

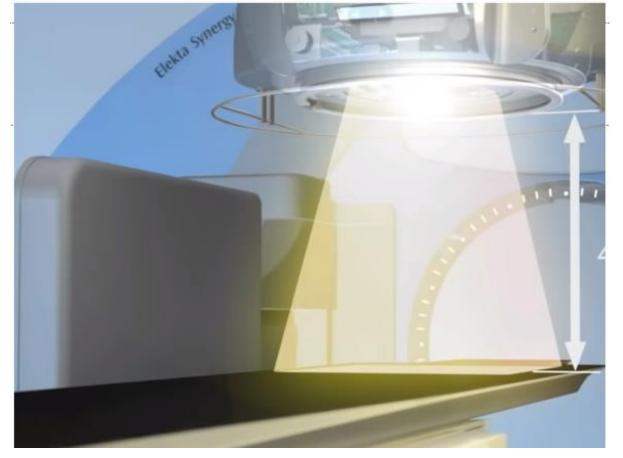
Drawn by Steve Yan, CMD

Treatment Calculations

Shirley Ann Pinegar-Johnston MS RT(R)(T)CMD

Overview

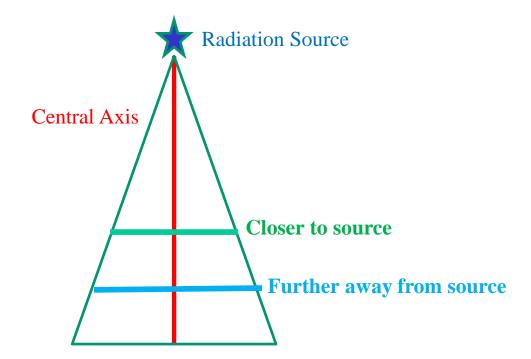
- Math Concepts
 - Definitions
- Basic MU Calculations



What are we calculating?

Divergence Formula – calculates the SIZE of the radiation field

Inverse Square Formula – helps us calculate the INTENSITY of a radiation beam

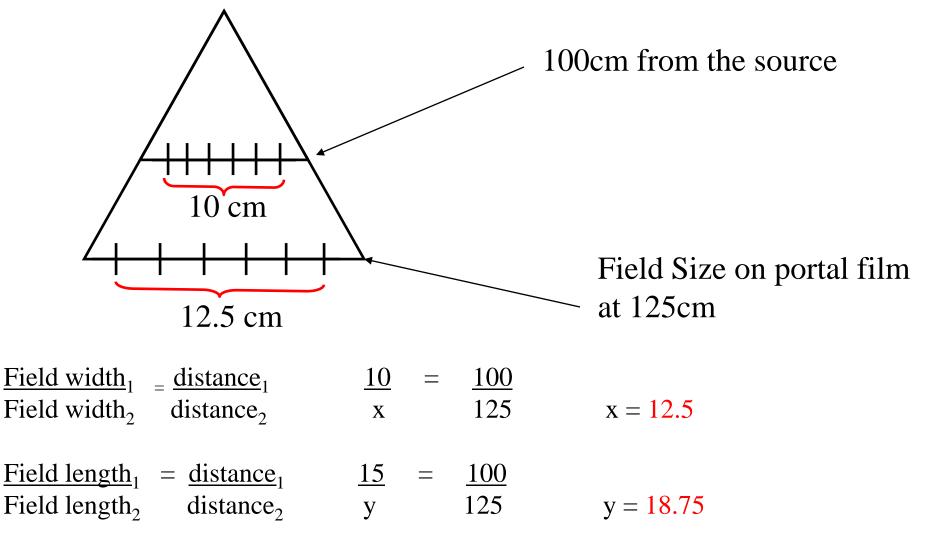


Increasing Distance from Source

- Increase Field Size --- Direct Proportion
- Decrease Intensity --- Indirect Proportion

Divergence

• X-rays travel in Straight but divergent lines

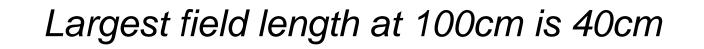

Divergence Formula (Direct Proportion)

 $\frac{\text{Field width}_1}{\text{Field width}_2} = \frac{\text{distance}_1}{\text{distance}_2}$

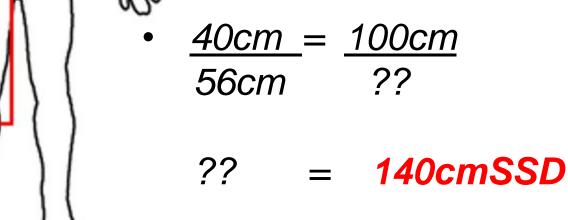
 $\frac{\text{Field length}_1}{\text{Field length}_2} = \frac{\text{distance}_1}{\text{distance}_2}$

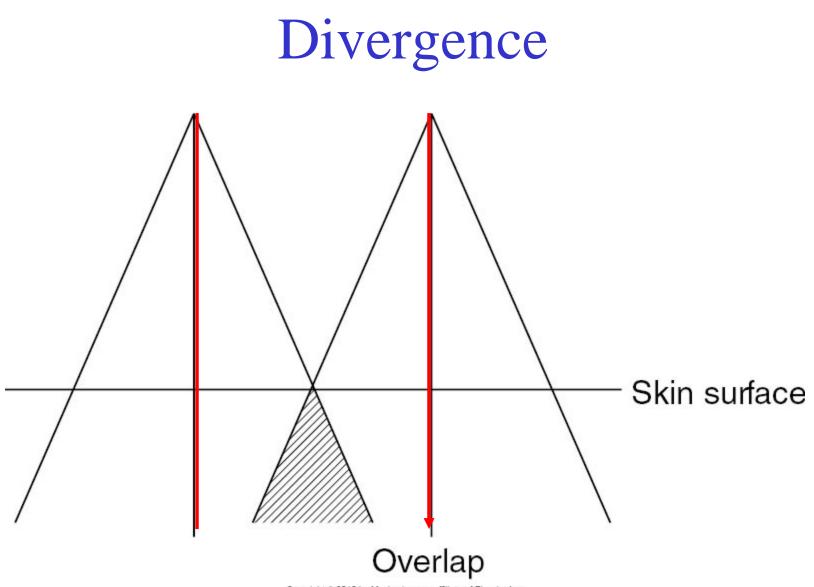
Divergence

If the field size is 10x15 at 100cm, what is it on a port film at 125cm?



Setup for Entire Femur


Largest field length at 100cm is 40cm


- Need 56cm length
- What would be the SSD required?

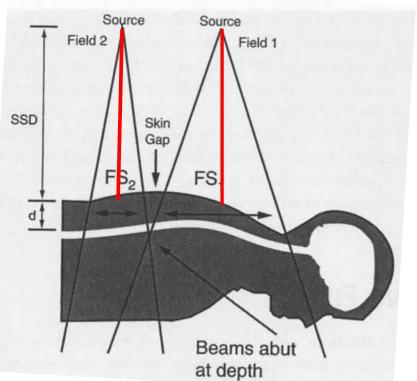
Setup for Entire Femur

- Need 56cm length
- What would be the SSD required?

Copyright @ 2010 by Mosby, Inc., an affiliate of Elsevier Inc.

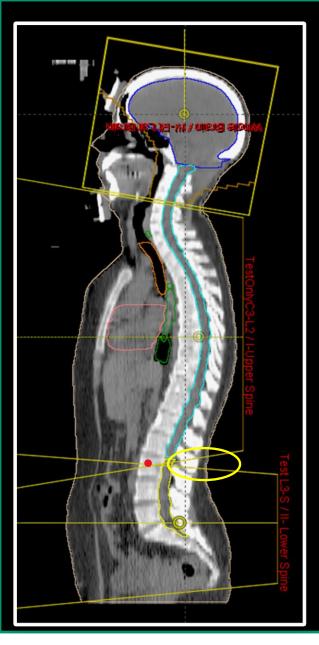
Gap Problem $Gap = (\underline{field \ size_1} \times \underline{depth}) + (\underline{field \ size_2} \times \underline{depth})$ $2 \qquad SSD \qquad 2 \qquad SSD$

What is the gap needed between two adjacent fields to a depth of 6cm. The field lengths of the fields are 8cm and 20cm, respectively at 100cm SSD?


$$Gap = (\underbrace{8}_{2} x \underbrace{6}_{100}) + (\underbrace{20}_{2} x \underbrace{6}_{100})$$

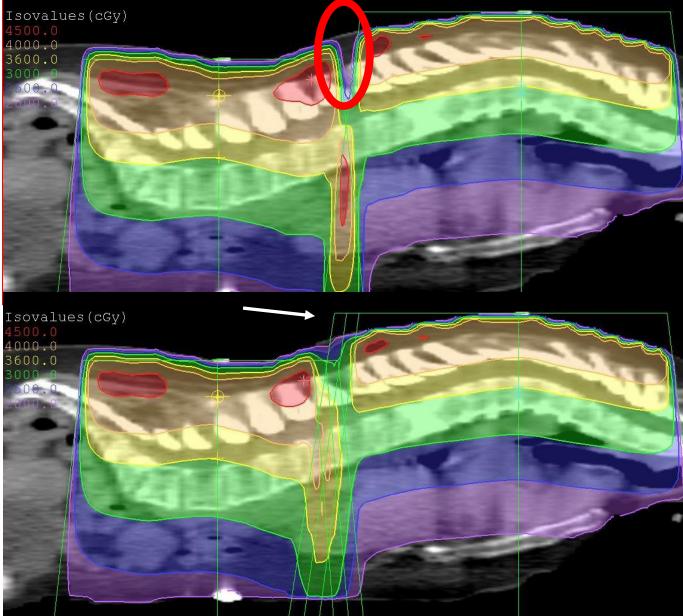
$$(4 x .06) + (10 x .06)$$

$$.24 + .6$$


$$Gap = .84cm$$

(Image from Stanton & Stinson p 242 <u>Applied Physics for Radiation Oncology</u> <u>Revised Edition</u>)

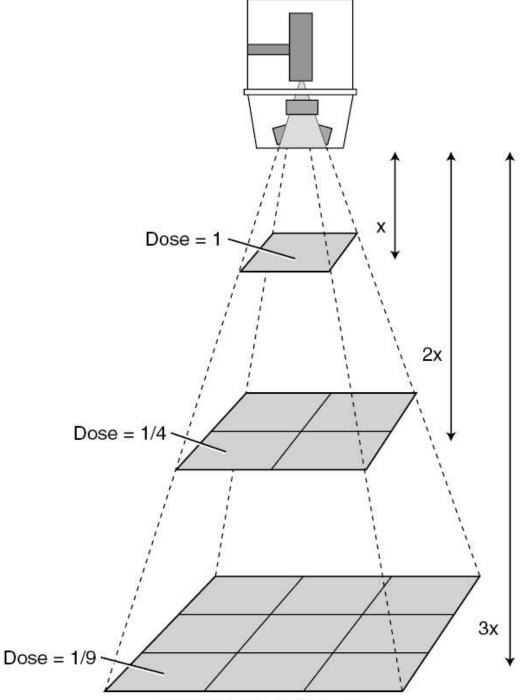
Feathering



Initial Plan

Used w permission TJU Graduate MD Student

2nd Plan - Feathered 1cm inferiorly 3rd Plan- Feathered additional 1 cm inferiorly

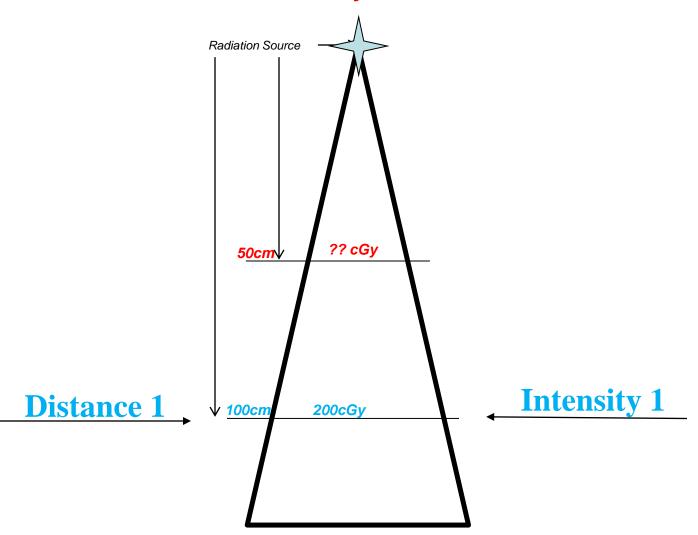

Feathering - CSI

Inverse Square Law

states that the intensity is inversely proportional to the <u>square</u> of the distance from the source

Copyright © 2010 by Mosby, Inc., an affiliate of Elsevier Inc.

Inverse Square Formula

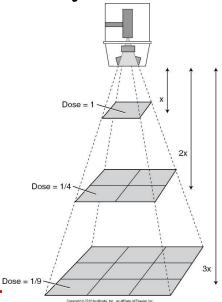

$$Intensity_1 = (Distance_2)^2$$

Intensity_2 (Distance_1)^2

OR

(Distance where Intensity is KNOWN)² ^x Intensity (Distance where Intensity is UNKNOWN)²

If the Intensity at 100cm is 200cGy, what is the Intensity at 50cm?



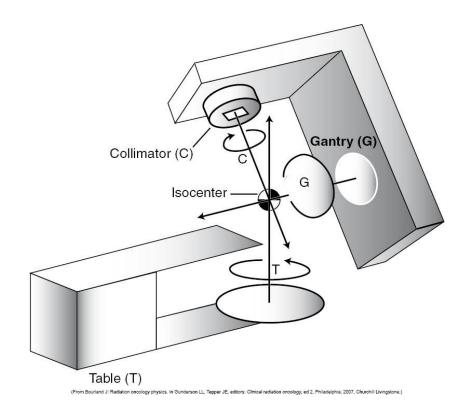
Inverse Square Problem

• If the Intensity at 100cm is 200cGy, what is the Intensity at 50cm?

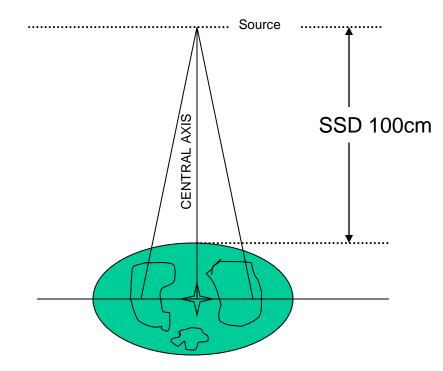
 $\frac{\text{Intensity}_{1}}{\text{Intensity}_{2}} = \frac{(\text{Distance}_{2})^{2}}{(\text{Distance}_{1})^{2}}$

 $\frac{200cGy}{x} = \frac{(50)^2}{(100)^2} = \text{Intensity at } 50cm = 800cGy}$

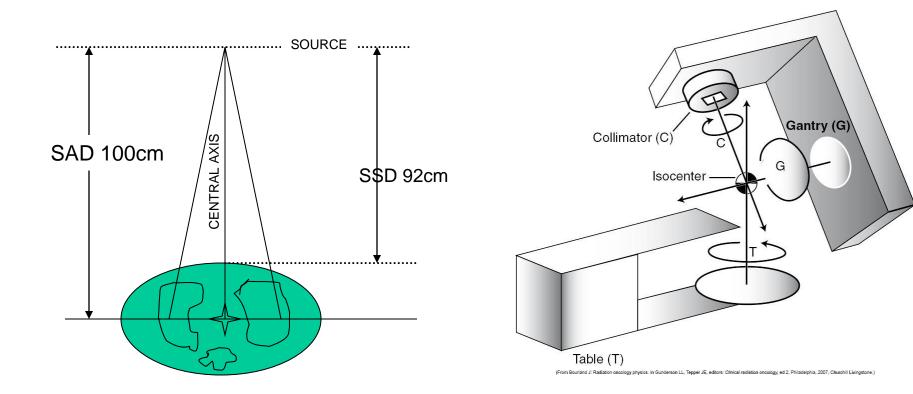
(Distance where Intensity is KNOWN)² ^x Intensity (Distance where Intensity is UNKNOWN)²


$$\frac{(100)^2}{(50)^2} \quad X \quad 200cGy = Intensity at 50cm = 800cGy$$

Definitions Basic Concepts Equivalent Square


Isocenter

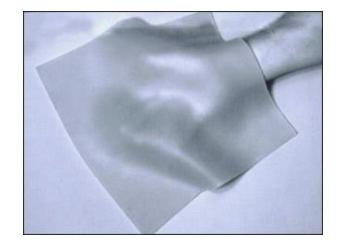
Point around which a gantry rotates Intersection of the collimator axis and the axis of rotation Point within the patient or on the patient's skin



SSD

SSD – SOURCE TO SKIN DISTANCE Field size is defined at SKIN surface

SAD



SAD – SOURCE TO AXIS DISTANCE SSD + depth = SAD Field size is defined at Isocenter 92 + depth = 100

Bolus

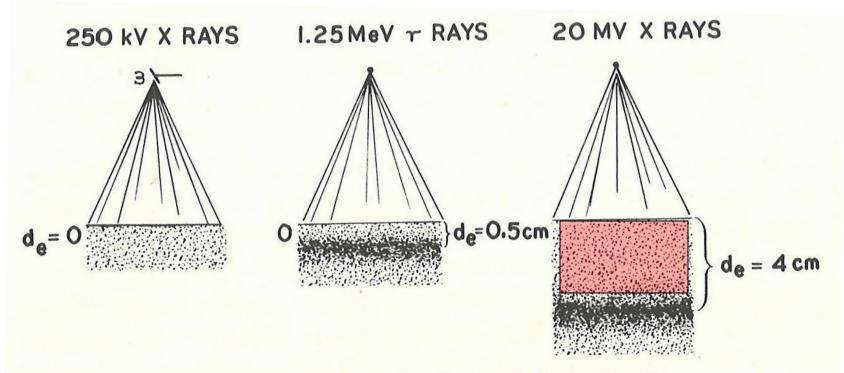
- Tissue Equivalent Material
- Same density
- Same Z
- Examples:

Water, rice, wax, brass mesh, superflab, superstuff

https://www.google.com/search?q=brass+mesh+bolus+radiation+therapy&rlz=1C1CHradiation+therapy&rld=1C1CHradiation+therapy&rld=1C

http://www.google.com/search?p?aarshmol.erginer.http://www.lisqny

Can Swing Over Short



- Grenz Ray \leq 10-15 KvP HVL in mm AL
- Contact Therapy 40-50 KvP HVL mm AL
- Superficial 50-150 KvP HVL in mm AL
- Orthovoltage 1921 150-500 KvP HVL in mm Cu

uses Thoreaus filter – Tin, Copper, Aluminum from tube to patient

- Supervoltage 500-1000 KVP
- Megavoltage 1961 \geq 1000 KvP HVL in mm Pb

D/Max – depth of maximum ionization

de ls Equilibrium Depth or Buildup Region

FIGURE 9.03. Simplified diagram showing the comparative electron buildup regions for radiation of various energies.

Some D/Max Depths to Know

Beam Energy	D/Max Depth	
Cobalt 60	.5cm	
4Mv	1.0cm	
6Mv	1.5cm	
10Mv	2.5cm	
18Mv	3.5cm	

Remember: D/max Depth is Primarily dependent on *Beam Energy*

f Factor

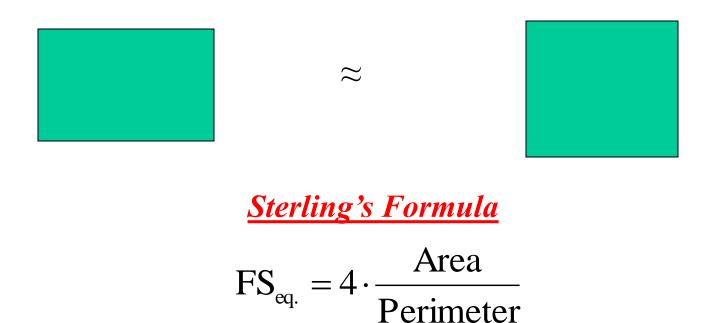
- Roentgen (exposure in air) to cGy (absorbed dose) conversion factor
- Dependent on: Beam Energy and density of material

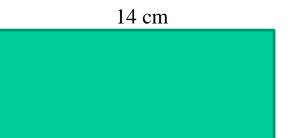
 Table 7.3. Roentgen to cGy Conversion Factors for Water Muscle, and Bone

		3	and the second	-
Description	Photon Energy	f _{med}		
		water	muscle	bone
Conventional	۲.		<u></u>	
x-rays:			-	
Grenz rays	10 keV	0.909	0.912	4.96
Superficial	30 keV	0.885	0.914	6.17
	100 keV	0.956	0.956	1.716
	Cs-137	0.971	0.962	0.900
Megavoltage	÷	× .		
x-rays:	1 MeV	0.970	0.961	0.898
	Co-60	0.967	0.958	0.922
	1.5 MeV	0.973	0.962	0.900
	5 MeV	0.958	0.948	0.933
	10 MeV	0.945	0.933	0.987
	100 MeV	0.888	0.873	1.049

f factor Problem

Table 7.3.	Roentgen to cGy Conversion Factors for Water Muscle, and Bone					
Description	Photon Energy	f _{med}				
		water	muscle	bone		
Conventional	·		<u></u>	<u>ada na</u> 1 <u> mara - mara - m</u>		
x-rays:						
Grenz rays	10 keV	0.909	0.912	4.96		
Superficial	30 keV	0.885	0.914	6.17		
	100 keV	0.956	0.956	1.716		
	Cs-137	0.971	0.962	0.900		
Megavoltage						
x-rays:	1 MeV	0.970	0.961	0.898		
	Co-60	0.967	0.958	0.922		
	1.5 MeV	0.973	0.962	0.900		
	5 MeV	0.958	0.948	0.933		
	10 MeV	0.945	0.933	0.987		
	100 MeV	0.888	0.873	1.049		

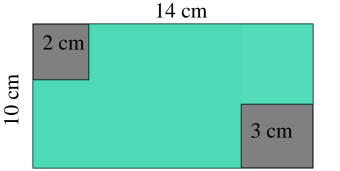

• For 100Kev photons, what is the dose delivered to muscle if the exposure to that muscle is 100R?

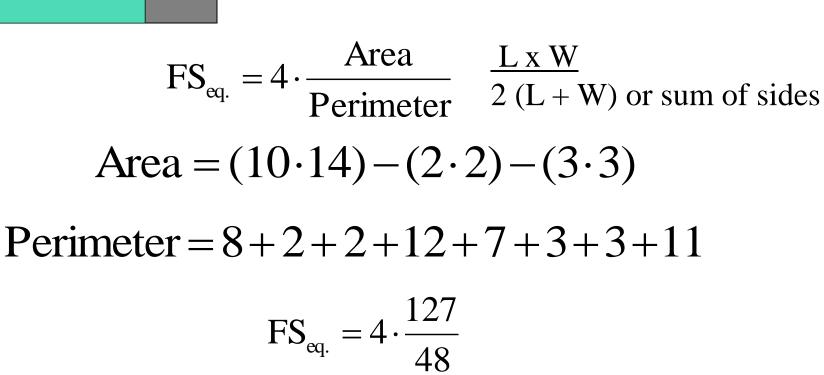

 $Dose_{muscle} = Exposure x f_{muscle}$ = 100R x 0.956

= **95.6 cGy**

Equivalent Square

Find the equivalent square for a rectangular treatment field




Example 1

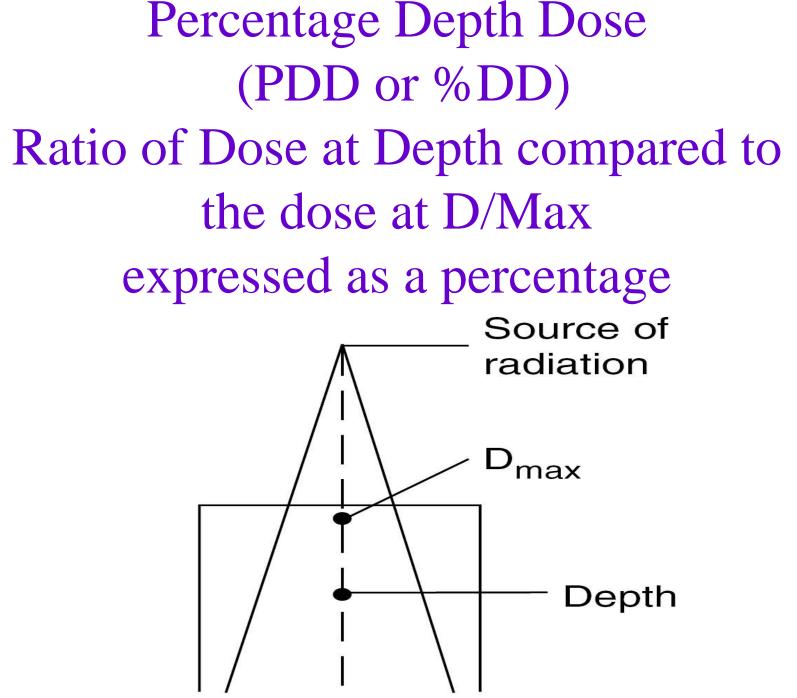
 $FS_{eq.} = 4 \cdot \frac{Area}{Perimeter} \qquad \frac{L \times W}{2 (L + W)} \text{ or sum of sides}$ $\frac{10 \times 14}{2(10 + 14)} = \frac{140}{48} = 2.917$ $\frac{4 \times 2.917}{4}$

$$FS_{eq.} = 11.667 \, cm$$

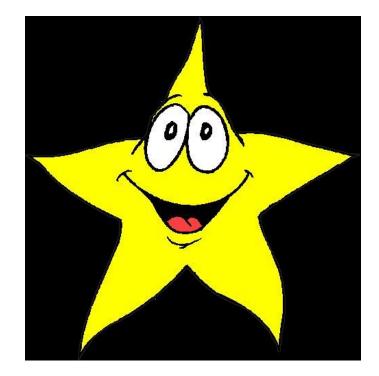
10 cm

Example 2

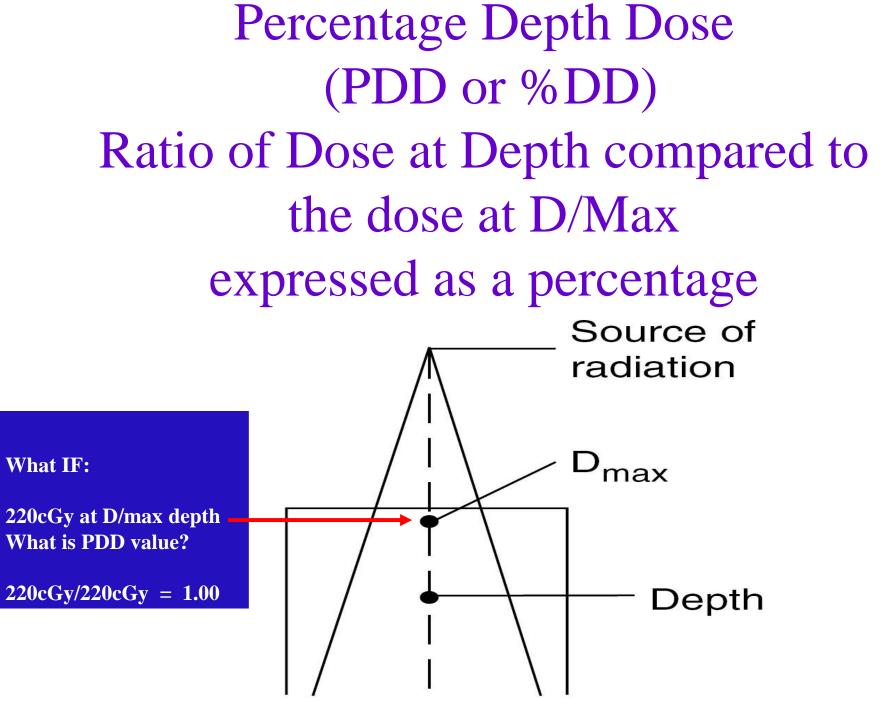
$$FS_{eq.} = 10.58 \, cm$$



Calculations


Monitor Unit

- PDDs
- TARs / TMRs


• Irregular Field (Clarkson)

Copyright @ 2010 by Mosby, Inc., an affiliate of Elsevier Inc.

PDD at D/Max for ANY field Size, SSD, Beam Energy is 100% = 1.00 (decimal form)

Copyright @ 2010 by Mosby, Inc., an affiliate of Elsevier Inc.

-Tabl 11-7		6 MV	perce	entage	depth	dose	at 100	cm S	SD		÷		,			*				*		7		*)
Eq Sq Depth (cm)	0.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
0.0	19.2	19.2	19.2	20.5	21.8	23.0	24.3	25.6	26.7	27.9	29.1	30.2	31.4	32.6	33.8	35.1	36.3	37.5	39.0	40.4	41.9	43.2	44.5	45.7	47.6
1.0	96.8	96.9	96.9	97.0	97.0	97.0	97.1	97.1	97.2	97.2	97.3	97.3	97.4	97.4	97.5	97.5	97.6	97.6	97.7	97.8	98.0	98.1	98.1	98.2	98.3
1.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0			100.0	100.0	100.0	100.0	100.0	100,0	100.0	100.0	100.0	100.0	100.0	100.0		100.0
2.0	91.4	98.2	98.4	and the second se	98.3		98.0		98.0		98.0	98.0		98.0	98.0	98.7		98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7
3.0	91.1	93.8	94.4	94.7	94.9	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.3	95.3	95.4	95.4	95.5	95.5	95.6	95.6	95.6	95.6	95.6	95.5
4.0	85.3 79.9	89.6 84.5	90.6 85.6	90.9 86.1	91.3	91.4 86.8	91.5 87.0	91.5 87.1	91.5 87.3	91.6	91.6	91.7	91.7	91.8	91.9	92.0	92.1	92.2	92.2	92.3	92.4	92.3	92.3	92.3	92.2
5.0	19.9	64.5	0.00	80.1	86.6	00.0	87.0	87.1	01.3	87.5	87.7	87.8	87.9	88.1	88.2	88.3	88.5	88.6	88.7	88.8	89.0	89.0	89.0	89.0	88.9
6.0	74.8	79.7	80.9	81.5	82.1	82.4	-82.7	83.0	83.2	83.5	83.8	84.0	84.1	84.3	84.5	84.7	84.8	85.0	85:2	85.4	85.6	85.6	85.7	85.8	85.7
7.0	70.1	75.1	76.3	77.1	77.8	78.3	78.7	79.0	79.3	79.6	79.9	80.3	80.4	80.6	80.8	-81.0	81.2	81.4	81.7	82.0	82.2	82.3	82.4	82.5	82.3
8.0	65.7	70.8	72.1	72.9	73.7	74.2	74.7	75.1	75.5	75.9	76.2	76.6	76.8	77.0	77.3	77.5		77.9	78.3	78.6	78.8	78.9	79.0	79.1	79.0
9.0	61.5	66.7	68.0	68.9	69.8	70.4	71.0		71.8	72.2	72.6	73.0	73.2	73.5	73.8	74.1	74.3	74.5	74.9	75.3	75.5	75.6	75.8	76.0	75.7
10.0	57.7	62.8	64.1	65.1	66.1	66.7	67.4	67.8	68.3	68.8	69.2	69.6	69.8	70.1	70.5	70.8	71.0	71.2	.71.6	72.0	72.3	72.5	72.7	72.8	72.6
										00.0		02.0								12.0	12.5	12.5	12.1	1410	12.0
11.0	54.0	59.2	60.4	61.5	62.4	63.1	63.8	64.2	64.8	65.3	65.8	66.1	66.4	66.8	67.1	67.5	67.7	67.9	68.4	68.8	69.0	69.2	69.4	69.6	69.3
12.0	50.7	55.7	57.0	58.0	58.9	59.7	60.4	60.9	61.4	61.9	62.4	62.8	63.1	63.5	63.9	64.3	64.5	64.8	65.3	65.8	66.0	66.2	66.4	66.5	66.2
13.0	47.5	52.4	53.6	54.6	55.6	56.4	57.2	57.7	58.2	58.8	59.3	59.7	60.0	60.4	60.8	61.2	61.5	61.7	62.2	62.7	63.0	63.2	63.4	63.5	63.3
14.0	44.6	49.4	50.6	51.6	52.5	53.3	54.1	54.6	55.1	55.7	56.3	56.6	57.0	57.4	57.8	58.2	58.5	58.8	59.4	59.9	60.1	60.3	60.6	60.6	60.4
15.0	41.8	46.6	47.8	48.7	49.6	50.5	51.2	51.7	52.3	52.9	53.5	53.9	54.2	54.7	55.1	55.5	55.8	56.1	56.6		57.4	57.6	57.9	57.8	57.6
					e l																3.				
16.0	39.2	43.9	45.1	46.0	46.9	47.8	48.5	49.1	49.7	50.3	50.9	51.2	51.6	52.0	52.5	52.8	53.1	53.4	54.0	54.5	54.8	55.1	55.4	55.2	55.1
17.0	36.8	41.4	42.5	43.5	44.3	45.2	45.9	46.4	47.1	47.7	48.2	48.6	49.0	49.4	49.9	50.2	50.6	50.9	51.5	52.0	52.3	52.6	52.9	52.7	52.6
18.0	34.5	39.0	40.1	41.0	41.9	42.7	43.4	44.0	44.6	45.3	45.8	46.2	46.6	47.0	47.5	47.8	48.2	48.5	49.1	49.6	49.9	50.2	50.5	50.3	50.2
19.0	32.4	36.8	37.8	38.7	39.6	40.5	41.1	41.7	42.3	43.0	43.5	43.9	44.3	44.7	45.1	45.5	45.8	46.1	46.8	47.2	47.6	48.0	48.2	48.0	47.9
20.0	30.4	34.6	35.7	36.6	37.4	38.2	38.9	39.5	40.1	40.7	41.2	41.6	42.0	42.5	42.9	43.2	43.6	43.9	44.6	45.0	45.4	45.7	45.9	45.8	45.6
21.0	28.6	32.7	33.7	34.5	35.3	36.1	36.8		38.0	38.6	39.1	39.5	39.9	40.3	40.7	41.1	41.4	41.8	42.4	42.9	43.2	43.6	43.7	43.6	43.5
22.0	26.8	30.8	31.8	32.6	33.4	34.2	34.8	and the second se	36.0	36.9	37.1	37.5	37.9	38.3	38.7	39.1	39.4	39.8	40.4	40.8	41.2	41.6	41.7	41.6	41.5
23.0	25.2	29.1	30.0		31.6	32.4	33.0	the second se	34.2	34.8	35.2	35.6	36.0	36.4	36.8	37.2	37.5	37.9	38.5	38.9	39.3	39.7	39.8	39.6	39.5
24.0	23.6	27.5	28.4	29.1	29.9	30.6	31.2		32.4	32.9	33.4	33.7	34.1	34.6	35.0	35.3	35.7	36.0	36.7	37.1	37.5	37.9	.37.8	37.7	37.6
25.0	22.2	26.0	26.8	27.6	28.3	29.0	29.6	30.1	30.7	31.3	31.7	32.0	32.4	32.9	33.2	33.6	33.9	34.3	34.9	35.3	35.7	36.1	36.0	35.9	35.8
									<u>.</u>															l	
26.0	20.9	24.5			26.7	27.4			29.1	29.6	30.0	30.4		31.2	31.5	31.9		32.6	33.2	33.6	34.0		34.3	34.2	34.1
27.0	19.6	23.2		the second s	25.3	26.0		The second se	27.6		28.4		29.2	29.6	30.0	30.3		31.0	31.6	32.0	32.4			32.6	and all some statements and
28.0	18.4	21.9			24.0		25.1		26.1	26.6	26.9	27.3	27.7	28.1	28.4	28.8		29.5	30.1	30.5	30.9	31.1	31.1	31.0	
29.0	17.3	20.7			22.7	23.3			24.7	25.2	25.6		26.3	26.7	27.0	27.4	27.7	28.1	28.6	29.0	29.4		29.5		
30.0	16.2	19.5	20.2	20.8	21.4	22.0	22.4	22.9	23.4	23.8	24.2	24.6	24.9	25.3	25.7	26.0	26.4	26.7	27.2	27.6	28.0	28.1	28.0		27.9
-	1 000	1.000	1 000	1.005	1.010	1.016	1.001	1.000	1.000	1.001	1.000	1.007	1.000	1.010	1.011	1.0.0	1011	1.015	1.0.10	1.071		1.0.00		PDD	6 MV
PSF	1.000	1.002	1.003	1.00/	1.012	1.016	1.021	1.025	1.028	1.031	1.033	1.036	1.039	1.040	1.041	1.043	1.044	1.045	1.048	1.051	1.054	1.057	1.060	1.063	1.067

Factors Affecting PDD

- Beam Energy \uparrow Energy $\rightarrow \uparrow$ PDD
- Field Size $\uparrow FS \rightarrow \uparrow PDD$
- Go deeper into patient \downarrow PDD
- Source to Skin Distance -↑SSD →↑PDD (Mayneord's F Factor)

PDD Table Summary

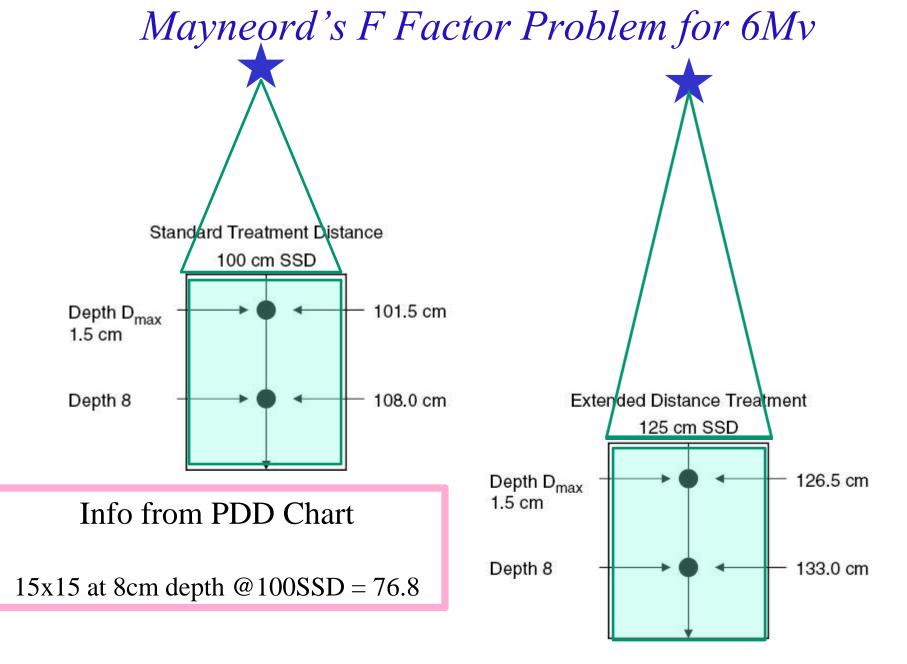
Beam Energy	dmax(cm)	PDD d10
0.25 Mev	0	1
1.25 MeV	0.5	56
4 MV	1.0	60
6 MV	1.5	67
10 MV	2.5	73
18 MV	3.5	80

Eq Sq			5.0		7.0			10.0	11.0	12.0	12.0	14.0	150	160	17.0	10.0	10.0	20.0		24.0	26.0	20.0	20.0	22.0	250
Depth (cm)	0.0 19.2	4.0	<u>5.0</u> 19.2	6.0 20.5	7.0 21.8	8.0 23.0	9.0 24.3	10.0	11.0	12.0 27.9	13.0 29.1	14.0	15.0 31.4	16.0 32.6	17.0 33.8	18.0	19.0 36.3	20.0	22.0 39.0	24.0	26.0	28.0 43.2	30.0 44.5	32.0	35.0
1.0	96.8	96.9	96.9	97.0	97.0	97.0	97.1	97.1	97.2	97.2	97.3	97.3	97.4	97.4	97.5	97.5	97.6	97.6	97.7	97.8	98.0	98.1	98.1	98.2	98.3
1.5		100.0	100.0	100.0				100.0	100.0	100.0		100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0	100.0	100.0			100.0
2.0	97.4	98.2	98.4	98.4	98.5	98.5	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7
3.0	91.1	93.8	94.4	94.7	94.9	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.3	95.3	95.4	95.4	95.5	95.5	95.6	95.6	95.6	95.6	95.6	95.5
4.0	85.3	89.6	90.6	90.9	91.3	91.4	91.5	91.5	91.5	91.6	91.6	91.7	91.7	91.8	91.9	92.0	92.1	92.2	92.2	92.3	92.4	92.3	92.3	92.3	92.2
5.0	79.9	84.5	85.6	86.1	86.6	86.8	87.0	87.1	87.3	87.5	87.7	87.8	87.9	88.1	88.2	88.3	88.5	88.6	88.7	88.8	89.0	89.0	89.0	89.0	88.9
															L.,										
6.0	74.8	79.7	80.9	81.5	82.1	82.4	-82.7	83.0	83.2	83.5	83.8	84.0	84.1	84.3	84.5	84.7	84.8	85.0	85:2	85.4	85.6	85.6	85.7	85.8	85.7
7.0	70.1	75.1	76.3	77.1	77.8	78.3	78.7	79.0	79.3	79.6	79.9	80.3	80.4	80.6	80.8	-81.0	81.2	81.4	81.7	82.0	82.2	82.3	82.4	82.5	82.3
8.0	65.7	70.8	72.1	72.9	73.7	74.2	74.7	75.1	75.5	75.9	76.2	76.6	76.8	77.0	77.3	77.5	77.8	77.9	78.3	78.6	78.8	78.9	79.0	79.1	79.0
9.0	61.5	66.7	68.0	68.9	69.8	70.4	71.0	71.4	71.8	72.2	72.6	73.0	73.2	73.5	73.8	74.1	74.3	74.5	74.9	75.3	75.5	75.6	75.8	76.0	75.7
10.0	57.7	62.8	64.1	65.1	66.1	66.7	67.4	67.8	68.3	68.8	69.2	69.6	69.8	70.1	70.5	70.8	71.0	71.2	.71.6	72.0	72.3	72.5	72.7	72.8	72.6
11.0	54.0	59.2	60.4	61.5	62.4	63.1	63.8	64.2	64.8	65.3	65.8	66.1	66.4	66.8	67.1	67.5	67.7	67.9	68.4	68.8	69.0	69.2	69.4	69.6	60.2
12.0	50.7	55.7	57.0	58.0	58.9	59.7	60.4	60.9	61.4	61.9	62.4	62.8	63.1	63.5	63.9	64.3	64.5	64.8	65.3	65.8	66.0	66.2	66.4	66.5	69.3 66.2
13.0	47.5	52.4	53.6	54.6	55.6	56.4	57.2	57.7	58.2	58.8	59.3	59.7	60.0	60.4	60.8	61.2	61.5	61.7	62.2	62.7	63.0	63.2	63.4	63.5	63.3
14.0	44.6	49.4	50.6	51.6	52.5	53.3	54.1	54.6	55.1	55.7	56.3	56.6	57.0	57.4	57.8	58.2	58.5	58.8	59.4	59.9	60.1	60.3	60.6	60.6	60.4
15.0	41.8	46.6	47.8	48.7	49.6	50.5	51.2	51.7	52.3	52.9	53.5	53.9	54.2	54.7	55.1	55.5	55.8	56.1	56.6	57.1	57.4	57.6	57.9	57.8	57.6
																		00.1	30.0	<u> </u>		51.0	51.5	57.0	
16.0	39.2	43.9	45.1	46.0	46.9	47.8	48.5	49.1	49.7	50.3	50.9	51.2	51.6	52.0	52.5	52.8	53.1	53.4	54.0	54.5	54.8	55.1	55.4	55.2	55.1
17.0	36.8	41.4	42.5	43.5	44.3	45.2	45.9	46.4	47.1	47.7	48.2	48.6	49.0	49.4	49.9	50.2	50.6	50.9	51.5	52.0	52.3	52.6	52.9	52.7	52.6
18.0	34.5	39.0	40.1	41.0	41.9	42.7	43.4	44.0	44.6	45.3	45.8	46.2	46.6	47.0	47.5	47.8	48.2	48.5	49.1	49.6	49.9	50.2	50.5	50.3	50.2
19.0	32.4	36.8	37.8	38.7	39.6	40.5	41.1	41.7	42.3	43.0	43.5	43.9	44.3	44.7	45.1	45.5	45.8	46.1	46.8	47.2	47.6	48.0	48.2	48.0	47.9
20.0	30.4	34.6	35.7	36.6	37.4	38.2	38.9	39.5	40.1	40.7	41.2	41.6	42.0	42.5	42.9	43.2	43.6	43.9	44.6	45.0	45.4	45.7	45.9	45.8	45.6
											-														
21.0	28.6	32.7	33.7	34.5	35.3	36.1	36.8	37.4	38.0	38.6	39.1	39.5	39.9	40.3	40.7	41.1	41.4	41.8	42.4	42.9	43.2	43.6	43.7	43.6	43.5
22.0	26.8	30.8	31.8	32.6	33.4	34.2	34.8	35.4	36.0	36.9	37.1	37.5	37.9	38.3	38.7	39.1	.39.4	39.8	40.4	40.8	41.2	41.6	41.7	41.6	41.5
23.0	25.2	29.1	30.0	30.8	31.6	32.4	33.0	33.6	34.2	34.8		35.6	36.0	36.4	36.8	37.2	37.5	37.9	38.5	38.9	39.3	39.7	39.8	39.6	39.5
24.0	23.6	27.5	28.4	29.1	29.9	30.6	31.2	31.8	32.4	32.9	33.4	33.7	34.1	34.6	35.0	35.3	35.7	36.0	36.7	37.1	37.5	37.9	.37.8	37.7	37.6
25.0	22.2	26.0	26.8	27.6	28.3	29.0	29.6	30.1	30.7	31.3	31.7	32.0	32.4	32.9	33.2	33.6	33.9	34.3	34.9	35.3	35.7	36.1	36.0	35.9	35.8
26.0	20.0	24.5	25.2	260	267	07.4	27.0	79 6	201	20 6	20.0	20.4	20.0	21.0	21.6	21.0	22.0	20 6	22.0	22.6	24.0	04.4	24.2	010	
26.0	20.9 19.6	24.5 23.2	25.3 24.0	26.0 24.7	26.7 25.3	27.4	27.9 26.5	28.5 27.0	29.1	29.6 28.1	30.0	30.4 28.8	30.8	31.2	31.5	31.9	32.2	32.6	33.2	33.6	34.0	34.4	34.3	34.2	34.1
27.0	19.0	21.9	24.0	24.7	23.3		25.1	25.6	27.6	26.6	26.9	28.8	29.2	29.6	28.4	28.8	29.2	29.5	30.1	32.0	32.4	32.7	32.6	32.6	32.4
29.0	17.3	20.7	21.4	22.0	24.0	23.3	23.7	24.2	24.7	25.2	25.6	25.9	26.3	26.7	27.0	27.4	29.2	29.5	28.6	30.5	30.9 29.4	31.1	31.1	31.0	30.9 29.4
30.0	16.2	19.5	20.2	20.8	21.4	23.3	22.4	22.9	23.4	23.8	24.2	24.6	20.5	25.3	25.7	26.0	26.4	26.7	28.0	29.0	29.4	29.0	29.5	29.5	
50.0	10.4	17.5	20.2	20.0			22.4		23.4	0.0.4	27.4	24.0	27.3	2.3.3	<u> 20.1</u>	20.0	20.4	20.7	41.2	21.0	20.0	20.1	20.0	28.0 PDD	27.9
PSF	1.000	1 002	1.003	1.007	1.012	1 016	1.021	1.025	1 028	1.031	1 033	1.036	1 039	1 040	1 041	1 043	1 044	1 045	1 048	1.051	1 054	1.057	1.060		
	1.000	1.002	1.005	1.007	1.012	1.010	1.021	1.025	1.020	1.051	1.055	1.050	1.059	1.040	1.041	1.043	1.044	11.045	1.040	1.001	1.034	1.057	1.000	1.003	1.007

,

}

. . .

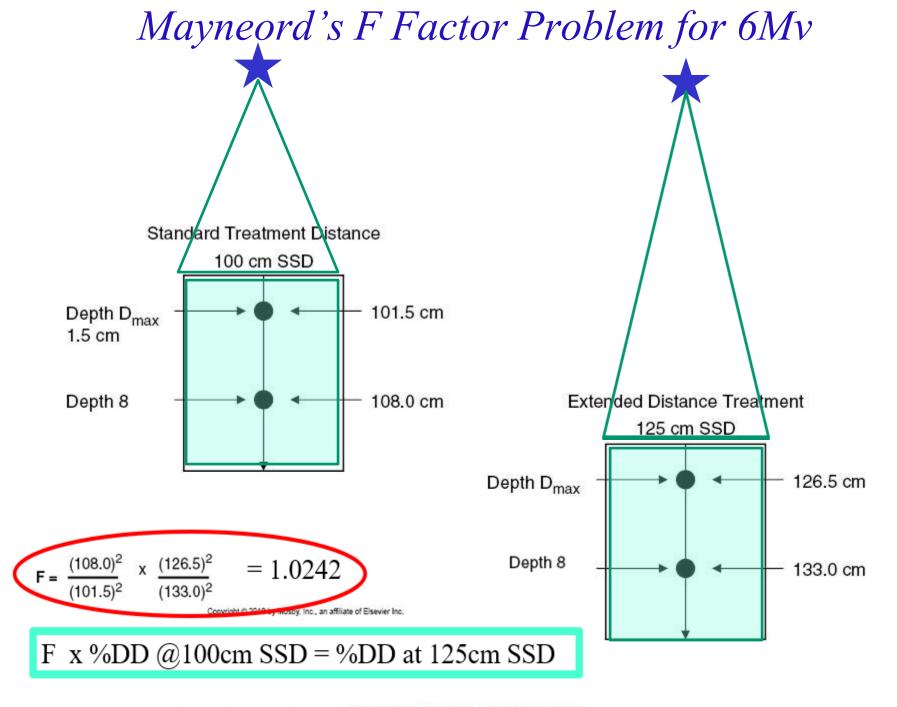

Mayneord's F Factor

Source to Skin Distance $-\uparrow$ SSD $\rightarrow\uparrow$ PDD (Mayneord's F Factor)

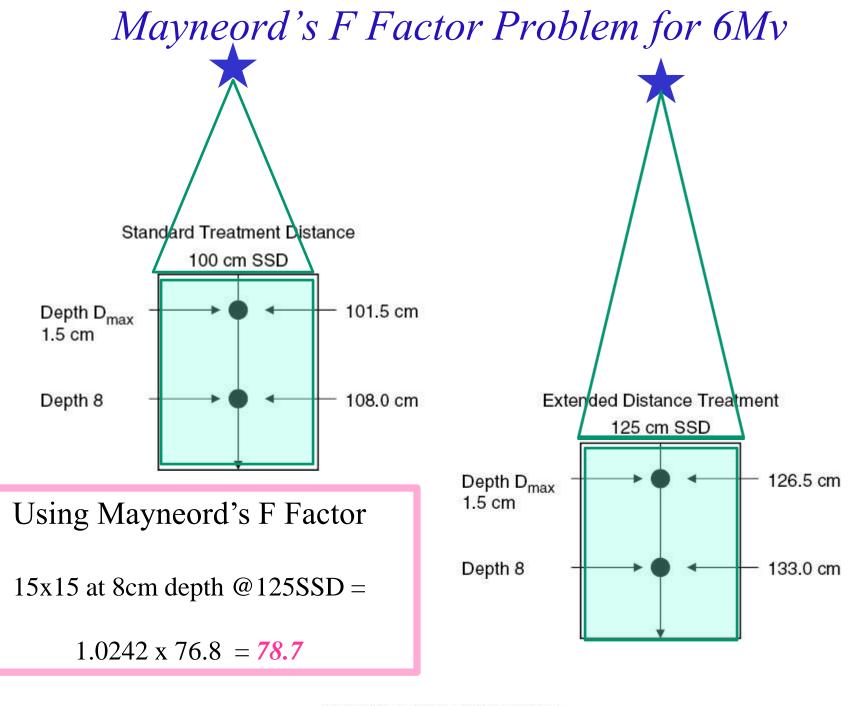
• This is used when there is a change in the SSD from the chart. It is an application of the INVERSE SQUARE LAW !!

• F = $(old SSD + depth)^2 X (new SSD + D/Max)^2$ $(old SSD + D/Max)^2 (new SSD + depth)^2$

• F x %DD value from chart = %DD at new SSD



Eq Sq		1	1			1	1					1										*****		1	
Depth (cm)	0.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
0.0	19.2	19.2	19.2	20.5	21.8	23.0	24.3	25.6	26.7	27.9	29.1	30.2	31.4	32.6	33.8	35.1	36.3	37.5	39.0	40.4	41.9	43.2	44.5	45.7	47.6
1.0	96.8	96.9	96.9	97.0	97.0	97.0	97.1	97.1	97.2	97.2		97.3	97.4	97.4	97.5	97.5	97.6	97.6	97.7	97.8	98.0	98.1	98.1	98.2	98.3
1.5				100.0	100.0			100.0		100.0			100.0			100.0	100,0	100.0			100.0	100.0	100.0		100.0
2.0	97.4	98.2	98.4	98.4	98.5	98.5	98.6	98.6	98.6	98.6		98.6	98.6	98.6	98.6	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7
3.0	91.1	93.8	94.4	94.7	94.9	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.3	95.3	95.4	95.4	95.5	95.5	95.6	95.6	95.6	95.6	95.6	95.5
4.0	85.3	89.6	90.6	90.9	91.3	91.4	91.5	91.5	91.5	91.6	91.6	91.7	91.7	91.8	91.9	92.0	92.1	92.2	92.2	92.3	92.4	92.3	92.3	92.3	92.2
5.0	79.9	84.5	85.6	86.1	86.6	86.8	87.0	87.1	87.3	87.5	87.7	87.8	87.9	88.1	88.2	88.3	88.5	88.6	88.7	88.8	89.0	89.0	89.0	89.0	88.9
				<u> </u>																					
6.0	74.8	79.7	80.9	81.5	82.1	82.4	-82.7	83.0	83.2	83.5	83.8	84.0	84.1	84.3	84.5	84.7	84.8	85.0	85:2	85.4	85.6	85.6	85.7	85.8	85.7
7.0	70.1	75.1	76.3	77.1	77.8	78.3	78.7	79.0	79.3	79.6	79.9	80.3	80.4	80.6	80.8	-81.0	81.2	81.4	81.7	82.0	82.2	82.3	82.4	82.5	82.3
8.0	65.7	70.8	72.1	72.9	73.7	74.2	74.7	75.1	75.5	75.9	76.2	76.6	76.8	77.0	77.3	77.5	77.8	77.9	78.3	78.6	78.8	78.9	79.0	79.1	79.0
9.0	61.5	66.7	68.0	68.9	69.8	70.4	71.0	71.4	71.8	72.2	72.6	73.0	73.2	73.5	73.8	74.1	74.3	74.5	74.9	75.3	75.5	75.6	75.8	76.0	75.7
10.0	57.7	62.8	64.1	65.1	66.1	66.7	67.4	67.8	68.3	68.8	69.2	69.6	69.8	70.1	70.5	70.8	71.0	71.2	.71.6	72.0	72.3	72.5	72.7	72.8	72.6
11.0	54.0	59.2	60.4	61.5	62.4	63.1	63.8	64.2	64.8	65.3	65.8	66.1	66.4	66.8	67.1	67.5	67.7	67.9	68.4	68.8	69.0	69.2	69.4	69.6	69.3
12.0	50.7	55.7	57.0	58.0	58.9	59.7	60.4	60.9	61.4	61.9	62.4	62.8	63.1	63.5	63.9	64.3	64.5	64.8	65.3	65.8	66.0	66.2	66.4	66.5	66.2
13.0	47.5	52.4	53.6	54.6	55.6	56.4	57.2	57.7	58.2	58.8	59.3	59.7	60.0	60.4	60.8	61.2	61.5	61.7	62.2	62.7	63.0	63.2	63.4	63.5	63.3
14.0	44.6	49.4	50.6	51.6	52.5	53.3	54.1	54.6	55.1	55.7	56.3	56.6	57.0	57.4	57.8	58.2	58.5	58.8	59.4	59.9	60.1	60.3	60.6	60.6	60.4
15.0	41.8	46.6	47.8	48.7	49.6	50.5	51.2	51.7	52.3	52.9	53.5	53.9	54.2	54.7	55.1	55.5	55.8	56.1	56.6	57.1	57.4	57.6	57.9	57.8	57.6
				1.2.2	e .																				
16.0	39.2	43.9	45.1	46.0	46.9	47.8	48.5	49.1	49.7	50.3	50.9	51.2	51.6	52.0	52.5	52.8	53.1	53.4	54.0	54.5	54.8	55.1	55.4	55.2	55.1
17.0	36.8	41.4	42.5	43.5	44.3	45.2	45.9	46.4	47.1	47.7	48.2	48.6	49.0	49.4	49.9	50.2	50.6	50.9	51.5	52.0	52.3	52.6	52.9	52.7	52.6
18.0	34.5	39.0	40.1	41.0	41.9	42.7	43.4	44.0	44.6	45.3	45.8	46.2	46.6	47.0	47.5	47.8	48.2	48.5	49.1	49.6	49.9	50.2	50.5	50.3	50.2
19.0	32.4	36.8	37.8	38.7	39.6	40.5	41.1	41.7	42.3	43.0	43.5	43.9	44.3	44.7	45.1	45.5	45.8	46.1	46.8	47.2	47.6	48.0	48.2	48.0	47.9
20.0	30.4	34.6	35.7	36.6	37.4	38.2	38.9	39.5	40.1	40.7	41.2	41.6	42.0	42.5	42.9	43.2	43.6	43.9	44.6	45.0	45.4	45.7	45.9	45.8	45.6
	20.6	20.7		24.5	25.0	261	26.0	27.4	20.0	20 (20.1	20.5	20.0	10.2	10 7	41.1		11.0	10.1	10.0			10 -	10.5	
21.0	28.6	32.7	33.7	34.5	35.3	36.1	36.8	37.4	38.0	38.6	39.1	39.5	39.9	40.3	40.7	41.1	41.4	41.8	42.4	42.9	43.2	43.6	43.7	43.6	43.5
22.0	26.8	30.8	31.8	32.6	33.4	34.2	34.8	35.4	36.0	36.9	37.1	37.5	37.9	38.3	38.7	39.1	39.4	39.8	40.4	40.8	41.2	41.6	41.7	41.6	41.5
23.0	25.2	29.1	30.0	30.8	31.6	32.4	33.0	33.6	34.2	34.8	35.2	35.6	36.0	36.4	36.8	37.2	37.5	37.9	38.5	38.9	39.3	39.7	39.8	39.6	39.5
24.0	23.6	27.5	28.4	29.1		30.6	31.2	31.8	32.4	32.9	33.4	33.7	34.1	34.6	35.0	35.3	35.7	36.0	36.7	37.1	37.5	37.9	.37.8	37.7	37.6
25.0	22.2	26.0	26.8	27.6	28.3	29.0	29.6	30.1	30.7	31.3	31.7	32.0	32.4	32.9	33.2	33.6	33.9	34.3	34.9	35.3	35.7	36.1	36.0	35.9	35.8
26.0	20.0	245	25.2	260	26.7	27.4	27.0	79 6	20.1	20.0	20.0	20.4	20.0	21.0	21.5	210	20.0	20 6	22.0	22.6	24.0	54.4	242	010	
26.0	20.9 19.6	24.5 23.2	25.3 24.0	26.0 24.7	26.7	27.4	27.9 26.5	28.5 27.0	29.1 27.6	29.6 28.1	30.0	30.4	30.8	31.2	31.5	31.9	32.2	32.6	33.2	33.6	34.0	34.4	34.3	34.2	34.1
27.0											28.4	28.8	29.2	29.6	30.0	30.3	30.7	31.0	31.6	32.0	32.4	32.7	32.6	32.6	32.4
28.0	18.4	21.9	22.6	23.3	24.0		25.1	25.6	26.1	26.6		27.3	27.7	28.1	28.4	28.8	29.2	29.5	30.1	30.5	30.9	31.1	31.1	31.0	30.9
29.0	17.3	20.7	21.4	22.0	22.7	23.3	23.7	24.2	24.7	25.2	25.6	25.9	26.3	26.7	27.0	27.4	27.7	28.1	28.6	29.0	29.4	29.6	29.5	29.5	29.4
30.0	16.2	19.5	20.2	20.8	21.4	22.0	22.4	22.9	23.4	23.8	24.2	24.6	24.9	25.3	25.7	26.0	26.4	26.7	27.2	27.6	28.0	28.1	28.0	28.0	27.9
DOT	1.000	1 000	1 002	1 007	1 012	1.010	1.001	1.005	1.000	1.021	1.022	1.026	1.020	1.040	1.011	1.040	1011	1.045	1.040	1.0.7.1	1.054	1.000	1.0.00	PDD	
PSF	1.000	1.002	1.003	1.007	1.012	1.016	1.021	1.025	1.028	1.031	1.033	1.036	1.039	1.040	1.041	1.043	1.044	1.045	1.048	1.051	1.054	1.057	1.060	1.063	1.067


,

}

. . .

Copyright © 2010 by Mosby, Inc., an affiliate of Elsevier Inc.

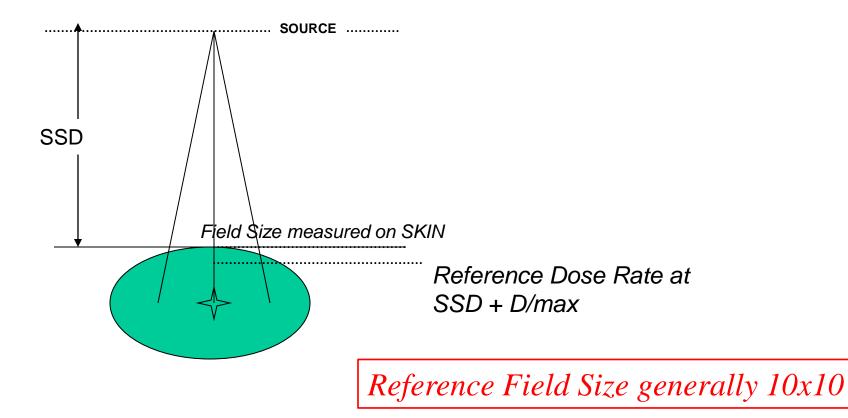
Monitor Unit

Unit of Output Measure for Linear Accelerator

• Specific number of MUs needed for EACH patient's treatment

- Dependent on:
 - dose Field Size depth Beam Energy

Monitor Unit Calculations Using PDD


Monitor Unit =

Tumor Dose

Reference Dose Rate x Sc x Sp x PDD x (any other absorption factors)

(at distance of Rx SSD + D/Max

Monitor Unit Calculations Using PDD

Scatter (Output) Factor

- This factor adjusts the machine output when the Treatment Field Size is "different" than 10x10
- If the Field Size is greater than 10x10, the Output Factor will be GREATER than 1.0 (more scatter)
- If the Field Size is smaller than 10x10, the Output Factor will be Less than 1.0 (less scatter)
- The Output Factor can be subdivided into Collimator Scatter (Sc) and Phantom Scatter (Sp)

Tumor Dose

Reference Dose Rate $x \frac{S}{x} x \frac{S}{p} x$ PDD x (any other absorption factors)

Scatter Factor Tables

Table 24-4	Sca	tter Fa	actors	×						7	l Ox	c10	R	e fe	rei	nce	Fi	ela	lS	ize				
SCATTER F	ACTOR	/com	BINED	SCATTE	R (Sc, S	P)		/						incia.				-			-	Aril		
Mach/Eq Sq	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-60	0.928	0.945	0.962	0.971	0.980	0.990	1.000	1.009	1.019	1.028	1.037	1.046	1.053	1.060	1.067	1.074	1.081	1.089	1.096	1.102	1.105	1.109		
6 MV	0.927	0.940	0.954	0.967	0.979	0.990	1.000	1.007	1.014	1.021	1.028	1.035	1.039	1.044	1.049	1.053	1.058	1.065	1.072	1.079	1.084	1.088	1.092	1.098
10 MV	0.925	0.938	0.953	0.967	0.979	0.990	1.000	1.005	1.011	1.016	1.022	1.027	1.032	1.037	1.041	1.046	1.051	1.058	1.065	1.069	1.071	1.073	1.077	1.081
18 MV	0.904	0.922	0.941	0.961	0.976	0.988	1.000	1.007	1.014	1.021	1.028	1.036	1.041	1.046	1.051	1.056	1.060	1.067	1.073	1.079	1.084	1.087	1.090	1.093
SCATTER I	ACTOR	FOR	OLLIM	ATOR S	CATTER	(Sc) (U	SED W	ITH PD	D, TAR,	TMR/	TPR)	÷.												
Mach/Eq Sq	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0) 19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-60	0.946	0.961	0.975	0.981	0.987	0.993	1.000	1.006	1.012	1.018	1.024	1.030	1.035	1.039	1.044	1.048	1.053	1.057	1.061	1.063	1.063	1.063		
6 MV	0.948	0.961	0.970	0.979	0.987	0.994	1.000	1.004	1.008	1.013	1.017	7 1.021	1.024	1.028	1.031	1.035	1.038	1.041	1.045	1.048	1.051	1.052	1.053	1.055
10 MV	0.938	0.951	0.962	0.973	0.982	0.991	1.000	1.005	1.009	1.014	1.018	3 1.023	1.026	1.030	1.033	3 1.037	1.040	1.044	1.048	1.051	1.052	1.054	1.057	1.061
18 MV	0.914	0.931	0.948	0.965	0.978	0.989	1.000	1.006	1.012	1.017	1.023	3 1.029	1.032	1.036	1.039	9 1.043	1.046	1.052	1.057	1.063	1.066	1.067	1.069	1.070
SCATTER	FACTOR	R FOR P	HANTO	OM SCA	TTER (S	p) (USE	D WIT	H PDD,	TMR/1	PR)														
Mach/Eq Sq	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	0 13	.0 14	.0 15.	0 16.	0 17.	.0 18	.0 19	.0 20.	0 22.) 24.(0 26.0	28.0	30.0	32.0	35.0
Cobalt-60	0.981	0.983	0.987	0.990	0.993	0.997	1.000	1.003	3 1.00	7 1.01	0 1.0	13 1.01	6 1.01	7 1.02	20 1.0	22 1.02	25 1.02			3 1.037				
6 MV	0.978	0.978	0.984	0.988	0.992	0.996	1.000	1.003	3 1.00	6 1.00	08 1.0	11 1.01	4 1.01	5 1.01	16 1.0	17 1.0	17 1.01			6 1.030				
10 MV	0.986	0.986	0.991	0.994	0.997	0.999	1.000	1.000) 1.00	2 1.00	02 1.0	04 1.00	4 1.00	6 1.00						6 1.017			-	
18 MV	0.989	0.990	0.993	0.996	0.998	0.999	1.000	1.001	1.00	2 1.00)4 1.0	05 1.00	7 1.00	9 1.01	10 1.0	12 1.0	12 1.01	3 1.01	4 1.01	5 1.015	1.017	1.019	1.020	0 1.021

DDD Demonst denth dose: TAR. tissue-air ratio; TMR, tissue-maximum ratio; TPR, tissue-phantom ratio.

Monitor Unit Calculations Using PDD

Monitor Unit =

Tumor Dose

Reference Dose x Sc x Sp x PDD x (any other factors as needed) Rate (at distance of Rx SSD + D/Max) PDD Monitor Unit Problem for6Mv Linear Accelerator

Calculate the MU necessary to deliver 200cGy to a depth of 3cm (PDD value = 95.1%) 10x10 field size 6Mv Linear Accelerator 100cmSSD

Reference Dose Rate at 101.5cm from source is 1.0cGy/monitor unit

Scatter Factor Tables

10x10 Reference Field Size Table **Scatter Factors** 24-4 SCATTER FACTOR/COMBINED SCATTER (Sc, Sp) Mach/Eq 30.0 32.0 35.0 19.0 20.0 22.0 24.0 26.0 28.0 12.0 13.0 14.0 17.0 18.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 15.0 16.0 Sq 1.096 1.102 1.105 1.109 0.990 1.000 1.009 1.019 1.028 1.037 1.046 1.053 1.060 1.067 1.074 1.081 1.089 0.980 Cobalt-60 0.928 0.945 0.962 0.971 1.084 1.088 1.092 1.098 1.039 1.044 1.049 1.065 1.072 1.079 1.053 1.058 0.990 1.000 1.007 1.014 1.021 1.028 1.035 6 MV 0.940 0.954 0.967 0.979 0.927 1.071 1.073 1.077 1.081 1.0691.046 1.051 1.058 1.0650.990 1.000 1.005 1.011 1.016 1.022 1.027 1.032 1.037 1.041 10 MV 0.925 0.938 0.953 0.967 0.979 1.084 1.087 1.090 1.093 1.079 18 MV 0.976 0.988 1.000 1.007 1.014 1.021 1.028 1.036 1.041 1.046 1.051 1.056 1.0601.0671.073 0.904 0.922 0.941 0.961 SCATTER FACTOR FOR COLLIMATOR SCATTER (Sc) (USED WITH PDD AR, TMR/TPR) Mach/Eq 26.0 28.0 30.0 32.0 35.0 19.0 20.0 22.0 24.0 10.0 12.0 13.0 14.0 15.0 16.0 17.018.0 4.0 5.0 6.0 7.0 8.0 9.0 11.0 Sq 1.061 1.063 1.063 1.063 1.006 1.012 1.018 1.024 1.030 1.035 1.039 1.044 1.048 1.053 1.057 Cobalt-60 0.946 0.961 0.975 0.981 0.987 0.993 1.000 1.052 1.053 1.055 1.038 1.041 1.045 1.048 1.051 0.970 0.979 0.987 0.994 1.000 1.004 1.008 1.013 1.017 1.021 1.024 1.028 1.031 1.035 6 MV 0.948 0.961 1.057 1.061 1.040 1.044 1.048 1.051 1.052 1.054 1.009 1.014 1.018 1.023 1.026 1.030 1.033 1.037 0.962 0.973 0.982 0.991 1.000 1.005 10 MV 0.938 0.951 1.046 1.052 1.057 1.063 1.066 1.067 1.069 1.070 0.948 0.965 0.978 0.989 1.000 1.006 1.012 1.017 1.023 1.029 1.032 1.036 1.039 1.043 0.914 0.931 18 MV SCATTER FACTOR FOR PHANTOM SCATTER (Sp) (USED WITH PDD, MR/TPR) Mach/Eq 20.0 22.0 24.0 26.0 28.0 30.0 32.0 35.0 17.0 18.0 19.0 4.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 5.0 6.0 7.0 8.0 9.0 Sq

1.013 1.016 1.017 1.020 1.022 1.025 1.027

1.023 1.026 1.030 1.031 1.034 1.037 1.041 1.017 1.011 1.014 1.015 1.016 1.017 1.019 0.984 0.988 0.992 0.996 1.000 1.003 1.006 1.008 6 MV 0.978 0.9781.006 1.009 1.011 1.013 1.016 1.017 1.018 1.018 1.000 1.002 1.002 1.004 1.004 1.007 1.008 10 MV 0.986 0.986 0.994 0.997 0.999 1.0000.9911.000 1.001 1.002 1.004 1.005 1.007 1.009 1.010 1.012 1.012 1.013 1.014 1.015 1.015 1.017 1.019 1.020 1.021 0.999 18 MV 0.9890.990 0.993 0.996 0.998

1.007 1.010

PDD Dercent depth dose: TAR. tissue-air ratio; TMR, tissue-maximum ratio; TPR, tissue-phantom ratio.

0.987 0.990 0.993

Cobalt-60 0.981

0.983

1.000

1.003

0.997

1.019 1.019

1.030 1.033 1.037 1.040 1.043

11-7											4										 ***				
Eq Sq Depth (cm)	0.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
0.0	19.2	19.2	19.2	20.5	21.8	23.0	24.3	25.6	26.7	27.9	29.1	30.2	31.4	32.6	33.8	35.1	36.3	37.5	39.0	40.4	41.9	43.2	44.5	45.7	47.6
1.0	96.8	96.9	96.9	97.0	97.0	97.0	97.1	97.1	97.2	97.2	97.3	97.3	97.4	97.4	97.5	97.5	97.6	97.6	97.7	97.8	98.0	98.1	98.1	98.2	98.3
1.5	100.0		100.0	100.0	100.0		100.0	100.0	100.0	100.0	100.0		100.0	100.0	100.0	100.0			100.0	100.0	100.0				100.0
2.0	97.4	98.2	98.4	98.4	98.5	98.5	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7
3.0	91.1	93.8	94.4	94.7	94.9	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.3	95.3	95.4	95.4	95.5	95.5	95.6	95.6	95.6	95.6	95.6	95.5
4.0	85.3	89.6	90.6	90.9	91.3	91.4	91.5	91.5	91.5	91.6	91.6	91.7	91.7	91.8	91.9	92.0	92.1	92.2	92.2	92.3	92.4	92.3	92.3	92.3	92.2
5.0	79.9	84.5	85.6	86.1	86.6	86.8	87.0	87.1	87.3	87.5	87.7	87.8	87.9	88.1	88.2	88.3	88.5	88.6	88.7	88.8	89.0	89.0	89.0	89.0	88.9
		-	00.0									010													
6.0	74.8	79.7	80.9	81.5	82.1	82.4	-82.7	83.0	83.2	83.5	83.8	84.0	84.1	84.3	84.5	84.7	84.8	85.0	85.2	85.4	85.6		85.7	85.8	85.7
7.0	70.1	75.1	76.3	77.1	77.8	78.3	78.7	79.0	79.3	79.6	79.9	80.3	80.4	80.6	80.8	- 81.0	81.2	81.4	81.7	82.0	82.2	82.3	82.4	82.5	82.3
8.0	65.7	70.8	72.1	72.9	73.7	74.2	74.7	75.1	75.5	75.9	76.2	76.6	76.8	77.0	77.3	77.5	77.8	77.9	78.3	78.6	78.8	78.9	79.0	79.1	79.0
9.0	57.7	62.8	68.0	68.9	69.8	66.7		71.4	71.8	72.2	72.6 69.2	73.0	73.2	73.5	73.8	74.1	74.3	74.5	74.9	75.3	75.5	75.6	75.8	76.0	75.7
10.0	37.7	02.0	64.1	65.1	66.1	00,7	67.4	67.8	68.3	68.8	09.2	69.6	69.8	70.1	70.5	70.8	71.0	71.2	.71.6	72.0	72.3	72.5	72.7	72.8	72.6
11.0	54.0	59.2	60.4	61.5	62.4	63.1	63.8	64.2	64.8	65.3	65.8	66.1	66.4	66.8	67.1	67.5	67.7	67.9	68.4	68.8	69.0	69.2	69.4	60.6	60.2
12.0	50.7	55.7	57.0	58.0	58.9	59.7	60.4	60.9	61.4	61.9	62.4	62.8	63.1	63.5	63.9	64.3	64.5	64.8	65.3	65.8	66.0	66.2	66.4	69.6 66.5	69.3 66.2
13.0	47.5	52.4	53.6	54.6	55.6	56.4	57.2	57.7	58.2	58.8	59.3	59.7	60.0	60.4	60.8	61.2	61.5	61.7	62.2	62.7	63.0		63.4	63.5	63.3
14.0	44.6	49.4	50.6	51.6	52.5	53.3	54.1	54.6	55.1	55.7	56.3	56.6	57.0	57.4	57.8	58.2	58.5	58.8	59.4	59.9	60.1	60.3	60.6	60.6	60.4
15.0	41.8	46.6	47.8	48.7	49.6	50.5	51.2	51.7	52.3	52.9	53.5	53.9	54.2	54.7	55.1	55.5	55.8	56.1	56.6	57.1	57.4	57.6	57.9	57.8	57.6
10,0	11.0	10.0			47.0	00.0	51.2		52.5	52.5	00.0	33.5	54.6	34.7		53.5	55.0	50.1	50.0	57.1	1 57.4	57.0	51.2	57.0	37.0
16.0	39.2	43.9	45.1	46.0	46.9	47.8	48.5	49.1	49.7	50.3	50.9	51.2	51.6	52.0	52.5	52.8	53.1	53.4	54.0	54.5	54.8	55.1	55.4	55.2	55.1
17.0	36.8	41.4	42.5	43.5	44.3	45.2	45.9	46.4	47.1	47.7	48.2	48.6	49.0	49.4	49.9	50.2	50.6	50.9	51.5	52.0	52.3	52.6		52.7	52.6
18.0	34.5	39.0	40.1	41.0	41.9	42.7	43.4	44.0	44.6	45.3	45.8	46.2	46.6		47.5	47.8	48.2	48.5	49.1	49.6	49.9	50.2	50.5	50.3	50.2
19.0	32.4	36.8	37.8	38.7	39.6	40.5	41.1	41.7	42.3	43.0	43.5	43.9	44.3	44.7	45.1	45.5	45.8	46.1	46.8	47.2	47.6	48.0	48.2	48.0	47.9
20.0	30.4	34.6	35.7	36.6	37.4	38.2	38.9	39.5	40.1	40.7	41.2	41.6	42.0	42.5	42.9	43.2	43.6	43.9	44.6	45.0	45.4	45.7	45.9	45.8	45.6
				1									-												
21.0	28.6	32.7	33.7	34.5	35.3	36.1	36.8	37.4	38.0	38.6	39.1	39.5	39.9	40.3	40.7	41.1	41.4	41.8	42.4	42.9	43.2	43.6	43.7	43.6	43.5
22.0	26.8	30.8	31.8	32.6	33.4	34.2	34.8	35.4	36.0	36.9	37.1	37.5	, 37.9	38.3	38.7	39.1	39.4	39.8	40.4	40.8	41.2	41.6	41.7	41.6	41.5
23.0	25.2	29.1	30.0	30.8	31.6	32.4	33.0	33.6	34.2	34.8	35.2	35.6	36.0	36.4	36.8	37.2	37.5	37.9	38.5	38.9	39.3	39.7	39.8	39.6	39.5
24.0	23.6	27.5	28.4	29.1	29.9	30.6	31.2	31.8	32.4	32.9	33.4	33.7	34.1	34.6	35.0	35.3	35.7	36.0	36.7	37.1	37.5	37.9	.37.8	37.7	37.6
25.0	22.2	26.0	26.8	27.6	28.3	29.0	29.6	30.1	30.7	31.3	31.7	32.0	32.4	32.9	33.2	33.6	33.9	34.3	34.9	35.3	35.7	36.1	36.0	35.9	35.8
													1												
26.0	20.9	24.5	25.3	26.0	26.7	27.4		28.5	29.1	29.6	30.0		30.8	31.2	31.5	31.9		32.6	33.2	33.6	34.0		34.3	34.2	34.1
27.0	19.6	23.2	24.0	24.7	25.3	26.0	26.5	27.0	27.6	28.1	28.4	28.8	29.2	29.6	30.0	30.3	30.7	31.0	31.6	32.0	32.4	32.7	32.6	32.6	32.4
28.0	18.4	21.9	22.6	23.3	24.0		25.1	25.6	26.1	26.6	26.9	27.3	27.7	28.1	28.4	28.8	29.2	29.5	30.1	30.5	30.9	31.1	31.1	31.0	30.9
29.0	17.3	20.7	21.4	22.0	22.7	23.3	23.7	24.2	24.7	25.2	25.6	25.9	26.3	26.7	27.0	27.4	27.7	28.1	28.6	29.0	29.4	29.6	29.5	29.5	29.4
30.0	16.2	19.5	20.2	20.8	21.4	22.0	22.4	22.9	23.4	23.8	24.2	24.6	24.9	25.3	25.7	26.0	26.4	26.7	27.2	27.6	28.0	28.1	28.0	28.0	27.9
																								PDD	6 MV
PSF	1.000	1.002	1.003	1.007	1.012	1.016	1.021	1.025	1.028	1.031	1.033	1.036	1.039	1.040	1.041	1.043	1.044	1.045	1.048	1.051	1.054	1.057	1.060	1.063	1.067

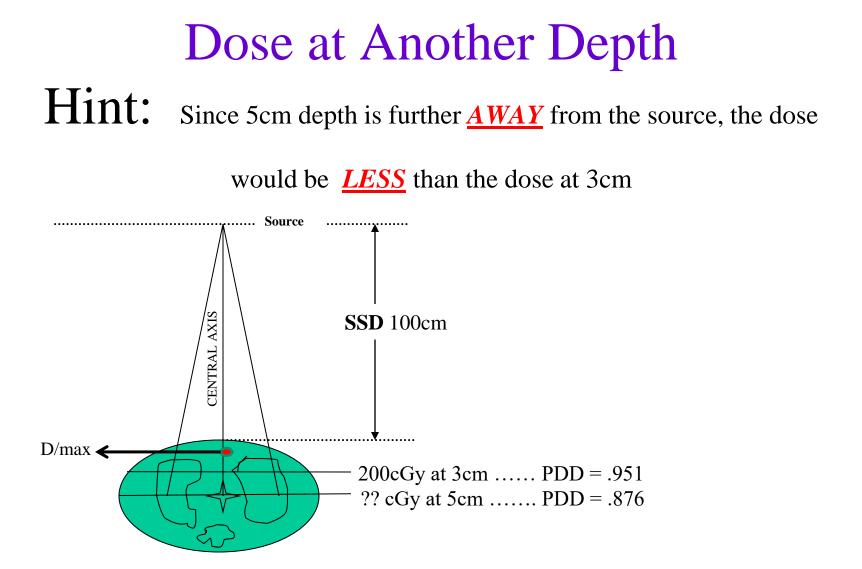
,

• Fable 6 MV percentage depth dose at 100 cm SSD

)

PDD Monitor Unit Problem for 6Mv Linear Accelerator

200cGy

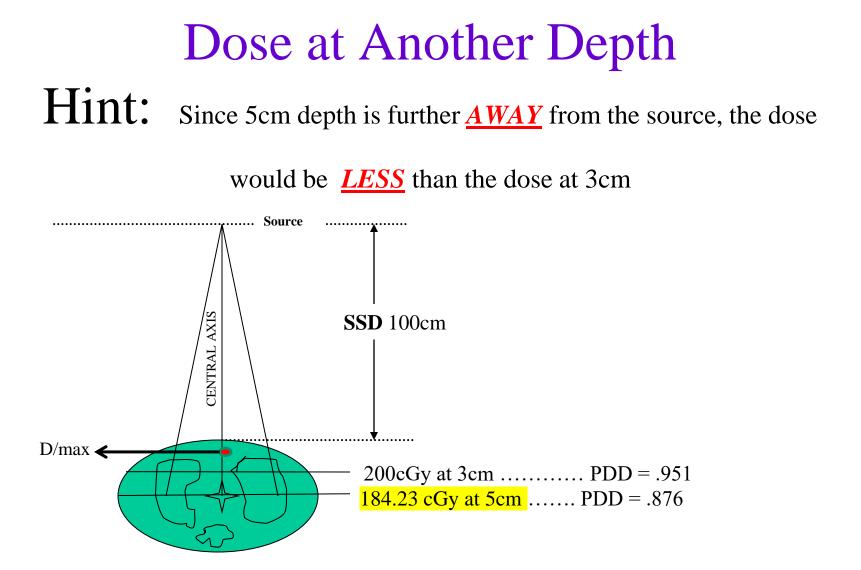

<mark>210.3 MU</mark>

1.0cGy/MU x 1.0 x 1.0 x .951

Reference Dose Rate atScSpPDD (in decimal form)Rx SSD + D/max (100 + 1.5cm)

Dose to Another Point Using PDD

- To calculate the dose at some point along the central axis use direct proportion.
- <u>Dose at Point A</u> = <u>Dose at Point B</u>
 %DD at Point A
 %DD at Point B
- **Problem**: For a 6Mv beam, what is the dose to the depth of 5cm when the dose at 3cm is 200cGy?
- PDD value at D3 = .951
- PDD value at D5 = .876

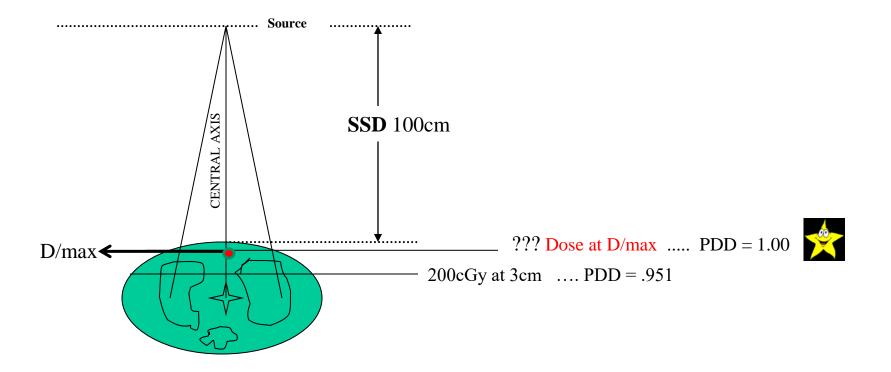


• PDD value at D3 = .951 PDD value at D5 = .876

• $\underline{\text{Dose at D3}}$ = $\underline{\text{Dose at D5}}$ PDD at D3 PDD at D5

<u>200cGy</u> = <u>x</u> .951 .876

dose at 5cm Depth x = 184.23 cGy

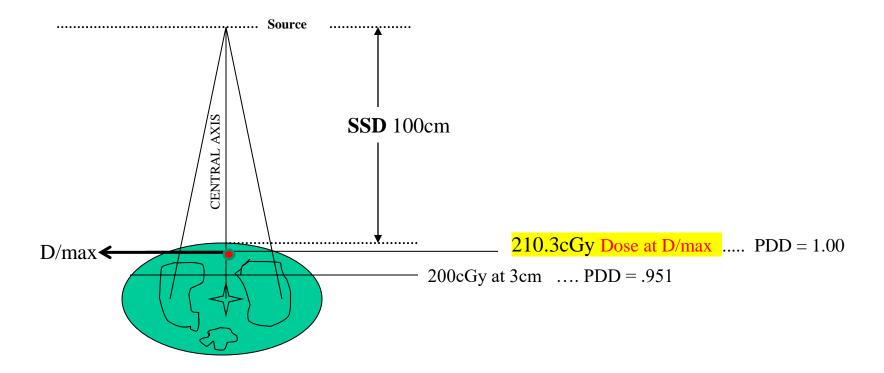

• **Problem**: For a 6Mv beam, what is the dose to the D/Max when the dose at 3cm is 200cGy?

• PDD value at D3 = .951

• $\underline{\text{Dose at D3}}$ = $\underline{\text{Dose at D/Max}}$ PDD at D3 PDD at D/Max

Hint: Since 1.5cm depth (D/max depth for 6MV) is closer <u>TOWARDS</u> the

source, the dose would be *MORE* than the dose at 3cm

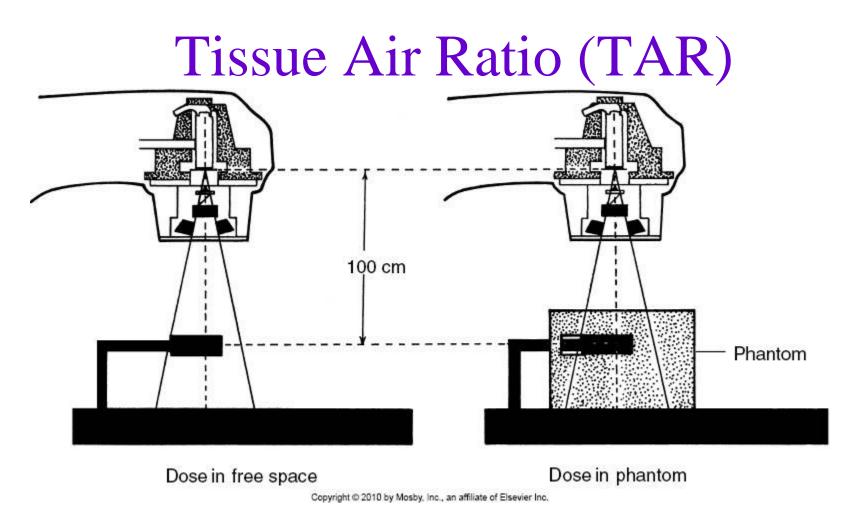

- **Problem:** For a 6Mv beam, what is the dose to the D/Max when the dose at 3cm is 200cGy? PDD value at D3 = .951
- $\underline{\text{Dose at D3}}$ = $\underline{\text{Dose at D/Max}}$ PDD at D3 PDD at D/Max

 $\begin{array}{c} \underline{200cGy} \\ .951 \end{array} = \underline{x} \\ 1.00 \end{array}$

dose at D/Max x = 210.30 cGy

Hint: Since 1.5cm depth (D/max depth for 6MV) is closer <u>TOWARDS</u> the

source, the dose would be <u>MORE</u> than the dose at 3cm


Tissue to Air Ratio (TAR)

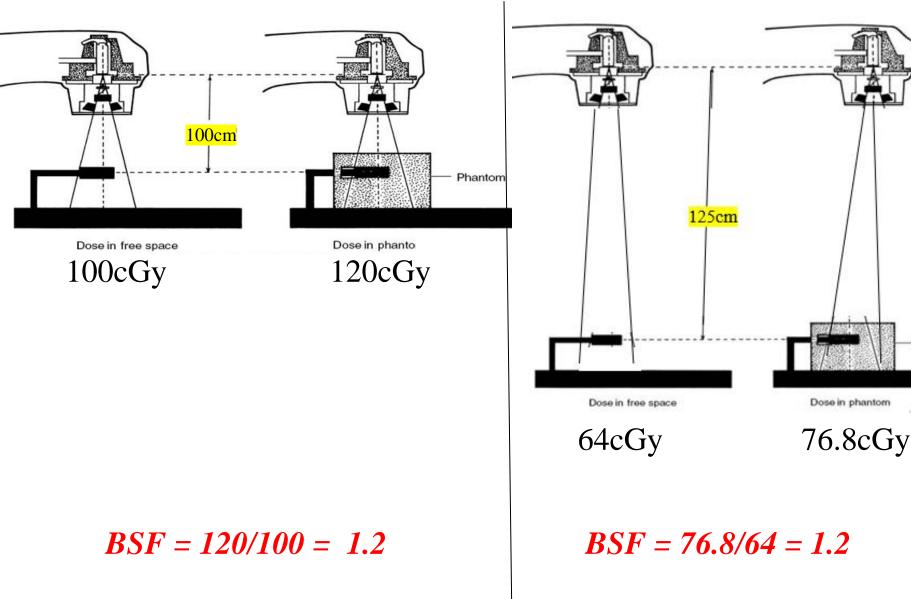
- Developed by Johns to be used in Rotational Therapy
- Rotational Therapy has the gantry moving DURING the treatment while the beam is ON.

• A full 360⁰ treatment is called a "Rotation"

• Any treatment $< 360^{\circ}$ is called an "arc"

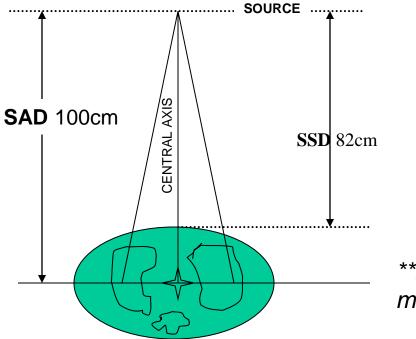
****TAR at D/Max is also called *Back Scatter Factor*****

Factors Affecting TAR


- Field Size \uparrow FS $\rightarrow\uparrow$ TAR
- Beam Energy \uparrow Energy $\rightarrow \uparrow$ TAR
- Go deeper into patient \downarrow TAR
- ***Source to Skin Distance
 <u>DOES NOT AFFECT</u> TAR
 (~2% accuracy)****

6Mv TAR

Notice --- NO SSD label


Ta 24	ble -8	6-MV	Tissu	e-Air F	Ratio				•											-					
Eq S Dep (cm)	0	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	26	28	30	32	35
0.0	0.186	0.187	0.187	0.200	0.213	0.227	0.240	0.254	0.266	0.279	0.291	0.304	0.316	0.329	0.342	0.354	0.367	0.380	0.396	0.412	0.428	0.443	0.457	0,471	0.492
1.0	0.957	0.960	0.961	0.965	0.970	0.974	0.979	0.984	0.987	0.990	0.994	0.997	1.000	1.002	1.003	1.005	1.006	1.008	1.012	1.017	1.021	1.025	1.028	1.032	1.037
1.5	1.000	1.002	1.003	1.007	1.012	1.016	1.021	1.025	1.028	1.031	1.033	1.036	1.039	1.040	1.041	1.043	1.044	1.045	1.048	1.051	1.054	1.057	1.060	1.063	1.067
2.0	0.982	0.992	0.994	0.999	1.004	1.009	1.014	1.018	1.021	1.024	1.027	1.030	1.032	1.034	1.035	1.037	1.038	1.039	1.043	1.046	1.049	1.052	1.055	1.057	1.061
3.0	0.936	0.966	0.973	0.979	0.986	0.991	0.996	1.001	1.004	1.007	1.010	1.013	1.016	1.018	1.020	1.021	1.023	1.025	1.028	1.032	1.035	1.038	1.041	1.043	1.047
4.0	0.894	0.940	0.951	0.959	0.966	0.972	0.977	0.982	0.985	0.988	0.991	0.994	0.997	0.999	1.001	1.004	1.006	1.008	1.012	1.015	1.019	1.022	1.025	1.027	1.031
5.0	0.853	0.903	0.915	0.924	0.933	0.941	0.946	0.952	0.956	0.961	0.965	0.970	0.974	0.977	0.979	0.982	0.984	0.987	0.991	0.996	1.000	1.003	1.006	1.009	1.013
6.0																					0.979				
7.0																			- 1		0.957				
9.0																					0.934				
10.0	0.676																								
11.0	0.645	0.702	0.716	0.730	0.744	0.756	0.767	0.778	0.786	0.793	0.801	0.808	0.816	0.821	0.826	0.830	0.835	0.840	0.847	0.854	0.861	0.867	0.872	0.876	0.883
12.0	0.616	0.672	0.686	0.700	0.714	0.727	0.738	0.749	0.757	0.765	0.772	0.780	0.788	0.793	0.798	0.804	0.809	0.814	0.822	0.829	0.837	0.843	0.848	0.852	0.859
13.0	0.588	0.643	0.657	0.671	0.684	0.697	0.709	0.721	0.729	0.737	0.745	0.753	0.761	0.766	0.772	0.777	0.783	0.788	0.796	0.804	0.812	0.818	0.823	0.828	0.835
14.0	0.561	0.616	0.630	0.643	0.656	0.669	0.681	0.693	0.701	0.709	0.718	0.726	0.734	0.740	0.745	0.751	0.756	0.762	0.771	0.779	0.788	0.794	0.799	0.804	0.811
15.0	0.536	0.590	0.604	0.617	0.630	0.642	0.655	0.667	0.675	0.684	0.692	0.701	0.709	0.715	0.721	0.726	0.732	0.738	0.747	0.755	0.764	0.771	0.776	0.781	0.788

BSF is NOT affected by SSD (readings at ion chamber)

Phante

Monitor Unit Calculations Using TAR

Machine Output AND Field Size measured at Treatment SAD TAR Monitor Unit Calculations for6Mv Linear Accelerator

- Calculate the Monitor Unit necessary to deliver 180cGy to a 5cm depth TAR at D5 = 95.2%
 10x10 field size 100cmSAD
 6Mv Linear Accelerator
 - Machine output at 100cm from source is 1cGy/MU

Monitor Unit Calculation Using TAR

Monitor Unit =

Tumor Dose

Machine output x $S_c x$ TAR x (any other absorption factors)

(at distance of Rx SAD)

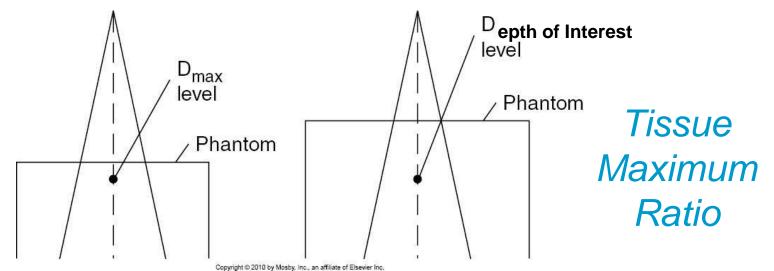
TAR Monitor Unit Calculations for6Mv Linear Accelerator

180

= 189.08 MU

1.0cGy/MU x 1.0 x .952

machine output at Rx SAD S_c TAR


Tissue Maximum Ratio

- Because of Measurement difficulties, the TMR was developed.
- The SAME factors which influence TAR, affect TMR in the same way

TAR compared to TMR

Tissue-maximum ratio for 6 MV

TABLE

23-9

Notice --- NO SSD label

EQ SQ DEPTH																									
(cm)	0.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
0.0	0.186	0.187	0.186	0.199	0.210	0.223	0.235	0.248	0.259	0.271	0.282	0.293	0.304	0.316	0.329	0.339	0.352	0.364	0.378	0.392	0.406	0.419	0.431	0.443	0.461
1.0	0.957	0.958	0.958	0.958	0.958	0.959	0.959	0.960	0.960	0.960	0.962	0.962	0.962	0.963	0.963	0.964	0.964	0.965	0.966	0.968	0.969	0.970	0.970	0.971	0.972
1.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2.0	0,982	0.990	0.991	0.992	0.992	0.993	0.993	0.993	0.993	0.993	0.994	0.994	0.993	0.994	0.994	0.994	0.994	0.994	0.995	0.995	0.995	0.995	0.995	0.994	0.994
3.0	0.936	0.964	0.970	0.972	0.974	0.975	0.976	0.977	0.977	0.977	0.978	0.978	0.978	0.979	0.980	0.979	0.980	0.9B1	0.981	0.982	0.982	0.982	0.982	0.981	0.981
4.0	0.894	0.938	0.948	0.952	0.955	0.957	0.957	0.958	0.958	0.958	0.959	0.959	0.960	0.961	0.962	0.963	0.964	0.965	0.966	0.966	0.967	0.967	0.967	0.966	0.966
5.0	0.853	0.901	0.912	0.918	0.922	0.926	0.927	0.929	0.930	0.932	0.934	0.936	0.937	0.939	0.940	0.942	0.943	0.944	0.946	0.948	0.949	0.949	0.949	0.949	0.949
6.0	0.814	0.865	0.877	0.884	0.889	0.895	0.897	0.900	0.903	0.905	0.909	0.911	0.913	0.915	0.917	0.556	0.920	0.922	0.925	0.927	0.929	0.931	0.931	0.931	0.933
7.0	0.777	0.829	0.842	0.851	0.858	0.864	0.868	0.872	0.875	0.879	0.882	0.885	0.888	0.891	0.893	0.895	0.898	0.900	0.903	0.905	0.908	0.910	0.910		0.913
8.0	0.742	0.796	0.810	0.818	0.827	0.834	0.838	0.844	0.847	0.852	0.856		0.863	0.866	0.869	0.871	0.874	0.877	0.880	0.883	D.886	0.888	0.890	0.890	0.892
9.0	0.708	0.763	0.777	0.786	0.795	0.804	0.809	0.816	0.820	0.824	0.829	0.833	0.837	0.840	0.843	0.847	0.850	0.853	0.857	0.860	0.864	0.867	0.868	0.869	0.872
10.0	0.676	0.732	0.745	0.756	0.766	0.775	0.782	0.788	0.793	0.797	0.803	0.808	0.B12	0.816	0.819	0.822	0.826	0.829	0.833	0.837	0.842	0.844	0.846	0.848	0.851
11.0	0.645	0.701	0.714	0.725	0.735	0.744	0.751	0.759	0.765	0.769	0.775	0.780	0.785	0.789	0.793	0.796	0.800	0.804	0.808	D.813	0.817	0.820	0.823	0.824	0.828
12.0	0.616	0.671	0.684	0.695	0.706	0.716	0.723	0.731	0.736	0.742	0.747	0.753	0.758	0.763	0.767	0.771	0.775	0.779	0.784	0.789	0.794	0.798	0.800		0.805
13.0	0.588	0.642	0.655	0.666	0.676	0.686	0.694	0.703	0.709	0.715	0.721	0.727	0.732	0.737	0.742		0.750	0.754	0.760	0.765	0.770	0.774	0.776	0.779	
14.0	0.561	0.615	0.628	0.639	0.648	0.658	0.667	0.676	0.682	0.688	0.695	0.701	0.706	1.	0.716	0.720		0.729	0.736	0.741	0.748		0.754	0.756	
15.0	0.536	0.589	0.602	0.613	0.623	0.620	0.642	0.651	0.657	0.663	0.670	0.677	0.682	0.688	0.693	0.696	0.701	0.706	0.713	0.718	0.725	0.729	0.732	0.735	0.739
16.0	0.511	0.564	0.577	0.588	0.598	0.607	0.617	0.626	0.633	1000000	0.647		0.659	0.665	0.670	0.673		0.683	0.690	0.696	0.703	0.708	0.710		0.718
17.0	0.488	0.541	0.553	0.564	0.574	0.584	0.593	0.602	0.609	0.615	0.622	0.628	0.635	0.641	0.646	0.650	0.655	0.660	0.667	0.674	0.680	0.686	0.689	0.692	0.697
18.0	0.466	0.517		0.540	0.550	0.560	0.569	0.579	0.586	0.593	0.599	1.2.2.2.2.2	0.613	2.2.1.2	0.623	0.628		0.638	0.645	D.653	0.659	0.665	0.668	000070	0.677
19.0		0.495	0.507	0.517		D.537	D.547	0.556	0.563	0.570			0.591	0.596	0.601	0.606	0.611	0.616	0.623	0.631	0.638	0.643	0.647	0.651	0.0000000
20.0	0,424	0.473	0.486	0.496	0.506	0.516	0.524	0.534	0.541	0.548	0.555	0.562	0.569	0.574	0.579	0.584	0.589	0.594	0.602	0.609	0.617	0.623	0.626	0.630	0.636
21.0	0.405	0.454	0.466	0.476	0.484	0.494	0.502	0.512		0.527	0.533		0.548	0.553		0.563	0.568	0.573	0.581	0.588	0.596	0.602	0.606	0.611	0.616
22.0	0.387		0.446	0.456		0.474		0.492	0.499	0.506	1.2.2.2.2.2	0.520	0.527	0.533	0.538	0.543		0.553	0.561	0.568	0.576	0.582	0.587	0.591	0.598
23.0	0.370	0.416		D.437	0.446	0.456	0.464	0.473	0.480	0.487	0.494	0.501	0.508	0.513	0.518	0.523	0.529	0.534	0.541	0.549	0.557	0.563	0.568	0.572	
24.0	0.352		0.410	0.419		0.436		0.454	0.460	0.468	1.0100.034	0.482	0.488		0.499	0.503		0.514	0.522	0.530	0.538	0.544	0.549	0.553	
25.0	0.337	0.382	0.393	0.402	0.410	0.419	0.427	0.436	0.443	0.449	0.456	0.463	0.470	0.475	0.480	0.485	0.490	0.496	0.504	0.512	0.520	0.526	0.530	0.535	0.543
26.0	0.321	0.365	0.376	0.384	0.393	0.402	0.409	0.418	0.424		0.439		0.451	0.457	0.462	D.466	0.471	0.477	0.485	0.493	0.501	0.507	0.512	0.516	
27.0	0.307	0.350	0.361	0.369	0.377	0.386	0.394	0.402	0.408	20000	0.421	0,428	0.434	0.439	0.444	0.449		0.459	0.468	0.476	0.484	0.490	0.495	0.500	0.507
28.0	0.292	0.335	0.346	0.355	0.362	0.370	0.377	0.385	0.392	0.398	0.405	1.10.2017	0.417		0.427	0.431	0.436	0.441	D.449	0.459	0.467	0.473	0.478	0.483	0.490
29.0	0.279	0.321	0.332	0.340	0.344	0.355	0.362	0.370	0.375	0.382	0.388	0.395	0.400	0.405	0.410			0.425	0.433	0.441	0.450	0.457	0.461	0.466	0.473
30.0	0.266	0.307	0.317	0.325	0.332	0.340	0.347	0.354	0.360	0.366	0.373	0.378	0.384	0.389	0.394	0.399	0.403	0.409	0,417	0.425	0.434	0.440	0.444	0.450	0.456

EQ SQ, Equivalent square.

Factors Affecting TMR

- Field Size $FS \rightarrow TMR$
- Beam Energy \uparrow Energy $\rightarrow \uparrow$ TMR
- Go deeper into patient \downarrow TMR
- ****Source to Skin Distance
 <u>DOES NOT AFFECT</u> TMR (~2% accuracy)****

Monitor Unit Calculations Using TMR

Calculate the Monitor Unit necessary to deliver 180cGy to a 5cm depth 10x10 field size 100cmSAD TMR = 97.7%
6Mv Linear Accelerator Machine output at 100cm from source is 1cGy/MU

Monitor Unit Calculation Using TMR

Monitor Unit =

Tumor Dose

Machine output x Sc x Sp x TMR x (any other absorption factors) (at distance of Rx SAD)

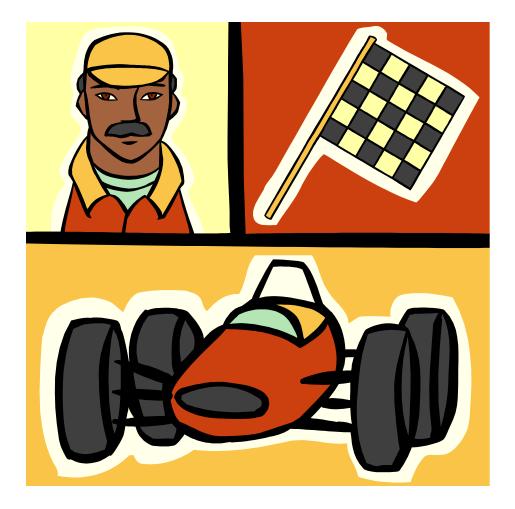
TMR Monitor Unit Calculations for 6Mv Linear Accelerator

= 184.24 MU

1.0cGy/MU x 1.0 x 1.0 x .977

machine output at Rx SAD

S_c


Sp

TMR

Factors Affecting PDD/TAR/TMR

	PDD	TAR	TMR
Increase Beam Energy	1	1	1
Increase Field Size	1	1	1
Increase Depth in Patient (go deeper)	Ļ	Ļ	Ļ
Increase SSD (use Mayneord's F Factor)	1	NO Change	NO Change

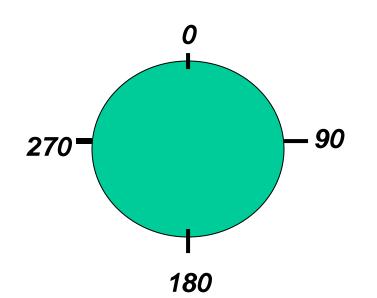
Gantry Speed for Rotational Treatments

Speed of Gantry for Rotational Treatment

• To set speed of gantry during a moving field treatment

<u>Treatment Monitor units</u> number of degrees of treatment arc

Problem for the Speed of the Gantry for Rotational Treatment


• What would be the monitor units per degree (aka speed of gantry) when

The monitor units is 255 for an anterior arc of 180 degrees?

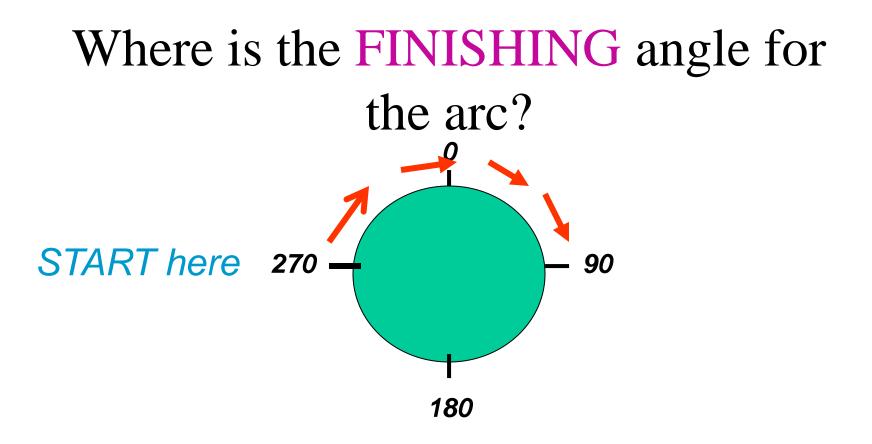
<u>Treatment Monitor units</u> number of degrees of treatment arc

255/180 = 1.4166 = 1.42 MU/degree

Where is the **FINISHING** angle for the arc?

• If the MU are 255 and the MU/degree is 1.42 and the gantry starts at gantry angle of 270, travels clockwise.....WHERE is the FINISHING (aka STOP) gantry angle for this treatment?

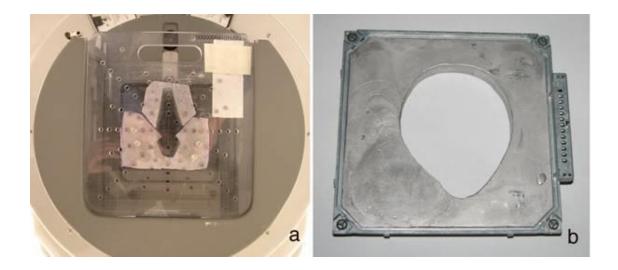
Where is the **FINISHING** angle for the arc?


1. Determine the number of degrees in the arc

<u>Treatment Monitor units</u> = gantry speed number of degrees of treatment arc

$$\frac{255}{???} = 1.42$$

255 / 1.42 = ??? = 180 degrees in the arc


2. Look at gantry angle orientation AND direction of the gantry movement

AND....the FINISHING angle is

Blocking/MLC

Kahn's 4th Edition

BLOCKS

- Shape the Radiation Field to shield/protect normal tissues
- Must be at least 5 HVL thick to allow < 5% transmission
- Made of <u>Cerrobend</u> (Lipowitz's metal) Bismuth, Lead, Tin & Cadmium

• Main Advantage – Low Melting Point

Cerrobend Ratio to Lead

- Since cerrobend is a Lead alloy, we need MORE cerrobend to do the same shielding as Pure Lead
 1.25 cm Cerrobend ~ 1.00cm Pure Lead
- Problem: How much cerrobend is needed for blocks to be used on a machine whose HVL = 1.1cm Lead?
- $1.25 \ge 1.1 = 1.375 \text{ cm}$ cerrobend $\ge 5 = \frac{6.875 \text{ cm}}{6.875 \text{ cm}}$

Tray to Hold Blocks

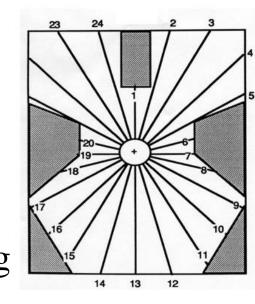
Tray Factor

• Amount of <u>*Transmission*</u> through the plastic tray which holds the Cerrobend blocks

- Dose <u>*With*</u> Tray in place = 97cGy
- Dose <u>*Without*</u> Tray = 100cGy

• Transmission Factor = 97/100 = .97

(Same concept can be applied to compensator/physical wedges)


Clarkson Calculation

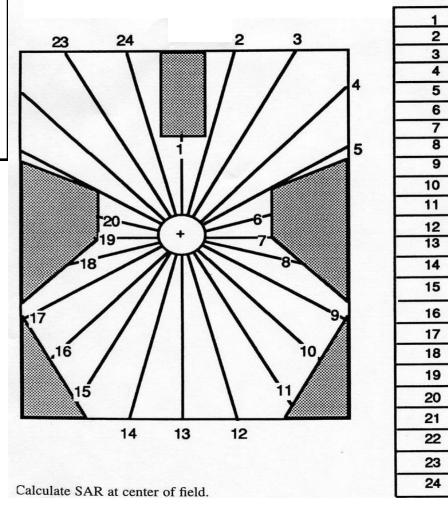
Also called "*Irregular Field Calculation*" corrects for the *lack of scatter* due to shielding

• The Tissue Air Ratio value needed to calculate the Monitor Unit, is made up of contributions from both the Primary radiation - 0x0 field size $(TAR_0) - when e-hits$ <u>target, photons produced = primary beam</u>

added to scatter (SAR)

 $TAR = TAR_0 + SAR$

6Mv TAR


Ta 24		6-MV	Tissu	e-Air F	Ratio				·.																
Eq S Dep (cm)	0	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	26	28	30	32	35
0.0	0.186	0.187	0.187	0.200	0.213	0.227	0.240	0.254	0.266	0 279	0.201	0 304	0.316	0 320	0 342	0.354	0.367	0.380	0.306	0.412	0.428	0.443	0.457	0.471	0.402
1.0	01100									Carlos and a second	2012/02										1.021				
1.5		1.002			,												, realize the re-				1.054			(10.1) (10.11) (10.11)	
2.0	0.982	0.992																			1.049				
3.0			100000 M												And the second	nt// decision of					1.035		A STATE OF STATE		
4.0	0.894	0.940	0.951	0.959	0.966	0.972	0.977	0.982	0.985	0.988	0.991	0.994	0.997	0.999	1.001	1.004	1.006	1.008	1.012	1.015	1.019	1.022	1.025	1.027	1.031
5.0	0.853	0.903	0.915	0.924	0.933	0.941	0.946	0.952	0.956	0.961	0.965	0.970	0.974	0.977	0.979	0.982	0.984	0.987	0.991	0.996	1.000	1.003	1.006	1.009	1.013
							*	•							à.										
6.0	0.814	0.867	0.880	0.890	0.900	0.909	0.916	0.923	0.928	0.933	0.939	0.944	0.949	0.952	0.955	0.958	0.961	0.964	0.969	0.974	0.979	0.984	0.987	0.990	0.995
7.0	0.777	0.831	0.845	0.857	0.868	0.878	0.886	0.894	0.900	0.906	0.911	0.917	0.923	0.926	0.930	0.933	0.937	0.940	0,946	0.951	0.957	0.962	0.965	0.969	0.974
8.0	0.742	0.798	0.812	0.824	0.837	0.847	0.856	0.865	0.871	0.878	0.884	0.891	0.897	0.901	0.905	0.908	0.912	0.916	0.922	0.928	0.934	0.939	0.943	0.946	0.952
9.0	0.708	0.765	0.779	0.792	0.805	0.817	0.826	0.836	0.843	0.850	0.856	0.863	0.870	0.874	0.878	0.883	0.887	0.891	0.898	0.904	0.911	0.916	0.920	0.924	0.930
10.0	0.676	.733	0.747	0.761	0.775	0.787	0.798	0.808	0.815	0.822	0.830	0.837	0.844	0848	0.853	0.857	0.862	0.866	0.873	0.880	0.887	0.892	0.897	0.901	0.908
11.0	0.645	0.702	0.716	0.730	0.744	0.756	0.767	0.778	0.786	0.793	0.801	0.808	0.816	0.821	0.826	0.830	0.835	0.840	0.847	0.854	0.861	0.867	0.872	0.876	0.883
12.0																					0.837				
13.0	0.588	0.643	0.657	0.671	0.684	0.697	0.709	0.721	0.729	0.737	0.745	0.753	0.761	0.766	0.772	0.777	0.783	0.788	0.796	0.804	0.812	0.818	0.823	0.828	0.835
14.0	0.561	0.616	0.630	0.643	0.656	0.669	0.681	0.693	0.701	0.709	0.718	0.726	0.734	0.740	0.745	0.751	0.756	0.762	0.771	0.779	0.788	0.794	0.799	0.804	0.811
15.0	0.536	0.590	0.604	0.617	0.630	0.642	0.655	0.667	0.675	0.684	0.692	0.701	0.709	0.715	0.721	0.726	0.732	0.738	0.747	0.755	0.764	0.771	0.776	0.781	0.788

.

- TAR for 15x15 (open field) at 10cm depth = .844
- TAR_0 for 0x0 at 10cm depth = .676

Clarkson Calculation

- 1. Divide Field into Segments
- 2. Look up SAR value for EACH Radius Length
- 3. Get Average SAR value
- 4. Add Average SAR value to TAR_0
- 5. Use "adjusted" TAR value for MU Calculation

Radius #

Length

SAR

Beam Weighting

When the dose from EACH beam is the same, the beams are said to be <u>Equally Weighted</u>

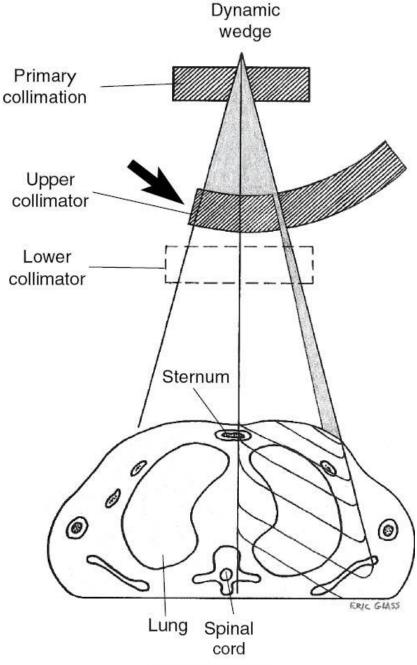
Different doses from EACH beam is called <u>Unequally Weighted</u>

For example: AP:PA :: 2:1 dose ratio

2x + 1x = 180cGy3x = 180cGyx = 60cGy

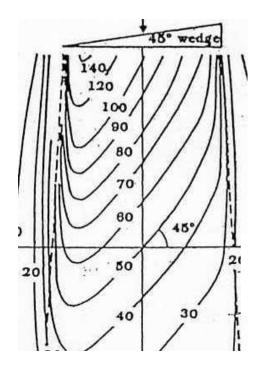
Anterior (120cGy)

Wedges


- The most **FREQUENTLY** used Beam Modifying Device
- The Physical wedges are shaped like a foot. Thick edge is called HEEL. Thin edge is called TOE

(Image from Kahn <u>The Physics of Radiation Therapy</u> 4th Edition p 182)

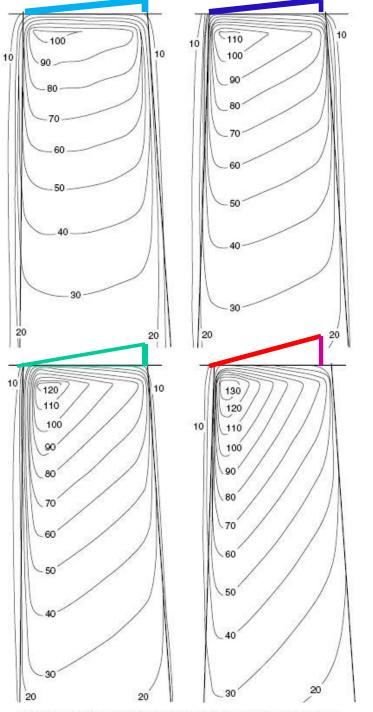
Dynamic Wedge


The upper collimator moves DURING the treatment – giving a "wedge effect"

(Courtesy Varian Medical Systems.)

Wedge Angle

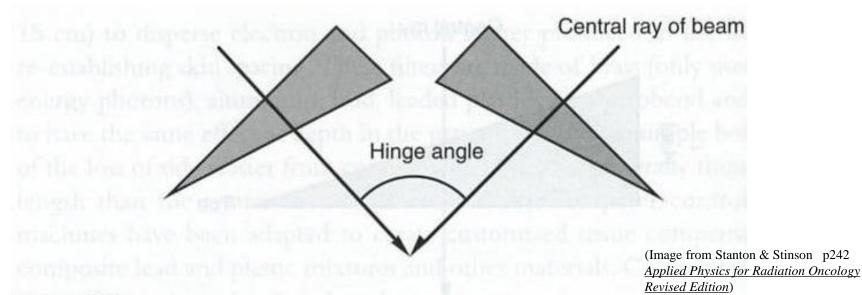
- <u>Wedge Angle</u> angle through which an isodose curve is tilted at the central ray of a beam at a specified depth. The range of wedge angles is generally 15-60 degrees.
- wedge angle formula = 90 (.5 x hinge angle)



Kahn "wedge angle measurements recommended to be measured at <u>10cm depth</u>"

45 degree

wedge


(Redrawn from Bentel GC: Radiation therapy planning, ed 2, New York, 1996, McGraw-Hill.)

30 degree wedge

60 degree wedge

Hinge Angle

- <u>*Hinge Angle*</u> angle between the central rays of two fields
- **<u>optimum hinge angle</u>** = 180 (2 x wedge angle)

Figure 14.20

The hinge angle is the angle between the central rays of the two beams.

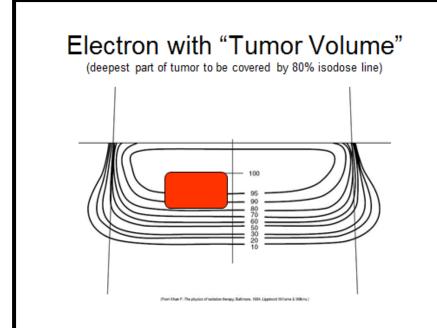
• Determine the wedge angle to be used with a 150° hinge angle wedge angle formula = $90 - (.5 \times \text{hinge angle})$ = $90 - (.5 \times 150)$ = 90 - (.75)= 15° wedge angle

- Determine the optimum hinge angle to be used with 15^0 wedges **optimum hinge angle** = $180 - (2 \times \text{wedge angle})$
 - $= 180 (2 \times 15)$
 - = 180 (30)
 - $= 150^{\circ}$ hinge angle

Wedge & Hinge Angles Table

Wedge Angle	Hinge Angle	
15	150	
30	120	
45	90	
60	60	

<u>ALMOST</u> Done.....


Electrons

- *Electrons* are "generally" used for boost treatments
- To determine the approximate depth of an electron isodose line to cover the deepest part of a tumor, the following "rules of thumb" can be used:
- - Mev/3.2 ~ depth of 90% isodose line
- - Mev/2.8 ~ depth of 80% isodose line
- - Mev/2 ~ depth of 10% isodose line

Therapeutic Range (info as per Kahn's 5th edition)

Practical range

Electron Problem

(Image from Stanton & Stinson p242 <u>Applied Physics for Radiation Oncology</u> <u>Revised Edition</u>) Determine the
appropriate electron
energy to treat a tumor
at 3cm depth if the
physician wants to
treat to the 80%
isodose line.

Electron Problem

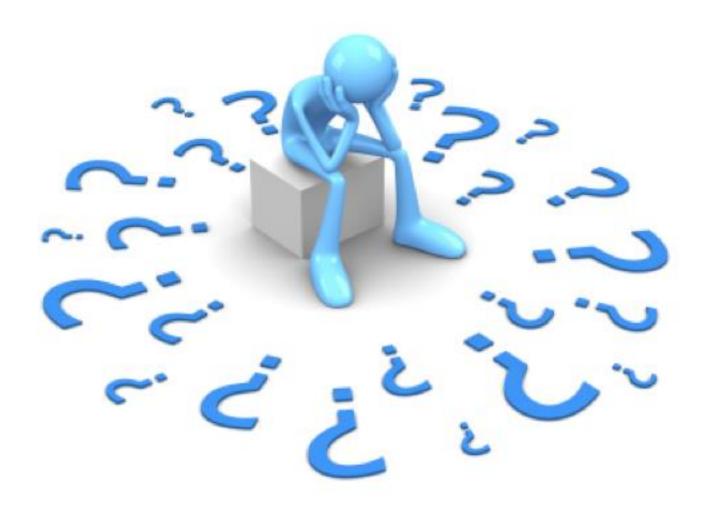
3cm to be covered by 80% IDL

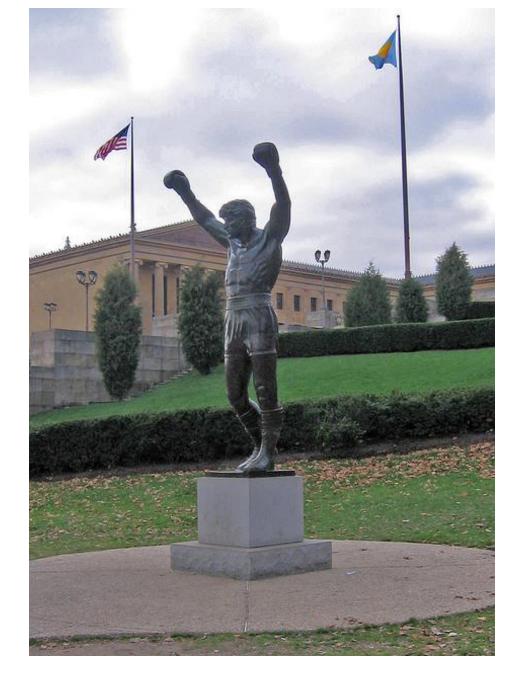
• Available electron Energies:

> 7Mev 10Mev 13Mev 16Mev

<u>Rule of Thumb</u>

Mev/2.8 ~ depth of 80% isodose line


7Mev/2.8 = 2.50cm


10 Mev/2.8 = 3.57 cm

13 Mev/2.8 = 4.64 cm

Any Questions?

Contact Shirley.Johnston@jefferson.edu

