu.	
12	Mahasiswa dapat menentukan spektrum energi atom hidrogen	CP2 CP4 CP6 CP10	Persamaan Schroedinger dalam Tiga Dimensi dan atom Hidrogen	Diskusi, SCL	Dapat menjelaskan cara menyelesaikan bagian radial dari persamaan Schroedinger untuk atom Hidrogen, dapat mengkonstruksi persamaan radial, dapat menentukan	

					spektrum energi atom hidrogen		
13	Mahasiswa dapat menyelesaikan persamaan harga eigen dengan menggunakan notasi matriks	CP2 CP4 CP6 CP8 CP10	Representasi Matriks Operator	Diskusi, SCL	Dapat menyatakan operator- operator H , a^+ , a^- pada osilator harmonik dalam bentuk matriks, dapat menyelesaikan persamaan harga eigen dalam bentuk matriks, dengan observabel dinyatakan dalam matriks (2×2) atau (3×3) .		
14	Mahasiswa dapat menyelesaikan persamaan Schrödinger dengan bentuk hamiltonian terganggu, $H = H_0 + \lambda H'$	CP2 CP4 CP6 CP8 CP10	Teori Gangguan Tak Bergantung Waktu	Diskusi, SCL	Dapat menentukan pergeseran energi orde pertama dan orde kedua pada partikel dengan H_0 merupakan hamiltonian sumur tak hingga dan $\lambda H'$ merupakanfungsi sederhana.		
15	Mahasiswa dapat menunjukkan adanya transisi jika sistem elektronik diganggu medan potensial elektromagnetik	CP2 CP4 CP6 CP8 CP10	Teori Gangguan Bergantung Waktu	Diskusi, SCL	Dapat menunjukkan bahwa peluang terjadinya transisi radiatif terjadi ketika sistem berinterkasi dengan gelombang elektromagnetik dengan $\Delta E = hf$.		
16	UAS					Tes tulis	

Matriks Implementasi LO pada kegiatan Pembelajaran

	CP1	CP2	CP3	CP4	CP5	CP6	CP7	CP8	CP9	CP10
Kuis harian								$\sqrt{}$		
PR 1		$\sqrt{}$				$\sqrt{}$		$\sqrt{}$		1
PR 2		$\sqrt{}$				$\sqrt{}$		$\sqrt{}$		1
PR 3		$\sqrt{}$			$\sqrt{}$	V		V		V
PR 4										V
PR 5								V		V
PR 6										V
PR 7								V		V
Aktivitas Grup	V	$\sqrt{}$							V	1
UTS		·	V			V	V			
UAS							V			

Nama Mata Kuliah : Fisika Material Kode Mata Kuliah /SKS : FIS433 / 2(2-0)

Peserta : Mahasiswa Program S1, Mayor Fisika, Semester 6

Deskripsi Mata Kuliah

Mata kuliah ini membahas tentang sifat-sifat fisis material. Materi yang diberikan meliputi peradaban material, klasifikasi dan mikrostruktur material, pembentukan dan peningkatan kualitas pada material, sifat dan karakteristik berbagai material (komposit, logam, keramik, polimer dll)

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat menjelaskan dan menguraikan sifat, klasifikasi dan karakteristik berbagai material

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat menjelaskan materi perkuliahan fisika material	a. Kontrak perkuliahan b. Perkembangan riset fisika material c. Aplikasi material pada produk	Diskusi,	Dapat memahami pembelajaran materi dan manfaat dari perkuliahan fisika material	Non tes	10
2	Mahasiswa dapat : a. menjelaskansejarah perkembangan peradaban material b. menguraikan jenis-	a. Material dan peradaban b. Rekayasa material c. Jenis-jenis dan	Ceramah, diskusi,	Dapat menguraikan sejarah, struktur dan jenis material	Tes	15

	jenis material	struktur umum material				
3	Mahasiswa dapat menjelaskan mikrostruktur material	a. kristal dan amorfb. Batas butirc. Fasa tunggal dan ganda	ceramah, diskusi	Dapat menguraikan mikrostruktur material dan membaca mikrostruktur dari foto mikroskop	tes	15
4	Mahasiswa dapat membedakan klasifikasi material konduktor, isolator, semikonduktor, dll	Material konduktor, isolator, semikonduktor, superionik	ceramah diskusi	Dapat menyebutkan karakteristik dan sifat beberapa material	tes	15
5	Mahasiswa dapat menjelaskan deformasi dan patahan pada material	 a. Deformasi elastis b. Deformasi plastis c. Mekanisme deformasi dan patahan 	diskusi dan ceramah	Dapat menguraikan mekanisme deformasi dan patahan	tes	15
6	Mahasiswa dapat menjabarkan Proses pembentukan, penguatan dan peningkatan kualitas pada material	a. Pengerjaan panas b. Pengerjaan dingin c. Pelarutan d. Sintesamaterial dengan cara biologi, kimia, dan fisika	diskusi ceramah	Dapat menjelaskan proses rekayasa material dengan tujuan peningkatan kualitas	tes	15
7	Mahasiswa dapat menjelaskan kinerja	a. Kinerja pemakaian	Ceramah, diskusi	Dapat menjelaskan	test	15

	material semasa pemakaian	b. Reaksi korosi dan aus c. Kerusakan akibat radiasi d. Kerusakan karena faktor suhu dan degradasi lingkungan		beberapa penyebab kerusakan material		
8	UTS				Tes tulis	
9	Mahasiswa dapat menguraikan sifat dan karakteristik material polimer	 a. Jenis polimer b. Sifat,kelebihan, kekurangan dari polimer c. Monomer, derajat polimerisasi dan kopolimerisasi 		Dapat mamahami karakteritik material polimer dalam aplikasi yang luas	tes	15
10	Mahasiswa dapat menjelaskan sifat dan karaktetistik material komposit	a. Sifat-sifat komposit b. Sintesa komposit c. Ikatan pada komposit	Ceramah dan diskusi	Dapat menjelaskan dan menguraikan material komposit dan aplikasinya	test	15
11	Mahasiswa dapat menyebutkan karakteristik material logam	a. Fasa pada logam b. Sifat dan karakteristik logam c. Paduan logam	Ceramah dan diskusi	Dapat menjelaskan material logam pada aplikasi yang luas	test	15
	Mahasiswa dapat	a. Sifat dan	Ceramah,	Dapat	test	15

12	menjelaskan sifat-sifat material keramik	karaktetistik keramik b. Proses pengerjaan keramik	diskusi	menjelaskan material keramik		
13	Mahasiswa dapat menjelaskan sifat dan manfaat dari material organik dan anorganik	a. Definisi material organik dan anorganik b. Macam-macam material organik dan anorganik dan ekstraksi c. Sifat dan karakteristik organik dan anorganik	Ceramah, diskusi	Dapat menguraikan klasifikasi material organik dan anorganik	test	15
14	Mahasiswa dapat menguraikan beberapa karakterisasi material dengan menggunakan instrumentasi	Pengenalan instrumentas- instrumen fisika sebagai alat uji material	Ceramah, diskusi	Dapat menjelaskan macan-macam instrumentasi guna pengujian material	test	15
15	Mahasiswa dapat menjelaskan sintesa dan karakteristik thin film	a. Klasifikasi thin film b. Sintesa thin film c. Karakteristik thin film	Ceramah, diskusi	Dapat menguraikan sintesa dan karakteristik thin film	test	15
16	UAS				Tes tulis	

Nama Mata Kuliah : Fisika Sistem Kompleks

Kode Mata Kuliah / SKS : FIS328 / 3(2-2)

Peserta : Mahasiswa Program S1, Mayor Fisika, Semester 6

Deskripsi Mata Kuliah

Mata Kuliah Fisika Sistem Kompleks termasuk mata kuliah lanjut fisika. Materi yang diberikan terkait dengan sifat-sifat fisika sistem kompleks dan penerapan kaidah-kaidah fisika dalam memodelkan sistem biologi dan lingkungan.

Standar Kompetensi

Mahasiswa dapat menerapkan kaidah-kaidah fisika dalam memahami karakteristik sistem kompleks.

Minggu ke	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat : c. Menjelaskan definisi sistem kompleks dan sifat nonlinieritas d. Menjelaskan gejala umum sistem kompleks	 5. Pengantar 6. Definisi sistem kompleks dan nonlinieritas 7. Gejala organisasi- diri dan emergent- behaviour 	Ceramah, diskusi	Dapat menjelaskan definisi sistem kompleks dan contoh- contohnya	Non tes	5
2	Mahasiswa dapat : a. Menjelaskan formulasi dinamika sistem b. Menjelaskan parameter	3. Persamaan diferensial autonomus4. Parameter titik-kritis dan harga	Ceramah, diskusi	Dapat menyelesaikan persoalan dinamika sistem	Tes (PR & UTS)	10

	penting dalam	eigen		autonomus		
	dinamika sistem	5. Contoh-contoh		satu dimensi		
	c. Menjelaskan	sistem autonomus		secara eksak		
	sistem-sistem					
	autonomus				- (
	Mahasiswa dapat:	7. Pengantar		Dapat	Tes (PR &	
3	c. Mentransformas	8. Mengubah sistem	Ceramah, diskusi	menyelesaikan	UTS)	
	ikan sistem	persamaan orde		karakteristik		
	autonmous ke	tinggi menjadi		dinamik dari		
	dalam sistem	sistem orde satu		sistem		
	persamaan	9. Mencari titik-		persamaan		
	diferensial biasa	kritis		diferensial orde		
	satu orde satu.	10. Linierisasi di		satu autonomus		
	d. Menjelaskan	sekitar titik-kritis				
	definisi titik	11. Penentuan				
	kritis	stabilitas titik-				
	e. Menjelaskan	kritis				
	linierisasi	12. Menyelesaikan				
	sistem	dinamika sistem				
	persamaan	sederhana.				10
	diferensial biasa					
	orde satu					
	f. Menjelaskan					
	penentuan					
	stabilitas titik					
	kritis.					
	g. Menyelesaikan					
	problem					
	dinamika sistem					
	sederhana.					
	h. Menjelaskan					
	dinamika sistem					
	dalam formulasi					
	Hamiltonian					
	Mahasiswa dapat:	5. Pengantar.		Dapat	Tes (PR)	
4	c. Menjelaskan	6. Definisi bifurkasi	Ceramah, diskusi	menyelesaikan		
_ '	bifurkasi sistem	7. Membahas		persoalan		
	satu dan dua	contoh dinamika		bifurkasi		5
	variabel	bifurkasi sistem		sistem satu dan		
	d. Menentukan	sederhana.		dua dimensi		
	a. manantukun	beaernana.		add difficien		

5	proses-proses bifurkasi yang mungkin dari sebuah sistem autonomus. e. Memformulasik an persamaan dinamika sebuah sistem fisis sederhana. Memecahkan sistem persamaan dalam point a di atas dan memberikan tafsirannya. Mahasiswa dapat: d. Menjelaskan kemunculan gejala-gejala chaos unik pada sistem kompleks yang bersifat diskrit mau pun kontinu. e. Menentukan ciri- ciri sistem yang dapat mengalami	5. 6. 7. 8.	Pengantar Persamaan Lorenz dan Rossler. Ciri-ciri gejala chaotic sebagai gejala emergent- behaviour. Definisi eksponen Lyapunov. Eksponen Lyapunov untuk	Ceramah, diskusi	persamaan diferensial orde satu autonomus dan memberikan tafsirannya Dapat menyelesaikan karakteristik dinamik persamaan diskrit/kontin u yang dapat mengalami keadaan chaos.	Tes (PR & UTS)	10
	gejala chaos f. Menentukan spektrum eksponen Lyapunov dari		persamaan Lorenz				
6	sistem terkait. Mahasiswa dapat: a. Menjelaskan kemunculan gejala-gejala	6. 7. 8.	Pengantar Definisi gejala solitonik Gejala solitonik	Ceramah, diskusi	Dapat mengidentifika si kehadiran gejala solitonik	Tes (PR & UTS)	10

	solitonik sebagai akibat sifat nonlinieritas b. Menentukan kriteria sistem yang memiliki gejala solitonik.	pada optik dan hidrodinamika		pada sistem sederhana		
7	Review		Ceramah, diskusi			
8	UTS				Tes tulis	
9	Mahasiswa dapat: a. Menjelaskan pemodelan berbasis agen dan prinsip active- walker b. Menjelaskan aturan melangkah bagi agen dan aturan pelansekapan lingkungan	6. Pengantar 7. Prinsip active- walker 8. Aturan melangkah dan aturan pelansekapan lingkungan	Ceramah, diskusi	Dapat menerapkan prinsip active- walker dalam fenomena makroskopik.	Tes (PR)	5
10	Mahasiswa dapat: c. Mendefinisikan agen dan lansekap untuk sistem diskrit sederhana d. Membuat algoritma untuk menganalisa sistem berbasis agen sederhana	4. Dinamika pemetaan logistik acak. 5. Fenomena pejalan kaki	Ceramah, diskusi	Dapat membuat model sederhana berdasarkan prinsip active- walker	Tes (PR & UTS)	10
11	Mahasiswa dapat: Menjelaskan pemodelan berbasis	6. Pengantar 7. Dinamika semut mencari	Ceramah, diskusi	Dapat membuat model biologi/lingkun	Tes (PR & UTS)	10

	agen untuk pada sistem biologi dan lingkungan.	makananan 8. Dinamika pembentukan sungai.		gan sederhana		
12	Mahasiswa dapat: d. Menjelaskan konsep selular otomata. c. Menggunakan formulasi selular otomata untuk kasus aliran fluida sederhana.	5. Pengantar 6. Konsep selular automata 7. Penerapan selular automata aliran sungai	Ceramah, diskusi	Dapat menerapkan konsep selular automata dalam fenomena makroskopik.	Tes (PR)	5
13	Mahasiswa dapat: Membuat algoritma dinamika sistem berbasis selular otomata untuk kasus sederhana.	Penyelesaian algoritma untuk kasus transport sedimen pada sungai.	Ceramah, diskusi	Dapat membuat model sederhana berdasarkan konsep selular automata	Tes (PR & UTS)	15
14	Mahasiswa dapat: Menjelaskan perkembangan terkini kajian sistem kompleks.	Perkembangan mutakhir kajian sistem kompleks	Ceramah, diskusi	Mengetahui perkembangan terkini kajian sistem kompleks	Non tes	5
15	Review		Ceramah, diskusi			
16	UAS				Tes tulis	

Nama Mata Kuliah : Fisika Statistik Kode Mata Kuliah / SKS : FIS325 / 3(2-2)

Peserta : Mahasiswa Program S, Mayor Fisika, Semester 5

Deskripsi Mata Kuliah

Mata kuliah ini merupakan mata kuliah pokok fisika yang membekali mahasiswa dengan pengetahuan mengenai pendekatan statistik yang diperlukan dalam menjelaskan berbagai fenomena di alam ini, baik yang bersifat mikroskopik maupun makroskopik. Pendekatan statistik yang dilakukan mengikuti klasifikasi partikel di alam ini yang mengikuti fungsi distribusi yang berbeda yaitu Bose-Einstein, Fermi-Dirac, dan Maxwell-Boltzmann. Penurunan besaran termodinamik serta aplikasi dari masing-masing fungsi distribusi tersebut dibahas secara detail dalam kuliah ini.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa dapat memahami dan mampu menggunakan berbagai pendekatan statistik yang dituangkan dalam berbagai macam fungsi distribusi partikel seperti Bose-Einstein, Fermi-Dirac, serta Maxwell-Boltzmann, untuk menjelaskan berbagai fenomena fisis di alam.

Referensi;

- [1] F.W. Sears, G.L. Salinger, *Thermodynamics, Kinetics Theory, and Statistical Thermodynamics*, 3rd Ed, Addison Wesley Publishing Co., 1986
- [2] Daniel J. Amit, Yosef Verbin, Statistical Physics: An Introductory Course, World Scientific, Singapore, 1999

Pekan ke	Bahan kajian	Bentuk Pembelajaran	Kemampuan Akhir Yang Diharapkan	Indikator	Penilaian	Bobot Nilai %
1	Teori Kinetik Gas	Ceramah Diskusi, kuis	Mahasiswa mampu memahami perumusan dasar teori kinetik gas	Kemampuan menyelesaikan problem yang terkait dengan teori kinetik gas	Tes, Non tes	3%

2	Sifat dinamik gas dan Fenomena transport	Ceramah, Aktivitas Grup (mini whiteboard activity)	Mahasiswa mampu : a. Memahami besaranbesaran dinamik gas, seperti difusi, viskositas, koefisientransport gas, jalanbebas rata-rata. b. aktif bekerjasamadalam suatu kelompokuntuk menyelesaikanproblem yangdiberikan	Kemampuan memahami fenomena dan menyelesaikan problem yang terkait dengan Fenomena transport	Tes , Non tes	3%
3.	Pendekatan Statistik pada Sistem Termodinam ik	Ceramah Diskusi, kuis	Mahasiswa a. mampu memahami pentingnya penggunaan pendekatan statistik dalam mempelajari termodinamika. b. mampu memahami pengertian partikel terbedakan dan partikel tak terbedakan	Kemampuan memahami perlunya penggunaan metoda ststistik dalam menyelesaikan problem dari banyak partikel	Tes Non tes	3%
4	Pendekatan Statistik pada Sistem Termodinam ik	Ceramah, Aktivitas Grup (mini whiteboard activity	Mahasiswa mampu: a. memahami pengertian microstate, macrostate, fungsi partisi dan kaitannya dengan entropy dan probabilitas termodinamik b. aktif bekerjasama dalam suatu kelompok untuk menyelesaikan problem yang diberikan.	Kemampuan untuk memahami berbagai macam terminology dalam Fisika Statistik seperti, tingkat energi, microstate, macrostate, degeneracy, occupation number, fungsi partisi, probabilitas termodinamik	Tes Non Tes	3%
5 dan 6	Pendekatan statistik pada Sistem	Ceramah Diskusi, kuis	Mahasiswa mampu memahami dan menjelaskan kembali	Kemampuan untuk memahami perbedaan dari	Tes Non tes	5%

	partkel klasik dan kuantum		perumusan distribusi Maxwell-Boltzmann.	fungsi distribusi Bose-Einstein, Fermi-Dirac, atau Maxwell Boltzmann		
7.	Besaran- besaran Termodinam ik dalam pendekatan statistik	Ceramah Diskusi, kuis	Mahasiswa mampu memahami dan menurunkan kembali perumusan besaran besaran termodinamik (Relasi Maxwell) menggunakan pendekatan termodinamika statistik	Kemampuan untuk menurunkan kembali besaran-besaran seperti entropi, energy bebas (Gibbs dan Helmholtz), entalpi, potensial kimia, dan lainlain menggunakan fungsi distribusi B-E, F-D, M-B		3%
8			UTS		Tes tulis	30%
9	Pendekatan termodinami ka statistik untuk sistem gas	Ceramah Diskusi, kuis	Mahasiswa mampu (a) Memahami bahwa semua fungsi distribusi pada akhirnya harus dapat kembali mengkonfirmasi persamaan Gas Ideal (b) Aktif bekerjasama dalam suatu kelompok untuk menyelesaikan problem yang diberikan.	Kemampuan untuk (a) Menurunkan kembali persamaan gas ideal dari fungsi distribusi B-E, F-D, dan M-B. (b) memahami prinsip ekipartisi energy (c) Memahami Penurunan Persamaan untuk osilator linear tekuantisasi dan panas jenis gas diatomik		4%

10 &11	Pendekatan statistik pada Sistem partkel Kuantum (Bose- Einstein)	Ceramah Diskusi, kuis	Mahasiswa mampu : a. memahami dan menjelaskan kembali perumusan distribusi Bose-Einstein dan perbedaannya dengan system distribusi lainnya b. aktif bekerjasama dalam suatu kelompok untuk menyelesaikan problem yang diberikan.	Kemampuan untuk memahami lebih dalam serta menerapkan penggunaan fungsi distribusi B-E pada problem-problem terkait. Seperti gas foton pada blackbody radiation, dan gas Helium	Tes Non tes	6%
12, 13 & 14	Pendekatan statistik pada Sistem partkel Kuantum (Fermi- Dirac)	Ceramah Diskusi, kuis	Mahasiswa mampu : a. memahami dan menjelaskan kembali perumusan distribusi Fermi-Dirac dan perbedaannya dengan system distribusi lainnya b. aktif bekerjasama dalam suatu kelompok untuk menyelesaikan problem yang diberikan.	Kemampuan untuk memahami lebih dalam serta menerapkan penggunaan fungsi distribusi F-D pada problem-problem terkait, seperti gas electron pada logam, perilaku kemagnetan bahan, efek termionik dan fotolistrik, kesetimbangan termodinamik pada bintang katai putih, pemodelan kemagnetan bahan dengan Model Ising, dan lain-lain	Tes Non tes	10%
15	Review seluruh materi Fisika Statistik	Ceramah Diskusi, kuis	Mahasiswa mampu memperoleh gambaran secara umum mengenai pentingnya peran termodinamika statistic dalam menjelaskan berbagai macam	Kemampuan menjelaskan secara umum mengenai perlunya penguasaan fisika statistik (termodinamika		

		fenomena di alam, baik dalam skala mikroskopis maupun makroskopis.	statistik) dalam menjelaskan berbagai fenomena alam serta pemanfaatannya dalam teknologi modern.		
16		U A S		Tes tulis	30%

Nama Mata Kuliah: Mikroprosesor dan Antarmuka

Kode Mata Kuliah / SKS : FIS357 / 3(2-3)

Peserta : Mahasiswa Program S1 Mayor FISIKA, Semester 5

Deskripsi Mata Kuliah

Mata Kuliah ini membahas Mikroprosesor sebagai bagian utama dari sistem komputer yang mengorganisasikan semua operasi yang terjadi di dalam komputer. Pembahasan meliputi arsitektur internal mikroprosesor, pemprograman dengan bahasa assembly dan antar muka IO yang berguna untuk membangun aplikasi berbasis sistem mikroprosesor. Sebagai acuan digunakan mikroprosesor Intel 80x86 yang banyak digunakan dalam dunia usaha dan pendidikan di Indonesia. Pengembangan teknik antar-muka IO paralel dengan PPI 8255 dan pembangunan sistem minimem dengan mikrokontroler AT89C51, AT mega8535 dan Arduino juga turut dibahas.

Standar Kompetensi

Setelah mengikuti kuliah ini mahasiswa akan dapat menggunakan konsep dan rangkaian dari sistem digital untuk menyelesaikan permasalahan fisis dan sebagai landasan untuk dapat memahami sistem komputer digital serta teknik pengantar-mukaannya untuk sistem kontrol dan data akuisisi pada sistem instrumentasi.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1 & 2	Mahasiswa dapat : memahami cara kerja komputer berdasarkan prinsip kerja rangkaian digital.	Mesin SAP-1	Ceramah, diskusi,	Dapat memahami 1. Arsitektur dan Perangkat Instruksi 2. Pemprograman SAP-1 3. Siklus Pengambilan dan Eksekusi 4. Mikroprogram SAP-1	Tes	10
3	Mahasiswa dapat memahami cara kerja mikroprosesor 8 bit	Mikroprosesor 8085	Ceramah, diskusi,	Dapat memahami 1. Arsitektur 2. Diagram Penyemat 3. Sistem Minimem	Tes , Non tes	5

	8085			Pengambilan dan pelaksanaan Instruksi Diagram Pewaktuan		
4	Mahasiswa dapat memahami cara kerja mikroprosesor 16 bit 8086.	Mikroprosesor 8086	Ceramah, diskusi,	Dapat memahami 1. Arsitektur (BIU dan EU) 2. Diagram Penyemat 3. Mode Minimem dan Mode Maksimem 4. Diagram Pewaktuan 5. Pengorganisasian memori 6. Penunjukan lokasi alamat memori (segmentasi)	tes	5
5 & 6	Mahasiswa dapat memprogram mikroprosesor 8086 dengan mengenal instruksi-instruksi yang dapat dieksekusinya.	Set Instruksi 8086	Ceramah, diskusi,	Dapat memahami 1. Mode Pengalamatan 2. Instruksi pemindahan data 3. Instruksi Aritmetika dan logika 4. Instruksi kontrol program 5. Pemprograman bahasa Assembly	tes	10
7	Mahasiwa dapat memahami proses evolusi yang terjadi pada keluarga mikroprosesor Intel 80x86 dari 8,16,32,64 bit	Evolusi Mikroprosesor Intel 80x86	Ceramah, diskusi,	Dapat memahami 1.Tabel evolusi Intel 80x86 (Pentium II) 2. Register 8,16,32 bit 3. Real dan Protected Mode 4. Super pipelining 5. paralel processing 6. RISC dan CISC	tes	10
8	UTS				Tes tulis	

9	Mahasiswa dapat memahami antarmuka antara mikroprosesor dan memori	Antarmuka Memori	Ceramah, diskusi,	Dapat memahami antarmuka memori 8, 16,32, dan 64 bit	tes	10
10	Mahasiswa dapat memahami konsep anatarmuka I/O baik paralel maupun serial	Dasar-dasar anatarmuka I/O	Ceramah, diskusi,	Dapat memahami konsep antarmuka I/O seri dan paralel serta teknik penjadwalan polling, interup dan DMA	tes	5
11	Mahasiswa dapat memahami dan menggunakan port I/O Paralel komputer	Antarmuka I/O Paralel	Ceramah, diskusi,	Dapat memahami port printer, PPI 8255 serta aplikasi pada ADC/DAC motor stepper LCD	tes	10
12	Mahasiswa dapat memahami dan menggunakan port serial komputer	Antarmuka I/O Serial	Ceramah, diskusi,	Dapat memahami protokol RS232, USART 8251, USB	tes	10
13 & 14	Mahasiswa dapat membangun sistem berdasarkan mikrokontroler yang merupakan single-chip komputer.	Mikrokontroler AT8951	Ceramah, diskusi,	Dapat memahami: 1. Arsitektur dan Set Instruksi AT89C51 2. Port Paralel AT89C51 3. Port Serial AT89C51	tes	25
15	Mahasiswa dapat mendapatkan informasi terbaru mengenai mikon yang ada di pasaran.	Perkembangan Mikrokontroler terbaru	Ceramah, diskusi,	AT mega 8535, Arduino, TINY	Non tes	
16	UAS				Tes tulis	

Nama Mata Kuliah : Nanofisika Kode Mata Kuliah / SKS : FIS443 / 2(2-0)

Peserta : Mahasiswa Program S1 Fisika, Mayor Fisika, Semester 7

Deskripsi Mata Kuliah

Mata kuliah Nanofisika diberikan pada semester 7 dengan tujuan untuk memahami konsep-konsep dasar nanosains dan nanoteknologi yang meliputi: Dimensi Nanometer, Efek Ukuran pada Sifat Material, Sintesis dan Karakterisasi Material Nanostruktur, Kawat Nano, Karbon Nanotube, Material Nanokomposit, Aplikasi bidang Biomedis dan Komputer.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat memahami prinsip-prinsip dasar nanosains serta aplikasinya dalam berbagai bidang.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1	Mahasiswa dapat : Mengetahui pengertian nanoteknologi	-Definisi -Mengapa Nano -Sejarah - Aplikasi	Diskusi, SCL	Dapat menjelaskan pengertian nanoteknologi	Non tes	5
2	Mahasiswa dapat : Memahami konsep- konsep dasar nanosains dan nanoteknologi	 Mekanika Klasik Mengapa Mekanika Kuantum ? Quantum wire, well, Dot Aplikasi 	Ceramah, SCL	Dapat memahami teori-teori dasar fisika nanosains	Non tes	10
3	Mahasiswa dapat : Memahami perubahan sifat	- Nanomaterial - Sifat Mekanik - Sifat Optik	Ceramah, diskusi,	Dapat membedakan perubahan sifat	Non tes	15

	material terhadap efek ukuran	- Konduktivitas Listrik - Sifat Magnet		material berdasarkan tinjauan mekanik, optik, listrik dan magnet		
4 &5	Mahasiswa dapat : Mempelajari dan menjelaskan sintesis material nano dengan beberapa metode	 Lithography Metode Epitaxial Chemical Vapor Deposition Pulsed laser Vaporization Electrochemical Deposition Wet chemical methode Ultrasonikasi Metode Spray Pemanasan sederhana dalam larutan polimer 	Ceramah, diskusi,	Dapat menjelaskan metode sintesis dalam pembuatan nanomaterial	Non tes	15
6&7	Mahasiswa dapat : Memahami prinsip- prinsip karakterisasi nanomaterial	 Spektroskopi Optik Scanning Electron Microscopy (SEM) Transmission Electron Microscopy (TEM) Atomic Force Microscopy (AFM) Metode Scherrer 	Ceramah, diskusi,	Dapat menjelaskan karakterisasi nanomaterial	Non tes	10
8	UTS				Tes tulis	
9	Mahasiswa dapat : Memahami prinsip dasar Kawat Nano	Sifat magnetSifat termoelektrikSifat listrikAplikasi sifat listrikkawat nano	Ceramah, diskusi,	Dapat menjelaskan sifat magnet, listrik dan aplikasi kawat nano	Non tes	10
10	Mahasiswa dapat : Memahami prinsip dasar Karbon Nanotube	Beberapa sifat CNTSintesis CNTKarakterisasi CNTAplikasi	Ceramah, diskusi, Ceramah, diskusi,	Dapat menjelaskan sifat, sintesis dan karakterisasi kaarbon nanotube	Non tes	10

	Mahasiswa dapat:	Nanokomposit pada :	Ceramah,	Dapat menjelaskan	Non tes	10
11& 12	Memahami karakter	- Tulang	diskusi,	sifat dari berbagai		
	dari beberapa	- Serat Karbon		material		
	material	- Logam Polimer		nanokomposit		
	nanokomposit	- Logam-Bulk dan				
		Keramik				
		- Polimer				
		Semikonduktor				
	Mahasiswa dapat :	- Minuman Nutrisi	Ceramah,	Dapat menjelaskan	Non tes	5
13	Memahami konsep	- Produk Kemasan	SCL	peranan		
	nanoteknologi	- Tambahan		nanoteknologi		
	dalam bidang	pangan		dalam bidang		
	pangan dan	- Pertumbuhan		pangan dan		
	pertanian	tanaman		pertanian		
	Mahasiswa dapat :	- Imaging	Ceramah,	Dapat menjelaskan	Non tes	5
14	Memahami konsep	- Sistem	SCL	penerapan		
	nanoteknologi	penghantaran obat		nanoteknologi		
	dalam bidang	- Terapi Gen		dalam bidang		
	biomedis	- Perbaikan sel		biomedis		
	Mahasiswa dapat :	- Kisi-kis nanokristal	Ceramah,	Dapat menjelaskan	Non tes	5
15	Memahami konsep	- Penyimpanan data	SCL	penerapan		
	nanoteknologi	- Perubahan data		nanoteknologi		
	dalam bidang	- Proses informasi		dibidang		
	komputer			komputer		
	**				m 11	
16	UAS				Tes tulis	

Nama Mata Kuliah : Optika dan Fotonika

Kode Mata Kuliah / SKS : FIS330 / 3(2-3)

Peserta : Mahasiswa Program S1, Mayor Fisika, Semester 6

Deskripsi Mata Kuliah

Mata Kuliah Optika dan Fotonika termasuk mata kuliah lanjut fisika. Materi yang diberikan terkait dengan sifat-sifat material dielektrik ketika berinteraksi dengan foton serta pemanfaatannya.

Standar Kompetensi

Mahasiswa dapat menjelaskan interaksi foton dengan material dan pemanfaatannya dalam teknologi.

Minggu Ke	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1 & 2	Mahasiswa dapat : e. Menjelaskan definisi bidang optika f. Menjelaskan penggunaan teori elektromagnetik terkait. g. Menyelesaikan persoalan perambatan gelombang pada medium dielektrik	 Batasan optika Gelombang elektromagnetik Perambatan gelombang pada medium dielektrik 	Ceramah, diskusi		Tes, non Tes	10
3 & 4	Mahasiswa dapat : a. Menyelesaikan persoalan pandu gelombang pada medium dielektrik dan serat optik b. Menyelesaikan persoalan resonator optik	Pandu gelombang optikResonator optik	Ceramah, diskusi		Tes, non Tes	20
5 & 6	Mahasiswa dapat: i. Menjelaskan	- Komunikasi	Ceramah, diskusi		Tes, non	

	penggunaan	serat optik		Tes	20
	pemanfaatan pandu	- Nonlinieritas		103	20
	gelombang dan serat	optik			
	optik dalam sistem	орик			
	_				
	komunikasi optik.				
	j. Menjelaskan efek				
	nonlinieritas pada sistem				
	optik.				
7	Review				
/	Keview				
0	UTS				
8	0.1.5				
	Mahasiswa dapat:				
9 & 10	g. Menjelaskan definisi	- Dinamika foton	Ceramah, diskusi		
9 & 10	bidang fotonika	pada level	Ceraman, diskusi	Tes, non	
	h. Menjelaskan dinamika	atomik		Tes, non	15
	foton pada level atomik	- Gejala luminensi		res	
	_	_			
	i. Menjelaskan gejala	cahaya			
	luminensi cahaya.				
0	Mahasiswa dapat:	D ' ' 1	Q 1		
11 & 12	e. Menjelaskan prinsip dasar	Prinsip laserInteraksi foton	Ceramah, diskusi	T.	
	laser dan penguatannya		diskusi	Tes, non	
	f. Menjelaskan interaksi	dengan material		Tes	
	antara foton dengan	- Prinsip dasar			15
	material	fluorsensi dan			
	g. Menjelaskan prinsip dasar	fosforesensi			
	fluoresensi dan				
	fosforesensi.				
1001:	Mahasiswa dapat:	0:1-++:1-	G	Тод то	
13 & 14	e. Menjelaskan sifat optik material semikonduktor.	- Sifat optik semikonduktor	Ceramah, diskusi	Tes, non	
				Tes	
	f. Menjelaskan karakteristik fotodioda.	- Karakteristik dan aplikasi			
		fotodioda			
	g. Menjelaskan	Totodioda			20
	pemanfaatan				
	karakteristik fotodioda				
	dalam sistem sensor.				
	h. Menjelaskan piranti				

	fotonik sebagai saklar optik.			
15	Review			
16	UAS		Tes tulis	

Nama mk : Sensor dan Transduser

Kode mk /sks : FIS 455

Peserta : 70 orang

Deskripsi Mata Kuliah

Kuliah ini diberikan dengan materi : Terminologi Sensor, Sensor Pergeseran, Stress dan Strain, Sensor Gaya dan Torka, Sensor Tekanan, Sensor getaran dan percepatan, Sensor Aliran Fluida, Sensor Temperatur, Sensor Cahaya, Sensor Gerak, Sensor Akustik, Biosensor, Sensor Kimia dan Sensor Proximity

Standar Kompetensi

Setelah menyelesaikan kuliah ini, mahasiswa dapat menyebutkan jenis-jenis sensor dan dapat menjelaskan prinsip kerja sensor serta dapat menerapkan pada sistem instrumentasi.

Minggu	Kemampuan Akhir	Dukunga	Bahan Kajian	Bentuk	Indikator	Penilaian	Bobot
Ke	Yang Diharapkan	n thd CP		Pembelajara			Nilai
				n			(%)
1	Mahasiswa dapat	CP4	- Kontrak perkuliahan	Putar Film	Mahasiswa	tes dan	
	mendeskripsikan	CP7	- Silabus dan ruang	Diskusi	dapat	non tes	
	sensor dan transducer	CP/	lingkup perkuliahan	Diskusi	mengetahui		
	serta penerapannya pada sistem		- Perkembangan		peranan sensor		

	instrumentasi		teknologi sensor		dan transduser pada suatu instrumen		
2	Mahasiswa dapat menjelaskan definisi, klasifikasi dan terminologi sensor	CP4 CP8 CP10	- Definisi, klasifikasi dan Terminologi Sensor	Ceramah, latihan soal dan diskusi	Mahasiswa dapat menentukan jenis sensor dan terminologi sebuah sensor	Quiz 1 proyek akhir	
3	Mahasiswa mampu menjelaskan prinsip kerja sensor posisi dan perpindahan untuk jenis sensor resistif, kapasitif dan induktif	CP1 CP4 CP7	- Sensor Perpindahan (sensor resistif, kapasitif dan induktif)	Ceramah, diskusi,	Mahasiswa dapat merancang sebuah sensor perpindahan	Quiz 2 dan Tugas 1 proyek akhir	
4	Mahasiswa mampu menjelaskan prinsip kerja sensor Gaya dan Torka dan membuat sistem pengukuran menggunakan sensor gaya	CP1 CP4 CP7	 - Metoda pengukuran - Gaya - Sistem Pembebanan - Mekanik - Load Cell strain - Gage& Piezoelectric - Sistem Hidrolik dan - pneumatik - Pengukuran Torka 	Ceramah, diskusi,	Mahasiswa dapat merancang sensor untuk mengukur gaya dan tekanan	Quiz 3 dan Tugas 2 proyek akhir	

5	Mahasiswa mampu menjelaskan prinsip kerja Sensor Tekanan dan membuat sistem pengukuran menggunakan sensor tekanan	CP1 CP4 CP7	 Tekanan Statik dan dinamik Sistem transducer pengukuran tekanan Sensor tipe gravitasi, elastis dan diafraghma Pengukuran tekanan tinggi dan rendah 	Ceramah dan diskusi	Mahasiswa dapat merancang sistem pengukuran menggunakan sensor mengukur gaya dan tekanan	Quiz 4 dan Tugas 3 proyek akhir
6	Mahasiswa mampu menjelaskan prinsip kerja Sensor aliran fluida dan membuat sistem pengukuran menggunakan sensor aliran fluida	CP1 CP4 CP7	- Karakteristik aliran fluida - Flow meter menggunakan prinsip venturi, flow nozel dan orifice - Flowmeter magnetic - Pengukuran kecepatan aliran - Thermal anemometri - Laser Doppler dan ultrasonic anemometri	Ceramah dan diskusi	Mahasiswa dapat merancang instumentasi yang bisa mendeteksi aliran	Quiz 5 dan Tugas 4 proyek akhir
7	Mahasiswa mampu menjelaskan prinsip kerja Sensor temperatur dan membuat sistem pengukuran menggunakan sensor temperatur	CP1 CP2 CP4 CP7	Elemen termoresistiftermokopelSensor temperatur semikonduktorPyrometry	Ceramah dan diskusi	Mahasiswa dapat merancang instumentasi yang bisa mendeteksi aliran	Quiz 6 dan Tugas 5 proyek akhir

	Ujian Tengah Semester					Tes Tulis
8	Mahasiswa mampu menjelaskan prinsip kerja dan jenis Sensor elektro optik dan membuat sistem pengukuran menggunakan sensor elektro optik	CP1 CP4 CP7	 Foto sensor sensor fotoemisif Sensor Foto Konduktif Sensor Fotovoltaik Sensor Fotodioda Sensor Foto transistor 		Mahasiswa dapat merancang instumentasi pengukuran menggunakan sensor cahaya	Quiz 7 dan Tugas 6 proyek akhir
9	Mahasiswa mampu menjelaskan prinsip kerja dan jenis Sensor akustik dan membuat sistem pengukuran menggunakan sensor akustik	CP1 CP4 CP7	 Karakteristik suara Parameter akustik dasar Hubungan Psycho akustik Metode pengukuran akustik 	Ceramah, diskusi,	Mahasiswa dapat merancang instumentasi pengukuran menggunakan sensor akustik	Quiz 8 dan Tugas 7 proyek akhir
10	Mahasiswa mampu menjelaskan prinsip kerja dan jenis Sensor serat optik dan membuat sistem p engukuran menggunakan sensor serat optik	CP1 CP4 CP7	 Serat Optik Propagasi cahaya dalam serat optik Klasifikasi serat optik Sensor Instrinsik dan ekstrinsik Modulasi dalam serat optik 	Ceramah demo diskusi	Mahasiswa dapat merancang instumentasi pengukuran menggunakan sensor serat optik	Quiz 9 dan Tugas 8 proyek akhir

11	Mahasiswa mampu menjelaskan prinsip kerja dan jenis Sensor kimia.	CP1 CP4 CP7	 Pengertian sensor kimia Sensor resistif Sensor Kapasitif Sensor Thermal Sensor Optik Sensor Massa 	demo diskusi	Mahasiswa dapat merancang instumentasi pengukuran menggunakan sensor kimia	Quiz 10 dan Tugas 9 proyek akhir
12	Mahasiswa mampu menjelaskan prinsip kerja dan jenis Sensor kimia dan membuat sistem pengukuran menggunakan sensor kimia	CP1 CP4 CP7	sensor elektrokimiaSensor MOSSensor ISFET	Diskusi	Mahasiswa dapat merancang instumentasi pengukuran menggunakan sensor kimia	Quiz 11 dan Tugas 10 proyek akhir
13	Mahasiswa mampu menjelaskan prinsip kerja dan jenis Bio Sensor	CP1 CP4 CP7	 Definisi Biosensor Komponen Biosensor Prinsip Biosensor Klasifikasi Biosensor 		Mahasiswa dapat merancang instumentasi pengukuran menggunakan Bio Sensor	Quiz 12 dan Tugas 11 proyek akhir
14	Mahasiswa mampu menjelaskan prinsip kerja dan jenis Sensor Proximity	CP1 CP4 CP7	 Sensor Prosimity (SP) kapasitansi SP Induksi SP magnetik SP ultrasonik SP microwave SP Light 		Mahasiswa dapat merancang instumentasi pengukuran menggunakan sensor	Quiz 13 dan Tugas 12 proyek akhir

		Proximity		
U A S			Tes tulis	

Nama mk : TUGAS AKHIR 1 Kodemk/sks: FIS493/4(0-8)

Peserta: mhs program \$1, mayor fisika, sm 7 atau 8.

Deskripsi Mata Kuliah

Mata kuliah Tugas Akhir adalah mata kuliah penutup untuk program S1, dimana mahasiswa dibimbing oleh Dosen melakukan penelitian baik teori maupun eksperimen. Mahasiswa menuliskan rencana penelitiannya kemudian dipresentasikan (kolokium), menuliskan hasil penelitiannya (skripsi) kemudian dipresentasikan (seminar).

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat secara mandiri melakukan penelitian dan menulis laporan ilmiah.

Minggu Ke	Dukungan Terhadap CP*	Kemampuan Akhir Yang Diharapkan	Bahan Kajian	Bentuk Pembelajaran	Indikator	Penilaian	Bobot Nilai (%)
1 & 2	CP 9 CP 10	Mahasiswa dapat : Mencari pustaka (literatur) berkaitan erat dengan topik/judul penelitiannya.	Pustaka (literatur) sesuai dengan topik penelitiannya	SCL (observasi, diskusi)	Mahsiswa mendapatkan hard/soft copy pustaka (literatur) yang berkaitan erat dengan judul penelitiannya.	Non Tes	5
3 & 4	CP4 CP7 CP9 CP 10	Mahasiswa dapat : c. Memahami pustaka d. Memahami metoda penelitiannya	Metoda penelitian	SCL (observasi, diskusi)	Dapat menjelaskan metoda penelitiannya.	Non Tes	5

5 & 6	CP 7 CP 10	Mahasiswa dapat : Melengkapi bahan/alat yang akan digunakan.	Bahan dan alat penelitian	SCL (observasi, diskusi)	Mahasiswa telah mendapatkan bahan dan alat yang akan digunakan	Non Tes	5
7	CP3 CP5 CP 10	Mahasiswa dapat : Melakukan presentasi mengenai proposal penelitiannya	kolokium	SCL (diskusi, presentasi)	Mahasiswa telah melakukan presentsi proposal penelitian untuktugas akhir.	Non Tes	10
8, 9 & 10	CP3 CP7 CP 10	Mahasiswa dapat : a. Melakukan observasi b. Memperoleh data hasil observasi	Pengambilan data	SCL (diskusi, observasi)	Mahasiswa telah melakukan observasi dan mencatan hasil observasinya di logbook.	Non Tes	10
11 & 12	CP3 CP7 CP9	Mahasiswa dapat : a. Melakukan observasi b. Memperoleh data hasil observasi c. Menulis lapora ilmiah	Pengambilan data dan penulisan laporan ilmiah		Mahasiswa telah melakukan observasi dan mencatan hasil observasinya di logbook, mulai menulis skripsi.	Non Tes	10

	CP 10						
13 & 14	CP3 CP7 CP 10	Mahasiswa dapat : Menganalisis data hasil observasi dan menulis laporan ilmiah	Penulisan laporan ilmiah	SCL (analisis, diskusi, menulis)	Mahasiswa telah melakukan analisis dan menulis skripsi.	Non Tes	20
15 & 16	CP3 CP6 CP 10	Mahasiswa dapat : Membuat kesimpulan dari hasil penelitian	Karya tulis ilmiah (skripsi)	SCL, diskusi	Mahasiswa telah melakukan analisis, sintesis, dan menyelesaikan skripsi.	Non Tes	20
17 & 18	CP3 CP5 CP7 CP 10	Mahasiswa dapat : Melakukan presentasi hasil penelitian	seminar	SCL (diskusi, presentasi)	Mahasiswa dapat menjelaskan semua hasil penelitiannya dalam forum se	Non Tes	15

^{*}CP : capaian pembelajaran (learning outcome)

Nama mk : TUGAS AKHIR 2 Kodemk/sks: FIS494/2(0-4)

Peserta: mhs program S1, mayor fisika, sm 7 atau 8.

Deskripsi Mata Kuliah

Mata kuliah Tugas Akhir 2 adalah mata kuliah penutup untuk program S1, dimana mahasiswa mempersiapkan ujian (sidang) sarjana. Dalam pelaksanaannya mahsiswa dapat dibimbing oleh 3 orang dosen, masing-masing membimbing mahasiswa dalam mendalami konsep satu materi matakuliah dasar (mekanika/gelombang/termodinamika/elektromagnetika/fisika modern/fisika kuantum). Mahasiswa diuji secara lisan untuk 3 matakuliah dalam forum sidang sarjana.

Standar Kompetensi

Setelah menyelesaikan mata kuliah ini mahasiswa diharapkan dapat secara komprehensip memahami dan menjelaskan materi matakuliah dasar fisika.

Prosedur Pelaksanaan

- 1. Mahasiswa S1 mayor Fisika ipb yang berhak untuk menempuh sidang sarjana adalah:
 - a. telah lulus dari semua mata kuliah (kecuali mk Tugas Akhir 2)
 - b. IPK > 2.0
 - c. terdaftar sebagai mahasiswa aktif pada semester tersebut
 - d. tidak terkena sangsi akademik
- 2. Mahasiswa dapat melakukan konsultasi mengenai materi yang akan diujikan.
- 3. Departemen fisika menetapkan jadwal ujian (sidang) sarjana.
- 4. Pada jadwal yang telah ditetapkan, mahasiswa diuji (selama sekitar 2 jam didalam ruangan tertutup) oleh 3 orang dosen penguji.
- 5. Pada akhir ujian, dosen penguji dapat memutuskan bahwa mahasiswa dinyatakan lulus atau belum lulus (harus ujian ulang, seminggu kemudian).
- 6. Dosen penguji menyerahkan nilai Tugas Akhir 2 ke sekretariat.

Bogor 01 Maret 2018 Ketua Departemen

Dr. Akhiruddin, M.Si 196609071998021006