Draft Version 1

Mark scheme

Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
1	States or implies that $w + z = (-2k + 2) + (4 + k)i$	M1	1.1b	TBC		
	Uses the definition of argument to write $\frac{4+k}{-2k+2} = \tan\left(\frac{3\pi}{4}\right) = -1$	M1	2.2a			
	Makes an attempt to solve for k, for example $4 + k = 2k - 2$ is seen.	M1	1.1b			
	Finds $k = 6$	A1	1.1b			
				(4 marks)		
	Notes					

Draft Version 1

Mark scheme

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	Finds $r = 12$, using $r^2 = (-6)^2 + (-6\sqrt{3})^2 \Rightarrow r^2 = 144 \Rightarrow r = 12$	M1	2.2a	TBC
	Finds $\arg z = -\frac{2\pi}{3}$. Likely states $\tan \theta = \frac{-6\sqrt{3}}{-6} \Rightarrow \theta = \frac{\pi}{3}$ and then deduces $\arg z = -\pi + \frac{\pi}{3} = -\frac{2\pi}{3}$	M1	2.2a	
	Writes $z = 12\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$	A1	2.2a	
		(3)		
2b	States $\frac{z}{w} = \frac{12}{4} \left(\cos\left(-\frac{2\pi}{3} + \frac{\pi}{2}\right) + i\sin\left(-\frac{2\pi}{3} + \frac{\pi}{2}\right) \right)$. Award one method mark for $\frac{12}{4}$ seen and one method mark for	M2	2.2a	TBC
	$-\frac{2\pi}{3} - \left(-\frac{\pi}{2}\right)_{\text{or}} - \frac{2\pi}{3} + \frac{\pi}{2}_{\text{seen.}}$			
	States a fully correct answer: $\frac{z}{w} = 3\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)$	A1	1.1b	
		(3)		
				(6 marks)
	Notes			

Draft Version 1

Mark scheme

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	Deduces that the midpoint of $(-8, 6)$ and $(4, -2)$ is $(-2, 2)$		M1	2.2a	TBC
	Calculates that the slope of the line joining (-8, 6) and (4, -2) is $-\frac{2}{3}$		M1	1.1b	
	Deduces that the slope of the perpendicular bisector is $\frac{3}{2}$		M1	2.2a	
	Finds the correct equation of the locus (perpendicular bisector): $y = \frac{3}{2}x + 5$		A1	1.1b	
			(4)		
3b	Figure 2 (-8, 6) (-2, 2) (-2, 2)	Draws a straight line with a positive slope.	M1	1.1b	TBC
		Fully correct answer with (0, 5) and $\left(-\frac{10}{3}, 0\right)$ labelled.	A1	1.1b	
			(2)		
3c	Demonstrates an understanding of the need to find the point of intersection of $y = -\frac{2}{3}x$ and $y = \frac{3}{2}x + 5$		M1	2.2a	TBC
	Solves to find $x = -\frac{30}{13}$ and $y = \frac{20}{13}$		M1	1.1b	
	Finds the distance: $d_{\min} = \sqrt{\left(-\frac{30}{13}\right)^2 + \left(\frac{20}{13}\right)^2} \Rightarrow d_{\min} = \frac{10}{13}\sqrt{13}$		A1	2.1	
			(3)		
					(9 marks)
		Notes			
3a An alte	rnative algebraic approach is acceptable.				

Mark scheme Further Maths Core Pure (AS/Year 1) Unit Test 1: Complex numbers 1

Q	Scheme			AOs	Pearson Progression Step and Progress descriptor
4a	Figure 3	Circle drawn with centre (6, 1).	M1	1.1b	ТВС
	O $(6, 1)$ Re	Circle should clearly cross the real axis and not touch the imaginary axis.	A1	2.2a	
			(2)		
4b	Draws a line from the point $(11, 10)$ that circle with centre $(6, 1)$ and radius 5.	t is tangential to the	M1	2.2a	ТВС
	States or implies that length of the opposite side is 5 (the radius of the circle).		M1	1.1b	
	Calculates the length of the hypotenuse of this triangle is $\sqrt{106}$.		M1	1.1b	
	$\theta = \arcsin\left(\frac{5}{\sqrt{106}}\right)$ Deduces that		M1	1.1b	
	Figure 4 Im $(11, 10)$ $-\frac{\pi}{2}$ 5 (6, 1) O Re	Clearly explains that the minimum angle is $-\frac{\pi}{2} - 2 \arcsin\left(\frac{5}{\sqrt{106}}\right)$ with explanation referring to a diagram or providing a clear explanation. For example, as shown in the diagram opposite.	A1	2.1	
		1	(5)		
	1		1	<u> </u>	(7 marks)
		Notes			

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
5	Figure 5	Circle drawn with centre (1, 3).	M1	1.1b	TBC
	(1,3)	Circle should just touch the real axis and clearly cross the imaginary axis.	A1	1.1b	
		Points $(-2, -2)$ and $(-2, 4)$ indicated on the diagram.	M1*	1.1b	
		Line drawn at $y = 1$.	A1	2.2a	
		Shades correct region.	M1	3.1a	
		Fully correct solution.	A1	1.1b	

Notes

5

Award the method mark providing the line y = 1 is drawn correctly, even if the points (-2, -2) and (-2, 4) are not indicated.

	Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
(-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-6, 5) (-3, 5) (-1, 1) (-3, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5) (-1, 1) (-4, 5)	6	(-6, 5) (-3, 5) Re		M1	1.1b	TBC
Image: Regenerative of the diagram. Image: the diagram. Image: the diagram. Image: Regenerative of the diagram. Image: Half lines start at (-6, 5) and intersect the circle at the top and the bottom. A1 2.2a Image: Shades correct region. M1 3.1a Image: Fully correct solution. A1 1.1b			the imaginary axis and clearly not touch the real	A1	1.1b	•
Half lines start at (-6, 5) and intersect the circle at the top and the bottom. A1 2.2a Shades correct region. M1 3.1a Fully correct solution. A1 1.1b (6 mark			41 1	M1	1.1b	
Fully correct solution. A1 1.1b (6 mark			and intersect the circle at	A1	2.2a	-
(6 marl			Shades correct region.	M1	3.1a	
			Fully correct solution.	A1	1.1b	
Notes						(6 marks)
11065			Notes			