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Downside Risk Evaluation with the R
Package GAS
by David Ardia, Kris Boudt, and Leopoldo Catania

Abstract Financial risk managers routinely use non–linear time series models to predict the downside
risk of the capital under management. They also need to evaluate the adequacy of their model
using so–called backtesting procedures. The latter involve hypothesis testing and evaluation of loss
functions. This paper shows how the R package GAS can be used for both the dynamic prediction and
the evaluation of downside risk. Emphasis is given to the two key financial downside risk measures:
Value-at-Risk (VaR) and Expected Shortfall (ES). High-level functions for: (i) prediction, (ii) backtesting,
and (iii) model comparison are discussed, and code examples are provided. An illustration using the
series of log–returns of the Dow Jones Industrial Average constituents is reported.

Introduction

The GAS package of Catania et al. (2016) provides a complete framework for modeling, estimating
and predicting time series processes for which the time variation in the parameters is driven by the
score of the conditional density function. This increasingly popular class of score-driven models has
been introduced by Creal et al. (2013) and Harvey (2013). Ardia et al. (2019) describe the general
functionality implemented in the GAS package, but do not cover the functionality useful for the
estimation and backtesting of Value-at-Risk (VaR) and Expected Shortfall (ES), which are the two
leading risk measures used in finance. The aim of this paper is to show how the functions available in
the GAS package can be used for VaR and ES evaluation, prediction, and backtesting.

The economic relevance of this topic follows partly from the Basel Accords (currently the Basel III
Accords), which impose that banks and financial institutions have to meet capital requirements, and
must rely on state-of-the-art risk systems. In particular, they must assess the uncertainty about the
future values of their portfolios and estimate the extent and the likelihood of potential losses using
a risk measure. Nowadays, VaR and ES risk measures are the standards (Jorion, 1997). For an asset
(or portfolio) return, the VaR at a given time horizon equals the return such that lower returns only
occur with a given probability level α (referred to as the risk level, and which is typically set to one or
five percent, that is α ∈ {0.01, 0.05}). The ES risk measure is the expectation of the asset (or portfolio)
return when the return is below the VaR level.

The estimation of the VaR and ES thus requires first to accurately estimate the conditional dis-
tribution of the future portfolios’ or assets’ returns. Formally, assuming a continuous cumulative
density function (cdf ) with time-varying parameters θt ∈ Rd and additional static parameters ψ ∈ Rq,
F(·; θt, ψ), for the log return at time t, rt ∈ R, the VaRt(α) is given by:

VaRt(α) ≡ F−1(α; θt, ψ) ,

where F−1(·) denotes the inverse of the cdf, that is, the quantile function. It follows that VaRt(α) is
nothing more than the α–quantile of the return distribution at time t.1 The ES metric measures the
expected loss after a violation of the VaR level and it is defined as:

ESt(α) ≡
1
α

∫ VaRt

−∞
z dF(z, θt, ψ) .

It follows that a crucial point for correct VaR and ES assessment is the determination of F(·) and its
parameters θt and ψ. For a general overview of existing methods, we refer the reader to Nieto and
Ruiz (2016). In this paper, we illustrate how this can be achieved using the framework of Generalized
Autoregressive Score (GAS) models introduced by Creal et al. (2013) and Harvey (2013). GAS models
are also referred to as Score Driven (SD) models and Dynamic Conditional Score (DCS) models and
have been used extensively for financial risk management purposes. For a comparison between the
accuracy of VaR and ES estimates obtained by the GAS approach against alternative volatility models,
we refer the reader to Bernardi and Catania (2016), Gao and Zhou (2016), Ardia et al. (2018) and Ardia
et al. (2019).

Formally, in GAS models the vector of time-varying parameters, θt, is updated through a dynamic

1Sometimes VaR is defined with respect to the loss variable lt = −rt. All the arguments of this paper can be
easily adapted to this case.
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equation based on the score of the conditional2 probability density function of rt, f (·; θt, ψ), that is:

θt+1 ≡ κ + Ast + Bθt , (1)

where st is the (possibly) scaled score of f (·; θt, ψ) with respect to θt, evaluated in rt; see Creal et al.
(2013) and also the Appendix for examples. The coefficients κ, A, and B control for the evolution of θt
and need to be estimated along with ψ from the data, usually by maximum likelihood.

We focus on the three major steps practitioners involved in risk management face during their job:
(i) prediction of future downside risk, (ii) backtesting, and (iii) comparison with alternative models.
The empirical part of the article deals with these three points from an applied perspective while the
computational part details the GAS functionalities devoted to downside risk.

A flexible GAS specification for modeling financial returns

Financial returns exhibit several stylized facts that need to be taken into consideration to produce
reliable risk forecasts. Empirically, the distribution of returns is (left) skewed and fat tailed, and its
variance is time varying (i.e., returns exhibit the so-called volatility clustering); see, for example, McNeil
et al. (2015).

To account for these features, we consider a very flexible specification, in which we assume that
the log return at time t, rt, is distributed conditionally on past observations as follows:

rt|It−1 ∼ SKST (rt; µ, σt, ξ, ν) ,

where It−1 is the information set up to time t − 1, and SKST (rt; ·) denotes the skew Student-t
distribution of Fernández and Steel (1998) with location µ ∈ R, time-varying scale (volatility) σt > 0,
and skewness and shape parameters ξ > 0 and ν > 2, respectively. We parametrize the SKST
distribution as in Bauwens and Laurent (2005) such that E[rt | It−1] = µ and V[rt | It−1] = σ2

t . To
ensure positivity of the volatility parameter, we set the time-varying GAS parameter θt in (1) to
θt ≡ θt ≡ log σt, and we define ψ ≡ (µ, ξ, ν). In the Appendix, we show that the corresponding score
st which enters linearly in the updating equation (1) is given by:

st ≡
(

zt (ν + 1) (zt −m)

(ξ∗t )
2 (ν− 2) + z2

t
− 1

)
,

with ξ∗t ≡ ξ I{zt≥0}−I{zt≤0}, where I{·} is the indicator function equal to one if the condition holds,

and zero otherwise, and with zt ≡
(

rt−µ
σt

)
k + m, where expressions for k and m are provided in the

Appendix. For a fixed value of the asymmetry parameter ξ, we see that the effect of shock on future
values is dampened when ν decreases. Starting from the general SKST distribution, we recover as
special cases:

(i) the Student-t distribution, ST , imposing ξ = 1;

(ii) the Normal distribution, N , imposing ν = ∞ and ξ = 1.

(See the Appendix for the score in these cases.) Given a series of T log returns, r1, . . . , rT , the
model parameters are estimated by maximizing the log-likelihood function; see Blasques et al. (2014).
Prediction with GAS models is straightforward thanks to the recursive nature of the updating equa-
tion (1). Specifically, the one-step ahead predictive distribution F(·; θ̂T+1, ψ̂) is available in closed
form whereas the h-step ahead distribution (h > 1) needs to be simulated; see Blasques et al. (2016).
VaR and ES forecasts are easily obtained from the predictive distribution.

Evaluating downside risk forecasts

The recursive method of forecasting is usually employed to backtest the adequacy of a statistical
model, as well as to perform models comparisons in terms of VaR and ES predictions (Marcellino et al.,
2006). The objective of a backtesting analysis is to verify the precision of the prediction by separating
the estimation window and the evaluation period. The objective of a model comparison analysis is
usually to order models according to a loss function.

To this end, the full sample of T returns is divided into an in-sample period of length S, and an
out-of-sample period of length H. Model parameters are first estimated over the in-sample period,

2The conditioning is intended with respect to the past observations rt−s (s > 0), however, for notational
purposes, this is not always reported.
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subsequently the h-step ahead prediction of the return distribution at time S + h is generated along
with the corresponding VaR and ES measures. These steps are repeated augmenting the in-sample
period with new observations in a recursive way until we reach the end of the series, T. If during
the data augmentation step, past observations are eliminated, we are considering a rolling window,
otherwise we have an expanding window. In this paper, we follow the standard approach in daily risk
management of a typical trading desk and use the rolling window configuration with h = 1.

VaR backtesting

Once a series of VaR predictions is available, forecasts adequacy is assessed through backtesting
procedures. VaR backtesting procedures usually check the correct coverage of the unconditional and
conditional left-tail of the log-returns distribution. Correct unconditional coverage (UC) was first
considered by Kupiec (1995), while correct conditional coverage (CC) by Christoffersen (1998). The
main difference between UC and CC concerns the distribution we are focusing on. For instance,
UC considers correct coverage of the left-tail of the unconditional log-return distribution, f (rt),
while CC deals with the conditional density f (rt|It−1). From an inferential perspective, UC looks
at the ratio between the number of realized VaR violations observed from the data and the expected
number of VaR violations implied by the chosen risk level, α, during the forecast period, that is,
αH. In order to investigate CC, Christoffersen (1998) proposed a test on the series of VaR exceedance
{dt, t = S, . . . , S+ H}, where dt ≡ I{rt < VaRt(α)}, usually referred to as the hitting series. Specifically,
if correct conditional coverage is achieved by the model, VaR exceedances should be independently
distributed over time.

The DQ test by Engle and Manganelli (2004) assesses the joint hypothesis that E[dt] = α and the
hit variables are independently distributed. The implementation of the test involves the de-meaned
process Hitα

t ≡ dt − α. Under correct model specification, unconditionally and conditionally, Hitα
t has

zero mean and is serially uncorrelated. The DQ test is then the traditional Wald test of the joint nullity
of all coefficients in the following linear regression:

Hitα
t = δ0 +

L

∑
l=1

δl Hitα
t−l + δL+1VaRt−1(α) + εt .

Under the null hypothesis of correct unconditional and conditional coverage, we have that the Wald
test statistic is asymptotically chi-square distributed with L + 2 degrees of freedom. Engle and
Manganelli (2004) set L = 4 lags, which has become the standard choice.

VaR model comparison

Real world applications consider several models for VaR prediction. If correct unconditional/condi-
tional coverage is achieved by more than one model, the practitioner faces the problem of not being
able to choose between different alternatives. In this situation, model comparison techniques are used
to choose the best performing model. Model ranking is achieved thanks to the definition of a loss
function. Among several available loss functions for quantile prediction (McAleer and Da Veiga, 2008),
the Quantile Loss (QL) used for quantile regressions (Koenker and Bassett, 1978) is one of the most
frequent choices in the VaR context; see González-Rivera et al. (2004). Formally, given a VaR prediction
at risk level α for time t, the associated quantile loss, QLt (α), is defined as:

QLt(α) ≡ (α− dt) (rt −VaRt(α)) . (2)

QL is an asymmetric loss function that penalizes more heavily with weight (1− α) the observations
for which we observe returns showing VaR exceedance. Quantile losses are then averaged over the
forecasting period, and models with lower averages are preferred. The outperformance of model A
versus model B is finally assessed looking at the ratio between the average QLs, associated with the
two models, that is, if QLA/QLB < 1 then model A outperforms model B and vice versa.

Joint VaR and ES model comparison

The quantile loss function in (2) for VaR assessment is appropriate since quantiles are elicited by it, that
is, when the conditional distribution is static over the sample, the VaR can be estimated by minimizing
the average quantile loss function. Unfortunately, there is no loss function available for which the ES
risk measure is elicitable; see, for instance, Bellini and Bignozzi (2015) and Ziegel (2016). However, it
has been recently shown by Fissler and Ziegel (2016) (FZ) that the couple (VaR, ES) is jointly elicitable,
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as the values of vt and et that minimize the sample average of the following loss function:

FZ(rt, vt, et, α, G1, G2) ≡ (dt − α)

(
G1(vt)− G1(rt) +

1
α

G2(et)vt

)
− G2(et)

(
1
α

dtrt − et

)
− G2(et) ,

where G1 is weakly increasing, G2 is strictly positive and strictly increasing, and G ′2 = G2. The GAS
package implements the FZ loss function for a specific choice of G1, G2 and G2. We set G1(x) = 0 and
G2(x) = −1/x and assume the values of VaR and ES to be strictly negative; see Patton et al. (2017)
and Ardia et al. (2018) for a similar approach. For VaR and ES predictions at risk level α for time t, the
associated joint loss function (FZL) is then given by:

FZLα
t ≡

1
α ESα

t
dt (rt −VaRα

t ) +
VaRα

t
ESα

t
+ log(−ESα

t )− 1 , (3)

for ESα
t ≤ VaRα

t < 0. As for QL, FZ losses are averaged over the forecasting period and models with
lower averages are preferred.

Summarizing, given a set of available models, a typical downside risk forecasting exercise consists
of the following three major steps:

(i) perform rolling forecast during the out-of-sample period;

(ii) perform statistical backtest of VaR predictions using UC, CC, and DQ tests;

(iii) perform VaR and joint VaR and ES model comparison looking at the average QL and FZL of
each model.

The next section is devoted to detailing the implementation of each of these steps with the GAS
package.

Empirical illustration

We first briefly review how to make predictions with GAS models using the GAS package. The main
illustration is for the last T = 2,500 observations of the daily log-returns of the General Electric stock
in the dataset dji30ret, which is a dataframe consisting of the thirty Dow Jones Industrial Average
constituents:

> library("GAS")
> data("dji30ret", package = "GAS")
> dji30ret <- tail(dji30ret, 2500)

The corresponding returns are shown as gray points in Figure 1. We see the time-variation in the
volatility of the daily return series, which we model next using the GAS specification with skewed
Student-t innovations, as previously described. Thanks to the GAS package, it is straightforward to
estimate the GAS model on rolling windows of the available data and to make one-step ahead rolling
forecasts.

Specifically, the user needs to specify the model through the UniGASSpec() function, and then
perform rolling predictions with the UniGASRoll() function. In the GAS package, models are specified
through the definition of the conditional distribution assumed for the data, Dist, and the list of
time-varying parameters, GASpar.

Dist is a character equal to the label of the distribution. For instance, SKST is identified as
"sstd", ST as "std", and N as "norm"; see Table 1 of Ardia et al. (2019) for the list of distributions
and associated labels available in the GAS package.

GASPar is a list with named boolean elements. Entries name are: location, scale, skewness,
and shape. These indicate whether the associated distribution parameters are time varying or not.
By default we have GASPar = list(location = FALSE,scale = TRUE,skewness = FALSE,shape =
FALSE), that is, only volatility is time varying. For instance, in order to specify the three GAS models:
GAS–N , GAS–ST , and GAS–SKST , we need to execute the following lines:

> GASSpec_N <- UniGASSpec(Dist = "norm", GASPar = list(scale = TRUE))
> GASSpec_ST <- UniGASSpec(Dist = "std", GASPar = list(scale = TRUE))
> GASSpec_SKST <- UniGASSpec(Dist = "sstd", GASPar = list(scale = TRUE))

UniGASSpec() delivers an object of the class "uGASSpec" which comes with several methods; see
help("UniGASSpec").

The UniGASRoll() function accepts an object of the class "uGASSpec", "GASSpec", a numeric vector
for the series of returns, data, and other arguments, such as:
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Figure 1: One-step ahead VaR forecasts for General Electric (GE) at the α = 1% risk level for the GAS–N (solid)
and GAS–ST (dotted) models. Gray points indicate realized log returns calculated as the differences between the
natural logarithm of two consecutive prices. The forecasting period ranges from February 14, 2005, to February 3,
2009, for a total of H = 1,000 out-of-sample observations.

• the length of the out-of-sample period: ForecastLength;

• the type of the rolling window used to update the data: RefitWindow;

• the number of observations within each model re-estimation: RefitEvery,

among others; see help("UniGASRoll"). ForecastLength and RefitEvery are numeric elements
while RefitWindow is a character equal to "moving" (the default) for a rolling window scheme or
"recursive" for an expanding window. As previously mentioned, in this paper we consider the case
RefitWindow = "moving". We fix the length of the out-of-sample period to H = 1000, and re-estimate
the model parameters at the weekly frequency (i.e., every 5 new observations). One-step ahead rolling
predictions for the first series of returns using the GAS–N model are then computed as:

> library("parallel")
> cluster <- makeCluster(2)
> H <- 1000
> Roll_N <- UniGASRoll(dji30ret[, "GE"], GASSpec_N, RefitEvery = 5,
cluster = cluster, ForecastLength = H)

We have also made use of parallel processing (with 2 cores) through the definition of a cluster
object exploiting the parallel package included in R since version 2.14.0.

The output of UniGASRoll() is an object of the class "uGASRoll" which comes with several methods;
see help("UniGASRoll").

VaR and ES one-step ahead rolling forecasts at the risk level α = 0.01 can be computed from Roll_N
using the quantile and ES methods, respectively:

> alpha <- 0.01
> VaR_N <- quantile(Roll_N, probs = alpha)
> ES_N <- ES(Roll_N, probs = alpha)

VaR_N and ES_N are matrices of dimension 1,000× 1 containing the VaR and ES forecasts at the 1%
risk level.3 While VaR predictions are obtaining by numerical inversion of the predicted cumulative
density function, ES predictions are computed by numerical adaptive integration of the predicted

3The probs argument in quantile and ES can also be a numeric vector of p VaR levels. In this case, VaR_N and
ES_N would be a 1000× p matrix.
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density relying on the cubature package (Narasimhan and Johnson, 2017). Multi-step ahead prediction
of VaR and ES are obtained by Monte Carlo simulation and are still computed with the quantile and
ES methods. To compute multi-step ahead predictions an object of class "uGASFor" delivered by the
function UniGASFor has to be provided; see help("UniGASFor").

Predictions for the GAS–ST and GAS–SST specifications using the GASSpec_ST and GASSpec_SKST
model definitions are computed analogously. Figure 1 reports 1% VaR predictions delivered by the
GAS–N (solid line) and the GAS–ST (dotted line). We see the impact of the recent Global Financial
Crisis on the volatility of the series. Indeed, the 2007-2008 returns of GE present much more variability
than over the period 2005-2006, which is translated into lower values for VaR. What is also clearly
evident from Figure 1, is the robustness of the GAS–ST model to extreme observations compared
with GAS–N . Indeed, on April 11, 2008, General Electric reported an unexpected net income drop of
6%, which in turn translated to a fall of about 12% of its market value. The signal captured by GAS–N
was that of an abrupt increase in volatility, with the consequence of large VaR level predictions. In
contrast, the GAS–ST model slightly increased the volatility level and continued to predict reasonable
VaR levels. What happened is that, GAS–ST treated the 12% negative return as a realization from the
fat-tailed Student-t distribution, hence tapering its impact on the conditional volatility level. On the
contrary, GAS–N treated the negative return as a realization from the Normal distribution, which is a
clear signal of increase of volatility. The same behavior of the GAS–N specification is shown in the ES
predictions (not reported to save space).

VaR backtesting

Let us now show how the accuracy of the VaR forecasts can be evaluated using the BacktestVaR()
function in the GAS package. This function accepts the following arguments:

• data, numeric containing the out-of-sample data;

• VaR, numeric containing the series of VaR forecasts;

• alpha, the VaR risk level α;

• Lags, the number of lags used in the DQ test, by default Lags = 4; see Engle and Manganelli
(2004).

The function returns a list with named entries:

• LRuc, the test statistic and associated p-value for the UC test of Kupiec (1995);

• LRcc, the test statistic and associated p-value for the CC test of Christoffersen (1998);

• DQ, the test statistic and associated p-value for the DQ test of Engle and Manganelli (2004);

• Loss, the quantile loss (QL), as defined in (2), together with the average QL used by González-
Rivera et al. (2004);

• AD, the mean and max VaR Absolute Deviation (AD) used by McAleer and Da Veiga (2008);

• AE, the Actual over Expected ratio.

For instance, in order to compute the VaR backtest measures defined above on the forecast series
VaR_N, we use:

> VaRBacktest_N <- BacktestVaR(data = tail(dji30ret[, "GE"], H), VaR = VaR_N, alpha = alpha)

Then, the DQ test statistic and its associated p-value can be extracted as:

> VaRBacktest_N$DQ
$stat

[,1]
[1,] 52.47578

$pvalue
[,1]

[1,] 4.7043e-09

which, in this case, is against the null of correct model specification for the 1% VaR level.

Now, if we evaluate VaR forecasts using the GAS–ST model, and save the results as the VaRBacktest_ST
object, then the DQ test reports:
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> VaRBacktest_ST$DQ
$stat

[,1]
[1,] 8.763418

$pvalue
[,1]

[1,] 0.270091

α = 1% α = 5%

Asset GAS–N GAS–ST GAS–SKST GAS–N GAS–ST GAS–SKST
AA 0.00 0.17 0.16 0.00 0.00 0.00
AIG 0.00 0.00 0.00 0.00 0.00 0.00
AXP 0.09 0.99 0.25 0.19 0.13 0.15
BA 0.29 0.98 0.30 0.13 0.55 0.54
BAC 0.00 0.00 0.06 0.00 0.03 0.06
C 0.00 0.00 0.00 0.01 0.00 0.00
CAT 0.00 0.22 0.22 0.00 0.38 0.51
CVX 0.00 0.02 0.00 0.02 0.03 0.01
DD 0.03 0.41 0.34 0.35 0.31 0.13
DIS 0.00 0.05 0.08 0.00 0.35 0.15
GE 0.00 0.04 0.00 0.16 0.30 0.03
GM 0.00 0.06 0.02 0.02 0.29 0.17
HD 0.01 0.01 0.10 0.09 0.63 0.57
HPQ 0.00 0.01 0.03 0.00 0.11 0.35
IBM 0.06 0.03 0.03 0.00 0.04 0.05
INTC 0.04 0.07 0.33 0.06 0.10 0.06
JNJ 0.95 1.00 0.35 0.00 0.00 0.00
JPM 0.18 0.95 0.21 0.27 0.42 0.17
KO 0.00 0.00 0.00 0.00 0.00 0.00
MCD 0.11 0.68 0.73 0.10 0.17 0.40
MMM 0.00 0.34 0.00 0.00 0.18 0.33
MRK 0.00 0.05 0.06 0.00 0.11 0.05
MSFT 0.11 0.28 0.42 0.05 0.43 0.52
PFE 0.15 0.37 0.38 0.13 0.81 0.75
PG 0.00 0.18 0.07 0.13 0.11 0.06
T 0.35 0.37 0.42 0.02 0.01 0.06
UTX 0.38 0.41 0.07 0.09 0.90 0.93
VZ 0.04 0.99 0.96 0.88 0.70 0.83
WMT 0.00 0.00 0.01 0.93 0.54 0.26
XOM 0.00 0.00 0.00 0.07 0.04 0.17

Table 1: DQ test statistic p-values for the Dow Jones Industrial Average constituents one-step ahead
VaR forecasts at the two downside risk levels α = 1% and α = 5%. Under the null hypothesis, we have
correct model specification for the chosen risk level. Light gray cells indicate p-values lower than 1%.
The forecasting period ranges from February 14, 2005, to February 3, 2009, for a total of H = 1,000
out-of-sample observations. The model parameters are re-estimated at the monthly frequency.

The large p-value indicates that the null of the correct model specification for the 1% VaR cannot
be rejected at the usual levels of significance for the GAS–ST model.

We reproduce this analysis for each of the thirty daily stock return series in the dji30ret data
set previously detailed. The out-of-sample period starts on February 14, 2005, and includes the
recent Global Financial Crisis of 2007-2008. We consider two VaR risk levels: α = 1% and α = 5%.
The code used for this application is available in the GitHub GAS repository: https://github.com/
LeopoldoCatania/GAS/wiki.

Table 1 reports the p-values of the DQ test for the three model specifications and the two VaR
risk levels. Under the null hypothesis, we have correct model specification for the α-quantile level.
Clearly, our results indicate that GAS–N is suboptimal with respect to GAS–ST and GAS–SKST
in terms of correct unconditional and conditional coverage. This result is somehow expected since
GAS–ST and GAS–SKST exhibit excess kurtosis and deliver more robust updates for the volatility
parameter than GAS–N . Moreover, we see that GAS–ST and GAS–SKST perform similarly in terms
of correct unconditional and conditional coverage. Hence, the inclusion of skewness does not seem
to increase the performance of VaR predictions for the considered series. Indeed, sometimes results
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are even worse for GAS–SKST compared with GAS–ST , indicating that the estimation error for the
additional skewness parameter could worsen VaR predictions. This is the case for example for 3M
Company (MMM) when GAS–SKST rejects the null for α = 1%, whereas GAS–ST does not.

VaR model comparison

The goal of VaR model comparison is to rank the models in terms of accuracy of their VaR forecasts.
This can be done using the average value of the quantile loss in (2), as available in the output from the
BacktestVaR() function.

In our application on the daily stock returns of General Electric, we find that the model comparison
in terms of average QL also favors GAS–ST compared with GAS–N . Indeed the ratio between the
QL of GAS–ST and GAS–N is below unity indicating a lower average quantile loss when using the
GAS–ST :

> round(VaRBacktest_ST$Loss$Loss / VaRBacktest_N$Loss$Loss, 2)
[1] 0.94

This indicates that GAS–ST outperforms GAS–N by 6% in terms of average QL.

The left part of Table 2 (QL ratios) reports the results of repeating this model comparison analysis
for all thirty daily stock return series in the dji30ret dataset.4 It shows, for both α = 1% and α = 5%,
the ratios between the average QL of the considered models over the one delivered by GAS–N . Values
greater than one indicate outperformance of GAS–N , and vice versa. Consistently with the DQ test
results, we find that GAS–ST and GAS–SKST perform similarly and are preferred to GAS–N .

QL ratios FZL ratios

α = 1% α = 5% α = 1% α = 5%

Asset GAS–ST GAS–SKST GAS–ST GAS–SKST GAS–ST GAS–SKST GAS–ST GAS–SKST
AA 0.93 0.93 0.98 0.98 0.95 0.95 0.98 0.98
AIG 1.00 1.01 1.02 1.03 0.86 0.87 0.93 0.94
AXP 0.93 0.94 0.98 0.99 0.94 0.96 0.98 1.00
BA 0.99 1.00 0.99 0.99 0.98 0.99 0.99 0.99
BAC 0.83 0.85 1.01 1.01 0.88 0.88 0.98 0.98
C 0.97 1.00 1.02 1.03 0.94 0.95 0.98 0.99
CAT 0.82 0.83 0.91 0.91 0.83 0.84 0.91 0.91
CVX 1.00 1.18 1.01 1.06 0.99 1.20 1.01 1.09
DD 0.94 0.94 0.98 0.98 0.95 0.97 0.98 0.98
DIS 0.98 0.99 1.00 1.00 0.95 0.96 0.99 1.00
GE 0.95 0.96 0.97 0.98 0.96 0.99 0.98 0.98
GM 0.87 0.88 0.93 0.94 0.91 0.93 0.96 0.97
HD 1.02 1.00 1.00 1.00 1.01 1.00 1.00 1.00
HPQ 0.95 0.95 0.94 0.94 0.95 0.95 0.95 0.95
IBM 1.00 1.00 0.94 0.94 0.92 0.93 0.93 0.93
INTC 0.97 0.97 0.96 0.96 0.94 0.94 0.96 0.96
JNJ 1.03 1.01 1.02 1.00 1.00 0.99 1.01 0.99
JPM 0.92 0.92 0.98 0.99 0.94 0.95 0.99 0.99
KO 0.97 0.96 0.96 0.96 0.97 0.96 0.93 0.92
MCD 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99
MMM 0.82 0.83 0.90 0.90 0.80 0.82 0.89 0.89
MRK 0.83 0.84 0.89 0.89 0.81 0.82 0.88 0.89
MSFT 0.86 0.87 0.90 0.90 0.87 0.90 0.91 0.91
PFE 0.83 0.84 0.91 0.91 0.83 0.83 0.90 0.91
PG 0.86 0.87 0.95 0.95 0.82 0.85 0.92 0.93
T 0.95 0.97 1.00 1.00 0.97 0.98 0.99 0.99
UTX 0.93 0.94 0.94 0.94 0.93 0.94 0.92 0.92
VZ 0.91 0.91 0.98 0.98 0.93 0.94 0.97 0.97
WMT 0.97 0.97 0.99 1.00 0.96 0.97 0.99 1.00
XOM 1.02 0.96 1.02 1.01 0.97 0.92 1.00 0.99

Table 2: QL ratios (left part) and FZL ratios (right part) for GAS–ST and GAS–SKST with respect to
GAS–N for the two risk levels α = 1% and α = 5%. Values greater than one indicate outperformance of
GAS–N and vice versa. Light gray cells indicate ratios higher than one (note that values are rounded).
The forecasting period ranges from February 14, 2005, to February 3, 2009, for a total of H = 1,000
out-of-sample observations. The model parameters are re-estimated at the monthly frequency.

Joint VaR and ES model comparison

The FZLoss function implements the FZ loss and accepts the following arguments:

4Here we re-estimate the model parameters at the monthly frequency (i.e., every 21 new observations).

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 418

• data: vector of observations;

• VaR: vector of VaR predictions;

• ES: vector of ES predictions;

• alpha: the α risk level.

This function returns a numeric vector of the same size of data with the FZ losses computed at each
point in time. For instance, using the VaR_N and ES_N vectors previously computed we can evaluate
the associated FZ loss as:

> FZL <- FZLoss(data = tail(dji30ret[, "GE"], H), VaR = VaR_N, ES = ES_N,
alpha = alpha)

where FZL is a numeric vector of length H.

The right part of Table 2 (FZL ratios) reports the results of performing model comparison analysis
for all thirty daily stock return series in the dji30ret dataset according to the FZ loss reported in (3). It
shows, for both α = 1% and α = 5%, the ratios between the average FZ loss of the considered models
over the one delivered by GAS–N . Values greater than one indicate outperformance of GAS–N , and
vice versa. Consistently with the comparison in terms of only VaR predictions, we find that GAS–ST
and GAS–SKST perform similarly and are preferred to GAS–N .

Conclusion

Under the regulation of the Basel Accords, risk managers of financial institutions need to rely on
state-of-the-art methodologies for predicting and evaluating their downside risk (Board of Governors
of the Federal Reserve Systems, 2012). This article illustrates the usefulness of the R package GAS in
putting the theory of modern downside risk management into practice. The recommended strategy
consists of four steps: (i) model specification, (ii) downside risk predictions, (iii) backtesting, and (iv)
model comparison. We illustrate this proposed implementation in R using the package GAS applied
to the Value-at-Risk and Expected Shortfall estimation for the daily returns of the thirty Dow Jones
Industrial Average constituents.

Computational details

The results in this paper were obtained using R 3.5.0 with the package GAS version 0.2.8 available on
CRAN at https://cran.r-project.org/package=GAS. Computations were performed on Windows 7
x64 (build 7601) Service Pack 1, x86_64-w64-mingw32/x64 (64-bit) with Intel(R) Xeon(R) CPU E5-2560
v3 2.30 GHz.
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Appendix

To obtain the score of the SKST distribution, we first write its log density evaluated in rt:

log fSKST (rt; µ, σt, ξ, ν) = log g + log k + c− log σt −
ν + 1

2
log

1 +

[(
rt−µ

σt

)
k + m

]2

(ν− 2) (ξ∗t )
2

 ,
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where:

m ≡ µ1

(
ξ − 1

ξ

)

k ≡
√(

1− µ2
1
) (

ξ2 +
1
ξ2

)
+ 2µ2

1 − 1

g ≡ 2
ξ + 1

ξ

c ≡ 1
2
[− log (ν− 2)− log π] + log Γ

(
ν + 1

2

)
− log Γ

( ν

2

)
,

with:

µ1 ≡
2
√

ν− 2
(ν− 1)

Γ( ν+1
2 )

Γ( ν
2 )Γ(

1
2 )

,

and ξ∗t ≡ ξ I{zt≥0}−I{zt≤0}, where I{·} is the indicator function, and zt ≡
(

rt−µ
σt

)
k + m. Taking the

partial derivative of the log density with respect to θt, yields the score st, given by:

st ≡
∂ log fSKST

∂θt
=

(
zt (ν + 1) (zt −m)

(ξ∗t )
2 (ν− 2) + z2

t
− 1

)
.

In the case where ξ = 1, we have m = 0, and the score becomes:

st =

(
z2

t (ν + 1)
(ν− 2) + z2

t
− 1

)
,

which is the score of a Student-t distribution. Finally, when ν→ ∞, we obtain:

st = z2
t − 1 ,

which is the score of the Normal distribution.

Bibliography

D. Ardia, K. Bluteau, K. Boudt, and L. Catania. Forecasting performance of Markov–switching GARCH
models: A large–scale empirical study. International Journal of Forecasting, 34(4):733–747, 2018. URL
https://doi.org/10.1016/j.ijforecast.2018.05.004. [p410, 413]

D. Ardia, K. Boudt, and L. Catania. Generalized autoregressive score models in R: The GAS package.
Journal of Statistical Software, 88(6):1–28, 2019. URL https://doi.org/10.18637/jss.v088.i06.
[p410, 413]

L. Bauwens and S. Laurent. A new class of multivariate skew densities, with application to generalized
autoregressive conditional heteroscedasticity models. Journal of Business & Economic Statistics, 2005.
URL https://doi.org/10.1198/073500104000000523. [p411]

F. Bellini and V. Bignozzi. On elicitable risk measures. Quantitative Finance, 15(5):725–733, 2015. URL
https://doi.org/10.1080/14697688.2014.946955. [p412]

M. Bernardi and L. Catania. Comparison of Value–at–Risk models using the MCS approach. Computa-
tional Statistics, 31(2):579–608, 2016. URL https://doi.org/10.1007/s00180-016-0646-6. [p410]

F. Blasques, S. J. Koopman, and A. Lucas. Maximum likelihood estimation for correctly specified
generalized autoregressive score models: Feedback effects, contraction conditions and asymptotic
properties. Techreport TI 14-074/III, Tinbergen Institute, 2014. URL http://www.tinbergen.nl/
discussionpaper/?paper=2332. [p411]

F. Blasques, S. J. Koopman, K. Łasak, and A. Lucas. In–sample confidence bands and out–of–sample
forecast bands for time–varying parameters in observation–driven models. International Journal
of Forecasting, 32(3):875–887, 2016. URL https://doi.org/10.1016/j.ijforecast.2015.11.018.
[p411]

Board of Governors of the Federal Reserve Systems. 99th annual report. Technical report, Board
of Governors of the Federal Reserve Systems, 2012. URL https://www.federalreserve.gov/
publications/annual-report/files/2012-annual-report.pdf. [p418]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://doi.org/10.1016/j.ijforecast.2018.05.004
https://doi.org/10.18637/jss.v088.i06
https://doi.org/10.1198/073500104000000523
https://doi.org/10.1080/14697688.2014.946955
https://doi.org/10.1007/s00180-016-0646-6
http://www.tinbergen.nl/discussionpaper/?paper=2332
http://www.tinbergen.nl/discussionpaper/?paper=2332
https://doi.org/10.1016/j.ijforecast.2015.11.018
https://www.federalreserve.gov/publications/annual-report/files/2012-annual-report.pdf
https://www.federalreserve.gov/publications/annual-report/files/2012-annual-report.pdf


CONTRIBUTED RESEARCH ARTICLES 420

L. Catania, K. Boudt, and D. Ardia. GAS: Generalized Autoregressive Score Models, 2016. URL https:
//github.com/LeopoldoCatania/GAS. R package version 0.2.7. [p410]

P. F. Christoffersen. Evaluating interval forecasts. International Economic Review, 39(4):841–862, 1998.
URL http://www.jstor.org/stable/2527341. [p412, 415]

D. Creal, S. J. Koopman, and A. Lucas. Generalized autoregressive score models with applications.
Journal of Applied Econometrics, 28(5):777–795, 2013. URL https://doi.org/10.1002/jae.1279.
[p410, 411]

R. F. Engle and S. Manganelli. CAViaR: Conditional autoregressive Value at Risk by regression
quantiles. Journal of Business & Economic Statistics, 22(4):367–381, 2004. URL https://doi.org/10.
1198/073500104000000370. [p412, 415]

C. Fernández and M. F. Steel. On Bayesian modeling of fat tails and skewness. Journal of the Ameri-
can Statistical Association, 93(441):359–371, 1998. URL https://doi.org/10.1080/01621459.1998.
10474117. [p411]

T. Fissler and J. F. Ziegel. Higher order elicitability and Osband’s principle. The Annals of Statistics, 44
(4):1680–1707, 2016. URL https://doi.org/10.1214/16-AOS1439. [p412]

C.-T. Gao and X.-H. Zhou. Forecasting VaR and ES using dynamic conditional score models and
skew Student distribution. Economic Modelling, 53:216–223, 2016. URL https://doi.org/10.1016/
j.econmod.2015.12.004. [p410]

G. González-Rivera, T.-H. Lee, and S. Mishra. Forecasting volatility: A reality check based on option
pricing, utility function, Value–at–Risk, and predictive likelihood. International Journal of Forecasting,
20(4):629–645, 2004. URL https://doi.org/10.1016/j.ijforecast.2003.10.003. [p412, 415]

A. C. Harvey. Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic
Time Series. Cambridge University Press, 2013. URL https://doi.org/10.1017/CBO9781139540933.
[p410]

P. Jorion. Value at Risk. McGraw–Hill, New York, 1997. URL https://doi.org/10.1036/0071464956.
[p410]

R. Koenker and G. Bassett. Regression quantiles. Econometrica, 46(1):33–50, 1978. URL https:
//doi.org/10.2307/1913643. [p412]

P. H. Kupiec. Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives,
3(2):73–84, 1995. URL https://doi.org/10.3905/jod.1995.407942. [p412, 415]

M. Marcellino, J. H. Stock, and M. W. Watson. A comparison of direct and iterated multistep AR
methods for forecasting macroeconomic time series. Journal of Econometrics, 135(1):499–526, 2006.
URL https://doi.org/10.1016/j.jeconom.2005.07.020. [p411]

M. McAleer and B. Da Veiga. Single–index and portfolio models for forecasting Value–at–Risk
thresholds. Journal of Forecasting, 27(3):217–235, 2008. URL https://doi.org/10.1002/for.1054.
[p412, 415]

A. J. McNeil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools.
Princeton university press, Princeton, 2015. URL https://doi.org/10.1111/jtsa.12177. [p411]

B. Narasimhan and S. G. Johnson. cubature: Adaptive Multivariate Integration over Hypercubes, 2017. URL
https://CRAN.R-project.org/package=cubature. R package version 1.3-11. [p415]

M. R. Nieto and E. Ruiz. Frontiers in VaR forecasting and backtesting. International Journal of Forecasting,
32(2):475–501, 2016. URL https://doi.org/10.1016/j.ijforecast.2015.08.003. [p410]

A. J. Patton, J. F. Ziegel, and R. Chen. Dynamic semiparametric models for expected shortfall, 2017.
URL https://doi.org/10.2139/ssrn.3000465. Working paper. [p413]

J. F. Ziegel. Coherence and elicitability. Mathematical Finance, 26(4):901–918, 2016. URL https:
//doi.org/10.1111/mafi.12080. [p412]

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

https://github.com/LeopoldoCatania/GAS
https://github.com/LeopoldoCatania/GAS
http://www.jstor.org/stable/2527341
https://doi.org/10.1002/jae.1279
https://doi.org/10.1198/073500104000000370
https://doi.org/10.1198/073500104000000370
https://doi.org/10.1080/01621459.1998.10474117
https://doi.org/10.1080/01621459.1998.10474117
https://doi.org/10.1214/16-AOS1439
https://doi.org/10.1016/j.econmod.2015.12.004
https://doi.org/10.1016/j.econmod.2015.12.004
https://doi.org/10.1016/j.ijforecast.2003.10.003
https://doi.org/10.1017/CBO9781139540933
https://doi.org/10.1036/0071464956
https://doi.org/10.2307/1913643
https://doi.org/10.2307/1913643
https://doi.org/10.3905/jod.1995.407942
https://doi.org/10.1016/j.jeconom.2005.07.020
https://doi.org/10.1002/for.1054
https://doi.org/10.1111/jtsa.12177
https://CRAN.R-project.org/package=cubature
https://doi.org/10.1016/j.ijforecast.2015.08.003
https://doi.org/10.2139/ssrn.3000465
https://doi.org/10.1111/mafi.12080
https://doi.org/10.1111/mafi.12080


CONTRIBUTED RESEARCH ARTICLES 421

David Ardia
Institute of Financial Analysis
University of Neuchâtel, Switzerland
and
Department of Decision Sciences
HEC Montréal, Canada
ORCiD 0000-0003-2823-782X
david.ardia@unine.ch

Kris Boudt
Department of Economics
Ghent University, Belgium
and
Vrije Universiteit Brussel, Belgium
and
Vrije Universiteit Amsterdam, The Netherlands
ORCiD 0000-0002-1000-5142
kris.boudt@vub.be

Leopoldo Catania (corresponding author)
Department of Economics and Business Economics and CREATES
School of Business and Social Sciences
Aarhus University, Denmark
ORCiD 0000-0002-0981-1921
leopoldo.catania@econ.au.dk

The R Journal Vol. 10/2, December 2018 ISSN 2073-4859

mailto:david.ardia@unine.ch
mailto:kris.boudt@vub.be
mailto:leopoldo.catania@econ.au.dk

