The Arizona EPIC Project & Controversies in TBI Management

Amy Boise, NREMT-P, FP-C Lead Educator, EPIC Project University of Arizona

Contributions

Dr. Dan Spaite, MD, FACEP
Dr. Ben Bobrow, MD, FACEP
Bruce Barnhardt, RN, CEP
John Tobin, CEP
Amy Boise, NREMT-P, FP-C

Disclosures

*This project is funded by the NIH

*1R01NS071049-01A1 (Adults)

*3R01NS071049-S1 (EPIC4Kids)

Impact of TBI

- * Leading cause of death / disability worldwide
- ***** □ In USA TBI
 - * 5.3 million Americans or 2% of the population have moderate to severe disability require long term assistance with daily activities
 - * DIRECT cost
 - * \$60 billion/year (2000) cause of death / disability worldwide

Primary Brain Injury

- *Damage that occurs at the moment of impact
 - *We can't fix it
 - *Neuro-Surgeon can't fix it either
- * Damage is already done

Secondary Brain Injury

- *Occurs after the initial trauma
 - Caused By:
 - 1) Systemic hypoxia
 - 2) Poor CNS blood flow
- Major impact in TBI outcome

Do EVERYTHING you can to PREVENT secondary brain injury

-			
-			
-			
-			
-			
_			
_			
-			
-			
•			
-			
-			

The Stakes Are High

A mild to moderate <u>primary</u> TBI can be converted into a severe TBI from <u>secondary</u> injury due to improper management

The ESSENCE of the Science

- ➤ What happens in the first few minutes profoundly impacts outcome
- ➤ The "H-Bombs" for TBI
 - Hypoxemia
 - Hypotension
 - Hyperventilation

The Science of the "H Bombs"

≻<u>Hypoxia</u>:

- Hypoxia in the field is <u>very</u> common 55% of patients with severe TBI
- A <u>single</u> O₂ sat of <90% is <u>independently</u> associated with <u>at least</u> a doubling of mortality

One study: <u>Tripled</u> mortality

The Science of the "H Bombs"

Hypotension:

- A single episode of SBP < 90mmHg is independently associated with at least a doubling of mortality
 - Repeated episodes: 800% increase in death

The Science of the "H Bombs"

- > Hyperventilation: (intubated pts)
 - Hyperventilation is <u>independently</u> associated with <u>at least</u> a doubling of mortality
 - One study showed a <u>six-fold</u> increase

Why is Hyperventilation So Bad??

- *How could something that <u>decreases</u> ICP cause a six-fold <u>increase</u> in mortality?
 - *The decreased ICP occurs <u>because of</u> profound cerebral vasoconstriction
 - *All advantages gained from lower ICP are overwhelmed by the CNS ischemia

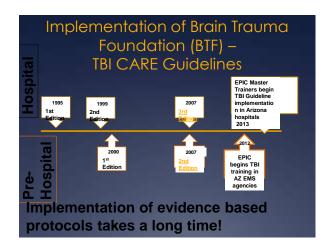
The Essence of the G	uidelines
* <u>Prevent</u> and <u>aggressively</u> treat hypoxia	
* <u>Prevent</u> and <u>aggressively</u> treat	
hypotension	-
* <u>Meticulously</u> prevent and <u>rapidly</u> correct hyperventilation	38

Paradigm Shift

- *These are simple changes in the way we treat TBI patients
- *Simple is not always easy
- *These treatments change the way we have done business for years
- *Constant Focus is the key to changing these habits

The Arizona EPIC Project

The Excellence in Prehospital Injury Care (EPIC) Project is a unique effort to improve survival and neurologic outcome for victims of major TBI who are cared for by all Arizona EMS agencies



The Arizona EPIC Project

>An Arizona public health initiative:

- Implementing the nationally-vetted, evidence-based EMS TBI guidelines throughout the state
- Measuring the impact of implementation by linking EMS data with hospital data

Controversy #1 Intubation

Should TBI Patients Be Intubated... At All?

- * Numerous studies:
 - $\boldsymbol{\ast}$ Poorer outcomes in TBI patients intubated in the field
- * Severity-adjusted outcomes (field vs. ED ETI)
 - * Death: aOR 3.99
 - * Poor neuro outcome: aOR 1.61
 - * Moderate/severe functional impairment: aOR 1 92

Wang: Ann Emerg Med 2004;44:439-450.

Should TBI Patients Be Intubated... At All?

- *San Diego RSI Trial
 - * Field ETI vs. non-intubated EMS controls
 - * Risk of death: 24.2% vs. 33.0% (RI = 36.4%)
 - *Trial was terminated early by the DSMB due to increased mortality with RSI

Davis: J Trauma; 2003

Should TBI Patients Be Intubated... At All?

- *So...is ETI <u>bad</u> for TBI patients?
- *Many experts:
 - *ETI should be delayed until arrival at the ED

ETI is Bad???

- *Studies showing <u>worse</u> outcomes with ETI
 - * Stiell: CMAJ 2008;178:1141-52
 - * Davis: J Trauma 2003;54:444-53
 - * Davis: J Trauma 2005;58:933-9
 - * Davis: J Trauma 2005;59:486-90
 - * Denninghoff: West J Emerg Med 2008;9:184-9
 - * Murray: J Trauma 2000;49:1065-70
 - * Wang: Ann Emerg Med 2004;44:439-50
 - * Wang: Prehosp Emerg Care 2006;10:261-71
 - * Eckstein: Ann Emerg Med 2005;45:504-9
 - * Arbabi: J Trauma 2004;56:1029-32

But....Wait a Minute!!!

- *Studies showing <u>better</u> outcomes with ETI
 - * Winchell: Arch Surg 1997;132:592-7
 - * Klemen: Acta Anaesthesiol Scand 2006;50:1250-4
 - * Warner: Trauma 2007;9:283-89
 - * Davis: Resuscitation 2007;73:354-61
 - * Davis: Ann Emerg Med 2005;46:115-22
 - * Bulger: J Trauma 2005;58:718-23
 - * Bernard: Ann Sura 2010:252:959–965

-		
-		
-		

Should TBI Patients Be Intubated... At All?

- * Randomized: PM RSI Vs. ED intubation
- * <u>Meticulous ETCO₂ managemen</u>t post-ETI
- * Favorable Neuro Outcome (GOS-E 5-8)
 - * PM RSI: 51% (80/157) * ED ETI: 39% (56/142)
 - * aOR 1.28

Bernard. Ann Surg; 2010

So...Why the Dramatic Differences in the Studies???

- * The "Intubation-Hyperventilation Paradox"
 - * If done well, intubation has the *potential* to:
 - * Protect the airway
 - * Provide good ventilation and oxygenation
 - * Ironically...it also makes it <u>much easier</u> to:
 - * Over-ventilate
 - * Hyper-ventilate

Gaither, Spaite, Bobrow: Ann Emerg Med; 2012

Three Major Problems With Manual Ventilation

- 1. Hyperventilation:
 - -Bagging <u>faster</u> than one breath every <u>six</u> seconds (10 bpm) or ETCO2 <35
 - -Even <u>moderate</u> hyperventilation kills brain cells and causes <u>major</u>, debilitating morbidity or death

Three Major Problems With Manual Ventilation

- 2. <u>Over-ventilation</u>: Squeezing the bag too hard/too aggressively/too deeply →
 - -High airway pressure →
 - -Increased JVP and ICP
 - -Decreases venous return...decreasing cardiac output and cerebral perfusion
 - -Lung damage → ARDS

Three Major Problems With Manual Ventilation

- 3. <u>Inadvertent Ventilatory Inattentiveness</u>:
 - -A recent landmark discovery:
 - -<u>Every</u> healthcare provider has this neuro-psychiatric disorder

Inadvertent Ventilatory Inattentiveness (IVI)

- The syndrome: During manual ventilation... without <u>meticulous</u> prevention...<u>everyone</u> inevitably gets distracted and hyper/overventilates.
 - * Studies: Typical rate: 24-40+ bpm
 - * Our serum epi level is higher than the patient's!

Inadvertent Ventilatory Inattentiveness (IVI)

- Studies show we *cannot* "wing it"
 - *Without adjuncts...<u>everyone</u> manually ventilates...<u>wrong</u>
 - * Even anesthesiologists and RTs
 - *Three things are *unavoidable*:
 - *Death, Taxes...and IVI
 - *Hyperventilation is still the leading cause of secondary brain injury

Adjuncts for Preventing Hyperventilation

- * Cadence Device
 - * Visual Rate Timer
 - * 10 bpm
 - * 1 sec breath

Adjuncts for Preventing Hyperventilation

- *Pressure-controlled bag
 - * Helps prevent hyper <u>and</u> over-ventilation
 - * Will also soon be available for EPIC agencies

Adjuncts for Preventing Hyperventilation Continuous ETCO₂ monitoring Target: 40 mmHg Range: 35-45 mmHg

**EPIC Plan to Prevent IVI: The "Ventilator EMT" *The V-EMT's job: *Maniacal about ventilatory rate/depth *Meticulously uses ventilatory adjuncts *Should not be disturbed *Only function is ventilation

* Best: * Initial cadence device/PC bag followed by... * ETCO₂ monitoring to modulate ventilation rate asap followed by... * Mechanical ventilator asap @ 7cc/kg * Next Best: * Cadence device/PC bag * ETCO₂ monitoring * Acceptable: Cadence device/PC bag

If You Choose To Intubate

- *You take on the responsibility to meticulously monitor ventilations
- *If you don't meticulously monitor ventilations:

Your ALS airway is actually WORSE than a BLS airway

Caution to ALL Intubators

- * 1850 ED intubations
- * # of attempts vs. complication rates

14.6% (197/1349) 46.3% (157/339) 61.3% (68/111) 72.5% (37/51) 1 Attempt: 2 Attempts: 3 Attempts: 4+ Attempts:

- 2nd attempt TRIPLES complication rates
- Most common complications:
 - * Hypoxia and aspiration
 - Markedly increases mortality in TBI
- "First Pass Success" → BLS or rescue quickly

If You Choose To Intubate

- * Our work is not done once intubation is complete!
- * There is great chance of harming our patients when we intubate and hyperventilate
- There is great potential benefit to our patients with intubation and proper ventilation

<u>EPIC</u> Lesson Learned

Definitive Care

The "Definitive" Care of TBI Begins in the Field?

- ➤ The Classic Mantra: "Trauma is a surgical disease"
- ➤ So...how can EMS <u>begin</u> "Definitive Care"? →
 The "Neuronal Clock" is so short!!!
 - Lost neurons don't come back no matter how spectacular the neurosurgeon is
 - ➤ Proper EMS care is powerfully <u>synergistic</u> with subsequent surgical and critical care
 - "One live brain..."

EPIC Truth in O2

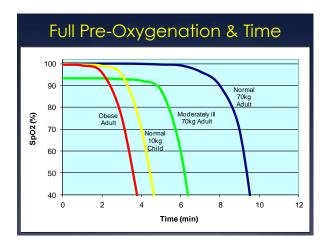
Oxygen

Isn't Too Much Oxygen Toxic???

- *EPIC Guideline:
 - * High-flow NRB on <u>anyone</u> who has a positive LOC or has an altered level of consciousness.
 - "Pre-oxygenation" is very effective at preventing hypoxia in patients who subsequently deteriorate
 - * Acute epidural
 - * Keep TBI patients on HF/NRB or...if intubated, 100% FIO₂ until arrival at the TC

EPIC numbers

- * We use GCS as a primary determinate of TBI
- * What percentage of patients have a GCS of 15 then later deteriorate?
- * OVER HALF!!! 52%
- ⇒ Being at "<u>more than 100%</u>" is a preemptive strike on hypoxia
 - ♦ Give the patient "BREATHING ROOM"


EPIC Evidence

- ★ Theoretical risk vs. <u>established</u> evidence →
 - * Hypoxia is disastrous
 - * Hypoxia is very common

Strongly emphasize high-flow oxygen

-	

Sweet or Un? Glucose

What About Too Much Glucose??? * Isn't hyperglycemia bad for neuro outcomes? * Should we give less glucose when they are hypoglycemic? * EBG: Treat BG <70 with full amp of D50

What About Too Much Glucose??? * Evidence is from in-hospital studies: * Hyperglycemia in poorly-controlled diabetics—<u>Day</u>s * Brief episodes of hyperglycemia * Impact in TBI is unknown * Theoretical risk vs. <u>established</u> evidence → * Hypoglycemia is bad for neurons

EPIC Perfusion

Blood Pressure

Management of Blood Pressure

- * The Guideline
- * When patient even has the *potential* for TBI:
 - * Start at least one IV
 - * Carefully monitor BP
- * Treatment of hypotension:
 - * Any SBP <90 mmHg → Initial bolus 1L NS/LR
 - * Continue *aggressive* fluid resuscitation if hypotension not corrected
 - \ast Follow initial boluses with sufficient rate to keep SBP ${\trianglerighteq}90$

_	
_	
_	
-	
-	
_	
_	
_	
_	
-	
_	
-	
_	
_	
_	
_	
-	
-	
-	

Multi-System Trauma With TBI

- *Multisystem Trauma:
 - * Will fluids increase internal bleeding if it hasn't been controlled yet???
- *"Permissive hypotension"??
 - * Literature: Penetrating torso wounds

Serious about Sedation

Sedation

Should TBI Patients be Sedated

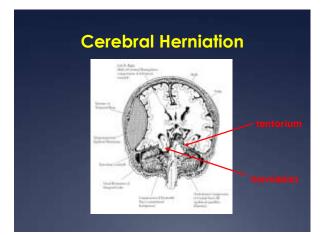
- *Classic approach to TBI
 - *"You can't over-sedate a TBI"
 - *Assumption: We don't want them moving around or fighting or agitated...so...keep them snowed

Should TBI Patients be Sedated

- *Problem:
 - *Every commonly-used sedative (both narcotics and benzos) are vasodilators
 - *Physiology of sedatives
 - * Decreased cardiac after-load
 - * Significantly decreased pre-load

Should TBI Patients be Sedated

- *Vasodilation/hypotension are really bad
 - *All commonly-used agents can cause hypotension
 - *BP can PLUMMET when they are given in compensated shock
 - * And you don't know who's got this!!!
 - *Reversing agents:
 - * Work centrally in CNS
 - * Do NOT reverse vascular effects

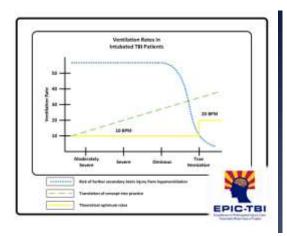

EPIC Evidence

Therapeutic Hyperventilation

"Therapeutic Hyperventilation

What about patients with cerebral herniation?

Cerebral Herniation


- *It's *RARE* in the prehospital environment
- *It has a very bad prognosis
- *Inability to confirm in the field

Cerebral Herniation

- *Most patients with <u>severe</u> TBI are <u>not</u> herniating
- *Real-world "translation":
 - * The worse the TBI, the faster we ventilate
- Many more patients harmed than helped

Treating Cerebral Herniation

- *Two approaches to treatment:
 - *#1: EPIC recommendation:
 - *Based upon this information...

Don't Hyperventilate under any circumstance

Treating Cerebral Herniation

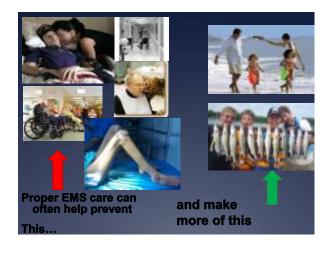
- * Option #2
- * If your local protocols/MD call for hyperventilation... <u>only</u> hyperventilate for <u>obvious, unequivocal</u> signs of herniation
- * Administer *mild/moderate* hyperventilation

* Adults (>15): 20 bpm * Children (2-14): 25 bpm * Infants (0-24 mo.): 30 bpm

Treating Cerebral Herniation

- * NOTE
 - * These rates are <u>not</u> evidence-based, they are completely arbitrary!!!
 - * Like most EMS
 - * When in doubt, don't hyperventilate

Treating Cerebral Herniation


- *If ETCO₂ monitoring available and you are going to hyperventilate:
 - * Maintain at 28-31mmHg
 - * Avoid ETCO₂ < 28mmHg
 - * It KILLS neurons!!!

•	
	

Parting Thoughts The EMS care of TBI patients REALLY matters

Parting Thoughts Avoid the H-Bombs! poxia potension perventilation

