QLIALCONW\”

Qualcomm Technologies, Inc.

DragonBoard™ 410c based on Qualcomm®
Snapdragon™ 410E processor

Peripherals Programming Guide
Linux Android

September 2016

© 2015-2016 Qualcomm Technologies, Inc. All rights reserved.

MSM and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of
Qualcomm Technologies, Inc. or its other subsidiaries.

DragonBoard, MSM, Qualcomm and Snapdragon are trademarks of Qualcomm Incorporated, registered in the United States and other
countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and
international law is strictly prohibited.

Use of this document is subject to the license set forth in Exhibit 1.
Questions or comments: https://www.96boards.org/DragonBoard410c/forum
Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121
U.S.A.

LM80-P0436-5 Rev F

https://www.96boards.org/DragonBoard410c/forum

Revision history

Revision Date Description
F September 2016 Updated to ‘E’ part.
E December 2015 Fixed BLSP address table for SPI for APQ8016

Added info for UART baud rates in 3.1.2 and 12C core in 4.1.1; fixed a

D August 28, 2015 lunch command typo, removed / in the path for kernel
C June 1, 2015 Added details to BLSP in section 3.

B May 20, 2015 Updated Revision history and © date for Rev B.

A April 2015 Initial release.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Contents

I [Yo o o LU '] 4 o] o S 6
I U 0T L PPt 6
I o] 01V =Y o 1T LSRR OO 6
1.3 Acronyms, abbreviations, @nd tEIMSciiii i e e e e e e e e e e e s bbb e e e e e e s s ssbrareeaeeeaan 6
1.4 Cloning the kernel and LK boot loader code and flashing the images to the
(D] To [0 0] =70 = o 1025 0 Lo PP PPURP 7
1.5 Additional INFOMMALION ...t e e e e ettt e e e e e e ettt e e e e e e e e nsbeeeeaaeeeaannnnneaaaaeann 8
B B LYo I Y PSRRI 9
2.1 DEVICE trEE COMPONENES ...uuteiieeiieeeesitieeeatteeesauteeessntteeeaatteeesanseeeeaseeeeaasteeeeansseeesneeeeesnseeeeasaeeesannneeeannneeenn 9
3 Universal Asynchronous Receiver/ TranSmitterccoooooiieioeieeeeeeeeeeeeeee e 11
3.1 HAIAWAIE OVEIVIEWeiieiiiee ettt e e ettt e e e e e ettt e e e e e e aete et e e e e e e s n s baeeeaaeeesansbbseeeaeeesanssssseaaaeesansnnnsneens
3.1 1BLSP ..cccoeviiiiinn
3.1.2 UART core.............
3.2 Configure LK UART
3.2.1 COUE CRANGESeeeeeiiie ettt e st e e et e e et e e et e e an e
3.2.2 Debug LK UART
3.3 Configure Kernel Iow-SPeed UARToo ittt e e a e s 19

Low-speed UART driver(kernel/drivers/tty/serial/msm_serial_hs_lite.c) is a FIFO-
based UART driver and is designed to support small data transfer at a
slow rate, such as for console debugging or IrDA transfer. The high-
speed UART driver(kernel/drivers/tty/serial/msm_serial_hs.c) is a BAM-
based driver and should be used if a large amount of data is transferred
or for situations where a high-speed transfer is required............ccocouiieiiiiiiniiiiiieees 19
IR A 0o To [N od g F= g o [T PP PPRTTTP
3.3.2 DebUQg I0W-SPEEA UART ...ttt ettt e ettt e e e e e e e bbb e e e e e e e e nnnrneeeas
3.3.3 Optional configuration changes ...
3.4 Configure kernel high-Speed UART ..ottt e e e s
3.4.1 Debug high-SPeed UARTccoiiiiieiiie ittt e et
3.5 Code walkthrough — High-Speed UART GIVEIeiiiiiiieeee ettt 28
IS T0 B (0] o To [TP P TP OPPPPI
3.5.2 Port open.....cccccceeeiiiiiiiieec s
3.5.3 Power management
TSI = o 4 o [0 1= PSPPSR

4 Inter-INtegrated CITCUITcoiiiiiiicie e e e e e e ettt e e e e e e e e e eaaataaeeeeaeeesannes

4.1 Hardware OVEIVIEWc..ccorcuviiiiirieeeiirinessieie e e
4.1.1 Qualcomm Universal Serial Engine
4.1.2 QUP 12C configuration parameters
4.1.3 Bus scale ID

4.2 Configure LK 12Cccuueneee.
N R =1 A oo Lo [T O PSPPI OPPRPIN
A.2.2 DEDBUQG LK I2C .ttt ettt

4.3 Configure Kernel IoW-SPEEA 12C........couuiii ittt e e st e e
T R O o o [N o g - T o = PP TR PUPRRRN
4.3.2 TeSt COUL......cvvveerriierriee e
4.3.3 Debug low-speed 12C

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Peripherals Programming Guide Linux Android Contents

4.3.4 Register a slave device using the device tree
4.4 Configure kernel high-speed 12C
4.4.1 Code changes
4.5 Disabling BAM mode
4.6 NOISE rejeCtion 0N 12C lINESoiiiiiei ettt e et e st e e et e e e s e e s nanes
4.7 Setting [2C CIOCK QIVIAEIS.....ceiiiiiiiiiiiee ettt e e e e e e e s e e e e e e e s esatareeaeeeseasnstbaeeeaeeeaanees
4.7.1 Default values
4.7.2 Setvalues........ccoceeveeeiiiiiiiennenn.
4.7.3 Dividers vs clock frequency
4.8 [2C POWET MANAGEMIENT. ... e et e aaaaaaaaaaaaaaaaaaaaaaaans
4.9 PSEUAOCOUE ...ttt ettt ettt e et s e e e et e s e e e e bt e eh e e e ab e e s bt e san e e s st e e sab e e s e e nneean
4.9.1 QUP operational states
e B b L Y R Y IO UPPUPPTRUPRTPN
o O 3= o1 T I [Yo PP EROR R SOUUPRRR
4.10.1i2C-MSM-V2.C — FIFO MOUTEtiiiiiiiiiieiiie ettt
4.10.2i2C-MSM-V2.C — BAM MOGE........uiiiiiiiiieiiie e e

5 Serial Peripheral INterTaCe ..o

5.1 Hardware overview
5.1.1 SPI core
5.1.2 QUP SPI parameters
5.2 Configure Kernel IoW-SPEEA SPl..........uiiiiiiiie ittt ettt et e e sttt e e s at e e e e rb e e e eaneaesnaeeeas
5.2.1 Code Changesococeeiiiiieiniiieeee e
5.2.2 Register a slave device using the device tree....
5.3 Configure kernel high-speed SPI..........ccccoceiviieiiiiienenne,
5.3.1 COUE CRANGESeieeiiiiit ettt e e st e e et e e e e bt e e et e e nnre e e
5.4 SPI POWET MANAGEMENT ..ot e et e et e e e e e e e e e e et e et e e e e e s e rr e et e e e e e s s enrnreeeeeesasnnnneeees
SR oo L= 11 a1 (o8 o | o PR
LT T00 (0] o1 o PP
5.5.2 SPITANSTEN ...ttt

B BLSP BAM L.t e et e e et e e e e e

6.1 SOUICE COUB......ciiriieiiiiii ittt e et e et e et e e et et e e et e e e bn et e ek r et e s et e e e e s nn e e e e sn e e e s eann e e e s nneee s
6.2 KEY TUNCLIONS ..ottt ettt e oottt e e e e e e bbbttt e e e e e e n bbb et e e e e e e e e nbbbb e e e e e e e e e nnnnbnneeas
B.2.0 SPS_PNY2N() -ettteiiteee ettt e e
6.2.2 sps_register_bam_device()
6.2.3 SPS_AIIOC_ENAPOINT() -.vvrteiitiieeitr ettt ettt e e e e e e
6.2.4 SPS_COMNECT() - utteeeeuiiet ettt ettt s ket e et e et e e e b e e e ekt e et e e e e e et e e a e
6.2.5 sps_register_event()
6.2.6 sps_transfer_one()
6.2.7 bam_isr()c......
6.2.8 sps_disconnect() ...
6.3 KEY AALA SIIUCTUIES ...ttt ettt e et e e et e e e bt e e bbbt e e ettt e s bt e e e e bt e e e anneeeesnnneee s
LR] o LS o | V] o S PP PUPTT TP
6.3.2 sps_bam
6.3.3 sps_pipe
6.3.4 SEUCE SPS_COMMECT ... s
6.3.5 sps_register_event
6.3.6 sps_bam_sys_mode

A N O 4 o= L (=T o] (=] PP UPPTRP
% N €1 (@ J O =l €1 o T O O OSSP P PP OP P PUPPPRN
7.1.2 GPIO_IN_OUTn
7.1.3 GPIO_INTR_CFGn
7.1.4 GPIO_INTR_STATUSN
7.2 Configuring GPIOs in Linux kernel

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 4

Peripherals Programming Guide Linux Android Contents

7.2.1 Define pin controller NOAe IN DTS ... e e e e e e e nnneeeeeas 20
7.2.2 Accessing GPIOs in driver
7.3 Call floOW fOr GPIO INTEITUPTeeeeeiee ettt e ettt e e e e e e et te et e e e e e e s e neaeeeeaeeesannnteeeeaaeeaannnneeeeas
= 1= I I TSP PP TTUPPPPP 96
Figures
Figure 4-1 Output clock is less than 400 kHz due to added riSe tIMe...........cciiiiiiiiiiii e 58
Figure 4-2 Output clock is 400 kHz due to excluded FiSE tIMEc.viiiiiiiiiiiiee et 58
FIGQUre 5-1 SPI MESSAQGE QUEUE......cceiitiieiitiiiestieee sttt e e ettt e s s e e e e st e e e te et e s asee e e e asbe e e e e see e e s sneeeeasnr e e e anbneeennneeeaanneeenanns 80
Figure 7-1 Register @ GPIO IRQ (L Of 2) ..uuuiiiiiiiiiiiiiiii ettt e e e e et e e e e e e et e e e e e e s e s raab et e e aeeessantbaaeeeeeenan 93
Figure 7-2 Register @ GPIO IRQ (2 OF 2) ...uuiiiiieiiiii ittt e e e e e ettt e e e e e e s et e e e e e e e s ansneeeeeaaaan 94
[To [N R B == W 1 o (@ T (= 4 U]) S SRRSO 95

Tables

Table 1-1 Acronyms, abbreVviations, and tEIMSi et e e e e e ettt e e e e e e s entbb e e e e e e e e ssstraeeaaeeesaanseneeeas 6
Table 2-1 Device tree advantages and diSAOVANTAGESccoveiiiiiiiiiiiiiee et e et e e sieee e steee e steeeesbeeeeasrteeessnneeeesneeeeas 9
Table 2-2 DEVICE tre€ COMPONENESciiiiiiieiiiit ettt e e e s bt e e ek b e e e e aat et e e s b e e e ek b et e e aab et e e ssbb e e e e bbe e e e anneeeennnneeean 9
TaDIE 3-1 BLSP FUNCHONS ...ttt ettt et e st e et e e st e sa bt e s h e e e it e s st e san e e nnbeennnee e 11
Table 3-2 UART_DM physical address, IRQ numbers, Kernel UART clock name, consumer, producer pipes,
BLSP_BAM physical address, and BAM IRQ number for Snapdragon 410E (APQ8O0L16E)ccceevvivvveiiieeeiiiieeenns 13
Table 3-3 UART_DM BLSP bus master ID for APQ80L6E/MSMBILEcccueerreiiiieiiieiiiesieesiee st e e 13
Table 3-4 Configuring BLSP1 UARTL to use the Iow-Speed UARTooiiiiiiiiiii et 19
Table 3-5 Resources required for UART FeQISIIAtiONcciiuiiiiiiiiieeiiiieeestiee e st e e s steeeesnteeeesteeeesnneeeessnteeeesneeeesanees 29
Table 4-1 QUP physical address, IRQ numbers, Kernel 12C clock name, consumer, producer pipes, BLSP_BAM
physical address, BAM IRQ number for Snapdragon 410E (APQBOL6E)ccoiiiiiiiiiiieiiiee et 37
Table 4-2 BLSP DUS MASTEE ID... ...ttt e oo e ettt e e oo e o ettt e e e e e s e b bbb et e e e e e e e bbbbr e e e e e e e annnnrneeeas 37
Table 4-3 Configuring a QUP core as an 12C in the KEINelc.eiiiiiiii e 45
Table 4-4 DefauUlt I2C VAIUBS........c..eeeeieieeee ettt e e e e oo ekttt e e e e e s e bbbe et e e e e e e e sbbb e et e e e e e annnntaeeeas 56
LI Lo R T L O i R Y C TR UPRUURRUPRTPR 62
Table 5-1 QUP physical address, IRQ numbers, Kernel SPI clock name, Consumer, producer pipes, BLSP_BAM
physical address, BAM IRQ number for Snapdragon 410E (APQ8OL6E)c.uuuiiiiiiiiiiiiiiiiiee et 67
Table 5-2 Configuring a QUP core as an SPI device in the Kernel............ooivi e 68
Table 5-3 SPI master registration resources required fOr BAMooo it 77
Table 5-4 Device tree and clock resources required for SPI BAMcoiiiiiiiiiiiiieiiee e 78
Table 7-1 Synaptics Touchscreen driver GPIOS iN MSMBO9L6ccooiiiiiiiiiiiiii et 89

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 5

1 Introduction

1.1 Purpose

This document describes how to configure, use, and debug the Bus Access Manager (BAM)
Low-Speed Peripherals (BLSP) for Linux Android available on the DragonBoard™ 410c based
on Qualcomm® Snapdragon™ 410E (APQB8016E) processor.

1.2 Conventions

Function declarations, function names, type declarations, attributes, and code samples appear in a
different font, for example, #include.

Code variables appear in angle brackets, for example, <number>.
Commands to be entered appear in a different font, for example., copy a:*.* b:.

Button and key names appear in bold font, for example, click Save or press Enter.

1.3 Acronyms, abbreviations, and terms

Table 1-1 provides definitions for the acronyms, abbreviations, and terms used in this document.

Table 1-1 Acronyms, abbreviations, and terms

Term Definition
ADM Application Data Mover
AHB AMBA Advanced High-Performance Bus
BAM Bus Access Manager
BLSP BAM Low-Speed Peripheral
CDP Core Development Platform
CSs Chip Select
CTS Clear-to-Send
DMA Direct Memory Access
DTB Device Tree Blob
DTC DTS Compiler Tool
DTS Device Tree Source
EOT End-of-Transfer
GSBI General Serial Bus Interface
12C Inter-Integrated Circuit
IrDA Infrared Data Association

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Peripherals Programming Guide Linux Android

Introduction

Term

Definition

LK

Little Kernel

PNoC

Peripheral Network on a Chip

QUP

Qualcomm Universal Peripheral (Serial)

RFR

Ready for Receiving

SPI

Serial Peripheral Interface

SPS

Smart Peripheral Subsystem

UART

Universal Asynchronous Receiver/Transmitter

uiM

User Identity Module

1.4 Cloning the kernel and LK boot loader code and flashing

the images to the DragonBoard 410c

The kernel and LK boot loader code is available on www.codeaurora.org. Download the code

using the following commands:

1. repoinit -u git://codeaurora.org/platform/manifest.git -b release -m <Release>.xml --repo-

url=git://codeaurora.org/tools/repo.git

o Check the release notes located at:
https://developer.qualcomm.com/hardware/dragonboard-410c/tools to use the right .xml
manifest file. Please note that there can be multiple release notes and you need to use the
latest or earlier one’s depending on your needs.

2. reposync -j8
o -j<n>depending on how many cores available on the Linux machine.

Once the clone is complete folders kernel and bootable correspond to the source code of
kernel and LK boot loader respectively. Note that all code referring to MSM8916 in kernel

and LK boot loader is valid for APQ8016E also.

3. Commands to build the kernel and LK boot loader images after setting up the Android build
environment for Android:

source build/envsetup.sh

lunch msm8916_64-userdebug

make —j8 bootimage > to build kernel, generates boot.img in

out/target/product/msm8916_64

make —j8 aboot - to build LK boot loader, geneartes emmc_appsboot.mbn in

out/target/product/msm8916_64

After making the changes as necessary, use fastboot commands to flash the images to the
device. Holding VOL- during power up puts the device in fastboot:

fastboot flash aboot emmc_appsboot.mbn

fastboot flash boot boot.img

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

file://///cm/cm_scd/Specifications/P0000/P0436/LM80-P0436-5/A/www.codeaurora.org
https://developer.qualcomm.com/hardware/dragonboard-410c/tools

Peripherals Programming Guide Linux Android Introduction

1.5 Additional information
For additional information, go to
https://developer.qualcomm.com/hardware/dragonboard-410c/tools
http://www.96boards.org/db410c-getting-started/

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 8

https://developer.qualcomm.com/hardware/dragonboard-410c/tools
http://www.96boards.org/db410c-getting-started/

2 Device Tree

The device tree is a standard used by Open Firmware to represent hardware. Instead of compiling
multiple board support package files into the kernel, a separate OS-independent binary describes
the target. The data structure is loaded into the operating system at boot time. The device tree is
composed of trees, nodes, and properties that are similar to XML.

Table 2-1 lists the advantages and disadvantages of the device tree.

Table 2-1 Device tree advantages and disadvantages

Pros Cons

= Formal and clear hardware description = Not a complete built-in dependency solution
= Multiplatform kernels are possible

= Less board-specific code, more efficient device
driver binding

For more detailed information on the device tree, see the Device Tree Wiki
(http://www.devicetree.org/Main_Page).

2.1 Device tree components

Table 2-2 Device tree components

Component Description

Source (*.dts) Expresses the device tree in human-editable format; it is organized as a
tree structure of nodes and properties.

For ARM architecture, the source is in the dts folders:

kernel/arch/arm/boot/dts
kernel/arch/arm64/boot/dts

Files with the .dtsi extension are device tree included files. They are
useful for factoring out details that do not change between boards or
hardware revisions.

Bindings Defines how a device is described in the device tree; see the bindings
folder for documentation:

kernel/Documentation/devicetree/bindings

Device Tree Blob (*.dtb) Compiled version of the device source; it is also known as the Flattened
Device Tree. The Device Tree Source (DTS) Compiler Tool (DTC)
compiles DTS to Device Tree Blob (DTB).

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

http://www.devicetree.org/Device_Tree_Usage

Peripherals Programming Guide Linux Android

Device Tree

Component

Description

Chip-specific components

Chipset-specific files include the chip ID as shown in the following
examples:

= Main DTS that contains chipset and peripheral information that is
common for all hardware variants:

o kernel/arch/arm/boot/dts/qcom/msm8916.dtsi
= DTS file that is used by the DragonBoard 410c:

= kernel/arch/arm/boot/dts/qcom/msm8916-sbc.dts
= Bus Scale Topology (ID) list:

= kernel/arch/arm/boot/dts/qcom/msm8916-bus.dtsi

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

10

3 Universal Asynchronous Receiver/
Transmitter

This chapter describes the Universal Asynchronous Receiver/Transmitter (UART) and explains
how to configure it in the boot loader and kernel.

3.1 Hardware overview

3.1.1 BLSP

APQB016E supports many peripherals via the generic serial bus interface supported by the BAM
Low Speed Peripherals (BLSP) core. It has single BLSP instance which supports up to six serial
interfaces (BLSP1.....BLSP6) on GPIOs. Each 4-pin interface can be configured for the functions
listed in Table 3-0.

The APQ8016E BLSP block includes six (6) QUP and two (2) UART cores. In general, all BLSP
interfaces are functionally the same. Exceptions are noted below.

SPI

Additional SPI chip selects are only pinned out for BLSP1, BLSP2 and BLSP3. This allows up to
three chip selects to be used for each of these. Other BLSP interfaces can only support a single
chip select. All BLSPs support 52 MHz SPI operation.

UART

UART (4-wire or 2-wire) can only be configured through BSLP1, BLSP2.

BLSP UIM

BLSP UIM can only be configured through BSLP1, BLSP2.

Table 3-1 BLSP Functions

Fin |UART RUIM 12C 12C + RUIM |12C + Z-wire UART |SPI

3 |uart_tx_data |uim_data |[gnd fie |uim_data uart_tx_data spi_mosi_data
2 |uart_mx_data |uim_clk |gnd fie |uim_clk uart_rx_data spi_miso_data
1 |uart_cts_n unused i2c_data |i2c_data i2c_data spi_cs_n

0 |uart rfr n unused i2c_clk i2c_clk i2c_clk spi_clk

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

11

DragonBoard™ 410c based on Qualcomm® Snapdragon™ 410E processor Peripherals Programming Guide Linux Android Universal
Asynchronous Receiver/ Transmitter

The Qualcomm Universal Peripheral (QUP) Serial Engine provides a general purpose datapath
engine to support multiple mini cores. Each mini core implements protocol-specific logic. The
common FIFO provides a consistent system 10 buffer and system DMA model across widely
varying external interface types. For example, one pair of FIFO buffers can support Serial
Peripheral Interface (SPI) and 12C mini cores independently.

BAM is used as a hardware data mover. Each BLSP peripheral:

» s statically connected to a pair of BAM pipes

m Consists of 12 pipes that can be used for data move operations for APQ8016E
= Supports BAM- and non-BAM-based data transfers

3.1.2 UART core

Key features added for the chipset include the following:
= BAM support

= Single-character mode

= Baudrates 300 bps up to 4M bps

Detail information in msm_hsl_set_baud_rate() of
kernel/drivers/tty/serial/msm_serial_hs_lite.c

Detail information in msm_hs_set_bps_locked() of kernel/drivers/tty/serial/msm_serial_hs.c

The UART core is used for transmitting and receiving data through a serial interface. It is used
for communicating with other UART protocol devices. Configuration of this mode is primarily
defined by the UART_DM_MR1 and UART_DM_MR?2 registers (Snapdragon 410E
(APQ8016E) Hardware Register Description document has the register information -
https://developer.qualcomm.com/hardware/snapdragon-410/tools).

To match the labeling in the software interface manual, each UART is identified by the BLSP
core and UART core (0 to 5). The max transfer rate of the UART core is up to 4M bps.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 12

https://developer.qualcomm.com/hardware/snapdragon-410/tools

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

Table 3-2 UART_DM physical address, IRQ numbers, Kernel UART clock name, consumer, producer pipes, BLSP_BAM
physical address, and BAM IRQ number for Snapdragon 410E (APQ8016E)

BLSP UART_DM core Physical address IRQ Kernel UART clock name Consumer, BLSP_BAM physical
hardware (UART_DM_BASE_ | number producer address, IRQ number
ID ADDRESS) pipes
BLSP1 BLSP 1 UART O 0x78AF000 107 clock gcc blspl uartl apps clk 0,1 0x07884000, 238
BLSP2 BLSP 1 UART 1 0x78B0000 108 clock gcc blspl uart2 apps clk 2,3 0x07884000, 238

Bus scale ID
Table 3-3 lists the BLSP master IDs.

Table 3-3 UART_DM BLSP bus master ID for APQ8016E/MSM8916

BLSP hardware ID UART_DM cores BLSP bus master ID
BLSP[1:6] BLSP1_UARTI[0:5] 86
BLSP[7:12] BLSP2_UARTI0:5] 84

For the latest information, check the following file:

kernel/arch/arm/boot/dts/gcom/<chipset>-bus.dtsi

Where <chipset> corresponds to the applicable product, for example:

kernel/arch/arm/boot/dts/gcom/msm8916-bus.dtsi

IDs are listed under mas-blsp-1 and slv-ebi-chO.

noTe: Bus slave EBI CHO ID = 512.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 13

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

3.2 Configure LK UART
In the Little Kernel (LK) boot loader, a UART may be needed for debug logs.

3.2.1 Code changes

This section describes the changes required to configure a UART in the LK boot loader. The
following files are used to configure UART in the boot loader:

/bootable/bootloader/lk/project/<chipset>.mk
/bootable/bootloader/lk/target/<chipset>/init.c
/bootable/bootloader/lk/platform/<chipset>/include/platform/iomap.h
/bootable/bootloader/lk/platform/<chipset>/acpuclock.c
/bootable/bootloader/lk/platform/<chipset>/<chipset>-clock.c
/bootable/bootloader/lk/platform/<chipset>/gpio.c

kernel/arch/arm/mach-msm/include/mach/msm_iomap-<chip>.h

Where <chipset> corresponds to the applicable chipset, and <chip> corresponds to the 4-digit
chip number, for example:

/bootable/bootloader/lk/project/msm8916.mk

kernel/arch/arm/mach-msm/include/mach/msm iomap-8916.h

1. Enable the UART for debugging.

a. Open the project make file.
Project Root/bootable/bootloader/lk/project/<chipset>.mk

Where <chipset> corresponds to the applicable chipset, for example:
Project Root/bootable/bootloader/lk/project/msms8916.mk

b. SetthewiTs DEBUG UART flag to TRUE.
DEFINES += WITH DEBUG UART=1

2. Set the base address.

a. Open the init.c file located at:
Project Root/bootable/bootloader/lk/target/<chipset>/init.c

Where <chipset> corresponds to the applicable chipset, for example:
Project Root/bootable/bootloader/lk/target/msm8916/init.c

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 14

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

b. Set the applicable parameters for the base address. The following example shows setting
the base address.

void target_ early init(void)
{
#if WITH DEBUG_UART
uart_dm init(l, 0, BLSP1l_UART1 BASE) ;

#endif t
Represents the BLSP ID (1 - 12). Based Physical address for UART CORE defined in

on the chipset it may not be used. /bootable/bootloader/Ik/platform/msm8974/include/platform/iomap.h

Set to O if it is a GSBI base.

For the DragonBoard 410c UART is configured as below:
uart_dm_init(2, 0, BLSP1_UART1_BASE);

3. Configure the clocks. Modify the acpuclock. c file located at:
Project Root/bootable/bootloader/lk/platform/<chipset>/acpuclock.c

Where <chipset> corresponds to the applicable chipset, for example:
Project Root/bootable/bootloader/lk/platform/MSM8916/acpuclock.c

The following example illustrates enabling the BLSP Advanced High-Performance Bus
(AHB) and UART core clocks. These clocks are both required for UART to function
correctly on the MSM8916/APQ8016E device.

/*
NOTE: Implementation of this function might be slightly different between
different chipsets.

*/
void clock config uart dm(uint8 t id)
{

int ret;

/~k

NOTE: In clock regime clocks are # from 1 to 6 so UARTO would
be identified as UARTI1
*/
//iface clk is BLSP clk, clk get set enable(char *id, unsigned long rate,
bool enable);
ret = clk get set enable(iclk, 0, 1);

//core clock is UART clock.
ret = clk get set enable(cclk, 7372800, 1);

4. Register the clocks with the clock regime. The BLSP1 _AHB clock is enabled by default.

a. Add the physical addresses to the iomap.h file located at:

Project Root/bootable/bootloader/lk/platform/msm8916/include/platform
/iomap.h

The following example shows support for BLSP1_AHB clock.

#define BLSP1 AHB CBCR (CLK CTL BASE + 0x1008)

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 15

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

b. Open the <chipset>-clock.c file located at:

Project Root/bootable/bootloader/lk/platform/<chipset>/
<chipset>-clock.c

Where <chipset> corresponds to the applicable chipset, for example:
Project Root/bootable/bootloader/lk/platform/msm8916/msm891l6-clock.c

c. Create a new clock entry.

//Project Root/bootable/bootloader/lk/platform/msm8916/msm8916-clock.c
//Use gcc_blspl ahb clk as an example and define gcc blspl ahb clk
static struct vote clk gcc blspl ahb clk = {

.cbcr reg = (uint32_t *) BLSP1 AHB CBCR,
.vote reg = (uint32 t *) APCS CLOCK BRANCH ENA VOTE,
.en _mask = BIT(10),
.c = {
.dbg name = "gcc blspl ahb clk",

O
o)
@]
I

&clk ops vote,

}i

d. Register the uart_iface clock (BLSP_AHB clock) with the clock driver by adding it to the
clock table.

//Project Root/bootable/bootloader/lk/platform/msm8916/msm8916-clock.c
static struct clk lookup msm clocks 8916[] =
{

//Name should be same as one you add on clock config uart dm
CLK_LOOKUP ("uart2 iface clk", gcc _blspl ahb clk.c),

e. Register the uart_core clock with the clock driver by adding it to the clock table.
//Project Root/bootable/bootloader/lk/platform/msm8916/msm8916-clock.c

static struct clk lookup msm clocks 8916[] =
{

//Name should be same as one you add on clock config uart dm
CLK_LOOKUP ("uart2 core clk", gcc blspl uart2 apps clk.c),

Only UART1 to UART?2 are available on BLSP1 to be used by the boot loader. UART2 is
configured by default for DragonBoard 410c.

Configure the GPIO.

f. Open the gpio.c file located at:
Project Root/bootable/bootloader/lk/platform/<chipset>/gpio.c

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 16

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

g. Configure the correct GPIO.

void gpio_config uart dm(uint8 t id)

{

/*

Configure the RX/TX GPIO

Argument 1: GPIO #

Argument 2: Function (Please see device pinout for more information)
Argument 3: Input/Output (Can be 0/1)

Argument 4: Should be no PULL

Argument 5: Drive strength

Argument 6: Output Enable (Can be 0/1)

*/

gpio_tlmm config(5, 2, GPIO_INPUT, GPIO_NO PULL,
GPIO_8MA, GPIO_DISABLE) ;
gpio_tlmm config (4, 2, GPIO OUTPUT, GPIO NO_PULL,
GPIO 8MA, GPIO DISABLE);

noTe: See the device pinout for information about the GPI1O function. BLSPs 4, 5, 6, 7, 9, and 11 have
different function assignments compared to other BLSPs.

5. Configure Early Printk

Additional changes are needed during kernel configuration if the following features are
enabbdinthekernel/arch/arm/configs/<chipset>_defconfigf“&

o CONFIG_DEBUG_LL=y
o CONFIG_EARLY_PRINTK=y

There is a dependency between UART configuration on the little kernel and the Early Printk
driver in the kernel. If the configuration settings listed above are enabled, the following
message is displayed using the Early Printk driver:

"Uncompressing Linux..."

The message output is defined in the Early Printk driver.

void

decompress kernel (unsigned long output start, unsigned long free mem ptr p,
unsigned long free mem ptr end p,
int arch id)

int ret;

arch decomp setup();

putstr ("Uncompressing Linux..."); //uses early printk driver
ret = do_decompress (input data, input data end - input data,

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 17

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

a. The Early Printk driver depends on the little kernel to configure the UART port. Open the
msm_iomap-8916.h file located at:
Project Root kernel/arch/arm/mach-msm/include/mach/msm_iomap-<chip>.h

Where <chip> corresponds to the 4-digit chip number, for example:
Project Root kernel/arch/arm/mach-msm/include/mach/msm_iomap-8916.h

b. Ensure the UART port being configured in the little kernel is the same UART port that is
used by the kernel.

#ifdef CONFIG DEBUG MSM8916 UART

#define MSMﬁDEBUGiUARTiBASE IOMEM (0xFAOBOOO0OO)
#define MSM DEBUG UART PHYS 0x78B0000
fendif

3.2.2 Debug LK UART

If the UART is properly configured, the following message appears on the serial console:
Android Bootloader - UART DM Initialized!!!

If you do not see the message, verify that the GPIOs are correctly configured. Check the GPI1O
configuration register, GPIO_CFGn, to ensure that the GPIO settings are valid.

Physical Address: 0x01000000 + (0x1000 * n) = GPIO CFGn
n = GPIO #
Example Address:
0x01000000 = GPIO_CFGO

0x01001000 = GPIO_CFG1

Bit definition for GPIO CFGn
Bits 31:11 Reserved

Bit 10 GPIO_HIHYS EN Control the hihys EN for GPIO

Bit 9 GPIO_OE Controls the Output Enable for GPIO
when in GPIO mode.

Bits 8:6 DRV_STRENGTH Control Drive Strength

000:2mA 001:4mA 010:6mA 011:8mA
100:10mA 101:12mA 110:14mA 1l1l:16mA

Bits 5:2 FUNC_ SEL Make sure Function is GSBI

Check Device Pinout for Correct Function
Bits 1:0 GPIO PULL Internal Pull Configuration

00:No Pull 0l: Pull Down

10:Keeper 11: Pull Up

note: For UART, 8 mA with no pull is recommended.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 18

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

3.3 Configure kernel low-speed UART

Low-speed UART driver(kernel/drivers/tty/serial/msm_serial_hs_lite.c) is a FIFO-based UART driver
and is designed to support small data transfer at a slow rate, such as for console debugging or IrDA
transfer. The high-speed UART driver(kernel/drivers/tty/serial/msm_serial_hs.c) is a BAM-based driver
and should be used if a large amount of data is transferred or for situations where a high-speed transfer is
required.

3.3.1 Code changes
Table 3-4 lists the files used to configure BLSP1 UART1 to use the low-speed UART driver.

Table 3-4 Configuring BLSP1 UARTL1 to use the low-speed UART

File type Description

Device tree source For MSM™ and APQ products:
kernel/arch/arm/boot/dts/qcom/<chipset>.dtsi

Where <chipset> corresponds to the applicable chipset, for example:
kernel/arch/arm/boot/dts/qcom/msm8916.dtsi

Clock table The clock nodes need to be added to the DTSI file.
For reference the clocks are defined in
kernel/drivers/clk/qcom/clock-gcc-<chipset>.c

For example
kernel/drivers/clk/qcom/clock-gcc-8916.c

Pinctrl settings The pin control table is located in the following file:
kernel/arch/arm/boot/dts/qgcom/<chipset>-pinctrl.dtsi

The following procedure describes how to configure BLSP1 UART?2 to use the low-speed UART
driver using the MSM8916 chipset (APQ8016E is an embedded computing version of it) as an
example.

1. Create a device tree node.

a. Openthe <chipset>.dtsi file located at:
kernel/arch/arm64/boot/dts/gqcom/<chipset>.dtsi

Where <chipset> corresponds to the applicable chipset, for example:
kernel/arch/arm64/boot/dts/gqcom/msm8916.dtsi

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 19

http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/clk/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/clk/qcom/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/clk/qcom/clock-gcc-8994.c
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/clk/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/clk/qcom/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/drivers/clk/qcom/clock-gcc-8994.c

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

b. Add a new device tree node as shown in the following example.

/* If multiple UARTs are registered, add aliases to identify the UART ID.*/
aliases {
serial2 = & blspl uart2; //uart2 will be registered as ttyHSL2

b

blspl uart2: serial@78b0000 {
compatible = "gcom,msm-lsuart-v14";
reg = <0x78b0000 0x200>;
interrupts = <0 108 0>;
status = "disabled";
clocks = <&clock _gcc clk_gcc_blspl uart2 apps_clk>,
<&clock gcc clk gcc blspl ahb clk>;
clock-names = "core clk", "iface clk";

}i

For detailed information, refer to the device tree documentation located at:
kernel/Documentation/devicetree/bindings/tty/serial/msm serial.txt.

2. Set the Pinctrl settings.

a. Openthe .dtsi file located at:
kernel/arch/arm/boot/dts/gcom/<chipset>-pinctrl.dtsi

b. Update the pin settings.

pmx-uartconsole {
gcom, pins = <&gp 4>, <&gp 5>;
gcom, num-grp-pins = <2>;
gcom, pin-func = <2>;
label = "uart-console";
uart console sleep: uart-console {
drive-strength = <2>;
bias-pull-down;
bi
bi

3.3.2 Debug low-speed UART

1. Check the UART registration. Ensure that the UART is properly registered with the TTY
stack.

2. Run the following commands:
adb shell -> start a new shell
ls /dev/ttyHSL* -> Make sure UART is properly registered

If you do not see your device, check your code modification to ensure that all the information
is defined and correct.

3. Check the bus scale registration. Ensure that the UART is properly registered with the bus
scale driver.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 20

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

a. Run the following commands:

adb shell
mount -t debugfs none /sys/kernel/debug -> mount debug fs
cat /dev/ttyHSL# -> Open the UART port

b. Go to the bus scale directory.
cd /sys/kernel/debug/msm-bus-dbg/client-data
1s

c. Confirm that the name that was put on msm-bus is there, for example, blsp1_uartl.

d. Cat client_name, for example:
cat blspl uartl

Output: Confirm curr = 1, and rest of values.
curr 1
masters: 86

slaves : 512
ab : 500000
ib : 800000

If you do not see your device, check your code modification to ensure that all of the
information is defined and correct.

4. Check the internal loopback. Run the following commands to enable loopback:

adb shell

mount -t debugfs none /sys/kernel/debug -> mount debug fs

cd /sys/kernel/debug/msm_serial hsl -> directory for Low Speed UART
echo 1 > loopback.# -> enable loopback. # = device #
cat loopback.# -> make sure returns 1

5. Open another shell to dump the UART RXx data.
adb shell
cat /dev/ttyHSL# ->Dump any data UART Receive

6. Transmit some test data through a separate shell.
adb shell
echo "This Document Is Very Much Helpful" > /dev/ttyHSL# ->Transfer data

o If the loopback works:

- Test message loop appears continuously in the command shell until you exit the cat
program. This is because of the internal loopback and how the cat program opens the
UART.

- Itis safe to assume that the UART is properly configured and only the GPIO settings
must be confirmed.

o If loopback does not work:
i Ensure that the UART is still in the Active state. Open the UART from the shell:

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 21

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

adb shell
cat /dev/ttyHSL# ->Dump any data UART Receive

ii Check the clock settings.
iii Measure the clocks from the debug-fs command.
« Make sure the Peripheral Network on a Chip (PNoC) clock is running.

cat /sys/kernel/debug/clk/pcnoc_clk/measure

o Measure the BLSP AHB clock.

label: gcc_blspl:2 ahb clk

Forexanuﬂe,cat /sys/kernel/debug/clk/gcc blspl ahb clk/measure
« Measure the UART core clock.

label: gcc blspl:2 uartl:6 _apps clk

For example, cat /sys/kernel/debug/clk/gcc blspl uart2 apps
clk/measure

o Loopback works, but there is no signal output to check the GPIO settings. For
instructions, see Section 3.2.2.

3.3.3 Optional configuration changes

After basic UART functionality is verified, enhance UART_DM functionality by configuring
runtime GP1O and preventing system suspend.

3.3.3.1 Prevent system suspend

If required when the UART is in operation, the UART driver can prevent system suspend by
automatically holding a wakelock.

1. Update the device tree. Open the device tree file located at:
kernel/arch/arm/boot/dts/gcom/<chipset>-sbc.dtsi

2. Add the use-pm node.

//Add following additional nodes to enable wakelock
BLSPl_UZ—\RTl
qcom,use-pm; //Whenever port open wakelock will be held

3. Confirm that the UART driver is holding the wakelock.

a. Open the UART port.
adb shell

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 22

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

cat /dev/ttyHSL#

b. Dump the wake-up sources.
cat /sys/kernel/debug/wakeup sources

msm_serial hslite port open 22 0 0 1430 - Confirm
active since != 0

4. Close the UART port. Confirm that active_since returns to zero.

For more information, see
kernel/Documentation/devicetree/bindings/tty/serial/msm serial.txt.

3.4 Configure kernel high-speed UART

UART_DM can be configured as a BAM-based UART. This driver is designed for high-speed,
large data transfers, such as Bluetooth communication.

The following procedure describes how to configure BLSP1_UART1 as a high-speed UART.
1. Create a device tree node.

a. Open the device tree file located at:
kernel/arch/arm/boot/dts/gcom/msm8916.dtsi

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 23

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

b. Modify the configuration. The elements described in the following example are the
minimum requirements.

blspl uartl: uart@78af000 {
compatible = "gcom,msm-hsuart-v14";
reg = <0x78af000 0x200>,
<0x7884000 0x23000>;

reg-names = "core mem", "bam mem";
interrupt-names = "core irq", "bam irq", "wakeup irq";
#address-cells = <0>;
interrupt-parent = <g&blspl uartl>;
interrupts = <0 1 2>;
#interrupt-cells = <1>;
interrupt-map-mask = <Oxffffffff>;
interrupt-map = <0 &intc 0 107 O

1 &intc 0 238 O

2 &msm _gpio 1 0>;

gcom, bam-tx-ep-pipe-index <0>;
gcom, bam-rx-ep-pipe-index = <1>;
gcom, master—-id = <86>;

clocks = <&clock gcc clk gcc blspl uartl apps clk>,
<&clock gcc clk gcc blspl ahb clk>;
clock-names = "core clk", "iface clk";

gcom, msm-bus,name = "blspl uartl";
gcom, msm-bus, num-cases = <2>;
gcom, msm-bus, num-paths = <1>;
gcom, msm-bus, vectors-KBps =

<86 512 0 0>,

<86 512 500 800>;

pinctrl-names = "sleep", "default";
pinctrl-0 = <ghsuart sleep>;
pinctrl-1 = <ghsuart active>;
status = "ok";
bi
Additional Location
information
Device tree kernel/Documentation/devicetree/bindings/tty/serial/m
sm_serial hs.txt
UART_DM kernel/Documentation/devicetree/bindings/arm/gic.txt
interrupt
values
Device tree kernel/Documentation/devicetree/bindings/arm/msm/msm_
bindings bus.txt
Master ID kernel/arch/arm/boot/dts/<chip>-bus.dtsi
Pin control kernel/Documentation/devicetree/bindings/pinctrl/msm-
pinctrl.txt

2. Set the Pinctrl settings.

a. Openthe .dtsi file located at:
kernel/arch/arm/boot/dts/gcom/<chipset>-pinctrl.dtsi

b. Modify the pin control settings as shown in the following example. For more
information, refer to pin control documentation located at:

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 24

http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/qcom/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/qcom/msm8916-pinctrl.dtsi

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

kernel/Documentation/devicetree/bindings/pinctrl/msm-pinctrl.txt.

&soc |
tlmm pinmux: pinctrl@10000000 {

//snip
blspl uartl active ({
gcom, pins = <&gp 0>, <&gp 1>, <&gp 2>, <&gp 3>;

gcom, num-grp-pins = <4>;
gcom, pin-func = <2>;
label = "blspl uartl active";

hsuart active: default {
drive-strength = <16>;
bias-disable;
i
}i

blspl uartl sleep {
gcom,pins = <&gp 0>, <&gp 1>, <&gp 2>, <&gp 3>;
gcom, num-grp-pins = <4>;
gcom, pin-func = <0>;
label = "blspl uartl sleep";
hsuart sleep: sleep {
drive-strength = <2>;
bias-disable;
}i
}i

3.4.1 Debug high-speed UART
1. Check the registration. Ensure that the UART is properly registered with the TTY stack by
running the following commands:

adb shell -> start a new shell
ls /dev/ttyHS* -> Make sure UART is properly registered

If the device does not appear, check your code modification to ensure that all information is
defined and correct.

2. Check the internal loopback.

a. Run the following commands to enable loopback:
adb shell
mount -t debugfs none /sys/kernel/debug -> mount debug fs

cd /sys/kernel/debug/msm_serial hs -> directory for High Speed
UART

echo 1 > loopback.# -> enable loopback. # is
device #

cat loopback.# -> make sure returns 1

b. Open another shell to dump the UART Rx data.
adb shell
cat /dev/ttyHS# ->Dump any data UART Receive

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 25

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

c. Transmit some test data through a separate shell.
adb shell
echo "This Is A Helpful Document" > /dev/ttyHS# ->Transfer data

If loopback works:

o Your test message loops continuously in the command shell until you exit the cat
program. This is because of the internal loopback and how the cat program opens the
UART.

o UART is properly configured and only the GPIO settings need to be confirmed.
If loopback works but there is no output:
o Check the GPIO settings as described in Section 0.
3. Check the clock settings.
a. Ensure that the UART is still in Active state.

b. Open the UART from the shell:
adb shell
cat /dev/ttyHS# ->Dump any data UART Receive

For instructions on checking the clock settings, see Section 3.2.2.

3.5 Code walkthrough — High-speed UART driver

This section explains the details of implementing a high-speed UART driver for debugging or
modifications.

3.5.1 Probing

If UARTS are defined in the device tree, the msm_hs_probe() function is called, as shown in the
following call flow.

msm_serial hs init () ->
platform driver register (&msm _serial hs platform driver) ->
drv = &msm_serial hs platform driver.driver;

drv->bus = &platform bus type;
driver register (drv) ->
bus add driver (drv) ->
driver attach(drv) ->
bus for each dev(drv->bus, ..., drv,..)
Iterate thru bus list of devices (bus->p->klist devices)
driver attach(drv, dev) ->
platform match() ->
Checks if the current dev match drv by comparing
drv.of match table with dev.of node. If match

found calls driver probe device

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 26

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

driver probe device (drv, dev) ->
platform drv probe(..) ->

msm_hs_ probe ()

Table 3-5 Resources required for UART registration

Resource

Description

msm_hs_dt_to_pdata

Parses device tree nodes

msm_bus_cl_get_pdata

Parses device tree for bus scale nodes

g_uart_port[id]

Stores the parsed data

Device tree
core_mem UART base address
bam_mem BLSP BAM base address

gcom,bam-rx-ep-pipe-index

BAM RXx pipe index

gcom,bam-tx-ep-pipe-index

BAM Tx pipe index

core_irq UART peripheral IRQ
bam_irq BLSP BAM IRQ
Clock table

core_clk UART core clock
iface_clk Bus interface clock

Bus scale information is parsed by the bus scale driver

3.5.1.1 Registration with the SPS driver

During a probe, the UART driver registers BLSP BAM with the Smart Peripheral Subsystem
(SPS)/BAM driver, as shown in the following call flow.

msm_hs probe () —>
msm_hs sps_init()-->
sps_phy2n () -->sps_register bam device()

msm_hs sps_init ep conn(Producer Info)

msm_hs sps_init ep conn(Consumer Info)

The msm_hs_probe () function performs the following actions:

m Calls sps_phy2h() to check if the current BLSP BAM is already registered with the SPS
driver. If the current BAM is registered, it returns the handler for the BAM.

m Calls sps_register_bam_device() to register the BLSP BAM with the SPS driver if the BAM
is not registered.

m Calls msm_hs_sps_init_ep_conn() to initialize BAM connection information:
o Allocates memory for descriptor FIFO (sps_config to desc.base, sps_config to desc.size)
o The event mode is a function callback:
- For UART RXx operations, the callback is called when the descriptor is complete.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 27

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

- For UART Tx operations, the callback is called when the End-Of-Transfer (EOT) bit
is set.

3.5.1.2 UART port registration

The UART driver registers the current UART port with the Linux TTY stack, as shown in the
following call flow.

msm_hs probe () —>
uart add one port()->
uart configure port()->

msm_hs_config port()-Sets uart->type to PORT_MSM
msm_hs set mctrl locked()-Set RFR High (not accepting data)
<_

tty register device()- Registers with tty framework

3.5.2 Port open

The following call flow shows critical events that occur when the client opens a UART port.

tty open()->
uart open()->
uart startup () >

uart port startup()->

msm_hs startup()-->
msm_hs resource vote() () -Turns on clks
msm_hs config uart gpios()-request GPIOs

msm_hs_spsconnect_tx/rx()
sps_connect ()
Sps_register event()

<——

Configure UART Hardware
msm_hs start rx locked()

sps_transfer one()

uart change speed()-->
msm_hs set termios()-->
msm_hs set bps locked()
<-—
sps_disconnect ()
<-—
msm_hs spsconnect rx()
<-—

msm_serial hs rx work()-->

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 28

Peripherals Programming Guide Linux Android

Universal Asynchronous Receiver/ Transmitter

msm_hs start rx locked()

The uart_open() function performs the following actions:

Increments port->count.
If a port is not initialized (port->flags and ASYNC _INITIALIZED):

[}

(]

Allocates and clears a Tx buffer (uart_state->xmit.buf)

Calls msm_hs_startup()

The msm_hs_startup() function initializes the low-level UART core:
Maps the Tx buffer to be a Direct Memory Access (DMA) capable buffer.

Turns on all necessary clocks, including the bus scale request.

If runtime GPIO configuration is enabled, requests the GP10s (see Section 3.3.3).

Initializes the BAM connection.
Initializes the UART hardware:

]

]

(]

(]

UART_DM_MR1 — Sets the Ready for Receiving (RFR) watermark to FIFOSIZE-16
ART_DM_IPR - Sets RXSTALE interrupt counter to Ox1F

UART_DM_DMEN - Enables the Tx/Rx BAM

UART_DM_CR — Resets the transmitter

UART_DM_CR — Resets the receiver

UART_DM_CR - Clears the error status

UART_DM_CR - Clears the Break Change interrupt status bit

UART_DM_CR - Clears the Stale interrupt status bit

ART_DM_CR - Clears the Clear-to-Send (CTS) input change interrupt status bit
UART_DM_CR — Asserts the RFR signal

UART_DM_CR — Enables the receiver

UART_DM_CR — Turns on the transmitter

UART_DM_TFWR — Sets the Tx FIFO watermark to zero

Enables the interrupt, and registers the ISR handler:

]

If the Wake Up interrupt is supported and enabled, it registers the ISR handler but
disables the interrupt.

Enables Rx transfer (msm_hs_start_rx_locked()):

]

Configures the UART hardware:
- UART_DM_CR - Clears the Stale interrupt

- UART_DM_RX — Programs the maximum transfer length
(UARTDM_RX_BUF_SIZE)

- UART_DM_CR - Enables the Stale Event mechanism

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 29

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

UART_DM_DMEN - Enables Rx BAM mode
- UART_DM_IMR — Enables the Stale Event interrupt
- UART_DM_RX_TRANS_CTRL — Enables automatic retransfer
- UART_DM_CR - Initializes the BAM producer sideband signals
o Queues a BAM descriptor, and initiates a transfer.
The msm_hs_set_termios() function performs the following actions:
m Disables UART interrupts and Rx BAM mode:
o UART_DM_IMR — Setsto 0
o UART_DM_DMEN - Clears the RX_BAM_EN bit
m Sets UART clock rates via msm_hs_set _bps_locked().
m Programs the UART hardware:
o UART_DM_MR1, UART_DM_MR2 — For parity, flow controls, etc.
o UART_DM_CR — Resets the receiver
o UART_DM_CR - Resets the transmitter
= Disconnects from the SPS driver (sps_disconnect()).
= Reconnects the producer pipe with the SPS function (msm_hs_spsconnect_rx()).
= msm_serial_hs_rx_work():

o Enables an Rx transfer via msm_hs_start_rx_locked()

3.5.3 Power management
The high-speed UART driver defines power management APIs as follows:

static const struct dev _pm ops msm hs dev_pm ops = {
.runtime suspend = msm_hs runtime suspend,
.runtime resume = msm_hs runtime resume,
.runtime idle = NULL,
.suspend noirqg = msm _hs pm sys suspend noirq,
.resume noirg = msm _hs pm sys resume noirgq,

}i

In msm_hs_pm_sys_suspend_noirq(),

1. Clocks are turned OFF.

2. Core IRQ is disabled.

3. Wakeup IRQ, flow control is enabled if Out-of-Band Sleep not set.
4. BAM pipes are disconnected.

5. Runtime PM framework is notified of the suspend state.

The driver maintains the following power states:

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

30

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

m MSM HS PM ACTIVE - if driver is in Active state (i.e., all clocks are ON)
® MSM HS PM SUSPENDED - if driver is in Runtime Suspend state

m MSM HS PM SYS SUSPENDED - if driver is in System Suspend state

3.5.3.1 In Band and Out Band Sleep modes
The UART driver defines the following sleep modes:

= In Band Sleep — This suggests UART’s wakeup IRQ (RX line) is enabled and RFR line
asserted when it goes into a suspend state. This is so that the UART client can wake it up by
sending some data on the RX line.

This mode is enabled by the following DTS entries in UART node:

interrupt-names = "core irqg", "bam irq", "wakeup irg";
//add "wakeup irqg" to the other IRQOs list
faddress-cells = <0>;
interrupt-parent = <& blspl uartl>;
interrupts = <0 1 2>;
#interrupt-cells = <1>;
interrupt-map-mask = <Oxffffffff>;
interrupt-map = <0 &intc 0 107 O
1 &intc 0 238 0
2 &msm _gpio 1 0>;//RX GPIO number is set

as Wakeup IRQ

gcom, rx-char-to-inject = <0xFD>; //This character is

injected on TX when wakeup IRQ received
gcom, inject-rx-on-wakeup; //This enables the above

character injection

= Out of Band Sleep — This suggests that the UART client will explicitly call the UART clock
ON API to turn ON the clocks before doing a transfer.

This mode is enabled by the following DTS entry:

gcom, msm-obs;

3.5.3.2 Methods to control UART clocks
The UART clocks can be turned ON/OFF in either of the following ways:

sys_fs call

echo 0|1 > /sys/devices/soc.0/BaseAddress.uart/clock: ex: turn off/on
clock

echo 0 > /sys/devices/soc.0/78af000.uart/clock
echo 1 > /sys/devices/soc.0/78af000.uart/clock

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 31

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

Kernel API

msm_hs get uart port, msm hs request clock on|off
Example usage:

/* Get the UART Port with port ID */

struct uart port *port = msm hs get uart port (0);
/* Request turn off Clocks */

msm_hs request clock off (port);

/* Request turn on clock */

msm_hs request clock on(port);

IOCTL from the user space

IOCTL cmd

MSM ENABLE UART CLOCK -request clk on

MSM DISABLE UART CLOCK - request clk off

MSM GET UART CLOCK STATUS - get current status

After turning off the clocks, it is important that no UART functions are called before the clocks
are turned back on, including the UART close function.

3.5.4 Port close

The following call flow shows critical events that occur when the client closes the UART port.

tty release()-—>
uart close()-->
tty port close start()
<—-
msm_hs stop rx locked()
<—-
uart wait until sent ()-->
msm_hs tx empty() returns UART DM SR TXEMT
<——c
uart shutdown () -->
uart update mctrl()-->
msm_hs set mctrl locked()
<—-
uart port shutdown () -—>

msm_hs shutdown ()

*Can run anytime after msm hs stop rx locked()

while uart close()

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 32

Peripherals Programming Guide Linux Android Universal Asynchronous Receiver/ Transmitter

hsuart disconnect rx endpoint work()-->

sps_disconnect () --Disconnect/disable BAM connection

and set msm uport->rx.flush = FLUSH SHUTDOWN;

==

The uvart_close() function performs the following actions:

Calls tty_port_close_start() to decrement port->counts.

= Calls msm_hs_stop_rx_locked():

(]

Clears the RX_BAM_ENABLE bit in UART_DM_DMEN to disable the Rx BAM
interface.

Sets the rx.flush state to FLUSH_STOP.

Schedules the BAM work queue to be disconnected
(hsuart_disconnect_rx_endpoint_work()).

= Uart_wait_until_sent():

]

]

]

]

]

(]

(]

]

Continuously polls by calling msm_hs_tx_empty() until the UART_DM_SR[TXEMT]
bit is set by the hardware.

Calls uart_shutdown():

Sets the TTY_IO_ERROR bit to tty->flags.
Clears the ASYNCB_INITIALIZED bit to port->flags.
De-asserts RFR, and disables the Auto Ready to Receive bit.

msm_hs_shutdown():

If a Tx is pending (which should not occur), it disables and disconnects by calling
sps_disconnect().

Waits until the hsuart_disconnect_rx_endpoint_work() function runs, and then sets
rx.flush to FLUSH_SHUTDOWN.

Configures the UART hardware:

- UART_DM_CR - Disables the transmitter.

- UART_DM_CR - Disables the receiver.

—~ UART_DM_IMR - Clears the interrupt mask register.

Turns off the clocks, and sets clk_state to MSM_HS CLK_PORT_OFF.
Frees IRQ resources.

Releases any GPIO resources.

m Frees allocated memory.
m Flushes the TTY and LDISC buffers.

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 33

4 Inter-Integrated Circuit

This chapter describes the Inter-Integrated Circuit (12C) and explains how to configure it in the
kernel.

4.1 Hardware overview

4.1.1 Qualcomm Universal Serial Engine
The supported mini cores are as follow:
n 12C
= SPI (see Chapter 5)

I2C core

On the APQB8016E chipset, the Linux 12C driver supports Fast mode plus (up to 1 MHz). The
following key features have been added:

= Duty-cycle control
= BAM integration
= Support for 12C tag version 2

The following features are not supported:
= Multi Master mode.

» 10-bit slave address, and also the 10-bit extend address (for example, 1111 0XX) listed in 12C
specification cannot be used by any slave device.

= HS mode(3.4Mhz clock frequency).

4.1.2 QUP 12C configuration parameters

To match the labeling in the software interface manual, each QUP is identified by a BLSP core
and QUP core (0 to 5). In hardware design documents, BLSPs are identified as BLSP[1:12].

The APQ8016E (and MSM8916) chipsets contain a single BLSP core.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 34

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

Table 4-1 QUP physical address, IRQ numbers, Kernel I12C clock name, consumer, producer pipes, BLSP_BAM physical
address, BAM IRQ number for Snapdragon 410E (APQ8016E)

BLSP QUP core Physical IRQ Kernel UART clock name Consumer, BLSP_BAM
hardware address number producer physical address,
ID (QUP_BASE_ pipes IRQ number

ADDRESS)
BLSP1 BLSP1QUPO 0x78B5000 95 clk_gcc_blspl_qupl_i2c_apps_clk 12,13 0x07884000, 238
BLSP2 BLSP 1QUP 1 0x78B6000 96 clk_gcc_blspl_qup2_i2c_apps_clk 14,15 0x07884000, 238
BLSP3 BLSP 1 QUP 2 0x78B7000 97 clk_gcc_blspl_qup3_i2c_apps_clk 16,17 0x07884000, 238
BLSP4 BLSP 1 QUP 3 0x78B8000 98 clk_gcc_blspl_qup4_i2c_apps_clk 18,19 0x07884000, 238
BLSP5 BLSP 1 QUP 4 0x78B9000 99 clk_gcc_blspl_qup5_i2c_apps_clk 20,21 0x07884000, 238
BLSP6 BLSP 1 QUP 5 0x78BA000 100 clk_gcc_blspl_qup6_i2c_apps_clk 22,23 0x07884000, 238

4.1.3 Bus scale ID
In hardware design documents, BLSPs are identified as BLSP[1:12].
The APQ8016E (and MSM8916) chipsets contain a single BLSP core.

Table 4-2 lists the BLSP master ID. For the most up-to-date information, check the following file:

kernel/arch/arm/boot/dts/gcom/<chipset>-bus.dtsi

IDs are listed under mas-blsp-1 and slv-ebi-chO.

Table 4-2 BLSP bus master ID

BLSP hardware ID QUP cores BLSP bus master ID
BLSP[1:6] BLSP1_QUP[0:5] 86

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 35

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.2 Configure LK 12C

This section describes how to configure and use any of the available QUP cores in the chipset as
an 12C device.

In the entire LK session, only one QUP core can be used. This means that if BLSP1QUPL1 is
already initialized by the LK, BLSP1QUP2 cannot be initialized without a reboot.

The following files are used to configure a QUP core as an 12C in an LK:

/bootable/bootloader/lk/project/<chipset>.mk
/bootable/bootloader/lk/target/<chipset>/init.c
/bootable/bootloader/lk/platform/<chipset>/include/platform/iomap.h
/bootable/bootloader/lk/platform/<chipset>/acpuclock.c
/bootable/bootloader/lk/platform/<chipset>/<chipset>-clock.c
/bootable/bootloader/lk/platform/<chipset>/gpio.c

The following procedure is used for example purposes on an APQ8016E chipset. Similar changes
can be applied to other chipsets.

noTe: After you try this test, your device will not continue to boot kernel but will be stuck at a fastboot
console accessible via COM port. You will have to boot the device from an SD card by changing
the switch settings to 0100 on DragonBoard 410c and reflash the original binaries to emmc. Then
change the switch back to 0000 to boot from emmc.

1. Enable the console shell to demonstrate 12C.

a. Open the following file:
Project root/bootable/bootloader/lk/project/<chipset>.mk

b. To demonstrate 12C, create an LK shell program using the serial port.
MODULE +=app/shell

note: This is for testing and demonstration purposes only and is not required for 12C.

c. To test, connect the serial terminal to the device. After compiling is finished, flash the
aboot and reboot the device into fastboot. The following message appears on the
terminal:
console init: entry
starting app shell
entering main console loop

d. Test the shell by entering help in the terminal program.

Sample output: command list:
help : this list
test : test the command processor

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 36

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

2. Create a test program. This is an optional process to demonstrate 12C functionality.

a. Create atest application in /bootable/bootloader/lk/app/tests/my i2c test.c

#include <ctype.h>
#include <debug.h>
#include <stdlib.h>
#include <printf.h>
#include <list.h>

#include <string.h>
#include <arch/ops.h>
#include <platform.h>
#include <platform/debug.h>
#include <kernel/thread.h>
#include <kernel/timer.h>

#ifdef WITH LIB_ CONSOLE
#include <lib/console.h>
static int cmd _i2c_ test (int argc, const cmd args *argv);

STATIC COMMAND START
{ "i2c test", "i2c test cmd", &cmd iZc test },
STATIC COMMAND END (my i2c test);

static int cmd i2c_ test (int argc, const cmd _args *argv)
{

printf ("Entering i2c_ test\n");

return O;

}

fendif

b. Modify /bootable/bootloader/1k/app/tests/rules.mk to enable the test
application.

LOCAL_DIR := $(GET_LOCAL_DIR)
INCLUDES += -I$(LOCAL DIR)/include
OBJS += $(LOCAL DIR)/my i2c_ test.o

c. Modify /bootable/bootloader/lk/project/<chipset>.mk t0 compile the test
application.

MODULES += app/tests

d. Verify thatthe i2c test command is available as part of the shell command.

cmd "help"

command list:
help : this list
test : test the command processor
i2c_test : 12c test cmd

cmd "i2c test"

Entering i2c_test

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 37

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

3. Configure the 12C bus in LK.

a. Initialize the 12C bus. The following code sample is for the BLSP2 QUP4 and uses
my i2c test.c as the client driver.

#include <i2c_qup.h>
#include <blsp qup.h>
{

struct qup i2c dev *dev;

/*
1 arg: BLSP ID can be BLSP_ID 1 or BLSP_ID 2
2 arg: QUP ID can be QUP ID 0:QUP ID 5
3 arg: I2C CLK. should be 100KHZ, or 400KHz
4 arg: Source clock, should be set @ 19.2MHz
*/
dev = qup blsp i2c init (BLSP_ID 1, QUP ID 4,
100000, 19200000);
if (!dev) {
printf ("Failed to initialize\n");
return;

b. Configure the GPIO. Modify /bootable/bootloader/lk/platform/
<chipset>/gpio.c and change the gpio config blsp i2c function by adding the
appropriate GP1O configuration for the correct BLSP configuration.

void gpio config blsp i2c(uint8 t blsp id, uint8 t qup id)
{
if (blsp_id == BLSP ID 1) {
switch (qup_id) {
case QUP ID 1:
/* configure I2C SDA gpio */
gpio_tlmm config(6, 3, GPIO OUTPUT, GPIO NO PULL,
GPIO 8MA, GPIO DISABLE);

/* configure I2C SCL gpio */
gpio tlmm config(7, 3, GPIO OUTPUT, GPIO NO PULL,
GPIO 8MA, GPIO DISABLE);

break;
default:
dprintf (CRITICAL, "Incorrect QUP id %d\n",qup_id);
ASSERT (0) ;
}i
} else {
dprintf (CRITICAL, "Incorrect BLSP id %d\n",blsp id);
ASSERT (0) ;

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

38

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

c. Register a clock. Modify /bootable/bootloader/1k/platform/
<chipset>/msm8916-clock.c and add the clock node and corresponding QUP clock.

static struct clk lookup msm clocks <chip>[] =
{
/**
Add Clock node for BLSP_AHB CLOCK
For BLSP1 you would add:
"blspl ahb clk", gcc blspl ahb clk.c

*/
CLK LOOKUP ("blspl qup2 ahb iface clk", gcc blspl ahb clk.c),

/**

Add corresponding QUP Clock. Clocks are indexed from 1 to 6.

So QUP4 would refer to QUPS5 in clock regime

*/

CLK LOOKUP ("gcc blspl qup2 i2c apps clk",
gcc_blspl qup2 i2c_apps_clk.c),

d. Add the clock structure if it is not defined yet.

static struct branch clk gcc blspl qup2 i2c apps clk = {

/*
.cbcr reg value is defined on bootable/bootloader/
lk/platform/<chipset>/include/platform/iomap.h
If its not defined, get the value from
kernel/arch/arm/mach-msm/clock-<chip>.c

*/

.cbcr reg = GCC BLSP1 QUP2 APPS CBCR,

/*
.parent you can get from
kernel/arch/arm/mach-msm/clock-<chip>.c

*/
.parent = &cxo_clk src.c,
.c = {
.dbg name = " gcc blspl qup2 i2c apps clk",
.ops = &clk ops branch,

by

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 39

Peripherals Programming Guide Linux Android

Inter-Integrated Circuit

4. Test the 12C transfer functionality.

void my i2c_test()

{

char buf[10];

struct i2c_msg msg;

//Create a msg header
msg.addr = 0x52;
msg.flags = I2C M RD;
msg.len = 10;

msg.buf = buf;

//Transfer the data
ret = qup i2c xfer(dev, &msg, 1);

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

40

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.2.1 Test code

#include <i2c qup.h>
#include <blsp qup.h>
#include <board.h>

void my i2c test()
{
struct qup i2c_dev *dev;
char buf[10];
struct i2c msg msg;
int ret,i;
int soc_ver = board soc version(); //Get the CHIP version

/%
1 arg: BLSP ID needs to be BLSP ID 1
2 arg: QUP ID can be QUP ID 0:QUP ID 5
3 arg: I2C CLK. should be 100KHZ, or 400KHz
4 arg: Source clock, should be set @ 19.2 MHz for V1

and 50MHz for V2
or Higher Rev
*/
if (soc_ver >= BOARD SOC_VERSION2) {
dev = qup blsp i2c init(BLSP_ID 1, QUP ID 4, 100000, 50000000);
}
else{
dev = qup blsp i2c init(BLSP_ID 1, QUP ID 4, 100000, 19200000);
}
if (!dev) {
printf ("Failed to initializing\n");
return;

}

//Received valid ptr
printf("i2c _dev Ptr %p \n", dev);

//Test Transfer

msg.addr = 0x52;

msg.flags = I2C M RD;

msg.len = 10;

msg.buf = buf;

ret = qup i2c xfer (dev, &msg, 1);

printf ("qup i2c xfer returned %d \n", ret);

for(i = 0; i < 10; i++)
printf ("$x ", bufl[i]);

printf ("\n");

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 41

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.2.2

64440
64440
64450
64450
64450
qup_i2c xfer returned 1

ff £ff £ff f£ff ff ff ff ff ff ff

Output

i2c_dev Ptr 0Ox<...>
64420]
64420]
64430]
64430]
64430]
64440] Polling Status for state:0x0
]
]
]
]
]

QUP IN:bl:8, ff:32, OUT:bl:8, ff:32
Polling Status for state:0x0
Polling Status for state:0x10
Polling Status for state:0x0
Polling Status for state:0xl

Polling Status for state:0x3
RD:Wrote 0x40a0la5 to out ff:0xf9967110
Polling Status for state:0x0
Polling Status for state:0xl

idx:4, rem:1, num:1, mode:0

Debug LK 12C

This section provides debugging tips for situations where the 12C fails for simple read/write
operations.

1. Check SDA/SCL idling. Scope the bus to ensure that the SDA/SCL is idling at the high logic

level. If it is not idling high, either there is a hardware configuration problem or the GP1O
settings are invalid.

Check the GPIO configuration. Check the GPIO configuration register, GPIO_CFGn, to
ensure that the GP1O settings are valid.

Physical Address: 0x01000000 + (0x1000 * n) = GPIO CFGn
n = GPIO #
Example Address:
0x01000000 = GPIO_CFGO

0x01001000 = GPIO_CFG1

Bit definition for GPIO CFGn
Bits 31:11 Reserved
Bit 10 GPIO HIHYS EN Control the hihys EN for GPIO
Bit 9 GPIO_OE Controls the Output Enable for GPIO
when in GPIO mode.

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 42

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

Bits 8:6 DRV_STRENGTH Control Drive Strength
000:2mA 001:4mA 010:6mA 011:8mA
100:10mA 101:12mA 110:14mA 111:16mA

Bits 5:2 FUNC SEL Make sure Function is GSBI

Check Device Pinout for Correct Function
Bits 1:0 GPIO_ PULL Internal Pull Configuration

00:No Pull 01: Pull Down

10:Keeper 11: Pull Up

note: For 12C, QTI recommends 2 mA with no pull.

4.3 Configure kernel low-speed 12C

4.3.1 Code changes

Table 4-3 lists the files that are used to configure a QUP core as an 12C in the kernel.

Table 4-3 Configuring a QUP core as an 12C in the kernel

File type Description

Device tree source For APQ (and MSM) products:
kernel/arch/arm/boot/dts/gcom/<chipset>.dtsi
Where <chipset> corresponds to the applicable chipset, for example:

kernel/arch/arm/boot/dts/gcom/msm8916.dtsi
Clock table The clock nodes need to be added to the DTSI file.

Project Root/drivers/clk/gcom/clock-gcc-<chipset>.c

Pinctrl settings The pin control table is located in the following file:

kernel/arch/arm/boot/dts/gcom/<chipset>-pinctrl.dtsi

12C driver i2c-msm-v2 . c supports Block and BAM modes along with FIFO mode. Hence, it
supports 12C Fast mode plus (up to 1 MHz).

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 43

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

The following steps are required to configure and use any of the QUP cores (specifically,
BLSP1_QUP1) as an I12C device.

1. Create a device tree node. Modify the following file to add a new device tree node.

kernel/arch/arm/boot/dts/gcom/msm8916.dtsi

/* If multiple I2Cs are registered, add aliases to
identify the I2C Device ID.*/
aliases {
i2c0 = &i2c 0; /* I2CO controller device */

i

i2¢c 0: 12c@78b6000 { /* BLSP1 QUP2 */
compatible = "gcom, i2c-msm-v2";
#address-cells = <1>;
#size-cells = <0>;
reg-names = "qup phys addr", "bam phys addr";
reg = <0x78b6000 0x600>,

<0x7884000 0x23000>;
interrupt-names = "qup irq", "bam irqg";
interrupts = <0 96 0>, <0 238 0>;
clocks = <&clock gcc clk gcc blspl ahb clk>,
<&clock _gcc

clk gcc blspl qup2 i2c apps clk>;
clock-names = "iface clk", "core clk";
gcom, clk-freg-out = <100000>;
gcom,clk-freg-in = <19200000>;
pinctrl-names = "i2c_active", "i2c sleep";
pinctrl-0 = <&i2c 0 active>;
pinctrl-1 = <&i2c 0 sleep>;

gcom,noise-rjct-scl = <0>;
gcom,noise-rjct-sda = <0>;
gcom, bam-pipe-idx-cons = <6>;

gcom, bam-pipe-idx-prod = <7>;
gcom,master-id = <86>;

bi

For details, refer to the follow file:

kernel/Documentation/devicetree/bindings/i2c/i2c-msm-v2.txt.
2. Set the Pinctrl settings.

a. Openthe .dtsi file located at:
kernel/arch/arm/boot/dts/gcom/<chipset>-pinctrl.dtsi

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 44

http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/qcom/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/qcom/msm8916-pinctrl.dtsi

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

b. Modify the pin control settings as shown in the following example. For more
information, refer to pin control documentation located at:

kernel/Documentation/devicetree/bindings/pinctrl/msm-pinctrl.txt

&soc |
tlmm pinmux: pinctrl@1000000 {

//snip

i2c_0 active: i2c 0 active {
drive-strength = <2>; /* 2 MA */
bias-disable; /* No PULL */
}i

i2c_0 sleep: i2c 0 sleep {
drive-strength = <2>; /* 2 MA */
bias-disable; /* No PULL */
}i

3. Verify the 12C bus. Ensure that the bus is registered. If all information is entered correctly,

you should see the 12C bus registered under /dev/i2c-#, where the cell-index matches the bus
number.

adb shell --> Get adb shell

cd /dev/

ls i2c* --> to List all the I2C buses
root@android:/dev # 1ls i2c*

ls i2c*

i2c-0

i2c-4

i2c-5

i2c-6

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 45

Peripherals Programming Guide Linux Android

Inter-Integrated Circuit

4.3.2 Test code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <inttypes.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <getopt.h>
#include <sys/ioctl.h>
#include <linux/i2c.h>
#include <linux/i2c-dev.h>

static const char *device name = "/dev/i2c-2";

int main(int argc, char **argv)

{

int fd;

int rc = 0;

struct i2c_msg msg;

unsigned char buf;

struct i2c_rdwr ioctl data msgset;

//Open the device
fd = open(device name, O RDWR);
if (-1 == fd) {

rc = -1;

fprintf (stderr, "Could not open device %s\n", device name);

goto err open;

}
fprintf (stderr, "Device Open successfull [%d]\n", fd);

//Populate the i2c msg structure to do a simple write
msg.addr = 0x52; //Slave Address

msg.flags = 0; //Doing a simple write

msg.len = 1; //One byte

msg.buf = &buf;

buf = O0xFF;

msgset.msgs = &msg;
msgset.nmsgs = 1;

//Do a ioctl readwr
rc = ioctl (fd, I2C RDWR, é&msgset);

fprintf (stderr, "I2C RDWR Returned %d \n", rc);

close (fd) ;

err open:

}

return rc;

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

46

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

1. Compile and run the program.

o If the 12C bus is correctly programmed and the slave device responds, the following
output appears:

root@android:/data # ./i2c-test
./12c-test

Device Open successfull [3]

I2C RDWR Returned 1

o If an error occurs, the following output appears:

./1i2c-test
Device Open successfull [3]
I2C RDWR Returned -1

o If 12C RDWR returns -1, check the kernel log for the driver error message. The following
error message indicates that the slave device did not send an acknowledgment. The bus is
correctly configured and at least the start bit and address bit were sent from the bus, but
the slave refused it and did not acknowledge it.

[6131.397699] qup i2c £9924000.i2c: I2C slave addr:0x54 not
connected

£9924000 is the base address which can be different based on the
chipset being used.

At this point, the debugging should focus on the slave device to make sure it is correctly
powered up and ready to accept messages.

The error message shown below may be due to multiple issues:

- Invalid software configuration

- Invalid hardware configuration

— Slave device issues

[6190.209880] qup i2c £9924000.i2c: Transaction timed out,
SL-AD = 0x54

[6190.216389] qup_i2c £9924000.i2c: I2C Status: 132100

[6190.221247] qup_i2c £9924000.i2c: QUP Status: O
[6190.225857] qup_i2c £9924000.i2c: OP Flags: 10

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 47

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.3.3 Debug low-speed 12C

This section provides debugging tips for situations where 12C fails for simple read/write
operations.

1.

Check SDA/SCL idling. Scope the bus to ensure that the SDA/SCL is idling at the high logic
level. If it is not idling high, either there is a hardware configuration problem or the GP1O
settings are invalid.

Set a breakpoint at the line where the error message is coming, for example, at the
Transaction timed out MeSSage.

static int
qup_i2c xfer(struct i2c adapter *adap, struct i2c msg msgs[], int num)
{
...//Put a breakpoint inside if statement.
if (!timeout) {
uint32 t istatus = readl relaxed(dev->base +
QUP I2C STATUS);

Check the clock status. Check the QUP core clock and ensure that the BLSP_AHB clock is
on by running testclock.cmm to dump all clock settings. This script is located at:

rpm_proc/core/systemdrivers/clock/scripts/<chipset>/testclock.cmm

Check the GPIO configuration register (GPIO_CFGn) to ensure that the GPIO settings are
valid.

Physical Address: 0x01000000 + (0x1000 * n) = GPIO CFGn
n = GPIO #
Example Address:
0x01000000 = GPIO_CFGO
0x01001000 = GPIO _CFG1

Bit definition for GPIO CFGn
Bits 31:11 Reserved

Bit 10 GPIO HIHYS EN Control the hihys EN for GPIO

Bit 9 GPIO_OE Controls the Output Enable for GPIO
when in GPIO mode.

Bits 8:6 DRV_STRENGTH Control Drive Strength

000:2mA 001:4mA 010:6mA 011:8mA
100:10mA 101:12mA 110:14mA 111:16mA

Bits 5:2 FUNC_SEL Make sure Function is GSBI

Check Device Pinout for Correct Function
Bits 1:0 GPIO_PULL Internal Pull Configuration

00:No Pull 01: Pull Down

10:Keeper 11: Pull Up

note: For 12C, QTI recommends 8 mA with no pull.

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 48

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.3.4 Register a slave device using the device tree

After the 12C bus is properly verified, you can create a slave device driver and register it with the
12C bus. See the following files for examples:

= Foran I12C slave device, refer to msm8916-cdp.dts.
= For Atmel Touch Screen driver registration, refer to atmel mxt ts.c.

The following examples show the minimum requirement for properly registering a slave device
using the device tree.

1. Create a device tree node. Open the following file and add a device tree node:

kernel/arch/arm/boot/dts/<chipset>-cdp.dts

i2c@78b9000 { /* BLSP1 QUP5 */
synaptics@20 {

compatible = "synaptics,rmid";
reg = <0x20>;
interrupt-parent = <&msm gpio>;

interrupts = <13 0x2008>;
vdd-supply = <&pm8916 117>;
vec_i2c-supply = <&pm8916 16>;
/* pins used by touchscreen */
pinctrl-names =
"pmx ts active","pmx ts suspend","pmx ts release";
pinctrl-0 = <&ts_int active &ts reset active>;
pinctrl-1 = <&ts_int suspend &ts reset suspend>;
pinctrl-2 = <&ts_release>;
synaptics,irg-gpio = <&msm gpio 13 0x2008>;
synaptics, reset-gpio = <&msm gpio 12 0x0>;
synaptics,i2c-pull-up;
synaptics, power-down;
synaptics,disable-gpios;
synaptics,detect-device;
synaptics,devicel {
synaptics,package-id = <3202>;
synaptics,button-map = <139 172 158>;
}i
synaptics,device2 {
synaptics, package-id <3408>;
synaptics,display-coords = <0 0 1079

1919>;
synaptics,panel-coords = <0 0 1079 2063>;

2. Create or modify the slave driver. The following provides an example of the slave driver.

NOTE: i2c transfer () IS a nonblocking call. The buffer passed by a client is freed when the function
exits, while it still might be needed on the master side for a BAM transfer. Hence, the client
should allocate buffers from Heap.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 49

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/debugfs.h>
#include <linux/seq file.h>
#include <linux/regulator/consumer.h>
#include <linux/string.h>
#include <linux/of gpio.h>

#ifdef CONFIG OF //Open firmware must be defined for dts usage
static struct of device id gcom i2c test table[] = {
{ .compatible = "gcom,i2c-test",}, //Compatible node must
//match dts
{1}
}i
#else
#define gcom i2c test table NULL
#endif

//1I2C slave 1d supported by driver

static const struct i2c_device id gcom id[] = {
{ "gcom i2c_ test", 0 },
{}

i

static int i2c_test test transfer(struct i2c_client *client)
{

struct i2c_msg xfer; //I2C transfer structure

u8 *buf = kmalloc(l, GFP_ATOMIC); //allocate buffer from Heap since
i2c_transfer() is non-blocking call

buf[0] = 0x55; //data to transfer

xfer.addr = client->addr;

xfer.flags = 0;

xfer.len = 1;

xfer.buf = buf;

return i2c_transfer (client->adapter, é&xfer, 1);

}

static int i2c_test probe(struct i2c_client *client,
const struct i2c device id *id)
{
int irqg gpio = -1;
int irg;
int addr;
//Parse data using dt.
if (client->dev.of node) {
irqg gpio = of get named gpio flags(client->dev.of node,
"gcom i2c test,irg-gpio", 0, NULL);
}
irqg = client->irqg; //GPIO irg #. already converted to gpio to irg
addr = client->addr; //Slave Addr
dev_err(&client->dev, "gpio [%d] irg [%d] gpio irg [%d] Slaveaddr
[$x] \n", irg_gpio, irqg,
gpio_to irqg(irg gpio), addr);

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 50

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

//You can initiate a I2C transfer anytime
//using i2c client *client structure
i2c_test test transfer(client);

return 0;

}

//I2C Driver Info
static struct i2c driver i2c test driver = {
.driver = {
.name = '"'gcom iZ2c test",
.owner = THIS MODULE,
.of match table = gcom i2c test table,

by
.probe = 12c_test probe,
.id table = gcom_id,

}i

In the kernel log, the following message indicates the device tree was successfully configured:

<3>[2.670731] gcom i2c test 2-0052: gpio [61] irg [306] gpio irg [306]
Slaveaddr [52]

4.4 Configure kernel high-speed 12C

MSM8916 introduced a new driver, i2c-msm-v2.c. This driver supports Block and BAM modes
for 12C along with FIFO mode.

4.4.1 Code changes
1. Change the DTS node.
a. Open the .dtsi file located at:

kernel/arch/arm/boot/dts/msm8916.dtsi

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 51

Peripherals Programming Guide Linux Android

Inter-Integrated Circuit

b. Modify the device tree as follows:

i2c 0: 12c@78b6000 { /* BLSP1 QUP2 */
compatible = "gcom,i2c-msm-v2";
#address-cells = <1>;
#size-cells = <0>;
reg-names = "qup_ phys addr", "bam phys addr";
reg = <0x78b6000 0x600>,
<0x7884000 0x23000>;
interrupt-names = "qup irq", "bam irqg";
interrupts = <0 96 0>, <0 238 0>;
clocks = <&clock gcc clk gcc blspl ahb clk>,

<&clock gcc

clk gcc blspl qup2 i2c _apps clk>;

clock-names = "iface clk",

gcom,
gcom,

pinctrl-names = "i2c_active",
pinctrl-0
pinctrl-1

gcom,
gcom,
gcom,
gcom,
gcom,

}:

For more details, see:

"core clk";
<100000>;
<19200000>;

clk-freg-out

clk-freg-in
"i2c_sleep";

<&i2c 0 active>;

= <&i2c 0 sleep>;
<0>;
<0>;
<6>;

<7>;

noise-rjct-scl

noise-rjct-sda

bam-pipe-idx-cons

bam-pipe-idx-prod
<86>;

master-id

kernel/Documentation/devicetree/bindings/i2c/i2c-msm-v2.txt.

2. Change TrustZone for BAM pipes allocation.

4.5 Disabling BAM mode

’

To disable BAM mode for transfers greater than FIFO size = 64 bytes (using Block mode), the

following options are available:
Set the following field in DTS:

gcom, bam-disable;

Run the following ADB shell command:

echo 1 > /sys/kernel/debug/<device address>.i2c/xfer-force-mode

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

52

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.6 Noise rejection on I12C lines

Noise is sometimes seen on 12C lines due to other signal interference. The 12C hardware allows

us to set the sampling level (0-3) to reject short low pulses. It specifies how many TCXO cycles
of logic low on SDA/SCL would be considered as valid logic low.

= 0x0 — Legacy mode
= 0x01 — One cycle wide low pulse is rejected
m 0x2 — Two cycles wide low pulse is rejected
m 0x3 — Three cycles wide low pulse is rejected
These values can be set in the DTS using following fields:

gcom,noise-rjct-scl

<1>;

gcom,noise-rjct-sda = <1>;

By default, these values are zero.

4.7 Setting 12C clock dividers

The 12C specification has set limits on the high and low period of the 12C clock pulse.

Symbol Parameter Conditions Standard-mode Fast-mode Fast-mode Plus Unit
Min | Max Min | Max Min | Max

TscL SCL clock frequency 0 100 0 400 0 1000 kHz

Low LOW period of the SCL clock 47 - 1.3 - 0.5 us

tHigH HIGH period of the SCL clock 40 - 0.6 - 0.26 us

To meet these limits, the QUP register, 12C_CLK_CTL, can be programmed for setting the 12C
clock dividers.

Bits Name

Description
23:16 HIGH_TIME_DIVIDER_VALUE Allows setting SCL duty cycle to non 50%. If this value is zero than legacy mode is
used. If this value is nen-zero than it will be used as the SCL high time counter and
F5_DIVIDER_VALUE will be used as the low time counter. Minimum value is 0x7.
7:0 FS_DIVIDER_VALUE

The value in this register represents the clock period multiplier in fast/standard (FS)
mode. Minimum value is 0x7.

When HIGH_TIME_DIVIDER_VALUE=0:

I12C_FS5_CLK = I2C_CLK/{2*(FS_DIVIDER_VALUE+3))

When HIGH_TIME_DIVIDER_VALUE!=0:

I12C_FS_CLK = I2C_CLK/{FS_DIVIDER_VALUE+HIGH_TIME_DIVIDER_VALUE+6)

4.7.1 Default values

Table 4-4 Default I12C values

Output clock frequency | FS divider HT divider
100 kHz 124 62
400 kHz 28 14
1 MHz 8 5

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.7.2 Set values

The clock divider values can vary across different boards to meet the 12C specification limits. The
default values set in the driver can be overridden using the following DTS fields:

i2c 2: i2c@<address> { /* BLSP1 QUP1 */
//snip
gcom, fs-clk-div = <28>;
gcom, high-time-clk-div = <14>;

bi

The FS divider value is responsible for the low period (Tlow). Reducing it by 1 shortens Tlow by
52 ns (assuming the source clock is TCXO 19.2 MHz).

4.7.3 Dividers vs clock frequency
The SCL period is calculated as:

T =TCXO * ((FS_DIV+HT_DIV) + 6 + NR) + Trise
Where:

m TCXOis52ns

= NR is Noise Rejection level

m Trise is SCL rise time

Trise will be > 0, hence the output clock (1/T) will be lesser than what is set, for example,
400 kHz.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 54

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

This is shown in Figure 4-1 and Figure 4-2.

Timehase Trigger Display

Measure P1:freq(C1) P2.-- P3-- Pae-- PS5 PG~
value 3811758 kHz
v
X1= 38080 ps &X= 26250 ps
X2= 66230 s 18X= 380.95 kHz
LeCroy 9/20/2013 5:55:16 PM

Figure 4-1 Output clock is less than 400 kHz due to added rise time

e

Measure P11req(C1) P2--- P3--- Pe--- PS5 - PG -~
value 375.9461 kHz
status v

1.00 Vidiy

20 mV offsel
1844V Xi= 40550ps &%= 24990ps
-87 myv X2= 65540 ps 1/8%= 40016 kHz

Waiting for Trigger

LeCroy
Figure 4-2 Output clock is 400 kHz due to excluded rise time

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 55

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

The divider ratio, FS_DIV/HTD, should be 2:1. Adjust the divider values to maintain this ratio
and get a lesser sum so that a higher output clock can be generated.

4.8 12C power management

12C slave devices must register system suspend/resume (SYSTEM_PM_OPS) handlers with the
power management framework to ensure that no 12C transactions are initiated after the 12C
master is suspended.

Example

/* Register PM Hooks */
static const struct dev_pm ops i2c_test pm ops = {
SET SYSTEM SLEEP PM OPS (
i2c _test suspend, //Get call when suspend is happening
i2c test resume //Get call when resume is happening

}i

//I2C Driver Info
static struct i2c driver i2c test driver = {
.driver = {
.pm = &i2c test pm ops,
s
.probe = 12c_test probe,
.id table = gcom_id,
bi

/* System Going to Suspend*/
static int i2c_test suspend(struct device *device)
{
/*

* Properly set slave device to suspend (I2C transactions are OK)

* Set a suspend flag

* No more I2C transaction should occur until i2c test resume is called
* / - B

return 0;

}

static int i2c_ test resume(struct device *device)
{
/~k
* Remove slave device from suspend (I2C transactions are OK)
* Clear suspend flag
*/

return O;

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 56

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

4.9 Pseudocode

An 12C transfer for a typical read register is as follows:

u8 buf[2]
u8 val[2]
struct i2c _msg xfer[2]

/* Reading data from a 16 bit addressing device */
buf[0] = reg Oxff; //lower bits
buf[1] (reg >> 8) Oxff; //upper bits

/* Program register to read */
xfer[0] .addr = client->addr;

xfer[0].flags = 0;
xfer[0].len = 2;
xfer[0] .buf = buf; //16 bit reg

/* Read data */
xfer[1l].addr = client->addr;

xfer[1l].flags = I2C M RD;
xfer[1l].len = len;
xfer[1l] .buf = val;

/* Perform the transfer */
i2c_transfer (client->adapter, xfer, 2);

The following code explains how to perform the transfer:

func: set read mode () {

* if read length < FIFO_SIZE set QUP MX READ COUNT=read length

* if read length > FIFO SIZE set:
QUP_MX INPUT COUNT = read length
QUP_ IO MODE |= INPUT BLOCK MODE

}

func: set write mode () {

* Calculate the total length of transfer. If next message is a write
and slave address same then combine to total transfer

* Configure QUP IO MODES=PACK EN|UNPACK\ EN

* if total length >= FIFO SIZE enable Write BLOCK MODE QUP IO MODES

* Check if any read messages for slave address, if so call
func:set read mode

* if using block mode program QUP MX OUTPUT COUNT = total length

func: isr handler{

* Read QUP I2C MASTER STATUS
* Read QUP_ ERROR_FLAGS

* Read QUP OPERATIONALS

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 57

Peripherals Programming Guide Linux Android Inter-Integrated Circuit

* Check for any Error, if Error, clear Error status
and reset QUP controller and return

* Any output service done, clear it.

* if input service done, clear the status.

* Issue complete done signal

Enter:
if (doing a read transfer) {
call func:set read mode ()
}
else(
call func:set write mode ()
}
* Change QUP to Run State
* Program I2C MASTER CLK CTL register
* Change QUP to PAUSE state
* Program Output FIFO
* TAG_ START|address
* TAG OUTPUT DATA | data
* Increment to next message
* Program Output FIFO
* TAG_ START|address
* TAG OUT REC | # of bytes
* Change to Run State
* Wait for completion signal
--Should receive interrupt--
--and Completion signal
* Read the input buffer and copy the data
* if any more msg left go to "Enter"
else disable irg, update pm last busy

* return # of msg processed

4.9.1 QUP operational states
The QUP subblock maintains the following operational states:

m RESET_STATE (00) — The default state after a software or hardware reset of the QUP core.
The mini-core and FIFOs are held in reset.

s RUN_STATE (01) — The mini-core is brought out of reset, and the protocol-related activity is
initiated based on the register states.

m PAUSE_STATE (11) — The mini-core stops initiating new transfers. FIFOs can be filled
during this stage.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 58

Peripherals Programming Guide Linux Android

Inter-Integrated Circuit

4.9.212CV1ITAG

The 12C mini-core uses a tagging mechanism to transfer specific data to and from QUP FIFOs. A
data word written to a FIFO is composed of an 8-bit TAG. An 8-bit value is associated with each

TAG.

Table 4-5 12C V1 TAG

TAG name | TAG value | DATA field Comments

NOOP 0x00 0xCC Wait (0xCC*9) number of I12C clock cycles

START 0x01 OxAA OxAA — 7-bit slave address + read/write bit

MO_DATA 0x02 0xDD 0xDD — Master output data

MO_STOP 0x03 0xDD 0xDD — Master output data, output data with a STOP

MI_REC 0x04 0xCC 0xCC — Number of bytes to receive XX controller
automatically generates a NACK and stop condition

MI_DATA 0x05 0xDD 0xDD — Master input data

MI_STOP 0x06 0xDD 0xDD - Last byte of master input

MI_NACK 0x07 OxFF Invalid input data

4.10 Debug log

4.10.1 i2c-msm-v2.c — FIFO mode

The following is a sample log for a combined message of 1-byte write, 6-bytes read. To enable
these logs, define the following macro in i2c-msm-v2.c:

#define DEBUG

// Transfer begins.

FIFO mode used

//#1392 gives the Line number for print i.e Line 1392

<6>[25.792522]

i2c-msm-v2 £9924000.1i2c:

//Programmed Registers for transfer

<6>[25.798561] i2c-msm-v2 £9924000.i2c:
next transfers

<3>[25.806169] i2c-msm-v2 £9924000.i2c:
MINI CORE: I2C

<3>1 25.813652] i2c-msm-v2 £9924000.1i2c:
STATE:Run VALID MAST GEN

<3>[25.821552] i2c-msm-v2 £9924000.i2c:
IN BLK SZ:16 IN FF SZ:x4 blk sz OUT BLK SZ:
PAEK a o a a
<3>[25.834048] i2c-msm-v2 £9924000.1i2c:
<3>[25.839776] i2c-msm-v2 £9924000.i2c:
<3>[25.845488] i2c-msm-v2 £9924000.i2c:

#1392 Starting FIFO transfer

QUP state after programming for

QUP_CONFIG :0x00000207 N:0x7
QUP STATE :0x0000001d
QUP_IO MDS :0x0000c0a5

16 OUT FF SZ:x4 blk sz UNPACK

QUP_ERR_FLGS:0x00000000
QUP OP :0x00000000
QUP_OP_MASK :0x00000000

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 59

Peripherals Programming Guide Linux Android

Inter-Integrated Circuit

<3>[25.851239] i2c-msm-v2 £9924000.i2c:
O_FSM STAT:0x1 I FSM STAT:0x2 SDA SCL

<3>[25.860264] i2c-msm-v2 £9924000.i2c:
FS DIV:0xlc HI_TM DIV:Oxe

<3>[25.868232] i2c-msm-v2 £9924000.i2c:
<3>[25.874014] i2c-msm-v2 £9924000.i2c:
<3>[25.879743] i2c-msm-v2 £9924000.i2c:
<3>[25.885420] i2c-msm-v2 £9924000.i2c:
<3>[25.891171] i2c-msm-v2 £9924000.i2c:
<3>[25.896876] i2c-msm-v2 £9924000.i2c:
<3>[25.902625] i2c-msm-v2 £9924000.i2c:
<3>[25.908336] i2c-msm-v2 £9924000.i2c:
//First message is l-byte Write. So tags
<6>[25.914090] i2c-msm-v2 £9924000.i2c:
val:0x01824081 START:0x40 DATAWRITE:1

<6>[25.923370] i2c-msm-v2 £9924000.i2c:
<6>[25.929721] i2c-msm-v2 £9924000.1i2c:

//Second message is 6-byte Read and its the last message.

START, DATARD STOP
<6>[25.935075]
<6>[25.944906]
<6>[25.950716]

//Slave address is 0x20.

// From here onwards,

Currently,

<6> [25.
addr:0x20

i2c-msm-v2 £9924000.1i2c:
val:0x06874181 START:0x41 DATARD and STOP:
i2c-msm-v2 £9924000.i2c:
i2c-msm-v2 £9924000.1i2c:

0.000 ms in the transfer
i2c-msm-v2 £9924000.i2c: -->.000ms XFER BEG msg cnt:2

998372]

//First message is Write for 1 byte

<6>[26.

005299]

i2c-msm-v2 £9924000.1i2c:

adr:0x20 len:1 is rx:0x0 last:0x0

//Second message is Read for 6 bytes,

<6>[26.

014605]

i2c-msm-v2 £9924000.1i2c:

adr:0x20 len:6 is rx:0xl last:0x1

//Received QUP IRQ(96+32 =

<6>[26.

<6>[26.

088820]
094708]

used are START,

6

QUP_T2C_STAT:0x0c110000

QUP_MSTR CLK:0x000e001c

QUP_IN DBG :0x00000000
QUP_OUT_DBG :0x00000000
QUP_IN CNT :0x00000000
QUP_OUT_CNT :0x00000000
MX RD CNT :0x00000008
MX WR_CNT :0x00000009
MX_IN _CNT :0x00000000
MX_OUT_CNT :0x00000000

DATAWRITE

tag.val:0x1824081 tag.len:4

#1163 OUT-FIFO:0x01824081

data:

So tags

Oxe3 Oxbc Oxbf Oxce

used are

tag.val:0x6874181 tag.len:4

#1163 OUT-FIFO:0x874181e3
#1163 OUT-FIFO:0x00000006

Total messages in the transfer are 2.

we would track time taken for the transfer.

0.000ms XFER BUF msg[0] pos:0

and is the last one in the transfer
0.001lms XFER BUF msg[l] pos:0

128), ISR called
i2c-msm-v2 £9924000.i2c: 164.08%9ms
i2c-msm-v2 £9924000.i2c: 176.233ms

MSTR STTS:0x8345b00 QUP OPER:0x140 ERR_ FLGS:0x0

<6>[26.

104101]

i2c-msm-v2 £9924000.1i2c:

OUT FF FUL OUT_ SRV _FLG

IRQ BEG irg:128
TRQ END

[-> QUP OPER:0x140

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

60

Peripherals Programming Guide Linux Android

Inter-Integrated Circuit

//Transfer complete successfully.
//Total time taken=205.850ms

i2c-msm-v2 £9924000.i2c: 205.850ms XFER END ret:2
err: [NONE] msgs sent:2 BC:17 B/sec:82 i2c-stts:0K

<6>[

26.138824]

4.10.2 i2c-msm-v2.c — BAM mode

// Transfer begins. BAM mode used

//#2363 gives the Line number for print i.e Line 2363
#2363 Starting BAM transfer

<6>[

29.938056]

i2c-msm-v2 £9924000.1i2c:

//Address for driver's bookkeeping BAM structure

<6>1

29.944060]

i2c-msm-v2 £9924000.1i2c:

BAM@Oxffffffc0ceb£f0000

#2289 initializing

//is_init gets set to TRUE at the end of init API

<6>[

init.

<6>1

init.

29.952219]
is init:0
29.968194]
is init:0

i2c-msm-v2 £9924000.1i2c:

i2c-msm-v2 £9924000.1i2c:

//BAM pipe addresses

<6>[

<6>]

29.976244]

29.986373]

i2c-msm-v2 £9924000.1i2c:

i2c-msm-v2 £9924000.1i2c:

//Programmed Registers for transfer

<3>[30.004550] i2c-msm-v2 £9924000.i2c:
MINI CORE: I2C

<3>1 30.012015] i2c-msm-v2 £9924000.i2c:
STATE:Run VALID MAST GEN

<3>[30.019903] i2c-msm-v2 £9924000.i2c:
IN BLK SZ:16 IN FF SZ:x4 blk

PAEK IiP_MOD : BAD_/I OGT_MOD :BAM

<3>1 30.034494] i2c-msm-v2 £9924000.
<3>[30.040207] i2c-msm-v2 £9924000

<3>1 30.045954] i2c-msm-v2 £9924000

OUT SRVC MASK IN SRVC MASK

<3>[30.054029] i2c-msm-v2 £9924000

O FSM STAT:0x1 I FSM STAT:0x2 SDA SCL
<3>[30.063055] i2c-msm-v2 £9924000

FS DIV:0xlc HI TM DIV:0Oxe

<3>[30.071023] i2c-msm-v2 £9924000

<3>[30.076768] i2c-msm-v2 £9924000

<3>[30.082496] i2c-msm-v2 £9924000

sz OUT BLK_SZ:
i2c:
.i2c:
.i2c:
.i2c:
.12c:
.i2c:

.i2c:

.i2c:

#2114 Calling BAM producer pipe

#2114 Calling BAM consumer pipe

#1849 vrtl:0xffff££80017e£010
phy:0xdb4af010 val:0x1824081 sizeof (dma addr t):8
#1849 vrtl:0xffffff80017e£018
phy:0xdb4af018 val:0x50874181 sizeof (dma_addr t):8

QUP CONFIG

QUP_STATE

QUP_IO MDS

16 OUT FF SZ7:

QUP_ERR FLGS:
:0x00000000
:0x00000300

QUP_OP
QUP OP_ MASK

QUP I2C STAT:

QUP MSTR CLK:

QUP IN DBG
QUP_OUT DBG
QUP IN CNT

:0x00000207

:0x0000001d

:0x0000fcab

N:0x7

x4 blk sz UNPACK

0x00000000

0x0c110000

0x000e001c

:0x00000000
:0x00000000
:0x00000000

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

61

Peripherals Programming Guide Linux Android

Inter-Integrated Circuit

<3>] 30.088210] i2c-msm-v2 £9924000.i2c: QUP _OUT CNT :0x00000000
<3>] 30.093955] i2c-msm-v2 £9924000.i2c: MX RD CNT :0x00000000
<3>] 30.099669] i2c-msm-v2 £9924000.i2c: MX WR_CNT :0x00000000
<3>] 30.105413] i2c-msm-v2 £9924000.i2c: MX IN CNT :0x00000000
<3>] 30.111127] i2c-msm-v2 £9924000.i2c: MX OUT CNT :0x00000000
<6>[30.116872] i2c-msm-v2 £9924000.i2c: #1934 Going to enqueue 2 buffers

//First message is 1l-byte Write. So tags used are START, DATAWRITE
<6>[30.123906] i2c-msm-v2 £9924000.i2c: #1955 queueing bam tag
val:0x01824081 START:0x40 DATAWRITE:1

<6>[30.132773] i2c-msm-v2 £9924000.i2c:
pipe desc (phy:0xcbc2fccO0 len:1l) EOT:0 NWD:0

#1984 Queue data buf to consumer

//Second message is 80-bytes Read, and is the last one. Tags used are
START, DATARD and STOP

<6>[30.143005] i2c-msm-v2 £9924000.i2c: #1955 queueing bam tag
val:0x50874181 START:0x41 DATARD and STOP:80

<6>[30.152465] i2c-msm-v2 £9924000.1i2c:
len:2 to prod

#1901 queuing input tag buf

//Slave address is 0x20. Total messages in the transfer are 2.

// From here onwards, we would track time taken for the transfer.
Currently, 0.000 ms in the transfer

<6>[30.219029] i2c-msm-v2 £9924000.1i2c:
addr:0x20

<6>[30.225990] i2c-msm-v2 £9924000.1i2c:
adr:0x20 len:1 is rx:0x0 last:0x0

<6>[30.235277] i2c-msm-v2 £9924000.1i2c:
adr:0x20 len:80 is_rx:0xl last:0x1

-—>.000ms XFER BEG msg cnt:2
0.000ms XFER BUF msg[0] pos:0

0.001lms XFER BUF msg[l] pos:0

//Received completion interrupt from controller

<6>[30.314963] i2c-msm-v2 £9924000.i2c: 272.782ms
used:560msec time left:560msec

<6>[30.323557] i2c-msm-v2 £9924000.i2c: 290.956ms ACTV_END ret:0
jiffies 1left:10/100 read cnt:0

DONE OK timeout-

//Transfer complete. Total time taken=290.958msms

<6>[30.331978] i2c-msm-v2 £9924000.i2c: 290.958ms XFER END ret:2
err: [NONE] msgs sent:2 BC:95 B/sec:326 i2c-stts:0K

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 62

5 Serial Peripheral Interface

This chapter describes the SPI and explains how to configure it in the kernel.

5.1 Hardware overview
For a BLSP overview, see Section 3.1.
For a QUP overview, see Section 4.1.1.

5.1.1 SPI core

The SPI allows full-/half-duplex, synchronous, serial communication between a master and slave.
There is no explicit communication framing, error checking, or defined data word length. Hence,
the communication is strictly at the raw bit level.

5.1.1.1 Key features
= Supports up to 50 MHz
= Supports 4 to 32 bits per word of transfer
= Supports a maximum of four Chip Selects (CSes) per bus
= Supports BAM

5.1.2 QUP SPI parameters

To match the labeling in the software interface manual, each QUP is identified by a BLSP core
and a QUP core (0 to 5). In hardware design documents, BLSPs are identified as BLSP[1:12].

MSM8916 and APQB8016E chipsets contain a single BLSP core.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 63

Peripherals Programming Guide Linux Android Serial Peripheral Interface

Table 5-1 QUP physical address, IRQ numbers, Kernel SPI clock name, Consumer, producer pipes, BLSP_BAM physical
address, BAM IRQ number for Snapdragon 410E (APQ8016E)

BLSP QUP core Physical address IRQ Kernel UART clock name Consumer | BLSP_BAM physical
Bus master
hardwar (QUP_BASE_AD | number D , producer | address, IRQ number
elD DRESS) pipes
BLSP1 BLSP 1 QUP 0 | 0x78B5000,0x600 95 86 clk_gce_blspl_qupl_spi_apps_cl 45 0x78840%%,80x23000,
k
BLSP2 BLSP 1 QUP 1 | 0x78B6000,0x600 96 86 clk_gecc_blspl_qup2_spi_apps_cl 6,7 0x7884000, 0x23000,
k 238
BLSP3 BLSP 1 QUP 2 | 0x78B7000,0x600 97 86 clk_gcc_blspl_qup3_spi_apps_cl 8,9 0x7884000, 0x23000,
k 238
BLSP4 BLSP 1 QUP 3 | 0x78B8000,0x600 98 86 clk_gcc_blspl_qup4_spi_apps_cl 10,11 0x7884000, 0x23000,
k 238
BLSP5 BLSP 1 QUP 4 | 0x78B9000,0x600 99 86 clk_gcc_blspl_qup5_spi_apps_cl 12,13 0x7884000, 0x23000,
k 238
BLSP6 BLSP 1 QUP 5 | 0x78BA000,0x600 100 86 clk_gcc_blspl_qup6_spi_apps_cl 14,15 0x7884000, 0x23000,
k 238

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 64

Peripherals Programming Guide Linux Android Serial Peripheral Interface

5.2 Configure kernel low-speed SPI

The SPI can operate in FIFO-based mode or Data Mover mode (BAM). If large amounts of data
are to be transferred, enable BAM to offload the CPU. Additional fields are needed in the DTS
node to enable SPI BAM mode. See Section 5.3 for detailed information.

5.2.1 Code changes

Table 5-2 lists the files used to configure a QUP core as an SPI device in the kernel.

Table 5-2 Configuring a QUP core as an SPI device in the kernel

File type Description

Device tree source | For MSM and APQ products:
kernel/arch/arm/boot/dts/gcom/<chipset>.dtsi
Where <chipset> corresponds to the applicable chipset, for example:

kernel/arch/arm/boot/dts/gcom/msm8916.dtsi
Clock table The clock nodes need to be added to the DTS file.

kernel/drivers/clk/gcom/clock-gcc-<chipset>.c

Pinctrl settings The pin control table is located in the following file:

kernel/arch/arm/boot/dts/gcom/<chipset>-pinctrl.dtsi

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 65

Peripherals Programming Guide Linux Android

Serial Peripheral Interface

This section describes the steps required to configure and use the BLSP1 _QUP3 QUP core as an

SPI bus.

1. Create a device tree node. In the kernel/arch/arm/boot/dts/qcom/<chipset>.dtsi

file, add a new device tree node.

aliases({
spi0 = &spi 0; /* SPIO controller device */
bi

spi 0: spi@78b7000 { /* BLSPL QUP3 */
compatible = "qgcom, spi-qup-v2";
#address-cells = <1>;
#size-cells = <0>;

reg-names = "spi physical", "spi bam physical";

reg = <0x78b7000 0x600>,

<0x7884000 0x23000>;
interrupt-names = "spi irq", "spi bam irqg";
interrupts = <0 97 0>, <0 238 0>;
spi-max-frequency = <50000000>;
pinctrl-names = "default", "sleep";

pinctrl-0 = <&spi0O _default &spil0 _csO_active>;

pinctrl-1 = <&spiO_sleep &spiO _csO_sleep>;
clocks = <&clock gcc clk gcc blspl ahb clk>,

<&clock gcc clk gcc blspl qup3 spi apps clk>;

clock-names = "iface clk", "core clk";
gcom, infinite-mode = <0>;

gcom, use—bam;

gcom, use-pinctrl;

gcom, ver-reg-exists;

gcom, bam-consumer-pipe-index <8>;
gcom, bam-producer-pipe-index = <9>;
gcom,master-id = <86>;

lattice, spi-usb@0 {

compatible = "lattice,iced40-spi-usb";

reg = <0>;

spi-max-frequency = <50000000>;
spi-cpol = <1>;

spi-cpha = <1>;

core-vcc-supply = <&pm8916 12>;
spi-vcc-supply = <&pm8916 15>;
gcom, pm—-gos-latency = <2>;

lattice, reset-gpio = <&msm gpio 3 0>;
lattice,config-done-gpio = <&msm gpio 1 0>;
lattice,vcc-en-gpio = <&msm gpio 114 0>;
lattice,clk-en-gpio = <&msm gpio 0 0>;

clocks = <&clock rpm clk bb clk2 pin>;

clock-names = "xo";

pinctrl-names = "default", "sleep";
pinctrl-0 = <&iced40 default>;
pinctrl-1 = <&iced40 sleep>;

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

66

Peripherals Programming Guide Linux Android Serial Peripheral Interface

Additional information Location

Device tree kernel/Documentation/devicetree/bindings/arm/gic.txt
kernel/Documentation/devicetree/bindings/spi/spi gsd.txt

2. Set the Pinctrl settings.
a. Open the .dtsi file located at:

kernel/arch/arm/boot/dts/gcom/<chipset>-pinctrl.dtsi

b. Modify the pin control settings as shown in the following example. For more
information, refer to pin control documentation located at:

kernel/Documentation/devicetree/bindings/pinctrl/msm-pinctrl.txt.

&soc |
tlmm pinmux: pinctrl@1000000 {

//snip

spi0_active {
/* MOSI, MISO, CLK */
gcom,pins = <&gp 8>, <&gp 9>, <&gp 11>;
gcom, num-grp-pins = <3>;
gcom, pin-func = <1>;
label = "spiO-active";
/* active state */
spi0 _default: default {
drive-strength = <12>; /* 12 MA */
bias-disable = <0>; /* No PULL */
i
}i

spi0_ suspend {
/* MOSI, MISO, CLK */
gcom,pins = <&gp 8>, <&gp 9>, <&gp 11>;
gcom, num-grp-pins = <3>;
gcom, pin-func = <0>;
label = "spiO-suspend";
/* suspended state */
spi0_sleep: sleep {
drive-strength = <2>; /* 2 MA */
bias-pull-down; /* pull down */
}i
}i

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 67

http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/qcom/
http://opengrok.qualcomm.com/source/xref/kernel_msm-3.10/arch/arm/boot/dts/qcom/msm8916-pinctrl.dtsi

Peripherals Programming Guide Linux Android Serial Peripheral Interface

3. Verify configuration settings. If all the information was correctly entered, the SPI bus will be
registered under /sys/class/spi_master/spi#, wWhere the cell-index matches the bus
number.

adb shell --> Get adb shell

cd /sys/class/spi master to list all the spi master
root@android:/sys/class/spi master # ls

1ls

spi0

spi6

spi7

5.2.2 Register a slave device using the device tree

When the SPI bus is registered, create a slave device driver and register it with the SP1 master.
For examples of SPI slave devices, see the following files:

m kernel/arch/arm/boot/dts/msm8916-cdp.dts
m kernel/Documentation/devicetree/bindings/spi/spi gsd.txt

m kernel/Documentation/devicetree/bindings/spi/spi-bus.txt

The following procedure shows the minimum requirements for registering a slave device.
1. Create a device tree node.
a. Open the following file:

kernel/arch/arm/boot/dts/msm8916-cdp.dts

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 68

Peripherals Programming Guide Linux Android Serial Peripheral Interface

b. Add the new device tree node:

synaptics@20 {

compatible = "synaptics,rmi4d";
reg = <0x20>;
interrupt-parent = <&msm_gpio>;

interrupts = <13 0x2008>;
vdd-supply = <&pm8916 117>;
vce i2c-supply = <&pm8916 16>;
/* pins used by touchscreen */

pinctrl-names = "pmx ts_active","pmx ts suspend","pmx ts release";
pinctrl-0 = <&ts_int active &ts_reset active>;
pinctrl-1 = <&ts_int suspend &ts_ reset suspend>;

pinctrl-2 = <&ts release>;
synaptics,irg-gpio = <&msm gpio 13 0x2008>;
synaptics, reset-gpio = <&msm gpio 12 0x0>;
synaptics,i2c-pull-up;
synaptics, power-down;
synaptics,disable-gpios;
synaptics,detect-device;
synaptics,devicel {
synaptics,package-id = <3202>;
synaptics,button-map <139 172 158>;
}i
synaptics,device2 {
synaptics,package-id = <3408>;
synaptics,display-coords = <0 0 1079 1919>;
synaptics,panel-coords = <0 0 1079 2063>;
}i

b

2. Create or modify the slave device driver. The following provides an example of the slave
driver.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 69

Peripherals Programming Guide Linux Android

Serial Peripheral Interface

#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/spi/spi.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/debugfs.h>
#include <linux/seq file.h>
#include <linux/regulator/consumer.h>
#include <linux/string.h>
#include <linux/of gpio.h>

#ifdef CONFIG OF //Open firmware must be defined for dts useage

static struct of device id gcom spi test table[] = {
{ .compatible = "gcom,spi-test",}, //Compatible node must match
//dts
{1}
}i
#else

#define gcom spi test table NULL

#endif

#define BUFFER SIZE 4<<10
struct spi message spi msg;
struct spi transfer spi xfer;

u8 *tx buf
static int

{

spi-

; //This needs to be DMA friendly buffer
spi test transfer(struct spi device *spi)

>mode |=SPI LOOP; //Enable Loopback mode

spi _message init (&spi msqg);

spi_xfer.tx buf = tx buf;

spi_xfer.len = BUFFER SIZE;
spi_xfer.bits per word = 8;

spi xfer.speed hz = spi->max speed hz;

spi_ |

message add tail (&spi xfer, &spi msg);

return spi sync(spi, &spi msg);

static int

{

int
int
int
int
u32

dev

spi_ test probe(struct spi device *spi)

irg gpio = -1;
irqg;

cs;

cpha, cpol,cs_high;

max_speed;
err (&spi->dev, "%s\n", _ func_);

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

70

Peripherals Programming Guide Linux Android Serial Peripheral Interface

//allocate memory for transfer
tx buf = kmalloc (BUFFER SIZE, GFP ATOMIC) ;
if (tx buf == NULL) {
dev_err(&spi->dev, "%s: mem alloc failed\n", _ func);
return -ENOMEM;
}
//Parse data using dt.
if (spi->dev.of node) {
irg gpio = of get named gpio flags(spi->dev.of node,
"gcom spi test,irg-gpio", 0, NULL);
}

irg = spi->irqg;

cs = spi->chip select;

cpha = (spi->mode & SPI CPHA) ? 1:0;

cpol = (spi->mode & SPI CPOL) ? 1:0;
cs_high = (spi->mode & SPI CS HIGH) ? 1:0;

max speed = spi->max speed hz;
dev_err(&spi->dev, "gpio [%d] irg [%d] gpio _irg [%d] cs [%x] CPHA
[$x] CPOL [%x] CS HIGH [$x]\n",
irqg gpio, irqg, gpio_to irqg(irg gpio), cs, cpha, cpol,
cs_high);

dev_err (&spi->dev, "Max speed [%d]\n", max speed);

//Transfer can be done after spi device structure is created
spi->bits per word = 8;
dev_err(&spi->dev, "SPI sync returned [%d]\n",
spi_test transfer(spi));
return 0;
}
//SPI Driver Info
static struct spi driver spi test driver = {
.driver = {
.name = "gcom spi test",
.owner = THIS MODULE,
.of match table = gcom spi test table,
by
.probe = spi_ test probe,
}i

static int init spi test init(void)
{

return spi register driver(&spi test driver);

}

static void exit spi test exit (void)

{

spi_unregister driver (&spi test driver);

module init (spi test init);
module exit (spi test exit);
MODULE DESCRIPTION ("SPI TEST");
MODULE LICENSE ("GPL v2");

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 71

Peripherals Programming Guide Linux Android Serial Peripheral Interface

Verify that the device tree was configured. In the kernel log, the following message indicates
the device tree was successfully configured.

<3>1

<3>]
[306]

<3>]
<3>]

2.503571] gcom spi test spi6.0: spi test probe
2.507305] gcom_spi test spi6.0: gpio [61] irg [306] gpio_irg

cs [0] CPHA [1] CPOL [1] CS_HIGH [1]
2.516825] gcom_spi test spi6.0: Max speed [4800000]
2.521932] gcom_spi test spi6.0: SPI sync returned [0]

5.3 Configure kernel high-speed SPI

The SPI can operate in Data Mover mode (BAM) or FIFO-based mode. If large amounts of data
are to be transferred, enable BAM to offload the CPU. For BLSP BAM registers and IRQs, see
Table 5-1.

5.3.1 Code changes
The following describes how to enable BAM (Data Mover mode) in the SPI.

1.

Modify the device tree. The following example shows the additional fields needed in the DTS
node to enable SPI BAM mode. See Section 5.2 for more information on the field needed in
the DTS node.

spi O:

spi@78b7000 { /* BLSP1l QUP3 */
compatible = "gcom, spi-qup-v2";
#address-cells = <1>;
#size-cells = <0>;
reg-names = "spi physical", "spi bam physical";
reg = <0x78b7000 0x600>,

<0x7884000 0x23000>;
interrupt-names = "spi irq", "spi bam irqg";
interrupts = <0 97 0>, <0 238 0>;
spi-max-frequency = <50000000>;
pinctrl-names = "default", "sleep";
pinctrl-0 = <&spiO default &spi0 _cs0 active>;
pinctrl-1 = <&spiO sleep &spi0 cs0 sleep>;
clocks = <&clock gcc clk gcc blspl ahb clk>,

<&clock gcc clk gcc blspl qup3 spi apps_clk>;

clock-names = "iface clk", "core clk";
gcom, infinite-mode = <0>;
gcom, use-bam;
gcom, use-pinctrl;
gcom,ver-reg-exists;
gcom, bam-consumer-pipe-index = <8>;
gcom, bam-producer-pipe-index <9>;
gcom,master-id = <86>;

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 72

Peripherals Programming Guide Linux Android Serial Peripheral Interface

Additional information:
0 kernel/Documentation/devicetree/bindings/arm/gic.txt
O kernel/Documentation/devicetree/bindings/spi/spi gsd.txt

For information on BAM pipes, see Table 5-1.

5.4 SP| power management

SPI slave devices must register system suspend and resume (SYSTEM_PM_OPS) handlers with
the power management framework to ensure that no SPI transactions are initiated after the SPI
master is suspended. For examples, see Section 4.4.

5.5 Code walkthrough

5.5.1 Probing

5.5.1.1 Call the SPI master probe

Similar to the UART probe, the SPI master probe is called with the following call stack (see
3.5.1).

-000 |msm_spi probe ()
-001|platform drv probe ()
-002|driver probe device()
-003|_ driver attach()

-004 |bus_for each dev ()
-005|bus_add driver ()
-006|driver register()
-007|platform driver probe ()
-008|do_one initcall()

Table 5-3 lists resources that must be defined for a successful SPI master registration.

Table 5-3 SPI master registration resources required for BAM

Resource Description
msm_spi_dt to pdata--> Parses the device tree
msm_spi dt to pdata populate ()
msm_spi bam get resources Gets BAM informations
msm_spi request irg Gets IRQ information

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 73

Peripherals Programming Guide Linux Android

Serial Peripheral Interface

Table 5-4 Device tree and clock resources required for SPI BAM

GPI10s must be properly defined in board-<chipset>-gpiomux.c.

Resource

Description

Device tree

spi-max-frequency

Maximum bus frequency

gcom,master-id

Bus Scale ID

spi_physical

BLSP QUP base

spi_irq

QUP IRQ

If BAM is required

gcom,use-bam

Enable BAM mode

gcom,bam-consumer-pipe-index

Consumer pipe index

gcom,bam-producer-pipe-index

Producer pipe index

spi_bam_physical

BLSP_BAM_BASE

spi_bam_irq BLSP_BAM IRQ
Clock table
core_clk QUP core clock

baseaddress.spi

QUP core clock

iface_clk

AHB clock

baseaddress.spi

AHB clock

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

74

Peripherals Programming Guide Linux Android

Serial Peripheral Interface

5.5.1.2 Register the SPI master

Calling the spi register master () function from the probe registers the current master

controller with the Linux SPI framework.

int spi register master(struct spi master *master)

{

static atomic_t dyn bus_id = ATOMIC_ INIT((1<<15)
struct device *dev = master->dev.parent;
struct boardinfo *bi;

int status = -ENODEV;

int dynamic = 0;

/* Each bus will be labeled as spi#*/
dev_set name (&master->dev, "spi%u", master->bus num) ;
status = device add(&master->dev);

/* If we're using a queued driver, start the queue */
if (master->transfer)

- 1)

dev_info(dev, "master is unqueued, this is deprecated\n");

else {
status = spi master initialize queue (master);
if (status) {
device unregister (&master->dev);
goto done;

}

/* spi master list contain list of SPI masters that are registered */

list add tail (émaster->list, &spi master list);

/* Register SPI devices from the device tree */
of register spi devices (master);

5.5.1.3 Register SPI slave

After the SPI master is registered by spi register master (), the slave probe is called.

-000|spi test probe() //SPI Slave Probe function
-001|spi_drv_probe ()
-002|driver probe device()
-003|bus_for each drv()

-004 |device attach()

-005 |bus_probe device ()
-006|device_add()

-007|spi_add device()

-008|of register spi devices()

-009|spi register master()
-010|msm_spi_probe() //SPI Master Probe
-011l|platform drv_probe ()

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

75

Peripherals Programming Guide Linux Android Serial Peripheral Interface

-012|driver probe device()
-013|_ driver attach()
-014|bus_for each dev ()
-015|bus_add driver ()
-0l6|driver register()

-017|platform driver probe ()
The slave probe has following prototype:

int (*probe) (struct spi device *spi)

When the slave device driver has an spi_device pointer, the slave device is free to initiate an SPI
transfer as long as the SPI master is not in a suspended state.

5.5.2 SPI transfer

5.5.2.1 Message structure

Figure 5-1 shows how SPI transactions are queued.

AN
o A typical SPI message
Message composed of multiple transfer
O descriptors.
| | 1 e Each transfer descriptor can
P contain either an Rx buffer or a

Transfer 1 2 3 Transfer n Tx buffer, or both Rx and Tx
| | r """"""" buffers.
o If the descriptor contains both Rx
(L (L | (L J} | and Tx buffers, the length of the
Rx buffer must equal the length
Rx Tx Tx Rx

of the Tx buffer.
buffer buffer buffer buffer

Figure 5-1 SPI message queue

For each spi sync ()0r spi_async () function, a single message is processed.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 76

Peripherals Programming Guide Linux Android Serial Peripheral Interface

5.5.2.2 spi_sync()

The spi_sync () function is a blocking call that waits until an entire message is transferred
before returning to the caller.

int spi sync(struct spi device *spi, struct spi message *message,
)
{

DECLARE COMPLETION ONSTACK (done) ;

int status;

struct spi master *master = spi->master;

/* Initialize the completion call back */

message->complete = spi complete;

message->context = &done;

/* Queue the message */
status = spi async locked(spi, message);

/* Wait for completion signal from master */
if (status == 0) {

wait for completion (&done);

status = message->status;

}

return status;

5.5.2.3 spi_async()

The spi_async () function is a nonblocking call that can be called from an atomic context also.
With this function, a slave device can queue multiple messages and wait for the master to call
back. For each message that is complete, the master calls the callback.

static int spi async(struct spi device *spi, struct spi message *message)

{

struct spi master *master = spi->master;
message->spi = spi;
message->status = -EINPROGRESS;

/* Queue the Transfer with the SPI Master */
return master->transfer (spi, message);

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 7

6 BLSP BAM

This chapter describes the Bus Access Manager (BAM) software architecture relevant to the
BLSP.

6.1 Source code

The kernel/arch/arm/mach-msm/include/mach/sps.h header file contains all of the
functions, flags and data structures that are exposed to client drivers.

The source directory is kernel/drivers/platform/msm/sps/.

6.2 Key functions

6.2.1 sps_phy2h()

This function checks the registered BAM device list, sps->bam_g, to see if a physical address
of the BAM is already registered. If a BAM address is registered, this function returns the BAM
handler, struct sps_bam.

6.2.2 sps_register _bam_device()
If the BAM device is not already registered, this function registers it with the BAM driver.
= Initializes the sps_bam structure by calling sps_bam device init ()
= Adds the sps_bam structure to the sps->bam_q list
» Returns the handler for the sps_bam structure

6.2.3 sps_alloc_endpoint()

This function allocates the sps_pipe structure and returns the handler after initializing it by calling
sps_client init ().

m Sets sps_pipe.client_state to SPS_STATE_DISCONNECT
= Sets sps_pipe.connect to SPSRM_CLEAR

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 78

Peripherals Programming Guide Linux Android BLSP BAM

6.2.4 sps_connect()

This function initializes the BAM hardware and estabishes communication between the BAM and
processor.

= Copies the sps_connect structure to sps_pipe.connect

m Allocates the sps_connection structure and maps it to sps_pipe

= Configures and enables the BAM pipe

= Sets a connection from sps_pipe.client_state to SPS_STATE_CONNECT

6.2.5 sps_register_event()
This function registers an event handler for the sps_event by updating sps_pipe.event_regs.

6.2.6 sps_transfer_one()

This function queues a single descriptor into the BAM pipe by calling
sps_bam_pipe_transfer_one.
m Updates sps_pipe.sys.desc_offset to the next location

s PIPE_EVENT_REG = "next_write"

6.2.7 bam_isr()
This function is the ISR handler for the BLSP BAM.
= Determines which pipe caused an interrupt by reading the BAM_IRQ_SRCS register
= Calls pipe_handler-->pipe_handler_eot to process the interrupt
m Updates sps_pipe.sys.acked_offset with SW_DESC_OFST
Call stack:

-000|client callback()
-001|trigger event.isra.l()
-002 |pipe_handler eot ()
-003 |pipe_handler ()

-004 |bam_isr ()
-005|handle irg event percpul()
-006|handle irg event ()
-007 |[handle fasteoi irqg()
-008 |generic_handle irqg()
-009 handle IRQ()
-010|gic_handle irg()

6.2.8 sps_disconnect()

This function disables the BAM hardware connection and deallocates any resources allocated by
the SPS driver.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 79

Peripherals Programming Guide Linux Android

BLSP BAM

6.3 Key data structures

6.3.1 sps_drv * sps

This is the global data structure.

struct sps drv {
/* Driver is ready */
int is_ready;

/* BAM devices */
struct list head bams g;
}i

6.3.2 sps_bam

This data structure stores BAM peripheral information.

struct sps_bam {

/* BAM device properties, including connection defaults */
struct sps _bam props props;

/* BAM device state */
u32 state;

/* Pipe state */

u32 pipe_active mask;

u32 pipe_ remote mask;

struct sps_pipe *pipes[BAM MAX PIPES];
struct list head pipes g;

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

80

Peripherals Programming Guide Linux Android BLSP BAM

6.3.3 sps_pipe

This data structure stores the BAM pipe information.

struct sps pipe {
/* Client state */
u32 client state;

/* Connection states*/
struct sps connect connect;
const struct sps_connection *map;

/* Pipe parameters */
u32 state;

u32 pipe_index;

u32 pipe_index mask;
u32 irg_mask;

u32 num _descs; /* Size (number of elements) of descriptor FIFO */
u32 desc_size; /* Size (bytes) of descriptor FIFO */

/* System mode control */
struct sps bam sys mode sys;

}i

6.3.4 Struct sps_connect

This data structure stores pipe configuration data from the client.

struct sps connect ({
/* Pipe configuration info */
u32 source;
u32 src_pipe index;
u32 destination;
u32 dest pipe index;
enum sps_mode mode;

/* Connection Options*/
enum sps_option options;

/* Descriptor memory */
struct sps mem buffer desc;

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 81

Peripherals Programming Guide Linux Android

BLSP BAM

6.3.5 sps_register_event
This data structure stores information with respect to the event handler.

struct sps register event {
/* Options that will trigger */
enum sps_option options;
enum sps_trigger mode;
/* Handler or completion signal */
struct completion *xfer done;
void (*callback) (struct sps_event notify *notify);
void *user;

}i

6.3.6 sps_bam_sys mode
This data structure stores descriptor buffer information and event offsets.

struct sps_bam sys mode ({
/* Descriptor FIFO control */
u8 *desc_buf; /* Descriptor FIFO for BAM pipe */
u32 desc_offset; /* Next new descriptor to be written to hardware */
u32 acked offset; /* Next descriptor to be retired by software */

/* Descriptor cache control (!no queue only) */
u8 *desc_cache; /* Software cache of descriptor FIFO contents */
u32 cache offset; /* Next descriptor to be cached (ack xfers only) */

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

82

7 GPIO

Each MSM/MDM/APQ chipset has a dedicated number of GP10s that can be configured for
multiple functions. For example, if you check the GP10O mapping for MSM8916 GPIO 0, you will
see that the GPIO can be configured as one of the following functions at any time:

= Function 0 — GPIO

= Function 1 - BLSP1 SPI MOSI

= Function 2 - BLSP1 UART TX

= Function 3 — BLSP1 User Identity Module (UIM) data
= Function 4 - HDMI_RCV_DET

7.1 Critical registers

This section describes some critical hardware registers that are important for debugging.

7.1.1 GPIO_CFGn

GPIO_CFGn controls the GPIO properties, such as Output Enable, Drive Strength, Pull, and
GPI0O Function Select.

For example, for MSM8916:

Physical Address: 0x01000000 + (0x1000 * n) = GPIO CFGn
n = GPIO #
Example Address:
0x01000000 = GPIO_CFGO
0x01001000 = GPIO_CFGL

Bit definition for GPIO CFGn
Bits 31:11 Reserved

Bit 10 GPIO_HIHYS EN Control the hihys EN for GPIO

Bit 9 GPIO_OE Controls the Output Enable for GPIO
when in GPIO mode.

Bits 8:6 DRV _STRENGTH Control Drive Strength

000:2mA 001:4mA 010:6mA 011:8mA
100:10mA 101:12mA 110:14mA 111:16mA
Bits 5:2 FUNC_SEL Make sure Function is GSBI

Check Device Pinout for Correct Function

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 83

Peripherals Programming Guide Linux Android

GPIO

Bits 1:0 GPIO PULL Internal Pull Configuration
00:No Pull 01l: Pull Down
10:Keeper 11: Pull Up

7.1.2 GPIO_IN_OUTn

GPIO_IN_OUTn controls the output value or reads the current GPIO value.

Physical Address: 0x01000004 +
n = GPIO #
Example Address:
0x01000004 = GPIO_IN OUTO
0x01001004 = GPIO IN OUTI1

Bit definition for GPIO CFGn

Bits 31:2 Reserved
Bit 1 GPIO OUT
Bit 0 GPIO 1IN

GPIO

7.1.3 GPIO_INTR_CFGn

(0x1000 * n) =

GPIO IN OUTn

Control value of the GPIO Output
Allow you to read the Input value of the

GPIO_INTR_CFGn controls the GPIO interrupt configuration settings.

Physical Address: 0x01000008 +

n = GPIO #

Example Address:
0x01000008 = GPIO INTR CFGO
0x01001008 = GPIO INTR CFGI1

Bit definition for GPIO CFGn

Bits 31:9 Reserved

Bit 8 DIR_CONN_IN

Bits 7:5 TARGET PROC

Bit 4 INTR RAW STATUS EN
interrupt.

Bits 3:2 INTR DECT CTL

(0x1000 * n) =

GPIO INTR CFGn

Being used as Direct Connect Interrupt.
0: Default direct connect
1: Enable Direct connect
Determine which processor a summary
interrupt should get routed to.
Ox4: Apps Summary Interrupt

Enable the RAW status for summary

0: Disable
1: Enable

Control the Edge or Level Detection
0x0: LEVEL sensitive

0x1: Positive Edge

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

84

Peripherals Programming Guide Linux Android GPIO

0x2: Negative Edge
0x3: Dual Edge
Bit 1 INTR POL CTL Control the Polarity Detection
0x0: Active Low
Ox1l: Active High

Bits O INTR ENABLE Control if this GPIO generate summary
interrupt. N
0: Disable
1: Enable

7.1.4 GPIO_INTR_STATUSN
GPIO_INTR_STATUSn indicates the summary interrupt status.

Physical Address: 0x0100000C + (0x1000 * n) = GPIO INTR STATUSn
n = GPIO #
Example Address:
0x0100000Cc = GPIO INTR STATUSO

0x0100100c

GPIO INTR STATUS1

Bit definition for GPIO CFGn
Bits 31:1 Reserved
Bit O INTR STATUS When read it return status of interrupt.
0: No interrupt

1: Pending Interrupt

7.2 Configuring GPIOs in Linux kernel

This section describes the steps required to configure MSM8994 GPIOs in the Linux kernel. See
documentation/devicetree/bindings/pinctrl/msm-pinctrl.txt for more details.

For example, consider the Synaptics Touchscreen driver, which uses one 12C and two
software-controlled MSM GPIOs, as listed in Table 7-1.

Table 7-1 Synaptics Touchscreen driver GPIOs in MSM8916

GPIO Function Pull settings Drive strength/vin

Active Sleep Active Sleep
MSM_GPIO_13 Interrupt input Pull-up Pull-none 16 mA 16 mA
MSM_GPIO_12 Digital output Pull-up Pull-none 16 mA 16 mA

For MSM GPIO settings, see TLMM GPIO CFGn.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 85

Peripherals Programming Guide Linux Android GPIO

7.2.1 Define pin controller node in DTS

For example, for MSM8916, add the pin controller nodes in msm8916-pinctrl.dtsi.

&soc |
tlmm pinmux: pinctrl@1000000 {
compatible = "gcom,msm-tlmm-8916";
/* Base address and size of TLMM CSR registers */
reg = <0x1000000 0x300000>;
/* First Field: 0 SPI interrupt (Shared Peripheral
Interrupt)
Second Field: Interrupt #
Third field: Trigger type, keep 0 */
interrupts = <0 208 0>;
<SNIP>
pmx_ts int active {
gcom,pins = <&gp 13>;
gcom,pin-func = <0>;
gcom, num-grp-pins = <1>;
label = "pmx ts int active";
ts_int active: ts_int active {
drive-strength = <16>;
bias-pull-up;
}i
}i
pmx_ts int suspend {
gcom,pins = <&gp 13>;
gcom,pin-func = <0>;
gcom, num-grp-pins = <1>;
label = "pmx ts int suspend";
ts_int suspend: ts_int suspend {
drive-strength = <2>;
bias-pull-down;
}i
}i
<SNIP>

}s
}s

Add the above defined nodes to client node (synaptics_i2¢c_rmi4) in msm8916-cdp.dtsi.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 86

Peripherals Programming Guide Linux Android

GPIO

&soc |

i2c@78b9000 { /* BLSP1 QUP5 */
synaptics@20 {
compatible = "synaptics,rmid";

reg = <0x20>;

interrupt-parent = <&msm gpio>;

interrupts = <13 0x2008>;
vdd-supply = <&pm8916 117>;
vcc_i2c-supply = <&pm8916 16>;
/* pins used by touchscreen */

pinctrl-names =

"pmx ts active","pmx ts suspend","pmx ts release";

pinctrl-0 = <&ts_int active &ts reset active>;

pinctrl-1 = <&ts int suspend &ts reset suspend>;

pinctrl-2 = <&ts release>;

synaptics,irg-gpio = <&msm gpio 13 0x2008>;

synaptics, reset-gpio = <&msm gpio 12 0x0>;

synaptics,i2c-pull-up;
synaptics, power-down;
synaptics,disable-gpios;
synaptics,detect-device;
synaptics,devicel {
synaptics,package-id =
synaptics,button-map =
bi
synaptics,device2 {

synaptics,package-id =

synaptics,display-coords = <0 0 1079 1919>;

synaptics,panel-coords

}i

b

7.2.2 Accessing GPIOs in driver

Using pinctrl information in the kernel driver (see synaptics_i2¢c_rmi4.c), complete the following:
1.

In probe function get pinctrl from pinctrl.dtsi.

<3202>;
<139 172 158>;

<3408>;

= <0 0 1079 2063>;

ts _pinctrl = devm pinctrl get ((platform device->dev.parent));

In probe function get GPIO’s different state settings.

pinctrl state active = pinctrl lookup state(ts pinctrl,

"pmx ts_active");

LM80-P0436-5 Rev F

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

87

Peripherals Programming Guide Linux Android GPIO
pinctrl state suspend = pinctrl lookup state(ts pinctrl,
"pmx ts suspend");

3. Request the GPIO.
gpio_request (platform data->irqg gpio, "rmi4 irg gpio");
4. Set the GPIO direction.
gpio_direction output (platform data->reset gpio, 1);
gpio_direction input (platform data->irg gpio);
5. Ifitis an interrupt pin, request the IRQ.
int irgn = gpio_to irg(platform data->irg gpio);
6. Ifitis a wakeable interrupt then configure as such:
enable irg wake (irgn);
7. Set different GPIO states when needed.
pinctrl select state(ts_pinctrl, pinctrl state active);
pinctrl select state(ts pinctrl, pinctrl state suspend);
8. Write a value (high/low) to output the GPIO.
gpio_set value(platform data->reset gpio, 1);
gpio_set value(platform data->reset gpio, 0);
9. Read the GPIO status.
int value = gpio get value(platform data->irg gpio);
LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 88

Peripherals Programming Guide Linux Android

GPIO

7.3 Call flow for GPIO interrupt
Figure 7-1 through Figure 7-3 show the call flow for registering and firing a GPIO interrupt.

Client

kernellirq/

+request_irq—>

Pass IRQ number,
handler, irgflags.

|

Allocate struct irgaction and set
action->handler = handler;
action->thread_fn = thread_fn;
action->flags = irgflags;
action->name = devname;
action->dev_id = dev_id;

gpio_msm_common.c

——irq_to_desc
(< — —irq_desc* — —

_irg_set_
trigger

‘ Irgdesc.c returns irq_desc*. l\ﬁ

y Allocate struct irgaction and set
= action->handler = handler;
action->thread_fn = thread_fn;
action->flags = irgflags;

action->name = devname;
action->dev_id = dev_id;

[
A Convert IRQ number to
A

i

) GPIO number.
chip->irq_set_type . o ’
msm_gpio_irq_set_type msm_irq_to_gpio
K< — Return GPIO number- —
;] | Set irq_desc.handler=handle_level/edge_irqg.
= — Update msm_gpio.dual_edge_irgs.

T Update GPIO_INTR_CFG.
|
|

D Update irq_desc.state_use_accessors with

T trigger information.
|

| T

| |

To next
page
Figure 7-1 Register a GPIO IRQ (1 of 2)
LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 89

Peripherals Programming Guide Linux Android GPIO
From
prev.
page
Client kernelf/irq/ gpio_msm_common.c
T T T
| | |
| | |
| | || Set msm_gpio.enable_irgs.
: : : Update GPIO_INTR_CFG to enable interrupt.
— — |
— 1
—irg_startup—p»{ chip->irq_unmask . Convert IRQ MPM PIN.
msm_gpio_irg_unmask | | Check MPM DTS for
] conversion table.
| mpm_of.c
msm_mpm_enable_ | . r
irq > msm_mpm_get_irg_ | |
a2m i
k< — —Return MPM PIN- — —
If interrupt is wake-capable,
set msm_mpm_enabled_irg.
K————————————q S
e] L
IN L I
[I
;I " Clear desc->irq_count. '
<———_— Clear desc->irgs_unhandled.
L am Register IRQ with processor file system.
[[
Figure 7-2 Register a GPIO IRQ (2 of 2)
LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 90

Peripherals Programming Guide Linux Android GPIO

TLMM Summary
Interrupt O timm_msm_summary_irq ﬁ
fires
J y
gic_handle_irg | S Read GCC_IAR register to determine generic_handle_irq
IRQ numer of interrupt.
Call desc->irq_data.chip->irq_ack=
msm_gpio_irg_ack to clear
h J GPIO_INTR_STATUS pending bit.
. Level Edge .
Perel i interrupt interrupt
Y \ A
y - - handle_level_irq handle_edge_irq
eneric handle ir | Convert irg to irq_desc* and call
9 - | desc->handle_irq.

N~ S

handle_irg_event

A
Return calls desc->irg_data.chip->irq_eoi
handle_fasteoi_irq ¢ (gic_eoi_irq) to clear the interrupt bit by

writing to GICC_IAR register.
Y
v handle_irq_event_
handle_irq_event | Sets/clears irg_data->state_use_accessors percput
to IRQD_IRQ_INPROGRESS.
Y
A
- gpio_isr_handler
el (LG b Call irg_desc->action.handler. l\j
percput
Y
Loop through msm_gpio.enabled_irgs and
msm_summary_irq_handler ¢--- read GPIO_INTR_STATUS to see if
INTR_STATUS bit is set.

Figure 7-3 Fire a GPIO interrupt

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 91

Peripherals Programming Guide Linux Android GPIO

EXHIBIT 1

PLEASE READ THIS LICENSE AGREEMENT (“AGREEMENT”) CAREFULLY. THIS AGREEMENT IS A BINDING LEGAL
AGREEMENT ENTERED INTO BY AND BETWEEN YOU (OR IF YOU ARE ENTERING INTO THIS AGREEMENT ON BEHALF
OF AN ENTITY, THEN THE ENTITY THAT YOU REPRESENT) AND QUALCOMM TECHNOLOGIES, INC. (“QTI” “WE”
“OUR” OR “US”). THIS IS THE AGREEMENT THAT APPLIES TO YOUR USE OF THE DESIGNATED AND/OR ATTACHED
DOCUMENTATION AND ANY UPDATES OR IMPROVEMENTS THEREOF (COLLECTIVELY, “MATERIALS”). BY USING OR
COMPLETING THE INSTALLATION OF THE MATERIALS, YOU ARE ACCEPTING THIS AGREEMENT AND YOU AGREE
TO BE BOUND BY ITS TERMS AND CONDITIONS. IF YOU DO NOT AGREE TO THESE TERMS, QTI1 IS UNWILLING TO
AND DOES NOT LICENSE THE MATERIALS TO YOU. IF YOU DO NOT AGREE TO THESE TERMS YOU MUST
DISCONTINUE AND YOU MAY NOT USE THE MATERIALS OR RETAIN ANY COPIES OF THE MATERIALS. ANY USE OR
POSSESSION OF THE MATERIALS BY YOU IS SUBJECT TO THE TERMS AND CONDITIONS SET FORTH IN THIS
AGREEMENT.

11 License. Subject to the terms and conditions of this Agreement, including, without limitation, the restrictions, conditions,
limitations and exclusions set forth in this Agreement, Qualcomm Technologies, Inc. (“QTI”) hereby grants to you a nonexclusive, limited
license under QTI’s copyrights to use the attached Materials; and to reproduce and redistribute a reasonable number of copies of the Materials.
You may not use Qualcomm Technologies or its affiliates or subsidiaries name, logo or trademarks; and copyright, trademark, patent and any
other notices that appear on the Materials may not be removed or obscured. QTI shall be free to use suggestions, feedback or other information
received from You, without obligation of any kind to You. QTI may immediately terminate this Agreement upon your breach. Upon termination
of this Agreement, Sections 1.2-4 shall survive.

1.2 Indemnification. You agree to indemnify and hold harmless QTI and its officers, directors, employees and successors and
assigns against any and all third party claims, demands, causes of action, losses, liabilities, damages, costs and expenses, incurred by QTI
(including but not limited to costs of defense, investigation and reasonable attorney’s fees) arising out of, resulting from or related to: (i) any
breach of this Agreement by You; and (ii) your acts, omissions, products and services. If requested by QTI, You agree to defend QTl in
connection with any third party claims, demands, or causes of action resulting from, arising out of or in connection with any of the foregoing.

1.3 Ownership. QTI (or its licensors) shall retain title and all ownership rights in and to the Materials and all copies thereof, and
nothing herein shall be deemed to grant any right to You under any of QTT's or its affiliates” patents. You shall not subject the Materials to any
third party license terms (e.g., open source license terms). You shall not use the Materials for the purpose of identifying or providing evidence to
support any potential patent infringement claim against QTI, its affiliates, or any of QTI’s or QTI’s affiliates” suppliers and/or direct or indirect
customers. QT hereby reserves all rights not expressly granted herein.

1.4 WARRANTY DISCLAIMER. YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT THE USE OF THE
MATERIALS IS AT YOUR SOLE RISK. THE MATERIALS AND TECHNICAL SUPPORT, IF ANY, ARE PROVIDED "AS IS" AND
WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED. QTI ITS LICENSORS AND AFFILIATES MAKE NO
WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THE MATERIALS OR ANY OTHER INFORMATION OR
DOCUMENTATION PROVIDED UNDER THIS AGREEMENT, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR AGAINST INFRINGEMENT, OR ANY EXPRESS OR
IMPLIED WARRANTY ARISING OUT OF TRADE USAGE OR OUT OF A COURSE OF DEALING OR COURSE OF PERFORMANCE.
NOTHING CONTAINED IN THIS AGREEMENT SHALL BE CONSTRUED AS (I) AWARRANTY OR REPRESENTATION BY QTI, ITS
LICENSORS OR AFFILIATES AS TO THE VALIDITY OR SCOPE OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL
PROPERTY RIGHT OR (lI) AWARRANTY OR REPRESENTATION BY QTI THAT ANY MANUFACTURE OR USE WILL BE FREE
FROM INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER INTELLECTUAL PROPERTY RIGHTS OF OTHERS, AND IT
SHALL BE THE SOLE RESPONSIBILITY OF YOU TO MAKE SUCH DETERMINATION AS IS NECESSARY WITH RESPECT TO THE
ACQUISITION OF LICENSES UNDER PATENTS AND OTHER INTELLECTUAL PROPERTY OF THIRD PARTIES.

15 LIMITATION OF LIABILITY. IN NO EVENT SHALL QTI, QTI’S AFFILIATES OR ITS LICENSORS BE LIABLE TO
YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES, INCLUDING BUT NOT LIMITED TO ANY LOST
PROFITS, LOST SAVINGS, OR OTHER INCIDENTAL DAMAGES, ARISING OUT OF THE USE OR INABILITY TO USE, OR THE
DELIVERY OR FAILURE TO DELIVER, ANY OF THE MATERIALS, OR ANY BREACH OF ANY OBLIGATION UNDER THIS
AGREEMENT, EVEN IF QTI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE FOREGOING LIMITATION OF
LIABILITY SHALL REMAIN IN FULL FORCE AND EFFECT REGARDLESS OF WHETHER YOUR REMEDIES HEREUNDER ARE
DETERMINED TO HAVE FAILED OF THEIR ESSENTIAL PURPOSE. THE ENTIRE LIABILITY OF QTL QTI’s AFFILIATES AND ITS
LICENSORS, AND THE SOLE AND EXCLUSIVE REMEDY OF YOU, FOR ANY CLAIM OR CAUSE OF ACTION ARISING
HEREUNDER (WHETHER IN CONTRACT, TORT, OR OTHERWISE) SHALL NOT EXCEED US$10.

2. COMPLIANCE WITH LAWS; APPLICABLE LAW. You agree to comply with all applicable local, international and national laws
and regulations and with U.S. Export Administration Regulations, as they apply to the subject matter of this Agreement. This Agreement is
governed by the laws of the State of California, excluding California’s choice of law rules.

3. CONTRACTING PARTIES. If the Materials are downloaded on any computer owned by a corporation or other legal entity, then this
Agreement is formed by and between QTI and such entity. The individual accepting the terms of this Agreement represents and warrants to QTI
that they have the authority to bind such entity to the terms and conditions of this Agreement.

4. MISCELLANEOUS PROVISIONS. This Agreement, together with all exhibits attached hereto, which are incorporated herein by this
reference, constitutes the entire agreement between QTI and You and supersedes all prior negotiations, representations and agreements between
the parties with respect to the subject matter hereof. No addition or modification of this Agreement shall be effective unless made in writing and
signed by the respective representatives of QTI and You. The restrictions, limitations, exclusions and conditions set forth in this Agreement shall
apply even if QTI or any of its affiliates becomes aware of or fails to act in a manner to address any violation or failure to comply therewith. You
hereby acknowledge and agree that the restrictions, limitations, conditions and exclusions imposed in this Agreement on the rights granted in this
Agreement are not a derogation of the benefits of such rights. You further acknowledges that, in the absence of such restrictions, limitations,
conditions and exclusions, QT would not have entered into this Agreement with You. Each party shall be responsible for and shall bear its own
expenses in connection with this Agreement. If any of the provisions of this Agreement are determined to be invalid, illegal, or otherwise
unenforceable, the remaining provisions shall remain in full force and effect. This Agreement is entered into solely in the English language, and
if for any reason any other language version is prepared by any party, it shall be solely for convenience and the English version shall govern and
control all aspects. If You are located in the province of Quebec, Canada, the following applies: The Parties hereby confirm they have requested
this Agreement and all related documents be prepared in English.

LM80-P0436-5 Rev F MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION 92

	DragonBoard™ 410c based on Qualcomm® Snapdragon™ 410E processor Peripherals Programming Guide Linux Android
	Contents
	1 Introduction
	1.1 Purpose
	1.2 Conventions
	1.3 Acronyms, abbreviations, and terms
	1.4 Cloning the kernel and LK boot loader code and flashing the images to the DragonBoard 410c
	1.5 Additional information

	2 Device Tree
	2.1 Device tree components

	3 Universal Asynchronous Receiver/ Transmitter
	3.1 Hardware overview
	3.1.1 BLSP
	3.1.2 UART core

	3.2 Configure LK UART
	3.2.1 Code changes
	3.2.2 Debug LK UART

	3.3 Configure kernel low-speed UART
	Low-speed UART driver(kernel/drivers/tty/serial/msm_serial_hs_lite.c) is a FIFO-based UART driver and is designed to support small data transfer at a slow rate, such as for console debugging or IrDA transfer. The high-speed UART driver(kernel/drivers/...
	3.3.1 Code changes
	3.3.2 Debug low-speed UART
	3.3.3 Optional configuration changes
	3.3.3.1 Prevent system suspend

	3.4 Configure kernel high-speed UART
	3.4.1 Debug high-speed UART

	3.5 Code walkthrough – High-speed UART driver
	3.5.1 Probing
	3.5.1.1 Registration with the SPS driver
	3.5.1.2 UART port registration

	3.5.2 Port open
	3.5.3 Power management
	3.5.3.1 In Band and Out Band Sleep modes
	3.5.3.2 Methods to control UART clocks

	3.5.4 Port close

	4 Inter-Integrated Circuit
	4.1 Hardware overview
	4.1.1 Qualcomm Universal Serial Engine
	4.1.2 QUP I2C configuration parameters
	4.1.3 Bus scale ID

	4.2 Configure LK I2C
	4.2.1 Test code
	4.2.2 Debug LK I2C

	4.3 Configure kernel low-speed I2C
	4.3.1 Code changes
	4.3.2 Test code
	4.3.3 Debug low-speed I2C
	4.3.4 Register a slave device using the device tree

	4.4 Configure kernel high-speed I2C
	4.4.1 Code changes

	4.5 Disabling BAM mode
	4.6 Noise rejection on I2C lines
	4.7 Setting I2C clock dividers
	4.7.1 Default values
	4.7.2 Set values
	4.7.3 Dividers vs clock frequency

	4.8 I2C power management
	4.9 Pseudocode
	4.9.1 QUP operational states
	4.9.2 I2C V1 TAG

	4.10 Debug log
	4.10.1 i2c-msm-v2.c – FIFO mode
	4.10.2 i2c-msm-v2.c – BAM mode

	5 Serial Peripheral Interface
	5.1 Hardware overview
	5.1.1 SPI core
	5.1.1.1 Key features

	5.1.2 QUP SPI parameters

	5.2 Configure kernel low-speed SPI
	5.2.1 Code changes
	5.2.2 Register a slave device using the device tree

	5.3 Configure kernel high-speed SPI
	5.3.1 Code changes

	5.4 SPI power management
	5.5 Code walkthrough
	5.5.1 Probing
	5.5.1.1 Call the SPI master probe
	5.5.1.2 Register the SPI master
	5.5.1.3 Register SPI slave

	5.5.2 SPI transfer
	5.5.2.1 Message structure
	5.5.2.2 spi_sync()
	5.5.2.3 spi_async()

	6 BLSP BAM
	6.1 Source code
	6.2 Key functions
	6.2.1 sps_phy2h()
	6.2.2 sps_register_bam_device()
	6.2.3 sps_alloc_endpoint()
	6.2.4 sps_connect()
	6.2.5 sps_register_event()
	6.2.6 sps_transfer_one()
	6.2.7 bam_isr()
	6.2.8 sps_disconnect()

	6.3 Key data structures
	6.3.1 sps_drv * sps
	6.3.2 sps_bam
	6.3.3 sps_pipe
	6.3.4 Struct sps_connect
	6.3.5 sps_register_event
	6.3.6 sps_bam_sys_mode

	7 GPIO
	7.1 Critical registers
	7.1.1 GPIO_CFGn
	7.1.2 GPIO_IN_OUTn
	7.1.3 GPIO_INTR_CFGn
	7.1.4 GPIO_INTR_STATUSn

	7.2 Configuring GPIOs in Linux kernel
	7.2.1 Define pin controller node in DTS
	7.2.2 Accessing GPIOs in driver

	7.3 Call flow for GPIO interrupt

