Drawing Isotherms

0 s
10 s
20 s
30 s
40 s
50 s
60 s
70 s
80 s
90 s

Rules of Isotherms

1. Draw your isotherm in a neat and smooth line instead of a jagged line. (trace lightly in pencil. then go over when done.)
2. An isotherm should begin and end at an edge of the map, or, alternatively, loop around and close on itself
3. An isotherm should never branch or fork
4. Isotherms can not touch or cross other lines.
5. Isotherms should be drawn at equal intervals. (10, 20, 30)

6. Each Isotherm line should be labeled

Isotherms

- Isotherms are lines on a map that connect points of equal temperature.
6.2
69
70
73
80182

89

- Since latitude plays a large part in controlling temperature variations, isotherms often run east to west.

Isotherms

 value, and all temps. on the other side of the isotherm should be more than that isotherm value.

University of Arizona

3.

Points A, B, and C are all at the same latitude. Is the air temperature at Point A WARMER COLDER or the SAME than(as) at Point B?

- Compare both maps.

- What are the pros and cons of isotherms?

Why Draw Isotherms

- Drawing isotherms, which are contours of constant temperature, will help us to identify organized patterns of warmth and chill over North America.

Drawing Isotherms

- Begin drawing from the 40° F temperature in Seattle, Washington (top left value).
- Connect to the nearest $40^{\circ} \mathrm{F}$ value located in Reno, Nevada, (southeast of Seattle). However, in order to get there you must draw a line between a $50^{\circ} \mathrm{F}$
 temperature along the Oregon coast and a $30^{\circ} \mathrm{F}$ temperature in Idaho.

Drawing $40^{\circ} \mathrm{F}$ Isotherm

Drawing Isotherms

- Draw isotherms at $10^{\circ} \mathrm{F}$ intervals. Label your isotherms.
- You should always pick the next isotherm above or below the one you've drawn.

Drawing Isotherms

- Draw isotherms at $10^{\circ} \mathrm{F}$ intervals. Label your isotherms.
- You should always pick the next isotherr above or below the one you've drawn.

Drawing Isotherms

- Color the coldest area blue and the warmest area red.

Drawing Isotherms

Temperature Gradient

- The amount of temperature change per unit of distance.
- A steep gradient is where temperatures change the most in a short amount of distance.

X plots minimum and maximum reported values during past 12 hrs. Gircled X is current.

Circle the area with the greatest temperature gradient

Lets practice some more.

Penn State University
Surface Temperature

- Try to "skate" your pencil through "gates" marked by a temperature in the upper 40's and a temperature in the lower 50's

Surface Temperature

Surface Temperature

Surtace temperature

Surface Temperature

- Now try drawing the $90^{\circ} \mathrm{F}$ isotherm

Surface Temperature

- Now try drawing the $70^{\circ} \mathrm{F}$ isotherm

Surface Temperature

- Now try drawing the $40^{\circ} \mathrm{F}$ isotherm

- Now try drawing the $80^{\circ} \mathrm{F}$ isotherm

- Now try drawing the $60^{\circ} \mathrm{F}$ isotherm

Surface Temperature

Surface Temperature

- For a national perspective of temperature, colorcoded maps like the ones shown give forecasters a broader perspective to pinpoint regions of warmth (red) and chill (blue).

SPC Hand Analysis Example

- Despite the powerful computers, there is no substitute for drawing weather maps by hand for making a forecaster take the time to thoroughly understand the ongoing weather situation. And without knowing the intricate details of what's happening now, a forecast can suffer.

