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Happy Birthday, Felix Hausdorf!
Developed concept of “Hausdorf” 
dimension in attempt to apply 
measures to what we now call 
fractals, such as the Koch curve 
(below), whose perimeter has 
dimension 1.26…

Born 8 Nov 1868 in Breslau, 
Germany (now Wroclaw, Poland)

Died 26 Jan 1942 in Bonn, 
Germany

Princeton University, 8 November 2004



Happy 90th Birthday, George Dantzig!

“The tremendous power of the simplex 
method is a constant surprise to me.”-
George Dantzig

“If one would take statistics about which 
mathematical problem is using up most 
of the computer time in the world, then ... 
the answer would probably be linear 
programming.” - Laszlo Lovasz

“For inventing linear programming and 
discovering methods that led to wide-
scale scientific and technical 
applications to important problems in 
logistics, scheduling, and network 
optimization, and to the use of computers 
in making efficient use of the 
mathematical theory. – National Medal 
of Science citation by Jimmy Carter

Princeton University, 8 November 2004

Born 8 Nov 1914 in Portland, OR

Invented Simplex Method, 1947
c/o “History of Mathematics” on-line archive



Definition and motivation

Domain decomposition (DD) is a “divide and 
conquer” technique for arriving at the solution of 
problem defined over a domain from the solution of 
related problems posed on subdomains
Motivating assumption #1: the solution of the 
subproblems is qualitatively or quantitatively 
“easier” than the original
Motivating assumption #2: the original problem does 
not fit into the available space
Motivating assumption #3: the subproblems can be 
solved with some concurrency

Princeton University, 8 November 2004



Remarks on definition
“Divide and conquer” is not a fully satisfactory 
description

“divide, conquer, and combine” is better
combination is usually through iterative means

True “divide-and-conquer” (only) algorithms are 
rare in computing (unfortunately)
It might be preferable to focus on “subdomain 
composition” rather than “domain decomposition”

generalizes to subproblem composition for multiphysics 

Princeton University, 8 November 2004

We often think we know all about “two” because two is “one and 
one”.  We forget that we have to make a study of “and.”

A. S. Eddington (1882-1944)



Remarks on definition, cont.
Domain decomposition has generic and specific senses 
within the universe of parallel computing

generic sense: any data decomposition (considered in contrast 
to task decomposition)
specific sense: the domain is the domain of definition of an 
operator equation (differential, integral, algebraic)

In general, the process of constructing a parallel 
program consists of (see J. P. Singh’s book ☺):

Decomposition into tasks
Assignment of tasks to processes
Orchestration of processes

Communication and synchronization

Mapping of processes to processors

PDE-type domain decomposition 
leads to bulk synchronous, SPMD 
codes, with mostly near-neighbor 
communication, with some global 
reductions and small global tasks

Princeton University, 8 November 2004



Plan of presentation

Imperative of domain decomposition (DD) for 
terascale computing
Basic DD algorithmic concepts

Schwarz
Schur
Schwarz-Schur combinations

Basic DD convergence and scaling properties
Some research agendas in DD

Jacobian-free Newton-Krylov-Schwarz
Nonlinear Schwarz

Princeton University, 8 November 2004



Princeton University, 8 November 2004

Prime sources for domain decomposition
1992 1997

+ O. B . Widlund and A. Toselli (2004)

2001



Other sources for domain decomposition

Princeton University, 8 November 2004

+ misc proceedings volumes, 1988-2004

1992
1994 1995



Princeton University, 8 November 2004

Why care?  Recent high-end systems!

Columbia, NASA, 43 Tflop/s

26 Oct 2004

BlueGene/L, LLNL, 71 Tflop/s

4 Nov 2004

June 2002

Earth Simulator, Japan, 36 Tflop/s SX-8, Japan, 58 Tflop/s

20 Oct 2004

“High performance computing is the backbone of the nation’s science and 
technology enterprise” – Energy Secretary Spencer Abraham



Other platforms for high-end simulation
DOE’s ASC roadmap 
is to go to 100 
Teraflop/s by 2005
Use variety of 
vendors

Compaq
Cray
Intel
IBM
SGI

Rely on commodity 
processor/memory 
units, with tightly 
coupled network
Massive software 
project to rewrite 
physics codes for 
distributed shared 
memory???

Princeton University, 8 November 2004



Algorithmic requirements from architecture

Must run on physically distributed memory units 
connected by message-passing network, each serving 
one or more processors with multiple levels of cache 

“horizontal” aspects “vertical” aspects

T3E

Princeton University, 8 November 2004



Building platforms is the “easy” part

Algorithms must be
highly concurrent and straightforward to load balance
latency tolerant
cache friendly (good temporal and spatial locality)
highly scalable (in the sense of convergence)

Domain decomposition “natural” for all of these

Domain decomposition also “natural” 
for software engineering

Fortunate that its theory was built 
in advance of requirements!

Princeton University, 8 November 2004



The earliest DD paper?

What Schwarz proposed…

Solve PDE in circle 
with BC taken from 
interior of square

Solve PDE in square 
with BC taken from 
interior of circle

A
nd iterate!

Princeton University, 8 November 2004



Rationale
Convenient analytic means (separation of variables) 
are available for the regular problems in the 
subdomains, but not for the irregular “keyhole” 
problem defined by their union
Schwarz iteration defines a functional map from the 
values defined along (either) artificial interior 
boundary segment completing a subdomain to an 
updated set of values on the same segment, through 
intermediate subdomain solves
A contraction map is derived for the error
Rate of convergence is not necessarily rapid – this was 
not a concern of Schwarz
Subproblems are not solved concurrently – neither was 
this Schwarz’ concern

Princeton University, 8 November 2004



Other early DD papers

Princeton University, 8 November 2004



Rationale

For Kron: direct Gaussian elimination has 
superlinear complexity

union of subproblems and the connecting problem 
(each also superlinear) could be solved in fewer 
overall operations than one large problem

For Przemieniecki: full airplane structural 
analysis would not fit in memory of available 
computers

individual subproblems fit in memory

Princeton University, 8 November 2004



Rationale

(N/P) < M

Let problem size be N, number of subdomains 
be P, and memory capacity be M
Let problem solution complexity be  Na

Then subproblem solution complexity is  (N/P)a

Let the cost of connecting the subproblems be 
c(N,P)
Kron wins if

Przemieniecki wins if 

P (N/P)a + c(N,P) < Na

or   c(N,P) < Na [1-(1/Pa-1)]

NB: Kron 
does not win 

directly if 
a=1 !

Princeton University, 8 November 2004



Contemporary interest

Goal is algorithmic scalability: 
fill up memory of arbitrarily large machines to 
increase resolution, while preserving nearly constant* 
running times with respect to proportionally smaller 
problem on one processor

Princeton University, 8 November 2004*at worst logarithmically growing



Two definitions of scalability

“Strong scaling”
execution time decreases in 
inverse proportion to the 
number of processors
fixed size problem overall

“Weak scaling”
execution time remains constant, 
as problem size and processor 
number are increased in 
proportion
fixed size problem per processor
also known as “Gustafson 
scaling”

poorlog T

log p
good

N constant

Slope
= -1

T  

p

good

poor

N ∝ p

Slope
= 0

Princeton University, 8 November 2004



Strong scaling illus. (1999 Bell Prize)
Newton-Krylov-Schwarz (NKS) algorithm for compressible and 
incompressible Euler and Navier-Stokes flows 
Used in NASA application FUN3D (M6 wing results below with 11M dof)

Princeton University, 8 November 2004

128 nodes 
43min

3072 nodes 
2.5min, 
226Gf/s

15µs/unknown 
70% efficient



0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000 3500 4000

ASCI-White Processors

T
im

e 
(s

ec
on

ds
)

Total Salinas FETI-DP

Weak scaling illus. (2002 Bell Prize)

1mdof

4mdof

9mdof

18mdof

30mdof

60mdof

Princeton University, 8 November 2004c/o C. Farhat and K. Pierson

Finite Element Tearing and Interconnection (FETI) algorithm for 
solid/shell models
Used in Sandia applications Salinas, Adagio, Andante



Decomposition strategies for Lu=f  in Ω

Operator decomposition

Function space decomposition

Domain decomposition
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Consider the implicitly discretized parabolic case

Princeton University, 8 November 2004



Operator decomposition

Consider ADI
fuyux

kk II +−=+ + )()2/1( ][][ 2/2/ LL ττ

fuxuy
kk II +−=+ ++ )2/1()1( ][][ 2/2/ LL ττ

Iteration matrix consists of four multiplicative 
substeps per timestep

two sparse matrix-vector multiplies
two sets of unidirectional bandsolves

Parallelism within each substep
But global data exchanges between bandsolve substeps

Princeton University, 8 November 2004



Function space decomposition

Consider a spectral Galerkin method
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Method-of-lines system of ODEs
Perhaps                                                        are diagonal 
matrices 
Parallelism across spectral index
But global data exchanges to transform back to 
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Princeton University, 8 November 2004

physical variables at each step



Domain decomposition

Princeton University, 8 November 2004

Partitioning of the grid 
induces block structure on 
the system matrix 
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned 

to proc “2”



DD relevant to any local stencil formulation

finite differences finite elements finite volumes

• All lead to sparse Jacobian matrices 

J=

node i

row i
• However, the inverses are generally 
dense; even the factors suffer 
unacceptable fill-in in 3D
• Want to solve in subdomains only, and 
use to precondition full sparse problem

Princeton University, 8 November 2004



Schwarz domain decomposition method

Consider restriction and extension 
operators for subdomains,           ,      
(and for possible coarse grid,           )
Replace discretized                   with

Solve by a Krylov method
Matrix-vector multiplies with

parallelism on each subdomain
nearest-neighbor exchanges, global reductions
possible small global system (not needed for parabolic case)

iΩ
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T
ii RR ,

fAu =
fBAuB 11 −− =

ii
T
ii

T RARRARB 1
0

1
00

1 −−− ∑+=

T
iii ARRA =

=

Princeton University, 8 November 2004



Remember this formula of Schwarz …

For  B-1 , to approximate A-1 :

i
T
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T
ii RARRRB 11 )( −− ∑=

Princeton University, 8 November 2004



Krylov bases for sparse systems

Princeton University, 8 November 2004

E.g., conjugate gradients (CG) for symmetric, positive 
definite systems, and generalized minimal residual 
(GMRES) for nonsymmetry or indefiniteness 
Krylov iteration is an algebraic projection method for 
converting a high-dimensional linear system into a 
lower-dimensional linear system

AVWH T≡
=

=

bAx = =
bWg T=

=

Vyx = =
gHy =



Now, let’s compare!

Operator decomposition (ADI)
natural row-based assignment requires global all-to-
all, bulk data exchanges in each step (for transpose)

Function space decomposition (Fourier)
Natural mode-based assignment requires global all-to-
all, bulk data exchanges in each step (for transform)

Domain decomposition (Schwarz)
Natural domain-based assignment requires local
surface data exchanges, global reductions, and 
optional small global problem

(Of course, domain decomposition can be interpreted 
as a special operator or function space decomposition)

Princeton University, 8 November 2004



Krylov-Schwarz parallelization summary
Decomposition into concurrent tasks

by domain

Assignment of tasks to processes
typically one subdomain per process

Orchestration of communication between processes
to perform sparse matvec – near neighbor communication
to perform subdomain solve – nothing
to build Krylov basis – global inner products
to construct best fit solution – global sparse solve (redundantly)

Mapping of processes to processors
typically one process per processor

Princeton University, 8 November 2004



Princeton University, 8 November 2004

Krylov-Schwarz kernel in parallel

local 
scatter

Jac-vec 
multiply

precond 
sweep

daxpy inner     
product

Krylov 
iteration

…
P1:

P2:

Pn:
M

P1
P2

Pn

What happens if, for instance, in this 
(schematicized) iteration, arithmetic 
speed is doubled, scalar all-gather is 
quartered, and local scatter is cut by 
one-third?  Each phase is 
considered separately. Answer is to 
the right.

…
P1:

P2:

Pn:
M



Krylov-Schwarz compelling in serial, too
As successive workingsets “drop” into a level of memory, 
capacity (and with effort conflict) misses disappear, leaving 
only compulsory misses, reducing demand on main memory 
bandwidth
Cache size is not easily manipulated, but domain size is

Traffic decreases as 
cache gets bigger or 
subdomains get smaller

Princeton University, 8 November 2004



Estimating scalability of stencil computations 
Given complexity estimates of the leading terms of:

the concurrent computation (per iteration phase)
the concurrent communication
the synchronization frequency

And a bulk synchronous model of the architecture including:
internode communication (network topology and protocol reflecting horizontal 
memory structure)
on-node computation (effective performance parameters including vertical memory 
structure)

One can estimate optimal concurrency and optimal execution 
time

on per-iteration basis, or overall (by taking into account any granularity-dependent 
convergence rate)
simply differentiate time estimate in terms of (N,P) with respect to P, equate to zero 

and solve for P in terms of N

Princeton University, 8 November 2004



Estimating 3D stencil costs (per iteration)

Princeton University, 8 November 2004

grid points in each 
direction n, total work 
N=O(n3)
processors in each 
direction p, total procs
P=O(p3)
memory per node 
requirements O(N/P)

concurrent execution time per 
iteration A n3/p3

grid points on side of each 
processor subdomain n/p
Concurrent neighbor commun. 
time per iteration B n2/p2

cost of global reductions in each 
iteration  C log p or C p(1/d)

C includes synchronization 
frequency

same dimensionless units for 
measuring A, B, C 

e.g., cost of scalar floating point 
multiply-add



3D stencil computation illustration
Rich local network, tree-based global reductions

total wall-clock time per iteration

for optimal p,            , or  

or (with                        ),

without “speeddown,”  p can grow with n
in the limit as 
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3D stencil computation illustration 
Rich local network, tree-based global reductions

optimal running time

where

limit of infinite neighbor bandwidth, zero neighbor latency (   )

(This analysis is on a per iteration basis; complete analysis 
multiplies this cost by an iteration count estimate that generally 
depends on n and p.)
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Scalability results for DD stencil computations

With tree-based (logarithmic) global 
reductions and scalable nearest neighbor 
hardware:

optimal number of processors scales linearly with 
problem size

With 3D torus-based global reductions and 
scalable nearest neighbor hardware:

optimal number of processors scales as three-fourths
power of problem size (almost “scalable”)

With common network bus (heavy 
contention):

optimal number of processors scales as one-fourth
power of problem size (not “scalable”)

Princeton University, 8 November 2004



Resource scaling for PDEs
For 3D problems, work is often proportional to the four-
thirds power of  memory, because

for equilibrium problems, work scales with problem size times 
number of iteration steps -- proportional to resolution in single 
spatial dimension
for evolutionary problems, work scales with problems size times 
number of time steps -- CFL arguments place latter on order of 
spatial resolution, as well

Proportionality constant can be adjusted over a very wide 
range by both discretization (high-order implies more 
work per point and per memory transfer) and by 
algorithmic tuning
Machines designed for PDEs can be “memory-thin”
If frequent time frames are to be captured, other 
resources -- disk capacity and I/O rates -- must both scale 
linearly with work, more stringently than for memory.

Princeton University, 8 November 2004



Factoring convergence into estimates 

In terms of N and P, where for d-dimensional 
isotropic problems, N=h-d and P=H-d, for mesh 
parameter h and subdomain diameter H, 
iteration counts may be estimated as follows:

Ο(P1/3)Ο(P1/2)1-level Additive Schwarz

Ο(1)Ο(1)2-level Additive Schwarz

Ο((NP)1/6)Ο((NP)1/4)Domain Jacobi (δ=0)
Ο(N1/3)Ο(N1/2)Point Jacobi

in 3Din 2DPreconditioning Type

Krylov-Schwarz iterative methods typically converge in a 
number of iterations that scales as the square-root of the 
condition number of the Schwarz-preconditioned system

Princeton University, 8 November 2004



Where do these results come from?
Point Jacobi is well known (see any book on the numerical 
analysis of elliptic problems)
Subdomain Jacobi has interesting history (see ahead a few 
slides)
Schwarz theory is neatly and abstractly summarized in Section 
5.2 of book by Smith, Bjorstad & Gropp (“Widlund School”)

condition number of preconditioned operator, κ(B-1A) ≤ ω [1+ρ(ε)] C0
2

C0
2 is a splitting constant for the subspaces of the decomposition

ρ(ε) is a measure of the orthogonality of the subspaces
ω is a measure of the approximation properties of the subspace solvers 
(can be unity for exact subdomain solves)
obtained by Rayleigh quotient estimates for extremal eigenvalues of B-1A
and theorem bounding sums of projections
upper and lower bounds are estimated for different subspaces, different 
operators, and different subspace solvers and the “crank” is turned

Princeton University, 8 November 2004



Comments on the Schwarz results

Princeton University, 8 November 2004

Basic Schwarz estimates are for:
self-adjoint elliptic operators
positive definite operators
exact subdomain solves, 
two-way overlapping with 
generous overlap, δ=O(H) (otherwise 2-level result is O(1+H/δ))

Extensible to:
nonself-adjointness (e.g, convection) 
indefiniteness (e.g., wave Helmholtz) 
inexact subdomain solves
one-way overlap communication (“restricted additive 
Schwarz”)
small overlap

T
ii RR ,

1−
iA



Comments on the Schwarz results, cont.

Theory still requires “sufficiently fine” coarse mesh
However, coarse space need not be nested in the fine space or in the 
decomposition into subdomains

Practice is better than one has any right to expect

“In theory, theory and practice are the same ...
In practice they’re not!”

Wave Helmholtz (e.g., acoustics) is delicate at high 
frequency:

standard Schwarz Dirichlet boundary conditions can lead to 
undamped resonances within subdomains,
remedy involves Robin-type transmission boundary conditions 
on subdomain boundaries,

0=Γu

0)/( =∂∂+ Γnuu α

— Yogi Berra

Princeton University, 8 November 2004



Block Jacobi preconditioning: 1D example

Consider the scaled F.D. Laplacian on an interval:
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Bound on block Jacobi preconditioning

Consider decomposition of 1D, 2D, or 3D 
domain into subdomains by cutting planes

H
Ω h

or

Using functional analysis, Dryja & Widlund 
(1987) showed that zero-overlap Schwarz on 
improves conditioning from                for native 
elliptic problem to   

)( 2−hO
)( 11 −− hHO
Princeton University, 8 November 2004



Mirror result from linear algebra

Princeton University, 8 November 2004

Chang & Schultz (1994) proved same result from 
algebraic approach, from eigenanalysis of                , 
where  A is F.D. Laplacian in 1D, 2D, or 3D, and  B
is  A with entries removed by arbitrary cutting planes
Their Theorem 2.4.7: Given                  grid, cut by 

q planes in x (slabs)

q planes in x or y (beams)

q planes in x, y, or z (subcubes)

(with cuts anywhere) then
Note:                          and                        if cut evenly 
Proof: eigenanalysis of low-rank matrices

)( 1AB−

nnn ××

1)( 1 ++≤− qqnABκ
)( 1−= HOq )( 1−= hOn

)( 1ABI −−



Mirror results from graph theory

Boman & Hendrickson (2003) proved same result 
from graph-theoretic approach, using their new 
“support theory”
Section 9 of their SIMAX paper “Support Theory for 
Preconditioning,” using congestion-dilation lemma 
from graph theory (Vaidya et al.) derives                 , 
for point Jacobi
Extended by B & H to block Jacobi, to get 

Many different mathematical tools can be used to 
explore this divide-and-conquer preconditioning idea!

)( 2−hO

)( 11 −− hHO

Princeton University, 8 November 2004



“Unreasonable effectiveness” of Schwarz
When does the sum of partial inverses equal the 
inverse of the sums?  When the decomposition is right!

{ }ir
iii raAr = T

iii Arra =
Let        be a complete set of orthonormal row 
eigenvectors for A :                        or

ii
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i
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and

— the Schwarz formula!
Good decompositions are a compromise between 
conditioning and parallel complexity, in practice

Princeton University, 8 November 2004



Schwarz subspace decomposition

Princeton University, 8 November 2004



Schwarz subspace decomposition

Princeton University, 8 November 2004



“Unreasonable effectiveness” of Schwarz, cont.

Delta function, δ(x) A δ(x) A-1 δ(x)

Forward operator is localized and sparse
Inverse operator is dense but locally concentrated

Princeton University, 8 November 2004



Basic domain decomposition concepts

Iterative correction
Schwarz preconditioning
Schur preconditioning

Polynomial combinations of Schwarz projections
Schwarz-Schur combinations

Princeton University, 8 November 2004



Iterative correction

Princeton University, 8 November 2004

The most basic idea in iterative methods:

Evaluate residual accurately, but solve approximately, 
where        is an approximate inverse to A
A sequence of complementary approximate solves can 
be used, e.g., with        and         one has
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Scale recurrence, e.g., with                                    , 
leads to multilevel methods
Optimal polynomials of                 leads to various 
preconditioned Krylov methods



Schwarz preconditioning
Given  A x = b , partition  x into 
subvectors, corresp. to subdomains       of 
the domain      of the PDE, nonempty, 
possibly overlapping, whose union is all 
of the elements of nx ℜ∈

iR

thi

thi

xRx ii =
T
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ii
T
ii RARB 11 −− ∑=

Ω
iΩ

x

Let Boolean rectangular 
matrix      extract the     
subset of       : 

Let The Boolean matrices are gather/scatter 
operators, mapping between a global 
vector and its subdomain support

Princeton University, 8 November 2004



Schur complement substructuring
Given a partition

Condense:
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Properties of the Schur complement:
smaller than original A, but generally dense
expensive to form, to store, to factor, and to solve

better conditioned than original A
Therefore, solve iteratively, with action of S on each 
Krylov vector, using a preconditioner M-1

In continuous form, S is a Steklov-Poincaré operator

Γ

Princeton University, 8 November 2004



Schur preconditioning in global system
Let  M-1 be a good preconditioner for  S
Let                                           

Then B-1 is a preconditioner for A
So, instead of                                 , use full system

Here, solves with       may be done approximately since 
all degrees of freedom are retained
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Schwarz polynomials

Polynomials of Schwarz projections that are hybrid 
combinations of additive and multiplicative may be 
appropriate for certain implementations
We may solve the fine subdomains concurrently and 
follow with a coarse grid (redundantly/cooperatively) 
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This leads to algorithm “Hybrid II” in S-B-G’96:                 

Convenient for SPMD programming model
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Schwarz-on-Schur

Preconditioning the Schur complement is complex in 
and of itself; Schwarz is used on the reduced 
problem
Neumann-Neumann

Balancing Neumann-Neumann
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Other variants:
Bramble-Pasciak-Schatz
multigrid on the Schur complement

Princeton University, 8 November 2004



Newton-Krylov-Schwarz: 
a nonlinear PDE “workhorse”

Schwarz
preconditioner
parallelizable
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i
T
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T
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Krylov
accelerator

spectrally adaptive
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δ

Newton
nonlinear solver

asymptotically quadratic
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Jacobian-free Newton-Krylov
In the Jacobian-Free Newton-Krylov (JFNK) method, a 
Krylov method solves the linear Newton correction 
equation, requiring Jacobian-vector products
These are approximated by the Fréchet derivatives

(where       is chosen with a fine balance between 
approximation and floating point rounding error) or 
automatic differentiation, so that the actual Jacobian 
elements are never explicitly needed

One builds the Krylov space on a true F’(u) (to within 
numerical approximation)
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Recall idea of preconditioning

Princeton University, 8 November 2004

Krylov iteration is expensive in memory and in 
function evaluations, so subspace dimension k must be 
kept small in practice, through preconditioning the 
Jacobian with an approximate inverse, so that the 
product matrix has low condition number in

Given the ability to apply the action of           to a 
vector, preconditioning can be done on either the left, 
as above, or the right, as in, e.g., for matrix-free:
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Philosophy of Jacobian-free NK

Princeton University, 8 November 2004

To evaluate the linear residual, we use the true F’(u) , giving a 
true Newton step and asymptotic quadratic Newton 
convergence
To precondition the linear residual, we do anything convenient 
that uses understanding of the dominant physics/mathematics 
in the system and respects the limitations of the parallel 
computer architecture and the cost of various operations:

Jacobian blocks decomposed for parallelism (Schwarz)
Jacobian of lower-order discretization
Jacobian with “lagged” values for expensive terms 
Jacobian stored in lower precision 
Jacobian of related discretization 
operator-split Jacobians 
physics-based preconditioning



NKS efficiently implemented in PETSc’s 
MPI-based distributed data structures

PETSc codeUser 
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Ω1
Ω2

Ω3

Princeton University, 8 November 2004www.mcs.anl.gov/petsc



User code/PETSc library interactions

PETSc codeUser 
code

Application
Initialization

Function
Evaluation

Jacobian
Evaluation

Post-
Processing

PC KSP
PETSc

Main Routine

Linear Solvers (SLES)

Nonlinear Solvers (SNES)

Timestepping Solvers (TS)

Can be AD code

Princeton University, 8 November 2004



Nonlinear Schwarz preconditioning
Nonlinear Schwarz has Newton both inside and 
outside and is fundamentally Jacobian-free
It replaces                with a new nonlinear system 
possessing the same root, 
Define a correction            to the     partition (e.g., 
subdomain) of the solution vector by solving the 
following local nonlinear system:

where                  is nonzero only in the 
components of the     partition
Then sum the corrections:                            to get 
an implicit function of u
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Nonlinear Schwarz – picture

Princeton University, 8 November 2004

F(u)
1

1
1

1

0 0

Ri

RiuRiF

u



Nonlinear Schwarz – picture
F(u)

Princeton University, 8 November 2004
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Nonlinear Schwarz – picture
F(u)

u

Fi’(ui)

Ri

Rj

δiu+δju
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Nonlinear Schwarz, cont.
It is simple to prove that if the Jacobian of  F(u) is 
nonsingular in a neighborhood of the desired root 
then                   and                have the same unique 
root
To lead to a Jacobian-free Newton-Krylov algorithm 
we need to be able to evaluate for any                :

The residual 
The Jacobian-vector product

Remarkably, (Cai-Keyes, 2000) it can be shown that 

where                   and 
All required actions are available in terms of            !
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Experimental example of nonlinear Schwarz

Vanilla Newton’s method Nonlinear Schwarz

Difficulty at 
critical Re

Stagnation 
beyond 

critical Re

Convergence 
for all Re

Princeton University, 8 November 2004



Multiphysics coupling: partial elimination
Consider system                partitioned by physics as

Can formally solve for       in       

Then second equation is  
Jacobian

can be applied to a vector in matrix-free manner
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Multiphysics coupling: nonlinear GS

{ }0
2

0
1 ,uuIn previous notation, given initial iterate

For k=1, 2, …, until convergence, do

Solve for v in
Solve for w in

Then  
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Multiphysics coupling: nonlinear Schwarz

Princeton University, 8 November 2004

Given initial iterate
For k=1, 2, …, until convergence, do

Define by
Define by

Then solve                               in matrix-free manner

Jacobian:

Finally                                 { } { }wvuu kk ,, 21 =
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Physics-based preconditioning
In Newton iteration, one seeks to obtain a correction 
(“delta”) to solution, by inverting the Jacobian 
matrix on (the negative of) the nonlinear residual:

A typical operator-split code also derives a “delta” to 
the solution, by some implicitly defined means, 
through a series of implicit and explicit substeps

This implicitly defined mapping from residual to 
“delta” is a natural preconditioner
Software must accommodate this!
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Physics-based preconditioning

Princeton University, 8 November 2004

We consider a standard “dynamical 
core,” the shallow-water wave 
splitting algorithm, as a solver
Leaves a first-order in time splitting 
error
In the Jacobian-free Newton-Krylov 
framework, this solver, which maps a 
residual into a correction, can be 
regarded as a preconditioner
The true Jacobian is never formed yet 
the time-implicit nonlinear residual at 
each time step can be made as small as 
needed for nonlinear consistency in 
long time integrations



State of the art
Domain decomposition is the dominant paradigm in contemporary 
terascale PDE simulation 
Several freely available software toolkits exist, and successfully scale 
to thousands of tightly coupled processors for problems on quasi-
static meshes
Concerted efforts underway to make elements of these toolkits 
interoperate, and to allow expression of the best methods, which tend 
to be modular, hierarchical, recursive, and above all — adaptive!
Many challenges loom at the “next scale” of computation
Implementation of domain decomposition methods on parallel 
computers has inspired many useful variants of domain 
decomposition methods 
The past few years have produced an incredible variety of interesting 
results (in both the continuous and the discrete senses) in domain 
decomposition methods, with no slackening in sight

Princeton University, 8 November 2004



DD-16 in New York City, January 2005
3.5-day meeting January 
12-15, 2005 
Co-organized by NYU and 
Columbia
14 invited speakers
8 participant-organized 
minisymposia
Contributed talks
Poster session
Pre-workshop short course, 
January 11, 2005

http://www.cims.nyu.edu/dd16
Princeton University, 8 November 2004
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