
Proceedings of the ASME 2019 38th International &
Conference on Ocean, Offshore and Arctic Engineering

OMAE 2019
June 9-14, 2019, Glasgow, Scotland

OMAE2019-96051

DRAFT: VIRTUAL PROTOTYPING AND SIMULATION OF MULTIBODY MARINE
OPERATIONS USING WEB-BASED TECHNOLOGIES

Ícaro A. Fonseca∗, Felipe F. de Oliveira, Henrique M. Gaspar
Department of Ocean Operations and Civil Engineering

Norwegian University of Science and Technology
Ålesund, Norway

ABSTRACT
This paper focuses on virtual prototyping and simulation of

marine operations based on web technologies. The ship is rep-
resented as a digital object, which can be used to perform differ-
ent types of analyses and simulations. The presented simulations
are: motion of a single hull and of multiple hulls in regular waves
calculated with closed-form expressions, induced pendulum mo-
tion response to a lifted load, and motion of a barge with initial
movements in still water calculated with equations of motion.

The simulations are developed as web applications in
JavaScript and HTML, with graphical user interfaces and 3D
renders of the operations. Relevant parameters of the simula-
tions such as wave characteristics and design dimensions are
linked to interactive dashboards, allowing the user to modify
them and visualize the results in real-time. The applications are
lightweight enough to be executed locally in the web browser of
most modern devices.

The work employs an open source approach, relying most
notably on the Vessel.js library. This aims to foster reuse of mod-
els and collaboration with external contributors.

NOMENCLATURE
t Time.
j Vessel motion mode (3 for heave, 4 for roll and 5 for pitch.
η j(t) Vessel motion.
φ j Amplitude of the vessel motion.
ω Angular wave frequency.
k Wave number.

∗Contact author: icaro.a.fonseca@ntnu.no

dist Orthogonal distance between the vessel’s position and the
origin line of the wave train.

θ j Phase angle of the motion mode.
J Transformation matrix from body-fixed coordinate to world

coordinate.
F External forces (gravitational force is included in this ele-

ment).
CRB(η̇) Rigid-body Coriolis and centripetal matrix.
CA(η̇) Hydrodynamic added Coriolis and centripetal Matrix.
B Damping matrix.
C(η) Restoring forces.
MRB Rigid-body matrix of inertia.
MA Added mass matrix of inertia.

INTRODUCTION
Simulations and virtual prototyping (VP) have been impor-

tant in marine engineering design for years, and the overall us-
age of simulations and VP through the marine life cycle has been
recently increasing. Virtual prototypes allow testing of engineer-
ing systems for different purposes in the life cycle, for instance:
evaluation of proposals during conceptual design, virtual com-
missioning of the system and planning of operations. These fea-
tures are quite desirable in the context of the marine operations,
where the high risk, complexity and cost of the systems is pro-
hibitive to the usage of physical prototypes in general.

Virtual prototyping also poses the advantage of allowing
sharing of models among distributed agents for usage, verifica-
tion and validation. Given the high number of stakeholders in-
volved in the vessel’s life cycle, it becomes important to share
data among distributed agents as efficiently as possible, allowing

1 Copyright c© 2019 by ASME

mailto: icaro.a.fonseca@ntnu.no


them to easily access the data that is relevant to their activities.
In this context, the web-based approach brings useful features to
make vessel data accessible to a great number of users while re-
duce complications associated with complex engineering frame-
works management.

For instance, web-applications are compatible with any
modern device that has a web browser, avoiding compatibility
issues from multiple sources. This ubiquity was attainable in
great part due to the reliance of web technologies in open stan-
dards, allowing developers to freely use and implement them. In
fact, two of the three core technologies of the web, HTML and
CSS, are open standards, while the third one, the JavaScript pro-
gramming language, is an implementation of an open standard,
ECMAScript.

In practice, this implies that during development it is not
necessary to target a specific operational system or device con-
figuration. On the other hand, the user is not required to install
any software or environment in order to execute the application,
and they always have access to the latest version of the app with-
out being required to install updates manually.

When applied to simulate marine operations, the web-based
approach allows the creation of interactive visualizations with
realistic 3D graphics including textures and lighting. The appli-
cations can be useful in different stages of the life cycle: during
early design phase, they may give the user a better perception of
the physical meaning of the results; during operation, they may
be used for training of personnel or planning of activities.

WEB-BASED VIRTUAL PROTOTYPING AND SIMULA-
TION OF MARINE OPERATIONS

Web-based development is supported by a wide variety of
open source libraries for different purposes: they can be applied
not only for calculations performance and solving differential
equations, but also for creating elaborated graphical user inter-
faces, 2D and 3D visualizations, and so on. Gaspar [1] gives
an overview of JavaScript development in the context of mar-
itime design and engineering, listing various useful open source
libraries.

WebGL is one of the most relevant JavaScript APIs for ren-
dering graphics in a web browser. It supports GPU acceleration
for physics and image processing. The Three.js library can be
used to draw and load 3D shapes in a canvas using WebGL, mak-
ing it easier to create animations with lights, textures and other
graphic resources. All the simulators described in the following
paragraphs use visualizations created with Three.js.

There are already some web-applications related to the
scope of this work. In terms of virtual prototyping, the CAD plat-
form CAESES released a generator of Wageningen B-series pro-
peller geometry [2]. The user is allowed to configure all relevant
propeller characteristics (e.g., diameter, expanded area, pitch,
thickness) and the propeller geometry is automatically created
in a remote server running the CAD environment. When satis-
fied, the user can download the final model as a file in STEP or
STL format for posterior use. STL is suitable for 3D printing

(in fact, the name is an abbreviation of “stereolithography”). A
STL model is defined with triangular facets forming a 3D shape.
STEP is a CAD format which can be used for CAE analyses. It
is an open standard developed by ISO and therefore is suitable
for model exchange, being supported by various proprietary en-
gineering software.

Hatledal et al. [3] present an architecture for simulations
based on web technologies and the Functional Mock-up Interface
(FMI). FMI is an open standard for dynamic simulation models.
It is widely used in the automotive industry, but can be applied
to other domains as well. FMI allows development of modules
that can be exchanged and assembled into complex simulations.
It is adequate for distributed co-simulations, where multiple geo-
graphically disperse users interact with different aspects of the
operation in the same simulation environment. The architec-
ture presented in the work executes the simulation modules in
the server and synchronizes the results with the client browser,
where the visualization layer renders the graphics. The architec-
ture was applied to virtual prototyping and operation of maritime
cranes.

The research group with which this work is involved has
been consistently developing web applications for marine de-
sign and engineering, including some simulations. Chaves [4]
presented a 3D simulator for ship virtual prototype and motion
prediction in regular waves. It allows configuration of design
characteristics for visualization purposes (e.g., type of propul-
sion, type of bow, size of superstructure) and variation of vessel
main dimensions, which directly influence the predicted motion
response.

VESSEL.JS FOR SIMULATIONS
Vessel.js is a JavaScript library for investigation of common

issues of conceptual ship design [5]. The library follows a web-
based and object-oriented approach. It is open source and col-
laborative, welcoming reuse of code and input from external con-
tributors. Vessel.js is currently developed by the Ship Design and
Operation lab at NTNU in Ålesund.

Vessel.js supports the simulations presented in the follow-
ing sections, from virtual prototyping of a vessel to simulation
of vesse behavior in operation. The simulations are based on a
taxonomy comprising three sub-models: entities, states and pro-
cesses [6, 7]. The entity model collects data about the simulated
system. It may represent an actual vessel or a design concept dur-
ing the design stage. The state model defines static constraints to
which the vessel is subjected. It is a static simulation or analy-
sis, e.g., calculation of floating condition or resistance for a given
speed. Finally, the process model is a succession of states, which
may be arranged to create a dynamic simulation, e.g., a simu-
lation of an operation. In the Vessel.js library, the entity model
translates to a ship object, possibly complemented by other ob-
jects representing additional systems, the state model translates
to modules that receive the ship object and other arguments to
calculate the states, and the process model to web applications
where the states are combined to simulates the ship behavior.

2 Copyright c© 2019 by ASME



The next sections explains how the ship virtual prototype is
defined with the Vessel.js, and the following one explains how
the library calculates states based on the ship definition and on
the simulation constraints. These principles are used to perform
the time-domain simulations presented later in this work.

VIRTUAL PROTOTYPING WITH VESSEL.JS
A ship design is described with objects for compartments,

structure and additional systems. The compartments are cre-
ated with ”base” and ”derived” objects. The base objects de-
fines weight data, dimensions and link to 3D files. It functions
as a ”template” of a compartment, which can be replicated in
different positions inside the vessel. This is done with the de-
rived objects, which contain the coordinates where the element
will be placed inside the vessel. The ship’s structure comprises
hull, decks and bulkheads. The decks and bulkheads are defined
with geometric dimensions (i.e., spans, equivalent thickness) and
material density; and the hull is defined with a table of offsets.
The weights of the decks and bulkheads are derived directly from
the physical dimensions of the elements, while the hull weight is
estimated with empirical formulas in order to overcome the lack
of structural detailing during conceptual design stage. Finally,
additional subsystems (e.g., propulsion, lifting equipment) are
modeled in the library with specific approaches depending on
the intended purpose of the model and the requirements of the
simulation.

Once a ship object is defined with Vessel.js, it can be visual-
ized in WebGL. A function was specifically developed to create
a 3D visualization in Three.js from the ship object. The function
automatically generates the hull visualization from its table of
offsets. The base objects are represented with STL files provided
by the user. If no file is provided for a given base object, it will
be represented in the visualization with a cuboid of equivalent di-
mensions. The function returns an object ready to be loaded to a
scene in the web browser, where it can be visualized, as pictured
in Fig. 1, and manipulated.

FIGURE 1. VISUALIZATION OF A PSV SPECIFICATION GEN-
ERATED WITH THE VESSEL.JS LIBRARY.

A ship object created with Vessel.js can be serialized as a
specification and stored for posterior use in various applications
developed with the library. Vessel.js uses the JavaScript Object
Notation (JSON) as the standard for serialization. Besides being
ubiquitous across programming languages and libraries, JSON is
also human-readable. This is a crucial feature to allow semantic
interpretation of data, facilitating inspection of the specifications.

CALCULATION OF STATES
Vessel.js provides methods for calculate a broad types of

ship states, which can be used to perform a design analysis or to
assemble a dynamic simulation. The handling of states follows a
certain degree of modularization, being calculated independently
from each other when possible.

The Vessel.js library includes an object prototype to han-
dle all the states calculated during a simulation. The object is
able to handle both discrete states which do not need to be con-
stantly updated, e.g. the filling ratios of tanks, and continuous
states which are constantly tracked during the simulation, more
notably the vessel’s position in the six degrees of freedom. The
positional states can be directly linked to Three.js library in order
to visualize the vessel’s motion. The following paragraphs detail
the simulation models used in the simulations developed for this
work.

Loading Condition
The vessel’s loading condition can be defined by assigning

filling ratios and positions to its derived objects, which are in-
tended to represent its tanks and compartments. It is possible to
define the filling ratio of each tank individually or in groups (e.g.,
group of ballast tanks, group of fuel tanks). When the user re-
quests the library to calculate the vessel’s displacement and cen-
ter of gravity, the library combines the vessel’s lightweight with
the current loading condition to provide the resulting values.

Floating Condition
The vessel’s floating condition is defined by confronting

the vessel’s current displacement and center of gravity with the
hull table of offsets to calculate its floating dimensions, hydro-
static coefficients and stability coefficients numerically. This in-
cludes calculation of draft, water plane dimensions and coeffi-
cients, form coefficients and position of metacenters, among oth-
ers. Trim is also calculated for small angles (that is, inclining
angles small enough for the metacenter position to remain ap-
proximately the same). The scheme in Fig. 2 illustrates how a
ship can be associated to states describing different loading con-
ditions, which lead to different floating conditions.

Wave Motion Response Amplitude
The amplitude of wave motion response is estimated with

closed-form expressions by Jensen et al. [8]. The method es-
timates amplitude response for heave, roll and pitch in regular

3 Copyright c© 2019 by ASME



Sh
ip

…
(other conditions)

St
at

es

Lo
ad

in
g 

co
n

d
it

io
n

Fl
o

at
in

g 
co

n
d

it
io

n

FIGURE 2. SHIP SUBJECTED TO DIFFERENT LOADING
STATES, LEADING TO DIFFERENT FLOATING CONDITIONS.

waves based on the hull’s main dimensions and its form param-
eters. The hull is modeled as a box-shaped barge, for heave and
pitch, and as a combination of two box shapes, for roll. It ne-
glects coupling between heave and pitch so that the total vertical
motion amplitude is estimated by assuming a 90◦ phase differ-
ence between both movements. The results serve as an approx-
imation of the motion which can be used during early design
stage.

In the Vessel.js library, the regular wave characteristics are
handled by an object with frequency, amplitude and direction in
relation to the environment. The ship state should also includes
the ship direction in relation to the environment. When the re-
sponse amplitude is calculated, the wave and ship directions are
compared in order to derive the ship heading in relation to waves.
The scheme in Fig.3 below illustrates how the wave motion re-
sponse is calculated based on a given floating condition excited
by an incident wave.

M
o

ti
o

n
 

re
sp

o
n

se

Fl
o

at
in

g 
co

n
d

it
io

n

+ wave + wave

FIGURE 3. MOTION RESPONSE STATES CALCULATED FROM
A FLOATING CONDITION EXCITED BY AN INCIDENT WAVE.

Time-Domain Response of Hull with Closed-Form Ex-
pressions

The response amplitudes calculated with the formulation in
the previous section for heave, pitch and roll can be converted
to a sinusoidal series with Eqn. (1) and then synchronized with

an incident regular wave in a 3D visualization in order to repre-
sent hull motion over time. If the vessel is not positioned in the
wave origin, the motion phase may need to be corrected for the
orthogonal distance in relation to the wave train’s origin in order
to keep the hull and wave motions in synchronization.

η j(t) = φ jcos(ω · t − k ·dist +θ j) j = 3,4,5. (1)

Pendulum Response of Load During Lifting Operation
A module was created to simulate the pendulum motion of

a load lifted by an A-frame in a ship moving in regular waves.
The model considers the hanging load as a spherical pendulum
with moving pivot. The equations of motion are derived with the
Lagrangian formulation describing the motion with Euler angles
[9,10]. This system of coordinates can be easily represented in a
Three.js visualization.

The accelerations of the pivot, the load’s hanging point, are
derived from the motion response calculated with the closed-
form expressions, as presented in the previous section. The mo-
tion is calculated on the hanging point of the load and substituted
on the equations for each time-step of the simulation. The sys-
tem of equations is solved with the Dormand-Prince method im-
plementation in the Numeric.js library [11], yielding the angular
position and velocity of the pendulum over time. The scheme in
Fig. 4 illustrates the calculation approach, where the ship motion
is combined with the lifting equipment to derive the pendulum
response of the lifted load. The pendulum model is purely kine-
matic, not taking into consideration the forces induced by the
load and the motion interaction between load and ship.

M
ot

io
n 

re
sp

on
se Lifting 

equipm
ent

+

Pe
nd

ul
um

 
re

sp
on

se

FIGURE 4. SHIP MOTION RESPONSE INDUCING A PENDU-
LUM MOTION IN THE INSTALLED LIFTING EQUIPMENT.

Time-Domain Response of Hull with Equations of Mo-
tion

According to Fossen and Fjellstad [12], the ship model
movement can be represented by Newton’s second law with six

4 Copyright c© 2019 by ASME



degrees of freedom with the following equation:

η̈ =
[J−1 ·F − (CRB(η̇)+CA(η̇)) · η̇ −B · η̇ −C(η)]

MRB +MA
(2)

Assuming the initial states η̇ and η as known, it is possible
to solve Eqn. (2) to calculate the acceleration of the rigid body.
The force F represents the sum of external forces applied to the
rigid body, e.g., waves, current or mooring forces. Thus, this
formulation is suitable for a wide range of marine operations.
However, this work simplifies the equation by considering the
hull floating freely on still water, so the only one external force
acting on the body is the gravity.

One difficulty encountered when solving Eqn. (2) is to es-
timate the added mass and damping matrix, since this informa-
tion relies on hydrodynamic effects that are usually represented
by non-linear formulations. However, for some conditions re-
lated to the amplitude of movement and ship main dimensions,
it is possible to identify closed-form expressions for those pa-
rameters in the literature. The added mass matrix is included in
the simulation with the formulation presented by Bergdahl [13],
while the damping coefficients are inserted by the user and taken
as constants.

The system of equations can be solved with the Dormand-
Prince method, which allows calculation of the position and ve-
locity components of the rigid body for each time step, therefore
simulating the ship movement over time. Part of the code for the
equations of motion was adapted from an open source applica-
tion previously developed by Monteiro et al. [14].

State Handling with Vessel.js
The states calculated with the models presented in this sec-

tion are stored in a ship state object in the Vessel.js library. The
object organizes the states in two categories: discrete and con-
tinuous, as illustrated in Fig. 5. Discrete states are assumed to
remain constant for longer intervals during the simulation, such
as the loading condition, floating condition and the response am-
plitude calculated with the closed-form expressions for regular
waves. They are stored in groups and are marked with cache sys-
tems in order to identify when the stored results need to be recal-
culated. The continuous states experience continuous variation
during the simulation, and thus need to be stored and modified
constantly, such as the instantaneous positions of the ship and of
the lifted load. They are directly linked to the 3D visualizations
and are updated at the simulation’s frame rate.

TIME-DOMAIN SIMULATIONS
The dynamic simulations are performed by combining the

states as described in the previous section to simulate vessel be-
havior over time. The simulations presented in the next section
grow in scope from behavior of one hull to behavior of several
vessels and accompanying subsystems. Continuous states are

sh
ip

 s
ta

te
s

d
is

cr
et

e
co

n
ti

n
u

o
u

s

response 
amplitude

instantaneous 
motion

floating 
condition

pendulum 
motion 3D 

visualization

loading 
condition

FIGURE 5. SCHEME OF THE SHIP STATE OBJECT IN THE VES-
SEL.JS LIBRARY.

synchronized with the visualization, and therefore are calculated
at the update rate of the visualization. Discrete states are calcu-
lated at the beginning of the simulation and are only updated
in case there is a significant change which requires updating,
e.g., recalculation of stability coefficients due to rearrangement
of weights inside the vessel.

The applications use the Vessel.js features to allow virtual
prototyping of vessel and subsystems behavior. Relevant param-
eters of the simulations such as wave characteristics and design
dimensions are linked to interactive dashboards, allowing inter-
action of the user with the simulations to evaluate performance
of different design proposals under different sea conditions. Ev-
ery time the user modifies the simulation with a new parame-
ter such as wave period, wave height, vessel main dimension or
lifting equipment dimensions, the applications recalculate the re-
sults and updates the visualization accordingly. The mathemat-
ical models are lightweight enough to allow the web browser to
execute all operations locally in real-time.

Single Hull Motion Response
The first simulation assesses motion response of a single hull

subjected to regular waves, as shown in Fig. 6. By default, the
simulation loads with a PSV model. The main dimensions of
the model (length, beam and draft) can be scaled by the user,
and the simulation automatically updates with the results for the
scaled ship. When one dimension is modified by the user, the
entire design is scaled, which includes recalculation of tank ca-
pacities, structural weight and weight distribution, which in turn
influences the floating condition. The user can also configure the
amplitude, period and direction of the incident wave. The wave
length is automatically adjusted based on the dispersion relation
for deep waters considering the chosen period. For any modifi-
cation the user performs in the simulation parameters, the results
are automatically recalculated and rendered.

The flowchart in Fig. 7 shows the main components of this
simulator grouped in input, calculation (process) and output. The
following paragraphs explain each represented component fol-

5 Copyright c© 2019 by ASME



FIGURE 6. SCREENSHOT OF THE SINGLE HULL MOTION
SIMULATOR WITH INTERACTIVE DASHBOARD.

lowing the numbering convention in the figure:

0. GUI: a graphical user interface with simple sliders allows
the user to control the ship main dimensions and the wave
parameters in the simulation (items 1.2 and 1.3, respec-
tively).

1. Input: the 3D files and ship specification define the ship ob-
ject and 3D model. The ship dimensions and wave param-
eters are simulation inputs that can be modified while the
application is being executed.

1.1. Ship specification (.json): a JSON ship specification as
described previously in the section Virtual Prototyping
with Vessel.js.

1.2. Ship dimensions: the user can scale the main dimen-
sions (length, beam and depth) of the ship specifica-
tion. This redefines the hull, structure and compart-
ments by proportionally applying the scaling coeffi-
cient. The scaled 3D model is automatically displayed
with the recalculated motion response as the user de-
fines the scaling coefficients.

1.3. Wave parameters: the user can modify the wave pe-
riod, amplitude and direction angle. The wave length
is defined based on the period, by applying the disper-

sion relation for deep waters. The wave geometry is
automatically adjusted in the visualization as the user
defines the wave parameters.

1.4. 3D files (.stl): it is possible to use stored STL files to
display in the 3D vessel model. They need to be re-
ferred in the ship specification in order to be included.

2. Calculation: calculation is handled with objects encapsulat-
ing relevant parts of the simulation, which can be reused in
other applications.

2.1. Ship object: the Vessel.js ship object, defined from the
JSON specification.

2.2. Motion state calculation object: a module containing
the closed-form expressions for estimation of ship mo-
tion response amplitude.

2.3. Ocean rendering library: an open source Three.js wa-
ter shader library [15] used to render an ocean with a
single regular wave.

2.4. Ship 3D model: a Three.js ship 3D model generated
from the JSON specification and the 3D files, as shown
in Fig. 1.

3. Output: the output is the rendered scene, which can be de-
composed in two main components that are reproduced in
synchronization.

3.1. Ship motion visualization: the ship motion is visual-
ized by moving the 3D model in the scene according
to a sinusoidal function with the motion response am-
plitude.

3.2. Wave visualization: the wave is generated with the wa-
ter shader library according to the parameters defined
in the GUI sliders.

While the motion visualization in this simulation is similar
to a previous work [4], there are important differences between
the approaches of the two applications. The previous simula-
tor performed all the calculations based on the minimum set of
design characteristics required to estimate the motion response

INPUT OUTPUT
(3D SCENE)

Ship dimensions
(L, B, T)

Wave 
visualization

Ship motion 
visualization

CALCULATION

Ship 
object

Ocean rendering 
library

synchronism

3D files
(.stl)

Wave parameters
(T, ζ, θ)

GUI

Ship specification
(.json)

1 2 3

Ship 3D model

Motion state 
calculation object

0

1.1

1.2

1.3

1.4

2.1 2.2

2.3

2.4

3.1

3.2

FIGURE 7. FLOWCHART OF THE SINGLE HULL SIMULATOR. INSPIRED BY CHAVES AND GASPAR [4].

6 Copyright c© 2019 by ASME



with the closed-form model and rendered the visualization with
a simplified 3D model of the vessel. The new simulator uses a
ship design defined with the Vessel.js library and estimates the
motion response based on the characteristics derived for a cer-
tain state of that design. While the first version of the simulator
is basically a 3D visualization of the wave motion response, the
new one works as an extension of the Vessel.js library, provid-
ing the same 3D motion visualization for a design defined by the
user.

Multibody Motion Response
The second simulation calculates motion response of multi-

ple vessels simultaneously subjected to regular waves, as shown
in Fig. 8. It is very similar to the previous simulation, but ad-
justed to calculate and render the motion response for multiple
floating vessels.

FIGURE 8. SCREENSHOT OF THE MULTIBODY MOTION SIM-
ULATOR.

The flowchart in Fig. 9 illustrates how this is done with an
object-oriented approach. The new flowchart is similar to the
previous one (Fig. 7), but with the components related to the ship
motion reproduced to account for multiple hulls floating simulta-
neously. The GUI allows the user to add hulls to or remove them
from the simulation. The flowchart exemplifies a simulation with
two hulls, but the same structure can be expanded to more ship
instances.

These ship instances are encapsulated and handled indepen-
dently, which is a suitable approach for the evaluation of multiple
motion response amplitudes with different calculation parame-
ters. This way, the main script can perform the required calcu-
lations for each ship by invoking a method in the corresponding
object, then access the results to move the ship 3D model in the
visualization. The simulation does not consider wave interaction
due to the presence of multiple vessels.

Pendulum Motion of Lifted Load

The pendulum application is similar to the Single Hull Mo-
tion simulator, but with the addition of an A-frame with pendu-
lum motion, as shown in Fig. 10. The motion of the pendulum
responds in real-time to the ship motion, which in turn is influ-
enced by the wave parameters set by the user (wave amplitude,
period and direction).

The organization of the simulator is very similar to the
flowchart in Fig. 7, but adapted to include a geometric definition
of the A-frame, contained in an object, and a 3D model of the A-
frame generated automatically from that definition. Furthermore,
a new module is also necessary to calculate the pendulum states,
position and velocity, induced by the hull response to waves.

number 
of ships

CALCULATIONINPUT OUTPUT
(3D SCENE)

Wave 
visualization

Ship 2 motion 
visualization

Ocean rendering 
library

synchronism

Ship 2 3D files
(.stl)

Wave parameters
(T, ζ, θ)

GUI

Ship 
object 2Ship 2 specification

(.json)

1 2 3

Ship 2 3D model

Motion state 
calculation object 2

Ship 1 motion 
visualization

Ship 1 3D model

Motion state 
calculation object 1

Ship 
object 1

Ship 1 specification
(.json)

Ship 1 3D files
(.stl)

ship 2

ship 1

FIGURE 9. FLOWCHART OF THE MULTIBODY SIMULATOR.

7 Copyright c© 2019 by ASME



FIGURE 10. SCREENSHOT OF THE PENDULUM MOTION SIM-
ULATOR.

Motion of Free Floating Hull
Differently from the previous examples, this simulation does

not use predefined equations based on experimental methods to
evaluate hull motion. Instead, it uses the equation of movement
to calculate the vessel position over time. Fig. 11 shows a barge
with initial heave and roll conditions different from zero. As
the simulation advances, the barge will oscillate until all energy
dissipates due to damping. The box-shaped barge geometry was
chosen because it is simple to represent its motion coefficients,
particularly the added mass. However, in the future it is possible
to use more complex formulations in order to represent added
masses for distinct types of geometries.

The flowchart in Fig. 12 shows the components of the sim-
ulator. Note that this simulation does not use any parameter to
configure the ocean because it is always considered to be in the
calm water condition. It is worthwhile to have a deeper look into
two items from the chart inputs, because they are distinct from
the other simulations:

1.3. Initial state: the user can change the vessel’s heave, roll, and
pitch in order to simulate its movement trough time. The

FIGURE 11. SCREENSHOT OF THE FREE MOTION SIMULA-
TOR.

initial state will be changed in the ship state object, which
is translated to the movement of the ship 3D model in the
visualization.

1.4. Damping coefficients: these are the coefficients responsible
for the movement decay. CD is used to calculate the damping
in the three linear directions (surge, sway and heave), which
are taken as the same magnitude in the simulation. B44 and
B55 account for the damping in roll and pitch, respectively.

DISCUSSION
The web applications presented in the work were success-

ful in performing time-domain simulations of motion with 3D
visualizations in real-time on the client-side (that is, without re-
linquishing the calculations to a server). The framework for
state handling, which had its development started in previous
works [7], now has its foundations in place, providing capability
to handle both discrete and continuous states during a simulation.

At this point, the web applications still present some limita-

INPUT OUTPUT
(3D SCENE)

Ship dimensions
(L, B, T)

Ship motion 
visualization

CALCULATION

Ship 
object

Ocean rendering 
library

3D files
(.stl)

Initial states
(Φ, θ, ψ)

GUI

Ship specification
(.json)

1 2 3

Ship 3D model

Motion state 
calculation object

1.1

1.2

1.3

1.4

Damping coeff.
(CD, B44, B55)

1.4

FIGURE 12. FLOWCHART OF THE FREE MOTION SIMULATOR.

8 Copyright c© 2019 by ASME



tions in terms of scope and accuracy to account for the simulation
of an entire marine operation. Heave and pitch responses calcu-
lated with the closed-form expressions are exaggerated in some
cases, as acknowledged in the source material [8]. Likewise, the
motion simulation based on equations of motion is very incipi-
ent, and does not yet account for interaction with waves.

However, the applications put to test the potential of the
web-based approach and serve as a starting point for the forth-
coming work. The approach yields useful features regarding ac-
cessibility of simulation models, allowing one to configure them
online and share with geographically distributed users with mi-
nor complications. It also demonstrated the potential of web
technologies in supporting user interaction, allowing creation of
interfaces and visualizations, and open source development, with
multiple open libraries available for usage in engineering appli-
cations.

The simulations gives the first step towards simulation of
motion with differential equations for the Vessel.js library. Given
the computational performance of the developed applications,
the web-based approach still provides potential to accommodate
more demanding mathematical models. In the future, they could
be further developed to incorporate strip-theory methods.

CONCLUSION
This work presented a web-based approach to ship virtual

prototyping and simulation of marine operations. The approach
is applied to web-applications with simulations of motion re-
sponse of a single hull in regular waves, of multiple hulls in reg-
ular waves, of a load lifted from an A-frame and of a hull floating
in still-water. The motion response of the hulls in regular wave is
calculated with closed-form expressions, while the motion of the
load and of the hull in still water are calculated with by solving
the equations of motion numerically.

The web-based and open source approaches supported the
development of the applications, allowing interactive visual pre-
sentation, assuring accessibility and compatibility of the applica-
tions, and allowing usage of various open libraries, more notably
Vessel.js.

FUTURE WORK
At the moment, the development of the Vessel.js library is

focused towards simulations of subsea operations and motion in-
teraction between vessel and mooring or towing lines.

Furthermore, the library may also be linked to FMI, which
is now being proposed as a standard for exchange of simulation
models in the maritime industry [16]. This would provide the
benefits of the web-based approach to the FMI simulations, while
allowing organization of the functional mock-up units in a more
comprehensive framework supported by the library.

SOURCE CODE
The webpage of the Vessel.js library can be accessed via

the address: https://vesseljs.org/. Besides the source
code, it includes documentation, examples of applications and
live tutorials. The library and webpage are currently under ac-
tive development and should still undergo improvements after
the publication of this work. As the project aims to be collabora-
tive, anyone is welcome to use and contribute with the project.

ACKNOWLEDGMENT
This research is connected to the Ship Design and Operation

Lab at NTNU in Ålesund. The research is partly supported by
the EDIS project, in cooperation with Ulstein International AS
(Norway) and the Research Council of Norway, and by the INT-
PART Subsea project in cooperation with the University of São
Paulo (USP) and the Research Council of Norway.

REFERENCES
[1] Gaspar, H. M., 2017. “JavaScript applied to maritime de-

sign and engineering”. In 16th Conference on Computer
and IT Applications in the Maritime Industries, pp. 253–
269.

[2] Harries, S., Lorentz, K., Palluch, J., and Praefke, E., 2018.
“Appification of propeller modeling and design via CAE-
SES”. In 17th Conference on Computer and IT Applica-
tions in the Maritime Industries, pp. 292–307.

[3] Hatledal, L. I., Schaathun, H. G., and Zhang, H., 2015. “A
software architecture for simulation and visualisation based
on the functional mock-up interface and web technologies”.
In Proceedings of the 56th Conference on Simulation and
Modelling, Linköping University Electronic Press.

[4] Chaves, O., and Gaspar, H., 2016. “A web based real-time
3D simulatorfor ship design virtual prototype and motion
prediction”. In 15th Conference on Computer and IT Ap-
plications in the Maritime Industries.

[5] Gaspar, H. M., 2018. “Vessel.js: an open and collabora-
tive ship design object-oriented library”. In Marine Design
Conference (IMDC’18).

[6] He, B., Wang, Y., Song, W., and Tang, W., 2015. “De-
sign resource management for virtual prototyping in prod-
uct collaborative design”. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering
Manufacture, 229(12), pp. 2284–2300.

[7] Fonseca, Í. A., 2018. “An open and collaborative object-
oriented taxonomy for simulation of marine operations”.
Master’s thesis, NTNU.

[8] Jensen, J. J., Mansour, A. E., and Olsen, A. S., 2004. “Es-
timation of ship motions using closed-form expressions”.
Ocean Engineering, 31(1), pp. 61–85.

[9] Myhre, T. A. Spherical pendulum dynamics. Avail-
able at https://www.torsteinmyhre.name/
snippets/spherical_pendulum.html.

9 Copyright c© 2019 by ASME

https://vesseljs.org/
https://www.torsteinmyhre.name/snippets/spherical_pendulum.html
https://www.torsteinmyhre.name/snippets/spherical_pendulum.html


[10] Myhre, T. A., and Egeland, O., 2016. “Collision detection
for visual tracking of crane loads using a particle filter”.
In IECON 2016 - 42nd Annual Conference of the IEEE
Industrial Electronics Society, IEEE.

[11] Loisel, S. Numeric.js. Available at https://github.
com/sloisel/numeric.

[12] Fossen, T. I., and Fjellstad, O.-E., 1995. “Nonlinear mod-
eling of marine vehicles in 6 degrees of freedom”. Mathe-
matical Modeling of Systems, 1(1), pp. 1–11.

[13] Bergdahl, L., 2009. “Wave loads on and motions of a ship
in regular waves”. In Wave-induced loads and ship motion,
pp. 65–112.

[14] Monteiro, T. G., Xu, J., and Gaspar, H. M. Animated linear
roll + heave ship model (6dof model). Available at http:
//www.shiplab.hials.org/app/6dof/.

[15] Bouny, J. Ocean - realistic water shader for three.js. Avail-
able at https://github.com/jbouny/ocean.

[16] Chu, Y., Hatledal, L. I., Æsøy, V., Ehlers, S., and Zhang,
H., 2017. “An object-oriented modeling approach to virtual
prototyping of marine operation systems based on func-
tional mock-up interface co-simulation”. Journal of Off-
shore Mechanics and Arctic Engineering, 140(2), nov,
p. 021601.

10 Copyright c© 2019 by ASME

https://github.com/sloisel/numeric
https://github.com/sloisel/numeric
http://www.shiplab.hials.org/app/6dof/
http://www.shiplab.hials.org/app/6dof/
https://github.com/jbouny/ocean

