Treatment Calculations

Shirley Ann Pinegar-Johnston MS RT(R)(T)CMD

Overview

- Math Concepts
- Definitions
- Basic MU Calculations

(D)
 \&

"nโtensidity

What are we calculating?

$>$ Divergence Formula - calculates the SIZE of the radiation field
$>$ Inverse Square Formula - helps us calculate the INTENSITY of a radiation beam

Increasing Distance from Source

- Increase Field Size --- Direct Proportion
- Decrease Intensity --- Indirect Proportion

Divergence

- X-rays travel in Straight but divergent lines

Divergence Formula (Direct Proportion)

$\underline{\text { Field width }}_{1}=$ distance $_{1}$ Field width ${ }_{2}$ distance $_{2}$
$\underline{\text { Field length }}_{1}=\underline{\text { distance }}_{1}$
Field length ${ }_{2}$ distance $_{2}$

Divergence

If the field size is 10×15 at 100 cm , what is it on a port film at 125 cm ?

Field Size on portal film at 125 cm

| ${\underset{\text { Field width }}{1}}^{\text {Field width }_{2}}=\frac{\text { distance }_{1}}{\text { distance }_{2}}$ | $\frac{10}{\mathrm{x}}=\frac{100}{125}$ | $\mathrm{x}=12.5$ |
| :--- | :--- | :--- | :--- |
| $\frac{\text { Field length }_{1}}{\text { Field length }_{2}}=\frac{\text { distance }_{1}}{\text { distance }_{2}}$ | $\frac{15}{\mathrm{y}}=\frac{100}{125}$ | $\mathrm{y}=18.75$ |

Setup for Entire Femur

Setup for Entire Femur

Largest field length at 100 cm is 40 cm

- Need 56cm length
- What would be the SSD required?

$$
\begin{aligned}
& \frac{40 \mathrm{~cm}}{56 \mathrm{~cm}}=\frac{100 \mathrm{~cm}}{? ?} \\
& ? ? \quad=140 \mathrm{cmSSD}
\end{aligned}
$$

Divergence

Gap Problem

Gap $=\left(\underline{\text { field size }_{1}} \times \underline{\text { depth }}\right)+\left(\underline{\text { field size }}{ }_{2} \times \underline{\text { depth }}\right)$ 2 SSD 2 SSD

What is the gap needed between two adjacent fields to a depth of 6 cm . The field lengths of the fields are 8 cm and 20 cm , respectively at 100 cm SSD?

$$
\left.\begin{array}{rl}
\text { Gap }= & \left(\begin{array}{llcc}
\frac{8}{2} \times \underline{6}
\end{array}\right) \\
& +\frac{(20}{2} \times \frac{6}{100}
\end{array}\right)
$$

Feathering

Initial Plan

$2^{\text {nd }}$ Plan - Feathered 1 cm inferiorly

$3^{\text {rd }}$ Plan- Feathered additional 1 cm inferiorly

Feathering - CSI

Inverse Square Law

 states that the intensity is inversely proportional to the square of the distance from the source

Inverse Square Formula

Intensity $_{1}=\left(\text { Distance }_{2}\right)^{2}$
Intensity $_{2} \quad\left(\text { Distance }_{1}\right)^{2}$

OR

$\left(\right.$ Distance where Intensity is KNOWN) $^{2} \quad \mathrm{x}$ Intensity
(Distance where Intensity is UNKNOWN) ${ }^{2}$

If the Intensity at 100 cm is 200 cGy , what is the Intensity at 50 cm ?

Inverse Square Problem

- If the Intensity at 100 cm is 200 cGy , what is the Intensity at 50 cm ?

```
Intensity \(_{1}=\underline{\left(\text { Distance }_{2}\right)^{2}}\)
Intensity \(_{2} \quad\left(\text { Distance }_{1}\right)^{2}\)
\(\frac{200 \mathrm{cGy}}{\mathrm{x}}=\frac{(50)^{2}}{(100)^{2}}=\) Intensity at \(50 \mathrm{~cm}=800 \mathrm{cGy}\)
```

(Distance where Intensity is KNOWN) ${ }^{2} \quad \mathrm{x}$ Intensity
(Distance where Intensity is UNKNOWN) ${ }^{2}$
$(100)^{2}$ X $200 \mathrm{cGy}=$ Intensity at $50 \mathrm{~cm}=800 \mathrm{cGy}$ $(50)^{2}$

Definitions
 Basic Concepts

 Equivalent Square

 Equivalent Square}

Isocenter

Point around which a gantry rotates
Intersection of the collimator axis and the axis of rotation
Point within the patient or on the patient's skin

SSD

SSD - SOURCE TO SKIN DISTANCE

Field size is defined at SKIN surface

SAD

Table (T)

SAD - SOURCE TO AXIS DISTANCE

SSD + depth $=$ SAD
$92+$ depth $=100$

Field size is defined at Isocenter

Bolus

- Tissue Equivalent Material
- Same density
- Same Z

https://www.google.com/search?q=brass+mesh+bolus+radiation+therapy\&rlz=1C1CH
- Examples:

Water, rice, wax, brass mesh, superflab, superstuff

Can $\underline{S} w i n g$ Over $\underline{\text { Short }}$

- Grenz Ray $-\leq 10-15 \mathrm{KvP}$ HVL in mm AL
- Contact Therapy - 40-50 KvP HVL mm AL
- Superficial - 50-150 KvP HVL in mm AL
- Orthovoltage - $1921 \quad 150-500 \mathrm{KvP} \mathrm{HVL}$ in mm Cu
uses Thoreaus filter - Tin, Copper, Aluminum from tube to patient
- Supervoltage - 500-1000 KvP
- Megavoltage - $1961 \geq 1000 \mathrm{KvP}$ HVL in mm Pb

D/Max - depth of maximum ionization

de Is Equilibrium Depith or Buildup Region
Figure 9.03. Simplified diagram showing the comparative electron buildup regions for radiation of various energies.

Some D/Max Depths to Know

Beam Energy		D/Max Depth	
Cobalt 60		.5 cm	
4 Mv		1.0 cm	
6 Mv		1.5 cm	
$\mathbf{1 0 M v}$		2.5 cm	
$\mathbf{1 8 M v}$		3.5 cm	

Remember: D/max Depth is Primarily dependent on Beam Energy

f Factor

- Roentgen (exposure in air) to cGy (absorbed dose) conversion factor
- Dependent on: Beam Energy and density of material

f factor Problem

Description	Photon Energy		$\mathrm{f}_{\text {med }}$	
Conventional x-rays:		water	muscle	bone
Grenz rays	10 keV	0.909	0.912	4.96
Superficial	30 keV	0.885	0.914	6.17
	100 keV	0.956	0.956	1.716
	Cs-137	0.971	0.962	0.900
Megavoltage		, - \% 0.961		
x-rays:	1 MeV	0.970	0.961	0.898
	Co-60	0.967	0.958	0.922
	1.5 MeV	0.973	0.962	0.900
	5 MeV	0.958	0.948	0.933
	10 MeV .	0.945	0.933	0.987
	100 MeV	0.888	0.873	1.049

- For 100 Kev photons, what is the dose delivered to muscle if the exposure to that muscle is 100 R ?

$$
\begin{aligned}
\text { Dose }_{\text {muscle }} & =\text { Exposure } \times \mathrm{f}_{\text {muscle }} \\
& =100 \mathrm{R} \times 0.956 \\
& =\mathbf{9 5 . 6} \mathbf{c G y}
\end{aligned}
$$

Equivalent Square

Find the equivalent square for a rectangular treatment field

Sterling's Formula

$$
\mathrm{FS}_{\mathrm{eq} .}=4 \cdot \frac{\text { Area }}{\text { Perimeter }}
$$

Example 1

$$
\begin{aligned}
\mathrm{FS}_{\text {eq. }}=4 \cdot \frac{\text { Area }}{\text { Perimeter }} & \frac{\mathrm{L} \times \mathrm{W}}{2(\mathrm{~L}+\mathrm{W}) \text { or sum of sides }} \\
& \frac{10 \times 14}{2(10+14)}=\frac{140}{48}=2.917 \\
& 4 \times 2.917
\end{aligned}
$$

$$
\mathrm{FS}_{\text {eq. }}=11.667 \mathrm{~cm}
$$

Example 2

$$
\mathrm{FS}_{\text {eq. }}=4 \cdot \frac{\text { Area }}{\text { Perimeter }} \frac{\mathrm{Lx} \mathrm{~W}}{2(\mathrm{~L}+\mathrm{W}) \text { or sum of sides }}
$$

$$
\text { Area }=(10 \cdot 14)-(2 \cdot 2)-(3 \cdot 3)
$$

Perimeter $=8+2+2+12+7+3+3+11$

$$
\begin{gathered}
\mathrm{FS}_{\mathrm{eq},}=4 \cdot \frac{127}{48} \\
\mathrm{FS}_{\mathrm{eq} .}=10.58 \mathrm{~cm}
\end{gathered}
$$

Calculations

Percentage Depth Dose (PDD or \%DD)

Ratio of Dose at Depth compared to the dose at D/Max expressed as a percentage Source of

PDD at D/Max for ANY field Size, SSD, Beam Energy is $100 \%=1.00$ (decimal form)

Percentage Depth Dose (PDD or \%DD)

Ratio of Dose at Depth compared to

 the dose at D/Max expressed as a percentage Source of What is PDD value?

6 MV percentage depth dose at 100 cm SSD
~!

Factors Affecting PDD

- Beam Energy - \uparrow Energy $\rightarrow \uparrow$ PDD
- Field Size - \uparrow FS \rightarrow PPDD
- Go deeper into patient - \downarrow PDD
- Source to Skin Distance - \uparrow SSD $\rightarrow \uparrow$ PDD
(Mayneord's F Factor)

Beam Energy

PDD

PDD Table Summary

Eq Sq Depth (cm)	0.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
0.0	19.2	19.2	19.2	20.5	21.8	23.0	24.3	25.6	26.7	27.9	29.1	30.2	31.4	32.6	33.8	35.1	36.3	37.5	39.0	40.4	41.9	43.2	44.5	45.7	47.6
1.0	96.8	96.9	96.9	97.0	97.0	97.0	97.1	97.1	97.2	97.2	97.3	97.3	97.4	97.4	97.5	97.5	97.6	97.6	97.7	97.8	98.0	98.1	98.1	98.2	98.3
1.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2.0	97.4	98.2	98.4	98.4	98.5	98.5	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7
3.0	91.1	93.8	94.4	94.7	94.9	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.3	95.3	95.4	95.4	95.5	95.5	95.6	95.6	95.6	95.6	95.6	95.5
4.0	85.3	89.6	90.6	90.9	91.3	91.4	91.5	91.5	91.5	91.6	91.6	91.7	91.7	91.8	91.9	92.0	92.1	92.2	92.2	92.3	92.4	92.3	92.3	92.3	92.2
5.0	79.9	84.5	85.6	86.1	86.6	86.8	87.0	87.1	87.3	87.5	87.7	87.8	87.9	88.1	88.2	88.3	88.5	88.6	88.7	88.8	89.0	89.0	89.0	89.0	88.9
6.0	74.8	79.7	80.9	81.5	82.1	82.4	82.7	83.0	83.2	83.5	83.8	84.0	84.1	84.3	84.5	84.7	84.8	85.0	85.2	85.4	85.6	85.6	85.7	85.8	85.7
7.0	70.1	75.1	76.3	77.1	77.8	78.3	78.7	79.0	79.3	79.6	79.9	80.3	80.4	80.6	80.8	81.0	81.2	81.4	81.7	82.0	82.2	82.3	82.4	82.5	82.3
8.0	65.7	70.8	72.1	72.9	73.7	74.2	74.7	75.1	75.5	75.9	76.2	76.6	76.8	77.0	77.3	77.5	77.8	77.9	78.3	78.6	78.8	78.9	79.0	79.1	79.0
9.0	61.5	66.7	68.0	68.9	69.8	70.4	71.0	71.4	71.8	72.2	72.6	73.0	73.2	73.5	73.8	74.1	74.3	74.5	74.9	75.3	75.5	75.6	75.8	76.0	75.7
10.0	57.7	62.8	64.1	65.1	66.1	66.7	67.4	67.8	68.3	68.8	69.2	69.6	69.8	70.1	70.5	70.8	71.0	71.2	71.6	72.0	72.3	72.5	72.7	72.8	72.6
11.0	54.0	59.2	60.4	61.5	62.4	63.1	63.8	64.2	64.8	65.3	65.8	66.1	66.4	66.8	67.1	67.5	67.7	67.9	68.4	68.8	69.0	69.2	69.4	69.6	69.3
12.0	50.7	55.7	57.0	58.0	58.9	59.7	60.4	60.9	61.4	61.9	62.4	62.8	63.1	63.5	63.9	64.3	64.5	64.8	65.3	65.8	66.0	66.2	66.4	66.5	66.2
13.0	47.5	52.4	53.6	54.6	55.6	56.4	57.2	57.7	58.2	58.8	59.3	59.7	60.0	60.4	60.8	61.2	61.5	61.7	62.2	62.7	63.0	63.2	63.4	63.5	63.3
14.0	44.6	49.4	50.6	51.6	52.5	53.3	54.1	54.6	55.1	55.7	56.3	56.6	57.0	57.4	57.8	58.2	58.5	58.8	59.4	59.9	60.1	60.3	60.6	60.6	60.4
15.0	41.8	46.6	47.8	48.7	49.6	50.5	51.2	51.7	52.3	52.9	53.5	53.9	54.2	54.7	55.1	55.5	55.8	56.1	56.6	57.1	57.4	57.6	57.9	57.8	57.6
16.0	39.2	43.9	45.1	46.0	46.9	47.8	48.5	49.1	49.7	50.3	50.9	51.2	51.6	52.0	52.5	52.8	53.1	53.4	54.0	54.5	54.8	55.1	55.4	55.2	55.1
17.0	36.8	41.4	42.5	43.5	44.3	45.2	45.91	46.4	47.1	47.7	48.2	48.6	49.0	49.4	49.9	50.2	50.6	50.9	51.5	52.0	52.3	52.6	52.9	52.7	52.6
18.0	34.5	39.0	40.1	41.0	41.9	42.7	43.4	44.0	44.6	45.3	45.8	46.2	46.6	47.0	47.5	47.8	48.2	48.5	49.1	49.6	49.9	50.2 .	50.5	50.3	50.2
19.0	32.4	36.8	37.8	38.7	39.6	40.5	41.1	41.7	42.3	43.0	43.5	43.9	44.3	44.7	45.1	45.5	45.8	46.1	46.8	47.2	47.6	48.0	48.2	48.0	47.9
20.0	30.4	34.6	35.7	36.6	37.4	38.2	38.9	39.5	40.1	40.7	41.2	41.6	42.0	42.5	42.9	43.2	43.6	43.9	44.6	45.0	45.4	45.7	45.9	45.8	45.6
21.0	28.6	32.7	33.7	34.5	35.3	36.1	36.8	37.4	38.0	38.6	39.1	39.5	39.9	40.3	40.7	41.1	41.4	41.8	42.4	42.9	43.2	43.6	43.7	43.6	43.5
22.0	26.8	30.8	31.8	32.6	33.4	34.2	34.8	35.4	36.0	36.9	37.1	37.5	37.9	38.3	38.7	39.1	39.4	39.8	40.4	40.8	41.2	41.6	41.7	41.6	41.5
23.0	25.2	29.1	30.0	30.8	31.6	32.4	33.0	33.6	34.2	34.8	35.2	35.6	36.0	36.4	36.8	37.2	37.5	37.9	38.5	38.9	39.3	39.7	39.8	39.6	39.5
24.0	23.6	27.5	28.4	29.1	29.9	30.6	31.2	31.8	32.4	32.9	33.4	33.7	34.1	34.6	35.0	35.3	35.7	36.0	36.7	37.1	37.5	37.9	37.8	37.7	37.6
25,0	22.2	26.0	26.8	27.6	28.3	29.0	29.6	30.1	30.7	31.3	31.7	32.0	32.4	32.9	33.2	33.6	33.9	34.3	34.9	35.3	35.7	36.1	36.0	35.9	35.8
26.0	20.9	24.5	25.3	26.0	26.7	27.4	27.9	28.5	29.1	29.6	30.0	30.4	30.8	31.2	31.5	31.9	32.2	32.6	33.2	33.6	34.0	34.4	34.3	34.2	34.1
27.0	19.6	23.2	24.0	24.7	25.3	26.0	26.5	27.0	27.6	28.1	28.4	28.8	29.2	29.6	30.0	30.3	30.7	31.0	31.6	32.0	32.4	32.7	32.6	32.6	32.4
28.0	18.4	21.9	22.6	23.3	24.0	24.6	25.1	25.6	26.1	26.6	26.9	27.3	27.7	28.1	28.4	28.8	29.2	29.5	30.1	30.5	30.9	31.1	31.1	31.0	30.9
29.0	17.3	20.7	21.4	22.0	22.7	23.3	23.7	24.2	24.7	25.2	25.6	25.9	26.3	26.7	27.0	27.4	27.7	28.1	28.6	29.0	29.4	29.6	29.5	29.5	29.4
30.0	16.2	19.5	20.2	20.8	21.4	22.0	22.4	22.9	23.4	23.8	24.2	24.6	24.9	25.3	25.7	26.0	26.4	26.7	27.2	27.6	28.0	28.1	28.0	28.0	27.9
																								PDD	6 MV
PSF	1.000	1.002	1.003	1.007	1.012	1.016	1.021	1.025	1.028	1.031	1.033	1.036	1.039	1.040	1.041	1.043	1.044	1.045	1.048	1.051	1.054	1.057	1.060	1.063	1.067

Mayneord's F Factor

Source to Skin Distance - \uparrow SSD $\rightarrow \uparrow$ PDD (Mayneord's F Factor)

- This is used when there is a change in the SSD from the chart. It is an application of the INVERSE SQUARE LAW !!
- $\mathrm{F}=\left(\underline{(\text { old SSD }+ \text { depth })^{2}} \mathrm{X} \underline{(\text { new } \mathrm{SSD}+\mathrm{D} / \mathrm{Max})^{2}}\right.$ $(\text { old SSD }+ \text { D/Max })^{2} \quad(\text { new SSD }+ \text { depth })^{2}$
- $\mathrm{F} \times \% \mathrm{DD}$ value from chart $=\% \mathrm{DD}$ at new SSD

${\underset{\text { Depth }}{\mathrm{Eq}} \mathrm{Sq})}^{\mathrm{Sq}}$	0.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
0.0	19.2	19.2	19.2	20.5	21.8	23.0	24.3	25.6	26.7	27.9	29.1	30.2	31.4	32.6	33.8	35.1	36.3	37.5	39.0	40.4	41.9	43.2	44.5	45.7	47.6
1.0	96.8	96.9	96.9	97.0	97.0	97.0	97.1	97.1	97.2	97.2	97.3	97.3	97.4	97.4	97.5	97.5	97.6	97.6	97.7	97.8	98.0	98.1	98.1	98.2	98.3
1.5	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
2.0	97.4	98.2	98.4	98.4	98.5	98.5	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.6	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7	98.7
3.0	91.1	93.8	94.4	94.7	94.9	95.0	95.0	95.1	95.1	95.1	95.2	95.2	95.2	95.3	95.3	95.4	95.4	95.5	95.5	95.6	95.6	95.6	95.6	95.6	95.5
4.0	85.3	89.6	90.6	90.9	91.3	91.4	91.5	91.5	91.5	91.6	91.6	91.7	91.7	91.8	91.9	92.0	92.1	92.2	92.2	92.3	92.4	92.3	92.3	92.3	92.2
5.0	79.9	84.5	85.6	86.1	86.6	86.8	87.0	87.1	87.3	87.5	87.7	87.8	87.9	88.1	88.2	88.3	88.5	88.6	88.7	88.8	89.0	89.0	89.0	89.0	88.9
6.0	74.8	79.7	80.9	81.5	82.1	82.4	82.7	83.0	83.2	83.5	83.8	84.0	84.1	84.3	84.5	84.7	84.8	85.0	85.2	85.4	85.6	85.6	85.7	85.8	85.7
7.0	70.1	75.1	76.3	77.1	77.8	78.3	78.7	79.0	79.3	79.6	79.9	80.3	80.4	80.6	80.8	81.0	81.2	81.4	81.7	82.0	82.2	82.3	82.4	82.5	82.3
8.0	65.7	70.8	72.1	72.9	73.7	74.2	74.7	75.1	75.5	75.9	76.2	76.6	76.8	77.0	77.3	77.5	77.8	77.9	78.3	78.6	78.8	78.9	79.0	79.1	79.0
9.0	61.5	66.7	68.0	68.9	69.8	70.4	71.0	71.4	71.8	72.2	72.6	73.0	73.2	73.5	73.8	74.1	74.3	74.5	74.9	75.3	75.5	75.6	75.8	76.0	75.7
10.0	57.7	62.8	64.1	65.1	66.1	66.7	67.4	67.8	68.3	68.8	69.2	69.6	69.8	70.1	70.5	70.8	71.0	71.2	71.6	72.0	72.3	72.5	72.7	72.8	72.6
11.0	54.0	59.2	60.4	61.5	62.4	63.1	63.8	64.2	64.8	65.3	65.8	66.	66.4	66.8	67.1	67.5	67.7	67.9	68.4	68.8	69.0	69.2	69.4	69.6	69.3
12.0	50.7	55.7	57.0	58.0	58.9	59.7	60.4	60.9	61.4	61.9	62.4	62.8	63.1	63.5	63.9	64.3	64.5	64.8	65.3	65.8	66.0	66.2	66.4	66.5	66.2
13.0	47.5	52.4	53.6	54.6	55.6	56.4	57.2	57.7	58.2	58.8	59.3	59.7	60.0	60.4	60.8	61.2	61.5	61.7	62.2	62.7	63.0	63.2	63.4	63.5	63.3
14.0	44.6	49.4	50.6	51.6	52.5	53.3	54.1	54.6	55.1	55.7	56.3	56.6	57.0	57.4	57.8	58.2	58.5	58.8	59.4	59.9	60.1	60.3	60.6	60.6	60.4
15.0	41.8	46.6	47.8	48.7	49.6	50.5	51.2	51.7	52.3	52.9	53.5	53.9	54.2	54.7	55.1	55.5	55.8	56.1	56.6	57.1	57.4	57.6	57.9	57.8	57.6
					-																				
16.0	39.2	43.9	45.1	46.0	46.9	47.8	48.5	49.1	49.7	50.3	50.9	51.2	51.6	52.0	52.5	52.8	53.1	53.4	54.0	54.5	54.8	55.1	55.4	55.2	55.1
17.0	36.8	41.4	42.5	43.5	44.3	45.2	45.9	46.4	47.1	47.7	48.2	48.6	49.0	49.4	49.9	50.2	50.6	50.9	51.5	52.0	52.3	52.6	52.9	52.7	52.6
18.0	34.5	39.0	40.1	41.0	41.9	42.7	43.4	44.0	44.6	45.3	45.8	46.2	46.6	47.0	47.5	47.8	48.2	48.5	49.5	49.6	49.9	50.2 .	50.5	50.3	50.2
19.0	32.4	36.8	37.8	38.7	39.6	40.5	41.1	41.7	42.3	43.0	43.5	43.9	44.3	44.7	45.1	45.5	45.8	46.1	46.8	47.2	47.6	48.0	48.2	48.0	47.9
20.0	30.4	34.6	35.7	36.6	37.4	38.2	38.9	39.5	40.1	40.7	41.2	41.6	42.0	42.5	42.9	43.2	43.6	43.9	44.6	45.0	45.4	45.7	45.9	45.8	45.6
21.0	28.6	32.7	33.7	34.5	35.3	36.1	36.8	37.4	38.0	38.6	39.1	39.5	39.9	40.3	40.7	41.1	41.4	41.8	42.4	42.9	43.2	43.6	43.7	43.6	43.5
22.0	26.8	30.8	31.8	32.6	33.4	34.2	34.8	35.4	36.0	36.9	37.1	37.5	37.9	38.3	38.7	39.1	39.4	39.8	40.4	40.8	41.2	41.6	41.7	41.6	41.5
23.0	25.2	29.1	30.0	30.8	31.6	32.4	33.0	33.6	34.2	34.8	35.2	35.6	36.0	36.4	36.8	37.2	37.5	37.9	38.5	38.9	39.3	39.7	39.8	39.6	39.5
24.0	23.6	27.5	28.4	29.1	29.9	30.6	31.2	31.8	32.4	32.9	33.4	33.7	34.1	34.6	35.0	35.3	35.7	36.0	36.7	37.1	37.5	37.9	37.8	37.7	37.6
25.0	22.2	26.0	26.8	27.6	28.3	29.0	29.6	30.1	30.7	31.3	31.7	32.0	32.4	32.9	33.2	33.6	33.9	34.3	34.9	35.3	35.7	36.1	36.0	35.9	35.8
26.0	20.9	24.5	25.3	26.0	26.7	27.4	27.9	28.5	29.1	29.6	30.0	30.4	30.8	31.2	31.5	31.9	32.2	32.6	33.2	33.6	34.0	34.4	34.3	34.2	34.1
27.0	19.6	23.2	24.0	24.7	25.3	26.0	26.5	27.0	27.6	28.1	28.4	28.8	29.2	29.6	30.0	30.3	30.7	31.0	31.6	32.0	32.4	32.7	32.6	32.6	32.4
28.0	18.4	21.9	22.6	23.3	24.0	24.6	25.1	25.6	26.1	26.6	26.9	27.3	27.7	28.1	28.4	28.8	29.2	29.5	30.1	30.5	30.9	31.1	31.1	31.0	30.9
29.0	17.3	20.7	21.4	22.0	22.7	23.3	23.7	24.2	24.7	25.2	25.6	25.9	26.3	26.7	27.0	27.4	27.7	28.1	28.6	29.0	29.4	29.6	29.5	29.5	29.4
30.0	16.2	19.5	20.2	20.8	21.4	22.0	22.4	22.9	23.4	23.8	24.2	24.6	24.9	25.3	25.7	26.0	26.4	26.7	27.2	27.6	28.0	28.1	28.0	28.0	27.9
																								PDD 6	6 MV
PSF	1.000	1.002	1.003	1.007	1.012	1.016	1.021	1.025	1.028	1.0311	1.033	1.036	1.039	1.040	1.041	1.043	1.044	1.045	1.048	1.051	1.054	1.057	1.060	1,063	1.067

Using Mayneord's F Factor
15×15 at 8 cm depth $@ 125 \mathrm{SSD}=$

$$
1.0242 \times 76.8=78.7
$$

Monitor Unit

Unit of Output Measure for Linear Accelerator

- Specific number of MUs needed for EACH patient's treatment
- Dependent on:
- dose - Field Size - depth - Beam Energy

Monitor Unit Calculations Using PDD

Monitor Unit =

Tumor Dose

Reference Dose Rate x Sc x Sp x PDD x (any other absorption factors)
(at distance of Rx SSD + D/Max

Monitor Unit Calculations Using PDD

Reference Field Size generally 10x10

Scatter (Output) Factor

- This factor adjusts the machine output when the Treatment Field Size is "different" than 10×10
- If the Field Size is greater than 10×10, the Output Factor will be GREATER than 1.0 (more scatter)
- If the Field Size is smaller than 10×10, the Output Factor will be Less than 1.0 (less scatter)
- The Output Factor can be subdivided into Collimator Scatter (Sc) and Phantom Scatter (Sp)

Tumor Dose

Reference Dose Rate \times Sc x Sp x PDD x (any other absorption factors)
(at distance of Rx SSD + D/Max)

Scatter Factor Tables

Table $24-4$	Scatter Factors												Reference Field Size											
SCATTER FACTOR/COMBINED SCATTER (SC, Sp)																								
$\begin{aligned} & \mathrm{Mach} / \mathrm{Eq} \\ & \mathrm{Sq} \end{aligned}$	4.0	5.0	6.0	7.0	8.0		10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-60	0.928	0.945	0.962	0.971	0.980	0.990	1.000	1.009	1.019	1.028	1.037	1.046	1.053	1.060	1.067	1.074	1.081	1.089	1.096	1.102	1.105	1.109		
6 MV	0.927	0.940	0.954	0.967	0.979	0.990	1.000	1.007	1.014	1.021	1.028	1.035	1.039	1.044	1.049	1.053	1.058	1.065	1.072	1.079	1.084	1.088	1.092	1.098
10 MV	0.925	0.938	0.953	0.967	0.979	0.990	1.000	1.005	1.011	1.016	1.022	1.027	1.032	1.037	1.041	1.046	1.051	1.058	1.065	1.069	1.071	1.073	1.077	1.081
18 MV	0.904	0.922	0.941	0.961	0.976	0.988	1.000	1.007	1.014	1.021	1.028	1.036	1.041	1.046	1.051	1.056	1.060	1.067	1.073	1.079	1.084	1.087	1.090	1.093

SCATTER FACTOR FOR COLLIMATOR SCATTER (SC) (USED WITH PDD, TAR, TMR/TPR)

$\begin{aligned} & \text { Mach/Eq } \\ & \text { Sq } \end{aligned}$	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-6	0.946	0.961	0.975	0.981	0.987	0.993	1.000	1.006	1.012	1.018	1.024	1.030	1.035	1.039	1.044	1.048	1.053	1.057	1.061	1.063	1.063	1.063		
6 MV	0.948	0.961	0.970	0.979	0.987	0.994	1.000	1.004	1.008	1.013	1.017	1.021	1.024	1.028	1.031	1.035	1.038	1.041	1.045	1.048	1.051	1.052	1.053	1.055
10 MV	0.938	0.951	0.962	0.973	0.982	0.991	1.000	1.005	1.009	1.014	1.018	1.023	1.026	1.030	1.033	1.037	1.040	1.044	1.048	1.051	1.052	1.054	1.057	1.061
18 MV	0.914	0.931	0.948	0.965	0.978	0.989	1.000	1.006	1.012	1.017	1.023	1.029	1.032	1.036	1.039	1.043	1.046	1.052	1.057	1.063	1.066	1.067	1.069	1.070

SCATTER FACTOR FOR PHANTOM SCATTER (SP) (USED WITH PDD. TMR/TPR)

$\begin{gathered} \mathrm{Mach} / \mathrm{Eq} \\ \mathrm{Sq} \end{gathered}$	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-6	0.981	0.983	0.987	0.990	0.993	0.997	1.000	1.003	1.007	1.010	1.013	1.016	1.017	1.020	1.022	1.025	1.027	1.030	1.033	1.037	1.040	1.043		
6 MV	0.978	0.978	0.984	0.988	0.992	0.996	1.000	1.003	1.006	1.008	1.011	1.014	1.015	1.016	1.017	1.017	1.019	1.023	1.026	1.030	1.031	1.034	037	041
10 MV	0.986	0.986	0.991	0.994	0.997	0.999	1.000	1.000	1.002	1.002	1.004	1.004	1.006	1.007	1.008	1.009	1.011	1.013	1.016	1.017	1.018	1.018	1.019	1.019
18 MV	0.989	0.990	0.993	0.996	0.998	0.999	1.000	1.001	1.002	1.004	1.005	1.007	1.009	1.010	1.012	1.012	1.013	1.014	1.015	1.015	1.017	1.019	1.020	1.021

non Darnent denth dese. TAR. tissue-air ratio; $T M R$, tissue-maximum ratio; $T P R$, tissue-phantom ratio.

Monitor Unit Calculations Using PDD

Monitor Unit =

Tumor Dose

Reference Dose x Sc x Sp x PDD x (any other factors as needed) Rate (at distance of Rx SSD + D/Max)

PDD Monitor Unit Problem for 6Mv Linear Accelerator

Calculate the MU necessary to deliver 200 cGy to a depth of 3 cm $($ PDD value $=95.1 \%)$
10x10 field size 6Mv Linear Accelerator 100 cmSSD
Reference Dose Rate at 101.5 cm from source is $1.0 \mathrm{cGy} /$ monitor unit

Scatter Factor Tables

24-4

SCATTER FACTOR/COMBINED SCATTER (SC, SP)

$\begin{aligned} & \mathrm{Mach} / \mathrm{Eq} \\ & \mathrm{Sq} \end{aligned}$	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-60	0.928	0.945	0.962	0.971	0.980	0.990	1.000	1.009	1.019	1.028	1.037	1.046	1.053	1.060	1.067	1.074	1.081	1.089	1.096	1.102	1.105	1.109		
6 MV	0.927	0.940	0.954	0.967	0.979	0.990	1.000	1.007	1.014	1.021	1.028	1.035	1.039	1.044	1.049	1.053	1.058	1.065	1.072	1.079	1.084	1.088	1.092	88
10 MV	0.925	0.938	0.953	0.967	0.979	0.990	1.000	1.005	1.011	1.016	1.022	1.027	1.032	1.037	1.041	1.046	1.051	1.058	1.065	1.069	1.071	1.073	1.077	1.081
18 MV	0.904	0.922	0.941	0.961	0.976	0.988	1.000	1.007	1.014	1.021	1.028	1.036	1.041	1.046	1.051	1.056	1.060	1.067	1.073	1.079	1.084	1.087	1.090	1.093

CCAITER FACTOR FOR COLLIMATOR SCATTER (SC) (USED WITH PDD AR, TMR/TPR)

$\begin{aligned} & \text { Mach/Eq } \\ & \text { Sq } \end{aligned}$	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-60	0.946	0.961	0.975	0.981	0.987	0.993	1.000	1.006	1.012	1.018	1.024	1.030	1.035	1.039	1.044	1.048	1.053	1.057	1.061	1.063	1.063	1.063		
6 MV	0.948	0.961	0.970	0.979	0.987	0.994	1.000	1.004	1.008	1.013	1.017	1.021	1.024	1.028	1.031	1.035	1.038	1.041	1.045	1.048	1.051	1.052	1.053	1.055
10 MV	0.938	0.951	0.962	0.973	0.982	0.991	1.000	1.005	1.009	1.014	1.018	1.023	1.026	1.030	1.033	1.037	1.040	1.044	1.048	1.051	1.052	1.054	1.057	1.061
18 MV	0.914	0.931	0.948	0.965	0.978	0.989	1.000	1.006	1.012	1.017	1.023	1.029	1.032	1.036	1.039	1.043	1.046	1.052	1.057	1.063	1.066	1.067	1.069	1.070

SCATTER FACTOR FOR PHANTOM SCATTER (SP) (USED WITH PDD. MR/TPR)

$\begin{gathered} \mathrm{Mach} / E q \\ \mathrm{Sq} \end{gathered}$	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
Cobalt-6	0.981	0.983	0.987	0.990	0.993	0.99	00	1.003	1.007	1.010	1.013	1.016	1.017	1.020	1.022	1.025	1.027	1.030	1.033	1.037	1.040	1.043		
6 MV	0.978	0.978	0.984	0.988	0.992	0.996	1.000	1.003	1.006	1.008	1.011	1.014	1.015	1.016	1.017	1.017	1.019	1.023	1.026	1.030	1.031	1.034	1.037	1.041
10 MV	0.986	0.986	0.991	0.994	0.997	0.999	1.000	1.000	1.002	1.002	1.004	1.004	1.006	1.007	1.008	1.009	1.011	1.013	1.016	1.017	1.018	1.018	1.019	1.019
18 MV	0.989	0.990	0.993	0.996	0.998	0.999	1.000	1.001	1.002	1.004	1.005	1.007	1.009	1.010	1.012	1.012	1.013	1.014	1.015	1.015	1.017	1.019	1.020	1.021

non Darnent denth dese. TAR. tissue-air ratio; $T M R$, tissue-maximum ratio; $T P R$, tissue-phantom ratio.

6 MV percentage depth dose at 100 cm SSD

PDD Monitor Unit Problem for 6Mv Linear Accelerator

200cGy

$=\quad 210.3 \mathrm{MU}$
$\underset{\text { Reference Dose Rate at }}{1.0 \mathrm{cGy}} \mathrm{M} \underset{\mathrm{Sc}}{1.0} \underset{\mathrm{~S}_{\mathrm{p}}}{1.0} \times \underset{\text { PDD (indecinal fomm) }}{.951}$

Dose to Another Point Using PDD

- To calculate the dose at some point along the central axis - use direct proportion.
- $\frac{\text { Dose at Point } \mathrm{A}}{\% \text { DD at Point } \mathrm{A}}=\frac{\text { Dose at Point B }}{\% \mathrm{DD} \text { at Point } \mathrm{B}}$
- Problem: For a $6 M v$ beam, what is the dose to the depth of 5 cm when the dose at 3 cm is $200 c G y$?
- PDD value at $\mathrm{D} 3=.951$
- PDD value at D5 $=.876$

Dose at Another Depth

Hint: Since 5 cm depth is further $\underline{A W A Y}$ from the source, the dose

would be LESS than the dose at 3 cm

Dose at Another Depth

- PDD value at $\mathrm{D} 3=.951 \mathrm{PDD}$ value at $\mathrm{D} 5=.876$
- $\frac{\text { Dose at D3 }}{\text { PDD at D3 }}=\frac{\text { Dose at D5 }}{\text { PDD at D5 }}$
$\frac{200 \mathrm{cGy}}{.951}=\quad \underline{\underline{\mathrm{x}}}$
dose at 5 cm Depth $\quad \mathrm{x}=184.23 \mathrm{cGy}$

Dose at Another Depth

Hint: Since 5 cm depth is further $\underline{A W A Y}$ from the source, the dose

would be $\underline{L E S S}$ than the dose at 3 cm

Dose at Another Depth

- Problem: For a 6 Mv beam, what is the dose to the D/Max when the dose at 3 cm is 200cGy?
- PDD value at $\mathrm{D} 3=.951$
- Dose at D3 $=$ Dose at D/Max PDD at D3 PDD at D/Max

Dose at Another Depth

Hint: Since 1.5 cm depth (D/max depth for 6 MV) is closer TOWARDS the
source, the dose would be MORE than the dose at 3 cm

Dose at Another Depth

- Problem: For a 6 Mv beam, what is the dose to the D/Max when the dose at 3 cm is 200cGy? PDD value at $\mathrm{D} 3=.951$
- Dose at D3 $=$ Dose at D/Max PDD at D3 PDD at D/Max
$\frac{200 \mathrm{cGy}}{.951}=\frac{\mathrm{x}}{1.00}$
dose at D/Max $\quad \mathrm{x}=210.30 \mathrm{cGy}$

Dose at Another Depth

Hint: since 1.5 cm depth (D/max depth for 6 MV) is closer TOWARDS the source, the dose would be MORE than the dose at 3 cm

Tissue to Air Ratio (TAR)

- Developed by Johns to be used in Rotational Therapy
- Rotational Therapy has the gantry moving DURING the treatment - while the beam is ON.
- A full 360° treatment is called a "Rotation"
- Any treatment $<360^{\circ}$ is called an "arc"

Tissue Air Ratio (TAR)

Copyright © 2010 by Mosby, Inc, an affliate of Elsevier Inc.
****TAR at D/Max is also called Back Scatter Factor ${ }^{* * * * ~}$

Factors Affecting TAR

- Field Size - \uparrow FS $\rightarrow \uparrow$ TAR
- Beam Energy - \uparrow Energy $\rightarrow \uparrow$ TAR
- Go deeper into patient - \downarrow TAR
- ****Source to Skin Distance DOES NOT AFFECT TAR

$$
(\sim 2 \% \text { accuracy })^{* * * *}
$$

6Mv TAR

		6-MV Tissue-Air Ratio																							
$\begin{aligned} & \text { Eq } \\ & \text { Dep } \end{aligned}$	0	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	22	24	6			32	35
(cm)																									
0.0	0.186	0.187	0.187	0.200	0.213	0.227	0.240	0.254	0.266	0.279	0.291	0.304	0.316	0.329	0.342	0:354	0.367	0.380	0.396	0.412	0.428	0.443	0.457	0.471	0.492
1.0	0.957	0.960	0.961	0.965	0.970	0.974	0.979	0.984	0.987	0.990	0.994	0.997	1.000	1.002	1.003	1.005	1.006	1.008	1.012	1.017	1.021	1.025	1.028	1.032	1.037
1.5	1.000	1.002	1.003	1.007	1.012	1.016	1.021	1.025	1.028	1.031	1.033	1.036	1.039	1.040	1.041	1.043	1.044	1.045	1.048	1.051	1.054	1.057	1.060	1.063	1.067
2.0	0.982	0.992	0.994	0.999	1.004	1.009	1.014	1.018	1.021	1.024	1.027	1.030	1.032	1.034	1.035	1.037	1.038	1.039	1.043	1.046	1.049	1.052	1.055	1.057	1.061
3.0	0.936	0.966	0.973	0.979	0.986	0.991	0.996	1.001	1.004	1.007	1.010	1.013	1.016	. 1.018	1.020	1.021	1.023	1.025	1.028	1.032	1.035	1.038	1.041	1.043	1.047
4.0	0.894	0.940	0.951	0.959	0.966	0.972	0.977	0.982	0.985	0.988	0.991	0.994	0.997	0.999	1.001	1.004	1.006	1.008	1.012	1.015	1.019	1.022	1.025	1.027	1.031
5.0	0.853	0.903	0.915	0.924	0.933	0.941	0.946	0.952	0.956	0.961	0.965	0.970	0.974	0.977	0.979	0.982	0.984	0.987	0.991	0.996	1.000	1.003	1.006	1.009	1.013
6.0	0.814	0.867	0.880	0.890	0.900	0.909	0.916	0.923	0.928	0.933	0.939	0.944	0.949	0.952	0.955	0.958	0.961	0.964	0.969	0.974	0.979	0.984	0.987	0.990	0.995
7.0	0.777	0.831	0.845	0.857	0.868	0.878	0.886	0.894	0.900	0.906	0.911	0.917	- 0.923	0.926	0.930	0.933	0.937	0.940	0.946	0.951	0.957	0.962	0.965	0.969	0.974
8.0	0.742	0.798	0.812	0.824	0.837	0.847	0.856	0.865	0.871	0.878	0.884	0.891	0.897	0.901	0.905	0.908	0.912	0.916	0.922	0.928	0.934	0.939	0.943	0.946	0.952
9.0	0.708	0.765	0.779	0.792	0.805	0.817	0.826	0.836	0.843	0.850	0.856	0.863	0.870	0.874	0.878	0.883	0.887	0.891	0.898	0.904	0.911	0.916	0.920	0.924	0.930
10.0	0.676	0.733	0.747	0.761	0.775	0.787	0.798	0.808	0.815	0.822	0.830	0.837	0.844	0.848	0.853	0.857	0.862	0.866	0.873	0.880	0.887	0.892	0.897	0.901	0.908
11.0	0.645	0.702	0.716	0.730	0.744	0.756	0.767	0.778	0.786	0.793	0.801	0.808	0.816	0.821	0.826	0.830	0.835	0.840	0.847	0.854	0.861	0.867	0.872	0.876	0.883
12.0	0.616	0.672	0.686	0.700	0.714	0.727	0.738	0.749	0.757	0.765	0.772	0.780	0.788	0.793	0.798	0.804	0.809	0.814	0.822	0.829	0.837	0.843	0.848	0.852	0.859
13.0	0.588	0.643	0.657	0.671	0.684	0.697	0.709	0.721	0.729	0.737	0.745	0.753	0.761	0.766	0.772	0.777	. 0.783	0.788	0.796	0.804	0.812	0.818	0.823	0.828	0.835
14.0	0.561	0.616	0.630	0.643	0.656	0.669	0.681	0.693	0.701	0.709	0.718	0.726	0.734	0.740	0.745	0.751	0.756	0.762	0.771	0.779	0.788	0.794	0.799	0.804	0.811
15.0	0.536	0.590	0.604	0.617	0.630	0.642	0.655	0.667	0.675	0.684	0.692	0.701	0.709	0.715	0.721	0.726	0.732	0.738	0.747	0.755	0.764	0.771	0.776	0.781	0.788

BSF is NOT affected by SSD (readinas at ion chamber)

Dose in free space
64cGy

Dose in phantom
76.8cGy
$B S F=76.8 / 64=1.2$

Monitor Unit Calculations Using TAR

Machine Output AND Field Size measured at Treatment SAD

TAR Monitor Unit Calculations for 6Mv Linear Accelerator

Calculate the Monitor Unit necessary to deliver 180 cGy to a 5 cm depth TAR at D5 $=95.2 \%$ 10x10 field size 100 cmSAD

6Mv Linear Accelerator
Machine output at 100 cm from source is $1 \mathrm{cGy} / \mathrm{MU}$

Monitor Unit Calculation Using TAR

Monitor Unit $=$

Tumor Dose

Machine output x $S_{c} \times$ TAR \times (any other absorption factors) (at distance of Rx SAD)

TAR Monitor Unit Calculations for 6Mv Linear Accelerator

180
$=189.08 \mathrm{MU}$
$1.0 \mathrm{cGy} / \mathrm{MU} \times 1.0 \times .952$
machine output at Rx SAD $\quad S_{c} \quad$ TAR

Tissue Maximum Ratio

- Because of Measurement difficulties, the TMR was developed.
- The SAME factors which influence TAR, affect TMR in the same way

TAR compared to TMR

$\star * ~$

EQSO DEPTH (cm)	0.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	22.0	24.0	26.0	28.0	30.0	32.0	35.0
0.0	0.186	0.187	0.186	0.199	0.210	0.223	0.235	0.248	0.259	0.271	0.282	0.293	0.304	0316	0329	0.339	0.352	0.354	0.378	0.352	0.406	0.419	0.431	0.443	0.461
1.0	0.957	0.958	0.958	0.958	0.958	0.959	0.959	0.950	0.960	0.960	0.962	0.962	0.962	0.963	0.963	0.964	0.964	0.965	0.966	0.968	0.969	0.970	0.970	0.971	0.972
1.5	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
2.0	0.982	0.990	0.981	0.992	0.992	0.993	0.993	0.993	0.993	0.993	0.994	0.994	0.993	0.994	0.994	0.994	0.994	0.994	0.956	0.985	0.995	0.995	0.995	0.994	0.994
3.0	0.936	0.964	0.970	0.972	0.974	0.975	0.976	0.977	0.977	0.977	0.978	0.978	0.978	0.979	0.980	0.979	0.980	0.981	0.981	0.982	0.982	0.982	0.582	0.981	0.981
4.0	0.894	0.938	0.948	0.952	0.955	0.957	0.957	0.958	0.958	0.958	0.959	0.959	0.960	0.961	0.962	0.963	0.964	0.965	0.966	0.966	0.967	0.967	0.967	0.966	0.966
5.0	0.853	0.901	0.912	0.918	0.922	0.926	0.927	0.929	0.930	0.932	0.934	0.936	0.937	0.939	0.940	0.942	0.943	0.944	0.946	0.948	0.949	0.949	0.949	0.949	0.949
6.0	0.814	0.865	0.877	0.884	0.889	0.895	0.897	0.900	0.903	0.905	0.909	0.911	0.913	0.915	0.917	0.556	0.920	0.922	0.925	0.927	0.929	0.931	0.931	0.931	0.933
7.0	0.777	0.829	0.842	0.851	0.858	0.864	0.868	0.872	0.875	0.879	0.882	0.885	0.88B	0.891	0.893	0.895	0.898	0.900	0.903	0.905	0.908	0.910	0.910	0.912	0.913
8.0	0.742	0.796	0.810	0.818	0.827	0.834	0.838	0.844	0.847	0.852	0.856	0.860	0.863	0.866	0.859	0.871	0.874	0.877	0.880	0.883	0.886	0.898	0.890	0.890	0.892
9.0	0.708	0.763	0.777	0.786	0.795	0.804	0.809	0.816	0.820	0.824	0.829	0.833	D.837	0.840	0.843	0.847	0.850	0.853	0.857	D.860	0.864	0.867	0.868	0.869	0.872
10.0	0.676	0.732	0.745	0.756	0.766	0.775	0.782	0.788	0.793	0.797	0.803	0.808	0.812	0.816	0.819	0.822	0.826	0.829	0.833	0.837	0.842	0.844	0.846	0.848	0.851
11.0	0.645	0.701	0.714	0.725	0.735	0.744	0.751	0.759	0.765	0.769	0.775	0.780	0.785	0.789	0.793	0.796	0.800	0.804	0.808	0.813	0.817	0.820	0.823	0.824	0.828
12.0	0.616	0.671	0.684	0.695	0.706	0.716	0.723	0.731	0.736	0.742	0.747	0.753	0.758	0.763	0.767	0.771	0.775	0.779	0.784	0.789	0.794	0.798	0.800	0.802	0.805
13.0	0.588	0.642	0.655	0.656	0.676	0.685	0.654	0.703	0.709	0.715	0.721	0.727	0.732	0.737	0.742	0.745	0.750	0.754	0.760	0.765	0.770	0.774	0.776	0.779	0.783
14.0	0.561	0.615	0.628	0.639	0.648	0.658	0.667	0.676	0.682	0.688	0.695	0.701	0.706	0.711	0.716	0.720	0.724	0.729	0.736	0.741	0.748	0.751	0.754	0.756	0.760
15.0	0.536	0.569	0.602	0.613	0.623	0.620	0.642	0.651	0.657	0.663	0.670	0.677	0.682	0.688	0.693	0.656	0.701	0.706	0.713	0.718	0.725	0.729	0.732	0.735	0.739
16.0	0.511	0.564	0.577	0.58B	0.598	0.607	0.617	0.626	0.633	0.639	0.647	D.653	0.659	0.665	0.670	0.673	0.678	0.683	0.690	0.696	0.703	0.708	0.710	0.713	0.718
17.0	0.488	0.541	0.553	0.564	0.574	0.584	0.593	0.602	0.609	0.615	0.622	0.628	0.635	0.641	0.646	0.650	0.655	0.660	0.667	D.674	0.680	0.886	0.689	0.692	0.697
18.0	0.466	0.517	0.529	0.540	0.550	0.560	0.569	0.579	0.586	0.593	0.599	0.606	0.613	0.618	0.623	0.628	0.633	0.638	0.645	D.653	0.659	0.665	0.668	0.672	0.677
19.0	0.445	0.495	0.507	0.517	0.528	D. 537	0.547	0.556	0.563	0.570	0.577	0.594	0.591	0.596	0.601	0.606	0.611	0.616	0.623	0.631	0.638	0.643	0.647	0.651	0.657
20.0	0.424	0.473	0.486	0.496	0.506	0.516	0.524	0.534	0.541	0.548	0.555	0.562	0.569	0.574	0.579	0.584	0.589	0.594	0.602	D. 609	0.617	0.623	0.626	0.630	0.636
21.0	0.405	0.454	0.466	0. 476	0.484	0.494	0.502	0.512	0.519	0.527	0.533	0.541	0.548	0.553	0.558	0.563	0.568	0.573	0.581	0.588	0.596	0.602	0.606	0.611	0.616
22.0	0.387	0.434	0.446	0.456	0.464	0.474	0.483	0.492	0.499	0.506	0.513	0.520	0.527	0.533	0.538	0.543	0.548	0.553	0.561	0.568	0.576	0.582	0.587	0.591	0.598
23.0	0.370	0.416	0.42 B	0.437	0.446	0.456	0.464	0.473	0.480	0.487	0.454	0.501	0.508	0.513	0.518	0.523	0.529	0.534	0.541	0.549	0.557	0.563	0.568	0.572	0.579
24.0	0.352	0.398	0.410	0.419	0.428	0.436	0.445	0.454	0.460	0.468	0.474	0.482	0.488	0.494	0.499	0.503	0.509	0.514	0.522	0.530	0.538	0.544	0.549	0.553	0.560
25.0	0.337	0.382	0393	0.402	0.410	0.419	0.427	0.436	0.443	0.449	0.456	0.463	0.470	0.475	0.480	0.485	0.490	0.496	0.504	0.512	0.520	0.526	0.530	0.535	0.543
26.0	0.321	0.385	0.376	0.384	0.393	0.402	0.408	0.418	0.424	0.431	0.439	0.445	0.451	0.457	0.462	0.466	0.471	0.477	0.485	0.493	0.501	0.507	0.512	0.516	0.524
27.0	0.307	0.350	0.361	0.369	0.377	0.386	0.394	0.402	0.408	0.414	0.421	0.428	0.434	0.439	0.444	0.449	0.454	0.459	0.468	0.476	0.484	0.450	0.495	0.500	0.507
28.0	0.292	0.335	0.346	0.355	0.362	0.370	0.377	0.385	0.392	0.398	0.405	0.410	0.417	0.422	0.427	0.431	0.436	0.441	0.449	0.459	0.467	0.473	0.478	0.483	0.490
29.0	0.279	0.321	0.332	0.340	0.344	0.355	0.362	0.370	0.375	0.382	0.388	0.396	0.400	0.405	0.410	0.415	0.420	0.425	0.433	0.441	0.450	0.457	0.461	0.465	0.473
30.0	0.266	0.307	0.317	0.325	0.332	0.340	0.347	0.354	0.360	0.366	0.373	0.378	0.384	0.369	0.394	0.399	0.403	0.409	0.417	0.425	0.434	0.440	0.444	0.450	0.456

[^0]
Factors Affecting TMR

- Field Size - \uparrow FS $\rightarrow \uparrow$ TMR
- Beam Energy - \uparrow Energy $\rightarrow \uparrow$ TMR
- Go deeper into patient - \downarrow TMR
- ****Source to Skin Distance

DOES NOT AFFECT TMR
($\sim 2 \%$ accuracy) ${ }^{* * * *}$

Monitor Unit Calculations Using TMR

- Calculate the Monitor Unit necessary to deliver 180 cGy to a 5 cm depth 10 x 10 field size 100 cmSAD TMR $=97.7 \%$ 6Mv Linear Accelerator
Machine output at 100 cm from source is 1cGy/MU

Monitor Unit Calculation Using TMR

Monitor Unit $=$

Tumor Dose

Machine output x Sc x Spx TMR x (any other absorption factors)
(at distance of Rx SAD)

TMR Monitor Unit Calculations for 6Mv Linear Accelerator

180

$$
=184.24 \mathrm{MU}
$$

$1.0 c G y / M U \times 1.0 \times 1.0 \times .977$

machine output at Rx SAD
$\begin{array}{lll}S_{c} & \mathrm{Sp} & \text { TMR }\end{array}$

Factors Affecting PDD/TAR/TMR

	PDD		TAR	
Increase Beam Energy			TMR	
Increase Field Size				
Increase Depth in Patient (go deeper)				

Gantry Speed for Rotational Treatments

Speed of Gantry for Rotational Treatment

- To set speed of gantry during a moving field treatment

Treatment Monitor units
number of degrees of treatment arc

Problem for the

Speed of the Gantry for Rotational Treatment

- What would be the monitor units per degree (aka speed of gantry) when

The monitor units is 255 for an anterior arc of 180 degrees?

Treatment Monitor units

number of degrees of treatment arc

$$
255 / 180=1.4166=1.42 \mathrm{MU} / \text { degree }
$$

Where is the FINISHING angle for the arc?

180

- If the MU are 255 and the MU/degree is 1.42 and the gantry starts at gantry angle of 270, travels clockwise......WHERE is the FINISHING (aka STOP) gantry angle for this treatment?

Where is the FINISHING angle for the arc?

1. Determine the number of degrees in the arc

$$
\underline{\text { Treatment Monitor units }}=\text { gantry speed }
$$

number of degrees of treatment arc

$$
\underline{255}=1.42
$$

???
$255 / 1.42=? ? ?=180$ degrees in the arc
2. Look at gantry angle orientation AND direction of the gantry movement

Where is the FINISHING angle for

 the arc?START here

AND....the FINISHING angle is

Blocking/MLC

BLOCKS

- Shape the Radiation Field to shield/protect normal tissues
- Must be at least 5 HVL thick to allow < 5\% transmission
- Made of Cerrobend - (Lipowitz's metal) Bismuth, Lead, Tin \& Cadmium
- Main Advantage - Low Melting Point

Cerrobend Ratio to Lead

- Since cerrobend is a Lead alloy, we need MORE cerrobend to do the same shielding as Pure Lead *** 1.25 cm Cerrobend $\sim 1.00 \mathrm{~cm}$ Pure Lead***
- Problem: How much cerrobend is needed for blocks to be used on a machine whose $H V L=1.1 \mathrm{~cm}$ Lead?
- $1.25 \times 1.1=1.375 \mathrm{~cm}$ cerrobend $\times 5=6.875 \mathrm{~cm}$

Tray to Hold Blocks

Tray Factor

- Amount of Transmission through the plastic tray which holds the Cerrobend blocks
- Dose With Tray in place $=97 \mathrm{cGy}$
- Dose Without Tray = 100cGy
- Transmission Factor $=97 / 100=.97$
(Same concept can be applied to compensator/physical wedges)

Clarkson Calculation

Also called "Irregular Field Calculation"

 corrects for the lack of scatter due to shielding

- The Tissue Air Ratio value needed to calculate the Monitor Unit, is made up of contributions from both the Primary radiation - 0x0 field size $\left(\mathrm{TAR}_{0}\right)$ - when e-hits target, photons produced $=$ primary beam
added to scatter (SAR)

$$
\mathrm{TAR}=\mathrm{TAR}_{0}+\mathrm{SAR}
$$

6Mv TAR

- TAR for $15 \times 15_{\text {(open feicl })}$ at 10 cm depth $=.844$
- TAR_{0} for 0×0 at 10 cm depth $=.676$
- $\mathrm{TAR}=\mathrm{TAR}_{0}+\mathrm{SAR}$

$$
\begin{array}{cc}
.844=.676 & + \text { SAR } \\
.844-.676=\text { SAR } \\
.168 & =\text { SAR }
\end{array}
$$

Clarkson Calculation

1. Divide Field into Segments
2. Look up SAR value for EACH Radius Length
3. Get Average SAR value
4. Add Average SAR value to TAR_{0}
5. Use "adjusted" TAR value for MU Calculation

Calculate SAR at center of field.

Radius \# Length SAR

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		

Beam Weighting

When the dose from EACH beam is the same, the beams are said to be Equally Weighted

Different doses from EACH beam is called Unequally Weighted

For example:
$\mathrm{AP}: \mathrm{PA}:: 2: 1$ dose ratio

$$
\begin{aligned}
2 \mathrm{x}+1 \mathrm{x} & =180 \mathrm{cGy} \\
3 \mathrm{x} & =180 \mathrm{cGy} \\
\mathrm{x} & =60 \mathrm{cGy}
\end{aligned}
$$

Anterior (120cGy)

Posterior (60cGy)

Wedges

- The most FREQUENTLY used Beam Modifying Device
- The Physical wedges are shaped like a foot. Thick edge is called HEEL. Thin edge is called TOE

Wedge Angle

- Wedge Angle - angle through which an isodose curve is tilted at the central ray of a beam at a specified depth. The range of wedge angles is generally 15-60 degrees.
- wedge angle formula $=90-(.5 \mathrm{x}$ hinge angle $)$

Kahn "wedge angle measurements recommended to be measured at 10 cm depth"

15 degree wedge

45 degree wedge

30 degree wedge

60 degree wedge

Hinge Angle

- Hinge Angle - angle between the central rays of two fields
- optimum hinge angle $=180-(2 \mathrm{x}$ wedge angle $)$

Figure 14.20
The hinge angle is the angle between the central rays of the two beams.

Wedge Problems

- Determine the wedge angle to be used with a 150° hinge angle wedge angle formula $=90-(.5 \mathrm{x}$ hinge angle $)$

$$
\begin{aligned}
& =90-(.5 \times 150) \\
& =90-(75) \\
& =15^{0} \text { wedge angle }
\end{aligned}
$$

- Determine the optimum hinge angle to be used with 15^{0} wedges optimum hinge angle $=180-(2 \mathrm{x}$ wedge angle $)$
$=180-(2 \times 15)$
$=180-(30)$
$=150^{\circ}$ hinge angle

Wedge \& Hinge Angles Table

Wedge Angle	Hinge Angle		
15	150		
30		120	
45	90		
60		60	

ALMOST Done.......

Electrons

- Electrons are "generally" used for boost treatments
- To determine the approximate depth of an electron isodose line to cover the deepest part of a tumor, the following "rules of thumb" can be used:
- - Mev/3.2 ~ depth of 90% isodose line Therapeutic Range
- - Mev/2.8 ~ depth of 80% isodose line \quad (info as per Kahn's $5^{\text {th }}$ edition)
- - Mev/2 ~ depth of 10% isodose line Practical range

Electron Problem

Electron with "Tumor Volume"
(deepest part of tumor to be covered by 80% isodose line)

- Determine the appropriate electron energy to treat a tumor at 3 cm depth if the physician wants to treat to the 80% isodose line.

Electron Problem

3 cm to be covered by 80% IDL

- Available electron Energies:

Rule of Thumb

$\mathrm{Mev} / 2.8$ ~ depth of 80\% isodose line
$7 \mathrm{Mev} / 2.8=2.50 \mathrm{~cm}$
$10 \mathrm{Mev} / 2.8=3.57 \mathrm{~cm}$
$13 \mathrm{Mev} / 2.8=4.64 \mathrm{~cm}$

Any Questions?
Contact
Shirley.Johnston@jefferson.edu

[^0]: EO SO. Equivalent Square

