Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1	States or implies that $w+z=(-2 k+2)+(4+k) \mathrm{i}$	M1	1.1b	TBC
	Uses the definition of argument to write $\frac{4+k}{-2 k+2}=\tan \left(\frac{3 \pi}{4}\right)=-1$	M1	2.2a	
	Makes an attempt to solve for k, for example $4+k=2 k-2$ is seen.	M1	1.1b	
	Finds $k=6$	A1	1.1b	
(4 marks)				
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	Finds $r=12$, using $r^{2}=(-6)^{2}+(-6 \sqrt{3})^{2} \Rightarrow r^{2}=144 \Rightarrow r=12$	M1	2.2a	TBC
	Finds $\arg z=-\frac{2 \pi}{3}$. Likely states $\tan \theta=\frac{-6 \sqrt{3}}{-6} \Rightarrow \theta=\frac{\pi}{3}$ and then deduces	M1	2.2a	
	Writes $z=12\left(\cos \left(-\frac{2 \pi}{3}\right)+\mathrm{isin}\left(-\frac{2 \pi}{3}\right)\right)$	A1	2.2a	
		(3)		
2b	States $\frac{z}{w}=\frac{12}{4}\left(\cos \left(-\frac{2 \pi}{3}+\frac{\pi}{2}\right)+\operatorname{isin}\left(-\frac{2 \pi}{3}+\frac{\pi}{2}\right)\right)$. Award one method mark for $\frac{12}{4}$ seen and one method mark for $-\frac{2 \pi}{3}-\left(-\frac{\pi}{2}\right)$ or $-\frac{2 \pi}{3}+\frac{\pi}{2}$ seen.	M2	2.2a	TBC
	States a fully correct answer: $\frac{z}{w}=3\left(\cos \left(-\frac{\pi}{6}\right)+\mathrm{i} \sin \left(-\frac{\pi}{6}\right)\right)$	A1	1.1b	
		(3)		
(6 marks)				
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	Deduces that the midpoint of $(-8,6)$ and $(4,-2)$ is $(-2,2)$	M1	2.2a	TBC
	Calculates that the slope of the line joining $(-8,6)$ and $(4,-2)$ is $-\frac{2}{3}$	M1	1.1b	
	Deduces that the slope of the perpendicular bisector is $\frac{3}{2}$	M1	2.2a	
	Finds the correct equation of the locus (perpendicular bisector): $y=\frac{3}{2} x+5$	A1	1.1b	
		(4)		
3b	Figure 2 $\uparrow^{\operatorname{Im}}$ Draws a straight line with a positive slope.	M1	1.1b	TBC
	$\xrightarrow\left[\left(-\frac{10,0)}{(-2,2)}\right]{0} \underset{(4,-2)}{ } \quad \begin{array}{l}\text { Fully correct } \\ \text { answer with }(0,5)\end{array}\right.$	A1	1.1b	
		(2)		
3 c	Demonstrates an understanding of the need to find the point of intersection of $y=-\frac{2}{3} x$ and $y=\frac{3}{2} x+5$	M1	2.2a	TBC
	Solves to find $x=-\frac{30}{13}$ and $y=\frac{20}{13}$	M1	1.1b	
	Finds the distance: $d_{\text {min }}=\sqrt{\left(-\frac{30}{13}\right)^{2}+\left(\frac{20}{13}\right)^{2}} \Rightarrow d_{\min }=\frac{10}{13} \sqrt{13}$	A1	2.1	
		(3)		
				(9 marks)
Notes				
3a An al	native algebraic approach is acceptable.			

Q	Scheme		Marks	AOs	Pearson
5	Figure 5	Circle drawn with centre (1,3).	M1	1.1b	TBC
		Circle should just touch the real axis and clearly cross the imaginary axis.	A1	1.1b	
		Points $(-2,-2)$ and $(-2,4)$ indicated on the diagram.	M1*	1.1b	
		Line drawn at $y=1$.	A1	2.2a	
		Shades correct region.	M1	3.1a	
		Fully correct solution.	A1	1.1b	
(6 marks)					
Notes					
Award the method mark providing the line $y=1$ is drawn correctly, even if the points $(-2,-2)$ and $(-2,4)$ are not indicated.					

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
$\mathbf{6}$	Figure 6				

