

DPDK performance
Lessons learned in vRouter

Stephen Hemminger
stephen@networkplumber.org

@networkplumber

mailto:stephen@networkplumber.org
mailto:stephen@networkplumber.org

Agenda

● DPDK Overview
● Performance Goals
● Historical viewpoint
● Design choices
● Resources
● Lessons learned

DPDK Overview

● Environment Abstraction Layer
● Poll Mode Drivers
● Optimized algorithms
● Sample applications
● Tests

Environment Abstraction Layer

● DPDK on Linux
– Dedicated threads

– Pinned memory

– PCI bus access

Poll Mode Drivers

● IXGBE – Intel 10G
● IGB/E1000 – Intel 1G
● Virtio – KVM
● VMXNET3 – Vmware
● I40E – Intel 40G
● Broadcom/Qlogic – Bnx2x
● Mellanox
● …

Optimized Algorithms

● Longest Prefix Match
● Hash – variable and 4 byte
● Match (ACL)
● IP fragmentation
● Memory – mbuf, pool, malloc
● Ring
● QoS
● Timer

Demo Applications

● Examples
– L2fwd Bridge/Switch→

– L3fwd Router→

– L3fwd-acl Firewall→

– Load_balancer

– qos_sched Quality Of Service→

60 160 260 360 460 560 660 760 860 960 1060 1160 1260 1360 1460

Packet size (bytes)

Ti
m

e
(n

s)

Server
Packet

Network
Infrastructure

Packet time vs size

Time Budget

● Packet
– 67.2ns = 201 cycles @ 3Ghz

● Cache
– L3 = 8 ns

– L2 = 4.3

● Atomic operations
– Lock = 8.25 ns

– Lock/Unlock = 16.1

Network stack challenges at increasing speeds – LCA 2015
 Jesper Dangaard Brouer

Some basics …

Sandy Bridge
Ivy Bridge

Haswell Skylake

L1 data access (cycles) 4 4 4

L1 Peak Bandwidth (bytes/cycle) 2x16 2x32 load
1x32 store

2x32 load
1x32 store

L2 data Access (cycles) 12 11 12

L2 peak bandwidth (bytes/cycle) 1x32 64 64

Shared L3 Access (cycles) 26-31 34 44

L3 peak bandwidth (bytes/cycle) 32 - 32

Data hit in L2 or L1D Dcache of another
core

43 – clean hit
60 – modified hit

• BUT memory is ~70+ ns away (i.e. 2.0 GHz = 140+
cycles)

Source: Intel® 64 and IA-32 Architectures: Optimization Reference Manual

The CPU Core

Source: Intel® 64 and IA-32 Architectures: Optimization Reference Manual

Architecture choices

● Legacy
– Existing proprietary code

● BSD clone
– Reuse permissive licensed code

● Buy
● Build

– Incremental development

Mutual Exclusion

● Locking
– Reader/Writer lock is expensive

– Read lock more overhead than spin lock

● Userspace RCU
– Don't modify, create and destroy

– Impacts thread model

Forwarding thread

Read Burst

Process Burst

Statistics:
 Received Packets
 Transmit Packets

 Iterations
 Packets processed

Split thread model

Rx0.0

Rx0.1

Core 1

Core 5

Tx1

Core 2

Core 6

Tx1

Rx1.0

Rx1.1

Core 3

Core 4

Core Interface RX Rate TX Rate Idle

1 p1p1 14.9M 0

2 p1p1 0 250

3 p33p1 0 250

4 p33p1 1 250

5 p1p1 0 250

6 p33p1 11.9M 1

Internal Instrumentation

Memory Layout

● Cache killers
– Linked lists

– Poor memory layout

– Global statistics

– Atomic

● Use carefully
– Prefetching

– Inlining

Perf – active thread

Samples: 16K of event 'cycles', Event count (approx.): 11763536471

 14.93% dataplane [.] ip_input

 10.04% dataplane [.] ixgbe_xmit_pkts

 7.69% dataplane [.] ixgbe_recv_pkts

 7.05% dataplane [.] T.240

 6.82% dataplane [.] fw_action_in

 6.61% dataplane [.] fifo_enqueue

 6.44% dataplane [.] flow_action_fw

 6.35% dataplane [.] fw_action_out

 3.92% dataplane [.] ip_hash

 3.69% dataplane [.] cds_lfht_lookup

 2.45% dataplane [.] send_packet

 2.45% dataplane [.] bit_reverse_ulong

Speed killer's

● I/O
● VM exit's
● System call's
● PCI access
● HPET
● TSC
● Floating Point
● Cache miss
● CPU pipeline stall

TSC counter

while(1)
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc – prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
for (portid = 0; portid < RTE_MAX_ETHPORTS;

portid++) {

send_burst(qconf,
qconf>tx_mbufs[portid].len,
portid);

CPU stall

Heisenburg: observing performance slows it down

Idle sleep

● 100% Poll 100% CPU→
– CPU power limits

– No Turbo boost

– PCI bus overhead

● Small sleep's
– 0 - 250us

– Based on activity

fw_action_in

 │ struct ip_fw_args fw_args = {

 .m = m,

 │ .client = client,

 │ .oif = NULL };

 1.54 │1d: movzbl %sil,%esi

 0.34 │ mov %rsp,%rdi

 0.04 │ mov $0x13,%ecx

 0.16 │ xor %eax,%eax

 57.66 │ rep stos %rax,%es:(%rdi)

 4.68 │ mov %esi,0x90(%rsp)

 20.45 │ mov %r9,(%rsp)

Memset overhead

Why is QoS slow?

static inline void

rte_sched_port_time_resync(struct rte_sched_port *port)

{

uint64_t cycles = rte_get_tsc_cycles();

uint64_t cycles_diff = cycles port>time_cpu_cycles;

double bytes_diff = ((double) cycles_diff) /
port>cycles_per_byte;

/* Advance port time */

port>time_cpu_cycles = cycles;

port>time_cpu_bytes += (uint64_t) bytes_diff;

Longest Prefix Match

Nexthop

1.1.1.1

/24
table

1.1.1.X

If = dp0p9p1
gw = 2.2.33.5

1.1.3.6

LPM issues

● Prefix 8 bit next hop→
● Missing barriers
● Rule update
● Fixed size /8 table

Conclusion

● DPDK can be used to build fast router
– 12M pps per core

● Lots of ways to go slow
– Fewer ways to go fast

Q & A

Thank you

Stephen Hemminger
stephen@networkplumber.org

@networkplumber

mailto:stephen@networkplumber.org
mailto:stephen@networkplumber.org

PCI passthrough

● I/O TLB size
– Hypervisor uses IOMMU to map guest

– IOMMU has small TLB cache

– Guest I/O exceeds TLB

● Solution
– 1G hugepage on host KVM

– Put Guest in huge pages

– Only on KVM – requires manual configuration

DPDK Issues

● Static configuration
– Features

– CPU architecture

– Table sizes

● Machine specific initialization
– # of Cores, Memory Channels

● Poor device model
– Works for Intel E1000 like devices

Slowpath

● Packets placed in DPDK rte_ring
– Wakeup via eventfd

● Shadow thread
– Poll's for event or kernel packets

● Packet's received
– Sent to kernel via TAP device

● Local packets
– injected into Tx Thread

DPDK performance
Lessons learned in vRouter

Stephen Hemminger
stephen@networkplumber.org

@networkplumber

Hello

My name is Stephen Hemminger and I am the chief
Architect of the Brocade virtual Router product. You
can follow me on twitter at @networkplumber.

In 2012, Intel released the Dataplane Development Kit
and Vyatta was one of the first companies to develop
an accelerated software router using it. This became
known as the virtual Router (vRouter) after Brocade
acquired Vyatta 3 years ago

This talk describes that journey.

Agenda

● DPDK Overview
● Performance Goals
● Historical viewpoint
● Design choices
● Resources
● Lessons learned

I will begin with overview of what is the DPDK.
Then talk about what the performance goals we were

trying to achieve.
In order to provide some context, first we need to take

a look inside modern hardware. I know you thought
this was a software talk (joke).

This leads to several key design decisions.
Finally, the good part some of the lessons learned in

the process.

DPDK Overview

● Environment Abstraction Layer
● Poll Mode Drivers
● Optimized algorithms
● Sample applications
● Tests

The Intel DPDK contains 5 main areas

Environment Abstraction Layer

● DPDK on Linux
– Dedicated threads

– Pinned memory

– PCI bus access

The DPDK is almost a stripped down mini-operating
system itself. In many ways writing DPDK
applications is like writing kernel drivers.

Originally DPDK was built to run on both Linux and
bare metal. The bare metal support is mostly gone
now because it is much easier to development in a
full OS environment and the Linux scheduler is now
able to achieve near baremetal performance for
dedicated real time processes.

Poll Mode Drivers

● IXGBE – Intel 10G
● IGB/E1000 – Intel 1G
● Virtio – KVM
● VMXNET3 – Vmware
● I40E – Intel 40G
● Broadcom/Qlogic – Bnx2x
● Mellanox
● …

Ixgbe was the starting point of DPDK development.
Intel, 6Wind, and Brocade all developed Virtio and

VMXnet3 drivers in parallel; the project had not
started to collabrate yet.

Intel and other vendors have gone to provide more
physical and virtual devices.

Optimized Algorithms

● Longest Prefix Match
● Hash – variable and 4 byte
● Match (ACL)
● IP fragmentation
● Memory – mbuf, pool, malloc
● Ring
● QoS
● Timer

The normal glibc routines are often too general and
have performance killers (like having to be thread
safe).

The core of the DPDK is really the lockless ring and
memory mangement.

Demo Applications

● Examples
– L2fwd Bridge/Switch→

– L3fwd Router→

– L3fwd-acl Firewall→

– Load_balancer

– qos_sched Quality Of Service→

What got us excited was seeing the performance
potential in the demo applications. These are like the
old technical notes that came with hardware.

But it is important to realize that these are so stripped
down that they do not match real world.

60 160 260 360 460 560 660 760 860 960 1060 1160 1260 1360 1460

Packet size (bytes)

Ti
m

e
(n

s)

Server
Packet

Network
Infrastructure

Packet time vs size

Linux on most hardware can process 1M packets per
second per CPU core. This has gotten better in last
few years but we wanted to do an order of magnitude
better to be competive in Software Defined
Networking.

A typical server packet is 1000 bytes. But Network
operators look at small packet performance.

The goal of the vRouter was to process smallest size
packets on a 10G bit interface with 1 CPU.

Time Budget

● Packet
– 67.2ns = 201 cycles @ 3Ghz

● Cache
– L3 = 8 ns

– L2 = 4.3

● Atomic operations
– Lock = 8.25 ns

– Lock/Unlock = 16.1

Network stack challenges at increasing speeds – LCA 2015
 Jesper Dangaard Brouer

At 10G bit/sec, there is 67.2ns to process a packet

A cache miss is 8 nanoseconds

A lock operation (uncontended) is 8.25 ns

Some basics …

Sandy Bridge
Ivy Bridge

Haswell Skylake

L1 data access (cycles) 4 4 4

L1 Peak Bandwidth (bytes/cycle) 2x16 2x32 load
1x32 store

2x32 load
1x32 store

L2 data Access (cycles) 12 11 12

L2 peak bandwidth (bytes/cycle) 1x32 64 64

Shared L3 Access (cycles) 26-31 34 44

L3 peak bandwidth (bytes/cycle) 32 - 32

Data hit in L2 or L1D Dcache of another
core

43 – clean hit
60 – modified hit

• BUT memory is ~70+ ns away (i.e. 2.0 GHz = 140+
cycles)

Source: Intel® 64 and IA-32 Architectures: Optimization Reference Manual

This slide is from Intel, it shows in more
detail the overhead for each type of
cache miss.

The bottom line is that even one full
cache miss to memory means not being
able to meet the performance goal!

The CPU Core

Source: Intel® 64 and IA-32 Architectures: Optimization Reference Manual

CPU's are no longer just a single flow. Modern CPU's
have multiple execution units. The goal of high
performance software is to keep all these execution
units busy.

You can measure this with perf, and it is often
surprising. Most programs are lucky to keep 2
pipeline's busy.

Architecture choices

● Legacy
– Existing proprietary code

● BSD clone
– Reuse permissive licensed code

● Buy
● Build

– Incremental development

Now that we know the building blocks, it was time to
chose the architecture. We had four choices. Legacy
vendors like Cisco and Juniper have very rich
software stacks and can use those but they are not
designed to work in this environment.

We also considered just using FreeBSD. But the SMP
design was more primitive than Linux and would not
do what we wanted either.

Several vendors offered proprietary stacks but they
were too expensive, especially for a startup like
Vyatta.

So we decided to build it from scratch using available
permissive software.

Mutual Exclusion

● Locking
– Reader/Writer lock is expensive

– Read lock more overhead than spin lock

● Userspace RCU
– Don't modify, create and destroy

– Impacts thread model

Traditional SMP locking is safe but expensive. Every
spin lock requires a locked operation on the bus.
Remember we wanted to keep all those execution
units busy! Reader/write locking is even more
expensive. For the uncontended case a read lock
takes more overhead than a spin lock.

Instead we use the LGPL Userspace RCU library when
ever possible. RCU is not part of the DPDK but goes
well with the thread design of DPDK applications.

Forwarding thread

Read Burst

Process Burst

Statistics:
 Received Packets
 Transmit Packets

 Iterations
 Packets processed

The thread design of most DPDK applications is what
is known as “Run to completion” or “Hungry
puppies”.

Each thread polls from one or more sources than
processes that burst of packets.

There is a natural “grace period” for Read-Copy-
Update to work.

Split thread model

Rx0.0

Rx0.1

Core 1

Core 5

Tx1

Core 2

Core 6

Tx1

Rx1.0

Rx1.1

Core 3

Core 4

The vRouter works like the Intel demo applications.
Packets are divided in hardware into multiple receive

queues. This queues are polled by dedicated CPU
cores that process the packets and put them into a
ring between threads.

The transmit CPU's read from the ring and feed the
transmit queue in the hardware.

Core Interface RX Rate TX Rate Idle

1 p1p1 14.9M 0

2 p1p1 0 250

3 p33p1 0 250

4 p33p1 1 250

5 p1p1 0 250

6 p33p1 11.9M 1

Internal Instrumentation

For development, we added internal measurements of
the number of packets processed per second by
each core. There is also a more detailed model of
the load on each interface.

Using this we can see the receive rate of one cpu, and
the transmit out the other. Note: on this system the
transmit is on a slower slot and can not achieve line
rate.

Memory Layout

● Cache killers
– Linked lists

– Poor memory layout

– Global statistics

– Atomic

● Use carefully
– Prefetching

– Inlining

In order to achieve this performance it is important to
think about using cache effectively. That means no
cache hostile algorithms like linked lists. Also being
very careful where elements are layed out in data
structures.

Perf – active thread

Samples: 16K of event 'cycles', Event count (approx.): 11763536471

 14.93% dataplane [.] ip_input

 10.04% dataplane [.] ixgbe_xmit_pkts

 7.69% dataplane [.] ixgbe_recv_pkts

 7.05% dataplane [.] T.240

 6.82% dataplane [.] fw_action_in

 6.61% dataplane [.] fifo_enqueue

 6.44% dataplane [.] flow_action_fw

 6.35% dataplane [.] fw_action_out

 3.92% dataplane [.] ip_hash

 3.69% dataplane [.] cds_lfht_lookup

 2.45% dataplane [.] send_packet

 2.45% dataplane [.] bit_reverse_ulong

During development we also made extensive use of
the Linux “perf” tool. This is an early example of the
detail seen.

The actual data changes quite dynamically. Small
changes in cache layout can have a big effect.

Often the code that is targeted as hot is not at fault,
only getting blamed for a cache miss.

Speed killer's

● I/O
● VM exit's
● System call's
● PCI access
● HPET
● TSC
● Floating Point
● Cache miss
● CPU pipeline stall

We have seen all of these.

TSC counter

while(1)
cur_tsc = rte_rdtsc();
diff_tsc = cur_tsc – prev_tsc;

if (unlikely(diff_tsc > drain_tsc)) {
for (portid = 0; portid < RTE_MAX_ETHPORTS;

portid++) {

send_burst(qconf,
qconf>tx_mbufs[portid].len,
portid);

CPU stall

Heisenburg: observing performance slows it down

This is an example from one of the Intel demo
applications.

The operation to read the timestamp count register
blocks the CPU, stalling multiple execution units until
after the value is read.

In doing these kind of things, the act of measuring the
performance can slow it down.

Idle sleep

● 100% Poll 100% CPU→
– CPU power limits

– No Turbo boost

– PCI bus overhead

● Small sleep's
– 0 - 250us

– Based on activity

Most of the Intel sample applications work by polling
the CPU 100% of the time. This provides the lowest
latency but often has worse performance.

Using 100% of the CPU means using 100% of the
possible power budged of the CPU, and causes
more PCI bus transactions.

To avoid this we used the example in the l3fwd power
management application to sleep for small intervals
when idle. And are also careful not to poll unused
hardware ports.

fw_action_in

 │ struct ip_fw_args fw_args = {

 .m = m,

 │ .client = client,

 │ .oif = NULL };

 1.54 │1d: movzbl %sil,%esi

 0.34 │ mov %rsp,%rdi

 0.04 │ mov $0x13,%ecx

 0.16 │ xor %eax,%eax

 57.66 │ rep stos %rax,%es:(%rdi)

 4.68 │ mov %esi,0x90(%rsp)

 20.45 │ mov %r9,(%rsp)

Memset overhead

Early in the development cycle, we used a lot of
FreeBSD code. This code a coding style of creating
internal data structures then passing that to other
routines. The creation of these structures caused an
implicit memory set. The memory set code in gcc
would generate these repeat string instructions.

The repeat string instruction is a loop inside the CPU,
and it keeps only one execution unit busy and the
area on the stack can be cache stale.

The solution was to replace the FreeBSD code with
better code.

Why is QoS slow?

static inline void

rte_sched_port_time_resync(struct rte_sched_port *port)

{

uint64_t cycles = rte_get_tsc_cycles();

uint64_t cycles_diff = cycles port>time_cpu_cycles;

double bytes_diff = ((double) cycles_diff) /
port>cycles_per_byte;

/* Advance port time */

port>time_cpu_cycles = cycles;

port>time_cpu_bytes += (uint64_t) bytes_diff;

Intel provide a rich QoS library which enabled
hierarchical Quality Of Service. During testing it was
discovered that enabling QoS was causing up to
20% drop in performance.

Using perf it was determined the problem was here.
Can you see the problem?

The issues is that the code is doing a 64 bit floating
point divide which one of the is the slowest
instructions on the Intel Archiecture. The resolution
was to convert this to a scaled integer multiply and
the problem vanished.

Longest Prefix Match

Nexthop

1.1.1.1

/24
table

1.1.1.X

If = dp0p9p1
gw = 2.2.33.5

1.1.3.6

One of the key algorithms in a router is Longest Prefix
Match. This is the operation that looks up a
destination address and returns the next hop
gateway address and interface.

The DPDK provides the skeleton of a library for LPM. It
uses a very large table to map 24 bits of the address
to either a target or a sub-table. This is very similar
to how routing lookup is done in hardware.

LPM issues

● Prefix 8 bit next hop→
● Missing barriers
● Rule update
● Fixed size /8 table

The DPDK LPM did not meet our needs because it
would not scale. It was limited to 8 bits (256) entries
for next hop; was missing key compiler barrires.

Also, it would not scale in testing to handling a millions
of rules as is typically seen on backbone router.

Our solution was to extend the code to have wider
entries and use a red-black tree for rule
management.

We are working with the community to fold this back,
but there are obstacles because it will be a major
change to the existing Application Binary Interface.

Conclusion

● DPDK can be used to build fast router
– 12M pps per core

● Lots of ways to go slow
– Fewer ways to go fast

Q & A

Thank you

Stephen Hemminger
stephen@networkplumber.org

@networkplumber

PCI passthrough

● I/O TLB size
– Hypervisor uses IOMMU to map guest

– IOMMU has small TLB cache

– Guest I/O exceeds TLB

● Solution
– 1G hugepage on host KVM

– Put Guest in huge pages

– Only on KVM – requires manual configuration

DPDK Issues

● Static configuration
– Features

– CPU architecture

– Table sizes

● Machine specific initialization
– # of Cores, Memory Channels

● Poor device model
– Works for Intel E1000 like devices

Slowpath

● Packets placed in DPDK rte_ring
– Wakeup via eventfd

● Shadow thread
– Poll's for event or kernel packets

● Packet's received
– Sent to kernel via TAP device

● Local packets
– injected into Tx Thread

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Some basics …
	The CPU Core
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Some basics …
	The CPU Core
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

