
Domain Decomposition Methods for
Partial Differential Equations

David E. Keyes
david.keyes@columbia.edu

Department of Applied Physics & Applied Mathematics
Columbia University

Happy Birthday, Felix Hausdorf!
Developed concept of “Hausdorf”
dimension in attempt to apply
measures to what we now call
fractals, such as the Koch curve
(below), whose perimeter has
dimension 1.26…

Born 8 Nov 1868 in Breslau,
Germany (now Wroclaw, Poland)

Died 26 Jan 1942 in Bonn,
Germany

Princeton University, 8 November 2004

Happy 90th Birthday, George Dantzig!

“The tremendous power of the simplex
method is a constant surprise to me.”-
George Dantzig

“If one would take statistics about which
mathematical problem is using up most
of the computer time in the world, then ...
the answer would probably be linear
programming.” - Laszlo Lovasz

“For inventing linear programming and
discovering methods that led to wide-
scale scientific and technical
applications to important problems in
logistics, scheduling, and network
optimization, and to the use of computers
in making efficient use of the
mathematical theory. – National Medal
of Science citation by Jimmy Carter

Princeton University, 8 November 2004

Born 8 Nov 1914 in Portland, OR

Invented Simplex Method, 1947
c/o “History of Mathematics” on-line archive

Definition and motivation

Domain decomposition (DD) is a “divide and
conquer” technique for arriving at the solution of
problem defined over a domain from the solution of
related problems posed on subdomains
Motivating assumption #1: the solution of the
subproblems is qualitatively or quantitatively
“easier” than the original
Motivating assumption #2: the original problem does
not fit into the available space
Motivating assumption #3: the subproblems can be
solved with some concurrency

Princeton University, 8 November 2004

Remarks on definition
“Divide and conquer” is not a fully satisfactory
description

“divide, conquer, and combine” is better
combination is usually through iterative means

True “divide-and-conquer” (only) algorithms are
rare in computing (unfortunately)
It might be preferable to focus on “subdomain
composition” rather than “domain decomposition”

generalizes to subproblem composition for multiphysics

Princeton University, 8 November 2004

We often think we know all about “two” because two is “one and
one”. We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)

Remarks on definition, cont.
Domain decomposition has generic and specific senses
within the universe of parallel computing

generic sense: any data decomposition (considered in contrast
to task decomposition)
specific sense: the domain is the domain of definition of an
operator equation (differential, integral, algebraic)

In general, the process of constructing a parallel
program consists of (see J. P. Singh’s book ☺):

Decomposition into tasks
Assignment of tasks to processes
Orchestration of processes

Communication and synchronization

Mapping of processes to processors

PDE-type domain decomposition
leads to bulk synchronous, SPMD
codes, with mostly near-neighbor
communication, with some global
reductions and small global tasks

Princeton University, 8 November 2004

Plan of presentation

Imperative of domain decomposition (DD) for
terascale computing
Basic DD algorithmic concepts

Schwarz
Schur
Schwarz-Schur combinations

Basic DD convergence and scaling properties
Some research agendas in DD

Jacobian-free Newton-Krylov-Schwarz
Nonlinear Schwarz

Princeton University, 8 November 2004

Princeton University, 8 November 2004

Prime sources for domain decomposition
1992 1997

+ O. B . Widlund and A. Toselli (2004)

2001

Other sources for domain decomposition

Princeton University, 8 November 2004

+ misc proceedings volumes, 1988-2004

1992
1994 1995

Princeton University, 8 November 2004

Why care? Recent high-end systems!

Columbia, NASA, 43 Tflop/s

26 Oct 2004

BlueGene/L, LLNL, 71 Tflop/s

4 Nov 2004

June 2002

Earth Simulator, Japan, 36 Tflop/s SX-8, Japan, 58 Tflop/s

20 Oct 2004

“High performance computing is the backbone of the nation’s science and
technology enterprise” – Energy Secretary Spencer Abraham

Other platforms for high-end simulation
DOE’s ASC roadmap
is to go to 100
Teraflop/s by 2005
Use variety of
vendors

Compaq
Cray
Intel
IBM
SGI

Rely on commodity
processor/memory
units, with tightly
coupled network
Massive software
project to rewrite
physics codes for
distributed shared
memory???

Princeton University, 8 November 2004

Algorithmic requirements from architecture

Must run on physically distributed memory units
connected by message-passing network, each serving
one or more processors with multiple levels of cache

“horizontal” aspects “vertical” aspects

T3E

Princeton University, 8 November 2004

Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these

Domain decomposition also “natural”
for software engineering

Fortunate that its theory was built
in advance of requirements!

Princeton University, 8 November 2004

The earliest DD paper?

What Schwarz proposed…

Solve PDE in circle
with BC taken from
interior of square

Solve PDE in square
with BC taken from
interior of circle

A
nd iterate!

Princeton University, 8 November 2004

Rationale
Convenient analytic means (separation of variables)
are available for the regular problems in the
subdomains, but not for the irregular “keyhole”
problem defined by their union
Schwarz iteration defines a functional map from the
values defined along (either) artificial interior
boundary segment completing a subdomain to an
updated set of values on the same segment, through
intermediate subdomain solves
A contraction map is derived for the error
Rate of convergence is not necessarily rapid – this was
not a concern of Schwarz
Subproblems are not solved concurrently – neither was
this Schwarz’ concern

Princeton University, 8 November 2004

Other early DD papers

Princeton University, 8 November 2004

Rationale

For Kron: direct Gaussian elimination has
superlinear complexity

union of subproblems and the connecting problem
(each also superlinear) could be solved in fewer
overall operations than one large problem

For Przemieniecki: full airplane structural
analysis would not fit in memory of available
computers

individual subproblems fit in memory

Princeton University, 8 November 2004

Rationale

(N/P) < M

Let problem size be N, number of subdomains
be P, and memory capacity be M
Let problem solution complexity be Na

Then subproblem solution complexity is (N/P)a

Let the cost of connecting the subproblems be
c(N,P)
Kron wins if

Przemieniecki wins if

P (N/P)a + c(N,P) < Na

or c(N,P) < Na [1-(1/Pa-1)]

NB: Kron
does not win

directly if
a=1 !

Princeton University, 8 November 2004

Contemporary interest

Goal is algorithmic scalability:
fill up memory of arbitrarily large machines to
increase resolution, while preserving nearly constant*
running times with respect to proportionally smaller
problem on one processor

Princeton University, 8 November 2004*at worst logarithmically growing

Two definitions of scalability

“Strong scaling”
execution time decreases in
inverse proportion to the
number of processors
fixed size problem overall

“Weak scaling”
execution time remains constant,
as problem size and processor
number are increased in
proportion
fixed size problem per processor
also known as “Gustafson
scaling”

poorlog T

log p
good

N constant

Slope
= -1

T

p

good

poor

N ∝ p

Slope
= 0

Princeton University, 8 November 2004

Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and
incompressible Euler and Navier-Stokes flows
Used in NASA application FUN3D (M6 wing results below with 11M dof)

Princeton University, 8 November 2004

128 nodes
43min

3072 nodes
2.5min,
226Gf/s

15µs/unknown
70% efficient

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e
(s

ec
on

ds
)

Total Salinas FETI-DP

Weak scaling illus. (2002 Bell Prize)

1mdof

4mdof

9mdof

18mdof

30mdof

60mdof

Princeton University, 8 November 2004c/o C. Farhat and K. Pierson

Finite Element Tearing and Interconnection (FETI) algorithm for
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante

Decomposition strategies for Lu=f in Ω

Operator decomposition

Function space decomposition

Domain decomposition

∑=
k

kLL

∑∑ Φ=Φ=
k

kk
k

kk uuff ,

kk Ω=Ω U

fuuyx
kk II +=++ +)()1(][ττ LL

Consider the implicitly discretized parabolic case

Princeton University, 8 November 2004

Operator decomposition

Consider ADI
fuyux

kk II +−=+ +)()2/1(][][2/2/ LL ττ

fuxuy
kk II +−=+ ++)2/1()1(][][2/2/ LL ττ

Iteration matrix consists of four multiplicative
substeps per timestep

two sparse matrix-vector multiplies
two sets of unidirectional bandsolves

Parallelism within each substep
But global data exchanges between bandsolve substeps

Princeton University, 8 November 2004

Function space decomposition

Consider a spectral Galerkin method
),()(),,(

1
yxtatyxu j

N

j
j Φ=∑

=

Nifuu iiidt
d ,...,1),,(),(),(=Φ+Φ=Φ L

Nifa ijjijdt
da

jij
j ,...,1),,(),(),(=Φ+ΦΦ∑=ΦΦ∑ L

fMKaMdt
da 11 −− +=

Method-of-lines system of ODEs
Perhaps are diagonal
matrices
Parallelism across spectral index
But global data exchanges to transform back to

)],[()],,[(ijij KM ΦΦ≡ΦΦ≡ L

Princeton University, 8 November 2004

physical variables at each step

Domain decomposition

Princeton University, 8 November 2004

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

Princeton University, 8 November 2004

Schwarz domain decomposition method

Consider restriction and extension
operators for subdomains, ,
(and for possible coarse grid,)
Replace discretized with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
iR

0R

TRR 00 ,

T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=

Princeton University, 8 November 2004

Remember this formula of Schwarz …

For B-1 , to approximate A-1 :

i
T
ii

T
ii RARRRB 11)(−− ∑=

Princeton University, 8 November 2004

Krylov bases for sparse systems

Princeton University, 8 November 2004

E.g., conjugate gradients (CG) for symmetric, positive
definite systems, and generalized minimal residual
(GMRES) for nonsymmetry or indefiniteness
Krylov iteration is an algebraic projection method for
converting a high-dimensional linear system into a
lower-dimensional linear system

AVWH T≡
=

=

bAx = =
bWg T=

=

Vyx = =
gHy =

Now, let’s compare!

Operator decomposition (ADI)
natural row-based assignment requires global all-to-
all, bulk data exchanges in each step (for transpose)

Function space decomposition (Fourier)
Natural mode-based assignment requires global all-to-
all, bulk data exchanges in each step (for transform)

Domain decomposition (Schwarz)
Natural domain-based assignment requires local
surface data exchanges, global reductions, and
optional small global problem

(Of course, domain decomposition can be interpreted
as a special operator or function space decomposition)

Princeton University, 8 November 2004

Krylov-Schwarz parallelization summary
Decomposition into concurrent tasks

by domain

Assignment of tasks to processes
typically one subdomain per process

Orchestration of communication between processes
to perform sparse matvec – near neighbor communication
to perform subdomain solve – nothing
to build Krylov basis – global inner products
to construct best fit solution – global sparse solve (redundantly)

Mapping of processes to processors
typically one process per processor

Princeton University, 8 November 2004

Princeton University, 8 November 2004

Krylov-Schwarz kernel in parallel

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…
P1:

P2:

Pn:
M

P1
P2

Pn

What happens if, for instance, in this
(schematicized) iteration, arithmetic
speed is doubled, scalar all-gather is
quartered, and local scatter is cut by
one-third? Each phase is
considered separately. Answer is to
the right.

…
P1:

P2:

Pn:
M

Krylov-Schwarz compelling in serial, too
As successive workingsets “drop” into a level of memory,
capacity (and with effort conflict) misses disappear, leaving
only compulsory misses, reducing demand on main memory
bandwidth
Cache size is not easily manipulated, but domain size is

Traffic decreases as
cache gets bigger or
subdomains get smaller

Princeton University, 8 November 2004

Estimating scalability of stencil computations
Given complexity estimates of the leading terms of:

the concurrent computation (per iteration phase)
the concurrent communication
the synchronization frequency

And a bulk synchronous model of the architecture including:
internode communication (network topology and protocol reflecting horizontal
memory structure)
on-node computation (effective performance parameters including vertical memory
structure)

One can estimate optimal concurrency and optimal execution
time

on per-iteration basis, or overall (by taking into account any granularity-dependent
convergence rate)
simply differentiate time estimate in terms of (N,P) with respect to P, equate to zero

and solve for P in terms of N

Princeton University, 8 November 2004

Estimating 3D stencil costs (per iteration)

Princeton University, 8 November 2004

grid points in each
direction n, total work
N=O(n3)
processors in each
direction p, total procs
P=O(p3)
memory per node
requirements O(N/P)

concurrent execution time per
iteration A n3/p3

grid points on side of each
processor subdomain n/p
Concurrent neighbor commun.
time per iteration B n2/p2

cost of global reductions in each
iteration C log p or C p(1/d)

C includes synchronization
frequency

same dimensionless units for
measuring A, B, C

e.g., cost of scalar floating point
multiply-add

3D stencil computation illustration
Rich local network, tree-based global reductions

total wall-clock time per iteration

for optimal p, , or

or (with),

without “speeddown,” p can grow with n
in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂
∂

p
T ,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B

2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθ

0→C
B

n
C
Apopt ⋅⎟
⎠
⎞

⎜
⎝
⎛=

3
1

3

Princeton University, 8 November 2004

3D stencil computation illustration
Rich local network, tree-based global reductions

optimal running time

where

limit of infinite neighbor bandwidth, zero neighbor latency ()

(This analysis is on a per iteration basis; complete analysis
multiplies this cost by an iteration count estimate that generally
depends on n and p.)

(),log))(,(23 nCBAnpnT opt ρ
ρρ

++=

[] [] ⎟
⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθρ
C
A

0→B

⎥⎦
⎤

⎢⎣
⎡ ++= .log

3
1log))(,(const

C
AnCnpnT opt

Princeton University, 8 November 2004

Scalability results for DD stencil computations

With tree-based (logarithmic) global
reductions and scalable nearest neighbor
hardware:

optimal number of processors scales linearly with
problem size

With 3D torus-based global reductions and
scalable nearest neighbor hardware:

optimal number of processors scales as three-fourths
power of problem size (almost “scalable”)

With common network bus (heavy
contention):

optimal number of processors scales as one-fourth
power of problem size (not “scalable”)

Princeton University, 8 November 2004

Resource scaling for PDEs
For 3D problems, work is often proportional to the four-
thirds power of memory, because

for equilibrium problems, work scales with problem size times
number of iteration steps -- proportional to resolution in single
spatial dimension
for evolutionary problems, work scales with problems size times
number of time steps -- CFL arguments place latter on order of
spatial resolution, as well

Proportionality constant can be adjusted over a very wide
range by both discretization (high-order implies more
work per point and per memory transfer) and by
algorithmic tuning
Machines designed for PDEs can be “memory-thin”
If frequent time frames are to be captured, other
resources -- disk capacity and I/O rates -- must both scale
linearly with work, more stringently than for memory.

Princeton University, 8 November 2004

Factoring convergence into estimates

In terms of N and P, where for d-dimensional
isotropic problems, N=h-d and P=H-d, for mesh
parameter h and subdomain diameter H,
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov-Schwarz iterative methods typically converge in a
number of iterations that scales as the square-root of the
condition number of the Schwarz-preconditioned system

Princeton University, 8 November 2004

Where do these results come from?
Point Jacobi is well known (see any book on the numerical
analysis of elliptic problems)
Subdomain Jacobi has interesting history (see ahead a few
slides)
Schwarz theory is neatly and abstractly summarized in Section
5.2 of book by Smith, Bjorstad & Gropp (“Widlund School”)

condition number of preconditioned operator, κ(B-1A) ≤ ω [1+ρ(ε)] C0
2

C0
2 is a splitting constant for the subspaces of the decomposition

ρ(ε) is a measure of the orthogonality of the subspaces
ω is a measure of the approximation properties of the subspace solvers
(can be unity for exact subdomain solves)
obtained by Rayleigh quotient estimates for extremal eigenvalues of B-1A
and theorem bounding sums of projections
upper and lower bounds are estimated for different subspaces, different
operators, and different subspace solvers and the “crank” is turned

Princeton University, 8 November 2004

Comments on the Schwarz results

Princeton University, 8 November 2004

Basic Schwarz estimates are for:
self-adjoint elliptic operators
positive definite operators
exact subdomain solves,
two-way overlapping with
generous overlap, δ=O(H) (otherwise 2-level result is O(1+H/δ))

Extensible to:
nonself-adjointness (e.g, convection)
indefiniteness (e.g., wave Helmholtz)
inexact subdomain solves
one-way overlap communication (“restricted additive
Schwarz”)
small overlap

T
ii RR ,

1−
iA

Comments on the Schwarz results, cont.

Theory still requires “sufficiently fine” coarse mesh
However, coarse space need not be nested in the fine space or in the
decomposition into subdomains

Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

Wave Helmholtz (e.g., acoustics) is delicate at high
frequency:

standard Schwarz Dirichlet boundary conditions can lead to
undamped resonances within subdomains,
remedy involves Robin-type transmission boundary conditions
on subdomain boundaries,

0=Γu

0)/(=∂∂+ Γnuu α

— Yogi Berra

Princeton University, 8 November 2004

Block Jacobi preconditioning: 1D example

Consider the scaled F.D. Laplacian on an interval:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−−
−

=

21
121

121
12

A

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

21
12

21
12

B

Princeton University, 8 November 2004

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=−

3
1

3
2

3
2

3
1

3
1

3
2

3
2

3
1

1

1
1

1
1

IAB

Bound on block Jacobi preconditioning

Consider decomposition of 1D, 2D, or 3D
domain into subdomains by cutting planes

H
Ω h

or

Using functional analysis, Dryja & Widlund
(1987) showed that zero-overlap Schwarz on
improves conditioning from for native
elliptic problem to

)(2−hO
)(11 −− hHO
Princeton University, 8 November 2004

Mirror result from linear algebra

Princeton University, 8 November 2004

Chang & Schultz (1994) proved same result from
algebraic approach, from eigenanalysis of ,
where A is F.D. Laplacian in 1D, 2D, or 3D, and B
is A with entries removed by arbitrary cutting planes
Their Theorem 2.4.7: Given grid, cut by

q planes in x (slabs)

q planes in x or y (beams)

q planes in x, y, or z (subcubes)

(with cuts anywhere) then
Note: and if cut evenly
Proof: eigenanalysis of low-rank matrices

)(1AB−

nnn ××

1)(1 ++≤− qqnABκ
)(1−= HOq)(1−= hOn

)(1ABI −−

Mirror results from graph theory

Boman & Hendrickson (2003) proved same result
from graph-theoretic approach, using their new
“support theory”
Section 9 of their SIMAX paper “Support Theory for
Preconditioning,” using congestion-dilation lemma
from graph theory (Vaidya et al.) derives ,
for point Jacobi
Extended by B & H to block Jacobi, to get

Many different mathematical tools can be used to
explore this divide-and-conquer preconditioning idea!

)(2−hO

)(11 −− hHO

Princeton University, 8 November 2004

“Unreasonable effectiveness” of Schwarz
When does the sum of partial inverses equal the
inverse of the sums? When the decomposition is right!

{ }ir
iii raAr = T

iii Arra =
Let be a complete set of orthonormal row
eigenvectors for A : or

ii
T

ii rarA Σ=
Then

i
T

ii
T

iiii
T

ii rArrrrarA 111)(−−− Σ=Σ=
and

— the Schwarz formula!
Good decompositions are a compromise between
conditioning and parallel complexity, in practice

Princeton University, 8 November 2004

Schwarz subspace decomposition

Princeton University, 8 November 2004

Schwarz subspace decomposition

Princeton University, 8 November 2004

“Unreasonable effectiveness” of Schwarz, cont.

Delta function, δ(x) A δ(x) A-1 δ(x)

Forward operator is localized and sparse
Inverse operator is dense but locally concentrated

Princeton University, 8 November 2004

Basic domain decomposition concepts

Iterative correction
Schwarz preconditioning
Schur preconditioning

Polynomial combinations of Schwarz projections
Schwarz-Schur combinations

Princeton University, 8 November 2004

Iterative correction

Princeton University, 8 November 2004

The most basic idea in iterative methods:

Evaluate residual accurately, but solve approximately,
where is an approximate inverse to A
A sequence of complementary approximate solves can
be used, e.g., with and one has

)(1 AufBuu −+← −

)]([1
1

1
2

1
2

1
1 AufABBBBuu −−++← −−−−

2B1B

1−B

RRARRB TT 11
2)(−− =

)(1AB−

Scale recurrence, e.g., with ,
leads to multilevel methods
Optimal polynomials of leads to various
preconditioned Krylov methods

Schwarz preconditioning
Given A x = b , partition x into
subvectors, corresp. to subdomains of
the domain of the PDE, nonempty,
possibly overlapping, whose union is all
of the elements of nx ℜ∈

iR

thi

thi

xRx ii =
T
iii ARRA =

ii
T
ii RARB 11 −− ∑=

Ω
iΩ

x

Let Boolean rectangular
matrix extract the
subset of :

Let The Boolean matrices are gather/scatter
operators, mapping between a global
vector and its subdomain support

Princeton University, 8 November 2004

Schur complement substructuring
Given a partition

Condense:
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

ΓΓΓΓΓ

Γ

f
f

u
u

AA
AA ii

i

iii

gSu =Γ Γ
−

ΓΓΓ −≡ iiii AAAAS 1
iiii fAAfg 1−

ΓΓ −≡

Properties of the Schur complement:
smaller than original A, but generally dense
expensive to form, to store, to factor, and to solve

better conditioned than original A
Therefore, solve iteratively, with action of S on each
Krylov vector, using a preconditioner M-1

In continuous form, S is a Steklov-Poincaré operator

Γ

Princeton University, 8 November 2004

Schur preconditioning in global system
Let M-1 be a good preconditioner for S
Let

Then B-1 is a preconditioner for A
So, instead of , use full system

Here, solves with may be done approximately since
all degrees of freedom are retained

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡

Γ

−

ΓΓΓΓ

Γ−

f
f

B
u
u

AA
AA

B ii

i

iii 11

11
1

0
0

−

Γ
−

Γ

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

M
AAI

IA
A

B iii

i

ii

iiA

gMSuM 11 −
Γ

− =

Γ

Princeton University, 8 November 2004

Schwarz polynomials

Polynomials of Schwarz projections that are hybrid
combinations of additive and multiplicative may be
appropriate for certain implementations
We may solve the fine subdomains concurrently and
follow with a coarse grid (redundantly/cooperatively)

)(1 AufBuu ii −Σ+← −

)(1
0 AufBuu −+← −

))((11
0

1
0

1 −−−− Σ−+= ii BABIBB
This leads to algorithm “Hybrid II” in S-B-G’96:

Convenient for SPMD programming model

Princeton University, 8 November 2004

Schwarz-on-Schur

Preconditioning the Schur complement is complex in
and of itself; Schwarz is used on the reduced
problem
Neumann-Neumann

Balancing Neumann-Neumann
))()((1

0
11

0
1

0
1 −−−−− −Σ−+= SMIDRSRDSMIMM iii

T
iii

iii
T
iii DRSRDM 11 −− Σ=

Other variants:
Bramble-Pasciak-Schatz
multigrid on the Schur complement

Princeton University, 8 November 2004

Newton-Krylov-Schwarz:
a nonlinear PDE “workhorse”

Schwarz
preconditioner
parallelizable

FMuJM 11 −− −=δ

i
T
ii

T
ii RJRRRM 11)(−− ∑=

Krylov
accelerator

spectrally adaptive

FuJ −=δ
}{minarg

},,,{ 2
FJxu

FJJFFVx
+=

≡∈ L

δ

Newton
nonlinear solver

asymptotically quadratic

0)(')()(=+≈ uuFuFuF cc δ
uuu c δλ+=

Princeton University, 8 November 2004

Jacobian-free Newton-Krylov
In the Jacobian-Free Newton-Krylov (JFNK) method, a
Krylov method solves the linear Newton correction
equation, requiring Jacobian-vector products
These are approximated by the Fréchet derivatives

(where is chosen with a fine balance between
approximation and floating point rounding error) or
automatic differentiation, so that the actual Jacobian
elements are never explicitly needed

One builds the Krylov space on a true F’(u) (to within
numerical approximation)

)]()([1)(uFvuFvuJ −+≈ ε
ε

ε

Princeton University, 8 November 2004

Recall idea of preconditioning

Princeton University, 8 November 2004

Krylov iteration is expensive in memory and in
function evaluations, so subspace dimension k must be
kept small in practice, through preconditioning the
Jacobian with an approximate inverse, so that the
product matrix has low condition number in

Given the ability to apply the action of to a
vector, preconditioning can be done on either the left,
as above, or the right, as in, e.g., for matrix-free:

)]()([1 11 uFvBuFvJB −+≈ −− ε
ε

bBxAB 11)(−− =
1−B

Philosophy of Jacobian-free NK

Princeton University, 8 November 2004

To evaluate the linear residual, we use the true F’(u) , giving a
true Newton step and asymptotic quadratic Newton
convergence
To precondition the linear residual, we do anything convenient
that uses understanding of the dominant physics/mathematics
in the system and respects the limitations of the parallel
computer architecture and the cost of various operations:

Jacobian blocks decomposed for parallelism (Schwarz)
Jacobian of lower-order discretization
Jacobian with “lagged” values for expensive terms
Jacobian stored in lower precision
Jacobian of related discretization
operator-split Jacobians
physics-based preconditioning

NKS efficiently implemented in PETSc’s
MPI-based distributed data structures

PETSc codeUser
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Ω1
Ω2

Ω3

Princeton University, 8 November 2004www.mcs.anl.gov/petsc

User code/PETSc library interactions

PETSc codeUser
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Can be AD code

Princeton University, 8 November 2004

Nonlinear Schwarz preconditioning
Nonlinear Schwarz has Newton both inside and
outside and is fundamentally Jacobian-free
It replaces with a new nonlinear system
possessing the same root,
Define a correction to the partition (e.g.,
subdomain) of the solution vector by solving the
following local nonlinear system:

where is nonzero only in the
components of the partition
Then sum the corrections: to get
an implicit function of u

0)(=uF
0)(=Φ u

thi

thi

)(uiδ

0))((=+ uuFR ii δ
n

i u ℜ∈)(δ

)()(uu ii δ∑=Φ

Princeton University, 8 November 2004

Nonlinear Schwarz – picture

Princeton University, 8 November 2004

F(u)
1

1
1

1

0 0

Ri

RiuRiF

u

Nonlinear Schwarz – picture
F(u)

Princeton University, 8 November 2004

1
1

1
1

0 0

1
1

1
1

0 0

Rj

Riu

RjF

RiF

Rju

Ri

u

Nonlinear Schwarz – picture
F(u)

u

Fi’(ui)

Ri

Rj

δiu+δju

1
1

1
1

0 0

1
1

1
1

0 0 RiuRiF

RjuRjF

Princeton University, 8 November 2004

Nonlinear Schwarz, cont.
It is simple to prove that if the Jacobian of F(u) is
nonsingular in a neighborhood of the desired root
then and have the same unique
root
To lead to a Jacobian-free Newton-Krylov algorithm
we need to be able to evaluate for any :

The residual
The Jacobian-vector product

Remarkably, (Cai-Keyes, 2000) it can be shown that

where and
All required actions are available in terms of !

0)(=Φ u

nvu ℜ∈,
)()(uu ii δ∑=Φ

0)(=uF

vu ')(Φ

JvRJRvu ii
T
ii)()(1' −∑≈Φ

)(' uFJ = T
iii JRRJ =

)(uF

Princeton University, 8 November 2004

Experimental example of nonlinear Schwarz

Vanilla Newton’s method Nonlinear Schwarz

Difficulty at
critical Re

Stagnation
beyond

critical Re

Convergence
for all Re

Princeton University, 8 November 2004

Multiphysics coupling: partial elimination
Consider system partitioned by physics as

Can formally solve for in

Then second equation is
Jacobian

can be applied to a vector in matrix-free manner

⎩
⎨
⎧

=
=

0),(
0),(

212

211

uuF
uuF

0)(=uF

0),(211 =uuF

)(21 uGu ≡
0)),((222 =uuGF

2

2

21

2

2

2

u
F

u
G

u
F

du
dF

∂
∂

+
∂
∂

∂
∂

=

1u

Princeton University, 8 November 2004

Multiphysics coupling: nonlinear GS

{ }0
2

0
1 ,uuIn previous notation, given initial iterate

For k=1, 2, …, until convergence, do

Solve for v in
Solve for w in

Then

0),(1
21 =−kuvF

0),(2 =wvF

{ } { }wvuu kk ,, 21 =

Princeton University, 8 November 2004

Multiphysics coupling: nonlinear Schwarz

Princeton University, 8 November 2004

Given initial iterate
For k=1, 2, …, until convergence, do

Define by
Define by

Then solve in matrix-free manner

Jacobian:

Finally { } { }wvuu kk ,, 21 =

{ }0
2

0
1 ,uu

0),(1
21

1
11 =+ −− kk uuuF δ1211),(uuuG δ≡

0),(2
1

2
1

12 =+−− uuuF kk δ2212),(uuuG δ≡

⎩
⎨
⎧

=
=

0),(
0),(

2

1

vuG
vuG

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

≈
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

−

−

I
u
F

v
F

v
F

u
FI

v
G

u
G

v
G

u
G

2
1

2

1
1

1

22

11

Physics-based preconditioning
In Newton iteration, one seeks to obtain a correction
(“delta”) to solution, by inverting the Jacobian
matrix on (the negative of) the nonlinear residual:

A typical operator-split code also derives a “delta” to
the solution, by some implicitly defined means,
through a series of implicit and explicit substeps

This implicitly defined mapping from residual to
“delta” is a natural preconditioner
Software must accommodate this!

)()]([1 kkk uFuJu −−=δ

kk uuF δa)(

Princeton University, 8 November 2004

Physics-based preconditioning

Princeton University, 8 November 2004

We consider a standard “dynamical
core,” the shallow-water wave
splitting algorithm, as a solver
Leaves a first-order in time splitting
error
In the Jacobian-free Newton-Krylov
framework, this solver, which maps a
residual into a correction, can be
regarded as a preconditioner
The true Jacobian is never formed yet
the time-implicit nonlinear residual at
each time step can be made as small as
needed for nonlinear consistency in
long time integrations

State of the art
Domain decomposition is the dominant paradigm in contemporary
terascale PDE simulation
Several freely available software toolkits exist, and successfully scale
to thousands of tightly coupled processors for problems on quasi-
static meshes
Concerted efforts underway to make elements of these toolkits
interoperate, and to allow expression of the best methods, which tend
to be modular, hierarchical, recursive, and above all — adaptive!
Many challenges loom at the “next scale” of computation
Implementation of domain decomposition methods on parallel
computers has inspired many useful variants of domain
decomposition methods
The past few years have produced an incredible variety of interesting
results (in both the continuous and the discrete senses) in domain
decomposition methods, with no slackening in sight

Princeton University, 8 November 2004

DD-16 in New York City, January 2005
3.5-day meeting January
12-15, 2005
Co-organized by NYU and
Columbia
14 invited speakers
8 participant-organized
minisymposia
Contributed talks
Poster session
Pre-workshop short course,
January 11, 2005

http://www.cims.nyu.edu/dd16
Princeton University, 8 November 2004

EOF

	Happy Birthday, Felix Hausdorf!
	Happy 90th Birthday, George Dantzig!
	Definition and motivation
	Remarks on definition
	Remarks on definition, cont.
	Plan of presentation
	Why care? Recent high-end systems!
	Other platforms for high-end simulation
	Algorithmic requirements from architecture
	Building platforms is the “easy” part
	The earliest DD paper?
	Rationale
	Other early DD papers
	Rationale
	Rationale
	Contemporary interest
	Two definitions of scalability
	Decomposition strategies for Lu=f in
	Operator decomposition
	Function space decomposition
	Domain decomposition
	DD relevant to any local stencil formulation
	Schwarz domain decomposition method
	Remember this formula of Schwarz …
	Krylov bases for sparse systems
	Now, let’s compare!
	Krylov-Schwarz parallelization summary
	Krylov-Schwarz kernel in parallel
	Krylov-Schwarz compelling in serial, too
	Estimating scalability of stencil computations
	Estimating 3D stencil costs (per iteration)
	3D stencil computation illustrationRich local network, tree-based global reductions
	3D stencil computation illustration Rich local network, tree-based global reductions
	Scalability results for DD stencil computations
	Resource scaling for PDEs
	Factoring convergence into estimates
	Where do these results come from?
	Comments on the Schwarz results
	Comments on the Schwarz results, cont.
	Block Jacobi preconditioning: 1D example
	Bound on block Jacobi preconditioning
	Mirror result from linear algebra
	Mirror results from graph theory
	“Unreasonable effectiveness” of Schwarz
	Schwarz subspace decomposition
	Schwarz subspace decomposition
	“Unreasonable effectiveness” of Schwarz, cont.
	Basic domain decomposition concepts
	Iterative correction
	Schwarz preconditioning
	Schur complement substructuring
	Schur preconditioning in global system
	Schwarz polynomials
	Schwarz-on-Schur
	Jacobian-free Newton-Krylov
	Recall idea of preconditioning
	Philosophy of Jacobian-free NK
	NKS efficiently implemented in PETSc’s MPI-based distributed data structures
	User code/PETSc library interactions
	Nonlinear Schwarz preconditioning
	Nonlinear Schwarz – picture
	Nonlinear Schwarz – picture
	Nonlinear Schwarz – picture
	Nonlinear Schwarz, cont.
	Experimental example of nonlinear Schwarz
	Multiphysics coupling: partial elimination
	Multiphysics coupling: nonlinear GS
	Multiphysics coupling: nonlinear Schwarz
	Physics-based preconditioning
	Physics-based preconditioning
	State of the art
	DD-16 in New York City, January 2005
	EOF

