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Abstract—Attackers use search engines to find vulnerable sys-
tems and interesting information such as passwords, hidden files,
or other kinds of sensitive information on the Internet. Besides
common search terms, they use advanced search parameters
called Google dorks to find only results with specific strings in
the URL or files with a particular extension. So far, only a few
works have empirically studied Google dorks, e.g., if they are still
in use, which Google dorks attackers use, and how often as well
as how old the used Google dorks are.

In this paper, we study this type of attacks from a different
perspective and present DorkPot, a dynamic, low-interaction
webserver honeypot to detect Google dork related requests and,
thereby, analyze such attacks in the wild. DorkPot uses Google
dorks as input and creates a website for each Google dork,
which matches the Google dork’s content, e.g., strings in the
title field or the URL. Hence, we ensure the particular website
can be found later via a Google search with the corresponding
Google dork. To evaluate our prototype implementation, we
deployed DorkPot with more than 4,000 Google dorks as input
on ten instances of a cloud provider. Throughout more than
ten months, we collected almost 9,000 clicks for 371 different
Google dorks. Our analysis reveals that the top-ten Google
dorks were responsible for more than 50% of the clicks, were
mostly published in mid-2017 and searched for various online
devices, such as IP cameras or routers, as well as passwords and
database backups. In particular, three of the top-ten Google dorks
targeted Internet of Things devices and another two searched for
passwords and related files with authentication information.

I. INTRODUCTION

Modern attacks on IT systems consist of multiple
phases [32]]. In a first phase called reconnaissance, the at-
tacker identifies vulnerable systems and searches for helpful
information. In the case of web applications, attackers use
for example vulnerability scanners like Nessus [33] or Nex-
pose [25] which provide an easy-to-use interface. Additionally,
attackers send specially crafted URLs to a huge number of
websites to fingerprint devices and detect whether certain
software versions are installed. Furthermore, it is possible to
use search engines to discover vulnerable websites or collect
helpful information [16]. In some cases, just using common
search terms and linking them with operators like AND or OR
is sufficient to obtain interesting results. Back in 2005, Long
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discovered that advanced search parameters as an even better
way to obtain interesting information than just using search
terms [18]. Advanced search parameters (often referred to as
Google Hacking or Google Dorking in the context of computer
security) include for instance intitle (limit results to those
having a certain string in the HTML fitle tag) or inurl (limit
results to those having a certain string in the URL). Search
strings with advanced search parameters are called Google
dorks and allow precise search queries, e.g., searching with
the Google dork “index of” inurl:wp-content/ returns a list
of websites with installed WordPress blogging software [14].
Additionally, another common use case for Google dorks is
finding information not intended to be exposed publicly, such
as database backups or password files. For example, the Google
dork ”— Dumping data for table” ext:sql returns SQL database
backups [9]]. The advanced search parameter ext limits search
results to those with the file extension sql.

In 2014, Zhang et al. performed Google searches with
about 1,000 Google dorks and found more than 300,000
potentially vulnerable websites, showing that Google dorks
are an effective method to identify vulnerable websites [35].
However, it remains unclear whether attackers use Google
dorks, which Google dorks are particularly interesting, how
often they are used etc. Therefore, in this paper, we close
this research gap and present DorkPot, a dynamic honeypot to
detect and measure Google dork usage. According to Spitzner,
a honeypot is a “security resource whose value lies in being
probed, attacked, or compromised” [30]. Stoll [31] in the late
1980s and Cheswick [5] at the beginning of the 1990s first
described honeypots. Spitzner categorizes honeypots based on
their interaction level into low-interaction and high-interaction
honeypots. A low-interaction honeypot is an emulated re-
source, which is easy to set up and maintain, but only provides
a superficial insight into attackers’ behavior and is easy to
detect as a honeypot. A high-interaction honeypot is a real
system, which makes it difficult to maintain and detect, but
provides deeper insights into attack techniques. Additionally,
it is possible to differentiate between server honeypots and
client honeypots [24]. A server honeypot runs server services
and passively waits for attackers. In contrast, a client honeypot
emulates client services, e.g., a browser or PDF reader, and
needs input data to test whether an input attacks the honeypot.
According to these definitions, DorkPot is a low-interaction
server honeypot. In contrast to traditional honeypots, our
reason to develop DorkPot was to get a tool to measure
the prevalence of a large variety of Google dorks instead
of a honeypot which reveals deeper insights into attackers’
behavior. Nevertheless, it is possible to use DorkPot to monitor



whether a smaller number of Google dorks is used, e.g., a
company could monitor Google dorks used to find systems
running their software because an increased interest could
indicate an unknown vulnerability.

As input, DorkPot takes a list of Google dorks, obtained for
example from the Google Hacking Database (GHDB) [10]]. In
the second step, we create a website for each input Google
dork, specifically crafted to match the Google dork, in an
automated way. For example, an intitle parameter in the Google
dork will result in a website containing an HTML title-tag
with this specific content. We refer to the generated websites
as honeypages and bundle all of them in a web honeypot
deployable for instance on a machine rented from a cloud
provider. Once a search engine crawler visits the honeypages
and indexes them, the honeypot can detect requests originating
from Google dorks and thus provides an overview of Google
dork related requests.

In our empirical evaluation, we used more than 4,000
Google dorks from GHDB as input for DorkPot and deployed
the generated honeypot on ten instances of a cloud provider.
Over an evaluation period of more than ten months, we
collected almost 9,000 requests from 371 different Google
dorks. Our analysis showed that the top-ten Google dorks
were responsible for more than 50% of the received clicks.
Among the ten most popular Google dorks, which were mainly
published in mid-2017, three Google dorks targeted Internet
of Things (IoT) devices which is not surprising taking the
emergence of IoT botnets into consideration. Additionally, two
Google dorks searched for passwords, which are an easy to use
resource, without necessity to exploit for example vulnerable
systems. Surprisingly, our analysis revealed that even old
Google dorks published between 2004 and 2006 were used.

In summary, we make the following contributions:

e  We propose a method to dynamically generate hon-
eypages based on arbitrary Google dorks and build a
web honeypot called DorkPot.

e  We set up DorkPot with more than 4,000 Google dorks
from GHDB and deploy it on ten instances of a cloud
provider to collect requests for more than five months.

e To the best of our knowledge, we are the first to
analyze Google dork usage from a server perspective.

The remaining sections of this paper are structured as
follows: first, we review related work in Section Next, we
introduce DorkPot in Section [[ll We describe our evaluation
in Section [IV] and discuss threats to validity of our work in
Section [V] Finally, we conclude the paper in Section

II. RELATED WORK

Recent research dealt with honeypots, the analysis of
Google dorks, and malicious usage of search queries. In the
following, we discuss related work and explain the differences
compared to our approach.

a) Honeypots: Over the years, many different types of
honeypots were proposed and, hence, we focus only on web
honeypots. Snare is a low-interaction web honeypot written
in Python and the successor of Glastopf [26]]. Additionally, it

provides a clone functionality to copy existing websites and
use them as honeypots. In 2005, McGeehan et al. introduced
Google Hack Honeypot [13] which contains a small number
of hand-crafted websites. Each website belongs to a single
Google dork and attracts attackers’ attention when they use the
particular Google dork. In contrast to our work, the generation
of websites is not automatized so that a manually written web-
site is necessary for each new Google dork, which is a time-
consuming task for a high number of Google dorks. Therefore,
the approach is not feasible to analyze the prevalence of a high
number of Google dorks. Furthermore, the available Google
dorks are more than ten years old and therefore irrelevant
nowadays.

John et al. generated templates based on malicious queries
from search engine logs [[17]. They combined these templates
with a plain web server and four manually installed web
applications to obtain a honeypot, which attracted more than
44,000 attacker visits. Moreover, they provide an extensive
discussion on how to distinguish between crawler, benign, and
malicious visits. Both John et al. as well as this work focus
on the automatic generation of honeypots. In contrast to our
work, John et al. cover only a small fraction of Google dorks.

In 2013, Canali et al. set up 500 honeypot websites to dis-
cover what happens after a website has been compromised [2].
On each honeypot, they installed content management systems,
web shells, and a static website to attract attacker’s attention.
After an evaluation period of 100 days, they had collected
about 85,000 files which were created in approximately 6,000
attacks. Furthermore, they performed an analysis of the referrer
headers and detected that the attackers used a variety of Google
dorks to find the honeypot websites. However, in contrast to
our work, the honeypot pages are not intended to be found via
Google dorks and do not cover a large set of Google dorks.

The high-interaction honeypot presented by Catakoglu et
al. collects Indicators of Compromise (IoCs, i.e., artifacts
found on a compromised computer system, such as IP ad-
dresses or malware hashes) [3l]. Eventually, they extracted
96 IoCs throughout four months. Even though they mention
the importance of Google dorks, they do not describe how
attackers found the honeypot.

Catakoglu et al. investigated the Tor network by deploying
a high-interaction honeypot to study whether adversaries use
the same attack techniques on the dark side of the web as on
the traditional Internet [4]. In an evaluation over seven months,
they detected a variety of attacks, such as upload of web shells,
defacements, path traversal attacks as well as attacks from the
traditional Internet via Tor proxies.

b) Google dorks: Recent research dealt already with the
analysis of Google dorks. However, it focused on the client
side and did not measure the prevalence and distribution of
Google dork usage.

Toffalini et al. performed a large-scale study of existing
Google dorks [34]. They proposed an additional classification
based on information a Google dork uses. Additionally, they
introduce two novel defense techniques: addition of a random
string to a URL which is removed by an Apache module when
a user visits the page and addition of non-visible random
characters into words often used for fingerprinting. On the



contrary, our work aims at understanding the usage of Google
dorks from a server perspective.

The relationship between Google dorks and targeted web-
sites was analyzed by Zhang et al. in 2014 [35]. They used
about 1,000 Google dorks to collect a set of 300,000 potentially
vulnerable websites out of which they could verify 6,000 to be
vulnerable. Furthermore, they discovered most Google dorks
target vulnerabilities with high severity scores but low attack
complexity which can be rendered useless often by removing
keywords from a website so that the website is no longer found
via Google dorks. Compared to our work, which concentrates
on the server side, Zhang et al. focus solely on the client side
and show it is, in fact, possible to find vulnerable websites via
Google dorks.

Pelizzi et al. introduced GdOrk and searched with Google
dorks for XSS vulnerable websites [23]. It uses a small
list of precompiled keywords to generate Google dorks and
afterwards tests whether the found websites are vulnerable to
XSS attacks. During one month of evaluation, Pelizzi et al.
found 200,000 vulnerable websites (0.94% of all scanned web-
sites). They aim at generating Google dorks to find vulnerable
websites whereas we target the detection of Google dork usage
from a server perspective.

SearchAudit, a tool presented by John et al., identifies
malicious search queries from search query logs [16]. It is
based on two steps: at first, it identifies malicious search
queries similar to a given seed and builds regular expressions
to find more malicious search queries. In a second step, John
et al. analyze the found malicious search queries from step one
as well as the correlation between the search query and other
attacks.

Zhang et al. performed a large-scale analysis of Bing search
query logs to identify bot queries [36]. They searched for query
intention, i.e., the topic of a query, and query origination,
especially hosts that are part of large-scale efforts. In an
evaluation, they identified more than 3 billion bot queries with
33% of them searching for vulnerabilities and 11% for user
account information.

III. SYSTEM DESIGN

In the following, we describe DorkPot’s structure and
technical details. At first, we give a short overview of the full
system, followed by a detailed description of the individual
components.

Figure shows the four main components crawler,
honeypage-generator, honeypot and management as well as
their interaction with each other and their environment. The
crawler component crawls a data source, e.g., exploit-db’s
Google Hacking Database (GHDB) [10], to collect all available
Google dorks (1). The honeypage-generator component first
uses this information to generate one honeypage for each
Google dork, which is later indexed by a search engine such
as Google and found when someone enters the corresponding
Google dork (2). Additionally, it bundles all generated honey-
pages with a web server and logging modules to generate the
deployable honeypot. Later on, we deploy the honeypot, e.g.,
on a cloud service, and wait until the honeypages are indexed
(3). When an attacker uses a particular Google dork and enters

the corresponding honeypage (4), the honeypot generates a log
message and sends it to the management component (5).

A. Crawler

It is possible to generate arbitrary Google dorks by using
one or multiple keywords with any string as an argument.
Since we can not guess in advance which Google dork an
attacker might come up with in future, DorkPot needs Google
dorks as input to generate honeypages. The Internet provides
various resources to obtain Google dorks. For example, people
share Google dorks on paste websites like pastebin [22] or
document sharing websites like scribd [28]. In addition, news
websites and blog postings publish articles about new Google
dorks [21], [15]. In some cases, people even use Twitter to
propose new Google dorks [29]]. However, it requires a lot
of effort to collect Google dorks from all these sources and
usually only a small portion of blog postings, tweets or pastes
deals with Google dorks. Therefore, it is more useful to focus
on a data source dedicated solely to Google dorks. By far, the
biggest and most comprehensive data source for Google dorks
is exploit-db’s GHDB, which was used as well by Zhang et
al. to conduct their study of Google dorks from the client’s
perspective [35]. Therefore, we focus on GHDB for the rest
of this paper.

In particular, we crawl GHDB to obtain a list of up to date
Google dorks. GHDB groups Google dorks into 14 different
categories based on the information an attacker can find, e.g.,
Google dorks to find files containing passwords or Google
dorks to find pages containing login portals (see Section
for detailed information about GHDB). As of 2017/10/06,
GHDB includes 4164 Google dorks. In some cases, the same
Google dork is added to multiple categories and gets a unique
ID for each addition so that in total there are 3897 unique
Google dorks in GHDB. For each Google dork, we collect the
Google dork itself, the submission date to GHDB, the category,
and the description. Furthermore, we emphasize that the rest
of our infrastructure works with Google dorks from other data
sources in the same way so that it is easy to integrate Google
dorks from other data sources by implementing another crawler
component for a different data source.
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Fig. 1. Overview of main components and their interaction. Crawler crawls

a data source like exploit-db’s Google Hacking Database (1). Honeypage-
Generator generates honeypages and bundles them with a web server and
logging modules (2). Honeypot can be deployed to cloud service (3). Honeypot
logs attacks from attacker (4) and sends the logs to management component
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TABLE 1. OVERVIEW OF GOOGLE DORK KEYWORDS AND THEIR
DESCRIPTIONS. GOOGLE DORK KEYWORDS MARKED WITH * ARE
AVAILABLE IN A VERSION WITH PREFIXED "ALL” WHICH SHOWS ONLY
RESULTS CONTAINING ALL ARGUMENTS.

Keyword  Description

intitle * Title-tag contains given argument

inurl * URL contains given argument

intext * Website content contains given argument
filetype Limits results to given filetype

ext Limit results to files with given extension
site Limit results to a given website

B. Honeypage-Generator

The honeypot generator takes a list of crawled Google
dorks as input and parses them to generate one honeypage
for each Google dork. Instead of generating honeypages on
our own, we could use Google dorks as search queries on
Google and use the results as templates for our honeypages.
However, during our research, we used lots of Google dorks
and found multiple reasons to create honeypages on our own.
First, Google prevents usage of Google dorks by displaying
hard to automatically solve captchas after very few requests.
Therefore, either a lot of manual effort or building an infras-
tructure with for example changing IP addresses is necessary
to collect Google results automatically. Second, Google search
results contain in some cases less relevant results, which are
not suitable for honeypage generation. For example, searching
with a Google dork for a certain configuration file can reveal
forum postings about the configuration file. Thus, a complex
algorithm is necessary to select proper search results. Third,
some Google dorks search for sensitive information, such
as passwords or confidential documents. We want neither
access nor copy this information due to legal and ethical
reasons. Eventually, a self-generated honeypage needs less
effort, prevents legal issues, and guarantees each part of the
Google dork is available.

Table | shows an overview of keywords available in Google
dorks. A Google dork consists of a keyword, followed by
a colon, followed by one (line 1 in Listing [T) or multiple
arguments (line 2). In case of multiple arguments, we have to
use quotation marks to indicate that all arguments belong to
the keyword. Otherwise, the search engine interprets only the
first argument as belonging to the keyword and the remaining
ones as regular search terms. Additionally, it is possible to
concatenate multiple Google dorks (line 3) and use Google
dorks together with regular search terms (line 4). Furthermore,
quotation marks before the keyword and after the last argument
are possible.

Listing 1. Google dork syntax
1 keyword:argument
2 keyword:” argument argument”
3 keyword:argument keyword:argument
4 keyword:argument search\_term
5 7keyword:argument argument”

We divide the honeypage generation into two parts: first,
we split the Google dork into pairs of keyword and arguments
considering the various Google dork structures. Depending on
the keyword type, the honeypage generation slightly differs.
The keyword intitle searches for the HTML title tag and

checks whether it contains the given arguments. The keyword
intext searches for an HTML p tag with the given arguments.
Therefore, in case of intitle and intext, we start with a generic
HTML template and add an HTML title tag containing the
given arguments or an HTML p tag, respectively. The keyword
inurl checks whether a URL contains a given set of arguments
or not. Therefore, we create a folder structure containing
the requested arguments and place a honeypage with generic
content into the folder. Hence, the link to the honeypage
contains the arguments of the inurl keyword. The keywords
filetype and ext limit search results to certain filetypes or
files with the particular ending. In those cases, we generate
a generic honeypage with the requested file ending.

The keyword site limits search results to a particular do-
main. Even if we generate a honeypage for all other keywords
of a Google dork with the keyword site, we would not be
able to add it to the domain specified by the keyword site
because the domain is not under our control. Therefore, the
honeypage would not be found when someone uses a web
search with the Google dork. Hence, we omit those Google
dorks. However, our set of 4164 crawled Google dorks from
GHDB contains only 60 Google dorks with the keyword site,
which is a negligible amount of Google dorks (1.4%).

Furthermore, we filter broken Google dorks and Google
dorks which use keywords in an unintended way. In partic-
ular, we filter based on the following rules: first, we filter
each Google dork with a space between keyword and colon
(keyword :argument) which results in interpreting the keyword
and colon plus argument as regular search terms (71 cases
out of 4164 total Google dorks). Most likely, the authors of
such Google dorks meant keyword:argument, without space.
Second, we filter each Google dork with a space between
colon and argument (keyword: argument) which causes Google
to interpret keyword plus colon and argument as regular
search terms (nine cases). Again, the intended Google dork
should look like keyword:argument, without space. Third, we
filter each Google dork with one or more characters before
a keyword (akeyword:argument) which renders the Google
dork useless (four cases). Fourth, we found 11 Google dorks
with one keyword and multiple arguments in parentheses
(keyword:(argumentl argument2 argument3)) and suppose the
creator of the Google dork expected each argument to be part
of the Google dork. However, Google interprets only keyword
and parenthesis plus argumentl as Google dork and treats
argument2 as well as argument3 plus parenthesis as standard
search terms. Therefore, we filtered those Google dorks as
well.

This filtering is worth discussing since even broken Google
dorks return search results and could be used with malicious
intentions. However, search results for a broken Google dork
are different from those for the corresponding correct Google
dork, e.g., a space between keyword and colon will result
in a search with the keyword as a regular search term and,
therefore, different search results than expected. Thus, our
honeypage would be found among unrelated websites. Fur-
thermore, in most cases, search results for a broken Google
dork are easily identifiable as less interesting which makes
it unlikely to collect requests when including them in the
honeypot. In contrast, it is possible to correct the mistyped
Google dorks. But we argue that many users copy and paste



the Google dorks so that it is not useful to fix them. Hence,
because including and correcting broken Google dorks both
has unwanted effects, we decided to remove the, in comparison
with the overall number of Google dorks, small number of
broken Google dorks.

Additionally, we make sure each honeypage has a different
filename by composing the filename out of two randomly
chosen terms from a list of terms related to topics an attacker
might be interested in, e.g., business.

Traditional honeypots aim at emulating a system’s behavior
as close as possible so that our rather superficial honeypages
might raise questions. However, our focus is on detecting
Google dork usage instead of detecting what an attacker does
on a compromised system. As you can see later, it is sufficient
to identify the usage of a particular Google dork already when
the corresponding honeypage is among the returned search
results. Therefore, the degree of emulation is adequate for our
purpose. In contrast, generating honeypages for each Google
dork automatically in a way that they are not distinguishable
from their real counterparts is not possible due to a large
number of different systems targeted by Google dorks (see
the low number of emulated Google dorks by Google Hack
Honeypot in comparison [13]).

C. Honeypot

After we generate a honeypage for each Google dork,
we bundle all generated honeypages with an Nginx web
server [20] into a Docker [7] container. The use of Docker
both eases the deployment and adds a level of security since
a potential attacker only gets access to the Docker container
instead of the full system. Instead of using a plain web server,
we considered using a web honeypot, such as Glastopf [27], as
the foundation. However, we are only interested in capturing
the requests originating from Google dorks and do not need
any further interaction capabilities. Thus, we decided to add
the honeypages to a web server.

Additionally, we add logging capabilities to send received
requests to the management component. Afterwards, the dock-
erized honeypot is deployable on an arbitrary machine con-
nected to the Internet, e.g., an instance rented at a cloud
service. Attackers will use Google dorks in a web search to
find vulnerable systems or interesting information. Therefore,
we request Google to index the honeypages to make sure they
can be found by Google dorks. We call DorkPot a dynamic
honeypot because it can take arbitrary Google dorks as input
without the necessity of manual interaction in the generation
of honeypages. However, adding new Google dorks on a daily
basis is not feasible because it requires manual interaction to
initiate Google’s indexing process. Furthermore, Google limits
the number of indexing requests. Also, we register a domain
for each honeypot to let it look more like a real system and,
therefore, attract more attention.

D. Management

The management component is responsible for collecting
and storing received requests from all honeypots to provide
an overview of incoming requests and the system’s status. We
base the management component on the Elastic Stack [8] to
provide easy access to the collected data. Additionally, the

Elastic Stack supports the generation of visualizations which
further improves the understanding of ongoing actions.

IV. EVALUATION

The following section describes our evaluation. At first,
we give an overview of our test setup and dataset, followed
by an explanation of how we used Google Search Console to
analyze the search requests our honeypots received and how
we assigned originating Google dorks to them. Afterwards, we
analyze the obtained Google dork requests in detail.

A. Test setup and dataset

For our evaluation, we scraped GHDB on 2017/10/06 to
collect all 4,164 available Google dorks. GHDB started to
collect Google dorks in 2003. Many of the old Google dorks
target very old systems and are, therefore, not interesting
for state-of-the-art attacks. Additionally, they consist in many
cases only of search terms without Google dork specific
keywords. This results in many Google search results not
expected to be found by the particular Google dork, e.g.,
forum discussions instead of fingerprinted services. Thus, we
first focused only on Google dorks added to GHDB from the
beginning of 2013 on to cover the last five years, which led
to 715 remaining Google dorks. Out of those Google dorks,
we removed 36 because they contain the keyword sife, five
because they contain a space between keyword and colon
and two because they try to connect a keyword with multiple
arguments by using parentheses. Eventually, we started our
evaluation with 672 different Google dorks. A first evaluation
revealed that even old Google dorks from 2013 were requested
regularly. Therefore, we added the remaining Google dorks
published before 2013 on 2018/02/12 to gain an even broader
understanding which Google dorks are in use.

Figure [2] shows the number of Google dorks in each of
GHDB’s fourteen categories. The category Advisories and
Vulnerabilities contains with more than 1,000 Google dorks
the highest number, which is expected since finding vulnerable
systems is one of the main reasons for using Google dorks.
Other categories with high numbers of Google dorks search for
juicy information, login portals, passwords or online devices,
such as surveillance cameras or routers, which all provide
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interesting and actionable information. The categories Files
Containing Usernames and Sensitive Online Shopping Info
contain only a small number of Google dorks. In both cases,
other data sources, such as widely available data leaks, provide
the same information more quickly so that Google dorks are
less attractive in this area. Additionally, in a few cases, the
categorization remains a bit shallow because a Google dork
finding a vulnerable IoT device could belong to the the groups
”Advisories and Vulnerabilities” as well as ”Various Online
Devices” and, depending on the kind of device, even to ~Vul-
nerable Servers”. Nevertheless, the categorization provides an
overview for what purposes Google dorks are available.

We used the collected Google dorks to generate a hon-
eypage for each Google dork as described in Section [[II-B
Additionally, we used domains and proper website templates
from the following five industrial sectors to let the websites
look more believable in case an attacker visits the main
page instead of a honeypage: banking, medicine technology,
insurance, consulting and architecture. However, the templates
do not influence the generated honeypages. Afterwards, we
registered two domains for each industrial sector and bun-
dled the generated honeypages with the website templates to
get ten deployable honeypots. For the evaluation, we rented
ten instances at a cloud service provider and deployed one
honeypot on each of them. In the following, we will refer to
the honeypots as hp_01I to hp_I0. Furthermore, we requested
Google via the Google Search Console [11] to crawl the
honeypages of each honeypot to ensure search results from a
Google search with the particular Google dork contain the cor-
responding honeypage. During our initial tests, we encountered
that Google does not always index every honeypage on each
honeypot. Therefore, we decided to run the system on multiple
honeypots to increase the likelihood of Google indexing our
honeypages.

B. Data filtering

We collected more than 3.2 million requests between
2017/10/06 and 2018/08/10. Of course, not all of these requests
originated from web searches via Google dorks. A few years
ago, the process of distinguishing between requests originating
from Google and arbitrary requests was a lot easier than
nowadays. Back then, Google provided not only the bare
host name as referrer but additional information such as the
search query string. Access to the search query string would
enable us to recognize the used Google dork at our honeypots
and, therefore, ease the process of assigning Google dorks to
requests. However, Google stopped delivering this information
in 2012 to protect users’ privacy [19].

Therefore, we need either rules to tell apart for example
scanning activity, randomly sending requests, from actual
Google dork usage or a reliable source providing us with
information on performed search queries. Creating a set of
rules to reliable detect Google dork related requests is not
possible due to two main reasons. First, every part of a request
can be spoofed. For example, a request to a honeypage with a
Google domain in the referrer field can result from both using
a Google dork on Google and sending a request with spoofed
referrer field to the honeypage. Second, assuming we could
reliably detect requests from Google searches, we still could
not count every such request to a honeypage as originating

from the corresponding Google dork. Most Google dorks
consist of multiple parts, e.g., inurl:foo intext:bar. However,
the corresponding honeypage already shows up among the
search results when using only a part of the Google dork,
e.g., inurl:foo. Therefore, without information on the search
query, we would count a request originating from inurl:foo as
originating from inurl:foo intext:bar. Hence, we need access
to the search queries to reliable assign requests to Google dork
usage.

Fortunately, Google Search Console provides information
on all performed search queries, which contained one of our
honeypages in the results. In particular, for each search query
it gives the number of times a honeypage was clicked (clicks),
the number of times a honeypage was among the search results,
i.e., without being necessarily clicked (impressions), the click
through rate (CTR), which is defined as clicks divided by
impressions and the average position of a honeypage in the
search results (position). Using Google Search Console has
multiple advantages. First, it is a reliable data source to detect
search queries used to find our honeypages because the search
provider Google itself provides the data. Second, the impres-
sions enable us to get information about performed search
queries, even if a honeypage was not clicked but only has
been displayed in the search results. In contrast, an analysis of
the web server logfiles reveals only results when a honeypage
was clicked. The impressions are especially useful because
it is difficult to reliably place a honeypage among the top
search results which increases the likelihood of being clicked
as we will show later. Third, the position in the search results
provides further insights when a honeypage is clicked. Fourth,
we do not have to filter scanner traffic, e.g., from Google or
other search engines. Therefore, we developed a script to daily
collect search queries along with clicks, impressions, CTR and
position for each honeypot from Google Search Console. The
resulting dataset is the basis of our evaluation.

Linking both Google Search Console data and honeypot
logs would enable us to get more information about attackers.
However, we refrained from doing so due to the following two
reasons. First, the focus of this study is the use of Google dorks
in the wild rather than collecting information about attackers.
Second, it is impossible to link the Google Search console data
with the honeypot logs because, as described earlier, it remains
unclear whether a request originates from Google dork usage
or is a request with spoofed HTTP request fields.

C. Results

In the following sections, we describe and discuss our
results. First, we analyze the distribution of clicks and impres-
sions between our honeypots. Afterwards, we assign Google
dorks from GHDB to the search queries and analyze which
Google dorks are responsible for most clicks and impressions
as well as how publication year and GHDB category influence
these numbers. Finally, we examine the correlation between the
position of a honeypage in the search results and the number
of received clicks.

1) Distribution between honeypots: According to Google
Search Console, the ten honeypots received in total 8,889
clicks and 62,054 impressions originating from 562 distinct
search queries. Figure [3| shows the number of clicks (red)
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to Google Search Console along with mean number of clicks (red line) and
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and impressions (blue) for each honeypot along with the mean
number of clicks (red line) and impressions (blue line). The
figure proofs the feasibility of our approach and shows that
many search queries were used during our evaluation period
to find our honeypots. Later on, we will show that a high
percentage of these search queries belongs to Google dorks
from our initial set.

We initialized every honeypot with the same set of honey-
pages and, therefore, expected an at least more comparable
number of impressions for each honeypot. However, two
reasons explain the high difference: first, Google uses more
than 200 factors to determine whether and how relevant a result
is, such as a user’s browsing or search history [12]], [6]. Thus,
different users using the same Google dork receive different
search results, which do not necessarily contain all of our
honeypots. Second, Google has to index a honeypage before it
is included in search results. However, the number of indexed
honeypages varies for each honeypot and changes frequently.
In Section [V] we discuss implications of the different numbers
of indexed honeypages on our approach. On average, each
honeypot received 889 clicks and 6,205 impressions. The
two honeypots hp_04 and hp_05 stick out with an above-
average number of clicks. Both honeypots got a high number of
impressions, i.e., they have been among the search results for
a lot of search queries. Since this is a prerequisite of attracting
attackers’ attention, the high number of clicks is expected. On
the contrary, hp_07 and hp_09 received among the least clicks
which is explainable by the low number of impressions.

In the following, we will assign Google dorks to the
obtained search queries and further analyze them. Since the
number of indexed honeypages influences the number of
clicks and impressions a honeypot receives, we will focus on
the Google dorks itself instead of their distribution between
honeypots.

2) Assigning Google dorks to search queries: Next, we
further analyze the Google Search Console data and identify
Google dork related search queries. In particular, we divide
the search queries into three groups. The first group contains
search queries equal to a Google dork in GHDB. The search
queries in this group are the most interesting ones because
they prove the correct operation of our approach. The second

group includes search queries which are Google dorks but not
in our initial set from GHDB. Some of the Google dorks are
a subset of a Google dork in GHDB, e.g., the search query
inurl:foo if the Google dork inurl:foo intext:bar is in GHDB.
The search queries in the second group either originate from
modified GHDB Google dorks, usage of Google dork lists
different from GHDB or devised Google dorks. Eventually,
it is not possible to resolve the origin doubtlessly. The third
group contains all remaining search queries, e.g., search terms
which accidentally matches one of our honeypages. The search
terms in this group are less interesting because they do not
belong to Google dork usage and are a side effect of our
approach. However, we observed in some cases that search
terms in this group fully match the arguments of a Google dork
in GHDB, indicating knowledge of the particular Google dork.
Potentially, an attacker avoids usage of Google dork keywords
to cover his traces.

In total, Google Search Console lists 562 distinct search
queries for all ten honeypots combined. After replacing differ-
ent quotation marks, e.g., single or german quotation marks,
with English quotation marks, 549 distinct search queries
remain. We link 328 search queries to Google dorks in GHDB
(59.7%), 148 search queries use Google dork keywords but are
not in GHDB (27.0%) and 73 search queries consist of terms
without Google dork keywords (13.3%). A further manual
analysis of the 148 search queries in the second group revealed
78 search queries which differ only in quotation mark usage
(inurl:foo vs inurl:’foo”), different usage of slashes (inurl:foo
vs inurl:/foo) or missing space characters from a Google dork
in GHDB. The latter one is a side effect of copying and pasting
multi-line Google dorks. We decided to include these 78 search
queries, which we could link to Google dorks in GHDB, in the
first group so that this group now contains 406 search queries
(74.0%). During the rest of the evaluation, we will focus on
the search queries in this first group because we reliably know
that these search queries are in GHDB.

3) Google dork distribution: According to Google Search
Console, the 406 search queries we could link to Google
dorks from GHDB are responsible for 8,736 clicks and 59,459
impressions out of 8,889 clicks and 62,054 impressions our
honeypots received in total. Hence, the vast majority of clicks
(98.3%) and impressions (95.8%) originates from Google dork
usage, which proves the usefulness of our approach. The 406
search queries belong to 371 distinct Google dorks when dis-
regarding different kinds of quotation marks, usage of capital
and small letters and so on. Figure [ shows a Cumulative
Distribution Function (CDF) graph of the accumulated clicks
(red) and impressions (blue) for one up to 371 Google dorks.
The strong increase at the beginning for both clicks and im-
pressions indicates that only a small number of Google dorks
generates a majority of clicks and impressions. In particular,
only ten Google dorks are responsible for about 50% of all
clicks and 40% of all impressions. On the contrary, this means
many Google dorks have only very few clicks and impressions,
which leads to the assumption that many Google dorks are
not used on a regular basis. In fact, more than 50% of the
371 Google dorks were used on less than 20 out of more than
300 days in our evaluation period. A reasonable assumption is
that the more frequent Google dorks are used in more target-
oriented campaigns to obtain interesting information. In the
following, we will analyze the most prevalent Google dorks
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Fig. 4. Cumulative Distribution Function graph of the accumulated clicks
and impressions for one up to 288 Google dorks

in more details. On the contrary, it is likely that many of the
less frequently used Google dorks are used without or with at
least less malicious intentions but rather to give them a try.

Table [lI| shows information about the ten most prevalent
Google dorks, responsible for 50% of all impressions. The
Dork-ID references the ID in GHDB [10]], and the Category
refers to the category in GHDB. The most frequent keywords
are inurl and intitle which are very effective at fingerprinting
services because a big fraction contains unique strings in the
URL or title. Five Google dorks were created in mid-2017,
and two Google dorks were created in 2015 and one in 2016,
respectively indicating that new Google dorks are used more
often. Nevertheless, it is noteworthy that two very old Google
dorks were among the most prevalent ones, released in 2004
and 20006, respectively. More than half of the Google dorks
belong to the category Various Online Devices and search for
example for surveillance cameras and routers. Two Google
dorks belong to the category Files Containing Passwords,
which is not unexpected because passwords are an easy to
use resource without the necessity to take further actions.
In the case of for example vulnerable systems an attacker
needs to break into a system after finding it. One Google dork
searches for databases of the well-known messenger WhatsApp
(Sensitive Directories). Surprisingly, only one Google dork
belongs to the three most prevalent categories in GHDB.
Furthermore, the number of active days shows that the top
ten Google dorks were used on average at least every third
day and in case of the top two Google dorks almost every
day. Hence, targeted companies or vendors of correspondent
hard- and software should take further actions to secure their
systems.

Overall, most of the top ten Google dorks were published
within the last three years and search for IoT devices or
interesting information like passwords or database backups.
IoT botnets such as Mirai [1]] gained a lot of attention recently.
Therefore, it is not surprising when such Google dorks are
among the most prevalent.

Next, we further analyze whether the category or publica-
tion date influences the likelihood of using a Google dork.

4) Publication years: At the beginning of our evaluation,
we expected attackers to be less interested in old Google dorks

and rather use new Google dorks. However, from the top
ten Google dorks we already know that even Google dorks
published in 2004 and 2006, respectively, were used very
often. Therefore, we analyze in the following the correlation
between publication year and used Google dorks as well as
clicks and impressions per publication year. Figure [5] shows
the number of Google dorks published by GHDB (red) and
used during our evaluation period (blue) (top figure) along
with the number of clicks (yellow) and impressions (green)
(bottom figure) as a function of GHDB’s publication year.
Between 2007 and 2009, GHDB did not publish any Google
dorks so that we omitted these years in the graphic. GHDB
published the highest number of Google dorks between 2004
and 2006 and in 2010. Most likely, GHDB collected Google
dorks between 2007 and 2009 as well and published them in
2010. Between 2011 and 2014, GHDB published less Google
dorks. However, beginning in 2015, the number of published
Google dorks increased again, indicating a growing interest in
Google dorks.

For the analysis, we split the publication years into three
periods: first, 2006 and before, second, between 2010 and 2014
and, third, between 2015 and 2017. Most used Google dorks
were published in the third period and to a lesser extent during
the first and second period. The Google dorks published in
the second period between 2010 and 2014 were used less
often during our evaluation period than the ones in the first
period. Nevertheless, the used Google dorks from the first and
second periods generated a considerable number of clicks and
impressions. The Google dorks published between 2015 and
2017 were used most often when taking into consideration the
clicks and impressions, which further supports the assumption
of new Google dorks being more interesting because it is
more likely that the targeted systems and information are still
available.

In total, 126 Google dorks published between 2003 and
2006 were used during our evaluation (2003: 1, 2004: 67,
2005: 14, 2006: 18). Regarding the Google dorks from 2004,
only three Google dorks searching for surveillance cameras
were responsible for two-third of the clicks and impressions
caused by all Google dorks published in 2004. The results
for 2005 (50% of clicks/impressions caused by four Google
dorks searching for surveillance cameras) and 2006 (75% of
clicks and 50% of impressions caused by only one Google
dork searching for surveillance cameras) further emphasize
attackers’ interests in such devices.

The 73 used Google dorks, which were published between
2010 and 2014, search for more diverse systems and infor-
mation (2010: 28, 2011: 9, 2012: 12, 2013: 15, 2014: 9).
Nevertheless, for each year there is at least one Google dork
which gained more attention than others. Two Google dorks
published in 2010 target the still popular forum software vBul-
letin and find usernames and passwords. In 2011, one Google
dork searched for the web shell k4rael. Used Google dorks
published in 2012 and 2013 gained most attention when they
can find surveillance cameras, however, to a lesser extent than
Google dorks published between 2010 and 2014. Additionally,
one Google dork published in 2013 finds shared directories
and still gets a lot of attention. Two Google dorks published
in 2014, which aim at finding well-known Fritzbox routers and



TABLE II.

INFORMATION ABOUT THE TEN MOST PREVALENT GOOGLE DORKS, RESPONSIBLE FOR 50% OF ALL CLICKS. THE CATEGORIES ARE: 1.)

VARIOUS ONLINE DEVICES, 2.) FILES CONTAINING PASSWORDS, 3.) ADVISORIES AND VULNERABILITIES, 4.) SENSITIVE DIRECTORIES

Dork-ID  Dork Creation date ~ Category  # impressions  # clicks ~ # active days
4068 intitle:”IPCam” inurl:monitor2.htm 2015-09-02 1 7,650 2,012 307
4548 inurl:login.cgi intitle:NETGEAR 2017-07-14 1 3,093 563 288
4498 "iSpy Keylogger” "Passwords Log” ext:txt ~ 2017-05-29 2 1,814 520 139
1394 intitle:"BlueNet Video Viewer” 2006-06-25 1 1,771 273 155
4562 inurl:”/api/index.php” intitle:UniFi 2017-07-31 1 1,460 258 235
542 ”Active Webcam Page” inurl:8080 2004-10-09 3 1,449 98 173
4073 intitle:”Index of” "WhatsApp Databases” 2015-09-07 4 1,324 83 95
4343 intitle:”open webif” “Linux set-top-box” 2016-10-24 1 1,253 109 225
4570 inurl:_vti_pvt/administrators.pwd 2017-08-03 2 933 136 128
4574 inurl:”img/main.cgi?next_file” 2017-07-31 1 874 138 127
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Fig. 5. Number of published and used Google dorks from GHDB with the
number of clicks and impressions as a function of the publication years

private information from shopping websites, received most of
the clicks and impressions.

The most popular Google dorks published in phase three
between 2015 and 2017 are at the same time the top-ten Google
dorks and were already covered in the last subsection.

5) Categories: GHDB classifies Google dorks into fourteen
different categories, such as Files Containing Passwords or
Various Online Devices. In the following, we analyze whether
Google dorks from certain categories are more interesting and,
therefore, more often used. Figure [f] shows the number of
Google dorks published by GHDB (red) and used during our
evaluation period (blue) (top figure) along with the number of
clicks (yellow) and impressions (green) (bottom figure) as a
function of the category in GHDB. The category Advisories
and Vulnerabilities contains by far the highest number of
Google dorks. Even though Google dorks from this category
lead to vulnerable systems, which is a primary goal of an
attacker, the number of used Google dorks is rather small.
An attacker has to take further actions and needs a lot of
knowledge to exploit the found system, which might explain
this difference. In contrast, the categories Files Containing
Juicy Info and Files Containing Passwords have less pub-
lished but more used Google dorks. Google dorks from both
categories reveal interesting information which is easy to
obtain and use, without the necessity of advanced knowledge.
The category Various Online Devices contains a variety of
devices, such as surveillance cameras, routers or printers.
Taking the already mentioned growing interest in IoT devices
into account, the high usage rate (both regarding the absolute
number of used Google dorks and percentaged concerning
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Fig. 6. Number of published and used Google dorks from GHDB with the
number of clicks and impressions as a function of the category in GHDB.
The categories are: A Advisories and Vulnerabilities, B Files Containing
Juicy Info, C Pages Containing Login Portals, D Various Online Devices, E
Files Containing Passwords, F Sensitive Directories, G Footholds, H Error
Messages, I Web Server Detection, J Vulnerable Servers, K Network or
Vulnerability Data, L Vulnerable Files, M Files Containing Usernames, N
Sensitive Online Shopping Info

the published Google dorks in this category) is expected.
Notably, the category Sensitive Online Shopping Info has only
two used Google dorks. However, these two Google dorks
are responsible for a considerable number of impressions.
The two Google dorks search for personal information and
are, therefore, very interesting for attackers. Many categories
have a considerable number of used Google dorks but a low
number of clicks and impressions which further supports our
assumption that many Google dorks are used without malicious
intentions.

6) Correlation position and clicks: A high position in the
search results is desirable because it usually increases the
likelihood of people visiting a website. Google Search Console
provides the average position in the search results of a website
for each performed search query. Overall, our data set obtained
from Google Search Console contains 29,355 entries. An entry
consists of honeypot, day and search query along with the
statistical information number of clicks and impressions as
well as average position among the search results. Hence,
the same search query can have multiple entries on different
honeypots and days. Figure [7] shows standard deviation (red)
and mean (blue) of the positions among the search results
as a function of the number of clicks. The parentheses on
the x-axis contain the number of entries for the particular
number of clicks. Thus, the results are less meaningful for
higher numbers of clicks because only very few entries are
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Fig. 7. Mean and standard deviation of positions among search results as a
function of the number of clicks

available. Nevertheless, the graphic shows that entries with
a higher number of clicks have a lower position among the
search results which confirms the assumption that a better
position among the search results increases the click likelihood.

V. THREATS TO VALIDITY

Although we demonstrated that our system is providing
useful insights into the usage of Google dorks in the wild,
there are some threats to validity which we discuss in the
following section. First, the Google search engine has to
index our honeypages so that an attacker can find a particular
honeypage when using the corresponding Google dork. Ac-
cording to Figure 3] in Section the number of indexed
honeypages per Google dork varies, which we can not control.
Furthermore, we detected a change in the number of indexed
honeypages over time, i.e., honeypages were added or removed
from the Google search index. We addressed this issue by using
multiple honeypots and, thereby, increasing the likelihood for
a honeypage being indexed at least once. Furthermore, we
focused our evaluation on the overall obtained search queries,
clicks and impressions instead of the results we got from single
honeypots. Thereby, we can balance the differences in the
number of indexed honeypages and still get meaningful results.

Additionally, as discussed previously, we can not link
the Google Search Console information with the requests we
received at the honeypots, limiting our results to the Google
Search Console data. However, we argue that the focus of
this study is the use of Google dorks in the wild, instead of
what attackers intend to do with the collected information.
Nevertheless, a connection of both data sources could reveal
additional information and is interesting for future research.

Our insights are limited to the Google dorks in GHDB. We
argue that it is not possible to gain any completeness because
using the Google dork keywords, an attacker can generate
arbitrary Google dorks. In contrast, we need the Google dork
in advance to generate the corresponding honeypage. GHDB
is by far the most comprehensive list of Google dorks publicly
available so that the usage of this list provides a good overview
of available Google dorks. Additionally, our infrastructure
works with Google dorks from other data sources.
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VI. CONCLUSION

In this paper, we presented DorkPot, a dynamic honeypot to
collect requests originating from Google dorks. To the best of
our knowledge, we are the first to analyze Google dork usage
from a server perspective. We used Google dorks as input and
generated honeypages tailored to be found via a Google search
for each input Google dork. Finally, we bundled all generated
honeypages into a low-interaction server honeypot.

In our evaluation, we analyzed more than 400 search
queries, which we collected via Google Search console
throughout more than ten months on ten deployed instances of
DorkPot. We showed that 371 Google dorks were used to find
our honeypots. In particular, attackers were interested in new
Google dorks published between 2015 and 2017 and searched
among others for IoT devices, such as surveillance cameras.
Additionally, old Google dorks published between 2004 and
2006 were used to a lesser extent as well. Again, Google dorks
revealing surveillance cameras were responsible for a majority
of clicks and impressions. Our results show that website
operator and vendors of Internet-accessible devices should pay
attention to Google dorks as often ignored reconnaissance
technique. To detect whether their systems are targeted or
not, they can either monitor newly published Google dorks
or analyze search queries used to find their websites.
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