Dona and Robert's Bay Estuary Analysis 2003

Submitted to: Sarasota County Comprehensive Watershed Management Team

Submitted By: Michael Jones Sarasota County Environmental Services Hydrologic Initiatives Team

Acknowledgements

This work would not have been possible without the guidance and assistance of many. Thank You.

Laura Ammeson, Sarasota County Jeffery Banner, Sarasota County Eric Bilik, Sarasota County John Coffin, Hydrologic Data Collection, Inc. Catherine Corbett, CHNEP David Crosby, Sarasota County Geomatics Frank Desteno, Sarasota County Kellie Dixon, Mote Marine Laboratory Dr. Ernie Estevez, Mote Marine Laboratory Katie Fuhr, FDEP Joe Jacobson, Sarasota County Dr. Ray Kurz, PBS&J Jay Leverone, Mote Marine Laboratory Bruce Maloney, Sarasota County Christian Meyer, Sarasota County Kathy Meaux, Sarasota County Susan Murray, Sarasota County Judy Ott, FDEP Marc Pearl, Sarasota County Geomatics Jennifer Ryan, Sarasota County John Ryan, Sarasota County Dr. Dave Tomasko, SWFWMD Dr. Aswami Volety, Gulf Coast University

Introduction

The Sarasota County Center for Watershed Management has drafted the Comprehensive Watershed Management Plan. The plan focuses on four strategic areas that need attention in order to properly manage Sarasota County's water resources. The four areas have been identified as Water Quality, Flood Protection, Water Supply, and Natural Systems. The monitoring effort addressed in this report is intended to support the comprehensive watershed management plan's natural systems goal: "To enhance, protect and conserve the hydrologic and ecologic functions of natural systems including estuaries freshwater and groundwater systems." Specifically this monitoring program provides data necessary to guide and gage the success of the County's efforts to restore more natural hydrologic regimes to our natural water systems.

The Dona and Robert's Bay (DARB) watershed is one of the five major watersheds in Sarasota County with a contributing area of 62,376 acres (Figure 1). The predominant land use type in the upper watershed is pasture and agriculture; the lower portions of the DARB watershed consist primarily of medium density residential. Much of this watershed historically drained east via sloughs toward the Myakka River and a much smaller area drained toward Dona Bay. The Cow Pen Slough Canal was completed in the late 1960s (Lincer, J.L. 1975). This canal increased the size of the DARB watershed from approximately 5 square miles to 75 square miles. The canal has two control structures.

The current management of the structures is to open the gates June 1st each year to allow freshwater to drain off the land. The gates are closed November 1st to hold water back during the dry months. This schedule has been maintained regardless of rainfall or estuarine habitat needs.

In addition to the Cow Pen Slough Canal, many alterations have resulted in a substantial increase in freshwater input to the DARB system. The Blackburn Canal was dug to connect Curry Creek to the

Myakka River, increasing freshwater inputs to Robert's Bay. Hatchet Creek in Venice has been straightened and deepened (Deleuw, Cather & Brill, 1959). Many swales and ditches have been constructed that feed freshwater into upper Lyon's Bay. Additionally, a recent tidal flow dye study conducted by Sarasota County staff supports the results of a previous study from the 1970s indicating that the Alligator Creek and Woodmere Creek watersheds also drain toward Venice inlet rather than Lemon Bay as commonly thought. Current trends in data show that estuarine habitat in southwest Florida has been negatively impacted by alterations to the quantity, quality, and timing of freshwater inflows. The DARB system is typical of this scenario. In 1975, Mote Marine Laboratory submitted a report on "The Ecological Status of Dona and Robert's Bays" to the Sarasota Board of County Commissioners. Aside from that report, there is a lack of historical water quality, hydrological, and biological data for the DARB area. New data are being collected in DARB to provide a better understanding of the water budget and guide management of our water resources for both consumption and natural habitat needs.

This report will focus on seagrass and oyster habitat as biological indicators of estuarine health for the DARB system. Research has shown that seagrass beds are important habitat for a wide variety of marine fauna. Seagrass beds serve as feeding, forging areas and nursery habitat for fish species as well as a variety of other aquatic organisms. Seagrass beds also function to slow shoreline erosion and trap sediments. Additionally, seagrasses provide some water quality benefits in the form of nutrient removal. Seagrass beds are susceptible to water quality and other environmental change and can therefore serve as an important gage as to how human alterations to watersheds effect the natural habitats in our estuaries. Recent work conducted by the South Florida Water Management District (SFWMD) in the southern Indian River Lagoon indicates that seagrass health can be directly correlated to water quality (Crean et. al., 2003). Oysters were chosen as another biological indicator due to their immobility and ease of monitoring. Oyster beds also provide important shelter habitat and foraging areas as well as help prevent erosion by stabilizing shorelines. An individual oyster can filter between 4 and 40 liters of water per day (Volety et. al, 2003) providing a valuable water quality function. Recent work conducted by Volety shows that oyster bed health is affected by water quality, particularly salinity levels. The two biological indicators discussed in this report provide a well documented vital habitat for both commercial and sport fish species. A study conducted in 1991 showed that tourists spent \$2 billion dollars fishing Florida waters during that year (Stedman & Hanson, 1998). Little background data exist for these two habitats in the DARB system and the results from this report will be used as baseline data for analysis of future trends.

In integrated systems it is difficult to look solely at biological indicators and infer any conclusions or make integrated water management decisions. The biology of estuarine systems is driven by the hydrology and water quality inputs into the system. Therefore, this report will also discuss available water quality, rainfall, and discharge data.

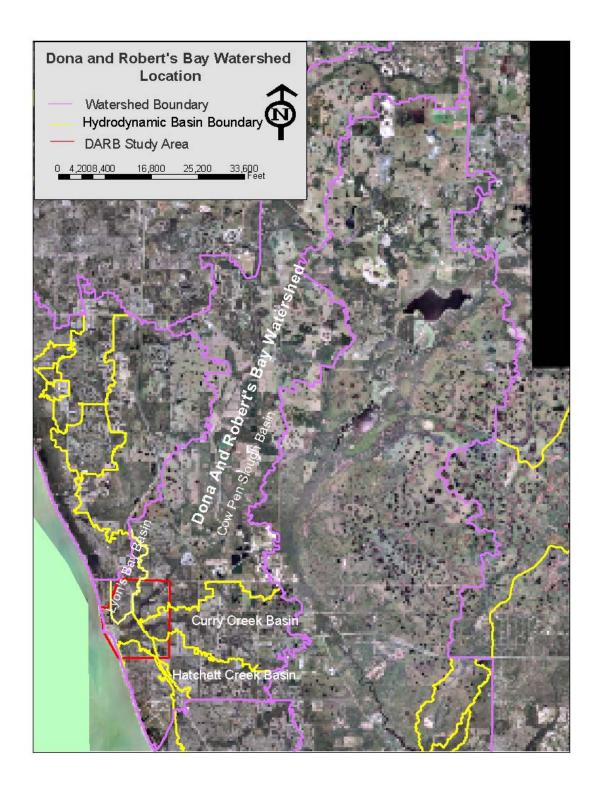


Figure 1. Dona and Robert's Bay Watershed Location Map.

DARB Seagrass Beds

Methods

The Southwest Florida Water Management District (SWFWMD) conducts aerial seagrass bed mapping throughout the District's coastal counties every other year. Monitoring began in 1986 by aerial photography taken in late fall during over-flights at the end of the seagrass growing season. An aerial interpolation is conducted, seagrass polygons are scrutinized for change, and any change is incorporated into the polygons. A spatial analysis is then conducted, and seagrass polygons are categorized as patchy or continuous seagrass beds. In this report, beds are discussed without regard as to whether they are patchy or continuous. When the GIS work is finalized it is available to download from the Water Management District's website. Downloaded data from 1988, 1994, 1996, 1999 and 2001 SWFWMD coverages were used for this report. A shape file was created with the seagrass polygons that occur in the DARB study area. In addition to the SWFWMD data, 1948 aerials have been analyzed to infer historical coverage of seagrass for the area. The 1948 aerials were scanned and ortho-rectified by Sarasota County's Geomatics department. The 1948 bed delineation analysis was done conservatively due to the poorer quality of the aerial photographs and the time of year when the photos were taken.

Sarasota County staff conducted a field truthing event in late May 2003 to verify that seagrass occurred in or near the areas delineated by the SWFWMD 2001 winter mapping effort. Even though the field truthing occurred several months after the mapping effort SWFWMD mapped seagrass bed locations appear to be relatively stable thus emerging seagrass could be expected in the same general vicinity. Four seagrass transect locations (LYB1, LYB2, DB1, and RB1) were selected in stable bed locations where seagrasses were found in the field during the field truthing event (Figure 5). Transects start at the shallow end of the bed and terminate at the deep edge of the bed. A GPS position was taken as well as a compass bearing from a fixed location marked either by a piling or flagging tape on mangrove islands. The four transects were analyzed for coverage using the Braun Blanquet method which is used by the Florida Department of Environmental Protection to monitor seagrass beds in Charlotte Harbor, Lemon Bay, and Sarasota Bay. The Braun Blanquet method classifies coverages into categories based on percentages (i.e., category 1 is <5% cover). Data are collected from the beginning, middle and edge of bed. For beds longer than 150 meters, data are collected at 50 meter intervals. In addition to percent cover; species, shoot density, sediment type, and epiphyte density are also noted. In future monitoring events, physical water quality parameters will be taken at each station as well as photosynthetically available radiance or PAR. Sarasota County may increase the number of transects as necessary for future monitoring events.

Results

An analysis of the SWFWMD mapping efforts coupled with the 1948 aerial delineation indicated an overall decline in coverage from 1948-2001 in DARB by approximately 32% (Figure 2). This figure is consistent with the SWFWMD estimate of an approximate

30 % loss during the same time period district wide (Tomasko et. al, 2002). The trend for aerially mapped seagrass acreage in DARB since 1988 also followed the trends found district-wide. In the DARB study area, approximately 123 acres of seagrass beds were delineated on the 1948 aerials (Figure 3). Approximately 84 acres of seagrass beds were delineated during the 2001 mapping effort in this same area (Figure 4).

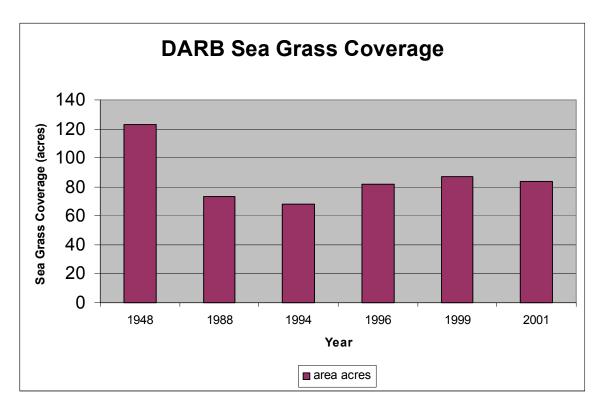


Figure 2. SWFWMD aerially delineated seagrass beds 1988-2001 & Sarasota County aerially delineated beds 1948 for the DARB study area.

During the field truthing event conducted at the end of May 2001, sparse seagrass coverage was observed in or very near (within 10 meters) to most areas that the SWFWMD had delineated as seagrass beds. The exception was that some areas delineated as seagrass beds were actually oyster beds. Another site visit was conducted in early July to determine the extent of ovster beds that were delineated as seagrass beds. Oyster beds were mapped using a Trimble Geoexplorer 3. These delineated oyster beds were then plotted on a GIS layer with 2001 aerials. The acreage that overlapped the 2001 SWFWMD delineated seagrass beds were removed from SWFWMD acreages. Results from this effort indicated that approximately 8.86 acres of oyster beds overlapped the SWFWMD 2001 aerial mapped 83.9 acres of seagrasses for a total overestimation of approximately 10%. Figure 5 illustrates the overlap of oyster beds on SWFWMD seagrass beds. GIS aerial analysis is a newer methodology thus a 10% overestimation could also apply to the 1948 aerial delineation as well as other annual SWFWMD delineations. During the July visit however, no seagrasses were observed in the transect areas where seagrasses were observed during the May event, indicating that the sparse seagrass coverage observed in May had died.

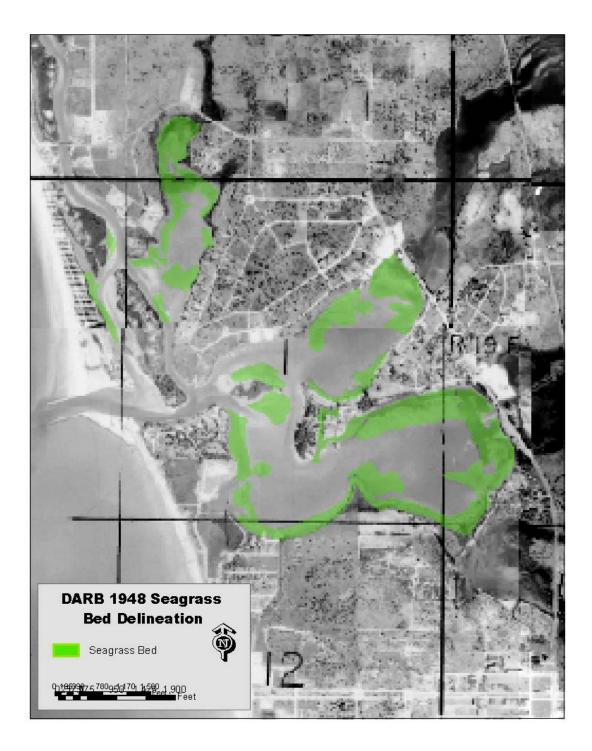


Figure 3. 1948 Sarasota County Seagrass Bed Delineation

Figure 4. 2001 SWFWMD Seagrass Bed Delineation

Figure 5. 2001 Oyster and Seagrass Overlay

Quantitative monitoring of seagrass transects was completed October 3, 2003. The results indicated sparse coverage. No mature seagrass with blade lengths longer than 7 cm were observed. Visual observations throughout the project area verified sparse coverage with observed seagrasses shoots being new and emergent. Two emergent species, Halodule wrightii and Thalassia testudinum, were noted in the mouth of Lyon's Bay. Transect data using the Braun Blanquet method indicated that transect LYB1 contained few seagrasses. The bed length was only 8 meters. The beginning station and end station both fell into the "+" category indicating that seagrasses were present but few. Average blade length was 4.3 cm. The only species noted was Halodule wrightii. Data was not collected for the LYB2 transect because no seagrasses were found. Transect DB1 was approximately 39 meters long. Three stations were monitored, one at each edge and one in the middle. Each station fell into the Braun Blanquet category of "1" which is less than five percent cover. Average blade length for this transect was 5.27 cm. The only species noted was *Halodule* wrightii. Transect RB1 was approximately 44 meters long. The shoreward station fell into category "1" with less than five percent coverage and the water ward station fell into the + category with few shoots noted. Average shoot length for this transect was 3.1 cm. Again, the only species noted was Halodule wrightii. Seagrass transects will be monitored quarterly during FY04 in an effort to observe and document intra-annual variability in growth and coverage.

DARB Oyster Beds

Methods

In order to gage the health of oyster beds, an initial project to locate and map oyster beds in the DARB project area was undertaken. Oyster beds were delineated in the field using a Trimble Geoexplorer 3. The GPS data was loaded onto ortho-rectified color aerials. This method allowed correlation with pixel signatures on the aerial photos enabling further delineations. Most oyster beds in the DARB project area were then delineated using the color aerial photography from 2001. At least thirty-five percent of the oyster beds in the area were field verified. 1948 aerials were used to estimate the historic extent of oyster beds. Due to the quality of the 1948 photos only the areas east of U.S. Hwy 41 were analyzed for historic extent. A comparison of historic versus 2001 oyster extent was then possible. Some areas where oysters appeared in 1948 but were absent in 2001 were field checked by probing the sediment with a steel rod to feel for hard oyster shell under the substrate. In areas where oysters had appeared in 1948 but were absent on the 2001 delineation, a hard shell substrate was found under approximately 5 cm of silt. During the summer, further delineations west of U.S. Hwy. 41 and in the Lyon's Bay portion of the study area were conducted allowing for completion of the oyster bed habitat GIS layer. The layer consists of polygons delineated over the aerial signatures of oyster bed habitat or substrate. The layer does not imply that all oyster bed habitat areas contain live and/or healthy oysters. The layer also does not take into account live oysters that were observed growing along the shoreline, sea walls, and pilings.

Oyster bed health was analyzed by counting live and dead oysters that fell within a randomly placed quarter-meter PVC quadrat. Oyster spat (juvenile oysters) recruitment was recorded. Oysters in our area are capable of setting spat throughout the year but winter spat is minimal. The peak season of spat production and recruitment begins in the spring and extends through the fall. The five longest live oysters were recorded. Oysters were considered dead if both shells of the bivalve were still conjoined yet they contained no tissue.

Six stations were selected for oyster sampling. One station in each of the three bay segments (Dona-DB1, Lyons-LYB1 and Robert's Bays RB1), and two stations from Shakett Creek SC1 and SC2 east of U.S. Hwy. 41, and one from Curry Creek CC1 east of U.S. Hwy. 41 were selected. Subsequent data gathering will be collected at these permanent stations. Oyster bed locations and sampling stations for the study area are presented in Figure 6. Additionally figure 6 illustrates the river kilometer system (RKS) that was established on a GIS layer as a distance reference tool. The RKS starts at 0 kilometers at Venice inlet and extends up all of the tributaries to a predetermined point. Sampling stations may be added in the future as needed. At each of the six stations, oysters were collected and placed in five gallon buckets for counting on the boat. All oysters that fell within the quadrat were collected. The data was then analyzed at Florida Gulf Coat University using a univariate analysis of variance (Levenes's Test of Equality of Variances). The statistical analysis was run on the percent of live oysters as well as the number of actual live oysters. In addition, physical water quality parameters and water depth were collected at each of the stations. This data is presented in Appendix A.

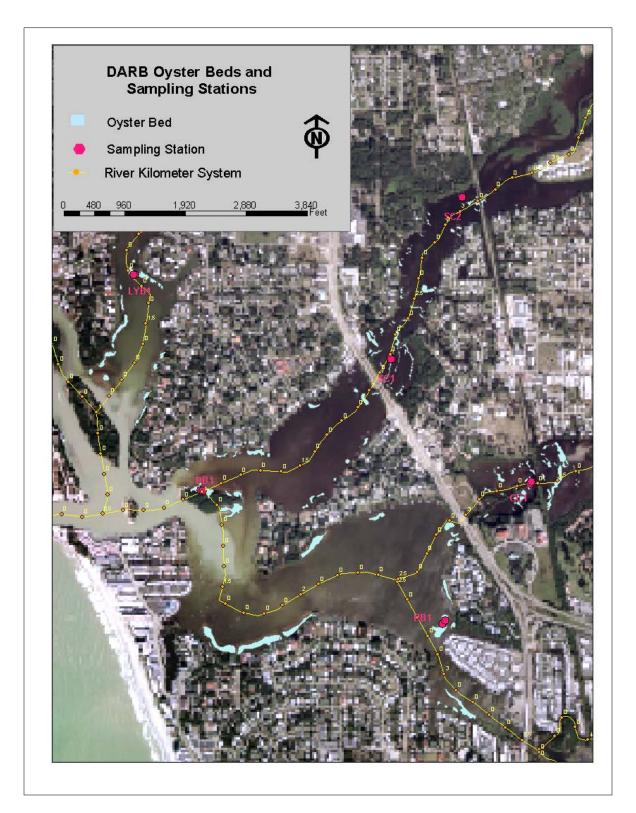
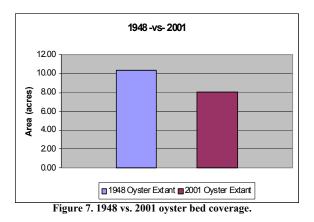



Figure 6. Oyster Bed Locations and Sampling Stations

Results

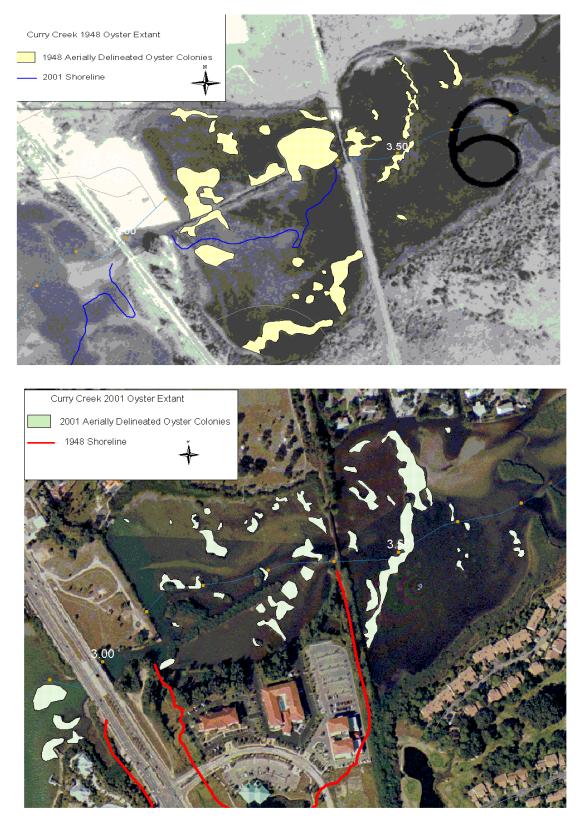
Overall, approximately 23 acres of oyster bed habitat were aerially delineated using the 2001 aerials for the entire DARB project area. A loss of approximately 2.27 acres of oyster habitat was observed when comparing 1948 and 2001 oyster bed coverage east of U.S. 41 (Figure 7). There was approximately 10.34 acres of oyster bed habitat in 1948. In 2001 approximately 8.07 acres of oyster bed habitat was delineated east of U.S. 41. Figures 8 and

9 aerially illustrate the differences between 1948 and 2001 oyster coverage in Shakett and Curry Creeks. The majority, 2.11 acres, of the observed oyster habitat loss is explained by the filling of a large portion of Robert's Bay which is evident when comparing the aerial photos in Figure 9. Field truthing in January and February of 2003 demonstrated that oysters visually had the greatest densities of live oysters and robust beds between river kilometers 2.1 and 3.3 on Shakett Creek and river kilometers 3.1 and 3.7 on Curry Creek

Statistical analysis of the quantitative data collected in October 2003 indicates that the sampling station in Lyon's Bay (LB1) had the largest number of live oysters and highest percentage of live oysters. No significant statistical difference in percentage of live oysters was evident between stations SC1, SC2, CC1, and DB1. Few live oysters were found upstream of U.S. Hwy. 41 in Shakett or Curry Creeks. Oysters found in Dona Bay were also mostly dead with a small percentage of live oysters. Many were covered with silt and mud. The Robert's Bay station, located in close proximity to the intracoastal canal and the historic mouth of Hatchet Creek, had a higher percentage of live oysters. The Levene's test of variance and post hoc test indicated that there was no significant difference in percent of live oysters when comparing the Robert's Bay station with the healthiest station in Lyon's bay. However, when examining the amount of live oysters only, the qualitative statistics indicated that the Robert's Bay site was more similar to the sites with no live oysters than the Lyon's Bay site. The statistical analyses are located in Appendix A.

Exposed oyster beds on Shakett Creek

Figure 8. Shakett Creek 2001/1948 Oyster Bed Comparison



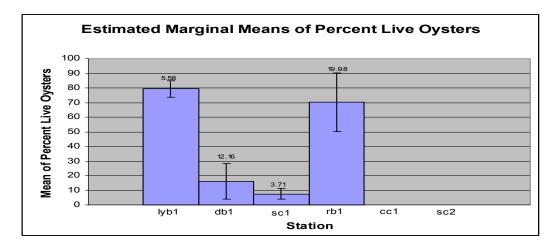
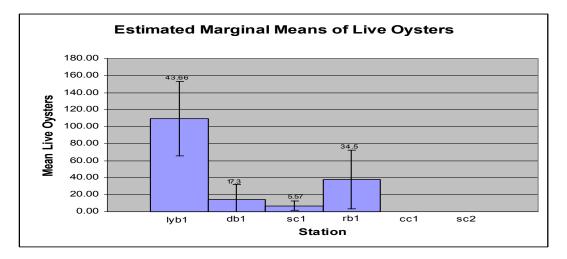

Figure 9. Curry Creek 2001/1948 Oyster Bed Comparison

Figure 10 illustrates graphically the estimated marginal means of percent live and live oysters. When observing the height of the largest live oysters it was determined that the live oysters encountered throughout the study area were no more than three years old. This suggests that the current conditions are inadequate for the oysters in these systems to attain the longer life spans associated with commercially harvestable oysters which are generally greater than 7 cm. Spat recruitment observed on oysters at all stations was minimal. Lyon's Bay and Robert's Bay were the only stations where spat was observed. Twelve spat were noted in Robert's Bay and seven in Lyon's bay. Overall counts for oysters were less then oyster amounts recorded in the healthiest sites in the Caloosahatchee River and Fakahatchee Strand. These areas located south of Sarasota County have approximately four times higher oyster counts per quarter meter (Volety et. al., 2003). DARB total live and dead counts were approximately double that of counts conducted in July to the north in Little Sarasota Bay at the mouth of North Creek (Leverone J. R., 2003). The highest numbers of dead oysters in the DARB study area were found upstream of U.S. Hwy. 41 as follows: SC2= 81, SC1= 80, and CC1=75. Lower numbers of dead oysters were found at the three other sites: DB=50.33, LYB1= 27.43, and RB1=10.00. The observed high oyster mortality is most likely due to prolonged exposure to fresh water during the 2003 wet season and is discussed further in the discussion section.


The percent of live oysters in the DARB area appear to be susceptible to high annual and seasonal variability. A qualitative survey conducted by the County found no live oysters in Curry Creek, Shakett Creek, or Dona Bay in September, 1982 yet in February 1983, live oysters were found throughout the Dona and Robert's Bays area (Sauers and Perry, 1983). A more recent study of an oyster relocation project in Shakett Creek showed the number of live oysters increased overall during a three year monitoring project, yet the second year of monitoring in October showed a large decrease in live oysters at all stations. (Ed Barber and Associates, 2003)

Example of shoreline oyster colony in Shakett Creek

Station	Mean % Live	St.Dev.
lyb1	79.28	5.58
db1	16.12	12.16
sc1	7.38	3.71
rb1	70.17	19.98
cc1	0.00	0.00
sc2	0.00	0.00

Station	Mean Live	St.Dev.
Lyb1	109.33	43.66
Db1	14.33	17.39
Sc1	7.00	5.57
rb1	37.67	34.59
Cc1	0.00	0.00
Sc2	0.00	0.00

Figure 10. Estimated Marginal Means of Percent Live and Live Oysters.

Water Quality Monitoring Results:

MS-4 Monitoring

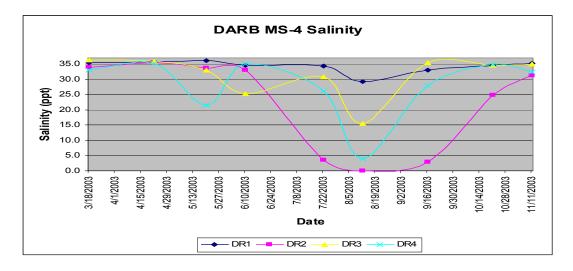
As part of the County's MS-4 permit under the NPDES program, Sarasota County has contracted Mote Marine Laboratory to collect monthly random grab samples throughout the coastal waters of Sarasota County. No grab sampling stations were previously located in the DARB area so five additional stations were added (DR1-DR5) in 2003. DR5 will not be discussed in this report because it falls outside the project area in the Intracoastal Waterway closer to the mouth of Alligator Creek. Figure 11 shows the sampling locations.

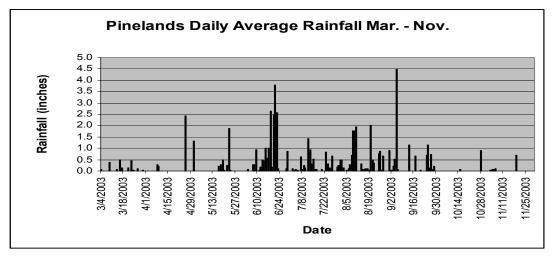
The following parameters are monitored from grab samples: temperature, specific conductance, dissolved oxygen, turbidity, total suspended solids, chlorophyll a, total nitrate + nitrite, dissolved nitrate+nitrite, dissolved inorganic nitrogen, dissolved orthophosphate, pH, salinity, dissolved oxygen % sat. color, biological oxygen demand-5 day, total kjeldahl nitrogen, dissolved ammonium nitrogen, total nitrogen, total phosphorus. The raw data available from this monitoring are presented as part of Appendix B. The full data set from March 2003 to present has not yet been made available to the County. Presently the full data set is available only from March through October 2003. Figures 12, 13 and 14 display the results for salinity, turbidity, TSS, color, chlorophyll a, and pH. Average daily rainfall totals from the DARB watershed area are also presented. A substantial increase in color during the summer months as well as chlorophyll a values is illustrated on Figures 13 and 14 and can be associated with freshwater inputs during the wet season. There is also a significant drop in salinity apparent in Figure 12 that occurred during the summer months. According to the data, salinity values in Dona Bay were the lowest followed by Curry Creek, and Shakett Creek. Lyon's Bay presented the least drop in salinity and pH. Lyon's Bay has the smallest contributing watershed and remained the most stable throughout the sampling period.

Data Logger Deployments

Sarasota County staff deployed a YSI 6600 extended deployment data sonde at the mouth of Curry Creek immediately upstream of U.S. Hwy 41 for approximately six weeks from July 10, 2003 through August 19, 2003. This meter was pre- and post-calibrated according to standard protocol by the YSI company representative. The data logger results for salinity, DO, specific conductance, turbidity, chlorophyll a, and pH are displayed in Figures 15 through 17. Average salinities from July 10, 2003 through August 19, 2003, salinities at this location remained below 1 ppt. The water quality meter was checked with a discreet measurement that supported the observed low salinity values. The meter was also deployed alongside another meter that further supported the physical water quality results. A tropical system moved through the area in the beginning of August depositing approximately 6.6 inches of rain over the watershed, coinciding with the observed drops in salinity readings. The pH value also exhibited a noticeable drop, presumably as highly tannin-laced water moved downstream following the tropical event.

Deployments of YSI 6920 data loggers during the spring of 2003 give an indication of dry season physical water quality particularly salinity. There were three spring deployments (Figure 18). Two deployments took place on Shakett Creek, one in April and one in June, and one deployment took place in March on Curry Creek. Average salinity at Curry Creek and U.S. 41 was 31 ppt during the last week of March 2003. Average salinities from July 10, 2003 through August 19, 2003 dropped to approximately 13 ppt. Data logger salinity readings at Shakett Creek and U.S. Hwy. 41 averaged 33 ppt during the first week of April 2003. After opening the control structure gates on Cow Pen Slough average salinity at the same location dropped to 26 ppt. after a 2.5 inch rain event. In August, the MS-4 monitoring recorded salinity in this same vicinity at 4 ppt.


In December 2002, a one-time physical water quality sampling event was conducted. Four teams in four boats evaluated physical water quality parameters throughout the study area and further up into the watershed. Efforts were made to capture both high and low tide data in sampling locations. The results of the December 2002 monitoring event can be viewed in Appendix B. The sampling locations for this event are also presented in Figure 11.



YSI 6600 Extended Deployment Data Sonde Probes

Figure 11. Approximate Water Quality Sampling Locations

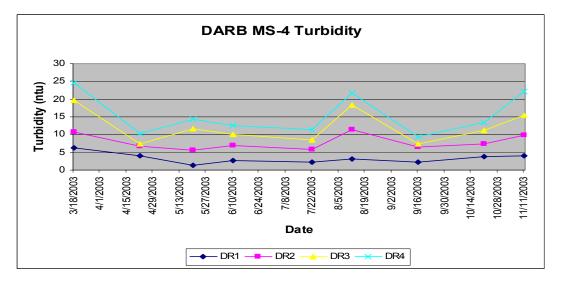
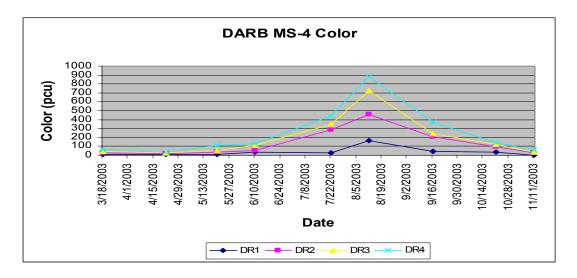
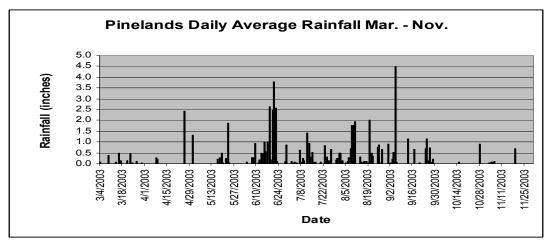




Figure 12. DARB MS-4 Monitoring Results and Avg. Daily Rainfall

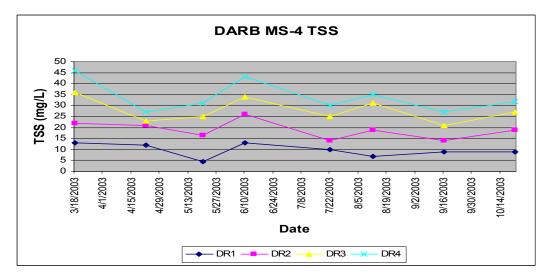
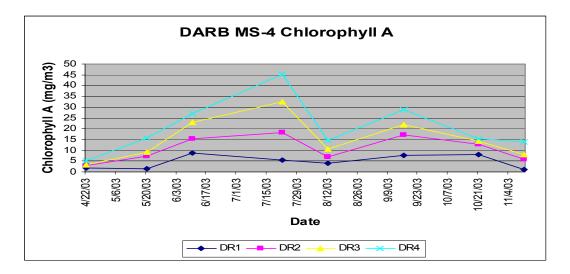
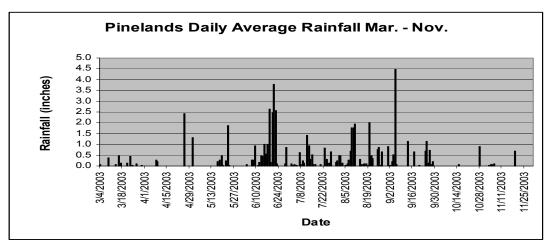




Figure 13. DARB MS-4 Monitoring Results and Avg. Daily Rainfall

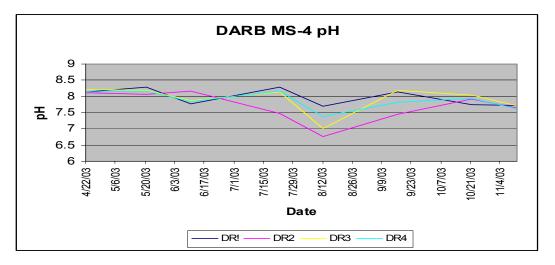
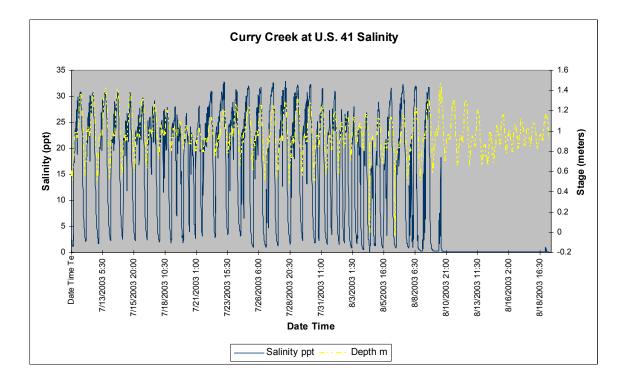



Figure 14. DARB MS-4 Monitoring Results and Avg. Daily Rainfall

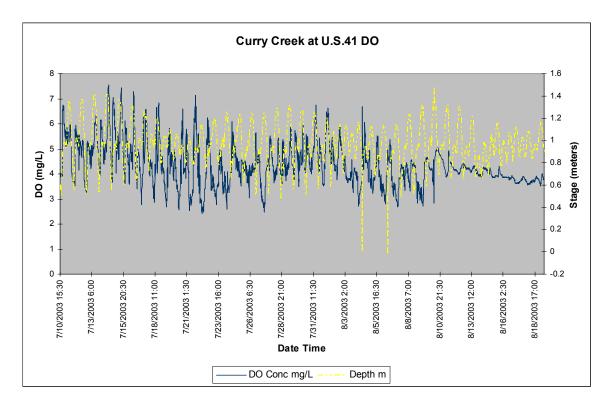
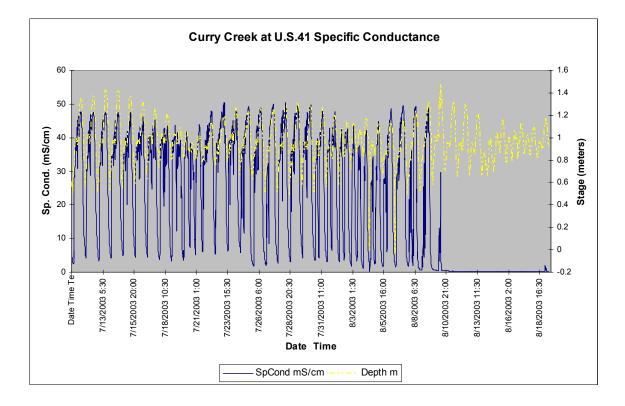



Figure 15. Datalogger Deployment at the Mouth of Curry Creek: Salinity and DO

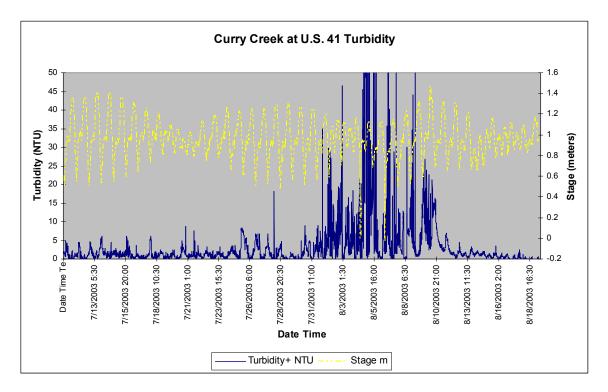
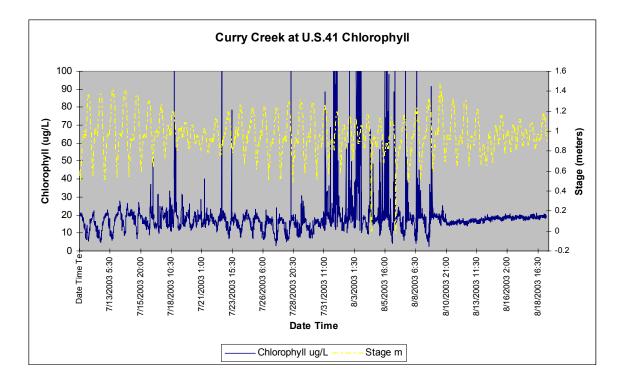



Figure 16. Datalogger Deployment at the Mouth of Curry Creek: Specific Conductance and Turbidity

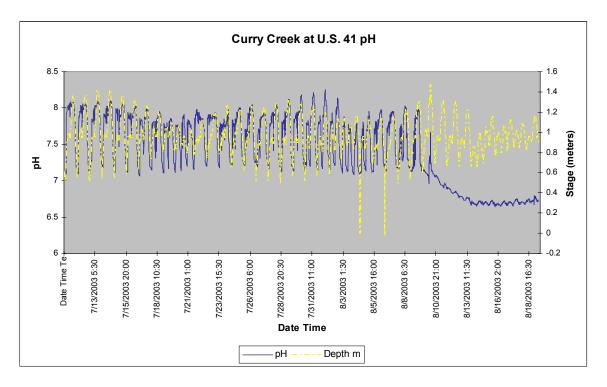
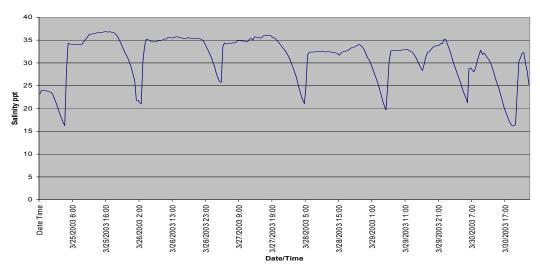
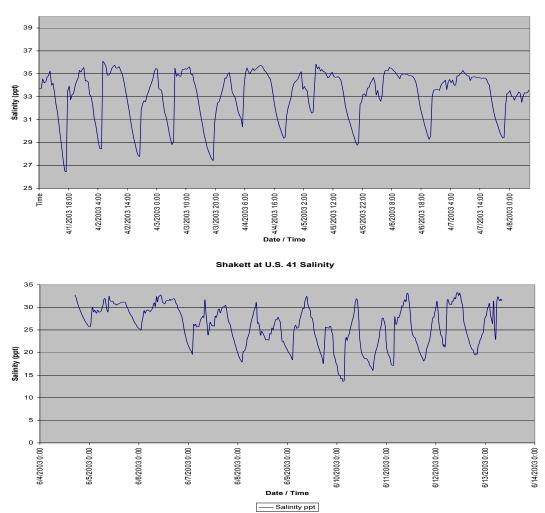




Figure 17. Datalogger Deployment at the Mouth of Curry Creek: Chlorophyll a and pH

Curry Creek at U.S. 41 Salinity

Shakett at US41 Salinity

Cow Pen Slough and Blackburn Canal Water Quantity and Quality

The largest freshwater input to the DARB project area is the Cow Pen Slough Canal followed by Curry Creek / Blackburn Canal. These two man made conveyance systems have increased the amount and timing of freshwater inputs to the DARB system. To illustrate the change in hydrology, Figure 19 displays the 1847 water courses and current watercourses overlaid on a county aerial. Figure 20 presents stage data and discharge from both the control structures on Cow Pen Slough Canal. The total volume of fresh water discharged across the upper cow pen slough weir between June and November 2003 was calculated at approximately 35,000 acre-feet. The data from the upstream weir was used for the calculation due to less equipment down time and more reliable data. Sarasota County has been testing Cow Pen Slough for primary and secondary drinking water standards from February 2003 through present to determine the possibility of using Cow Pen Slough as a public water source. (Sarasota County Water Resources 2003) The results indicate that the only parameters consistently above the acceptable range of values for primary and/or secondary drinking water standards were color, iron and on one occasion odor. Therefore, the large input of fresh water from Cow Pen Slough does not appear to have harmful or toxic pollutants that may affect the downstream estuarine biota.

Studies conducted on the Myakka River have estimated that discharges to Blackburn Canal are between five to ten percent of the flow on the Myakka River (USGS, 1992). For the purpose of estimating flow the USGS gage no. 02298830 located on the Myakka River near Sarasota was used for volume estimations. Figure 21 graphically illustrates the increase in discharge for Blackburn canal due to the influence of the Myakka River. The discharge values were calculated at five, seven, and ten percent of the discharge calculated at the Myakka River gage in order to see the relationship between higher and lower flow regimes. The total estimated volume of fresh water discharged into Blackburn Canal from the Myakka River from June through November 2003 ranged from 17,000 to 34,000 acre feet. The only water quality data available for Blackburn Canal was collected by FDEP as part of the strategic monitoring of water bodies that were identified as impaired on the 1998 Impaired Waters (303d) list. Data was collected on four occasions between June and October 2003 at Blackburn Canal and Capris Isles Blvd. Dissolved Oxygen was the only parameter that was consistently low during all four events. All other parameters fell within range for class III waters. The data collected during the four events did not indicate that pollutants were at levels that would adversely affect estuarine bioto.

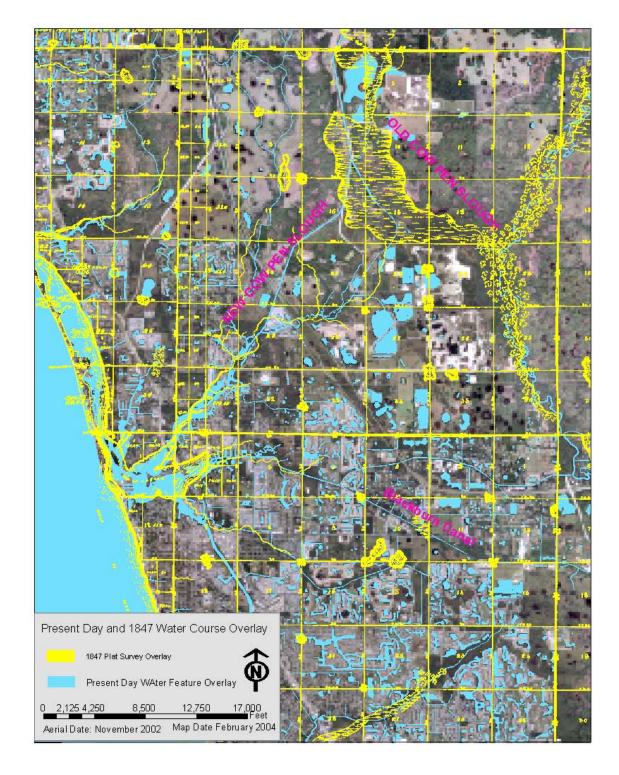
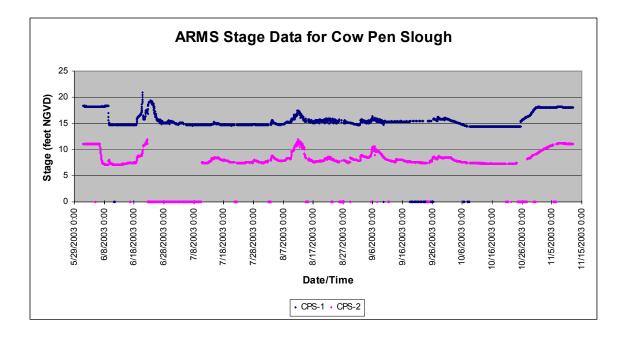



Figure 19. 1847 survey and present day water feature overlay.

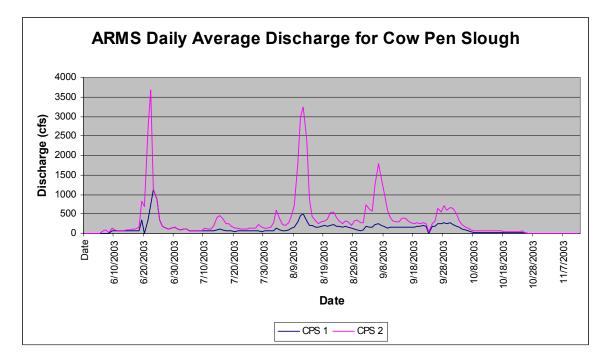
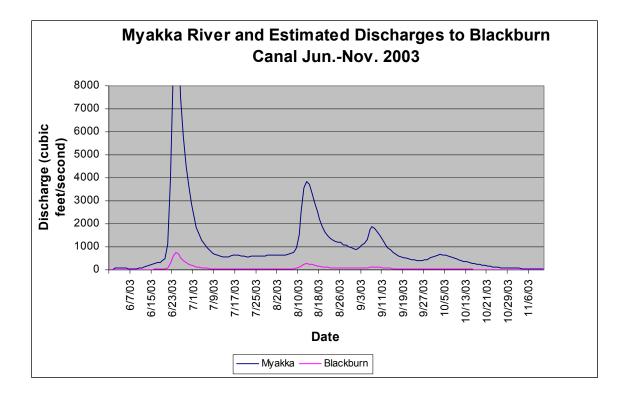



Figure 20. Stage and discharge for CPS-1 (upstream control structure) and CPS-2 (downstream control structure) on Cow Pen Slough Canal

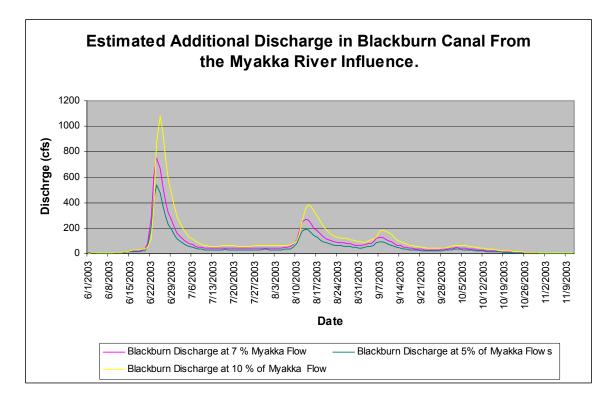
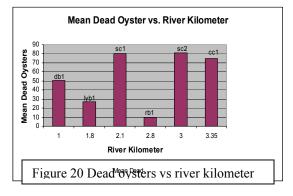



Figure 21. Calculated Discharge from the Myakka River and estimated discharge from the Myakka River to Blackburn Canal June through November 2003

Discussion

Both seagrass and oysters are aquatic biological indicator organisms with definite habitat requirements. As aquatic organisms, water quality is a primary factor in their overall health, density, and distribution. Different species of seagrass have slightly different salinity tolerances. *Halodule wrightii*, the only species of seagrass found in the DARB monitoring transects during this event, has a large range of salinity tolerance.

Although seagrasses can tolerate salinity fluctuations, they prefer habitats that have salinity ranges from 24 ppt to 35 ppt. However, the ability of seagrass to conduct photosynthesis has been shown to decrease as salinity decreases. (USFWS Multi Species Recovery Plan For South Florida, 1999) Another requirement of seagrass is water clarity. Water clarity can also affect their ability to conduct photosynthesis: The Sarasota Bay National Estuary Program sponsored a study that attributed available light as the primary abiotic factor that affects seagrass health in Sarasota Bay (Dixon, Kirkpatrick, 1995). Salinity and the parameters of color, total suspended solids, and turbidity that affect water clarity showed a wide variation during the 2003 wet season. Work presented by the SFWMD indicate that seagrass depth and distribution in the Indian River Lagoon is directly correlated to available light which is reduced by increases in color and turbidity associated with large freshwater discharges to the estuary. The results from transect monitoring, visual observations of a decline in seagrass coverage during the "growing season", and water quality analysis imply that the above average rainfall during the 2003 wet season yielded an overabundance of fresh water which contributed to an environment that was unfavorable for seagrass health in the DARB system. Preliminary results from Charlotte Harbor seagrass transect monitoring also point to a shoreward retreat in the deep edge of some seagrass beds (Ott, personal conversation, 2003). A longterm monitoring program is planned for the DARB study area. Monitoring will occur quarterly instead of once a year and this schedule will provide a better understanding of the dynamic variability of seagrass health in the DARB system.

Oysters also have specific habitat requirements especially with regard to salinity. Oysters grow best at salinities from 12-20 ppt. and can tolerate salinities from 5ppt to 25 ppt (Olsen et al, 2003) Excessive valve closures and poor recruitment occur as salinities drop below 14 ppt. Adult ovsters are tolerant of fresh water however, salinities of 5 ppt or lower will result in >95% mortality of juvenile oysters. High juvenile mortality can occur when exposed to low salinities for just one week. Experimental results indicate that adults can tolerate salinities as low as 5 ppt for up to eight weeks but can tolerate salinities no lower than 3 ppt for prolonged periods (Tolley et. al., 2003). DARB water quality data indicate that in locations where the highest oyster mortalities occurred, salinity dropped below 5 ppt. The MS-4 monitoring results suggest that salinity in Dona Bay remained below 5 ppt for the duration of the wet season. The meter deployment at Curry Creek suggested that salinity remained below 1 ppt for at least a ten day period in August 2003. As oyster sampling moved upstream, the percentage of dead oysters increased (Figure 20). Further evidence indicating that an overabundance of fresh water has impacted oyster habitat can be gleaned from a GIS analysis of the contributing watershed acreage into each of the bay segments where oyster sampling occurs. Lyon's Bay had the healthiest oyster beds with the most oysters as well as the highest percentage of live oysters. Lyon's Bay has the smallest contributing watershed of approximately 1,120 acres. MS-4 monitoring results indicate that Lyon's Bay also maintained the highest salinity throughout the wet season. Shakett Creek, with the largest contributing watershed, 47,564 acres, and Curry Creek / Blackburn Canal with a 6,398 acre watershed coupled with sustained wet season flows from the Myakka River watershed, claimed very few to no live oysters. Peak flows into Shakett Creek from the Cow Pen Slough Canal were as high as 2000 cubic feet per second during two of the tropical events associated with the 2003 wet season. All stations had little to no spat recruitment noted during the sampling. Preliminary results from this year's monitoring of oysters in the Caloosahatchee River to the south also indicate that impacts on oyster viability and spat recruitment occurred during the 2003 wet season. (Volety, personal conversation, 2003)

The 2003 wet season exhibited an above average amount of rainfall (Figure 22) The DARB system is an enclosed bay system with an artificially-large contributing watershed altered by increased drainage. Seasonal and event-driven salinity and water quality fluctuations appear to be extreme. This provides an environment that is not presently conducive to the long term viability and health of the two bio-indicator genera discussed in this report Whether the above average wet season or natural variability had the largest effect on bio-indicator health during this summer or whether the altered hydrology and geomorphology is not conducive to a favorable environment, is a question that needs to be addressed. The large increase in the contributing watershed from historic conditions coupled with hydrologic alterations must play a role in overall ecosystem health and change. To gage that role versus seasonal and annual variability, a consistent hydrologic and biologic monitoring program is necessary.

2003 Pinelands and CMR Rainfall vs CMR Historic Average (1993-2002)

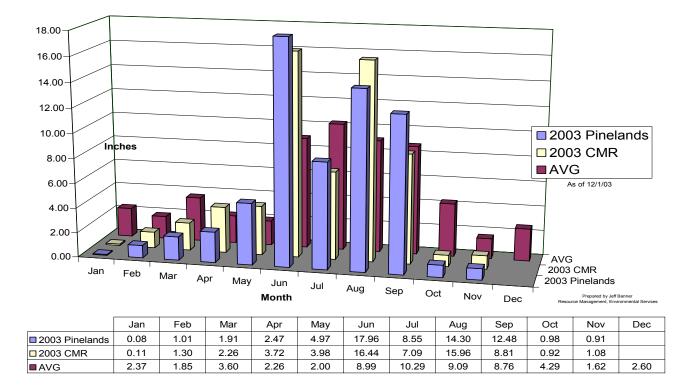


Figure 23. Area Rainfall for 2003.

Recommendations

- Identify and initiate hydrologic restoration projects where possible in the DARB watershed. Restoration projects should focus primarily on attenuating freshwater discharges to the DARB system.
- Draft a specific monitoring plan and schedule for the DARB watershed that integrates biological, hydrological and water quality monitoring. Based on collected data, set up theoretical recovery targets of bio- indicators.
- Fix the ARMS system to the point that data is accurate with no gaps. This is essential to a proper evaluation of the hydrology of DARB. Also, correct historic ARMS data through the evaluation of field notes.
- Conduct a comparative analysis on salinity fluctuations between DARB and other estuary systems with fewer alterations.
- Conduct an annual oyster spat recruitment study for the DARB system. This would involve monthly set up, collection, and counting of recruited spat on strung oyster shell from March through October. Oysters have difficulty setting spat when water is too fresh.
- Conduct a shoreline mapping project for the DARB system that follows the extent of the river kilometer system.
- Draft a voluntary "fisherman's catch survey" in order to do some statistical fish population studies. This data can be evaluated and incorporated into the annual report.
- Create a public awareness program to both discourage the building of seawalls and encourage the public to abandon seawalls and let their shorelines re-colonize with native mangroves.
- Construct a dynamic tide/flow model for the DARB system. Accurate bathymetry is essential for this function.

References

Crean, D.J., Iricanin, N., Robbins, R.M., SFWMD, 2003. Development of Water Quality Targets in the Southern Indian River Lagoon.

DeLeuw, Cather & Brill, 1959. Engineering Report on Drainage Canal Connecting Myakka River and Roberts Bay Sarasota County, Florida.

Dixon, K.L. and Kirkpatrick, G., 1995. Light Attenuation With Respect to Seagrasses in Sarasota Bay, Florida. Mote Marine Laboratory Technical Report No. 407. Prepared for the Sarasota Bay National Estuary Program.

Dixon, K.L. and Perry, J.S., 2003. Analysis of Changes in Seagrass Coverage, 1996-1999 and 1999-2001, for Anna Maria Sound, Sarasota, Roberts, Little Sarasota, and Blackburn Bays Mote Marine Laboratory Technical Report No. 920.

Ed Barber and Associates, 2003. Final Report: Shakett Creek Oyster Monitoring.

Lincer, J.L., 1975. The Ecological Status of Dona and Robert's Bays and its Relationship to Cow Pen Slough and Other Possible Perturbations. Mote Marine Laboratory Technical Report No. 2A. Prepared for the Sarasota County Board of County Commissioners.

Leverone, J.R., 2003. Oyster Habitat Assessment in Little Sarasota Bay; Mote Marine Laboratory Technical Report No. 925. Prepared for the Sarasota Bay National Estuary Program.

Olsen, L.A., Ed Barber and Associates, Inc. 2003. Executive Summary. Oyster Relocation and Restoration Efforts of the West Coast Inland Navigation District.

Ott, J., September 2003. Personal telephone conversation.

Sarasota County Water Resources Staff, 2003 Cow Pen Slough Water Monitoring Study

Sauers, S., 1983. Dona- Roberts Bays Oyster Reefs Survey Memo, Prepared for Sarasota County Director of Environmental Management Jeffery Lincer,

South Florida Water Management District, 2000. Technical Documentation to Support Development for Minimum Flows and Levels for the Caloosahatchee River and Estuary Draft.

South Florida Water Management District, 2003. Freshwater Inflow Performance Measures: S-79, Shell Point, and San Carlos Bay Draft.

Steadman, S.M., Hanson, J. "Habitat Connection: Wetlands, Fisheries and Economics." <u>www.nmfs.noaa.gov</u> NOAA National Marine Fisheries Service. 2/4/04

Tolley, S.G., Volety, A., Smith, L.K., 2003. Influence of Freshwater Inflow and Water Management on Oyster-Reef Residents: Implications for Habitat Restoration. Presentation for Submerged Aquatic Habitat Restoration in Estuaries: Issues Options and Priorities Workshop at Mote Marine Laboratory.

Tomasko, D., Avineon Inc., 2002. Seagrass Mapping Efforts in Southwest Florida; Presentation to seagrass mapping work group.

Volety, A., Tolley, S.G., Thurston, S., Rasnake, E., Winstead, J.T., 2003 Adaptive Resource Management and Oyster Reef Restoration in the Caloosahatchee Estuary. Presentation for Submerged Aquatic Habitat Restoration in Estuaries: Issues Options and Priorities Workshop at Mote Marine Laboratory.

Volety, A., October 2003. Personal conversation.

U.S.G.S., 1978. Magnitude and Frequency of Flooding on the Myakka River, Southwest Florida. Water Resources Investigations 78-65.

U.S. Fish and Wildlife Service, 1992. Multi-Species Recovery Plan for South Florida Draft.

Zieman, J.C. & R.T. 1989 The Ecology of the Seagrass Meadows of the West Coast of Florida: A Community Profile. Fish and Wildlife Service, Biological Report No85(7.25).

Appendix A

Statistical Analysis of Oysters Oyster Field Sampling Sheets Seagrass field Sampling Sheets

Appendix B

MS-4 Water Quality Monitoring Results For March – June 2003 December 4, 2002 Physical Water Quality Results

Appendix A

Statistical Analysis of Oysters Oyster Field Sampling Sheets Seagrass field Sampling Sheets

Univariate Analysis of Variance

Between-Subjects Factors

		N
STATION	1.00	3
	2.00	3
	3.00	3
	4.00	3
	5.00	3
	6.00	3

Descriptive Statistics

Dependent Variable: PERCENT

STATION	Mean	Std. Deviation	N
1.00	79.2833	5.5824	3
2.00	16.1167	12.1682	3
3.00	7.3833	4.5435	3
4.00	70.1700	19.9812	3
5.00	.0000	.0000	. 3
6.00	.0000	.0000	3
Total	28,8256	34.9904	18

Levene's Test of Equality of Error Variances^a

Dependent Variable: PERCENT

F	df1	df2	Sig.
4.335	5	12	.017

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept+STATION

Tests of Between-Subjects Effects

Dependent Variable: PERCENT

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	19615.381ª	5	3923.076	39.288	.000
Intercept	14956.428	1	14956.428	149.784	.000
STATION	19615.381	5	3923.076	39.288	.000
Error	1198.242	12	99.854		
Total	35770.051	18	201001		
Corrected Total	20813.624				

a. R Squared = .942 (Adjusted R Squared = .918)

Estimated Marginal Means

STATION

Estimates

Dependent Variable: PERCENT

			95% Confidence Interval		
STATION	Mean	Std. Error	Lower Bound	Upper Bound	
1.00	79.283	5.769	66.713	91.853	
2.00	16.117	5.769	3.547	28.687	
3.00	7.383	5.769	-5.187	19.953	
4.00	70.170	5.769	57.600	82.740	
5.00	-1.071E-15	5.769	-12.570	12.570	
6.00	-1.054E-14	5.769	-12.570	12.570	

Pairwise Comparisons

Dependent Variable: PERCENT

· · · · · · · · · · · · · · · · · · ·						·
		Mean Difference			95% Confiden Differ	ice Interval for rence ^a
(I) STATION	(J) STATION	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound
1.00	2.00	63.167*	8.159	.000	45.390	80.944
	3.00	71.900*	8.159	.000	54.123	89.677
	4.00	9.113	8.159	.286	-8.664	26.890
	5.00	79.283*	8.159	.000	61.506	97.060
	6.00	79.283*	8.159	.000	61.506	97.060
2.00	1.00	-63.167*	8.159	.000	-80.944	-45.390
	3.00	8.733	8.159	.305	-9.044	26.510
	4.00	-54.053*	8.159	.000	-71.830	-36.276
	5.00	16.117	8.159	.072	-1.660	33.894
	6.00	16.117	8.159	.072	-1.660	33.894
3.00	1.00	-71.900*	8.159	.000	-89.677	-54.123
	2.00	-8.733	8.159	.305	-26.510	9.044
· .	4.00	-62.787*	8.159	.000	-80.564	-45.010
	5.00	7.383	8.159	.383	-10.394	25.160
	6.00	7.383	8.159	.383	-10.394	25.160
4.00	1.00	-9.113	8.159	.286	-26.890	8.664
	2.00	54.053*	8.159	.000	36.276	71.830
	3.00	62.787*	8.159	.000	45.010	80.564
	5.00	70.170*	8.159	.000	52.393	87.947
	6.00	70.170*	8.159	.000	52.393	87.947
5.00	1.00	-79.283*	8.159	.000	-97.060	-61.506
	2.00	-16.117	8.159	.072	-33.894	1.660
	3.00	-7.383	8.159	.383	-25.160	10.394
	4.00	-70.170*	8.159	.000	-87.947	-52.393
	6.00	9.474E-15	8.159	1.000	-17.777	17.777
6.00	1.00	-79.283*	8.159	.000	-97.060	-61.506
	2.00	-16.117	8.159	.072	-33.894	1.660
	3.00	-7.383	8.159	.383	-25.160	10.394
	4.00	-70.170*	8.159	.000	-87.947	-52.393
	5.00	-9.474E-15	8.159	1.000	-17.777	17.777

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Dependent Variable: PERCENT

	Sum of Squares	df	Mean Square	F	Sig.
Contrast	19615.381	5	3923.076	39.288	.000
Error	1198.242	12	99.854		

The F tests the effect of STATION. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Post Hoc Tests

STATION

Multiple Comparisons

Dependent Variable: PERCENT

			Mean Difference			95% Confide	ence Intervai
Tukey LIOD	(I) STATION	(J) STATION	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	1.00	2.00	63.1667*	8.1590	.000	35.7609	90.5724
		3.00	71.9000*	8.1590	.000	44.4942	99.3058
		4.00	9.1133	8.1590	.865	-18.2924	36.5191
		5.00	79.2833*	8.1590	.000	51.8776	106.6891
		6.00	79.2833*	8.1590	.000	51.8776	106.6891
	2.00	1.00	-63.1667*	8.1590	.000	-90.5724	-35.7609
		3.00	8.7333	8.1590	.884	-18.6724	36.1391
		4.00	-54.0533*	8.1590	.000	-81.4591	-26.6476
		5.00	16.1167	8.1590	.408	-11.2891	43.5224
		6.00	· 16.1167	8.1590	.408	-11.2891	43.5224
	3.00	1.00	-71.9000*	8.1590	ٽ 000.	-99.3058	-44.4942
		2.00	-8.7333	8.1590	.884	-36.1391	18.6724
		4.00	-62.7867*	8.1590	.000	-90.1924	-35.3809
		5.00	7.3833	8.1590	.938	-20.0224	34.7891
		6.00	7.3833	8.1590	.938	-20.0224	34.7891
	4.00	1.00	-9.1133	8.1590	.865	-36.5191	18.2924
		2.00	54.0533*	8.1590	.000	26.6476	81.4591
		3.00	62.7867*	8.1590	.000	35.3809	90.1924
		5.00	70.1700*	8.1590	.000	42.7642	97.5758
		6.00	<u>70.</u> 1700*	8.1590	.000	42.7642	97.5758
	5.00	1.00	-79.2833*	8.1590	.000	-106.6891	-51.8776
		2.00	-16.1167	8.1590	.408	-43.5224	11.2891
		3.00	-7.3833	8.1590	.938	-34.7891	20.0224
		4.00	-70.1700*	8.1590	.000	-97.5758	-42.7642
		6.00	.0000	8.1590	1.000	-27.4058	27.4058
	6.00	1.00	-79.2833*	8.1590	.000	-106.6891	-51.8776
		2.00	-16.1167	8.1590	.408	-43.5224	11.2891
		3.00	-7.3833	8.1590	.938	-34.7891	20.0224
		4.00	-70.1700*	8.1590	000	-97.5758	-42.7642
		5.00	.0000	8.1590	1.000	-27.4058	<u>27.4</u> 058

Based on observed means.

Dependent Variable: PERCENT

			Mean Difference			95% Confide	ence Interval
	(I) STATION	(J) STATION	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Dunnett T3	1.00	2.00	63.1667*	8.1590	.024	14.7923	111.5410
		3.00	71.9000*	8.1590	.001.	50.4301	93.3699
		4.00	9.1133	8.1590	.991	.a	
		5.00	79.2833*	8.1590	.007	a	•
		6.00	79.2833*	8.1590	.007	a	•
	2.00	1.00	-63.1667*	8.1590	.024	-111.5410	-14.7923
		3.00	8.7333	8.1590	.932	· -38.1999	55.6666
		4.00	-54.0533	8.1590	.159	-138.5873	30.4806
		5.00	16.1167	8.1590	.538	. ^a	
		6.00	16.1167	8.1590	.538	а	
	3.00	1.00	-71.9000*	8.1590	.001	-93.3699	-50.4301
		2.00	-8.7333	8.1590	.932	-55.6666	38.1999
		4.00	-62.7867	8.1590	.144	,a	
		5.00	7.3833	8.1590	.410	a	
		6.00	7.3833	8.1590	.410	.ª	
	4.00	1.00	-9.1133	8.1590	.991	a	-
		2.00	54.0533	8.1590	159	-30.4806	138.5873
		3.00	62.7867	8.1590	.144	. ^a	
		5.00	70.1700	8.1590	.112	3	
		6.00	70.1700	8.1590	.112	3	
	5.00	1.00	-79.2833*	8.1590	.007	a	
		2.00	-16.1167	8.1590	.538	a	
		3.00	-7.3833	8.1590	.410	. ^a	
		4.00	-70.1700	8.1590	.112	a.	· ·
		6.00	.0000	8.1590		,a	
	6.00	1.00	-79.2833*	8.1590	.007	.a	
		2.00	-16.1167	8.1590	.538 -	a	
		3.00	-7.3833	8.1590	.410	. ^a	
		4.00	-70.1700	8.1590	.112	.a	
		5.00	.0000	8.1590		а	

Based on observed means.

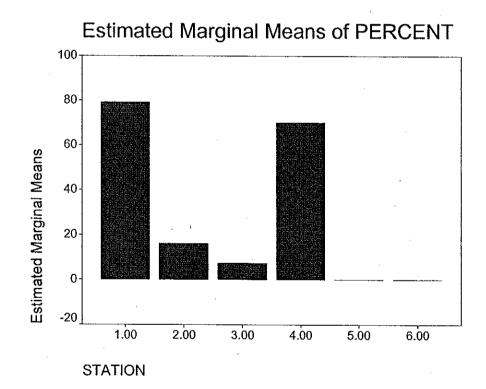
*. The mean difference is significant at the .05 level.

a. Range values cannot be computed.

Homogeneous Subsets

PERCENT

				Sub	set
	STATION	N		1	2
Tukey HSD ^{a,b}	5.00		3	.0000	
	6.00	•	3	.0000	
	3.00		3	7.3833	
	2.00		3	16.1167	
	4.00		3		70.1700
	1.00		3		79.2833
	Sig.			.408	.865


Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares

The error term is Mean Square(Error) = 99.854.

a. Uses Harmonic Mean Sample Size = 3.000.

b. Alpha = .05.

Univariate Analysis of Variance

Between-Subjects Factors

		N
STATION	1.00	3
	2.00	3
	3.00	3
	4.00	3
	5.00	3
	6.00	3

Descriptive Statistics

Dependent Variable: LIVE

STATION	Mean	Std. Deviation	N
1.00	109.3333	43.6616	3
2.00	14.3333	17.3877	3
3.00	7.0000	5.5678	3
4.00	37.6667	34.5881	3
5.00	.0000	.0000	3
6.00	.0000	.0000	3
Total	28.0556	44.4476	18

Levene's Test of Equality of Error Variances^a

Dependent Variable: LIVE

F	df1	df2	Sig.
4.400	5	12	.017

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Design: Intercept+STATION

Tests of Between-Subjects Effects

Dependent Variable: LIVE

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	26712.944 ^a	5	5342.589	9.329	.001
Intercept	14168.056	- 1	14168.056	24.740	.000
STATION	26712.944	5	5342.589	9.329	.001
Error	6872.000	12	572.667		
Total	47753.000	18			
Corrected Total	33584.944	17			

a. R Squared = .795 (Adjusted R Squared = .710)

Estimated Marginal Means

STATION

Estimates

Dependent Variable: LIVE

			95% Confide	ence Interval
STATION	Mean	Std. Error	Lower Bound	Upper Bound
1.00	109.333	13.816	79.230	139.436
2.00	14.333	13.816	-15.770	44.436
3.00	7.000	13.816	-23.103	37.103
4.00	37.667	13.816	7.564	67.770
5.00	6.971E-16	13.816	-30.103	30.103
6.00	-1.825E-14	<u>13.816</u>	-30.103	30.103

Pairwise Comparisons

Dependent Variable: LIVE

		Mean Difference			95% Confiden Differ	ce Interval for ence ^a
(I) STATION	(J) STATION	(I-J)	Std. Error	Sig. ^a	Lower Bound	Upper Bound
1.00	2.00	95.000*	19.539	000	52.428	137.572
	3.00	102.333*	19.539	.000	59.761	144.905
	4.00	71.667*	19.539	.003	29.095	114.239
	5.00	109.333*	19.539	.000	66.761	151.905
<u> </u>	6.00	109.333*	19.539	.000	66.761	151.905
2.00	1.00	-95.000*	19.539	.000	-137.572	-52.428
	3.00	7.333	19.539 ,	.714	-35.239	49.905
	4.00	-23.333	19.539	.255	-65.905	19.239
	5.00	14.333	19.539	.477	-28.239	56.905
	6.00	14.333	19.539	.477	-28.239	56.905
3.00	1.00	-102.333*	19.539	.000	-144.905	-59.761
	2.00	-7.333	19.539	.714	-49.905	35.239
	4.00	-30.667	19.539	.143	-73.239	11.905
	5.00	7.000	19.539	.726	-35.572	49.572
	6.00	7.000	19.539	.726	-35.572	49.572
4.00	1.00	-71.667*	19.539	.003	-114.239	-29.095
	2.00 .	23.333	19.539	.255	-19.239	65.905
	3.00	30.667	19.539	.143	-11.905	73.239
	5.00	37.667	19.539	.078	-4.905	80.239
	6.00	37.667	19.539	.078	-4.905	80.239
5.00	1.00	-109.333*	19.539	.000	-151.905	-66.761
	2.00	-14.333	19.539	.477	-56.905	28.239
	3.00	-7.000	19.539	.726	-49.572	35.572
	4.00	-37.667	19.539	.078	-80.239	4.905
	6.00	1.895E-14	19.539	1.000	-42.572	42.572
6.00	1.00	-109.333*	19.539	.000	-151.905	-66.761
	2.00	-14.333	19.539	.477	-56.905	28.239
	3.00	-7.000	19.539	.726	-49.572	35.572
	4.00	-37.667	19.539	.078	-80.239	4.905
	5.00	<u>-1.895E-14</u>	19,539	1.000	-42.572	42.572

Based on estimated marginal means

*. The mean difference is significant at the .05 level.

a. Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments).

Dependent Variable: LIVE

	Sum of Squares	df	Mean Square	F	Sig.
Contrast	26712.944	5	5342.589	9.329	.001
Error	6872.000	12	572.667		

The F tests the effect of STATION. This test is based on the linearly independent pairwise comparisons among the estimated marginal means.

Post Hoc Tests

STATION

Multiple Comparisons

Dependent Variable: LIVE

	· · · · · · · · · · · · · · · · · · ·						·
			Mean Difference			95% Confide	ence Interval
	(I) STATION	(J) STATION	(i-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Tukey HSD	1.00	2.00	95.0000*	19.5391	.004	29.3687	160.6313
		3.00	102.3333*	19.5391	.002	36.7020	167.9646
		4.00	71.6667*	19.5391	.030	6.0354	137.2980
		5.00	109.3333*	19.5391	.001	43.7020	174.9646
		6.00	109.3333*	19.5391	.001	43.7020	174.9646
	2.00	1.00	-95.0000*	19.5391	.004	-160.6313	-29.3687
		3.00	7.3333	19.5391	.999	-58.2980	72.9646
		4.00	-23.3333	19.5391	.832	-88.9646	42.2980
		5.00	14.3333	19.5391	.974	-51.2980	79.9646
		6.00	14.3333	19.5391	.974	-51.2980	79.9646
	3.00	1.00	-102.3333*	19.5391	.002	-167.9646	-36.7020
		2.00	-7.3333	19.5391	.999	-72.9646	58.2980
		4.00	-30.6667	19.5391	.631	-96.2980	34.9646
		5.00	7.0000	19.5391	.999	-58.6313	72.6313
		6.00	7.0000	19.5391	.999	-58.6313	72.6313
	4.00	1.00	-71.6667*	19.5391	.030	-137.2980	-6.0354
		2.00	23.3333	19.5391	.832	-42.2980	88.9646
		3.00	30.6667	19.5391	.631	-34.9646	96.2980
		5.00	37.6667	19.5391	.432	-27.9646	103.2980
		6.00	37.6667	19.5391	.432	-27.9646	103.2980
	5.00	1.00	-109.3333*	19.5391	.001	-174.9646	-43.7020
		2.00	-14.3333	19.5391	.974	-79.9646	51.2980
		3.00	-7.0000	19.5391	.999	-72.6313	58.6313
		4.00	-37.6667	19.5391	.432	-103.2980	27.9646
	· · · · · · · · · · · · · · · · · · ·	6.00	.0000	19.5391	1.000	-65.6313	65.6313
	6.00	1.00	-109.3333*	19.5391	.001	-174.9646	-43.7020
		2.00	-14.3333	19.5391	.974	-79.9646	51.2980
		3.00	-7.0000	19.5391	.999	-72.6313	58.6313
		4.00	-37.6667	19.5391	.432	-103.2980	27.9646
L		5.00	.0000	19.5391	1.000	-65.6313	65.6313

Based on observed means.

Dependent Variable: LIVE

			Mean Difference			95% Confide	-
	(I) STATION	(J) STATION	(I-J)	Std. Error	Sig.	Lower Bound	Upper Bound
Dunnett T3	1.00	2.00	95.0000	19.5391	.218	-74.8157	264.8157
		3.00	102.3333	19.5391	.233	a	
		4.00	71.6667	19.5391	.492	-94.4846	237.8179
		5.00	109.3333	19.5391	.205	,a	-
	·	6.00	109.3333	19.5391	.205	.a	
	2.00	1.00	-95.0000	19.5391	.218	-264.8157	74.8157
		3.00	7.3333	19.5391	.995	a	
		4.00	-23.3333	19.5391	.961	-163.2164	116.549
		5.00	14.3333	19.5391	.833	.a	
		6.00	14.3333	19.5391	.833	.a	
	3.00	1.00	-102.3333	19.5391	.233	.a	
		2.00	-7.3333	19.5391	.995	a	
·		4.00	-30.6667	19.5391	.801	,a	
		5.00	7.0000	19.5391	.573	а	
		6.00	7.0000	19.5391	.573	a	
	4.00	1.00	-71.6667	19.5391	.492	-237.8179	94.484
		2.00	23.3333	19.5391	.961	-116.5498	163.216
		3.00	30.6667	19.5391	.801	.a	
		5.00	37.6667	19.5391	.668	,a	
		6.00	37.6667	19.5391	.668	.a	
	5.00	1.00	-109.3333	19.5391	.205	,a	
		2.00	-14.3333	19.5391	.833	_a	
		3.00	-7.0000	19.5391	.573	a	
		4.00	-37.6667	19.5391	.668	_a	
		6.00	.0000	19.5391		a	
	6.00	1.00	-109.3333	19.5391	.205	a	
		2.00	-14.3333	19.5391	.833	a	
		3.00	-7.0000	19.5391	.573	a	
		4.00	-37.6667	19.5391	.668	. ja	
		5.00	.0000	19.5391		a	

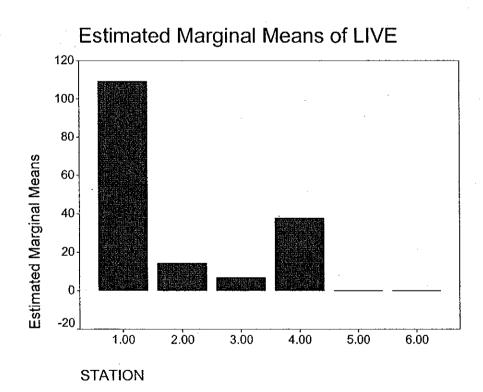
Based on observed means.

*. The mean difference is significant at the .05 level.

a. Range values cannot be computed.

Homogeneous Subsets

LIVE


			Sub	set
	STATION	N	1	2
Tukey HSD ^{a,b}	5.00	3	.0000	
	6.00	3	.0000	
	3.00	3	7.0000	
	2.00	3	14.3333	
	4.00	3	37.6667	
	1.00	3		109.3333
	Sig.		.432	1.000

Means for groups in homogeneous subsets are displayed. Based on Type III Sum of Squares The error term is Mean Square(Error) = 572.667.

a. Uses Harmonic Mean Sample Size = 3.000.

b. Alpha = .05.

Location: DARB study area 10/8/2003

Date:

Oyster Sampling Samplers Michael Jones and Joe Jacobson

High falling Weather Clear to slightly overcast Est. Tide

River Kilo#	1.8						2.1			2.8			3.35			e							
Depth (cm)	55	54	0	2	24 24	5	31	55	20	47	40	18	51	42	10	e							
Salinity (ppt)	31.01		33.64	00.10	21.00		15.1		14.35	28.17		24.87	71.7		3.67	12.95						-	
Temp. ©	27.78		28.35	11 00	23.41		30.32		28.62	29.42		28.92	29.66		29.87	28.68							.pesodxe
Sp. Cond (uS/cm)	47780		51300	09760	20100		24510		23.83	43260		39150	12520		6600	21610							ne beds wee
ΡΗ	7.95		7.89	7 76	0,.1	7.73	7.68		7.73	7.89		7.77	7.19		7.33	7.68							tide. Son
(mg/L)	6.12		5.02	C 10	0.40	8.72	6.88		7.91	6.3		6.73	5.65		6.47	ω							iite) uring low
GPS pt (y,n)	y	У	~	;	> >		٨	y	y	Y	Ľ	٨	λ	c	٨	z	۲	z					s pale wh
Longest 5 Live (cm)	6,6,6,6,7		6 6,6,7,7,8		4 33342	3,3,3,4,5,	6,5,3,3,2	0 6,5,5,4,3	3,2	9,9,7,6,5	7,6,6,5,4	2,2,3,3,2											SC1: counting only oysters above the submerged level(green others pale white) RB1:- Lots of siltation on oysters. All WQ parameters at 8" below surface One GPS pt for CC! and RB1 3rd quadrats and the station SC2 were added a week later and were done during low tide. Some beds wee exposed.
Spat No.	0	-	9	Ċ			0	0		0	0	12	 0	0	0	0	0	0					bmerged I dded a we
Dead No.	25	37	20	16	54	81	73	26	71	12	7	11	24	69	131	69	119	54					e the su surface 2 were a
Live No.	68	155	105	•	- 8	34	9	13	2	24	77	12	 0	0	0	0	0	0					iters abov on oysters 3" below s id RB1 tation SC
Quadrat (1,2)	*	2	en	Ŧ	- 7	e	 1	2	8	-	N	3	1	2	3	1	2	3					SC1: counting only oysters above the s RB1:- Lots of siltation on oysters. All WQ parameters at 8" below surface One GPS pt for CC! and RB1 3rd quadrats and the station SC2 were
Bed No. I.D.	lyb1	lyb1	lyb1	140	db1	db 1	sc1	sc1	SC1	rb1	rb1	rb1	cc1	cc1	cc1	SC2	SC2	sc2					SC1: coui RB1:- Lot All WQ pa One GPS 3rd quadr
Date Time	10/8/03 1130		10/15/03 1040	10/8/03 1305			10/8/03 1345		10/15/2003 1220		Ĭ	10/15/03 1400	10/8/03 1515	10/8/03 1520	10/15/03 1415	10/15/03 1300	10/15/03 1315	10/15/03 1330					Comments:

Date:	10-9	· <u>02</u>	-	Oyster Sa Samplers	mpling	MJ						
	it.	レキン Weather		-14N			 	1		•		
Bed No.	Quadrat (1,2)	Live No.	Dead No.	Spat No.	Longest 5 Live (cm)	GPS pt. (y,n)	DO (mg/L)	рН	Sp. Cond (uS/cm)	Temp.	Depth (cm)]]
146. 146.	1	1918 1645		<u></u> 7	6.6	y y y	<u>(, 12</u>	1.15	4 178		55.	-
BSI BBI	1	1	16. 5*1	<u>ං</u>	4. 33.34.2	5	6.48	7.76	33750	29.41	64 51	- 2
	1	6.	7.3		6.5.4.4	y y	6. 57	7.19	24-10	20.22	<u>5</u> 7	ļ
124 1241	2	24 77	127	0	1.0 7.6.5 7.0.05 T	 	6,70	7.89	13260	29.42		- 22
	1	0 0	24 64	0 0	با المعمومين المعمومين	1	S.C.T.	7767	1252.5	27.66	51	
												-
	· · · · · · · · · · · · · · · · · · ·											
												-
												-
Comments												
		en e		مراجع	t i ser en ser se	ಸ್ಥಾರ್ ಕ್ರ						
40	•	gel egen	ienen s	ر _{مر} حانی	Sande							
	·											
	f see a f	<				· · ·		a 10° s				

.

Oyster Sampling Samplers Michael Jones and Joe Jacobson

Date: 10/8/2003 Location: DARB study area

		(cm) Kilo#	55 1.8	54	0		64 1	51	50		31 2.1	55	R	47 2.8	40	R		51 3.35	42 、	/0	3								
	Salinity	(ppt)	31.01		33,64		21.08		20.2		15.1		14.25	 28.17		24.87		7.17		367	12 95					 			
	Temp.	0	27.78		10.00		29.41		28.47		30.32		28.62	29.42		28.92		29.66		29.87	29.68								N2C
	Sp. Cond	(uS/cm)	47780		51,300		33750		32,410		24510		23830	43260		39150		12520		6600	2.610								01 S 1120
	Hď		7.95		13		7.76		7.94		7.68		7.73	7.89		71.77		7.19		7, 33	7.68						4		
	od	(mg/L)	6.12		5.02		6.48		8,72		6.88		19,7	6.3		6.73		5.65		6.47	2.00	>							hite)
	GPS pt.	(N,n)	y	y .	RIDISON A	-	У	y	5	7	y	y	2	y	Ľ	Ч	1	У	u	g		(point	. (-				reen others pale white)
	Longest 5 Live	(cm)	0 6,6,6,7		6,6,7,7,8		0 4	0 3,3,3,4,2	3, 3, 3, 4, 5		0 6,5,3,3,2	0 6,5,5,4,3		0 9,9,7,6,5	0 7,6,6,5,4	2.2. 2. 2. 2		0	0		0	0	< , , , , , , , , , , , , , , , , , , ,	\ \					bmerged level(green others pale white)
	Spat	No.		-	9		5		ଚ			J	- 1)	C	5)		0	0	0	5						omerge.
	Dead	No.		37	07		16	54		-	73 6	97 1	12.	 12	7			24	69	131	60	119	فيريزا						ាក្ល 🖓
	Live.	No.	. 68	155	501		1	8	34		Cer	128	2	24	17	4	-	0、	0	0	ζ.	0	0						sters abov on oyster 8" below t 1d RB1
	Quadrat	(1,2)	-	2	ų)		1	2	3		٢	2	ω	~	2	M		۱	2	3		7	54						SC1: counting only oysters above the s RB1:- Lots of siltation on oysters. All WQ parameters at 8" below surface One GPS pt for CC1 and RB1
-	Bed No.	1.D.	lyb1	lyb1	an		db1	db1	d p		sc1	sc1	9¢	rb1	rb1	501		cc1	cc1	661	22	502	362			 			SC1: cou RB1:- Loi All WQ pi One GPS
	Date	Time	10/8/03 1130	10/8/03 1145	10/15 1040	-	10/8/03 1305	10/8/03 1330	10/15 1140		10/8/03 1345	10/8/03 1405	10/5 1220	10/8/03 1440	10/8/03 1450	0011 2101		10/8/03 1515	10/8/03 1520	10/15 1415	10/15	1015	toli5	-					Comments:

8

:

Charroute Harbor Aquatic Freserve - Seagrass Data Srieet (Modilied from SWEWMD - SWIM) Date: 기 (기 중 /) 정 [Site (Transect) #:			Site (Transect) #:	ect)#:	, ,	Crew:		ales.		ŕ	Weather:				
from fla	1	E	Sonde:											FLUCS:	
Species: (H) Ha	Ilodule, (R	() Ruppia,	(T) Thalassi	Species: (H) Hatodute, (R) Ruppia, (T) Thalassia, (S) Syringodium, (HE) Halophilia	, (HE) Haloph	ilia, (AA) At	, (AA) Attached Algae, (DA) Drift Algae	, (DA) Drift ,	Algae		Tide Start:			Tide End:	
Abundance: r =	solitary, +	· = few, 1	= <5% cove	Abundance: r = solitary, + = few, 1 = ≺5% cover, 2 = 5-25% cover, 3 = 26-50% cover, 4 = 51-75% cover, 5 = 76-100%	3 = 26-50% c	:over, 4 = 5	1-75% cover,	5 = 76-100	%		Compass Heading:	Heading			
Epiphyte Densi Sediments: 1 =	ty: 1 = cle. sheliv sar	an, 2 = lig	ht, 3 = mode nd_3 = mude	Epiphyte Density: 1 = clean, 2 = light, 3 = moderate, 4 = heavy Sediments: 1 = shelly sand 2 = sand 3 = muddy sand 4 = muck		Site Locati	Site Location Comments:	ŝ	~	÷.			ı	Photo #:	
General Comments:	ents:	4													
Station Time (m)	Depth (cm)	Species #	Abundance #	Lengths (5)	Labrynt Shoot#	Epiphyte Density	Epiphyte Descript.	Sediment #	Shoot Density (3)	Salinity	⊢ DO	Temp. P	PAR Secchi (X) (m)	chi Station Comments	
	93	1	-	2,2,0,4,2	Ĺ	R		5	*					(xush +)	at are
23		Ŧ	+	3,4,5,2,3	المائية المحالية	L'and		\sim	ŝ	in the second	Anguna - A		~	Sector 40	1 1 2 2 3 1 .
								†					- - -		
										· · · · · · · · · · ·					
											<u></u>			WAIEK	
May be mid bed, edge of bed, or a Blaun Blan for abundance estimate. Seagrass description at mid bed, edge of bed, and 50 meter intervals (where coverage is pr Water column data and PAR sample taken at	d, edge of e estimate iption at n intervals (ata and F	bed, or a , , ,where co ,AR samp	Blaun Blang dge of bed, verage is pre	May be mid bed, edge of bed, or a Blaun Blanquet m ² placement for abundance estimate. Seagrass description at mid bed, edge of bed, and 50 meter intervals (where coverage is present). Water column data and PAR sample taken at mid bed and edge of bed.	f bed.	PAR Calculations: water Depth:	lations:		Surface 40 cm 60 cm	AIR	MATER - 210		11 1 1	AIR W surface AIR / / / / / / / / / / / / / / / / / / /	100
				Ľ.	のいたが に Mge. FDEP/Charlotte Harbor Aquatic Preserves - (9141) 575-5861 - 6/11/2003	e Harbor A	juatic Presen	0 0 ves - (9141)	Owter C 41) 575-5861 -	C Nge	. n		· Ye	The cover word	

÷

Date: RW S/S. S	Site (Transect) #: DBI	Date: KN S/0.3 Site (Transect) #: D.B/ Crew: 5 9 73 7		Crew: -	12 J. J.	J. 1.1.1		M	Weather:	<u>,</u> u	ي يو ي د د يو		
Offset from flagging 📿 🖏 m	Sonde:											FLUCS:-J	
Species: (H) Halodule, (R) Ruppia, (T) Thalassia, (S) Syringodium, (HE) Halophilia, (AA) Attached Algae, (DA) Drift Algae	a, (T) Thalassia,	, (S) Syringodium, (HE) Halophil	lia, (AA) Att	ached Algae	, (DA) Drift ,	Algae	Ţ	Tide Start:			Tide End:	
Abundance: r = solitary, + = few, 1 = <5% cover, 2 = 5-25% cover, 3 = 26-50% cover,	1 = <5% cover,	2 = 5-25% cover, 3	= 26-50% ci	over, 4 = 51	4 = 51-75% cover, 5 = 76-100%	5 = 76-100	%	Ũ	Compass Heading:	eading:		YO C. C. C. C.	and the second se
Epiphyte Density: 1 = clean, 2 = light, 3 = moderate, 4 = heavy	light, 3 = modera	ate, 4 = heavy		Site Locatic	Site Location Comments:	s:						Photo #:	
Sediments: 1 = shelly sand, 2 = sand, 3 = muddy sand, 4 = muck	sand, 3 = muddy	r sand, 4 = muck											
General Comments:													-
n Time Depth	Species Abundance	Blade		Epiphyte		Sediment		Salinity	DO Temp.	Ľ.		Secchi Station Comments	
	#	Lengths (5)	Shoot#	Density	Descript.		Density (3)			8	(u)		
26 88 22	-			2		Z	¢ţ					Mari C	
	*	5,5,4,45	-	2		and the second sec	Ċ.						et
		1.51		<u> </u>		N	Ţ.	- 					
												1	
	-												
			_										
									_				
						· .							
			<u></u>										
						-							
							-					WATER	
May be mid bed, edge of bed, or a Blaun Blanquet m^{\star} placement	a Błaun Błanque	it m [≭] płacement		PAR Calculations	tions:		AIR	3	ATER			AIR V	JURIN
for abundance estimate. Seagrass description at mid bed. edge of bed.	edae of bed.			Water Denth: 2	nth: 20	s, s	surface 40 cm	ī			surface	ace .	
and 50 meter intervals (where coverage is present). Water column data and PAR sample taken at mid bed and edge of bed.	overage is prese	ent). ^I bed and edge of b					-60-cm		00/		60 cm		

à .-

FDEP/Charlotte Harbor Aquatic Preserves - (\hat{g}^{141}) 575-5861 - 6/11/2003

Weather: Weather: Meather: Meather: Meather: Noot Shoot Salinity DO Temp. PAR Secchi Sit Shoot Salinity DO Temp. PAR Secchi Sit N V V N Merch N N N V V N Merch N N V N Merch N N N V N N N N N V N N N N N V N N N N N V N N N N N V N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N	Charlotte Harbor Aquatic Preserve - Seagrass Data Sheet (Modified from SWFWMD - SWIM)	serve - Seagrass Data	Sheet (Modi	ied from	SWFWMU	- SWIM)		F		-	1	1 496 0
Bee Tide Start: Shoot Salinity Do Temp. PAR Secchi Shoot Salinity Image: Salinity Salinity	10/03/03	site (Transect) #: LYG		Crew:	AJ D	nst		Wea			<u>1</u>	
Shoot Salinity DO Temp. PAR Secchi Stantistic Insity (3) N V N (X) (m) Insity N N (X) (M) (X) Insity N N (X) (M) (X) Insity N N (X) (X) (M) Insity N N (X) (M) (X) Insity N (X) (X) (X) (X) Insity N (X) (X) (X) (X) Insity (X) (X) (X) (X) Insity (X)	trom tlagging <u>/ {-a</u> m} s: (H) Halodule, (R) Ruppia, (sonde: T) Thalassia, (S) Syringodii	im, (HE) Halophi		ached Algae	(DA) Drift A	lgae	Tide	Start:			
Shoot Salinity DO Temp. PAR Secchi St ansity (3) Salinity DO Temp. PAR Secchi St M M M M M M M M M M M M M M M M M M M	ance: r = solitary, + = few, 1 =	= <5% cover, 2 = 5~25% cov	er, 3 = 26-50% c	over, 4 = 51	-75% cover,	5 = 76-100%	,0	Com	pass Headir		0	
Labynt Epiphyte Epiphyte Sediment Shoot Salinty DO Temp. PAR Secti Si Shoot# Descript. # Density (3) NS URS MIR (** * * * * * * * * * * * * * * * * *	te Density: 1 ≈ clean, 2 = ligh	t, 3 = moderate, 4 = heavy		Site Locatio	on Comment						Photo #:	
Minimulation Biade Latryint Explorint Exclinant Direction Sanchi Simily Do Termin PAR Saschi Simily Minimulation Minimulation Shoots Shoots Shoots Shoots Shoots Shoots Sanch Simily Do Termin PAR Saschi Simily Do Termin PA Minimulation Shoots Shoots Shoots Shoots Shoots Sanchi Simily Do Termin PA Minimulation Shoots Shoots Shoots Sanchi Simily Do Termin PA Minimulation Shoots Shoots Sanch Simily Do Termin PA Minimulation Shoots Sanch Simily Do Termin PA Minimulation Shoots Sanchi Simily Do Termin PA Minimulation Sanchi Simily Sanchi Simily Do Termin PA Minimulation Sanchi Simily Sanchi Simily Do Termin PA Minimulation Sanchi Simily Sanchi Simily Di Termin PA Minimulation Sanchi Simily Sanchi Simily Di Termin PA	ents: 1 = shelly sand, 2 = san al Comments:	d, 3 = muddy sand, 4 = muc	X									
Mynt Epiphyte Epiphyte Sectiment Shoot Salinity DO Temp. PAR Sectin is loci 20 1 - 3 N V/S M/S (x) (m) 1 - 3 - N V/S M/S (m) (m) 1 - 3 - N V/S M/S (m) (m) 1 - 3 - 1 - (m) (m) (m) 1 - 3 - N V/S M/S (m) 1 - 3 - - - - - 1 - 3 - - - - - 1 - - - - - - - 1 - - - - - - - 1 - - - - - - - 1 - - - - - - - 1 - - - - - - - 1 - - - - - -												
7 1 - 3 X N <td>Time Depth Species</td> <td></td> <td>Labrynt Shoot#</td> <td>Epiphyte Density</td> <td>Epiphyte Descript.</td> <td></td> <td></td> <td></td> <td>Temp.</td> <td></td> <td>hi Station Comments</td> <td></td>	Time Depth Species		Labrynt Shoot#	Epiphyte Density	Epiphyte Descript.				Temp.		hi Station Comments	
1 3 1 1 3 1 1 1 1 <td>15 80</td> <td><u> </u></td> <td><u>~·</u></td> <td></td> <td>)</td> <td></td> <td></td> <td></td> <td>1</td> <td>くしな</td> <td>New Sh</td> <td>the second</td>	15 80	<u> </u>	<u>~·</u>)				1	くしな	New Sh	the second
PAR Calculations: 90 cm PAR Calculations: 90 cm PAR Depth: 90 cm	1200 77					ŝ						
PAR Calculations: AIR WATER Surface Mater Depth: AIR WATER Surface Mater Depth: AIR WATER Surface	-			-	i.							
PAR Calculations: Surface AR MATER Surface PAR Calculations: Surface AR MATER Surface PAR Calculations: Surface AR MATER Surface PAR Calculations: Surface AB cam Surface												
PAR Calculations: AIR WATER Surface Water Depth: AIR WATER Surface 40 cm - 2 - 7 - 0 - 10 - 10 - 10 - 10 - 10 - 10 -										-		
PAR Calculations: Surface Water Depth: AIR Water Depth: 00, cm												
PAR Calculations: Surface AIR WATER Vater Depth: AIR WATER Surface A0.cm 60.cm 50.cm												
PAR Calculations: Surface AIR WATER Vater Depth: 60.cm - 37.0 60.cm												
PAR Calculations: Surface AIR WATER Vater Depth: 30, 55, 0% 60 cm												
PAR Calculations: Alk WATER Part Calculations: Surface Parter Depth: 40 cm Parter Depth: 50 cm						-						
PAR Calculations: AIR WATER PAR Calculations: Surface PAR								•				
PAR Calculations: AIR WATER PAR Calculations: Surface PAR	-					<u> </u>						
PAR Calculations: AIR WATER Surface AIR WATER Surface Value of the strength of								 				
PAR Calculations: AIR WATER Surface AIR WATER water Depth: Surface - 900											WATER	
	L L L L L L L L L L L L L L L L L L L	Blaun Blanquet m ^r placeme dge of bed, verage is present). e taken at mid bed and edo	nt e of bed.	PAR Calcu Water De	lations: epth:			MATAW 900-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	10 10 10 10 10 10 10 10 10 10 10 10 10 1			

.

FDEP/Charlotte Harbor Aquatic Preserves - (9141) 575-5861 - 6/11/2003

Appendix B

MS-4 Water Quality Monitoring Results For March – June 2003 December 4, 2002 Physical Water Quality Results

1600 Ken Thompson Parkway Sarasota, Florida 34236-1096 USA PHONE: (941) 388-4441 FAX: (941) 388-4312 INTERNET: info@mote.org • www.mote.org Myra H. Monfort Chairman of the Board

Kumar Mahadevan, Ph.D. Executive Director

FIELD STATIONS: Florida Keys • 24244 Overseas Highway • Summerland Key, FL 33042 • PHONE: (305) 745-2729 • FAX (305) 745-2730 Charlotte Harbor • P.O. Box 2197 • Pineland, FL 33945 • PHONE: (239) 283-1622 • FAX: (239) 283-2466 Mote Aquaculture Park • 12300 Fruitville Road • Sarasota, FL 34240

July 29, 2003

Ms. Laura Ammeson Sarasota County Air and Water Quality Protection 2817 Cattlemen Road Sarasota, FL. 34232 MI 31 2003

Dear Ms. Ammeson,

Enclosed are the data tables from the April 2003 sampling of Sarasota Bay and the Myakka River that Mote Marine Laboratory is performing for Sarasota County. Magnetic data are enclosed as an Excel 9.0 file (SBMN0403.XLS) which will generate the attached tables. Data are organized as five tables with descriptions which follow.

Mid-Day in situ profiles	6 pages
Station locations and water clarity	2 pages
Water quality analyses	2 pages
Weather conditions during samplings	1 page
Hydrolab Minisonde continuous deployments	4 pages each
Custody sheets for water quality samples	5 pages

The continuous Hydrolab data was gathered from stations 10-5 and 8-1 of the North Bay segment during this sampling. Diurnal fluctuation of dissolved oxygen concentration was low at station 8-1 and ranged between 5.9 - 6.9 mg/L with a percent saturation of dissolved oxygen of 88 - 105%. At station 10-5, the fluctuations of dissolved oxygen concentration was between 4.2 - 8.2 mg/L. Percent saturations of dissolved oxygen of this station ranged between 58 - 124%.

In Aprilr, Mote Marine Laboratory also participated in Regional Ambient Monitoring Program and collected a water sample for analysis. The data and custody sheet for this effort are also enclosed in this report. Magnetic data are enclosed as an Excel 9.0 file (ramp0403.XLS).

Please don't hesitate to call if I may answer any further questions regarding these data.

Sincerely,

ANissanka

Ari Nissanka D.Sc. Senior Chemist Enclosures AN:mig

A nonprofit organization dedicated to excellence in marine sciences and a member of:

• AMERICAN ASSOCIATION OF MUSEUMS • ASSOCIATION OF MARINE LABORATORIES OF THE CARIBBEAN • FLORIDA OCEAN ALLIANCE

. NATIONAL ASSOCIATION OF MARINE LABORATORIES . SCIENCE AND ENVIRONMENTAL COUNCIL OF SARASOTA COUNTY . SOUTHERN ASSOCIATION OF MARINE LABORATORIES

Page 6 of 6

DEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Mid-Day In Situ Profiles

Station	Date	Time	Sample	Salinity	Specific	Temperature	pН	Dissolved	D.O. Percent
Station	_		Depth		Conductance			Oxygen	Saturation
	(mmddyy)	(EST)	(m)	(PSU)	(mmhos/cm)	(Deg C)	(SU)	(mg/l)	(%)
DR-1	042203	1300	0.2	35.4	53.45	26.44	7.93	5.88	90.4
DR-1	042203	1301	0.7	35.6	53.77	25.85	7.98	6.20	94.5
DR-1	042203	1303	1.2	36.0	54.26	25.20	8.04	6.80	102.8
DR-2	042203	1221	0.2	35.0	52.99	26.25	7.93	5.99	91.7
DR-2	042203	1222	0.7	35.5	53.57	25.96	7.96	6.00	91.5
DR-2		1224	1.2	35.9	54.11	25.67	7.99	6.19	94.2
DR-3			0.2	. 35.7	53.94	24.41	8.03	6.56	97.4
DR-3			1.0) 35.9	54.22	2 24.30	8.05	6.53	97.0
DR-3			2.3	35.9	54.17	7 24.29	8.05	6.56	97.4
DR-4		1140	0.2	2 35.0	52.97	7 25.32	7.94	6.24	93.8
DR-4		3 1142	1.() 35.2	53.20	25.17	7.95	6.14	92.2
DR-4			3.1	1 35.2	53.25	5 25.14	7.96	6.21	93.3
DR-5			0.2	2 33.8	51.28	8 25.97	7.77	5.42	81.1
DR-5			1.(51.4	9 25.83	7.78	5.21	78.6
DR-5			3.) 51.62	2 25.83	7.78	5.20) 78.5

fine Laboratory hompson Parkway sota, FL 34236 1) 388-4441 pH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Station Locations and Water Clarity

Station	Date	Time	Ideal Static	on Location	Actual Statio	on Location	Depth	Secchi	Water	Attenuation
			Latitude	Longitude	Latitude	Longitude	Overall	Depth	Quality	Coefficient
(n	nmddyy)	(EST)	(degrees)	(degrees)	(degrees)	(degrees)	(m)	(m)	Sample	(m ⁻¹)
ML-1	042303	1229	27.03944	-82.28528	27.04007	-82.28515	1.3	>B	030358	1.68
ML-2	042303	1209	27.02833	-82.27444	27.02885	-82.27333	1.0	0.8	030362	1.64
ML-3	042303	1154	27.03056	-82.27250	27.03015	-82.27233	1.3	>B	030364	1.51
ML-4	042303	1139	27.02500	-82.27139	27.02493	-82.27227	0.8	>B	030363	1.59
ML-5	042303	1119	27.01167	-82.26944	27.01185	-82.26937	1.8	1.5	030356	1.62
MU-1	042303	1424	27.09083	-82.32750	27.08918	-82.32730	2.0	>B	030357	1.80
MU-2	042303	1404	27.08000	-82.31944	27.07972	-82.31877	1.8	>B	030359	1.62
MU-3	042303	1348	27.07139	-82.31667	27.07228	-82.31573	1.7	1.8	030365	1.78
MU-4	042303	1323	27.05583	-82.30472	27.05672	-82.30392	1.2	1.0	030355	1.77
MU-5	042303	1307	27.05167	-82.29806	27.05332	-82.29845	1.1	>B	030361	1.70
DR-1	042203	1300	27.12140	-82.46350	27.12145	-82.46340	1.4	1.0	030381	0.33
DR-2	042203	1221	27.11710	-82.45270	27.11713	-82.45258	1.4	>B	030378	0.06
DR-3	042203	1328	27.11560	-82.46540	27.11538	-82.46577	2.5	['] > B	030380	0.19
DR-4	042203	1140	27.10120	-82.44120	27.10112	-82.44110	3.3	2.0	030382	0.47
DR-5	042203	1049	27.06540	-82.43240	27.06527	-82.43253	3.3	1.8	030379	
		-								

Sbmn0403.xls Water Quality 7/29/03

Mote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G Sarasota Bay / Myakka River Status and Trends Monitoring Water Quality Analyses

ŝ	Piel (PSI	34.8	٩N	35.1	35.4	35.7	35.7	33.1	32.7	32.9	34.1	34.6	9.21	9.79	11.7	11.0	12.8	ΝA	0.31	0.98	1.60	5.57	6.39	35.6	35.5	35.9	35.2	33.9	٨A	٩N	AN	ΔN
Chi a	Corr (mg/m3)								3.68																						J0,05	
Color	(ns) Hd								7.91																					-	-	_
Color	Apparent (PCU)								27																							
Turbidity	(NTU)								4.1																							
SSA	(J/gm)																															
TSS	i) (l/ĝu)	14 N	× 8	S N	Z ∞	4 Z	4 N	12 N	9 NA	12 N	12 N	12 N	5 N	10 N	s N	Ż	8 N	و N	U2 N/	2 N/	4 N	6 N/	6 N/	12 2	9 1.9	2 0.7	4 1.5	10.2.5	92.6	U2 N/	U2 UC	N CI
BODs	(I/gm)	0.0	0.9	0.7	U0.5	0.6	U0.5	1.2	1.2	1.5	1.1	1.2	1.4	1.6	1.8	9.1	2.1	2.0	0.8	1.1	1.0	1.6	1.4	0.8	0.5	00.5	0.5	0.7	0.7	U0.5	U0.5	5 (1)
Total	P (I)(mg/l)	0.15	0.13	0.13	0,12	0.12	0.12	0.21	0.23	0.28	0.21	0.16	0.20	0.19	0.18	0.18	0.19	0.19	0.23	0.23	0.23	0.21	0.19	0.13	0.14	0.11	0.14	0.18	21.0	U0.05	U0.05	110.05
PO4-P	Diss (mg/l)	0.017	0.017	0.015	0.013	0.013	0.011	0.045	0.061	0.067	0.047	0.031	0.114	0.107	0.101	0.102	0.099	0.099	0.220	0.205	0.193	0.142	0.132	0.016	0.021	0.010	0.019	0.058	0:030	U0.005	U0.005	110 005
Total	N (I/gm)	0.20	0.28	0.24	0.18	0.22	U0.05	0.24	0.42	0.38	0.33	0.31	0.69	0.69	0.64	0.68	0.67	0.70	0.84	0.76	0.69	0.74	0.67	0.23	0.18	0.11	0.19	0.31	0.30	U0.05	U0.05	U0.05
TKN	(I/gm)	0.20	0.28	0.24	0.18	0.22	U0.05	0.24	0.42	0.38	0.33	0.31	0.69	0.69	0.64	0.68	0.67	0.70	0.84	0.76	0.69	0.74	0.67	0.23	0.18	0.11	0.19	0.30	0.29	U0.05	U0.05	U0.05
NO23-N	(mg/l)	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005.	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	0.005	0.006	U0.005	U0.005	U0.005
Inorg N	Diss (mg/l)	0.026	0.019	0.020	0.022	0.023	0.039	0.023	0.028	0.030	0.036	0.028	0.005	0.009	0.005	0.005	0.005	0.005	0.005	0.009	0.012	0.005	0.008	0.020	0.028	0.028	0.028	0,040	0.043	0.005	0.005	0.005
N-62ON	Diss (mg/l)	-	U0.005	-	-	-		U0.005																U0.005				0.008		فسبو	_	-
NH4-N	Diss (mg/l)	0.023	0.016	0.017	0.019	0.020	0.034	0.020	0.025	0.027	0.031	0.026	U0.005	0.006	U0.005	U0.005	U0.005	U0.005	. 500.0U	0.006	0.009	U0.005	0.005	0.018	0.026	0.026	0.026	0.032	0.034	U0.005	U0.005	U0.005
Date	(mmddyy)	4/22/03	4/22/03	4/22/03	4/22/03	4/22/03	4/22/03	4/22/03		4/22/03	4/22/03		4/23/03				4/23/03	4/23/03		4/23/03						4/22/03		4/22/03	4/22/03	4/24/03	4/24/03	4/24/03
Sample	Number	030371	030370	030368	030369	030367	030375	030376	030366	030374	030373	030372	030358	030362	030364	030363	030356	030360	030357.	030359	030365	030355	030361	030381	030378	030380	030382	030379	030377	030385	030383	030384
Time	(EST)	1444	1454	1428	1412	1358	1335	1245	1227	1211	1152	1130	1229	1209	1154	1139	1108	6111	1424	1404	1347	1323	1307	1301	1223	1330	1140	1049	6011	0800	0800	0825
Sample	Depth	MID	MID	1.0M	1.0M	M0.1	1.0M	MID	1.0M	MID	1.0M	MID	MID	MID	ДIМ	MID	MID	MID	1.0M	QIM	MID	ПШ	QIM	ШM	DIM	1.0M	1.0M	1.0M	1.0M			
Station		16-1	16-1 REP	16-2	16-3	16-4	16-5	L-8-1	LB-2	LB-3	LB-4	LB-5	ML-1	ML-2	ML-3	ML-4	ML-5	ML-5 REP	1-NM	MU-2	MU-3	MU-4	MU-5	DR-1	DR-2	DR-3	DR-4	DR-5	DR-5 REP	EQP BLK	EQP BLK	ЕОР ВЦК

•

alinity Field (PSU)

E MAR	7 SHI 4 /22	EET		•		_		No. <u>112-5</u>	521
					/A - 03 P-250 m H3S04		E - 03 Filtered	F - 03 Filtered P 250 ml H ₂ S02	ØĦ
STATION DESIGNATION	TIME (EST)	SAMPLE DEPTH	P. Br 125 mt. DARK, IGE	Contraction of the second	рН < 2 		P. 125 ml - ICE	<u></u>	FIEL D
DF-5	1049	1.0m/Mid	03790	03791			0379/	03794	
PR-5REP	1109	(1.0m/Mid	03770	0377,	0377			03774	
DR-4	1140	(1.0m/Mid	0382	0382	0382	-	03821	0382,1	
		1.0m/Mid	03.82D						
DR-42	1223	1.0m/Mid	0378	03780	0378	1 1	03781	03781	$\overline{\checkmark}$
DR-1	1301	1.0m/Mid	,0381/	0381,	038	1/1	038) /	03814	<u> </u>
DR.3	1330	(1.0m/Mid	03800	0380	038	0/ /	03801	0380,	\checkmark
		1.0m/Mid	03800,1	·	· · · ·				
		1.0m/Mid						· ·	
		1.0m/Mid							
		1.0m/Mid					<u></u>		
		1.0m/Mid		<u> </u>					
-		1.0m/Mid							
		1.0m/Mid							
		1.0m/Mid							
		1.0m/Mid							
FRACTION ANALYSES	•	nl-a (Fluorome SS, BOD₅ Tur		A - NO ₂₃ N, ⁻ F - DNO ₂₃ N		P	E - DP	O₄P	
	41	55		CONT	AINER C	OUNT, ⁻	THIS PAGE O	NLY <u>32</u>	
RELINOUISH (SAMPLER/S			RECEIVED BY SIGNATURE)		DRTER'S 1/2763 630	DATE/ 16	00 DST	COUNT VERIFIED:	
Uludica	HI	5c	Jeldon 4	3- 1	630	4/2	22/03	H75	
RELINQUISH	ED BY:		RECEIVED BY	1-1-1-		DATE/	TIME:	COUNT VERIFIED:	
								:	

Ice Present: 1/ D-03: NOTE 0381 HallfFull Containers verified 100%

1600 Ken Thompson Parkway Sarasota, Florida 34236-1096 USA PHONE: (941) 388-4441 FAX: (941) 388-4312 INTERNET: info@mote.org • www.mote.org Myra H. Monfort Chairman of the Board

Kumar Mahadevan, Ph.D. Executive Director

FIELD STATIONS: Florida Keys • 24244 Overseas Highway • Summerland Key, FL 33042 • PHONE: (305) 745-2729 • FAX (305) 745-2730 Charlotte Harbor • P.O. Box 2197 • Pineland, FL 33945 • PHONE: (239) 283-1622 • FAX (239) 283-2466 Mote Aquaculture Park • 12300 Fruitville Road • Sarasota, FL 34240

August 13, 2003

Ms. Laura Ammeson Sarasota County Air and Water Quality Protection 2817 Cattlemen Road Sarasota, FL. 34232

Dear Ms. Ammeson,

Enclosed are the data tables from the May 2003 sampling of Sarasota Bay and the Myakka River that Mote Marine Laboratory is performing for Sarasota County. Magnetic data are enclosed as an Excel 9.0 file (SBMN0503.XLS) which will generate the attached tables. Data are organized as five tables with descriptions which follow.

Mid-Day in situ profiles	6 pages
Station locations and water clarity	2 pages
Water quality analyses	2 pages
Weather conditions during samplings	1 page
Hydrolab Minisonde continuous deployments	4 pages each
Custody sheets for water quality samples	5 pages

The continuous Hydrolab data was gathered from stations 14-1 and 13-3 of the Roberts Bay segment during this sampling. Diurnal fluctuation of dissolved oxygen concentration was low at station 14-1 and ranged between 4.0 -5.8 mg/L with a percent saturation of dissolved oxygen of 62 - 92 %. At station 13-3, the fluctuations of dissolved oxygen concentration was between 3.3 -7.2 mg/L. Percent saturations of dissolved oxygen of this station ranged between 53 - 119 %.

Since we are in the process of revising the ideal station locations for all the segments for each month, the 'Ideal Station Location' Latitude and Longitude are not included in this report, and will report them once they are revised. Only the actual station locations are reported.

Please don't hesitate to call if I may answer any further questions regarding these data.

Sincerely,

ANissanka

Ari Nissanka D.Sc. Senior Chemist Enclosures AN:mig

A nonprofit organization dedicated to excellence in marine sciences and a member of:

· AMERICAN ASSOCIATION OF MUSEUMS · ASSOCIATION OF MARINE LABORATORIES OF THE CARIBBEAN · FLORIDA OCEAN ALLIANCE

· NATIONAL ASSOCIATION OF MARINE LABORATORIES · SCIENCE AND ENVIRONMENTAL COUNCIL OF SARASOTA COUNTY · SOUTHERN ASSOCIATION OF MARINE LABORATORIES

Sbmn0503.xls Profiles 8/13/03

Page 6 of 6

Marine Laboratory 600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Mid-Day In Situ Profiles

Station	Date	Time	Sample	Salinity	Specific	Temperature	рН	Dissolved	D.O. Percent
Station			Depth		Conductance			Oxygen	Saturation
,	(mmddyy)	(EST)	- (m)	(PSU)	(mmhos/cm)	(Deg C)	(SU)	(mg/l)	(%)
DR-1	052003	1254	0.2	36.2	54.48	30.14	8.03	6.21	102.3
DR-1	052003	1255	0.6	36.2	54.51	30.04	8.05	6.15	101.1
DR-1	052003	1256	0.9	36.2	54.53	29.99	8,06	6.44	105.8
DR-2		1213	0.2	32.8	50.01	30.30	7.84	5.60	89.9
DR-2			0.8	33.7	51.13	30.14	7.91	5.78	93.7
DR-2			1.4	33.7	51.19	30.15	7.92	5.80	94.1
DR-2 DR-3			0.2		50.38	30.94	7.96	6.67	109.6
DR-3			0.5		50.35	30.96	7.97	6.70	109.8
DR-3			0.7		50.86	30.96	8.00	6.99	114.9
DR-4			0.2			29.97	7.94	5.85	94.4
DR-4			0.9			29.70	8.02	6.01	98.0
			1.0				8.05	6.19	100.5
DR-4			0.2				7.89	5.20	83.7
DR-5			1.0				7.91	5.09	81.9
DR-5								5.07	81.8
DR-5	5 052003	3 1033	2.4	+ 33.0					

Drine Laboratory Hompson Parkway ota, FL 34236 341) 388-4441 DH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Station Locations and Water Clarity

Station	Date	Time		n Location A			-			Attenuation
			Latitude	Longitude	Latitude	Longitude	Overall	Depth	Quality	Coefficient
(m	ımddyy)	(EST)	(degrees)	(degrees)	(degrees)	(degrees)	(m)	(m)	Sample	(m ⁻¹)
ML-1	052103	1310			77 04190	01 20000	0.0	N D	020666	0.14
					27.04180	-82.28880	0.9	>B	030666	2.14
ML-2	052103	1327			27.03288	-82.27835	1.3	1.0	030668	2.10
ML-3	052103	1342			27.02970	-82.27095	2.6	1.0	030664	1.90
ML-4	052103	1354			27.02290	-82.27400	2.3	1.0	030661	2.07
ML-5	052103	1418			27.00775	-82.26623	1.7	0.8	030667	1.90
MU-1	052103	1120			27.09680	-82.33165	2.9	1.0	030660	2.48
MU-2	052103	1142			27.08875	-82.32747	1.2	0.8	030662	2.53
MU-3	052103	1208			27.07547	-82.31683	1.6	1.0	030670	2.41
MU-4	052103	1235			27.05902	-82.30548	1.9	1.0	030669	2.39
MU-5	052103	1248			27.05450	-82.30085	2.4	1.0	030665	2.32
DR-1	052003	1254			27.11911	-82.46413	1.1	>B	030673	0.34
DR-2	052003	1213			27.12510	-82.44970	1.6	1.3	030674	1.20
DR-3	052003	1327			27.10729	-82.45915	0.9	>B	030676	0.87
DR-4	052003	1130			27.10979	-82.45195	1.8	>B	030675	0.53
DR-5	052003	1029			27.09382	-82.43732	2.6	2.0	030672	0.66

Sbmn0503.xls Water Quality 8/13/03

Mote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Wate

ASUE DAY / NUVARNA MIVE SUALU SUALU AND	
U JAINA MIYEL	Analyses
a Day / I	ter Quality Analyses
ASU	ter

Salinity Field (PSU)	36.0 36.1 33.8	33.9 33.5 33.5	31.8 32.3 32.1	35.5	2.76	4.57	+r-r 90.9	8.03	NA 0.21	0.21	0.23	0,46	0.80	36.2	1.00	35.0	32.6	NA	٨N	NA	NA
Chl a Corr (mg/m3)	2.34 1.37 5.08	4.54 5.23 4.56	6.58 7.04 5.00	2.11	9.88 9.88	11.91	9.0 1 10.46	7.30	7.93 28.60	43.04	14.14	8.72	13.60	1.54	00 I	4.03	3.47	3.56	U0.05	U0.05	U0.05
Color pH (su)	8.29 8.28 8.34	8.34 8.20 8.30	8.14 8.16 8.16	8.31	7.35	7.44	7.48	7.65	7.70	7.02	7.10	7.15	7.12	8.28	0.0	8.16	8.09	8.10	5.60	5.56	5.40
Color Apparent (PCU)	6 9 9	8 11 9	5 38 50 38	12 5	011	88	n 11	85	8 <u>8</u>	150	140	140	150	, 6 7	3 6	18	22	18	U2	U2	U2
Turbidity (NTU)	0.95 1.4 1.9	3.6 2.3 4.5	2.3	1.9	2.8	3.2	2.5 3.6	4.3	4.2 2.3	3.6	2.3	2.6	2.7	4. 0	7. Y	2.6	3.5	3.5	U0.2	U0.2	U0.2
VSS (mg/l)	NA NA NA	a a a a a a	VN VN	Y X	NA NA	NA	NA NA	NA	AN NA	AA	NA	NA	AN	0.9	7. C	1.9	2.8	2.9	U0.5	NA	ΝA
(I/gm)	11 10	6 6 7	15 8 8	- 4 (<i>ч</i> 4	9 '	o o	8	∞ 4	9	'n	5	ŝ	4 ç	0.71	9.3	8.4	9.1	U2	<u>U2</u>	U2
BOD ₅ (mg/l)	0.9 1.2 1.0	0.9 1.1 0.9	2.4	1.5	1.5 1.5	1.6	C1 C1	1.7	1.8	4.6	1.5	1.4	1.6	0.9	<u>.</u> -	1.1 L	1.2	1.2	U0.5	U0.5	U0.5
Total P (mg/l)	0.14 0.14 0.13	0.13 0.13 0.12	0.34 0.29	0.16	0.36 0.36	0.31	16.0 0.31	0.28	0.33	0.58	0.58	0.51	0.47	0.12	07.0	0.16	0.17	0.18	U0.05	U0.05	U0.05
PO ₄ -P Diss (mg/l)	0.015 0.016 0.014	0.014 0.013 0.014	0.090 0.072	0.028	0.310	0.252	0.234	0.193	0.196	0.472	0.492	0.453	0.425	0.014	950.0	0.041	0.050	0.048	U0.005	U0.005	U0.005
Total N (mg/l)	0.16 0.19 0.12	0.17 0.17 0.16	0.50	0.30	0.82	0.83	0.83	0.79	0.83	1.44	1.15	0.97	0.98	0.15	0.37	0.28	0.31	0.30	U0.05	U0.05	U0.05
TKN (mg/l)	0.16 0.19 0.12	0.17 0.17 0.16	0.50	0.30	0.24 0.82	0.83	0.83	0.79	0.83	1.36	1.10	0.95	0.97	0.15	15.0 15.0	0.28	0.30	0.29	U0.05	U0.05	U0.05
NO ₂₃ -N (mg/l)	U0.005 U0.005 U0.005	U0.005 U0.005 U0.005	U0.005 U0.005	U0.005	c00.0U	U0.005	cuu.uu 200.0U	U0.005	U0.005 0.078	0.077	0.050	0.021	0.006	U0.005	200.00	U0.005	0.008	0.009	U0.005	U0.005	U0.005
Inorg N Diss (mg/l)	0.017 0.033 0.017	0.024 0.026 0.023	0.022 0.027	0:030	0.015	0.014	0.011	0.011	0.011	0.097	0.064	0.036	0.015	0.023	0.028	0.020	0.038	0.039	0.005	0.005	0.005
NO ₂₃ -N Diss (Ilgm)	U0.005 U0.005 U0.005	U0.005 U0.005 U0.005	U0.005 U0.005	00.00	U0.005 U0.005	U0.005	00.00 U0.005	U0.005	0.005 0.081	0.079	0.050	0.021	0.006	U0.005	200,001	U0.005	0.011	0.010	U0.005	U0.005	U0.005
NH4-N Diss (mg/l)	0.014 0.030 0.015	0.021 0.023 0.020	0.019 0.024	0.027	0.012 0.012	0.011	0.008	0.008	0.008	0.018	0.014	0.015	0.009	0.020	(20) 2000	0.018	0.027	0.029	U0.005	U0.005	U0,005
Date (mmddyy)	5/20/03 5/20/03 5/20/03	5/20/03 5/20/03 5/20/03	5/20/03	5/20/03	5/20/03 5/21/03	5/21/03	5/21/03 5/21/03	5/21/03	5/21/03 5/71/03	5/21/03	5/21/03	5/21/03	5/21/03	5/20/03	5/20/03	5/20/03	5/20/03	5/20/03	5/20/03	5/22/03	5/22/03
Sample Number	030652 030655 030657	030659 030656 030649	030654 030658	030653 030653	030651 030666	030668	030664 030661	030667	030663	030662	020670	030669	030665	030673	030674	030675	030672	030671	030677	030679	030678
Time (EST)	1431 1441 1410	1349 1335 1317	1226 1204	cell 1103	1047 1310	1325	1340 1352	1415	1420	1140	1206	1233	1248	1256	1212	1128	1035	1048	1530	0755	0835
Sample Depth	dim dim dim	dim M0.1	QIM DIM	UIM MID	M0.1	ШM	1.0M	ШM	dim M01	MID	QIM	1.0M	1.0M	MID	dim	UIM MO.1	1.0M	1.0M			
Station	16-1 16-1 REP 16-2	16-3 16-4 16-5	LB-1 LB-2	LB-4 LB-4	LB-5 ML-1	ML-2	ML-3 ML-4	WL-5	ML-5 REP MILT	MU-2	MU-3	MU-4	MU-5	DR-1	DR-2	DR-4	DR-5	DR-5 REP	EQP BLK	EQP BLK	едр влк

5TOD	Y SH	EET	DRY , 1600 K Kit # 05					34236 t No. <u>11</u> :	2-521							
mpling Date	51	20/03		k Pg #s												
_{bam} plers	10.		<u>×</u> ×	<u>///</u>	<u> </u>											
			H - 03	D -03	A - 0	A.C. A. 2010	E - 03	F - 03 Filtered								
STATION DESIGNATION	TIME (EST)	SAMPLE DEPTH	P, Br 125 ml	P, 1/2 gal	P, 250 H ₂ SO pH < ICE	4 2 叶 【	Filtered P. 125 ml	P, 250 ml H ₂ SO ₄ pH <2 	pH FIEL D							
DR-5	10:35	(1.0m/Mid	06-12D	F12.	BRZ	2.1	0672	06.72	J							
DR-5	10:48	1.0m/Mid	0671	0671 H	007		0671	0671								
DR-4	11128	1.0m/Mid	067517	0675	067	512	0675	0675	1							
DR-2	12:12	1.0m/Mid	0674	0674	0671	t: /	0674.	0674	<i>✓</i>							
DK-1	12.56	1.0m/(Mid)		06731	0673	3 : 1	0673 /	0673'								
DR-3 For	13,24	1.0m/Mid	0676	<u>, 76) 0</u>	0676	<u>רו∖ ר</u>	0076.1	0676	V							
Plank	1530	1.0m/Mid	0677	06-17	067	2 1	0677	0677	Y.							
		1.0m/Mid		RM 5/30/03												
		1.0m/Mid		. 1												
		1.0m/Mid														
		1.0m/Mid														
		1.0m/Mid					· · · · · · · · · · · · · · · · · · ·		ļ							
		1.0m/Mid			·											
		1.0m/Mid					· · · · · · · · · · · · · · · · · · ·		·							
		1.0m/Mid					·									
		1.0m/Mid														
FRACTION ANALYSES		-a (Fluorome S, BOD₅ Turb	tric) A), Color,√≲ F	- NO ₂₃ N, T - DNO ₂₃ N,		TP	E - DPC	D₄P								
CONTAINER COUNT, THIS PAGE ONLY 35 N + Drfs																
RELINQUISHE (SAMPLER'S		1	RECEIVED BY:(SIGNATURE)	(TRANSPOI	IME:	COUNT ^{SI (SI)} VERIFIED:										
17.2	4/10	5				-										
RELINQUISHE	D BY:	F	RECEIVED BY:		IME:	COUNT VERIFIED:										
			Avissen	<u>ila</u>	15:40											
Ice Present:	./		· · · · · · · · · · · · · · · · · · ·													

Containers verified 100%

1600 Ken Thompson Parkway Sarasota, Florida 34236-1096 USA PHONE: (941) 388-4441 FAX: (941) 388-4312 INTERNET: info@mote.org • www.mote.org Myra H. Monfort Chairman of the Boa

Kumar Mahadevan, F Executive Director

FIELD STATIONS:

Florida Keys • 24244 Overseas Highway • Summerland Key, FL 33042 • PHONE: (305) 745-2729 • FAX (305) 745-2730 Charlotte Harbor • P.O. Box 2197 • Pineland, FL 33945 • PHONE: (239) 283-1622 • FAX: (239) 283-2466 Mote Aquaculture Park • 12300 Fruitville Road • Sarasota, FL 34240

August 27, 2003

Ms. Laura Ammeson Sarasota County Air and Water Quality Protection 2817 Cattlemen Road Sarasota, FL. 34232

Dear Ms. Ammeson,

Enclosed are the data tables from the Hay 2003 sampling of Sarasota Bay and the Myakka River that Mote Marine Laboratory is performing for Sarasota County. Magnetic data are enclosed as an Excel 9.0 file (SBMN0603.XLS) which will generate the attached tables. Data are organized as five tables with descriptions which follow.

Mid-Day in situ profiles	6 pages
Station locations and water clarity	2 pages
Water quality analyses	2 pages
Weather conditions during samplings	1 page
Hydrolab Minisonde continuous deployments	4 pages each
Custody sheets for water quality samples	5 pages

The continuous Hydrolab data was gathered from stations 14-2 of the Roberts Bay segment and 16-3 of The Lemon Bay segment during this sampling. Diurnal fluctuation of dissolved oxygen concentration was high at station 16-3 and ranged between 2.3 - 8.8 mg/L with a percent saturation of dissolved oxygen of 38 - 146 %. At station 14-2, the fluctuation of dissolved oxygen concentration was between 4.7 - 8.0 mg/L. Percent saturation of dissolved oxygen of this station ranged between 76 - 132 %.

Since we are still in the process of revising and incorporating the ideal station locations into the monthly reports, the 'Ideal Station Location' Latitude and Longitude are not included in this report, and will report them once they are revised. Only the actual station locations are reported.

Please don't hesitate to call if I may answer any further questions regarding these data.

Sincerely,

ANissauka

A1i Nissanka D.Sc. Senior Chemist (355 Enclosures AN:mig

> A nonprofit organization dedicated to excellence in marine sciences and a member of: • American Association of Museums • Association of Marine Laboratories of the Caribbean • Florida Ocean Alliance • National Association of Marine Laboratories • Science and Emronmental Council of Sarasota County • Southern Association of Marine Laboratories

Sbmn0603.xls Profiles 8/27/03

Jote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Mid-Day In Situ Profiles

Station	Date	Time	Sample	Salinity	Specific	Temperature	pН	Dissolved	D.O. Percent			
			Depth		Conductance			Oxygen	Saturation			
	(mmddyy)	(EST)	(m)	(PSU)	(mmhos/cm)	(Deg C)	(SU)	(mg/l)	(%)			
DR-1		1257	0.2	31.0	47.49	33.40	7.60	4.99	84.2			
DR-1	061003	1258	1.0	34.6	52.46	31.84	7.94	5.05	84.8			
DR-1	061003	1259	1.9	34.9	52.75	31.61	7.96	4.85	81.3			
DR-2	061003	1330	0.2	31.9	48.68	31.94	8.03	6.10	101.0			
DR-2	061003	1332	1.0	33.0	50.28	31.39	8.10	6.63	109.5			
DR-2	061003	1333	3.2	33.7	51.18	31.09	8.13	6.66	109.8			
DR-3	061003	1219	0.2	21.2	33.83	31.81	7.69	5.50	85.3			
DR-3	061003	1220	0.9	25.2	39.53	31.36	7.76	5.18	81.6			
DR-3	061003	1222	1.5	28.8	44.54	31.22	7.81	4.92	79.0			
DR-4	061003	1148	0.2	21.1	33.62	32.21	7.69	4.49	70.2			
DR-4	061003	1151	0.4	21.6	34.35	32.18	7.69	4.34	67.8			
DR-4	061003	1153	0.5	24.3	38.19	32.21	7.77	4.95	79.0			
DR-5	061003	1052	0.2	31.7	48.51	30.92	7.96	5.21	83.5			
DR-5	061003	1053	1.0	31.7	48.44	30.94	7.98	5.19	83.2			
DR-5	061003	1054	3.5	31.7	48.43	30.98	7.99	5.17	84.1			

Mote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Station Locations and Water Clarity

Station	Date	Time	Ideal Static	on Location	Actual Static	on Location	Depth	Secchi	Water	Attenuation			
			Latitude Longitude		Latitude	Longitude	Overall	Depth	Quality	Coefficient			
(m	umddyy)	(EST) (degrees)		(degrees)	(degrees)	(degrees)	(m)	(m)	Sample	(m ⁻¹)			
ML-1	061103	1206			27.03717	-82,28222	1.9	0.8	030801	1.87			
ML-1 ML-2	061103	1151			27.03203	-82.27797	1.5	0.8	030801	1.87			
ML-3	061103	1136			27.02952	-82.27298	3.9	0.8	030800	1.96			
ML-4	061103	1114			27.01857	-82.27273	3.3	0.8	030802	2.47			
ML-5	061103	1043			27.00343	-82.25903	0.7	>B	030803	2.37			
MU-1	061103	1419			27.10023	-82.33307	2.3	1.3	030794	2.10			
MU-2	061103	1352			27.08663	-82.32677	3.0	1.0	030795	2.02			
MU-3	061103	1316			27.06542	-82.31420	2.3	0.8	030797	2.00			
MU-4	061103	1258			27.06323	-82.30990	1.2	0.8	030799	2.24			
MU-5	061103	1233			27,04903	-82.29360	2.0	1.0	030805	1.82			
DR-1	061003	1257			27.12775	-82.46157	2.1	1.4	030790	0.83			
DR-2	061003	1330			27.10982	-82.45718	3.4	1.5	030793	0.44			
DR-3	061003	1219			27.11970	-82.45048	1.7	1.5	030788	1.20			
DR-4	061003	1148			27.11428	-82.44558	0.7	>B	030792	0.81			
DR-5	061003	1052			27.07602	-82.43042	3.7	1.3	030791	0.76			

Sbmn0603,xls Water Quality 8/27/03

Mote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Water Ouality Analyses

EQP BLK EQP BLK	EOP BLK	DR-5	DR-4	DR-3	DR-2 REP	DR-2	DR-1	MD-2	MU-4	MU-3	MU-2	MU-1 REP	MU-1	ML-S	ML-4	ML-3	ML-2	ML-1	LB-5 REP	LB-S	LB-4	LB-3	LB-2	LB-1	16-5	16-4	16-3	16-2	16-1			Station		
		1.0M	MID	MID	1.0M	1.0M	1.0M	MID	MID	MID	MID	1.0M	1.0M	MID	1.0M	1.0M	MID	MID	1.0M	1.0M	MID	MID	MID	MID	1.0M	1.0M	MID	MID	1.0M		тфт		Comple	
1555 0815	1555	1052	1148	1219	1340	1330	1257	1237	1307	1314	1350	1420	1418	1040	1111	1132	1148	1203	1037	1030	1057	1113	1130	1147	1237	1251	1309	1337	1354			ACT N		
030806 030807	030808	030791	030792	030788	030789	030793	030790	030805	030799	030797	030795	030798	030794	030803	030802	030800	030804	030801	030787	030779	030781	030780	030784	030783	030786	030777	030782	030778	030785			Number (Samnle	
6/11/03 6/12/03	6/10/03	6/10/03	6/10/03	6/10/03	6/10/03	6/10/03	6/10/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03	6/11/03		((mmddvv)	Date	-
0.012 U0.005	U0.005	0.016	0.056	0.029	0.014	0.019	0.013	0.011	0.022	0.016	0.014	0.023	0.018	0.013	0.018	0.013	0.009	0.012	0.015	0.021	0.021	0.013	0.010	0.018	0.012	0.011	0.010	0.016	0.009		(mg/l)	Diss	NH-N	Vater 1
U0.005 U0.005	U0.005	U0.005	0.013	0.006	U0.005	U0.005	U0.005	0.008	U0.005	U0.005	0.024	0.055	0.056	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0,005	U0.005	U0.005	U0.005		(mg/l)	Diss	NO ₂₂ -N	Quality
0.015 1 0.005 1	0.005	0.019	0.069	0.035	0.017 l		0.016 U			0.019 U			0.074	0.016 U			0.012 U		0.017 U	0.024 U		0.016 U		0.020 U	0.015 U	0.014 U	0.013 U	0.019 U			_	Diss	Inorg N NG	Water Quality Analyses
U0.005 U0.005	U0.005	0,006	0.016	0.007	U0.005	U0.005	U0.005	0.011	U0.005	U0.005	0.027	0,056	0.059	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005	U0.005		(mg/l) (NO23-N	•2
U0.05 U0.05	U0.05	0.25	0.58	0.66	0.34	0.41	0.47	0,81	0.89	0.91	0.96	0.98	0.92	1.15	1.06	0.94	0.90	0.86	0.24	0.31	0.29	0.56	0.34	0.37	0.25	0.23	0.26	0.29	0.34		(mg/l)		TKN	
U0.05 U0.05	U0.05	0.26	0.60	0.67	0.34	0.41	0.47	0.82	0.89	0.91	0.99	1.04	0.98	1.15	1.06	0.94	0.90	0.86	0.24	0.31	0.29	0.56	0.34	0.37	0.25	0.23	0.26	0.29	0.34		(mg/l)	Z	Total	
U0.005 U0.005	U0.005	0.040	0,126	0.122	0.039	0.035	0.069	0.265	0.330	0.348	0.368	0.355	0.350	0.135	0.152	0.186	0.190	0.217	0.013	0,014	0.042	0.051	0.072	0.072	0.008	0.009	0.010	0.017	0.014		(mg/l)	Diss	PO4-P	
U0.05	U0.05	0.20	0.24	0.24	0.19	0.17	0.25	0.35	0.39	0.40	0.40	0.39	0.39	0.34	0.31	0.30	0.34	0.31	0.18	19	0.19	0.27	0.26	0.25	0.18	0.18	0.16	0.17	0.18		(mg/l)	p	Total	
U0.5	U0.5	1.3	1.5	1.5	1,4	1,4	. 1./	·		1.2		; :	1.0	5.1	4 4 4 1	2.0	1.0	- I.4	. 1.0	1.0		2.2	; I	1	1.0	. 1.0	; I:I	1.2	1.2		(mg/l)		BODş	
U2 U2	202	Ξ	0	. oc	, 14	: 13	: 5	5 o	4	. u	. U	2 6	U2	Ið	. 10	; 13	5 V	p v	, a	ς υ	n Lui	, D	5 ve	, v	>~`	1 10	> ~	a 0	<u> </u>	`	(mg/l)		TSS	
NA		3.4	2.5		2 4 1 1	4.0	. + 	2 N		NA		NA	NA NA			NA		2 7	NA		NA	NN NA	NA	AN A	Ņ	NA	NA	NA			(mg/l)		VSS	
00.2	7.00 7	4,4	2.1	۰ د ۱. د	3 J J	7.t	2 2		2 C C	3 F.J	2	1 2 1.9	1.0	; =	11	0.1		7 L	7 E	10	ינ ננ		3 0.0	3 L.	0.0	2 C	2 1		۲. ۲.	10	(NTU)		Turbidity	
20 2 U	cl1 7.0	13	2			<u>.</u> 5		cr.	110	110	110	110	100	110	110	100	13	100	100 0	x c	8 IO	58	3 C	3 6	30 0	× 0	~ 0	0 20	5 7	;	(PCU)	Apparent	Color	
5.37	۲ L	a 0,05		101	7 0,10	8 I 8	8 18	177	7.55		7 7 8	1 27	7 20	1 1	8.21	202	7 75	7.67	760	8 26	8 2 S	0 10	8 23	2 N7	102	2 17 7 17	0.27	8 JO	00.0	7t 8	(su)	РH	Color	
7 U0.05									14.46											2 n4	2.34		12.27	0 61	014	1 73	4 64	4 31	50 t 2212	22	(ពាទ្ធ/ពា)	Corr	Chl a	
NA	NA	31.7 NA	1 1 1	21.6	25.2	NA	13.0	34.6	4.54	1 76	1.22	0.27	NA	0.24	13.5	10.8	8.80	8.03	6.79	NA	36.9	35 0	33.0	31.4	30.5	36.7	36.6	36.5	34.8	35.1	(rau)	Field	Salinity	

.

Page 2 of 2

ż

E MA USTOI Sampling Da Samplers <u>P</u>	DY SF	12003	Kit #3	-♂つ 2 ok Pg #s	4		Projec Batch # _2	ct No. <u>11:</u> 003051	2-521
Ewly		17×2	H = 03	D. 03	A - 0	3	E - 03	F - 03 Filtered	
STATION		SAMPLE	19.180.125.ml)	P#1/2(ga)	. IP. 250 H,S0 → DH <	140.005	Filtered P. 125 ml	P, 250_ml	рн У
DESIGNATION		DEPAT	DARK ICE	T TIGE	C ICE	FIEL D	ICE	ICE .	FIEL D
DR-5	1122	1.0m/Mid	0791 ~	0791	079		10991-	0791~	
DR-4	1248	1.0m(Mid)	0792	0792	079:	2 1	0792	10792°	
DR-3	1319	1.0m/Mid	0788 4	0788	078	8 1	0788	0788	
DR-1	1357	(1.0m)Mid	0790	0790	079		0790	0790	~
DR-2	1430	1.0m/Mid	0793	0793	079	31	0793	0793	\checkmark
DR-2 REF	1440	1.0m/Mid	0789	0789	078	971	0789	0789	1
Blank	15 55	1.0m/Mid	0808	0608	080	8 1	0808	0808	J
		1.0m/Mid							
		1.0m/Mid							
		1.0m/Mid							
		1.0m/Mid							
		1.0m/Mid							
		1.0m/Mid					1	<u>.</u>	·
		1.0m/Mid							
		1.0m/Mid							
		1.0m/Mid	······				·		
FRACTION		-a (Fluoromet S, BOD ₅ Turb	ric) A , Color,√SS F	- NO ₂₃ N, T - DNO ₂₃ N, T	KN, TO	TP	E - DP	O₄P	
			<u>µ=</u> _			OUNT, T	HIS PAGE O	NLY <u>.3</u> 2	<u> </u>
RELINQUISHED BY: RECEIVED BY:(TRANSPORTER'S DATE/ (SAMPLER'S/SIGNATURE) SIGNATURE/								COUNT VERIFIED:	
Inde	a Hi	ba	j					-	
RELINQUISHE	D BY:	/ R	ECEIVED BY:		1	DATE/T	IME:	COUNT VERIFIED:	
			hace	Jout-	Ø	4/10/	13 1535	U.	-

. . . .

}

1600 Ken Thompson Parkway Sarasota, Florida 34236-1096 USA PHONE: (941) 388-4441 FAX: (941) 388-4312 INTERNET: info@mote.org • WWW.mote.org Myra H. Monfort Chairman of the Board

Kumar Mahadevan, Ph.D. Executive Director

FIELO STATIONS: Florida Keys • 24244 Overseas Highway • Summerland Key, FL 33042 • PHONE: (305) 745-2729 • FAX: (305) 745-2730 Charlotte Harbor • P.O. Box 2197 • Pineland, FL 33945 • PHONE: (239) 283-1622 • FAX: (239) 283-2466 Mote Aquaculture Park • 12300 Fruitville Road • Sarasota, FL 34240

December 15, 2003

Ms. Laura Ammeson Sarasota County Air and Water Quality Protection 2817 Cattlemen Road Sarasota, FL. 34232

SARASOTA COUNTY

DFC 18 2003

WATER RESOURCES

Dear Ms. Ammeson,

Enclosed are the revised data tables from the July 2003 sampling of Sarasota Bay and the Myakka River that Mote Marine Laboratory is performing for Sarasota County. Data are organized as six tables with descriptions which follow.

Mid-Day in situ profiles	8 pages
Station locations and water clarity	2 pages
Water quality analyses	2 pages
Weather conditions during samplings	1 page
Hydrolab Minisonde continuous deployments	4 pages Revised 12/12/2003
Custody sheets for water quality samples	6 pages

The continuous Hydrolab data was gathered from stations MU-4 of the Myakka River segment during this sampling. Diurnal fluctuation of dissolved oxygen concentration was negligible and ranged only between 3.2 - 3.7 mg/L with a percent saturation of dissolved oxygen of 43 - 49 %.

I apologize for the oversight of having incorrect headers for the temperature and pH columns of the continuous deployment data table. The table had been corrected and three copies of the full report is enclosed with the revised version of the magnetic data file (SBMN0703.xls). Please discard the previous report of December 5, 2003 and replace it with this.

The *in-Situ* profile of percent saturation of dissolved oxygen at stations 16-2 and 16-4 bottom were recorded as 200#, implying that the saturations were >200%. Both these stations were located on grass beds and this super saturation may be due to the high photosynthetic activity.

Please don't hesitate to call if I may answer any further questions regarding these data.

Sincerely,

anna

Ari Nissanka D.Sc. Senior Chemist Enclosures AN:mig

> A nonprofit organization dedicated to excellence in marine sciences and a member of: • American Association of Museums • Association of Marine Laboratories of the Caribbean • Florida Ocean Alliance • National Association of Marine Laboratories • Science and Environmental Council of Sarasota County • Southern Association of Marine Laboratories

666 Marine Laboratory 600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

.

Sarasota Bay / Myakka River Status and Trends Monitoring Mid-Day *In Situ* Profiles

Station	Date	Time	Sample	Salinity	Specific	Temperature	pН	Dissolved	D.O. Percent
			Depth		Conductance		÷	Oxygen	Saturation
(mmddyy)	(EST)	(m)	(PSU)	(mmhos/cm)	(Deg C)	(SU)	(mg/l)	(%)
DR-1-07	072203	1326	0.2	33.72	51.22	33.74	8.08	6.62	114.1
DR-1-07	072203	1328	0.8	34.39	51.99	. 33.36	8.18	8.02	137.9
DR-1-07	072203	1331	1.3	34.90	52.82	32.88	8.23	8.56	146.4
DR-2-07	072203	1254	0.2	2.99	5.44	32.26	7.27	4.58	64.3
DR-2-07	072203	1256	0.4	3.56	7.64	32,39	7.26	4.25	59.89
DR-2-07	072203	1257	0.5	3.73	6.73	32.48	7.27	4.41	63.6
DR-3-07	072203	1356	0.2	28.64	44.27	33.47	7.97	5.88	98.0
DR-3-07	072203	1358	0.7	30.81	47.25	32.78	8.03	6.61	110.2
DR-3-07	072203	1400	1.1	31.32	47.96	32.63	8.06	6.75	112.7
DR-4-07	072203	1229	0.2	24.99	39.19	33.42	7.91	5.59	91.1
DR-4-07	072203	1229	0.4	26.22	44.00	33.21	7.93	5.25	84.0
DR-4-07	072203	1230	0.6	28.95	44.69	32.99	7.95	5.24	87.5
DR-5-07	072203	1050	0.2	25.45	39.83	32.58	7.72	4.71	75.8
DR-5-07	072203	1051	1.0	25.46	39.83	32.56	7.72	4.09	65.9
DR-5-07	072203	1052	2.8	26.11	40.76	32.36	7.73	3.69	59.5
LB-1-07	072203	1226	0.2	23.21	37.04	33.20	7.80	7.05	113.5
LB-1-07	072203	1227	1.0	23.23	37.06	33.07	7.76	6.71	107.8
LB-1-07	072203	1227	3.0	26.84	42.17	31.51	7.68	1.21	. 19.4
LB-2-07	072203	1244	0.2	23.33	37.21	33.16	7.90	6.71	10 7.9
LB-2-07	072203	1244	1.0	23.29	37.16	33.02	7.89	6.85	109.9
LB-2-07	072203	1245	1.7	26.80	42.12	31.76	7.86	1.26	20.3
LB-3-07	072203	1259	0.2	23.03	36.78	33.31	8.03	6.67	107.4
LB-3-07	072203	1259	0.6	23.07	36.84	33.24	8.04	6.91	111.2
LB-3-07	072203	1300	1.0	23.11	36.92	33.17	8.04	7.00	112.5
LB-4-07	072203	1118	0.2	23.79	37.86	32.50	8.39	7.83	124.9
LB-4-07	072203	1119	0.5	23.80	37.88	32.43	8.38	7.93	126.4
LB-4-07	072203	1119	0.7	23.97	38.10	32.30	8.35	7.37	117.5
LB-5-07	072203	1052	0.2	24.71	39.18	32.06	8.48	6.92	110.2
LB-5-07	072203	1053	0.6	25.44	40.18	32.03	8.48	6.97	111.5
LB-5-07	072203	1054	0.9	26.35	41.49	31.96	8.45	6.39	102.6
		•							

A.W.W.

ŕ

Sbmn0703.xls Clarity 12/15/03

Page 2 of 2

tarine Laboratory Thompson Parkway arasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Station Locations and Water Clarity

Station	a Date	Time	e Ideal Stati	on Location	Actual Stati	ion Location	Donth	0L:		A
			Latitude	Longitude	Latitude	Longitude				Attenuation
(mmddyy)	(EST)		(degrees)		-		Depth	- •	Coefficient
,	;;;;;	(130 1)	(4051003)	(uegi ees)	(degrees)	(degrees)	(m)	(m)	Sample	(m ⁻¹)
7-1-07	+	1117	27.38025	-82.61425	27.38098	-82.61548	2.0	1.5	030949	0.91
7-2-07		1105	27.36670	-82.59143	27.36715	-82.59160	4.0	2.5	030951	0.91
8-1-07		1131	27.38777	-82.59458	27.38822	-82.59422	3.9	2.7	030955	0.73
8-2-07		1143	27.37907	-82.57290	27.37972	-82.57288	2.2	2.0	030956	0.37
10-1-07		1046	27.34424	-82.58265	27.34440	-82.58297	2.0	>B	030952	0.75
10-2-07		1222	27.34924	-82.56986	27.34938	-82.56970	2.3	1.5	030960	0.56
10-3-07		1029	27.33400	-82.58137	27.33283	-82.58082	5.9	2.5	030959	0.50
10-4-07		1352	27.32052	-82.56628	27.32050	-82.56602	1.2	>B	030954	0.49
10-5-07	·	1337	27.30575	-82.54863	27.30492	-82.54933	1.1	>B	030948	1.31
11-1-07	-	1158	27.36571	-82.56273	27.36582	-82.56262	3.1	1.2	.030953	0.81
11-2-07		1209	27.35321	-82.55562	27.35345	-82.55528	2.8	1.4	030962	0.81
11-3-07		1235	27.33725	-82.55643	27.33703	-82.55635	3.2	1.4	030950	0.53
11-4-07	-	1312	27.32226	-82.54559	27.32253	-82.54537	1.7	1.2	030957	0.33
11-5-07		1324	27.31022	-82.54121	27.31027	-82.54095	2.1	0.7	030958	1.24
12-1-07		1321	27.30093	-82.56415	27.30070	-82.56403	3.9	2.5	030963	0.78
12-2-07		1310	27.28825	-82.56410	27.28837	-82.56402	4.2	2.3	030968	0.78
13-1-07	072203	1249	27.29164	-82.54427	27.29163	-82.54443	1.2	0.7	030973	1.64
13-2-07	072203	1235	27.27946	-82.54573	27.28092	-82.54537	0.8	>B	030975	2.17
13-3-07	072203	1220	27.27038	-82.54272	27.27037	-82.54263	1.8	0.5	030974	1.86
13-4-07	072203	1203	27.25470	-82.53196	27.25493	-82.53228	4.5	1.1	030964	1.85
13-5-07	072203	1139	27.25261	-82.52955	27.25357	-82.53028	1.1	>B	030971	1.58
14-1-07	072203	1128	27.24116	-82.51845	27.24147	-82.51817	1.5	0.5	030967	1.58
14-2-07	072203	1110	27.22550	-82.51247	27.22418	-82.51170	1.4	0.7	030965	1.62
14-3-07	072203	1057	27.22112	-82.50561	27.22103	-82.50587	1.6	0.6	030966	1.54
14-4-07	072203	1039	27.20046	-82.50259	27.20027	-82.50245	1.5	0.9	030972	1.34
14-5-07	072203	1027	27.18120	-82.49282	27.18117	-82.49338	2.4	0.9	030970	1.47
16-1-07	072203	1453	27.17459	-82.49121	27.17492	-82.49132	1.5	0.8	030977	1.83
16-2-07	072203	1436	27.16011	-82.48224	27.15982	-82.48224	1.0	>B	030984	1.83
16-3-07	072203	1419	27.14879	-82.47383	27.14863	-82.47407	1.8		030981	1.73
16-4-07	072203	1405	27.14008	-82.47017	27.14072	-82.47037	1.3		030976	
16-5-07	072203	1347	27.12788	-82,46935	27.12663	-82.46930	2.9		030985	1.04 1.06
DR-1-07	072203	1326	27.12000	-82.46340	27.12011	-82.46335	1.5		031002	-9
DR-2-07		1254	27.12320	-82.45020	27.12326	-82.45008	0.7		031002	-9 -9
DR-3-07		1356	27.10790	-82.45840	27.10787	-82.45811	1.3		030998	-9 -9
DR-4-07	072203	1229		-82.45630	27.11053	-82.45629	0.8		031003	
DR-5-07	072203	1050	27.07480	-82.43010	27.07519	-82.43010	3.0		031000	-9
LB-1-07	072203	1226	27.03506	-82.42608	27.03550	-82.42617	3.2		030978	-9 1 70
LB-2-07	072203	1244	27.01602		27.01702	-82.41422	1.9		030976	1.79
LB-3-07	072203	1259	27.00063		27.00107	-82.40322	1.9		030980	1.58
LB-4-07		1118	26.97569		26.97569	-82.38730	0.9		030982	1.49
LB-5-07	072203	1052	26.95236		26.95267	-82.37068	1.1		030983	1.43
							1.1	0.9	020202	1.53

-9 = No data due to instrument malfunction

Mote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sbmn0703.xls Water Quality 12/15/03

Sarasota Bay / Myakka River Status and Trends Monitoring Water Quality Analyses

Darger Number Number<			•	א מוכו לח													alar	Į	Calinity
Magn Oragn	Date N		ĬĦŊ				NO23-N	N-"HN	TKN	Total H					S Turbidity		Paloo Ha		Field
0.005 U.006 N 0.74 0.74 0.79 0.23 57 11 NA 5.6 68 8.77 31.78 8.83 0.001 0.006 NA 1.04 1.05 0.03 0.03 57 17 NA 8.1 6.12 22.1 8.33 6.112 20.03 6.03 0.33 57 17 NA 8.1 53 6.112 20.03 6.12 22.1 8.33 6.112 22.1 8.33 6.112 22.1 23.1 <td< th=""><th>Number (mmddyy) Diss (mg/l)</th><th></th><th>Dig Dig U</th><th>» –</th><th>Diss (mg/l)</th><th>(mg/l)</th><th>(mg/l)</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>(ns)</th><th>(mg/m3)</th><th>(ISA)</th></td<>	Number (mmddyy) Diss (mg/l)		Dig Dig U	» –	Diss (mg/l)	(mg/l)	(mg/l)										(ns)	(mg/m3)	(ISA)
0.000 1.000 N 0.03		-	200.011			0.05		AN NA	0.74	0.74	-	0.29	4.5	II NA	5.0	99	8.27	31.78	26.36
0.009 U0005 N 0.36 0.078 0.33 5.7 17 NA 8.1 6.8 2.4. 2.4. 2.4. 0.005 U0005 NA 1.08 1.08 0.037 0.23 5.9 15 NA 7.0 58 8.4.0 2.4.3 2.4.1 <					0.00	0.011	0.006	NA	10	1.05		0.34	4.9	17 NA		8	8.32	43.12	22.53
0.005 U0.005 NA 0.05 0.067 0.03 0.03 0.03 NA 0.04 0.05 NA 0.05 NA 0.05 NA 0.05 NA 0.05 NA 0.06 0.07 0.03 0.03 NA 0.01 0.0005 NA 1.00			0000		10.005	0.00	U0.005	NA	0.96	0.96	~	0.33	5.7	17 NA			8.26	48.42	24.29
0.001 U1005 NA 0.01 U0005 NA 1.00 0.00 0.20 2.5 1.1 NA 5.1 1.00 2.2.20 <th2.2.2.20< th=""> <th2.2.20< th=""> <th2.2.2.< td=""><td>1 80/22/2 1</td><td>-</td><td>10.005</td><td></td><td>U0.005</td><td>0.005</td><td>U0.005</td><td>NA</td><td>0.96</td><td>0.96</td><td></td><td>0.32</td><td>5.9</td><td>15 NA</td><td></td><td></td><td>8.38</td><td>41.05</td><td>23.54</td></th2.2.2.<></th2.2.20<></th2.2.2.20<>	1 80/22/2 1	-	10.005		U0.005	0.005	U0.005	NA	0.96	0.96		0.32	5.9	15 NA			8.38	41.05	23.54
0.005 V.0 1.00 0.000 0.22 3.1 1.0 1.0 3.2 2.2 3.1 1.00 1.00 1.00 1.00 1.00 1.00 0.000 0.22 3.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.000 0.22 1.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	7/22/03		0.007		U0.005	0.010	U0.005	NA	0.81	0.81	·	0.29	3.8				8.34	26.11	22.83
0.011 U0.005 NA 1.06 1.06 0.035 0.23 5.4 17 NA 5.5 6.0 8.40 2.8.20 2.3. 0.005 U0.005 NA 1.03 1.03 0.03 0.23 0.23 0.23 0.23 0.24 2.9 1.03 1.04 0.23 3.3 1.1 NA 5.0 60 8.43 2.3.9 2.3 <t< td=""><td>7/22/03</td><td>5</td><td>U0.005</td><td></td><td>U0.005</td><td>0.005</td><td>U0.005</td><td>NA</td><td>1.00</td><td>1.00</td><td></td><td>0.31</td><td>5.1</td><td>13 NA</td><td></td><td></td><td>8.39</td><td>39.53</td><td>22.85</td></t<>	7/22/03	5	U0.005		U0.005	0.005	U0.005	NA	1.00	1.00		0.31	5.1	13 NA			8.39	39.53	22.85
0.005 NA 0.94 0.94 0.04 0.05 5.1 10 NA 5.1 6.5 8.43 22.39 21. 0.008 U0.005 NA 1.03 1.03 0.036 0.25 5.1 10 NA 5.0 65 8.43 22.39 21. 23. 0.008 U0.005 NA 0.91 0.91 0.92 0.25 5.1 10 NA 5.0 66 8.43 22.39 21. 23. 0.001 U0.005 NA 0.24 0.24 0.24 3.5 14 NA 7.9 66 8.43 23.3 23.2 24.1 25. 0.001 U0.005 NA 0.24 0.021 0.21 3.3 1.03 3.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 23.3 <t< td=""><td>7/22/03</td><td></td><td>0.008</td><td></td><td>U0.005</td><td>0.011</td><td>U0.005</td><td>NA</td><td>1.06</td><td>1.06</td><td></td><td>0.29</td><td>5.4</td><td></td><td></td><td></td><td>8.40</td><td>28.20</td><td>22.49</td></t<>	7/22/03		0.008		U0.005	0.011	U0.005	NA	1.06	1.06		0.29	5.4				8.40	28.20	22.49
0.008 U0.005 NA 1.03 1.03 0.036 0.245 5.1 10 NA 5.1 65 8.39 18.277 2.33 0.014 U0.005 NA 0.91 0.91 0.042 0.25 3.7 1.2 NA 5.0 0.822 24.21 2.3 0.005 U0.005 NA 0.91 0.042 0.25 3.7 1.2 NA 5.0 0.823 24.21 2.3 0.005 U0.005 NA 0.81 0.84 0.34 0.35 0.34 0.31 3.0 11 NA 7.9 60 8.43 16.03 23.59 23.5 0.005 NA 0.54 0.047 0.21 3.3 7 NA 3.3 54 13.4 3.0 23.6 34.4 30 6.51 26.5 34.4 30 33.7 23.5 8.49 15.3 23.5 34.4 34.4 30 34.4 30 34.4 <	1/22/03		U0.005		U0.005	0.005	U0.005	NA	0.9 2			0.27	5.0				8.43	22.39	21.91
0.014 U0.005 NA 0.91 0.92 0.27 3.6 17 NA 5.0 60 8.23 2.4.21 2.5 0.005 NA 0.85 0.85 0.84 0.25 3.7 12 NA 5.0 60 8.23 2.3.9 2.9	7/22/03		0.005		U0.005	0.008	U0.005	NA	1.03			0.26	5.1				8.39	18.27	23.76
0.005 UN 0.85 0.84 0.25 3.7 12 NA 5.0 6.0 8.43 23.59 2.7 0.005 VA 0.91 0.041 0.25 5.5 14 NA 7.9 60 8.43 23.59 23.5 0.017 V0.005 NA 0.91 0.042 0.26 5.5 14 NA 7.9 60 8.43 23.59 23.5 0.012 V0.005 NA 0.54 0.51 0.21 3.9 7 NA 3.3 8 NA 3.3 58 8.40 16.51 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.33 23.5 24.9 13.43 25.5 24.9 13.43 25.5 24.9 <td>7122/03</td> <td></td> <td>0.009</td> <td></td> <td>0.005</td> <td>0.014</td> <td>U0.005</td> <td>VN</td> <td>0.91</td> <td></td> <td></td> <td>0.27</td> <td>3.6</td> <td>17 NA</td> <td></td> <td></td> <td>8.23</td> <td>24.21</td> <td>25.87</td>	7122/03		0.009		0.005	0.014	U0.005	VN	0.91			0.27	3.6	17 NA			8.23	24.21	25.87
0.005 UA 0.91 0.91 0.042 0.24 5.5 14 NA 7.9 60 8.43 23.59 23.5 0.017 U0.005 NA 0.84 0.84 0.052 0.24 3.9 11 NA 4.5 8.5 8.40 16.51 24. 0.0017 U0.005 NA 0.54 0.64 0.034 0.21 3.6 12 NA 3.9 55 8.40 16.51 26. 0.0012 U0.005 NA 0.52 0.62 0.033 0.21 3.1 10 3.3 2.3 0.33 0.33 0.21 1.7 4 1.9 3.3 2.3 16.03 3.3 2.3 1.33 2.3 2.3 1.33 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 3.4 3.3 2.3 2.4 3.4 3.3 2.3 3.4	1 20/22/12	-	U0.005		U0.005	0.005	U0.005	NA	0.85			0.25	3.7	12 NA			8.23	22.97	NA
0.017 U.0.005 NA 0.84 0.037 0.21 3.6 11 NA 4.5 85 8.51 18.00 23.3 0.005 NA 0.72 0.72 0.037 0.21 3.6 12 NA 3.9 55 8.40 1651 26. 0.005 NA 0.64 0.64 0.032 0.47 3.3 8 NA 3.9 55 8.40 1651 26. 0.005 U0.005 NA 0.62 0.632 0.47 3.3 8 NA 3.0 48 8.37 16.03 23. 0.005 U0.005 NA 0.42 0.43 0.21 1.2 1 1.3 2.3 2.3 3.3 2.3 3.3 2.3 3.2 3.2 3.3 3.2 3.4 3.0 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4 3.4 3.4 3.4 3.4 3.4 3.4 </td <td>1122/03</td> <td></td> <td>U0.005</td> <td></td> <td>U0.005</td> <td>0.005</td> <td>U0.005</td> <td>NA</td> <td>0.91</td> <td></td> <td></td> <td>0.26</td> <td>5.5</td> <td>14 NA</td> <td></td> <td></td> <td>8.43</td> <td>23.59</td> <td>25.15</td>	1122/03		U0.005		U0.005	0.005	U0.005	NA	0.91			0.26	5.5	14 NA			8.43	23.59	25.15
0.005 U.0.05 NA 0.72 0.037 0.21 3.6 12 NA 3.9 55 8.40 16.51 3.9 2.9 0.012 U0.005 NA 0.64 0.64 0.034 0.21 3.9 7 NA 3.3 55 8.40 16.51 2.3 0.005 U0.005 NA 0.64 0.64 0.034 0.21 1.8 10 3.1 2.3 2.3 5.33 2.33 0.21 1.4 1.9 3.3 2.8 3.4 8 8.37 16.03 3.3 2.8 3.4 3.0 3.3 2.8 3.4 3.0 3.3 2.8 3.4 3.0 3.3 3.8 3.4 3.0 3.3 2.8 0.19 0.21 2.1 4.1 3.0 3.0 3.1 4.1 3.0 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.1 3.0 3.	7/22/03		0.014	-	U0.005	0.017	UQ.005	VN	0.84			0.24	3.9	7N 11			8.51	18.00	22.89
0.012 U0005 NA 0.64 0.64 0.63 0.21 3.9 7 NA 3.3 5 8.49 13.33 2.8 0.005 U0.005 NA 0.62 0.62 0.032 0.47 3.3 8 NA 3.3 5.03 0.027 0.15 1.8 10 3.1 2.3 5.54 34 0.005 U0.005 NA 0.33 0.037 0.15 1.8 10 3.1 2.3 5.54 34 0.005 U0.005 NA 0.39 0.037 0.13 1.17 4 1.9 3.5 2.60 7.47 1.279 3 0.005 U0.005 NA 0.49 0.108 0.21 2.2 5 2.1 30 36 36 37 16.03 30 0.005 U0.005 NA 0.55 0.56 0.093 0.21 2.2 2.2 2.5 2.5 2.5 2.5 2.5	7/22/03 U0.005	U0.005	. –	-	00.005	0.005	U0.005	NA	0.72			0.21	3.6	12 N/			8.40	16.51	26.71
0.005 U0.005 NA 0.52 0.62 0.632 0.47 3.3 8 NA 3.0 48 8.37 16.05 2.4 3.4 0.005 U0.005 NA 0.33 0.027 0.15 1.8 10 3.1 2.3 5.54 3.4 3.9 0.184 0.005 NA 0.39 0.07 0.191 0.21 1.7 4 1.9 3.5 260 7.47 12.79 3 3 0.005 U0.005 NA 0.49 0.108 0.21 2.2 5 2.3 2.60 7.47 12.79 3 3 0.005 U0.005 NA 0.55 0.56 0.093 0.21 2.2 5 2.3 2.60 7.47 12.79 26 <	0.003 0.009	0.00	-	-	30.005	0.012	U0.005	NA	0.64			0.21	3.9				8.49	13.33	28.05
0.005 U0.005 NA 0.33 0.037 0.15 1.8 10 3.1 2.3 2.20 7.44 2.34 3.56 7.47 12.79 3.54 3.54 3.54 3.56 7.57 13.34 3.56 3.56 3.54 3.54 3.56 3.54 3.56	7/22/03 U0.005	U0.005	-	þ	10.005	0.005	U0.005	NA	0.62			0.47	3.3				8.37	16.03	F . 3
0.184 0.066 NA 0.90 0.97 0.191 0.21 1.7 4 1.9 3.5 260 7.47 12.79 3.3 0.005 U0.005 NA 0.42 0.42 0.063 0.19 2.5 11 3.3 2.7 65 8.15 14.14 30 0.005 NA 0.48 0.49 0.108 0.21 2.2 5 2.3 2.9 95 8.16 12.65 265	7/22/03 U0.005	U0.005	-	-	JO.005	0.005	U0.005	NA	0.33			0.15	1.8	10 3.			8.29	5.5 \$	34.39
0.005 U0.005 NA 0.42 0.42 0.063 0.19 2.5 11 3.3 2.7 65 8.15 14.14 30. 0.005 0.006 NA 0.48 0.49 0.108 0.21 2.2 5 2.3 2.9 95 8.16 12.65 26 0.003 0.008 NA 0.55 0.098 0.26 1.8 11 3.9 3.4 85 7.97 13.94 25 0.003 0.006 NA 0.56 0.098 0.23 2.0 13 4.1 3.6 90 8.01 15.49 25 23 23 23 23 23 23 25 25 26 13 4.7 11 NA 4.6 65 8.15 25.7 23 23 23 23 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25	7/22/03 0.121	0.121			0.063	0.184	0.066	NA	0.90			0.21	1.7	4 1.5			7.47	12.79	3.50
0.000 0.006 NA 0.48 0.49 0.108 0.21 2.2 5 2.3 2.9 95 8.16 12.65 2.6 0.039 0.008 NA 0.55 0.56 0.038 0.26 1.8 11 3.9 3.4 85 7.97 13.94 25 0.035 0.008 NA 0.50 0.51 0.096 0.23 2.0 13 4.1 3.6 90 8.01 \splc449 1 0.005 U0.005 NA 0.85 0.091 0.31 4.7 11 NA 4.6 65 8.15 2.57 23 0.013 U0.005 NA 0.85 0.091 0.23 4.7 11 NA 4.6 65 8.15 2.57 23 0.014 U0.005 NA 0.81 0.28 0.031 0.28 0.23 5.7 23 10.01 0 0 25 25 25 25 <		1722/03	U0.005		U0.005	0.05	U0.005	VN	0.42			0.19	2.5	11 3.			8.15	14.14	30.81
0.039 0.008 NA 0.55 0.56 0.098 0.26 18 11 3.9 3.4 85 7.97 13.44 1 0.028 0.008 NA 0.51 0.096 0.23 2.0 13 4.1 11 NA 4.6 65 8.15 2.57 23 0.005 U0.005 NA 0.81 0.81 0.091 0.31 4.7 11 NA 4.6 65 8.15 2.577 23 0.0013 U0.005 NA 0.81 0.81 0.81 0.81 0.81 0.93 0.93 0.25 4.7 11 NA 4.6 65 8.15 2.577 23 0.013 U0.005 NA 0.86 0.071 0.28 4.7 12 NA 4.4 60 8.25 16.78 23 71 23 0.0012 U0.005 NA 0.93 0.23 0.23 51 12 NA <t< td=""><td></td><td>7/22/03</td><td>U0.005</td><td></td><td>0.006</td><td>0.009</td><td>0.006</td><td>NA</td><td>0.48</td><td></td><td></td><td>0.21</td><td>2.2</td><td>5 2.</td><td></td><td></td><td>8.16</td><td>12.65</td><td>77.07</td></t<>		7/22/03	U0.005		0.006	0.009	0.006	NA	0.48			0.21	2.2	5 2.			8.16	12.65	77.07
0.028 0.008 NA 0.50 0.51 0.036 0.23 2.0 13 4.1 3.6 90 8.01 43.49 1 0.005 U0.005 NA 0.85 0.86 0.031 4.7 11 NA 4.6 65 8.15 25.57 23 0.0013 U0.005 NA 0.81 0.81 0.031 0.29 4.6 9 NA 4.6 65 8.15 25.57 23 0.013 U0.005 NA 0.81 0.81 0.81 0.81 0.81 19.01 0 0.014 U0.005 NA 0.86 0.071 0.28 4.7 12 NA 4.4 60 8.25 16.78 23 0.002 U0.005 NA 0.99 0.012 0.23 5.1 12 NA 5.2 55 8.54 25.71 23 0.002 U0.005 U0.05 U0.05 U0.05 U0.05 U0.	031000 7/22/03 0.028	7/22/03	0.028		0.011	0.039	0.008	NA	0.55			0.26	1.8	11 3.			16.1	\$. 1 2	P
0.005 U0.005 NA 0.85 0.85 0.091 0.31 4.7 11 NA 4.6 05 8.19 25.77 25 0.01 0.013 U0.005 NA 0.81 0.81 0.081 0.29 4.6 9 NA 4.0 60 8.44 19.01 0 0 0.014 U0.005 NA 0.86 0.86 0.071 0.28 4.7 12 NA 4.4 60 8.25 16.78 23 0.007 U0.005 NA 0.99 0.99 0.012 0.25 5.3 11 NA 5.2 55 8.59 26.39 25 0.0012 U0.005 NA 0.99 0.99 0.014 0.25 5.1 12 NA 5.2 58 8.59 26.39 25 0.005 U0.005 NA 0.09 U0.005 U0.005 U0.005 U0.005 U0.005 U0.005 U0.005 U0.005 U0.05 U0.5 U2 0.05 U0.02 U0.05 U2 NA U0.02 U2 5.69 U0.05 U0.05 U0.05 U0.05 U0.05 U0.05 U0.02 U0.2 U2 5.69 U0.05 U0.00 U0.05 U0.00 U0.05	030999 7/22/03 0.019	7/22/03	0.019		0.009	0.028	0.008	NA	0.50			0.23	2.0	13 4.			8.01	(† (†) (†)	AN 22
0.013 U0.005 NA 0.81 0.81 0.081 0.29 4.6 9 NA 4.0 60 8.44 19.01 0 0.014 U0.005 NA 0.86 0.86 0.071 0.28 4.7 12 NA 4.4 60 8.25 16.78 23 0.009 U0.005 NA 0.99 0.99 0.039 0.26 5.2 9 NA 5.2 55 8.54 25.71 23 0.0012 U0.005 NA 1.03 1.03 0.012 0.23 5.3 111 NA 5.8 5.8 8.59 26.39 25 0.0012 U0.005 NA 0.99 0.99 0.014 0.25 5.1 12 NA 5.8 5.8 8.59 26.39 25 0.005 U0.005 NA 0.09 0.99 0.014 0.25 5.1 12 NA 5.8 5.8 8.59 26.39 25 0.005 U0.005 NA 0.05 U0.05 U0.05 U0.5 U2 00.5 U2 00.2 U2 5.71 U0.05 0.005 U0.005 NA 0.05 U0.05 U0.05 U0.5 U2 NA 0.12 U2 5.71 U0.05 0.005 U0.005 V0.005 U0.05 U0.05 U0.05 U0.5 U2 NA 0.02 U2 5.69 U0.05 0.005 U0.005 V0.005 U0.05 U0.05 U0.05 U0.5 U2 NA 0.02 U2 5.69 U0.05	030978 7/22/03 U0.005	7/22/03	U0.005		U0.005	0.005	U0.005	Ň	0.85			0.31	4.7	11 N			CI .2	10.07	C7.C7
0.014 U0.005 NA 0.86 0.86 0.071 0.28 4.7 12 NA 4.4 60 8.25 10.78 23 0.009 U0.005 NA 0.99 0.99 0.039 0.26 5.2 9 NA 5.2 55 8.54 25.71 23 0.027 U0.005 NA 1.03 1.03 0.012 0.23 5.3 11 NA 5.8 5.8 8.59 26.39 25 0.012 U0.005 NA 0.99 0.99 0.014 0.25 5.1 12 NA 5.7 55 8.61 26.26 0.005 U0.005 NA 0.05 U0.05 U0.005 U0.05 U0.5 U2 00.2 U0.2 U2 5.71 U0.05 0.005 U0.005 NA 0.05 U0.05 U0.05 U0.5 U2 00.5 U2 0.2 5.69 U0.05 0.005 U0.005 NA 0.05 U0.05 U0.05 U0.5 U2 NA 0.02 U2 5.69 U0.05 0.005 U0.005 U0.05 U0.05 U0.05 U0.05 U2 0.7 NA 0.02 U2 5.69 U0.05	030986 7/22/03 0.010	7/22/03	0.010		U0.005	0.013	U0.005	VN	0.81		0.081	0.29	4.6	7 0			8.14	10.41	00-0
0.009 U0.005 NA 0.99 0.99 0.039 0.26 5.2 9 NA 5.2 55 8.54 25.71 23 0.027 U0.005 NA 1.03 1.03 0.012 0.23 5.3 11 NA 5.8 55 8.59 26.39 25 0.012 U0.005 NA 0.99 0.99 0.014 0.25 5.1 12 NA 5.7 55 8.61 26.26 0.005 U0.005 NA U0.05 U0.05 U0.05 U0.5 U2 U0.5 U2 0.2 5.71 U0.05 0.005 U0.005 NA U0.05 U0.05 U0.05 U0.5 U2 NA 0.02 U2 5.71 U0.05 0.005 U0.005 NA U0.05 U0.05 U0.05 U0.5 U2 NA U0.2 U2 5.69 U0.05 0.005 U0.005 U0.05 U0.05 U0.05 U0.05 U2 NA U0.2 U2 5.69 U0.05	•	7/22/03	0.011		U0.005	0.014	U0.005	NA	0.86		0.071	0.28	4.7	12 N		4	8.25	16.78	10.62
0.027 U0.005 NA 1.03 1.03 0.012 0.23 5.3 11 NA 5.8 55 8.59 26.39 25 0.012 U0.005 NA 0.99 0.014 0.25 5.1 12 NA 5.7 55 8.61 26.39 25 0.005 U0.005 NA U0.05 U0.05 U0.05 U0.55 U2 0.57 55 8.61 26.26 0.005 U0.005 U0.05 U0.55 U2 U2 U2 5.71 U0.05 0.005 U0.005 U0.05 U0.55 U2 NA U0.25 U2 5.69 U0.05 0.005 U0.005 U0.005 U0.005 U0.05 U0.55 U2 NA U0.25 U2 5.58 U0.05		7/22/03	0.006		U0.005	0.009	U0.005	NA	0.99	-	0.039	0.26	5.2	Å Å		2 55	8.54	25.71	23.80
0.012 U0.005 NA 0.99 0.99 0.014 0.25 5.1 12 NA 5.7 55 8.61 26.26 0.005 U0.005 NA U0.05 U0.05 U0.05 U0.5 U2 0.5 U2 5.71 U0.05 0.005 U0.005 NA U0.05 U0.05 U0.05 U0.5 U2 NA U0.2 U2 5.69 U0.05 0.005 U0.005 U0.05 U0.05 U0.05 U0.5 U2 NA U0.2 U2 5.58 U0.05	2122103	2122103	0.024		U0.005	0.027	U0.005	NA	1.03		0.012	0.23	5.3	11 N.		8 55	8.59	26.39	25.44
0.005 U0.005 NA U0.05 U0.05 U0.05 U0.5 U2 U2 V0.5 U0.2 U2 5.71 U0.05 0.005 U0.005 NA U0.05 U0.05 U0.05 U0.5 U2 NA U0.2 U2 5.69 U0.05 0.005 U0.005 U0.05 U0.05 U0.05 U0.5 U2 NA U0.2 U2 5.58 U0.05	FDICCIT USDAED	FDICCIT	0.009		10.005	0.012	U0.005	AN	0.99	_	0.014	0.25	5.1	12 N.		.7 55	8.61	26.26	NA
0.005 U0.005 NA U0.05 U0.05 U0.005 U0.05 U0.5 U2 NA U0.2 U2 5.69 U0.05 0.005 U0.005 U0.05 U0.05 U0.05 U0.05 U2 NA U0.2 U2 5.58 U0.05	031005 7/22/03	1 80/2/11	110-005		U0.005	0.005	U0.005	NA	U0.05	U0.05	00.005	20.05	U0.5	U2 U0			5.71	U0.05	NA
0.005 U0.005 U0.005 U0.05 U0.05 U0.05 U0.5 U2 NA U0.2 U2 5.58 U0.05	031006 7/23/03	7/23/03	10.005		110.005	0.005	U0.005	NA	U0.05	U0.05 1	00.005	UO. 05	U0.5	U2 N.		2 U2	5.69	U0.05	NA .
	705/03	705/03	10.005		U0.005	0.005	U0.005	U0.005	U0.05	U0.05	00.005	00.05	U0.5	U2 N.				-	NA

्रोष्ट्र त्व Date	Y SH	EET		k Pg #s _/		<u> </u>	Project Batch # <u>⊃∁</u>	No. <u>112</u> 03073			
plers	My	ens .		Lucian							
			Н - 03	D -03	A - 03		E-03	F - 03 Filtered P, 250 ml			
STATION DESIGNATION	TIME (EST)	SAMPLE. DEPTH	P, Br 125 ml. DARK, ICE	P; 1/2 gal	H ₂ SO ₄ pH < 2 ICE	PH V FIEL D	Filtered P; 125 ml ICE	H ₂ SO ₄ pH < 2 ICE	pH ✓ FIEL D		
DE-5-67	11:10	1.0m/Mid	1000"	1000-	1000	54	1000 -	1000	$\overline{\mathbf{A}}$		
DR-155	11/0	1.001/Mid	0999	09999	0999	71	0999-	0999	$1 \cdot $		
DR-4	1221	1.0m/Mid	1003	1003	1003	3	1003	1-0)-			
OR-2	12 59	1.0m/Mid	1001	1001	1091	1	1001	1001			
DR-1	1321	1.0m/Mig	1002	10.02"	1002	ΊY	1002	1002	~		
DR-3	i35z	1.0m/Mid	Q978	9998*	0998	1~	0998	0998			
Blank	1540	1.0m/Mid	1005 ~	1005	1005	11	1005	1005	\checkmark		
· ·		1.0m/Mid		²							
		1.0m/Mid									
		1.0m/Mid									
		1.0m/Mid									
		1.0m/Mid									
•••••		1.0m/Mid						· · · · · ·			
		1.0m/Mid		,			· · · · · · · · · · · · · · · · · · ·				
		1.0m/Mid					· ·				
		1.0m/Mid					<u> </u>				
FRACTION ANALYSES	<u>D - TS</u>	l-a (Fluorome S, BOD₅ Turb	tric) A , Color,VS F	ſKN, TOT DNH₄N	P	E - DP(D₄P				
Temp Blank 9°C CONTAINER							COUNT, THIS PAGE ONLY 35				
RELINQUISHED BY: RECEIVED BY:(TRANSPORTE (SAMPLER'S SIGNATURE) SIGNATURE)											
lag	h	~~	Par Me	notti	•	7-22	ISU I EST				
RELINQUISH	ED BY:	/F	RECEIVED BY	:		DATE/1	IME:	COUNT			
Richa	rd W	nyers	•					VERIFIED	. .		
e Present:	7				<u>_</u>		s verified 100	<u> </u>			

1600 Ken Thompson Parkway Sarasota, Florida 34236-1096 USA PHONE: (941) 388-4441 FAX: (941) 388-4312 INTERNET: info@mote.org • www.mote.org Myra H. Monfort Chairman of the Board

Kumar Mahadevan, Ph.D. Executive Director

FIELD STATIONS: Florida Keye • 24244 Overseas Highway • Summerland Key, FL 33042 • PHONE: (305) 745-2729 • FAX: (305) 745-2730 Charlotte Harbor • P.O. Box 2197 • Pineiand, FL 33945 • PHONE: (239) 283-1622 • FAX: (239) 283-2466 Mote Aquaculture Park • 12300 Fruitville Road • Sarasota, FL 34240

January 09, 2004

Ms. Laura Ammeson Sarasota County Air and Water Quality Protection 2817 Cattlemen Road Sarasota, FL. 34232

SARASOTA COUNTY JAN 1 3 2004 WATER RESOURCES

Dear Ms. Ammeson,

Enclosed are the data tables from the September 2003 sampling of Sarasota Bay and the Myakka River that Mote Marine Laboratory is performing for Sarasota County. Magnetic data are enclosed as an Excel 9.0 file (SBMN0903.XLS) which will generate the attached tables. Data are organized as six tables with descriptions which follow.

Mid-Day in situ profiles	8 pages
Station locations and water clarity	2 pages
Water quality analyses	2 pages
Weather conditions during samplings	1 page
Hydrolab Minisonde continuous deployments	4 pages each
Custody sheets for water quality samples	6 pages

The continuous Hydrolab data was gathered from stations 13-4 and 14-1 of Roberts Bay segment during this sampling. Diurnal fluctuation of dissolved oxygen concentration ranged between 2.8 - 6.2 mg/L at station 13-4, and between hypoxic 1.9 - 6.9 mg/L at station 14-1. Percent saturation of dissolved oxygen ranged from 41 - 93 % and 29 - 103% respectively.

Concentration of BOD5 (0.8 mg/L) reported for equipment blank sample number 031169, and concentration of VSS (0.5mg/L) reported for equipment blank sample number 031171 are higher than the respective MDLs for the methods (0.5 mg/L). These elevations are with in one limit of detection and considered as random contamination during handling of the samples.

Please don't hesitate to call if I may answer any further questions regarding these data.

Sincerely,

ANISsanka

Ari Nissanka D.Sc. Senior Chemist Enclosures AN:mig

A nonprofit organization dedicated to excellence in marine sciences and a member of: • American Association of Museums • Association of Marine Laboratories of the Caribbean • Florida Ocean Alliance • National Association of Marine Laboratories • Science and Emronmental Council of Sarasota County • Southern Association of Marine Laboratories Sbmn0903.xls Profiles 1/9/04

Page 8 of 8

2006 Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

> Sarasota Bay / Myakka River Status and Trends Monitoring Mid-Day In Situ Profiles

Station	Date	Time	Sample	Salinity	Specific	Temperature	рH	Dissolved	D.O. Percent
			Depth		Conductance		-	Oxygen	Saturation
	(mmddyy)	(EST)	(m)	(PSU)	(mmhos/cm)	(Deg C)	(SU)	(mg/l)	(%)
DR-1-09	091603	1311	0.2	32.05	48.95	31.02	7.40	5.84	95.3
DR-1-09	091603	1313	0.8	33.07	50.33	30.58	7.42	5.90	96.0
DR-1-09	091603	1313	1.3	33.99	51.59	30.45	7.48	6.00	98.2
DR-2-09	091603	1229	0.2	1.14	2.14	29.78	6.86	6.04	80.2
DR-2-09	091603	1230	0.7	2.94	5.35	29.13	6.66	4.49	59.7
DR-2-09	091603	1231	1.1	8.25	14.26	29.28	6.60	2.26	31.0
DR-3-09	091603	1338	0.2	30.84	47.30	29.71	7.47	6.29	99.7
DR-3-09	091603	1339	1.0	35.48	53.58	29.24	7.51	5.64	91.2
DR-3-09	091603	1342	3.2	35,75	54.00	29.19	7.51	5.55	89.7
DR-4-09	091603	1153	0.2	12.05	20.22	29.54	7.07	5.91	83.6
DR-4-09	091603	1155	0.8	28.00	43.39	29.39	7.28	3.74	57.9
DR-4-09	091603	1156	1.3	30.40	46.71	29.37	7.33	3.56	56.3
DR-5-09	091603	1047	0.2	15.51	25.49	30.06	7.00	5.12	74.6
LB-1-09	091603	1207	0.2	17.39	28.30	29.84	7.48	3.94	57.8
LB-1-09	091603	1207	0.5	17. 7 7	28.86	29.60	7.45	3.62	53.0
LB-1-09	091603	1208	0.7	17.86	29.00	29.56	7.44	3.56	52.1
LB-2-09	091603	1146	0.2	17.80	28.91	29.89	7.49	4.25	62.7
LB-2-09	091603	1147	1.0	18.22	29.52	29.58	7.44	3.54	52.0
LB-2-09	091603	1148	2.7	23.59	37.30	30.00	7.63	0.70	10.6
LB-3-09	091603	1130	0.2	17.01	27.78	29.64	7.79	6.56	95.8
LB-3-09	091603	1131	0.6	17.50	28.46	29.66	7.76	5.94	87.0
LB-3-09	091603	1131	1.0	17.54	28.52	29.53	7.68	5.25	76.7
LB-4-09	091603	1112	0.2	16.95	27.65	29.94	7.91	5.23	76.7
LB-4-09	091603	1113	1.0	21.41	34.18	30.20	7.72	0.80	12.1
LB-4-09	091603	1114	1.9	23.87	37,70	30.36	7.87	1.86	28.6
LB-5-09	091603	1047	0.3	16.03	26.29	29.18	8.24	6.60	<u>95.0</u>
								0.00	9J.U

2016 Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Station Locations and Water Clarity

	Stati								11 11
Си- <i>и</i> г-т Т	ate Time	e Ideal Station	1 Location Ac	tual Station	Location I	Depth Sec			ttenuation Coefficient
Station D	Jate 100	Latitude	Longitude	Latitude	Longitude Ov	viun »·	<u> </u>		(m ⁻¹)
(mmdd	iyy) (EST			(degrees)	(degrees)	(m)	(m) Sa	ample	(m)
(mmac	1997 (1557	, (07 0	31116	1.19
7-1-09 091	1703 112	0 27.36491	-82.60823	27.36492	-82.60883	1.8	.)31123	0.85
• = • ·	1703 110		-82.59453	27.36042	-82.59458	3.9)31115	0.72
	1703 113		-82.58860	27.38397	-82.58868	3.5 1.5)31118	0.81
• • • •	1703 115		-82.57216	27.37615	-82.57190	3.8)31122	0.69
• - ••	1703 102		-82.59462	27.34265	-82.59357	5.8 1.5		031125	0.57
10 1 00	1703 105		-82.57124	27.34212	-82.57605	1.5	. –	031120	0.66
10	1703 100	6 27.33926	-82.58047	27.33933	-82.58002	5.8		031124	0.44
	1703 133	30 27.31507	-82.56589	27.31540	-82.56652	1.1	•	031121	0.73
	1703 13	47 27.30965	-82.55321	27.30955	-82.55320	3.3	- • -	031119	0.93
10 0 00	1703 12	08 27.36698	-82.56980	27.36747	-82.56942	3.5		031126	0.53
	01703 12	25 27.34891	-82.55895	27.34890	-82.55860	3.0 3.9		031127	0.49
	91703 12	55 27.33112		27.33180	-82.55537	2.5	-	031114	0.69
		11 27.32486		27.32545	-82.54557			031117	1.46
		05 27.30436	-82.54324	27.30402	-82.54313	1.8	- · ·	031131	0.32
		54 27.30340		27.30317	-82.56405	7.6	2.0	031137	
		40 27.29864	-82.56033	27.29803	-82.56038	5.0	0.8	031129	
		15 27.29030	-82.54766	27.29022	-82.54763	2.1	0.8	031134	
		101 27.28120	-82.54241	27.28107	-82.54223	1.3	0.7	031136	
		338 27.26706	5 -82.53928	27.26693	-82.53907	0.9	0.7	031135	
		307 27.25750	-82.53300	27.25755	-82.53292	0.9	0.0	031132	
		244 27.2508		27.25057		1.2	0.8	031128	-
** • • • •		222 27.2383		27.23783		2.1	0.6	031120	
A 1 - +-		205 27.2317		27.23163		1.5	_ 0.0 >₿	031133	
x • - • •		142 27.2180	1 -82.51121				ла 0.6	03114	
- · ·		117 27.2005	2 -82.49762		· · · ·		>B	03113	
		050 27.1839	1 -82.49674				مر 0.5	03114	-
		355 27.1696						03114	
		333 27.1619	7 -82.48452	27.16202	2 -82.48462		0.5	03114	
10		318 27.1493	2 -82.47496	5 27.1493			0.7		-
		1304 27.1407		5 27.1403	5 -82.47225		0.7		-
		1248 27.130		7 27.1304			0.9		-
		1311 27.120					>B		
		1229 27.126		0 27.1258	7 -82.44643		0.8		
	•	1338 27.114			-82.4652		>B		
DIC 0 00		1153 27.109			3 -82.4540		0.8		-
DR-4-09	091603	1047 27.060					>B		
DR-5-09	091603	1207 27.049					>E		
LB-1-09	091603	1146 27.023					1.0		
LB-2-09		1130/26.996	+-		10 -82.3999		0.8		
LB-3-09	091603	1112 26.970			37 -82.3836		0.		
LB-4-09						0.6	>1	B 0311	.42 1.72
LB-5-09	091603	1047 26.963	JIJ -02.5701						

Mote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDIEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Water Outlity Analyses

				r	Water Quality	Quality	Analyses	es													
Station	Sample	Time		Date	NH4-N	N-EZON		NO25-N	NH₄-N	TKN		PO4-P	Total 3	BODs	V SST	vrs Tu	Turbidity	Color	Color	Chi a	Salinity
	Depth	(ESI)	Number	(mmddyy)	Diss	Diss	Diss				Z							Apparent		Corr	Field
					(I/gm)	(I/gm)	(l/gm)	(l/gm)	([/gm)	(I/gm)	(I/gm)	(I/gm)) (l/gm)	u) (l/gm)	(mg/l) (mg/l)	(1)3	(DIN)	(FCI)	(ns)	(mg/m3)	(nsa)
12-1-09	1.0M	1453	031131	9/16/03	0.011	U0.005	0.014	U0.005	NA	0.19	0.19	0.016	0.10	1.1	II NA	*	0.70	7	8.25	2.74	34.68
12-2-09	1.0M	1438	031137	9/16/03	0.022	0.005	0.027	U0.005	NA	0.11	0.11	0.021	0.11	0.7	AN 6	¥	0.75	7	8.22	1.96	34.26
13-1-09	1.0M	1414	031129	9/16/03	0.013	U0.005	0.016	U0.005	NA	0.57	0.57	0.054	0.21	2.7	23 NA	¥	5.8	50	8.16	15.72	27.60
13-2-09	MID	1400	031134	6/16/03	0.012	U0.005	0.015	U0.005	NA	0.59	0.59	0.061	0.22	3.3	10 NA	*	5.5	20	8.21	17.34	22.78
13-3-09	MID	1337	031136	9/16/03	0.011	U0.005	0.014	U0.005	NA	0.69	0.69	0.071	0.22	2.7	15 NA	4	5.9	80	8.12	23.73	20.80
13-4-09	MID	1307	031135	9/16/03	0.015	U0.005	0.017	U0.005	NA	1.11	1.11	0.071	0.26	2.8	16 NA	4	8.7	40	8.11	16.40	20.77
13-5-09	MID	1243	031132	9/16/03	0.015	U0.005	0.017	U0.005	NA	0.67	0.67	0.069	0.21	3.0	14 NA	4	5.9	80	8.16	16.72	20.14
14-1-09	MID	1221	031128	9/16/03	0.009	U0.005	0.012	U0.005	NA	0.71	0.71	0.071	0.22	2.9	II NA	¥	6.2	75	8.18	17.82	19.15
14-2-09	DIM	1204	031130	9/16/03	0.013	U0.005	0.016	U0.005	NA	0.76	0.76	0.070	0.22	3.1	15 NA	4	6.9	85	8.20	18.46	18.81
14-3-09	QIW	1141	031133	9/16/03	0.013	U0.005	0.016	U0.005	NA	0.79	0.79	0.074	0.22	3.3	20 NA	¥	6.5	85	8.19	16.99	16.98
14-4-09	MID	1117	031140	9/16/03	0.007	U0.005	0.010	U0.005	NA	0.73	0.73	0.066	0.22	3.0	12 NA	*	5.9	8	8.20	17.37	19.21
14-5-09	MID	1050	031139	9/16/03	0.018	U0.005	0.020	U0.005	NA	0.79	0.79	0.067	0.25	2.8	13 NA	4	7.6	33	8.14	19.42	19.09
14-5-09 REP	MID	1055	031138	9/16/03	0.011	U0.005	0.014	U0.005	NA	0.77	0.77	0.065	0.21	2.8	13 NA	4	7.6	85	8.18	15.59	NA
16-1-09	MID	1355	031147	9/16/03	0.017	U0.005	0.020	U0.005	NA	0.73	0.73	0.067	0.22	2.6	12 NA	4	5.7	100	8.14	18.94	20.19
16-2-09	1.0M	1333	031148	9/16/03	0.012	U0.005	0.015	U0.005	NA	0.75	0.75	0.068	0.22	2.8	AN 6	×	4.0	8	8.12	16.85	19.30
16-3-09	DIM	1318	031141	9/16/03	0.017	U0.005	0.020	U0.005	NA	0.56	0.56	0.056	0.19	2.1	9 NA	4	3.1	85	8.16	12.51	22.61
16-4-09	1.0M	1304	031149	9/16/03	0.008	U0.005	0.011	U0.005	٧N	0.60	0.60	0.055	0.20	2.1	8 NA	*	3.4	70	8.10	11.91	23.12
16-5-09	MID	1248	031151	9/16/03	0.00	U0.005	0.012	U0.005	NA	0.53	0.53	0.052	0.19	1.5	AN 6	4	2.7	55	8.10	12.65	24.75
DR-1-09	MID	1310	031167	9/16/03	0.012	U0.005	0.015	U0.005	NA	0.36	0.36	0.040	0.13	1.7	9 3.5	Ś	2.2	41	8.13	7.59	33.07
DR-2-09	MID	1228	031168	9/16/03	0.096	0.088	0.184	0.087	NA	0.89	0.98	0.130	0.21	1.1	5 2.7	1	4.2	1 <u>7</u> 0	7.45	9.42	2.94
DR-3-09	1.0M	1338	031165	9/16/03	0.016	0.011	0.027	0.011	NA	0.28	0.29	0.027	0.12	0.9	7 1.8	80	1.1	27	8.20	4.29	35.48
DR-3-09 REP	1.0M	1348	031166	9/16/03	0.012	0.012	0.024	0.012	NA	0.28	0.29	0.028	0.11	1.0	7 2.		1.1	27	8.19	4.73	NA
DR-4-09	MID	1152	031172	9/16/03	0.046	0.078	0.124	0.078	NA	0.59	0.67	0.130	0.21	1.0	6 2.8	80	1.8	130	7.81	6.92	28.00
DR-5-09	MID	1047	031164	9/16/03	0.172	0.042	0.214	0.039	NA	0.92	0.96	0.188	0.35	2.2	9 3.6	\$	4.1	110	7.82	13.39	15.51
LB-1-09	MID	1207	031145	9/16/03	0.148	0.059	0.207	0.057	NA	0.59	0.65	0.146	0.26	1.0	7 NA	_	1.9	85	7.81	4.80	17.77
LB-2-09	1.0M	1146	031143	9/16/03	0.166	0.060	0.226	0.057	٨A	0.67	0.73	0.147	0.28	1.2	6 NA	-	1.8	85	7.79	14.04	18.22
LB-3-09	MID	1130	031146	9/16/03	0.014	0.019	0.033	0.017	NA	0.71	0.73	0.107	0.27	2.3	8 NA	-	2.5	8	8.01	34.63	17.50
LB-4-09	1.0M	1112	031150	9/16/03	0.013	U0.005	0.016	U0.005	NA	0.66	0.66	0.095	0.25	2.6	9 NA	-	2.5	80	8.07	19.62	21.41
LB-5-09	MID	1043	031142	9/16/03	0.013	U0.005	0.016	U0.005	NA	0.56	0.56	0.077	0.22	2.1	9 NA	_	3.0	8	8.27	8.66	16.03
LB-5-09 REP	MID	1052	031144	9/16/03	0.012	U0.005	0.015	U0.005	NA	0.62	0.62	0.080	0.21	1.5	9 NA	-	2.1	8	8.24	14.27	NA
EQP BLK		1615	031171	9/16/03	U0.005	U0.005	0.005	U0.005	NA				20.05	U0.5	U2 0.5	Ş	U0.2	U2	5.72	U0.05	NA
EQP BLK		0815	031169	9/18/03	U0.005	U0.005	0.005	U0.005	٧N	U0.05 1			U0.05	0.8	U2 NA	-	U0.2	U2	5.37	U0.05	NA
EQP BLK		1652	031170	9/18/03	U0.005	U0.005	0.005	U0.005	U0.005	U0.05 1	U0:05 U	U0.005 T	U0.05	U0.5	U2 NA		U0.2	U2	5.20	U0.05	NA

Somn0903.xls Water Quality 1/9/04

.

Page 2 of 2

Sampling I Samplers	Data M	1111 1-2		ORY, 1600 Kit #_ <u>0</u> Log Ba _ <u>Зацо</u>	31 - 00 7 ook Pg #s	00	•		Project N	lo1 # _2	112-521(1 <mark>56m</mark> 94
DR3 DR3 DR3 Tr Blonk	ON PIEST 1047 1152	TI DEPT 7 1.0m/l 2 9/2 1.0m/l 1.0m/l 2 1.0m/l 2 1.0m/l 3 .0m/l	THE SECOND	H-03	1. <u>P. 1725</u> 001 1. <u>IGE</u> 1.647		A 03 P.2250 mi pHI 25 JCE 164 172 168 167 167 167 167		E - Filto P, 12		e of Sampling F - 03 Filtered P, 250 ml H2S0, pH < 2 JCE 1164 1164 1167 1167 1167 1167 1167 1166 177 1	
	<u>├</u>	1.0m/Mid										
		1.0m/Mid										
RACTION	* - for S	4N*, NO ₂₃ N,)NH4N, DNO SWF Station	D ₂₃ N Ins onl	<u>ыу, **-п</u>	- BOD ₅ **, (H - Chl-a (F not For SWF	F Sta	ations,	*** 	- For DR	Statio	ons only	
AMPLER'S S	GIGNATU	RE) F	₹ECEÌ SIGN∕	CEIVED BY:(TRANSPORTER'S SNATURE)			R COUNT, THIS PAGE C			COU	COUNT VERIFIED:	
LINQUISHED	BY:	R	~	VED BY: V Minoti	λ		DATE/	/TIME: 45		COU	INT IFIED:	

1600 Ken Thompson Parkway Sarasota, Florida 34236-1096 USA PHONE: (941) 388-4441 FAX: (941) 388-4312 INTERNET: info@mote.org • www.mote.org Myra H. Monfort Chairman of the Board

Kumar Mahadevan, Ph.D. Executive Director

FIELD STATIONS: Florida Keys • 24244 Overseas Highway • Summerland Key, FL 33042 • PHONE: (305) 745-2729 • FAX: (305) 745-2730 Charlotte Harbor • P.O. Box 2197 • Pineland, FL 33945 • PHONE: (239) 283-1622 • FAX: (239) 283-2466 Mote Aquaculture Fark • 12300 Fruitville Road • Sarasota, FL 34240

February 11, 2004

Ms. Laura Ammeson Sarasota County Air and Water Quality Protection 2817 Cattlemen Road Sarasota, FL. 34232

SARASOTA COUNTY

FEB 1 3 2004

Dear Ms. Ammeson,

WATER RESOURCES

Enclosed are the data tables from the October 2003 sampling of Sarasota Bay and the Myakka River that Mote Marine Laboratory is performing for Sarasota County. Magnetic data are enclosed as an Excel 9.0 file (SBMN1003.XLS) which will generate the attached tables. Data are organized as six tables with descriptions which follow.

Mid-Day in situ profiles	8 pages
Station locations and water clarity	2 pages
Water quality analyses	2 pages
Weather conditions during samplings	1 page
Hydrolab Minisonde continuous deployments	4 pages each
Custody sheets for water quality samples	6 pages

The continuous Hydrolab data was gathered from stations MU-4 and ML-1 of Myakka River segment during this sampling. Diurnal fluctuation of dissolved oxygen concentration was very slight and ranged between 5.2 - 6.1 mg/L at station MU-4, and between 5.5 - 6.2 mg/L at station ML-1. Percent saturation of dissolved oxygen ranged from 62 - 75 % and 67 - 78% respectively.

Concentration of dissolved ammonia reported for equipment blank sample numbers 031303, 031304 and 030105 average 0.010 mg/L, or two times the detection limit for the analyte (MDL=0.005 mg/L). Based on the concentrations of ammonia for the respective unfiltered blank samples, the filtration process itself (rather than the sample collection) contributed between 0.000 to 0.010 mg/L, for an average of 0.004 mg/L. The average contribution of filtration was less than the MDL and was not statistically different from zero. This appears to be statistically random contamination with average impacts that are still within the method detection limits and so should not affect data quality of the remaining samples. We are, however, reviewing sampling procedures and will perform additional tests on the disposable filters used for field filtration. As these blanks are field equipment blanks rather than method blanks, no data qualifier codes are applied to sample data.

Please don't hesitate to call if I may answer any further questions regarding these data.

Sincerely,

Ari Nissanka D.Sc. Senior Chemist. Enclosures AN:mig

A nonprofit organization dedicated to excellence in marine sciences and a member of: • American Association of Museums • Association of Marine Laboratories of the Caribbean • Florida Ocean Alliance

NATIONAL ASSOCIATION OF MARINE LABORATORIES
 SCIENCE AND ENVIRONMENTAL COUNCIL OF SARASOTA COUNTY
 SOUTHERN ASSOCIATION OF MARINE LABORATORIES

7676 Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Mid-Day In Situ Profiles

Station	Date	Time	Sample	Salinity	Specific	Temperature	pН	Dissolved	D.O. Percent
			Depth		Conductance			Oxygen	Saturation
· (mmddyy)	(EST)	(m)	(PSU)	(mmhos/cm)	(Deg C)	(SU)	(mg/l)	(%)
DR-1-10	102103	1401	0.2	32.97	50.55	29.37	7.62	5.25	83.9
DR-1-10	102103	1402	0.6	34.48	52.62	29.17	7.75	4.76	76.4
DR-1-10	102103	1402	1.0	34.99	53.29	28.51	7.84	4.77	76.1
DR-2-10	102103	1321	0.2	22.34	35.62	27.71	7.93	7.22	105.4
DR-2-10	102103	1322	0.6	24.86	39.19	27.24	7.93	6.94	101.7
DR-2-10	102103	1323	0.9	30.04	46.42	26.69	7.96	6.36	95.9
DR-3-10	102103	1447	0.2	34.58	52.64	26.82	8.04	6.77	104.5
DR-3-10	102103	1448	1.0	34.64	52.71	26.79	8.04	6.84	105.5
DR-3-10	102103	1449	2.7	35.25	53.53	26.58	8.05	· 6.69	103.2
DR-4-10	102103	1247	0.2	34.58	52.61	26.45	7.93	5.77	88.5
DR-4-10	102103	1249	0.6	34.73	52.82	26.44	7.95	5.89	90.4
DR-4-10	102103	1250	1.0	35.20	53.45	26.48	7.98	6.12	94.2
DR-5-10	102103	1524	0.2	33.09	50.62	27.10	7.86	6.45	99.1
DR-5-10	102103	1525	0.8	33.12	50.66	27.06	7.87	6.44	99.0
DR-5-10	102103	1525	1.3	33.06	50.59	27.07	7.86	6.44	98.9
LB-1-10	102103	1430	0.2	29.67	45.69	27.34	7.51	6.40	96.6
LB-1-10	102103	1431	1.0	29.71	45.76	27.23	7.51	6.47	97.5
LB-1-10	102103	1431	1.8	29.87	45.97	27.14	7.50	6.25	94 .1
LB-2-10	102103	1413	0.2	28.85	44.56	26.94	7.45	5.77	86.2
LB-2-10	102103	1414	1.0	28.83	44.54	26.99	7.46	5.87	87.7
LB-2-10	102103	1414	1.7	29.19	45.05	26.34	7.36	4.45	65.9
LB-3-10	102103	1400	0.2	28.05	43.46	26.94	7.40	5.57	83.4
LB-3-10	102103	1401	0.6	28.08	43.49	26.93	7.39	5.56	82.5
LB-3-10	102103	1401	0.9	28.08	43.48	26.92	7.39	5.51	81.9
LB-4-10	102103	1346	0.2	26.78	41.68	26.70	7.58	6.31	92.6
LB-4-10	102103	1347	0.6	26.78	41.69	26.74	7.57	6.27	92.1
LB-4-10	102103	1347	0.9	26.78	41.69	26.70	7.57	6.19	90.9
LB-5-10	102103	1330	0.2	27.56	42.77	26.47	7.67	6.01	88.5
LB-5-10	102103	1331	1.0	27.74	43.03	26.41	7.69	6.06	89.6
LB-5-10	102103	1332	1.9	30.25	46.45	26,21	7.77	6.20	92.1

Sbmn1003.xls Clarity 2/10/04

Page 2 of 2

Tote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 (941) 388-4441 FDH#E84091, FDEP#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Station Locations and Water Clarity

Station	Date	Time	Ideal Static	on Location	Actual Stati	on Location	Depth	Secchi	Water	Attenuation
				Longitude		Longitude	-	Depth		Coefficient
(n	umddyy)	(EST)	(degrees)	(degrees)	(degrees)	(degrees)	(m)	(m)	Sample	(m ⁻¹)
7-1-10	102202	1114	07 07074		AT 070 /0	00 (01 (0	• •			
7-1-10	102203 102203	1114	27.37974	-82.60183	27.37943	-82.60168	3.0	0.7	031240	1.34
8-1-10	102203	1058	27.37328	~82.59063	27.37327	-82.59072	4.1	1.5	031253	0.80
8-2-10	102203	1130	27.38478	-82.58350	27.38480	-82.58332	3.2	1.0	031239	0.90
	102203	1149	27.37123	-82.57739	27.37140	-82.57738	3.7	0.8	031248	1.24
10-1-10		1041	27.35317	-82.58200	27.35312	-82.58178	3.8	2.6	031243	0.55
10-2-10	102203 102203	1249	27.33932	-82.56744	27.33930	-82.56738	2.2	1.7	031249	3.32
10-3-10 10-4-10		1008	27.33075	-82.58471	27.33133	-82.58470	3.3	>B	031242	0.57
	102203	1440	27.31177	-82.56508	27.31163	-82.56495	5.0	2.5	031247	0.42
10-5-10	102203	1425	27.31382	-82.55319	27.31355	-82.55328	4.6	1.1	031252	1.02
11-1-10	102203	1209	27.36367	-82.56204	27.36380	-82.56175	3.3	0.7	031251	1.30
11-2-10	102203	1228	27.35294	-82.56188	27.35268	-82.56178	3.6	1.5	031246	0.68
11-3-10	102203	1342	27.33770	-82.55514	27.33785	-82.55475	2.1	0.6	031244	1.21
11-4-10	102203	1357	27.32001	-82.54623	27.31982	-82.54627	1.9	0.9	031245	0.99
11-5-10	102203	1411	27.31165	-82.54243	27.31160	-82.54282	1.7	1.2	031250	1.06
12-1-10	102103	1404	27.30445	-82.56181	27.30395	-82.56100	3.2	1.7	031294	0.78
12-2-10	102103	1421	27.29089	-82.56273	27.29045	-82.56237	4.0	4.0	031291	0.36
13-1-10	102103	0946	27.29178	-82.55099	27.29118	-82.54985	2.0	>B	031286	0.57
13-2-10	102103	1013	27.28559	-82.54434	27.28568	-82.54483	2.1	1.8	031284	1.05
13-3-10	102103	1045	27.26634	-82.54074	27.26713	-82.54025	2.1	1.6	031283	0.63
13-4-10	102103	1113	27.25707	-82.53238	27.25747	-82.53298	1.5	>B	031292	1.13
13-5-10	102103	1134	27.24775	-82.52234	27.24747	-82.52347	2.3	1.7	031295	1.08
14-1-10	102103	1152	27.23511	-82.52013	27.23495	-82.51743	2.0	1.5	031289	1.08
14-2-10	102103	1208	27.22613	-82.51325	27.22628	-82.51212	1.9	1.6	031288	1,22
14-3-10	102103	1225	27.21758	-82.50273	27.21817	-82.50407	1.5	>B	031290	1.11
14-4-10	102103	1243	27.19858	-82.50238	27.19848	-82.50152	1.8	1.4	031293	1.17
14-5-10	102103	1302	27.18990	-82.49436	27.18975	-82.49512	1.7	>B	031285	0.75
16-1-10	102103	1208	27.17174	-82.49235	27.17160	-82.49252	1.3	>B	031261	1.15
16-2-10	102103	1150	27.16133	-82.48455	27.16150	-82.48450	1.5	>B	031257	1.08
16-3-10	102103	1134	27.15314	-82.48020	27.15288	-82.48035	2.1	>B	031263	0.85
16-4-10	102103	1117	27.14446	-82.47512	27.14357	-82.47495	1.2	>B	031255	0.91
16-5-10	102103	1103	27.13421	-82.47046	27.13413	-82.47035	2.5	1.5	031259	0.75
DR-1-10	102103	1401	27.13290	-82.46180	27.13290	-82.46165	1.2	>B	031277	1.08
DR-2-10	102103	1321	27.12630	-82.44870	27.12627	-82.44868	1.1	>B	031282	1.65
DR-3-10	102103	1447	27.11280	-82.46270	27.11284	-82.46283	2.9	1.5	031280	1.24
DR-4-10	102103	1247	27.10890	-82.44790	27.10890	-82,44804	1.2	>B	031279	0.60
DR-5-10	102103	1524	27.06770	-82.43100	27.06777	-82.43084	1.5	1.5	031278	1.52
LB-1-10	102103	1430	27.04493	-82.43241	27.04518	-82.43253	2.0	1.4	031258	1.60
LB-2-10	102103	1413	27,01554	-82.41316	27.01572	-82.41327	1.9	0.8	031262	1.54
LB-3-10	102103	1400	27.00150	-82.40530	27.00180	-82.40492	1.1	>B	031262	1.29
LB-4-10	102103	1346	26.98130	-82.38921	26.98122	-82.38935	1.1	>B	031260	1.34
LB-5-10	102103	1330	26.95133	-82.36577	26.95103	-82.36592	2.1	1.4	031256	0.84
						-m	æ. 1	1,7	001200	v.04

/

Mote Marine Laboratory 1600 Thompson Parkway Sarasota, FL 34236 941) 388-4441 FDH#E84091, FDE#870216G

Sarasota Bay / Myakka River Status and Trends Monitoring Water Quality Analyses

Spmn1003 xls Water Quality 2/11/04

Page 2 c

JSTOD	10/21/		Kit # <u>3</u> Log Bool 	, <u>(-00 99</u> < Pg #s		-	atch # <u>20</u>	2-521(Sbmc 03109 of Sampling: Nisl					
nplers <u>R.1</u> STATION ESIGNATION	TIME	SAMPLE DEPTH	H - 03 P. Bt 125 ml DARK: ICE	D -03 P, 1/2 gal (CE	A - 03 P, 250 ml H ₂ SO ₄ pH < 2 ICE	pH ✓ FIEL D	Filtered P, 125 ml ICE	ICE F	рН ✓ FIEL D				
DR4	1248	1.0m/Mid	1279	12.79	1279		1279	1279	\checkmark				
PR2	1320	1.0m/(Mid)	1282	1282	1282		1282	1282					
DR	1400	1.0m/(Vid)	12770	1277	1277		1277	1277	_				
ORSE	1413	1.0m/(Mig	12814	1281 1	128)		1281	1281 1	\leq				
DR3	1445	.Om/Mid	12802	1280	۲ <u>۲</u>	12	1280	1280	$\frac{\nu}{2}$				
OR5	1522	1.0m/Mid	1278	12731	1278		1278	1278	$\underline{\smile}$				
		1.0m/Mid		· · · ·	· · · · · · · · · · · · · · · · · · ·	·							
		1.0m/Mid					10-11						
FPBUK	0300	1.0m/Mid	1304	1304	X 304		1304	[304]					
· _	Cherton 1	1.0m/Mid					<u> </u>	· · · · · · · · · · · · · · · · · · ·					
	- Ma	1.0m/Mid											
	·	1.0m/Mid					<u> </u>						
		1.0m/Mid			· · · · · · · · · · · · · · · · · · ·			-	<u>.</u>				
1.0m/Mid 1.0m/Mid 1.0m/Mid 1.0m/Mid 1.0m/Mid 1.0m/Mid													
.		1.0m/Mid											
		1.0m/Mid	· ·						Ĺ				
FRACTION ANALYSES	1.0m/Mid 1.0m/Mid 1.0m/Mid A - NH ₄ N*, NO ₂₃ N, TKN, TOTP D - BOD ₅ **, Color, TSS, VSS***, Turb E - DPO ₄ P H - Chl-a (Fluorometric) * - for SWF Stations only, ** - not For SWF Stations, *** - For DR Stations only												
· •				CON	TAINER CO	DUNT,	THIS PAGE	ONLY <u>30</u>					
RELINQUISI (SAMPLER'		TURE)	RECEIVED B SIGNATURE		ORTER'S	DATE/ /0 - 2	202	COUNT VERIFIED:					
thing	m	8	Por the	uott 1			1830 Est.						
RELINQUIS	HED BY:		RECEIVED B	BY:		DATE	I IME:	COUNT VERIFIED:					
							ers verified 1						

4-02
5
പ്
Study
Salinity
Bay
Roberts
Dona /

Time	Relative Sample Depth	Sample Depth (ft)	Water Depth (ft)	Secchi Depth (m)	Spec. Cond. (temp corrected)	Salinity (ppt)	DO (mg/L)	DO Sat %	WaterT emp (C)	PH	Sampling Run	Region Sampled	Tidal Stage at Venice Inlet - predicted
6:59		0.5	1	No Data	14,340	7.3	6.30	68.2	18.2	No Data	Morning Run	Lyons and Dona Bay	-0.6
7:18		- 0 -5	Ļ	No Data	24,480	15.1	6.10	65.4	17.6	No Data	No Data Morning Run	Lyons and Dona Bay	-0.6
7:26		1.5	5	>1.5	25,820	15.9	02'2	83.7	16.7	No Data	Morning Run	Lyons and Dona Bay	-0.6
8:55	ă	6	11	1.9	32,650	20.5	7.72	90.7	16.7	No Data		Lyons and Dona Bay	-0.1
8:55	top	1.5	11	1.9	32,060	20	7.24	85.1	16.7	No Data	Morning Run	Lyons and Dona Bay	-0.1
60:6	bottom	6	11	e	37,990	24.1	7.81	93.8	17.2	No Data	Morning Run	Lyons and Dona Bay	0
60:6	top	1.5	:	n	37,800	24.1	7.60	91.4	17.2	No Data		Lyons and Dona Bay	0
9:20		1.5	ۍ	1.4	30,190	18.7	7.45	86.9	17.5	No Data		Lyons and Dona Bay	0.1
9:30	mid	1.5	3	>0.9	32,350	20.3	7.57	88.9	17.5	No Data		Lyons and Dona Bay	0.2
9:33	mid	1.5	2	>0.6	35,450	22.5	7.72	92.3	17.2	No Data		Lyons and Dona Bay	0.2
9:40		1.5	4	>1.2	39,940	25.6	7.81	94.3	17.4	No Data	Morning Run	Lyons and Dona Bay	0.2
9:47		1.5	ъ	>1.5	37,280	23.6	7.43	88.8	17.2	No Data	Morning Run	Lyons and Dona Bay	0.2
9:55	top	1.5	5	>1.5	38,700	24.7	7.13	88.1	18.1	No Data	Morning Run	Lyons and Dona Bay	0.3
9:58	top	1.5	e	1.7	38,700	24.7	6.22	8/	18	No Data	Morning Run	Lyons and Dona Bay	0.4
10:02	miđ	1.5	ო	>0.9	36,600	23.2	6.97	85	18.1	No Data	Morning Run	Lyons and Dona Bay	0.4
10:11	top	1.5	4	1.1	38,320	24.4	6.88	84.5	81	No Data	Morning Run	Lyons and Dona Bay	0.5
10:17	mid	1.5	3	0.9	35,410	22.3	5.48	68.7	19.2	No Data	Morning Run	Lyons and Dona Bay	0.5
10:27	mid	1.5	<i>т</i>	0.9	35,580	23.3	7.86	89.8	19.1	No Data	Morning Run	Lyons and Dona Bay	0.7
10:33	top	1.5	6.2	1.8	37,250	23.1	7.01	86.4	18.6	No Data	Morning Run	Lyons and Dona Bay	0.7
10:38	miđ	1.5	æ	0.9	35,400	22.8	6.99	89.1	19.2	No Data	Morning Run	Lyons and Dona Bay	0.7
11:10	bottom	6	13	3.7	42,400	27.3	7.94	98.6	17.6	No Data	Morning Run	Lyons and Dona Bay	0.9
11:10	top	1.5	13	3.7	42,100	27.1	8.00	98.7	17.7	No Data	Morning Run	Lyons and Dona Bay	0.9
12:43	ă	6	11	2.6	44,590	28.9	7.99	66	18	No Data	Afternoon Run	Lyons and Dona Bay	1.2
12:43	top	1.5	11	2.6	44,640	28.9	8.05	102.1	18.1	No Data	Afternoon Run	Lyons and Dona Bay	1.2
13:05	bottom	თ	თ	>2.7	44,560	28.8	7.58	96.1	17.8	No Data	No Data Afternoon Run	Lyons and Dona Bav	13

age at Inlet -	cted					8	E.	m		່ ຕຸ			~		~	5	2		5	2			10	(0		
Tidal Stage at Venice Inlet -	predicted	1.3	1.3	1.3	1.3	1.3	÷	1.3	1.3	+	1.3	1.3	1.3	1.3	1.3	-0.5	-0.5	-0.3	-0.2	0	0.2	0.4	0.5	0.6	0.6	0.7
Region	Sampled	Lyons and Dona Bay	Lyons and Dona Bay	Lyons and Dona Bav	Lyons and Dona Bay	Shakett Creek NE of US41	Shakett Creek NE of US41	Shakett Creek NE of US41	Shakeft Creek NE of US41	Shakett Creek NE of US41																
	Sampling Run	Afternoon Run	Afternoon Run			Afternoon Run	Morning Run	Morning Run	Morning Run	Morning Run	Morning Run	Morning Run	Moming Run	Morning Run	Morning Run	Morning Run	Morning Run									
	Hd	No Data	7.14	7.43	7.26	7.28	7.47	7.7	7.89	8	8.08	8.24	7.96													
WaterT		17.8	18.6	19.2	19.2	18.1	18.9	19.1	19.4	20.7	20	19.7	18.9	19.6	20.1	16.44	16.1	16.37	16.65	17.63	17.63	17.82	17.89	18.66	18	18.69
	DO Sat %	94.9	103.4	98.2	103.3	93.4	96	99.3	66	2.99	92.2	82.8	101.8	101.2	98.4	No Data										
8	(mg/L)	7.63	8.04	7.91	8.18	7.41	7.52	7.85	7.50	7.34	7.18	6.68	7.97	7.72	7.71	5.92	4.39	6.23	5.46	8.00	7.20	7.60	8.00	7.50	6.60	7.40
Salinity	(ppt)	28.8	26.3	25	27.2	28.9	27.4	27.8	27.1	26.5	27	25.6	26	26.5	24.4	2.14	0.37	3.18	7.5	24.97	23.66	21.93	23.3	23.5	14.8	22.87
Spec. Cond. (temp	corrected)	44,530	40,570	39.170	42,250	44,510	42,570	43,010	42,070	40,810	41,920	39,830	40,250	41,260	37,990	3,362	623	4,867	10,930	33,620	32,230	30,000	31,800	32,540	20,990	31,745
Secchi Depth	(B)	>2.7	1.5	>1.2	6.0<	>1.8	1.5	>0.9	1.8	>0.9	>0.9	0.9	0.9	1.5	0.9	No Data	No Data	No Data	No Data	>0.6	7.7	>0.8	>0.9	1.5	1.5	1.25
Water	Depth (ft)	6	£	4	3	6	5	3	6	3	n	4	e	5	3	No Data	No Data	No Data	No Data	2	4.5	2.5	з	7	7	5.5
Sample	Depth (ft)	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	0.5	0.5	0.5	0.5	Ļ	2.25	1.25	1.5	6	0.5	5.0
Relative Sample	Depth	top	top	top	mid	top	top	mid	top	miđ	miđ	top	mid	top	mid	top	top	top	top	mid	mid	mid	mid	bottom	top	bottom
	Time	13:05	13:15	13:21	13:26	13:30	13:35	13:41	13:45	13:48	13:54	13:59	14:06	14:11	14:18	8:05	8:15	8:30	8:40	9:40	9:50	10:00	10:13	10:24	10:24	10:40
-	Waypoint	ß	۵	2	ω	6	10	11	12	13	14	15	16	17	18	No Data	No Data	No Data	No Data	Ţ	2	3	4	5	5	6

Dona / Roberts Bay Salinity Study of 12-4-02

11/26/2003

12-4-02
ď
Study
Salinity
Bay
Roberts
Dona /

		Relative Sample	Sample	Water	Secchi Depth	Spec. Cond. (temp	Salinity	g		WaterT			Region	Tidal Stage at Venice Inlet -
Waypoint	Time	Depth	Depth (ft)	Depth (ft)		corrected)	(ppt)	(mg/L)	DO Sat %	()	РН	Sampling Run	Sampled	predicted
9	10:40	top	0.5	5.5	1.25	23,725	16.35	7.50	No Data	18.9	8.08	Morning Run	Shakett Creek NE of US41	0.7
8	10:59	bottom	7.0	7.5	1.25	29,800	21,28	08.30	No.Data	18.75	17.7	Morning Run	Shakett Creek NE of US41	0.8
8	10:59	top	0.5	7.5	1.25	23,310	16.32	7.60	No Data	18.54	7.92	Morning Run	Shakett Creek NE of US41	0.8
6	11:18	mid	0.5	-	>0.3	3,605	2.25	7.70	No Data	17.43	8.25	Morning Run	Shakett Creek NE of US41	6.0
10	11:31	mid	1.125	2.25	>0.7	24,315	16.98	7.50	No Data	18.87	7.6	Morning Run	Shakett Creek NE of US41	6.0
11	11:40	mid	1	2	7.0 <	21,421	14.55	7.30	No Data	19.71	7.65	Morning Run	Shakett Creek NE of US41	0.9
12	11:53	mid	0.5	,	>0.3	12,034	7.59	8.40	No Data	19.86	7.96	Morning Run	Shakett Creek NE of US41	0.9
13	13:46	mid	1.5	£	>0.9	39,900	29.14	8.90	No Data	19.21	7.81	Afternoon Run	Shakett Creek NE of US41	1.3
14	13:52	mid	2.5	5	. >1.5	39,000	28.25	8.90	No Data	19	7.98	Afternoon Run	Shakett Creek NE of US41	1.3
15	16:00	mid	1.25	1.5	>0.5	34,259	23.85	9.60	No Data	20.45	8.2	Afternoon Run	Shakett Creek NE of US41	1:2
SC Bridge	9:30	top	t.	10	No Data	33,300	24.81	7.20	88.8	17,5	7.54	Morning Run	Curry Creek	0.2
CC Bridge	10:00	top	0.7	5	No Data	38,500	29	6.85	No Data	17.7	7.54	Morning Run	Curry Creek	0.4
сс-1 СС-1	11:45	bottom	ю	3.8	No Data	39,500	29.3	7.30	86.5	18.4	7.52	Morning Run	Curry Creek	0.9
cc-1	11:45	top	4	3.8	No Data	39,250	29.21	7.40	92	18.4	7.6	Morning Run	Curry Creek	6.0
cc-2	12:00	bottom	۲	T	No Data	39,350	29	6.76	83.8	18.7	7.62	Morning Run	Curry Creek	-
сс-3 СС-3	12:05	bottom	-		No Data	38,600	28.1	7.60	94.6	19	7.49	Morning Run	Curry Creek	-
СС-4	12:10	top	-	ε	No Data	37,700	27.3	7.30	92.51	19.21	7.55	Morning Run	Curry Creek	~
CC-5	12:20	mid	÷-	2.1	No Data	34,600	24.6	7.65	97.2	19.6	7.54	Morning Run	Curry Creek	1.1
9-00	12:35	pim	-	1.75	No Data	28,300	20	7.60	96.5	19.5	7.31	Morning Run	Curry Creek	1.2
CC-7	12:40	top	-	ę	No Data	21,500	14.6	7.54	91.9	19.4	7.4	Morning Run	Curry Creek	1.2
8-00	12:45	top	.	e	No Data	13,100	8.7	6.96	86.7	18.9	7.29	Morning Run	Curry Creek	1.2
6-00	12:50	top	-	2.8	No Data	10,600	7.05	7.00	85.5	18	7.3	Morning Run	Curry Creek	1.3
cc-10	13:00	top	-	3.5	No Data	920	0.52	5.60	68.3	16.8	6.3	Morning Run	Curry Creek	1.3
CC-11	13:30	top		3	No Data	667	0.38	6.00	80	18.1	6.15	Morning Run	Curry Creek	1.3
CC11	14:20	bim	ب	2.2	No Data	666	0.38	5.88	72.4	17.6	5.15	Afternoon Run	Curry Creek	1.3

11/26/2003

12-4-02
ğ
Study
Salinity
Bay
Roberts
Dona /

Waypoint	Time	Relative Sample Depth	Sample Depth (ft)	Water Depth (ft)	Secchi Depth (m)	Spec. Cond. (temp corrected)	Salinity (ppt)	DO (mg/L)	DO Sat %	WaterT emp (C)	Ha	Sampling Run	Region Sampled	Tidal Stage at Venice Inlet - predicted
	14:40	bottom		4.5	No Data	1,600	0.9	6.00	74.2	18	6.65	Afternoon Run	Curry Creek	1.3
cc12	14:40	top	-	4.5	No Data	6,200	4	6.00	74.2	18	6.65	Afternoon Run	Curry Creek	1.3
CC13	14:50	top	-	4	No Data	14,200	9.41	7.55	92.5	19.4	7.36	Afternoon Run	Curry Creek	1.2
CC14	14:55	mid		1.5	No Data	8,500	5.26	6.80	91	19.6	7.4	Afternoon Run	Curry Creek	1,2
CC15	15:00	top	-	m	No Data	26,000	19	7.62	96	20	7.4	Afternoon Run	Curry Creek	1.2
CC16	15:10	mid	1.5	e	No Data	32,500	22.5	8.01	103	20.6	7.54	Afternoon Run	Curry Creek	1.2
9 00 00	15:15	top	-	1.5	No Data	31,700	22	6.60	84	20.1	7.61	Afternoon Run	Curry Creek	1.2
CC5	15:20	mid	-	1.5	No Data	36,700	24.8	8.10	106	22	7.76	Afternoon Run	Curry Creek	1,2
CC4	15:30	top	-	3.5	No Data	40,000	27.8	7.95	103.5	21	7.75	Afternoon Run	Curry Creek	1,2
cc	15:35	pim	.	1.5	No Data	41,000	29	7.60	96	20.4	77.7	Afternoon Run	Curry Creek	1.2
CC2	15:40	mid		1.5	No Data	41,000	28.9	7.50	95	20.9	7.73	Afternoon Run	Curry Creek	1.2
cci	15:50	mid	3.5	Q	No Data	41,600	31	8.10	100	18.5	7.69	Afternoon Run	Curry Creek	1.2
CCI	15:50	top	-	ę	No Data	41,100	30.2	8.35	105	18.9	7.3	Afternoon Run	Curry Creek	1.2
SCBridge	16:00	bottom	7	თ	No Data	42,300	31.4	9.20	110	18.7	7.72	Afternoon Run	Curry Creek	1.2
SCBridge	16:00	top	۴.	6	No Data	41,500	30.5	8.70	109	19	7.78	Afternoon Run	Curry Creek	1.2
æ	6:28	top	0.5	2	>0.3	8746*	0.4*	6.45	65.5*	17.7*	No Data	Morning Run	Hatchett Creek	-0.6
7	9:17	mid	0.5		>0.6	7665*	0.4*	4.45	47.7*	16.1*	No Data	Morning Run	Hatchett Creek	0.1
σ	10:20	top	-	6.5	>2.0	37900*	23.9*	9.05	83.5*	17.3*	No Data	Morning Run	Hatchett Creek	0.6
10	10:28	mid	6.5	^10	>2.0	40600*	26.1*	9.60	83.8*	17.4*	No Data	Morning Run	Hatchett Creek	0.7
10	10:28	top		<u>4</u> 0	>2.0	40400*	26*	8.90	83.4*	17.4*	No Data	Morning Run	Hatchett Creek	0.7
7	10:37	bottom	8	9.2	1.6	40250*	25.8*	9.40	73.7*	17.3*	No Data	Morning Run	Hatchett Creek	0.7
7	10:37	top	-	9.2	1.6	38320*	25.4*	8.20	77.3*	17.6*	No Data	Morning Run	Hatchett Creek	0.7
12	10:45	top	-	4.8	>1.5	38310*	24.5*	8.20	79.4*	17.7*	No Data	Morning Run	Hatchett Creek	0.8
12	10:45	bottom	e	4.8	>1.5	38470*	24.6*	8.40	79.3*	17.7*	No Data	Morning Run	Hatchett Creek	0.8
13 1	10:53	bottom	4	5	1.3	39880*	25.5*	8.30	73.1*	17.4*	No Data	Morning Run	Hatchett Creek	0.8

Dona / Roberts Bay Salinity Study of 12-4-02

Tidal Stage at Venice Inlet - predicted	0.8	0.8	0.8	0.9	0.9	0.9	0.9	6.0	1.3	1.3	1.3	1.3	1.3	1.3	1.2	1.2	1.2	1.2	1.2	1.2		1.2	1.2	1.2 1.2 1.2	12 12
T Region Sampled	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek	Hatchett Creek		Hatchett Creek	Hatchett Creek Hatchett Creek	Hatchett Creek Hatchett Creek Hatchett Creek							
Sampling Run	Morning Run	Morning Run	Morning Run	Morning Run	Morning Run	Moming Run	Morning Run	Morning Run	Afternoon Run		Afternoon Run	Afternoon Run	Afternoon Run	Afternoon Run	Afternoon Run	Afternoon Run	No Data No Data Afternoon Run	Afternoon Run	Afternoon Run	No Data Afternoon Run	Afternoon Run		_		
Hď	No Data		No Data	No Data	No Data		No Data /	No Data	No Data /	No Data	No Data /	No Data /	Vo Data	No Data /	No Data			Vo Data /							
WaterT emp (C)	17.7*	17.7*	17.7*	17.5*	17.5*	18*	No DataNo Data	17.2*	No DataNo Data	19.1*	18.8*	18.4*	No Data No Data	20.9*	18.7*	18.7*	No Datal	18.2*	19*	18.4* 1	18.7*	19*	Ī	*	
DO Sat %	75.4*	79.7*	76.2*	69.2*	+04	65.4*	No Data	47.1*	No Data	67.3*	74.6*	81.2*	No Data	63.4*	86.7*	87.6*	No Data	85.6*	88.5*	86.2*	87.6*	87.5*	İ	89.6*	89.6* 87.8*
DO DO DO	8.00	8.70	8.20	7.70	8.40	5.40	No Data	6.50	No Data	6.15	6.13	9.30	No Data	8.20	9.30	9:90	No Data	9.80	9.30	10.00	9.10	10.00		9.50	9.50 9.30
Salinity (ppt)	25.3*	25*	24.8*	23.3*	24.8*	23.1*	No Data	0.7*	No Data	1.3*	22.6*	26.8*	No Data	0.41*	27.3*	27.4*	No Data	28.7*	28*	28.8*	28.7*	28.1*		28.1*	28.1* 28.1*
Spec. Cond. (temp corrected)	39570*	39310*	38970*	37660*	38810*	36650*	No Data	1432*	No Data	2604*	36000*	41600*	No Data	7920*	42570*	43140*	No Data	44250*	43300*	44220*	44220*	43590*		43400*	43400* 43440*
Secchi Depth (m)	1.3	1.7	1.7	1.6	1.6	>0.6	>0.6	>0.6	>0.6	>0.6	>0.6	1.25	1.25	1.25	1.5	1.5	1.5	1.8	1.8	1.9	1.9	>1.6		>1.6	>1.6
Water Depth (ft)	5	×10	>10	6.1	6.1	2.1	2.1	2.1	2	2	2	5.9	5.9	5.9	>10	>10	×10	×10 ×	<u>,</u>	,	×10	5.3		5.3	5.3
Sample Depth (ft)		9		-	Ş	8	-	0.25	1	0.17	2	4	-	0.25	1.0	9	-	9		9	+	4		-	
Relative Sample Depth	top	mid	top	top	bottom	bottom	pim	Very Top Layer	mid	Very Top Layer	bottom	bottom	top	Very Top Layer	top	mid	top	miď	top	mid	top	bottom		top	top tob
Time	10:53	11:00	11:00	11:10	11:10	11:25	11:25	11:25	14:32	14:32	14:32	14:43	14:43	14:43	14:50	14:50	14:50	15:00	15:00	15:05	15:05	15:10		15:10	15:10 15:17
Waypoint	13	14	14	15	15	16	16	16	17	17	17	18	18	18	19	19	19	20	20	21	21	22		22	23 23

Dona / Roberts Bay Salinity Study of 12-4-02

Waypoint Time	Time	Relative Sample Depth	Sample Water Depth (ft) Depth (ft)	Water Depth (ft)	Secchi Depth (m)	Secchi Spec. Cond. Depth (temp (m) corrected)	Salinity (ppt)	1	DO (mg/L) DO Sat %	WaterT emp (C)	Hq	pH Sampling Run	Region Sampled	Tidal Stage at Venice Inlet - predicted
24	15:23	mid	9	<u>о</u>	>2.0	45820*	29.7*	9.90	86.6*	18.2*	No Data	Afternoon Run	18.2* No Data Afternoon Run Hatchett Creek	1.2
24	15:23	top	-	თ	>2.0	45650*	29.7*	9.80	89.1*	18.5*	No Data	Afternoon Run	18.5* No Data Afternoon Run Hatchett Creek	1:2
25	15:28	bottom	S	7	>2.1	45890*	29.8*	9.40	84.5*	18*	No Data	Afternoon Run	18* No Data Afternoon Run Hatchett Creek	1.2
25	15:28	top	-	7	>2.1	45990*	29.9*	9.00	84.5*	18*	No Data	Afternoon Run	18* No Data Afternoon Run Hatchett Creek	1.2
26	16:10	top	-	2.75	>0.9	933*	0.5*	11.80	119.5*	22.4*	No Data	Afternoon Run	11.80 119.5* 22.4* No Data Afternoon Run Hatcheft Creek	1.2