
HAL Id: hal-01625648
https://hal.archives-ouvertes.fr/hal-01625648

Submitted on 28 Oct 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DreamCam: A modular FPGA-based smart camera
architecture

Merwan Birem, François Berry

To cite this version:
Merwan Birem, François Berry. DreamCam: A modular FPGA-based smart camera architecture.
Journal of Systems Architecture, Elsevier, 2014, 60 (6), pp.519 - 527. �10.1016/j.sysarc.2014.01.006�.
�hal-01625648�

https://hal.archives-ouvertes.fr/hal-01625648
https://hal.archives-ouvertes.fr


Journal of Systems Architecture 60 (2014) 519–527
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
DreamCam: A modular FPGA-based smart camera architecture
http://dx.doi.org/10.1016/j.sysarc.2014.01.006
1383-7621/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +33 760517676.
E-mail address: merwan.birem@hotmail.fr (M. Birem).
Merwan Birem ⇑, François Berry
Institut Pascal – UMR 6602 UBP/CNRS – Campus des Cézeaux, 24 Avenue des Landais, 63177 Aubiere Cedex, France
a r t i c l e i n f o

Article history:
Received 9 July 2012
Received in revised form 9 October 2013
Accepted 21 January 2014
Available online 31 January 2014

Keywords:
Smart camera
Image processing
Interest points
VHDL
Harris and Stephen algorithm
Field Programmable Gate Array (FPGA)
Hardware implementation
Real-time system
a b s t r a c t

DreamCam is a modular smart camera constructed with the use of an FPGA like main processing board.
The core of the camera is an Altera Cyclone-III associated with a CMOS imager and six private Ram blocks.
The main novel feature of our work consists in proposing a new smart camera architecture and several
modules (IP) to efficiently extract and sort the visual features in real time. In this paper, extraction is per-
formed by a Harris and Stephen filtering associated with customized modules. These modules extract,
select and sort visual features in real-time. As a result, DreamCam (with such a configuration) provides
a description of each visual feature in the form of its position and the grey-level template around it.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Intelligent robots are becoming increasingly important. One of
the key components of an intelligent robot is its ability to under-
stand its environment and recognize its position. In the robot
community, most researchers use information from sources such
as odometry, laser-range-finders, and sonar sensors. In contrast,
in the vision community, new methods using information from
camera sequence are being developed, see [1,2].

Using an entire image as an observation is difficult or impossi-
ble owing to the high resolution, typically of the order of a hundred
thousand pixels. Thus, to identify interest points, feature extraction
which is the first crucial step, should be used [3].

The algorithms that extract features are time-consuming, which
is a huge drawback when developing real-time applications. One
solution to this problem is the use of dedicated hardware for the
algorithms, such as Field Programmable Gate Array (FPGA), which
can provide dedicated functional blocks that perform complex
image processing operations in parallel. In addition to the parallel
properties of FPGA, which lead to a high-throughput, FPGA has a
small footprint system and low power consumption, which makes
it ideal for mobile applications.

FPGAs have achieved rapid acceptance and growth over the past
decade because they can be used in a very wide range of applica-
tions [4]. Although they are slower than the traditional Application
Specific Integrated Circuit (ASIC), their design flexibility is a major
advantage. Users can change program as desired at any stage of the
experiment thereby saving time and cost.

Throughout this paper, we propose a customized smart sensor
based on a CMOS imager. The main original feature is system
management by a System-On-Chip integrated in an FPGA. Our
approach allows most early perception processes to be performed
in the main sensing unit (FPGA), and sends just the main sensing
features to the host computer so as to reduce a classic communica-
tion bottleneck. Another advantage of this method is the real time
feedback on the sensor. The different parameters can be actively
tuned to optimize perception to render it similar to primate
perception. For instance, in strong light the pupil contracts and
becomes small, but still allows light to be cast over a large part
of the retina [5]. This embedded sensor can be considered as a
reactive architecture, and above all, as a research platform for
the smart sensor.

To highlight the novel elements in our work, we present in the
following section previous research carried out in this field. In Sec-
tion 3, we give a large overview of the smart sensor. An application
for the extraction of visual features based on the Harris and Ste-
phen algorithm is presented in Section 4. In this work, we consider
feature extraction as a combination of a feature detection followed
by a description. Thus, feature detection consists in finding the
interest points (features) in the image, whereas feature extraction
consists in representing them. The final goal is to compare them

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2014.01.006&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2014.01.006
mailto:merwan.birem@hotmail.fr
http://dx.doi.org/10.1016/j.sysarc.2014.01.006
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc


Table 2
Hardware implementation of H&S algorithm.

System Platform capabilities

Author (s) Sensor Processor Resol. @ Fps

[19] EyeBot M6 Xilinx 352� 288 @ 7.37
OV6630 Spartan-3E

FPGA
[18] MT9P031 Xilinx 320� 480 @ 27

CMOS Virtex-II
Micron FPGA

[20] Video Xilinx 640� 480 @ 266
frame from Virtex-5
a memory FPGA

520 M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527
with other interest points for applications such as navigation,
object recognition, etc. In Section 5 we include results that support
the relevance of our approach and in Section 6 we give a
conclusion.

2. Previous work

Comparison of our work with previous works can be done on
two levels:

� System-level: At this level, we propose to study the most popu-
lar smart cameras developed in the last decade. As a reminder, a
smart camera is defined as a vision system in which the funda-
mental function is the production of a high level understanding
of the imaged scene. A camera is called a ’’smart camera’’ when
it performs application specific information processing (ASIP).
The output of such cameras is either the features extracted from
the captured images or a high-level description of the scene.
More details about this system can be found in articles by Wolf
[6] and Shi and Lichman [7].
Table 1 presents an overview of the most common smart cam-
era platforms found in the literature.
Others works have been based on Silicon-integrated smart cam-
eras. In these systems, the authors propose an approach in
which image sensing and processing are integrated on a single
silicon die. This kind of device is called ‘‘vision chips’’. The inter-
ested reader can find a detailed description in [14]. Among
these works, the project scamp by P. Dudeck is one of the most
well-known [15]. Other contributions in the same vein can be
found in [16,17].
� Algorithm-level: As explained below, we implemented a ‘‘Harris

and Stephen’’-based algorithm to extract visual features in our
camera. At the output of this extraction step, several modules
(filtering, sorting, description) were added to provide high-level
features from the image. Thus, in this part, we propose a short
overview of published papers about the implementation of
the Harris and Stephen detector on FPGA. To our knowledge,
there is no work proposing a full approach with detection, filter-
ing, sorting and description steps. Consequently, the works pre-
sented above, represent a fragmented bibliography mainly
focused on the Harris detection.
The work presented in [18] implements a Harris detection on a
FPGA connected to a stereo rig. The FPGA provides a simple
extraction on 320 � 480 pixels at 27 fr/s. Another ’’stereo cam-
era-based’’ work was proposed by Dietrich [19]. In this work,
the author used a Spartan-3E to rectify the stereo images and
to detect the Harris points. Most of the authors had the same
basic approach on how to implement the Harris and Stephen
detector. In [20], the authors used a Harris Filter to define the-
region of interest. With these windows, a classifier is used to
detect and identify some objects in the scene.
However, these works propose only architectures to detect the
corners by the Harris and Stephen method. In our work, we
propose to filter the detected points, to sort the most robust
Table 1
Classification of smart camera systems.

System Platform capabilities

Author (s) Sensor CPU

CMUcam [8] CMOS Omnivision Proc. ARM
MeshEye [9] ADNS-3060 optical mouse sensor + CMOS VGA Micro-co
SeeMOS [10] CMOS Cypress Lupa 4000 FPGA Str
LE2I-Cam [11] CMOS Micron (MTM9M413) FPGA Vir
WiCa mote [12] VGA CMOS Xetal IC3
ITI [13] LM-9618 CMOS DSP TMS
ones and to describe each feature by a grey-level template.
These last steps are fundamental in computer vision, in which
the input is not images but semantic features. (see Table 2).

3. Hardware description of the ‘‘DreamCam’’

The goal of artificial vision research is to exploit images or
image sequences generated by sensors, in order to effectively
translate an environment. From this translation, different processes
can be used to identify or inspect an object, control robots, etc. The
first way to treat the vision problem is to carry out passive vision
approaches, which is the classic way to analyze images. In contrast,
another approach exists known as ‘‘active vision’’, which is the
result of an attempt to simulate the human visual system.

Based on this concept, our approach consists in integrating the
control of the imager in the perception loop, especially in the early
perception processes. By integration of early processing, close to
the imager, a reactive sensor can be designed. With such a smart
sensor, it is possible to perform basic processing and the selection
of relevant features [4]. For example, FPGAs have already been
used to accelerate real-time point tracking [21], stereo-vision
[22], color-based object detection [23], and video and image com-
pression [24]. In our case, the notion of a system on programmable
chip (SOPC) describes the whole system.

Most vision applications are focused on several small image
areas and consequently acquisition of the whole image is not
always necessary. It is evident, therefore, that one of the main goals
of an efficient vision sensor is to select regions of interest (ROI) in
the image and concentrate on processing resources on these. The
notion of local study is then predominant and the choice of imag-
ing technology becomes crucial. This explains why the CMOS ima-
ger was chosen. It is generally accepted that the CMOS technology,
due to its capabilities will replace the traditional CCD technique in
many applications:

� to allow accessing only parts of the image (ROI)
� to allow higher speeds (up to 60 MHz per output channel)
� to allow functionality on the chip (camera-on-the-chip)
� to provide a much higher dynamic range (up to 120 dB)
� to be based on standard manufacturing processes
Application

Power

7 Battery Robotic applications
ntroller AT91SAM7S Battery Distributed imaging applications
atix 60 Mains Tracking
tex II Mains Hight speed imaging
D Battery Vehicle detection and speed estimation
320C6415 Mains Traffic control



M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527 521
The global processing system is composed of a SOPC (System On
Programmable Chip), by which an entire system of components is
put on a single chip (FPGA). The fine-grained structure of the FPGA
allows the development of extremely optimized implementations.
Image processing is well known to be algorithmically simple but
computationally costly. Moreover, FPGA is the best candidate for a
wide group of peripheral devices. DreamCam is a modular smart
camera in which image sensors or communication boards can be
easily changed.

3.1. Global hardware architecture

The architecture of the camera is constructed with five inter-
connected boards as shown in Fig. 1. The core of this system is a
FPGA which allows a high versatility. Thus, the image sensor board
and the communication board can be easily replaced or updated in
order to change the type of imager or the communication layer.
Currently, we can propose two different image sensors and the
ability to use a USB2.0 or Giga–Ethernet communication link. Each
board is described in detail below.

3.1.1. Image sensor board
Both developed image sensor boards are based on a similar

electronic architecture. This architecture can accept parallel differ-
ential or single-ended outputs from different kinds of image sen-
sors. The image sensors used in this work are:

� MT9M031 imager: This 1.2-mega pixel (1280 � 960) CMOS
image sensor is manufactured by Aptina. It can operate at
45 fps at full 1280 � 960 pixel resolution or at 60fps speed at
720pHD resolution (reduced FOV). The power consumption is
270 mW in 72p60 mode. The dynamic range is 83.5 dB – quite
big for a global shutter sensor.
� EV76C560 imager: This is a 1.3-mega pixel (1280 � 1024)

CMOS active pixel sensor dedicated to industrial vision features
both rolling and global shutters. The pixel design offers excel-
lent performance in low-light conditions with a high-readout
speed of 60 fps in full resolution. Novel pixel integration/read-
out modes and embedded image pre-processing deliver
Fig. 1. Overview of the camera a
superior performance parameters, including a bi-frame wide
dynamic range (>100 dB). Other on-chip pre-processing are
included such as Image Histograms, Multi-ROI, Defective pixel
correction, etc.

3.1.2. Processing board
This is the main part of the system using an Altera Cyclone-III

EP3C120 FPGA (Fig. 2). The need for strong parallelization led us
to connect 6�1MBytes SRAM asynchronous memory blocks to
the FPGA. Each memory has a private data and a private address
bus. Consequently, six processes (using 1 MB each) can access all
the memories at the same time. We chose a low-power Cyclone
III FPGA family. The reasons for this choice for Cyclone are given
below:

� Firstly, its architecture consists of 120 K vertically arranged
logic elements (LEs), 4 Mbits of embedded memory arranged
as 9-Kbit (M9K) blocks, and 288 18 � 18 embedded multipliers.
� Secondly, Cylcone integrates DSP Blocks. These embedded DSP

Blocks have been optimized to implement several DSP functions
with maximum performance and minimum use of logic
resource. In addition, these embedded DSP Blocks can be used
to create DSP algorithms and complex math routines in high-
performance hardware DSP Blocks and they can be viewed as
custom instructions to the NIOS CPU.
� Lastly, Cyclone is optimized to maximize the performance ben-

efits of SOPC integration based on a NIOS embedded Processor.
A NIOS processor is a user configurable soft core processor,
allowing many implementations and optimization options.

3.1.3. Communication board
This board is connected to the main board and manages all

communications with the host computer. The communication
layer is currently either high-speed USB 2.0 or Giga–Ethernet.

� USB2.0 is managed by the Cypress cy7c68013 microcontroller.
It incorporates an enhanced processor based on a 8051 core
and the instruction set is compatible with standard 8051, and
in many ways improved. For example: The maximum operating
nd synoptic of the assembly.



Fig. 2. Synoptic of DreamCam.

522 M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527
frequency up to 48 MHz, an instruction cycle is four clock
cycles, two UART interfaces, and three time counters, an I2C
interface.
� The Giga-Ethernet protocol is taken in charge by the Marvel

88E1111 transceiver. It is a physical layer device containing a
single Gigabit Ethernet (GbE) transceiver. The transceiver
implements the Ethernet physical layer portion of the
1000BASE-T, 100BASE-TX, and 10BASE-T standards.

3.1.4. Memory board
The bank of memories contains six SRAM asynchronous memo-

ries, each of which has a size of 1MWords. These memories are
high-speed, 16 M-bit static RAMs organized as 1024 K words by
16 bits. They have a high-speed access times 8 ns under 3.3 V
and can be easily controlled. For instance, the read cycle consists
only in accessing an address and after an output hold time the data
can be read.
3.1.5. Power board
The different boards need different kinds of voltage according to

the respective devices. The initial input voltage is 6.5 V and a set of
regulators generates the different voltages. The global no-pro-
grammed power consumption is approximately 1.4 W. Of course,
this consumption widely varies with the configuration of the FPGA.
This board provides 18 different voltages from 1.2 V to 5 V. In addi-
tion, a JTAG programmer (USB Blaster-like) has been integrated to
configure the Cyclone III FPGA.
1 k 2 [0.04,0.06] is an empirical value [26]
3.2. Internal FPGA design

The aim of the proposed design is to create a flexible interface
between the sensing device board and the host computer. This is
how the whole system is separated into two main parts: a software
part which is basically a C++ code that retrieves the data that are in
the USB packets sent from DreamCam; and a hardware part, which
is developed in this paper.

In this approach, two blocks are very important and must be
used for each design: the first one controls the CMOS image sensor
which is the Image sensor IP block, and the second manages com-
munication between the host computer and the DreamCam. The
Mem IP block is used when external memories are needed. Theses
blocks control each memory by generating the appropriate input
signal of the memory such as (Address Bus: A0–A19, Chip Enable
signal: CE, Write Enable signal: WE, Output Enable signal: OE)
and by receiving the data. Finally the Image processing algorithm
block will contain the algorithm that we want to implement on
FPGA (in the present work the Harris algorithm was chosen). The
diagram of the system is shown in Fig. 3.
These different blocks will work with each other as follows.
After powering the system, the CMOS imager starts to work under
the control of the Image sensor IP inside the FPGA by sending the
pixels of the image one by one and line by line (Flow noted Pix in
Fig. 3. These pixels are sent to the Image processing algorithm
block, where they will be processed according to the algorithm
implemented on it. After that, the results are sent to the Commu-
nication IP block (Flow noted Data Frame in Fig. 3, where they
will be packed and sent.

4. Harris corner extractor application

In an image, the corner is an important local feature which
focuses on a great amount of important image information and
is rarely affected by illumination change [25]. In addition, it has
rotation invariant properties [26]. Provided there is no data loss,
the corner feature is the smallest piece of data to deal with so
that it improves the speed of detection. Thus, corner detecting
has many important applications in practice, especially in the
real-time target tracking field and autonomous navigation of
vehicles.

In this section, we propose implementation of a feature extrac-
tor on the Dream-Cam. The term feature extractor is used to
describe the combination of a feature detector and a feature
descriptor. Detectors are used to find interest points in an image,
after which a descriptor is created that describes the local neigh-
borhood around the points. [27] have written a state-of-the-art
overview of feature extractors.

Many extractors of features from an image have been reported
in the literature. They differ in the method used to detect and de-
scribe the features, which implies a difference in algorithm com-
plexity, processing time and resources needed. However, if the
complexity of the algorithm increases, computation becomes
heavier.

The feature extractor used in our work is a combination of the
Harris corner detector [26] and a simple descriptor which gives
for each interest point an intensity patch from the image. The
Harris corner detector (also known as Harris–Stephens or Plessy
detector) is one of the most widely used interest point detectors,
owing to its improved detection rate over the Moravec [28] corner
detector and to its high repeatability rate.

In the Harris corner detector the main operations used are the
first derivative and convolution. These operations are single
instruction multiple data (SIMD) and therefore highly paralleliz-
able, which means they are suitable for implementation on FPGAs,
which are low cost and high density gate arrays capable of per-
forming many complex computations in parallel while hosted by
conventional computer hardware.

A pixel is considered to be an interest point when its interest
value Ri is higher than the predefined threshold, and the higher this
value the more accurate is the detected interest point. The value is
computed for each pixel according to Harris and Stephens [26]
using the following formula: 1

Ri ¼ DetðMiÞ � k � ðTraceðMiÞÞ2

where

Mi ¼
A C

C B

� �

which means that

Ri ¼ ðA� B� C2Þ � k � ðAþ BÞ2



Fig. 3. Internal FPGA design.

M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527 523
�A ¼ dIi

dx

� �2

�W � B ¼ dIi

dy

� �2

�W � C ¼ dIi

dx
dIi

dy

� �
�w

W is the 3 � 3 Gaussian filter

wðu;vÞ ¼ exp �ðu
2 þ v2Þ
2r2

� �

and d
dx ;

d
dy are the x and y derivatives operators. Ii is the 3x3 window

surrounding the ith pixel, and � represents the convolution
operator.

The feature extraction system proposed in this paper detects
first the interest points on an image, sorts them, and then describes
them using a patch of pixels from the image. The system is com-
posed of several modules (see Fig. 4) that have been developed
in VHDL (VHSIC Hardware Description Language), and are fully
compatible with a FPGA implementation. The main modules of
the system are as follows.

1. The Harris corner detector module: Detects the interest points
and filters them, in order to obtain only one point (pixel) for
each corner,

2. The sort module: Sorts the interest points in decreasing order
according to their interest value Ri,

3. The swap memories module: Retrieves the patch of each inter-
est points, and constructs the data frame containing the interest
point coordinates ðXi;YiÞ and their patches. More details about
the data frame are given in Section 4.3.

In the first module the results of the detection are filtered,
because when an image is treated using the Harris corner detector,
several pixels around a corner will be considered as interest points.
The desired outcome is having one interest point, which means one
pixel for each corner (see Fig. 6). In previous works [29,19,30,20],
this problem was solved by the non-maximum suppression meth-
od. To perform such a suppression, a window of a specific odd size
is moved over the picture after treating all the pixels. If the center
value of the window is the maximum interest value within the
whole window the filter response is one, otherwise the filter
Fig. 4. Block diagram of the implemented system, composed of thr
response will be zero. In terms of hardware considerations, this
method has several disadvantages such as the use of more memo-
ries and FIFO queue. In addition, it induces latency due to the buf-
fering of three lines at minimum when a 3� 3 window is used to
perform the non-maximum suppression.

4.1. Harris corner detector module

This module represents the feature detector (the first part of the
feature extractor). Fig. 5 gives an overview of the architecture used
to implement the Harris detector algorithm on FPGA.

To achieve a higher frequency, the system has to be parallelized
to the maximum degree possible allowed by the architecture of the
smart camera presented in this article. As shown in Fig. 5, all
operations that are independent of one another were implemented
separately. The performance of the system can also be increased by
using DSP-blocks for all the multiplications and summations that
are in the Harris corner detector algorithm.

The system receives the stream of pixels and places them one
by one in a FIFO queue. The calculation of the interest value Ri will
start when the FIFO queue is almost full, more precisely when the
second pixel of the fifth line is reached. After calculation of the
interest value Ri, a simple comparator is used to determine if the
treated pixel is an interest point or not.

This module contains a submodule that has nearly the same
function as non-maximum suppression. The main difference
between the two is in the pixel that will be kept. In non-maximum
suppression the pixel kept is the one with the highest interest
value Ri in an odd-size window. In the submodule implemented
on FPGA the pixel kept is the first one to appear, which means
there is no need for more memory or latency to obtain the results.

This submodule is based on two notions. When an interest point
is detected the system will check if there is no interest point near it
in the m previous lines. If this is the case, the pixel will be set as an
interest point, and the following n pixels will not be treated at all. If
there is an interest point near it in one of the m previous lines the
system passes to the next pixel and so on. Fig. 6 shows an example
of the results obtained with and without this module.
ee hardware blocks, used to extract features from the images.



Fig. 5. Block diagram of the implemented Harris corner detector module.

524 M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527
The most important output signals of this module are CE; FE;Xi

and Yi. The first and second ones are set to ’’1’’ (for one clock cycle)
when an interest point is detected and when the last pixel of an
image is treated, respectively. The last two signals, Xi and Yi, rep-
resent the coordinates of the detected interest point.

4.2. Sort module

The robustness and accuracy of an interest point depends on the
value of Ri and the higher the value of Ri, the more robust and accu-
rate the point.

The technique used to sort the interest points is that described
in the paper of [31]. It is done in two steps:

� Step 1: The ordering process, in which the order of the detected
interest points is found,
� Step 2: The rearranging process of the points, which places

them in a memory according to their order.

In this method, the sorting of the detected interest points requires
the presence of all points. This is why the sorting is done only after
Fig. 6. An example of the results obtained with the filtering module (real-time
images): (a) detcetion without filtering, (b) detection with filtering.
image processing. It means that sorting the points detected in the
‘‘ith image’’ will be done while the ‘‘i + 1th image’’ is being
processed.

The principle of this sorting method is as follows. For a given set
of interest points SetIP ¼ fIP1; IP2; . . . ; IPng, the order Ci (of each
interest point) is easily calculated by counting results of compari-
sons between Ri (the interest value of the ith point) and all the other
values. Each time a value higher than Ri is found, Ci is incremented
by 1. Ci represents the number of items in the set having a value
higher than the ith point, and represents the order of the point.
The rearranging process uses the different values of Ci as addresses
to put the points in decreasing order in a memory.

The basic algorithm to compute the order Ci is as follows.

Algorithm 1. Compute the order: Ci

Ci ¼ 0
while j 6 n do

if Ri < Rj then
Ci ¼ Ci þ 1

end if
j ¼ jþ 1

end while
4.3. Swap memory module

This module represents the feature descriptor (the second part
of the feature extractor). As mentioned previously, the descriptor
chosen to be implemented on FPGA is a simple one, which gives
an intensity patch for each interest point. This module receives sig-
nals CE; FE;Xi and Yi from the sort module. The signals are used to
construct the data frame shown in Fig. 7.

The first two elements and all the ðXi;YiÞ coordinates of the data
frame are obtained from the Harris corner detector and sort mod-
ules. The pixels that are in each patch are obtained from one of two
memories, M1 or M2 (see Fig. 4). These memories contain the
previous treated image (put on read mode), and the actual image
under treatment (put on write mode), respectively. At the end of
each image treatment the two memories change their operating
mode i.e. swap mode.

This module is composed of two processes. The first one
constructs the table that will contain the memory addresses of
the detected interest points. The second process constructs the
data frame. To do this, the process uses the memory put on read
mode and the table constructed by the first process. This module
controls the two asynchronous memories by controlling their WE
signal, and their DATA and ADD buses.

The combination of this module with the Harris corner detector
and the sort module will give us a full feature extractor that de-
tects, sorts, and describes the interest points. In other words, the
extractor takes images as input and provides semantic information
as output. This information can be used for navigation, 3D recon-
struction or other applications.

5. Experimental results

The proposed algorithm (presented in the previous section) was
implemented on the DreamCam. For all results given in this
section, the DreamCam was equipped with an E2V imager and a
USB2.0 communication layer. The image resolution was of
800 � 1024 and the size of each interest point patch was set at
15� 15. The software used for these experiments was Quartus II
V13.0 in setting the default options (no optimization for perfor-
mance or particular effort level).



Fig. 7. The data frame constructed by the swap memory module.

Table 3
FPGA resources used.

Number of interest points 200 400 600
Total Logic Element 31,433 60,034 87,754
Combinatorial 16,601 29,121 41,636
Registers 23,014 43,814 64,615

Fig. 9. Maximum frequency of the system according to NPI (maximum number of
Harris points). For this experiment, a set of synthesis was done from 50 points to
600 points in steps of 25 points. The resolution of the image was 800� 1024.

M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527 525
5.1. Consumption of FPGA resources

A first result concerns the consumption of resources in the
FPGA. The desired number of interest points directly impacts the
consumption of logic elements in the FPGA. This is due to the fea-
ture descriptor module (named Swap memory module in the archi-
tecture), whose role is to prepare data output. To do this it has to
store each point descriptor with its grey-level template, its coordi-
nates and Ri value, and it is this storage process that draws on
internal resources of the FPGA.

Fig. 8 shows the linear consumption of Logic Elements for a lin-
ear increase of desired interest points.

For information purposes, Table 3 gives all resources used for
200, 400 and 600 points of interest.

5.2. Maximum frequency

A second result consists of the maximum frequency of work
according to the maximum number of Harris points. The maximum
frequency decreases from 105 MHz to 80 MHz (Fig. 9). This
decrease is explained by the increase in the length of the critical
path in the Swap memory module.

5.3. Comparison with others works

As explained in the section ‘‘Previous works’’, others authors
focused only on the Harris and Stephen implementation. We
Fig. 8. Used Logic Element according to the number of desired interest points. For
this experiment, a set of synthesis was done from 50 points to 600 points in steps of
25 points. The resolution of the image was 800 � 1024.
propose therefore to compare the performance of the existing
works with our implementation of Harris and Stephen module in
Table 4.

The best result is given by [20], but they used a Virtex 5. Virtex
5 offers a clock tree up to 550 MHz, whereas the clock tree specifi-
cation for Cyclone III (in 7 speed grade) is only 430 MHz.
Table 4
Comparison with others hardware implementations of H&S algorithm.

System Platform capabilities

Author (s) Processor Resol. @ Fps

Our method Altera 1024� 800 @ 76
Cylcone III Fmax ¼ 62 MHz

[19] Xilinx 352� 288 @ 8
Spartan-3E Fmax ¼ 8 MHz

[18] Xilinx 320� 480 @ 27
Virtex-II Fmax ¼ 41 MHz

[20] Xilinx 640� 480 @ 266
Virtex-5 Fmax ¼ 81 MHz



Fig. 10. The results obtained when processing images were captured from a mobile robot. On the left the whole image with the interest points in white. On the right the point
of interest and its neighbor.

526 M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527
5.4. Experiments

Fig. 10 shows the results obtained when processing images cap-
tured from a mobile robot in experimental conditions. Images on
the left are obtained without the feature descriptor, and images
on the right are obtained with the feature descriptor. The size of
images used for this were 256 � 256 pixels. The latter are con-
structed using the data frame that the Harris corner extractor
sends to the host PC.

The Harris corner extractor implemented on FPGA works on the
stream of pixels coming from the CMOS imager and because of this
the size of the data frame must be smaller than or equal to that of
the image treated to allow the data frame to be sent entirely with-
out the loss of any information. In general, if the images treated
have L � C pixels each, and the patch chosen to describe the inter-
est points has W �W pixels, then the maximum number of interest
points that the system can detect is n < L�C�2

W�Wþ4, where �2 is for the
first two elements of the data frame (the number of interest points
detected, and the size of the patch), and þ4 is for the two coordi-
nates Xi;Yi of each interest point. þ4 means that the two coordi-
nates are encoded on two bytes each, which will allow the
system to obtain the coordinate of interest points detected in
images that have a size greater than 256 � 256 pixels.

6. Conclusion and future works

This paper describes the construction of a sensor for real-time
visual applications. Its main originality consists in using CMOS
imager and FPGA architecture to create a versatile smart system.
The approach, based on FPGA Technology and CMOS imager,
reduces the classic bottleneck between sensor and processing unit.
The system can acquire images of superior quality using the
1.3-mega pixel (1280 � 1024) CMOS image sensor IBIS5. Precise
timing control guarantees the accuracy of image data. ROI readout
guarantees the high frame rate of the system (more than 100 fps
for 640 � 480 pixels). The average transmission speed with USB
is 48 MB/s, which will meet the demands of real-time data trans-
mission. The system can be used in many applications with
demands of high resolution, high frame rate and real-time
requirements.

The feature extractor application was implemented with
success on the Dream-Cam, which can process up to 42 fps
(800 � 1024 pixels) and gives good quality results, as seen in Sec-
tion 5. The blocks of this application were developed in generic
mode, which means the user can change the size of the image,
the number of points needed, the lowest threshold allowed, and
other parameters, and compile and synthesize the project to obtain
a new system.

Two further steps could be implemented to improve the project.
First, the development of an entire controller of the system from
the PC, so that with a simple click on the mouse or the keyboard
the DreamCam is reconfigured, Global or Rolling shutter mode, size
of the image, integration time, threshold of the algorithm and other
parameters are chosen or set to a particular value without recom-
pilation of the HDL project. Second, the addition of blocks to do
feature tracking or matching.

Acknowledgement

The work reported in this paper was supported by the Euripides
European Program (Eureka), Seamoves Project, and the Altera
Corporation under an equipment grant.



M. Birem, F. Berry / Journal of Systems Architecture 60 (2014) 519–527 527
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.sysarc.2014.01.
006.
References

[1] A.J. Davison, D.W. Murray, Simultaneous localization and map-building using
active vision, IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 865–880, http://
dx.doi.org/10.1109/TPAMI.2002.1017615. ISSN 0162-8828, URL http://
dl.acm.org/citation.cfm?id=628329.628800.

[2] A.J. Davison, Real-time simultaneous localisation and mapping with a single
camera, in: Proceedings of the Ninth IEEE International Conference on
Computer Vision – Volume 2, ICCV ’03, IEEE Computer Society, Washington,
DC, USA, 2003, p. 1403. ISBN 0-7695-1950-4, URL http://dl.acm.org/
citation.cfm?id=946247.946734.

[3] W. Förstner, A framework for low level feature extraction, Proceedings of the
Third European Conference on Computer Vision, vol. II, Springer-Verlag New
York Inc, Secaucus, NJ, USA, 1994, pp. 383–394. ISBN 0-387-57957-5, URL
http://dl.acm.org/citation.cfm?id=200241.200283.

[4] A. DeHon, The density advantage of configurable computing, Computer 33 (4)
(2000) 41–49, http://dx.doi.org/10.1109/2.839320. ISSN 0018–9162.

[5] P. Chalimbaud, F. Maromoiton, F. Berry, Towards an embedded visuo-inertial
smart sensor, Int. J. Robot Res. (2009).

[6] W. Wolf, Towards pervasive smart camera networks, 2009. https://
pervasive.aau.at/publications/pdf/Rinner_MCNBook2009.pdf

[7] Y. Shi, S. Lichman, Smart cameras: a review.
[8] D.G.A. Rowe, A.G. Goode, I. Nourbakhsh, CMUcam3: An Open Programmable

Embedded Vision Sensor, Tech. Report CMU-RI-TR-07-13, Carnegie Mellon
University, 2007.

[9] S. Hengstler, D. Prashanth, S. Fong, H. Aghajan, Mesheye: a hybrid-resolution
smart camera mote for applications in distributed intelligent surveillance, in:
PSN 07: Proceedings of the 6th International Conference on Information
Processing in Sensor Networks, ACM Press, 2007, pp. 360–369.

[10] P., F. Chalimbaud, Berry, Embedded active vision system based on an FPGA
architecture, EURASIP J. Embedded Syst. 2007 (2007) 26, http://dx.doi.org/
10.1155/2007/35010. ISSN 1687-3955.

[11] R. Mosqueron, J. Dubois, M. Paindavoine, High-speed smart camera with high
resolution, EURASIP J. Embedded Syst. 2007 (2007). Article ID 24163, 16 pages.

[12] R. Kleihorst, A. Abbo, B. Schueler, A. Danilin, Camera mote with a high-
performance parallel processor for real-time frame-based video processing, in:
Proceedings of the 2007 IEEE Conference on Advanced Video and Signal Based
Surveillance, AVSS ’07, IEEE Computer Society, Washington, DC, USA, 2007, pp.
69–74, http://dx.doi.org/10.1109/AVSS.2007.4425288. ISBN 978-1-4244-
1695-0.

[13] M. Bramberger, J. Brunner, B. Rinner, Real-Time Video Analysis on an
Embedded Smart Camera for Traffic Surveillance, in: Proceedings of the 10th
IEEE Real-Time and Embedded Technology and Applications Symposium,
2004, pp. 174–181.

[14] A. Moini, Vision chips/ by Alireza Moini, Kluwer Academic Boston, London,
2000.

[15] S.J. Carey, D.R. Barr, P. Dudek, Low power high-performance smart camera
system based on SCAMP vision sensor, J. Syst. Architect. ISSN 1383–7621, URL
http://www.sciencedirect.com/science/article/pii/S13837621130.

[16] T. Moorhead, D. Binnie, Smart CMOS camera for machine vision applications,
in: IEE Conference on Image Processing and its Applications, Manchaster, UK,
1999, pp. 865–869.

[17] L. Albani, P. Chiesa, D. Covi, G. Pedegani, A. Sartori, M. Vatteroni, VISoc: a smart
camera SoC, in: 28th European Solid-State Circuits Conference, Florence, Italy,
2002, pp. 367–370.

[18] F. Ekstrand, L. Jorgen, A. Lars, Robotics for SMEs – 3D Vision in real -time for
navigation and object recognition, in: 39th International Symposium on
Robotics (ISR 2008), IDR 2008, 2008, pp. 70–75.

[19] B. Dietrich, Design and Implementation of an FPGA-based Stereo Vision
System for the EyeBot M6, Ph.D. thesis, University of Western Australia, 2009.

[20] D. Goshorn, J. Cho, R. Kastner, S. Mirzaei, Field programmable gate array
implementation of parts-based object detection for real time video
applications, in: Proceedings of the 2010 International Conference on Field
Programmable Logic and Applications, FPL ’10, IEEE Computer Society,
Washington, DC, USA, 2010, pp. 582–587, http://dx.doi.org/10.1109/
FPL.2010.114. ISBN 978-0-7695-4179-2.
[21] A. Benedetti, P. Perona, Real-time 2-D feature detection on a reconfigurable
computer, in: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR ’98, IEEE Computer Society,
Washington, DC, USA, 1998, p. 586. ISBN 0-8186-8497-6, URL http://
dl.acm.org/citation.cfm?id=794191.794768.

[22] J. Woodfill, B. Von Herzen, Real-time stereo vision on the PARTS reconfigurable
computer, in: Proceedings of the 5th IEEE Symposium on FPGA-Based Custom
Computing Machines, FCCM ’97, IEEE Computer Society, Washington, DC, USA,
1997, p. 201. ISBN 0-8186-8159-4, URL http://dl.acm.org/
citation.cfm?id=549928.795743.

[23] D. Benitez, J. Cabrera, Reactive computer vision system with reconfigurable
architecture, in: Proceedings of the First International Conference on
Computer Vision Systems, ICVS ’99, Springer-Verlag, London, UK, 1999, pp.
348–360. ISBN 3-540-65459-3, URL http://dl.acm.org/
citation.cfm?id=645549.659164.

[24] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, W. Najjar,
Mapping a single assignment programming language to reconfigurable
systems, J. Supercomput. 21 (2) (2002) 117–130, http://dx.doi.org/10.1023/
A:1013623303037. ISSN 0920-8542.

[25] L. Chen, A survey of corner detection algorithms, Tech. Automat. Appl. 24
(2005) 55.

[26] C. Harris, M. Stephens, A combined corner and edge detector, in: Proceedings
of the 4th Alvey Vision Conference, 1988, pp. 147–151.

[27] K. Mikolajczyk, C. Schmid, A performance evaluation of local descriptors, IEEE
Trans. Pattern Anal. Mach. Intell. 27 (2005) 1615–1630, http://dx.doi.org/
10.1109/TPAMI.2005.188. ISSN 0162-8828, URL http://dl.acm.org/
citation.cfm?id=1083822.1083989.

[28] H. Moravec, Obstacle Avoidance and Navigation in the Real World by a Seeing
Robot Rover, in: Tech. Report CMU-RI-TR-80-03, Robotics Institute, Carnegie
Mellon University & doctoral dissertation, Stanford University, 1980.

[29] L. Yiran, FPGA Implementation for image processing algorithms, Digit. Signal
Process. (2006).

[30] M. Brandon, M. Arin, Rapid corner detection using FPGAs, National Aeronautics
and Space Administration, 2010.

[31] H. Yasuura, N. Takagi, S. Yajima, The Parallel Enumeration Sorting Scheme for
VLSI, IEEE Trans. Comput. 31 (1982) 1192–1201, http://dx.doi.org/10.1109/
TC.1982.1675943. ISSN 0018-9340.

Merwan Birem is graduated engineer from the National
Polytechnic School, Algiers (Algeria), in 2010. He is now
pursuing his Ph.D. at the Images Perception systems and
Robotics (ISPR) Group of Pascal Institute-CNRS, Cler-
mont-Ferrand (France). His research focuses on the
Developments of neuroinspired modules that will con-
trol autonomous mobile robots.
François Berry received his Doctoral degrees and the
Habilitation to conduct researches in Electrical Engi-
neering from the University of Blaise Pascal in 1999 and
2011, respectively. His PhD was on visual servoing and
robotics and was undertaken at Pascal Institute in
Clermont-Ferrand. Since September 1999, he is cur-
rently (Associate Professor) at the University of Blaise
Pascal and is member of the Perception System and
Robotics group (within GRAVIR, Pascal Institute- CNRS).
He is researching smart cameras, active vision, embed-
ded vision systems and hardware/software co-design
algorithms. He is in charge of a Masters in Microelec-

tronics and in head of DREAM Research on Embedded Architecture and Multi-
sensor) group. He has authored and coauthored more than 40 papers for journals,
conferences and workshops. He has also led several research projects (Robea, ANR,

Euripides) and has served as a reviewer and a program committee member. He has
been co-founder of the Workshop on Architecture of Smart Camera (WASC) and
Scabot (Workshop in conjunction with IEEE IROS).

http://dx.doi.org/10.1016/j.sysarc.2014.01.006
http://dx.doi.org/10.1016/j.sysarc.2014.01.006
http://dx.doi.org/10.1109/TPAMI.2002.1017615
http://dx.doi.org/10.1109/TPAMI.2002.1017615
http://dl.acm.org/citation.cfm?id=628329.628800
http://dl.acm.org/citation.cfm?id=628329.628800
http://dl.acm.org/citation.cfm?id=946247.946734
http://dl.acm.org/citation.cfm?id=946247.946734
http://dl.acm.org/citation.cfm?id=200241.200283
http://dx.doi.org/10.1109/2.839320
http://https://pervasive.aau.at/publications/pdf/Rinner_MCNBook2009.pdf
http://https://pervasive.aau.at/publications/pdf/Rinner_MCNBook2009.pdf
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0095
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0095
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0095
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0095
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0095
http://dx.doi.org/10.1155/2007/35010
http://dx.doi.org/10.1155/2007/35010
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0105
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0105
http://dx.doi.org/10.1109/AVSS.2007.4425288
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0115
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0115
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0115
http://www.sciencedirect.com/science/article/pii/S13837621130
http://dx.doi.org/10.1109/FPL.2010.114
http://dx.doi.org/10.1109/FPL.2010.114
http://dl.acm.org/citation.cfm?id=794191.794768
http://dl.acm.org/citation.cfm?id=794191.794768
http://dl.acm.org/citation.cfm?id=549928.795743
http://dl.acm.org/citation.cfm?id=549928.795743
http://dl.acm.org/citation.cfm?id=645549.659164
http://dl.acm.org/citation.cfm?id=645549.659164
http://dx.doi.org/10.1023/A:1013623303037
http://dx.doi.org/10.1023/A:1013623303037
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0145
http://refhub.elsevier.com/S1383-7621(14)00022-8/h0145
http://dx.doi.org/10.1109/TPAMI.2005.188
http://dx.doi.org/10.1109/TPAMI.2005.188
http://dl.acm.org/citation.cfm?id=1083822.1083989
http://dl.acm.org/citation.cfm?id=1083822.1083989
http://dx.doi.org/10.1109/TC.1982.1675943
http://dx.doi.org/10.1109/TC.1982.1675943

	DreamCam: A modular FPGA-based smart camera architecture
	1 Introduction
	2 Previous work
	3 Hardware description of the “DreamCam”
	3.1 Global hardware architecture
	3.1.1 Image sensor board
	3.1.2 Processing board
	3.1.3 Communication board
	3.1.4 Memory board
	3.1.5 Power board

	3.2 Internal FPGA design

	4 Harris corner extractor application
	4.1 Harris corner detector module
	4.2 Sort module
	4.3 Swap memory module

	5 Experimental results
	5.1 Consumption of FPGA resources
	5.2 Maximum frequency
	5.3 Comparison with others works
	5.4 Experiments

	6 Conclusion and future works
	Acknowledgement
	Appendix A Supplementary data
	References


