

SNW Europe 2007

SNIA Tutorial

Fibre Channel Technologies: Current and Future

> Dr. M. K. Jibbe LSI

• 29th – 31st October • Congress Frankfurt •

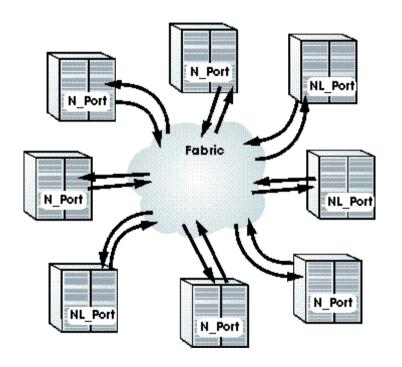
Fibre Channel Technologies "Current & Future"

Dr. M. K. Jibbe, LSI Corporation (ESG) Tom Hammond-Doel, LSI Corporation (ESG) Steven Wilson, Brocade

The objectives of this tutorial are:

- Provide the user with a Primer on Fibre Channel
- Project the market outlook and roadmap of Fibre Channel
- Share what is New in Fibre Channel Standards for Protocols APIs, and Management.

- The material contained in this tutorial is copyrighted by the SNIA.
- Member companies and individuals may use this material in presentations and literature under the following conditions:
 - Any slide or slides used must be reproduced without modification
 - The SNIA must be acknowledged as source of any material used in the body of any document containing material from these presentations.
- This presentation is a project of the SNIA Education Committee.



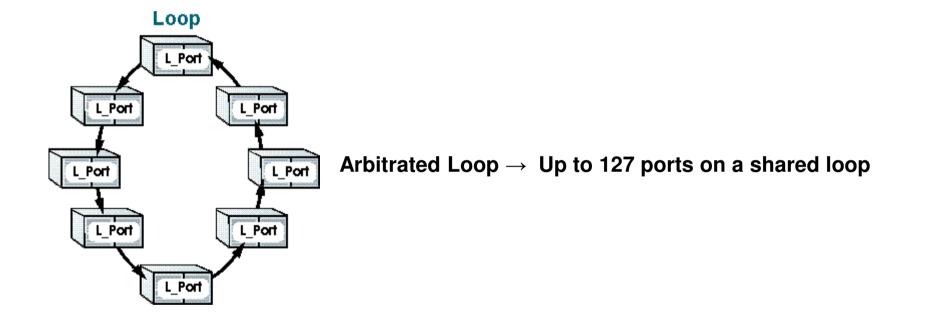
- Flexible, Scalable relative to Topologies, Speed, Performance, Distance, Node connectivity and Low cost
- Communication and Data Overhead (Framing, Data Communication, Latency, Efficiency, Routing Control, and Access Control),
- 3. Redundancy, Availability, and Failover,
- 4. Applicability in SAN with large IT User Base

FC Topologies

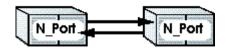
Fabric NL-Port can be attached to a Fabric

Switched Fabric

Up to 2^24 ports in a switched interconnect Multiple concurrent communications for high aggregate throughout


• Fibre channel supports a 24-bit address space

- ✓ Provides 2 ^{∧24} addresses
- ✓ FC routing is done based on the Domain ID
 portion of the NPort ID assigned on login
 (24-bit addressing consisting of Domain ID,
 Area ID, and Device ID)


 FC Device ports are uniquely identified by a WWPN (world wide port name or Identifier) Address lookup is provided by the Fabric Switch using the Name Server portion of Directory Services

FC Topologies

Point to Point

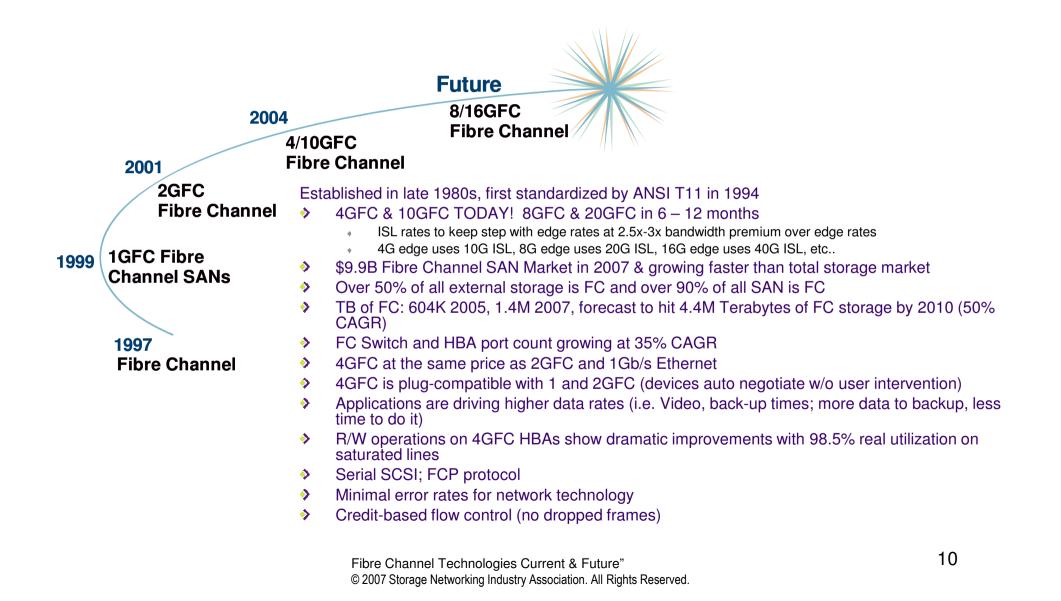
Point-to-Point \rightarrow **Two ports on a dedicated link**

Topology Comparison

Attribute	Point to Point	Arbitrated Loop	Switched Fabric
Number of ports	2	2 to 127	Up to 2
Maximum bandwidth	Link rate times 2	Link rate times 2	Link rate times number of ports
Bandwidth allocation	Dedicated	Shared by all loop ports	Managed by fabric
Address assignment	N_Port Login	Loop initialization and Fabric Login	Fabric Login
Number of concurrent circuits	1	1	Number of port pairs (number of ports/2)
Effect of port failure	Point-to-point link fails	Loop fails (port bypass function required)	Link between switch and port fails
Concurrent maintenance	Linkis down	May be disruptive to entire loop	Link between switch and port is down
Expansion	Add additional point-to-point links	Attach loop to fabric	Expand fabric
Redundancy/High Availability	A dd redundant port and point-to-point links	Use dual loops and dual-ported devices	Use redundant switches
Link rates supported	All	All (all devices on loop must be same rate)	All (fabric may support mixed rates)
Media types supported	All	All	All
Classes of service supported	All	Class-1, -2 -3	All
Frame delivery order	in order	in order	Note 1
Access to interconnect medium	Dedicated	Arbitration	Dedicated
Cost per port	Port cost	Port cost + loop function (+hub if used)	Port cost + fabric port

Note 1: Frame Delivery Ordering is switch implementation dependent

Flexibility and Scalability



Uses a common transport mechanism to support:

- Physical interface types: Multi/Single Mode Fiber, and Copper
- Traditional Channels: SCSI, IPI3, SBCCS, and HIPPI
- Traditional Networks: IP, IEEE 802, and ATM
- High-speed -100/200/400/800/1200 MB/s, Reliable data transmission:
 - 100/200/400/800/1200 MB/s
 - BER < 10⁻¹²
- Provide scalability of performance and cost
- Encourage industry support through open standards
- Designed to fulfill the needs of SANs

Media Type	Transmitter	Speed	Distance	Variant
	ECL/PECL	400 MB/s	0m – 10m (typical)	400-DF-EL-S
Electrical (Differential)		200 MB/s	0m – 10m (typical)	200-DF-EL-S
		100 MB/s	0m – 30m (typical)	100-DF-EL-S
	1550 nm. Long wave Laser	400 MB/s	2m - >50km	400-SM-LL-V
		200 MB/s	2m - >50km	200-SM-LL-V
		100 MB/s	2m - >50km	100-SM-LL-V
9 um. Single-Mode Fiber	1300 nm. Long wave Laser	400 MB/s	2m - 2km	400-SM-LL-I
-		200 MB/s	2m - 2km	200-SM-LL-I
		100 MB/s	2m - 10km	100-SM-LL-L
			2m - 2km	100-SM-LL-VI
	850 nm. Short-wave Laser	400 MB/s	0.5m - 175m	400-M5-SN-I
50 um. Multi-Mode Fiber		200 MB/s	0.5m - 300m	200-M5-SN-I
		100 MB/s	0.5m - 500m	100-M5-SN-I
62.5 um. Multi-Mode Fiber		400 MB/s	0.5m - 70m	400-M6-SN-I
		200 MB/s	0.5m - 150m	200-M6-SN-I
		100 MB/s	0.5m - 300m	100-M6-SN-I

- 2 Km distance with Multi- mode Fibre
- 10 Km distance with Single Mode Fibre
- 5000 Km distance with FC over IP

art-of-fram Fill Word Fill Word **Data Field** Word Word Fill Word Frame CRC Header Optional Payload Fill (information being transported) **Bytes** Headers Frame type and content/function R CTL Destination Address (D ID) Where frame is being sent to Expiration Security Header CS_CTL Source Address (S ID) Network Header Class-specific control information Where the frame came from Association Header TYPE Frame Control (F_CTL) Protocol Type in this frame Frame Control field **Device Header** Sequence this frame belongs to SEQ ID DF CTL Sequential count of frames **SEQ CNT** Originator Exchange ID OX ID **RX ID** Responder Exchange ID Multi-purpose parameter field Parameter Field (PARM)

Transmission Words

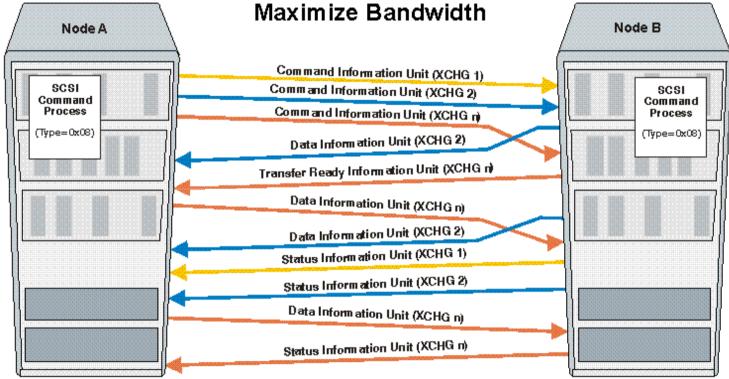
4 4

2112

- Fly by Frame handling
- Out of order

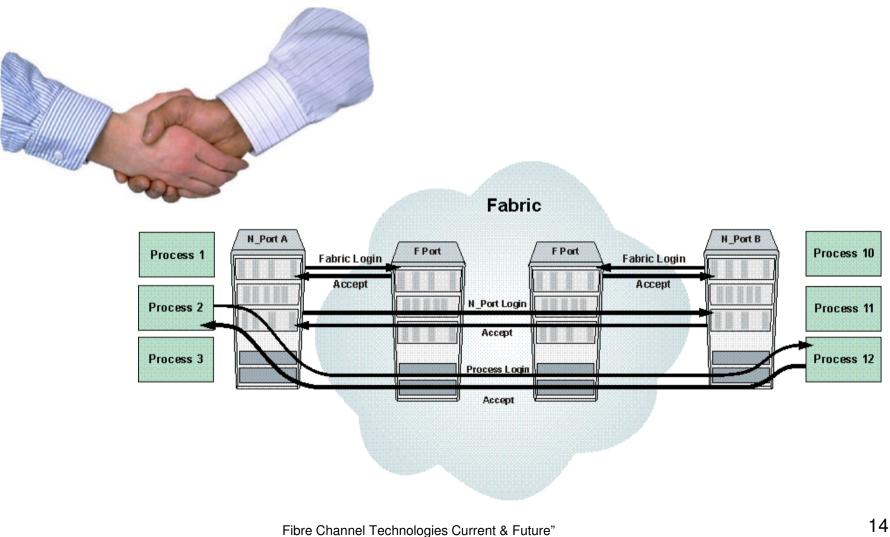
24

4


- Speed
- Routing

Data Traffic with Exchanges

Node Port (N_Port or NL_Port)


Node Port (N_Port or NL_Port)

Fibre Channel Technologies Current & Future" © 2007 Storage Networking Industry Association. All Rights Reserved.

Education **Establishing Operating Environment** SNIA

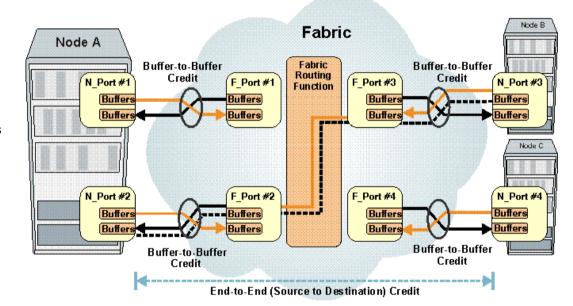
© 2007 Storage Networking Industry Association. All Rights Reserved.

Flow Control: Access Control, Latency, and Efficiency

Login Buffer to Buffer

- · Node to Fabric
- · Fabric to Node

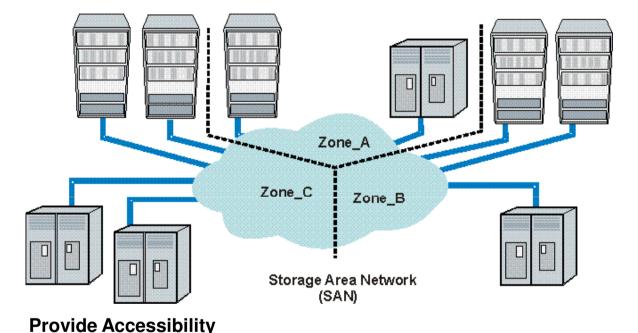
Login Node to Node


Flow control is credit based

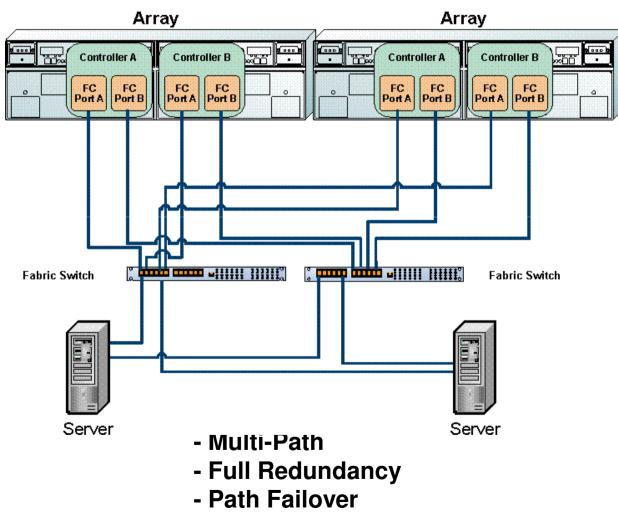
- · Buffer-To-Buffer Credit
- · Class 3: No END-to-END
- · Control pace of frame transmission
- Each R_RDY received increments the available BB_Credit value

Latency

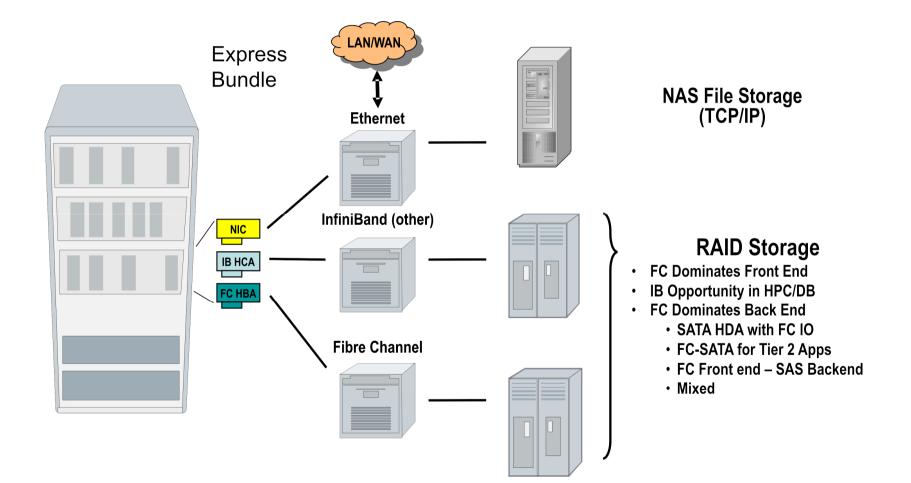
• Across a single switch, average latencies are less than 400 nanoseconds.


FC Routing

- Connect Any to Any
- Maximize Connectivity
- Simplex and Duplex

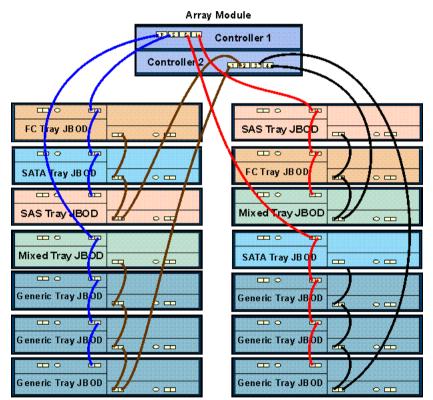

Divide

and **CONQUE**


Soft Zoning: Employs the Name Server to limit the information returned to an initiator in response to a query. Devices in the zone can be identified by World Wide Node Name, World Wide Port Name, or domain/port of the switch the device is connected to. Hard Zoning: Enforced by the Fabric. switches monitor the communications and block any frames that do not comply with the effective zone configuration. This blocking is performed at the transmit side of the port where the destination device is located. ¹⁷

Redundancy, Availability, and Failover SNIA

FC Products Dominant in Enterprise Datacenter



Detailed RAID Storage: Array Module with Different Drive Technologies

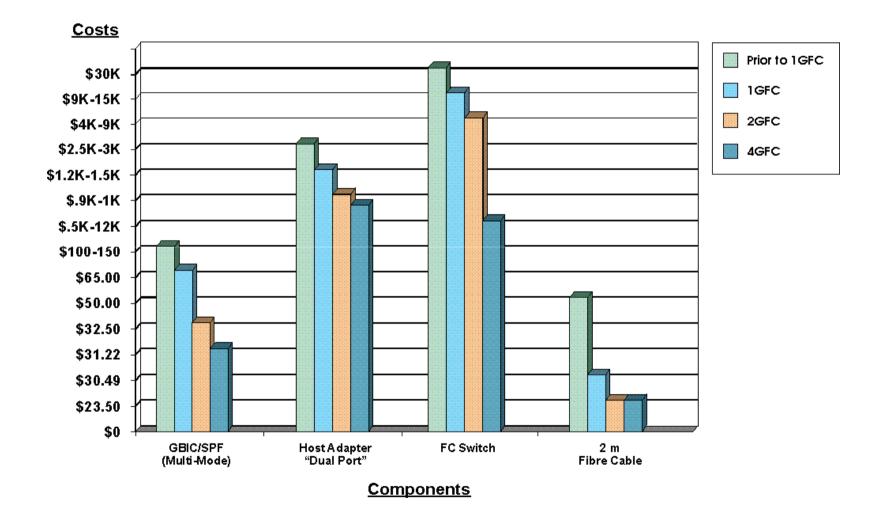
There's a lot more under the Fibre Channel hood than appearances reveal:

Array Module with Different Drive Tray Types

FC Product Performance – IOPS: Host Interface – Drive Interface

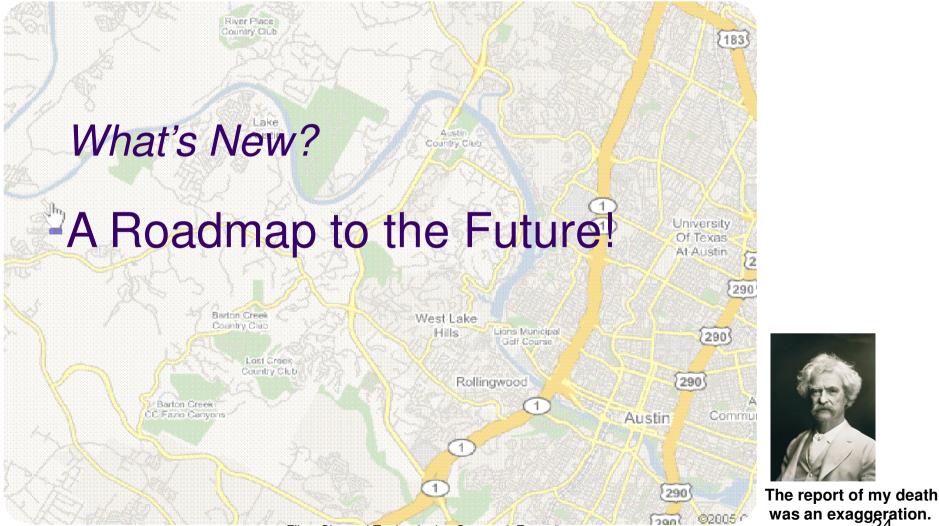
	Drive Type	Dual 4 GFC	Quad 4 GFC	Future 8 GFC
Burst I/O rate cache reads (512 byte)		125K	125K	200K
Sustained I/O rate disk reads (4k – R5)	FC	40k	40k	80K
	SAS			70K
	SATA			12K
Sustained I/O rate disk writes (4k- R5) - CMD	FC	9k	9k	15K
	SAS	8K	10K	12K
	SATA	2K	2K	4K
Number of drives required for benchmark test and code thread	FC, SAS, / SATA	96D / 8T	96D / 8T	96D / 8T

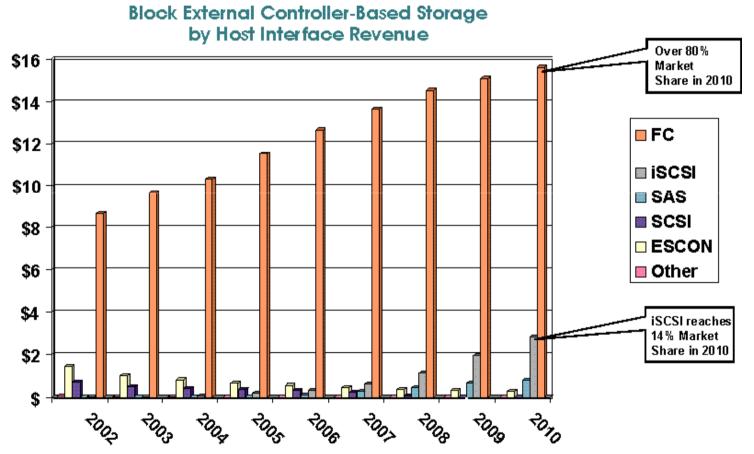
- FC continues to evolve with different technologies



	Drive Type	Dual FC	Quad FC	Future 8 GFC
Sustained throughput cache read (512k)		1600 MB/s	1800 MB/s	3000 MB/s
Sustained throughput disk read (512k)	FC	850 MB/s	850 MB/s	1600MB/s
	SAS	800 MB/s	800 MB/s	1200 MB/s
	SATA	800 MB/s	800 MB/s	900 MB/s
Sustained throughput disk write (512k)	FC	800 MB/s	800 MB/s	1600 MB/s
Cache mirroring disabled	SAS	750 MB/s	750 MB/s	750 MB/s
Cache mirroring disabled	SATA	750 MB/s	750 MB/s	750 MB/s
Number of drives required for benchmark test and code thread	FC	48D / 8T	48D / 8T	48D / 8T

- FC continues to evolve with different technologies

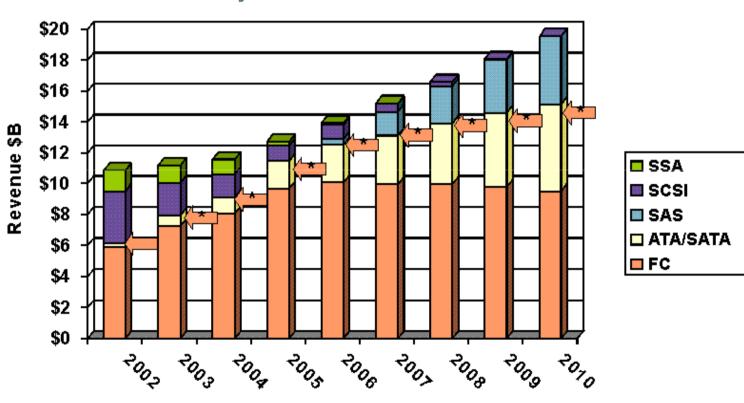

Current Cost Comparison Table


Fibre Channel is Here to Stay.

Continuous SAN Market Growth

Source: Gartner External Controller-Based Disk Storage WW 2006-2010, 6 October 2006 (FICON included in Fibre Channel)

Fibre Channel's Continuous Evolution Education


FC has been the major storage system interconnect since the mid 90s

• FC dominates the SAN and external storage market place

How will FC continue to Meet customers' evolving needs?

- · Faster speeds
- · Bandwidth/Cost leadership
- Investment protection
- · Additional capabilities: FCOE
- · Lower cost solutions
- Simplified solutions (Plug-n-play)

Block External Controller-Based Disk Storage by HDD Interface Revenue

Source: Gartner External Controller-Based Disk Storage WW 2006-2010, 6 October 2006 (FICON Included in Fibre Channel)

* Estimate of FC+SATA over FC Infrastructure. Source: FCIA

FCIA Fibre Channel Speeds – 3 Connection Types

FC specifies 3 Media types

- · FC-Base2
- · FC-Base10
- · FC-BaseT
- All speeds of each type Auto-negotiate best speed w/o any user intervention!
- Each speed within its connection type is backward compatible 2 generations!

FC-Base2

- Predominant FC interconnect
- Used for fabric Edge and ISL
- Also used for Disk and Tape Drives
- · All speeds single lane serial streams
- · Optics and copper cabling, SFP/SSF

FC-Base10


- Used for ISL (2.5x-3x bandwidth of edge)
- 4G Edge/10G ISL migrates to 8G Edge/20G ISL migrates to 16G Edge/40G ISL, etc

FC-BaseT

- . FC using Cat5e/6/6a infrastructures
- · Copper only (Cat5e/6/6a cables)
- · RJ-45 connector
- User can use FC without changing any existing or new Ethernet cabling!

Fibre Channel Technologies Current & F

 $\ensuremath{\mathbb{C}}$ 2007 Storage Networking Industry Association. All Rights Reserved.

FCIA Fibre Channel Speed Roadmap

	Product Naming	Throughput (MBps)	Line Rate (GBaud)†	T11 Spec Technically Completed (Year)‡	Market Availability (Year)‡
-	1GFC	200	1.0625	1996	1997
ľ	2GFC	400	2.125	2000	2001
*	4GFC	800	4.25	2003	2005
Base2*	8GFC	1600	8.5	2006	2008
[16GFC	3200	17	2009	2011
	32GFC	6400	34	2012	Market Demand
	64GFC	12800	68	2016	Market Demand
	128GFC	25600	136	2020	Market Demand
г	10050	0.400	10.50	0000	0004
-	10GFC	2400	10.52	2003	2004
	20GFC	4800	21.04	2007	2008
Base10 **	40GFC	9600	42.08	TBD	Market Demand
	80GFC	19200	84.16	TBD	Market Demand
	160GFC	38400	168.32	TBD	Market Demand
-			7		
	1GFC	200	1.0625	2006	2007
BaseT**	2GFC	400	2.125	2006	2007
	4GFC	800	4.25	2006	2007
*	8GFC	1600	8.5	TBD	Market Demand
	10GFC	2400	10.52	TBD	Market Demand

*Base2 used throughout all applications for Fibre Channel infrastructure and devices. Each speed maintains backward compatibility at least two previous generations (I.e., 4GFC backward compatible to 2GFC and 1GFC)

"Base 10 commonly used for ISLs, core connections, and other high speed applications demanding maximum bandwidth.

***BaseT used in common Ethernet copper infrastructures incorporating CAT5e/6/6a cables and RJ-45 connectors

+Line Rate: All Base2 speeds are single-lane serial #1660 Channel Free holds are single series are single-lane serial #1660 Channel Free holds are single series are single-lane series are single series are single series are single series are s

© 2007 Storage Networking Industry Association. All Rights Reserved.

FCIA "Condensed" Roadmap (Speed Gb/s)

FC-Base2 (Edge, Backend, and ISL)

- 1GFC, 2GFC, 4GFC shipping today
- 8GFC Ships in 6-12 months
- 16GFC, 32GFC, 64GFC, 128GFC

FC-Base10 (ISL)

- 10GFC shipping today
- 20GFC ships in 6-12 months
- 40GFC, 80GFC, 160GFC
 - > 100GFC under study (leverage IEEE 802.3 work)

FC-BaseT (Edge)

- new 2006 standard for Ethernet RJ45 Cat5/6 copper)
- 1GFC, 2GFC, 4GFCF, shipping today
- 8GFC, 10GFC
 - > 8GFC follows typical FC trend
 - > 10G follows typical Ethernet trend

Fibre Channel Is Being Improved According To Real Customer Requirements

New Fibre Channel Standards for

- Management And Ease Of Use
- Operational Flexibility and Scalability
- Security

Fabric Device Management Interface

• HBA Information Can Be Retrieved From The Fabric

Fibre Channel Open Management

- SMI-S
- SNMP MIB Development

Improvements to the Fabric Configuration Server

Advanced Topology Discovery and Bulk Data Retrieval

Common Transport

Session Semantics Have Been Added

Diagnostic Tools

• FC Trace Route and Ping

Operational Flexibility

FAIS: Fabric Application Interface Specification

Allows fabric to host certain applications

Event Server

• More Granular Event Registration

Virtual Channels

Enables Traffic Differentiation On Links

Enhanced Commit Service

Fabric Locking More Granular

Operational Flexibility

Frame Tagging

Enables Virtual Fabrics

Routing Architectures and Models

 Allows Devices On Distinct Fabrics To Communicate Without a Merge

FC-SATA: SATA Tunneling over FC

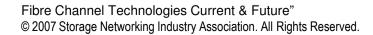
- Brings native tiered storage to FC
- FC SATA: An FC-4 mapping of the Serial ATA storage interface protocol to Fibre Channel

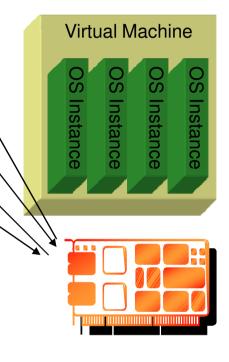
Operational Flexibility

What Is NPIV?

- Acronym for <u>N-port ID virtualization</u>.
- Additional attribute of an F-port.
- FLOGI request allocated the base PID 0xddaa00.
- FDISC(SID=0) requests allocate virtual PIDs: 0xddaa01, 0xddaa02,
 0xddaa03 ...
- Used by multiple virtual machines emulated on a physical machine.

NPIV Overview

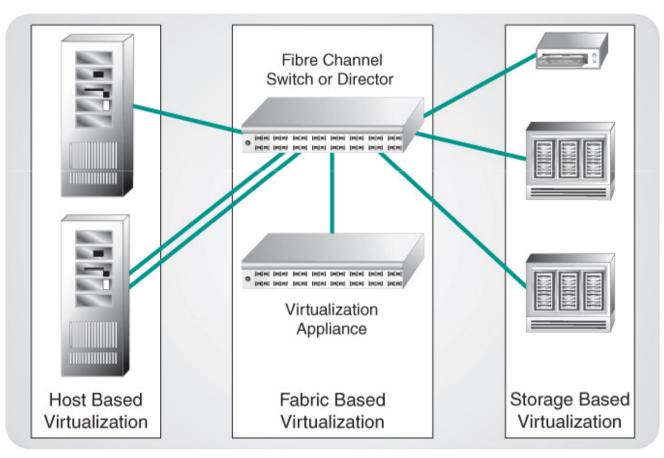

FLOGI (FFFFE, HWWNN, HWWPN) FLOGI ACC: Base PID: 0xddaa00


FDISC (SID=0, VWWNN1, VWWPN1)

FDISC (SID=0, VWWNN2, VWWPN2) FDISC ACC: VPID: 0xddaa02

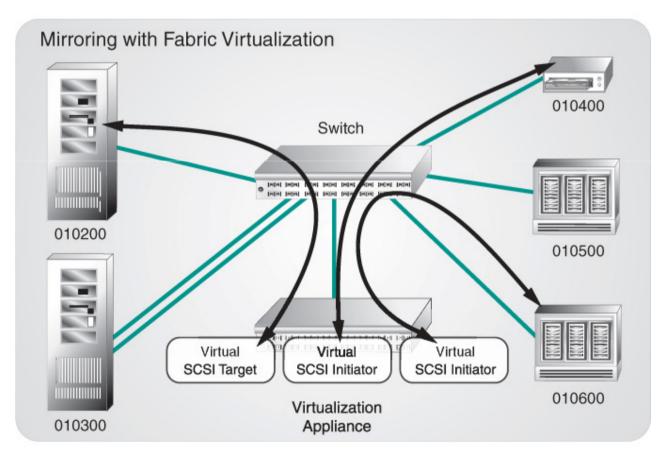
FDISC (SID=0, VWWNN3, VWWPN3) FDISC ACC: VPID: 0xddaa03

FDISC (SID=0, VWWNN4, VWWPN4) FDISC ACC: VPID: 0xddaa04



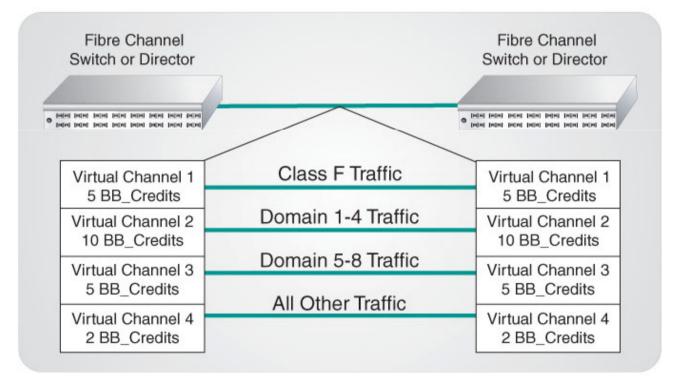
Storage Virtualization

Three types of storage virtualization

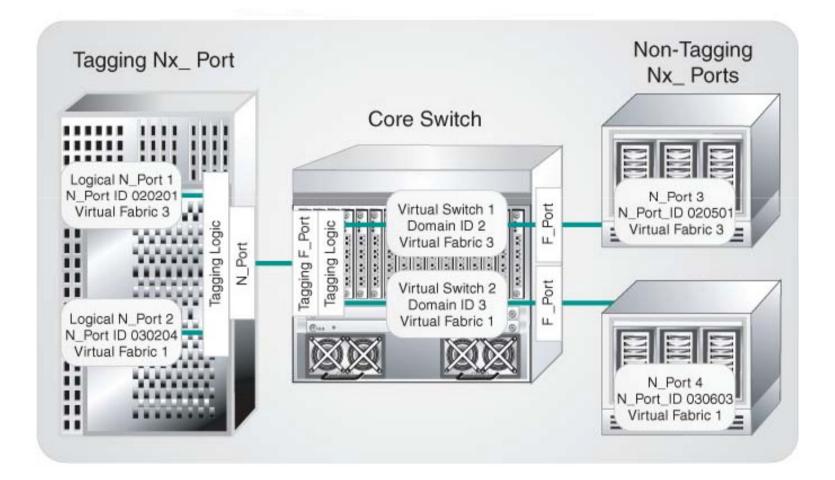


Refer to SNIA Virtualization Tutorials

© 2007 Storage Networking Industry Association. All Rights Reserved.

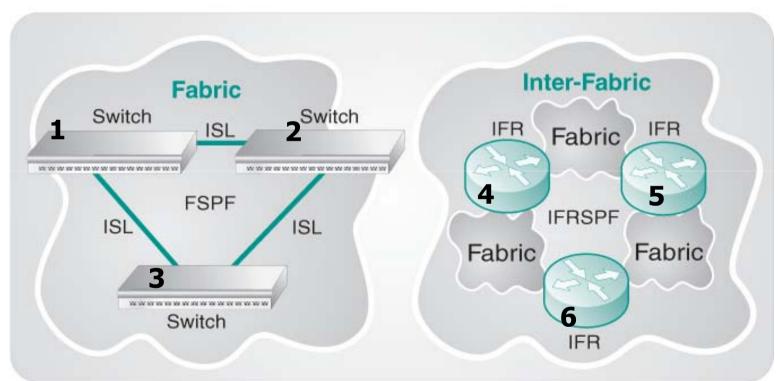

FC-Fabric Application Interface Specification (FAIS)

Virtual Channels



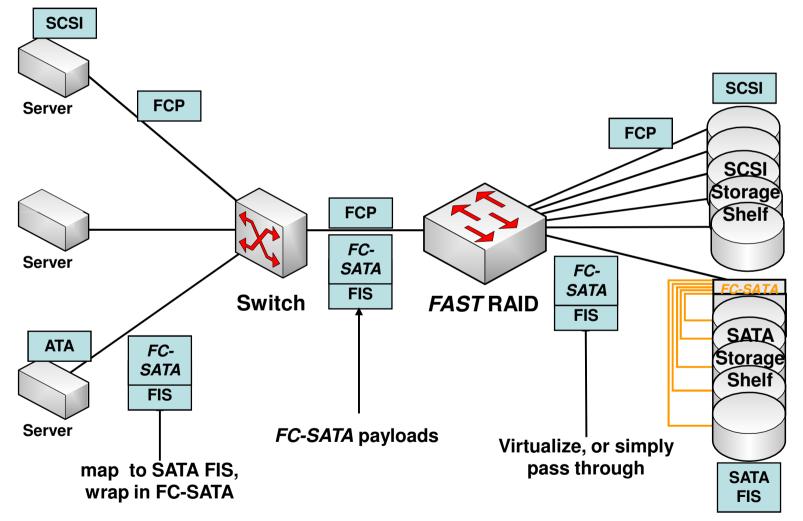
 ISL buffer credits are assigned to traffic flows to provide Quality of Service (QoS) between switches

Virtual Fabric Tagging



Inter-Fabric Routing

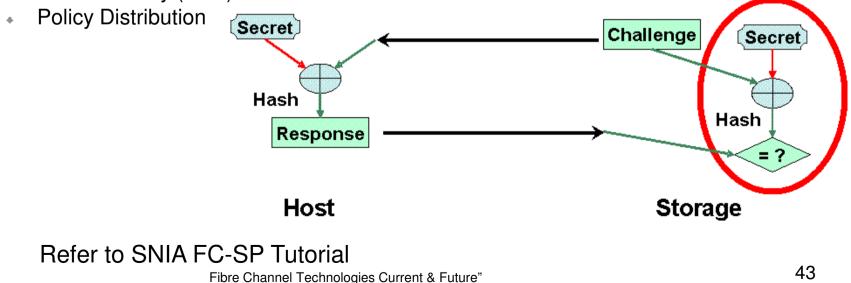
Fabrics and Inter-Fabrics


Layer 2 – Switching FSPF = Fabric Shortest Path First ISL = Inter-Switch Link

Layer 3 – Routing IFRSPF – Inter-Fabric Routing Shortest Path First

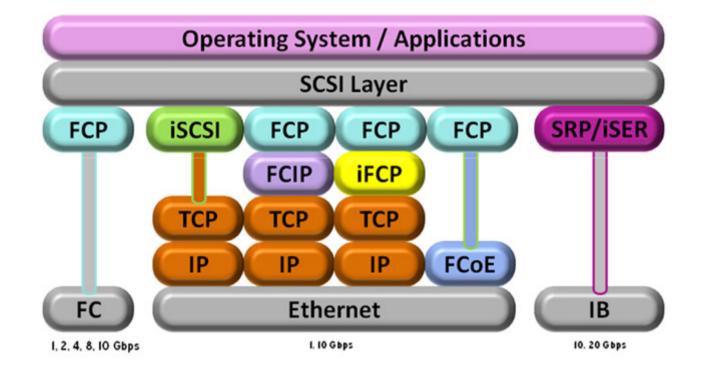
Fibre Channel Technologies Current & Future" **IFR = Inter-Fabric Router** © 2007 Storage Networking Industry Association. All Rights Reserved **Simple Routing**

FC-SATA Configuration



FC-SP Has Completed Letter Ballot and Will Soon Be A Standard

Addresses


- Infrastructure (Passwords, PKI, Secrets) ٠
- Authentication (FCAP, DH-CHAP, FCPAP) ٠
- Authorization (Security Policies) ٠
- Data Integrity (Hash, Keyed-Hash, Signatures, ESP) ٠
- Confidentiality (ESP) ٠

© 2007 Storage Networking Industry Association. All Rights Reserved.

FCOE

Fibre Channel: The Storage of Business

Dominates the SAN market today

Fibre Channel has a clear roadmap to provide:

- . Higher performance
- · Additional capabilities (Security, Tiered Storage, Intelligence...)
- . Enablers for new markets

Easy to learn, use and implement

Protects and future proofs storage investments

Comprehensive end to end solution

Fibre Channel Meets the Challenge

Please send any questions or comments on this presentation to SNIA: <u>tracknetworking@snia.org</u>

Many thanks to the following individuals for their contributions to this tutorial.

SNIA Education Committee

Dr. M. K. Jibbe Skip Jones Steve Wilson Tom Hammond-Doel Howard Goldstein Robert Peglar

• 29th – 31st October • Congress Frankfurt •