
Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Katja Tuma

Drevesno preiskovanje Monte Carlo s

Thompsonovim vzorčenjem pri igri

Prebivalci otoka Catan

MAGISTRSKO DELO

ŠTUDIJSKI PROGRAM DRUGE STOPNJE RAČUNALNIŠTVO

IN INFORMATIKA

Ljubljana, 2016

University of Ljubljana

Faculty of Computer and Information Science

Katja Tuma

Monte Carlo Tree Search with

Thompson Sampling in the Settlers of

Catan

MASTER’S THESIS

MASTER’S STUDY PROGRAM

COMPUTER SCIENCE

Mentor: Prof. Dr. Branko Šter

Comentor: Prof. Dr. Bengt J. Nilsson

Ljubljana, 2016

Povzetek

Naslov: Drevesno preiskovanje Monte Carlo s Thompsonovim vzor-

čenjem pri igri Prebivalci otoka Catan

Drevesno preiskovanje Monte Carlo (MCTS) je ena izmed najbolj upora-

bljenih metod pri implementaciji močnega računalnǐskega igralca iger v ume-

tni inteligenci, brez uporabe predhodnega znanja o domeni. Najmočneǰsi in

najbolj popularni algoritmi, ki se pogosto uporabljajo za rešitev t.i. dileme

raziskovanja (engl. exploration) proti izkorǐsčanju znanja (engl. exploitation)

pri problemu več-rokih banditov, so raziskani in predstavljeni s pomočjo pre-

gleda literature. Na podlagi empiričnih študij Thompsonovega vzorčenja v

primerjavi s pristopom zgornje meje zaupanja (UCB) ter različicami podob-

nih algoritmov smo v magistrskem delu spremenili drevesno strategijo širjenja

v MCTS. Končna domena aplikacije spremenjenega algoritma je družabna

igra Prebivalci otoka Catan (SoC), implementirana v programskem jeziku

C, skupaj z MCTS-UCT agentom, MCTS-TS agentom ter dvema prepro-

sto igrajočima agentoma. Meritve učinkovitosti naštetih agentov prikazujejo

povečano moč igranja agenta s spremenjeno drevesno strategijo, v primerjavi

z najbolj pogosto uporabljenim pristopom, t.j. UCT.

Keywords: drevesno preiskovanje Monte Carlo (MCTS), več-roki

bandit (MAB), zgornja meja zaupanja pri drevesih (UCT), Thomp-

sonovo vzorčenje (TS), umetna inteligenca (AI), Prebivalci otoka

Catan (SoC).

Abstract

Title: Monte Carlo Tree Search with Thompson sampling in The

Settlers of Catan

Monte Carlo Tree search (MCTS) is a popular method of choice for ad-

dressing the problem of a strong computer based game playing agent in Ar-

tificial Intelligence, without any prior domain knowledge. The strongest and

most popular algorithms used to tackle the so-called exploration vs. ex-

ploitation dilemma in Multi-armed Bandit (MAB) problems were identified

and presented in a literature review. Empirical studies measuring the per-

formance of Thompson sampling (TS) and the state-of-the-art Upper Con-

fidence Bound (UCB) approach in the classical MAB problem have been

found, results of which support our modified tree policy in MCTS. The do-

main of application is the board game of the Settlers of Catan (SoC), which is

implemented as a multi-agent environment in the programming language C,

along with a MCTS-UCT agent, MCTS-TS agent and two strategy playing

agents, namely the ore-grain and wood-clay agent. Performance measure-

ments of the aforementioned agents, presented and discussed in this work,

demonstrate an increase in the performance of the agent with the modified

tree policy, when compared to the state-of-the-art approach (UCT).

Key words: Monte Carlo Tree Search (MCTS), Multi-armed Ban-

dits (MAB), Upper Confidence Bound for Trees (UCT), Thompson

sampling (TS), Artificial Intelligence (AI), the Settlers of Catan

(SoC).

The results of this Master’s Thesis are the intellectual property of the author and

the Faculty of Computer and Information Science of the University in Ljubljana.

For publishing or using the results of the Master’s Thesis it is necessary to obtain

a written consent of the author, the Faculty of Computer and Information Science

and the mentor.

I would first like to thank my thesis advisor and mentor Prof. Dr. Branko Šter

of the Faculty of Computer and Information Science in Ljubljana for guiding me

through every obstacle I had to overcome while creating this work. The door to

Prof. Dr. Branko Šter was always open for whenever I ran into trouble or needed

advice.

I would also like to thank my co mentor Prof. Dr. Bengt J Nilsson of the

Malmö University for helping me with the research process, steering me in the

right direction and for providing valuable input about this thesis for which I am

most grateful.

Finally, I must express my gratitude to my close friends and family for un-

conditionally providing me with support and motivation I needed at every step of

the way. This accomplishment would surely not have been possible without them.

Thank you.

Katja Tuma.

Table of Contents

Povzetek

Abstract

Razširjen povzetek

1 Introduction 1

2 The Settlers of Catan 3

2.1 Game rules . 3

2.2 Rule changes . 7

2.3 Previous implementations . 8

3 Multi-armed Bandit problem 9

3.1 The Classical MAB . 10

3.2 Gittins index . 11

3.3 Upper Confidence Bound . 11

3.4 Thompson sampling . 12

4 Monte Carlo Tree Search 15

4.1 The general algorithm . 16

4.2 Upper Confidence Bound for Trees 17

4.3 Rapid Action Value Estimation . 18

4.4 Heuristic prior knowledge . 19

5 Thompson sampling in Monte Carlo Tree Search 23

5.1 Preliminary investigations . 23

TABLE OF CONTENTS

5.2 Structure of our program . 25

5.3 Basic strategy playing agents . 28

5.4 Testing against human players . 29

5.5 Performance measurements . 31

6 Conclusion 41

TABLE OF CONTENTS

Table of Abbreviations

abbreviation slovene english

AI Umetna inteligenca Artificial Intelligence

AI-based Osnovano na umetni inteligenci Artificial Intelligence based

SoC Prebivalci otoka Katan Settlers of Catan

SOS Vsota polj Sum of Switches

MAB Več-roki bandit Multi-armed Bandit

UCB Zgornja meja zaupanja Upper Confidence Bound

TS Thompsonovo vzorčenje Thompson sampling

SDP
Stohastično dinamično

programiranje

Stochastic Dynamic

Programming

MCTS
Drevesno preiskovanje

Monte Carla
Monte Carlo Tree Search

UCT
Zgornja meja zaupanja

pri drevesih

Upper Confidence Bound

for Trees

RAVE Hitra ocena akcij
Rapid Action Value

Estimation

AMAF
Princip prvič obiskanih

potez

All Moves As First

principle

MC-RAVE
Hitra ocena akcij po

Monte Carlu

Monte Carlo Rapid Action

Value Estimation

UCT-RAVE

Hitra ocena akcij po

zgornji meji zaupanja

pri drevesih

Upper Confidence Bound

for Trees Rapid

Action Value Estimation

MDP Markovski odločitveni proces Markov Decision Process

GUI Uporabnǐski grafični vmesnik Graphical User Interface

PDF Gostota verjetnosti Probability density function

Razširjen povzetek

To poglavje vsebuje kratek opis celotne vsebine magistrskega dela. Razširjen pov-

zetek opisuje poglavje o domeni aplikacije, tj. poglavje o igri Prebivalci otoka Ca-

tan, poglavje o problemu več-rokega bandita, poglavje o drevesnem preiskovanju

Monte Carlo ter poglavje o Thompsonovem vzorčenju v drevesnem preiskovanju

Monte Carlo. Opis slednjega poglavja vsebuje tudi kratko diskusijo rezultatov

meritev, pridobljenih v fazi testiranja novega algoritma.

Igra Prebivalci otoka Catan (SoC) je družabna igra, prvič predstavljena trgu

leta 1995 pod avtorstvom Klausa Teuberja. Pravila igre se razlikujejo od posame-

zne različice, saj so se od nastanka osnovne igre pojavile razširitve, tako števila

možnih igralcev, kot poteka igre. Za namene magistrske naloge je bila izbrana

prvotna različica igre, kjer sodelujejo štirje igralci. Potek igre je v postavitveni

fazi nekoliko drugačen kot v igralni fazi. V postavitveni fazi je potrebna postavi-

tev igralne plošče ter postavitev začetnih naselij. V igralni fazi pa se igra odvija

tako, da igralci izmenično mečejo kocki ter uporabljajo svoje resurse za gradnjo

oziroma razvoj naselij. Izid posameznega meta kock povzroči produkcijo resur-

sov tistim igralcem, ki imajo svoja naselja postavljena okoli aktivirane šestkotne

plošče. Trenutni igralec ima možnost izbire ene ali več sledečih akcij:

1. igralec lahko izvede menjavo kart z ostalimi igralci ali z banko,

2. igralec lahko gradi naselje, mesto ali cesto,

3. igralec lahko kupi ali igra predhodno kupljeno karto za razvoj ter

4. igralec lahko prepusti igro naslednjemu igralcu.

Posamezna naselja ter razvojni cilji so nagrajeni z določenim številom točk. Igra

se konča, ko eden izmed igralcev prvič doseže 10 točk.

0. RAZŠIRJEN POVZETEK

Problem več-rokega bandita (MAB) je bil prvič omenjen leta 1952 ter je v

literaturi pogosto opisan na primeru igralca, ki igra na igralnem avtomatu v igral-

nici. Cilj igralca je igrati tako zaporedje ročic, do bo skupen seštevek dobitkov

največji. Za reševanje problema več-rokega bandita se pogosto uporablja izračun

Gittinsovega kazalca ter izračun vrednosti zgornje meje zaupanja (UCB). Poleg

omenjenih pristopov, smo se odločili raziskati tudi učinkovitost implementacije

Thompsonovega vzorčenja (TS) pri problemu več-rokega bandita.

Drevesno preiskovanje Monte Carlo (MCTS) je algoritem, ki preiskuje prostor

drevesne strukture na osnovi naključnih simulacij. V osnovi gre za algoritem, ki

vsebuje drevesno strategijo za izbiro najbolǰse poti do lista drevesa ter privzeto

strategijo za določanje rezultata naključnih simulacij. Bolj podrobno, drevesno

preiskovanje Monte Carlo vsebuje štiri korake, ki se izvedejo ob vsaki iteraciji

algoritma:

1. izbor lista drevesa v skladu z drevesno strategijo,

2. razširitev drevesa z novim vozlǐsčem,

3. naključna simulacija v skladu s privzeto strategijo ter

4. posodobitev vozlǐsč drevesa na poti od novega lista do korena.

Pri drevesnem preiskovanju je razširitveni faktor (tj. število možnih potez) bistve-

nega pomena. Posledično je potrebna uporaba učinkovitega načina ocenjevanja

posameznih vozlǐsč. Preprosta ali uniformna rešitev za spopadanje s t.i. dilemo

raziskovanja proti izkorǐsčanju znanja v literaturi ni bila zasledena. V magistr-

skem delu so raziskani najbolj pogosto uporabljeni pristopi, kot je zgornja meja

zaupanja pri drevesih (UCT), hitra ocena akcij (RAVE) ter uporaba hevristike.

Pred implementacijo Thompsonovega vzorčenja v drevesno strategijo dreve-

snega preiskovanja Monte Carlo, je bila raziskana učinkovitost uporabe Thomp-

sonovega vzorčenja v primerjavi z uporabo izračuna zgornje meje zaupanja pri

enostavnem problemu več-rokega bandita. Opravljene meritve obžalovanja, pri-

kazane na Sliki 2, prikazujejo počasneǰse naraščanje obžalovanja izbire ročic pri

uporabi Thompsonovega vzorčenja.

Naš program je implementiran v programskem jeziku C in sestoji iz MCTS-

TS agenta, MCTS-UCT agenta ter dveh preprosto igrajočih agentov. Testiranje

delovanja MCTS-TS agenta je bilo izvedeno na dva načina:

1. testiranje igranja proti človeškemu igralcu (avtorju magistrskega dela) s

pomočjo preprostega grafičnega vmesnika ter

2. merjenje povprečnega razmerja zmag in obžalovanja posameznega agenta pri

različnem številu simulacij na MCTS potezo.

Postopoma so bile razvite in testirane tri različice programa. Prvotna različica

programa vsebuje logiko igre, pri kateri je možnih 26 = 64 potez. Vsaka poteza je

kombinacija naslednjih akcij:

1. izmenjava kart z banko,

2. gradnja ceste,

3. gradnja naselja,

4. gradnja mesta,

5. nakup karte za razvoj ter

6. igranje karte za razvoj.

Meritve prvotne različice programa, predstavljene na slikah 9 in 10, prikazujejo

bolǰse delovanje MCTS-TS ter MCTS-UCT agenta v primerjavi z agenti, ki igrajo

z upoštevanjem preproste strategije. Kljub vsemu pa je razvidno, da je MCTS-TS

agent v večini primerov premagan s strani MCTS-UCT agenta. Zaradi visokega

razširitvenega faktorja je bila razvita druga različica programa, kjer je logika igre

spremenjena tako, da je možnih le 7 akcij na potezo 1. Rezultati, pridobljeni

z drugo različico programa ter prikazani na slikah 11 in 12, niso uspeli poka-

zati bolǰsega delovanja MCTS-TS agenta v primerjavi s prvotnim delovanjem.

Pravzaprav je bilo med testiranjem opaženo, da se igra odvija počasneje, saj so

spremembe logike igre bistveno spremenile potek igre, zaradi česar je bila tretja

verzija programa razvita na osnovi prvotno implementirane igre. Pri tretji ver-

ziji programa je uporabljeno t.i. posteriorno preoblikovanje Beta porazdelitve, s

pomočjo katere poteka Thompsonovo vzorčenje. Meritve, predstavljene na slikah

7 in 8, prikazujejo hitreǰso rast obžalovanja MCTS-UCT agenta v primerjavi z

1Poleg prej naštetih akcij je možna tudi predaja igre naslednjemu igralcu.

0. RAZŠIRJEN POVZETEK

MCTS-TS ter vǐsje vrednosti povprečij zmag MCTS-TS v primerjavi z MCTS-

UCT. Vpeljavo Thompsonovega vzorčenja v drevesno strategijo algoritma MCTS

in implementacijo le-tega v domeno Prebivalci otoka Catan predstavljamo kot naš

glavni prispevek magistrskega dela.

Chapter 1

Introduction

Game theory has for decades played an important role in advances made in various

fields, such as computer science, economics, political science, biology and many

more. In fact, the earliest example of a formal game-theoretic analysis was an

economical-oriented study of duopoly by Antoine Cournot in 1838. Game theory

is a formal study of mathematical models of conflict and cooperation between in-

telligent rational decision-making agents. It has especially received attention after

the introduction of the Nash equilibrium in 1950. With it, John Nash demon-

strated that finite games have always an equilibrium state, at which all players

choose their best action according to the opponents’ choices. Having said that,

the mathematical principles defined in game theory have been applied on a variety

of problems where an automated decision-making system that interacts with the

environment is needed. Our work is focused particularly on a non-zero sum game

with non-cooperative competing decision-making agents.

The main objectives of the thesis are to identify a novel approach of a MCTS-

based solution for a game playing agent of the board game the Settlers of Catan,

implement the game logic along with the state-of-the-art solution and the novel

approach in the programming language C, and finally to obtain the performance

feedback from measuring regret and average winning rate of several agents.

Accordingly, the Master’s Thesis is comprised of multiple chapters and sections.

In the second chapter, we introduce the reader to the board game and the rules

of playing the game. We further elaborate on some of the rule changes made, in

order to simplify the game logic for faster computation. We finish the chapter

1

2 CHAPTER 1. INTRODUCTION

with a section of previous implementations of Catan playing agents. In the third

chapter we continue with presenting the classical MAB problem along with the

most frequently proposed solutions. Similarly, the fourth chapter describes in

detail the Monte Carlo Tree Search with its popular varieties and enhancements.

As the classical MAB problem and MCTS tackle with a similar dilemma, notably

the exploration vs. exploitation dilemma, the fifth chapter finally discusses our

method of choice in solving the problem at hand. Our results are presented within

the same chapter along with the discussion.

Chapter 2

The Settlers of Catan

Settlers of Catan (SoC) is a non-deterministic from two to six player board game,

designed by Klaus Teuber and first published in 1995 in Germany under the name

Die Siedler von Catan. The game has since been one of the most popular strategic

board games and has gained popularity on a global scale, selling more than 22

million copies in 30 different languages around the world. The players assume the

roles of conquerors, seeking to build and develop their initial settlements through

acquiring and trading various resources, for which they are awarded points. Suc-

cessful game plays lead towards eventually reaching 10 points before the competing

players and consequently winning the game. Even though the standard number

of players is set to be from three to four, the game has been developed to include

expansions where additional rules are applied. For the purposes of our research,

we will further elaborate on game rules of the standard four player set-up. We will

proceed to argue the rule changes that were necessary for a simpler implementation

of the game logic and finish the chapter with presenting some previous work done

in this research area, also mentioning the most important Artificial Intelligence

based (AI-based) game implementations available today.

2.1 Game rules

The standard set-up of the SoC consists of four players and several game compo-

nents:

3

4 CHAPTER 2. THE SETTLERS OF CATAN

(a) 18 resource terrain tiles and 1 dessert tile,

(b) 6 sea frame pieces that together contain 9 ports,

(c) 18 number tokens and 1 robber,

(d) 95 Resource Cards of clay, ore, sheep, wheat and wood,

(e) 25 Development Cards (14 Knight Cards, 6 Progress Cards and 5 Victory

Point Cards),

(f) 2 Special Cards: Longest Road and Largest Army,

(g) 16 city pieces,

(h) 20 settlement pieces,

(i) 60 road pieces,

(j) 2 dice.

The game is played in two phases: the initial set-up phase and the game phase.

The initial phase comprises of island construction, distribution of pieces and po-

sitioning two settlement and road pieces of each player on the board. There are

various possibilities for island construction, in fact, a random approach can be

followed if desired. However, certain pre-set combinations of resource tiles and

production numbers are proposed by the accompanying booklet of rules. Each

player selects a color and collects the corresponding 5 settlements, 4 cities and 15

roads and 1 Building Cost Card. Players follow a simple algorithm for determining

the order of first settlement and road positioning. All players roll the dice once,

and remember their outcome sum. In the first round of initial placements a de-

scending order of players’ outcomes is applied whereas in the second, an ascending

order is applied. This procedure balances out the advantage of selecting from an

empty board and having the opportunity to play both phases at once. After the

initial phase the game may begin. In each turn the player first rolls the dice. The

production number matching the outcome activates the distribution of the corre-

sponding resources to the players that positioned their settlements on the adjacent

intersections of the tile. After the Resource Cards are obtained, the player in turn

is allowed to make several moves before passing the turn to other players. The

2.1. GAME RULES 5

player is able to trade resources, build roads, settlements and cities, buy and play

Development Cards. The following paragraphs describe the rules of each move in

detail.

2.1.1 Resource production

Each player who has a settlement on an intersection marked with the number

corresponding to the outcome of a dice roll, receives one Resource Card of the tile’s

type. If the player has two or three settlements bordering the same tile, he/she

receives one Resource Card for each settlement. The players receive two Resource

Cards of the same type for each city bordering the active tile. If there is not

enough Recourse Cards in the main card deck to supply everyone, no one receives

any resources that turn. If a player rolls a 7, instead of resource distribution, the

following happens before the trading can continue:

(a) All players that posses more than seven resources must select half (rounded

down) and return it to the supply stack,

(b) The player in turn has to move the robber to another terrain tile to block

resource production,

(c) The player can choose to steal one Resource Card from any player occupying

the selected terrain tile. 1

2.1.2 Trade

After the Resource Production each player is allowed to trade freely, using one

or both types of trading. In a Domestic Trade, the player in turn is allowed to

announce what type of resource he wants to trade for what price. Other players

are allowed to trade only their Resource Cards with the player in turn, while trying

to negotiate for the best possible trade. In a Maritime Trade, the player in turn is

allowed to trade resources with the supply stack, exchanging multiple cards of the

1The robber deactivates the terrain tile. All players that have settlements or cities

positioned around the blocked tile do not get any resources when the production number

is rolled. The robber may be moved to the desert tile, where it does not block any

production until the next seven is rolled or a Knight Card is played.

6 CHAPTER 2. THE SETTLERS OF CATAN

same resource for one desired Recourse Card. If the player possesses a settlement

or a city on a port intersection, the trading price is 2:1 (two Resource Cards of

the port’s type for one desired Resource Card). There are four out of nine ports

that support trading of all resources for the price 3:1. If the player in turn is not

occupying any ports, the price for Maritime Trade is 4:1.

2.1.3 Build

Once the trading has been finished, the player in turn can proceed to build new

elements on board to gain Victory Points, expand the territory, improve the re-

source production and/or buy Development Cards. In order to build the players

must pay a specific combination of resources to the supply stack.

(a) Road: 1 clay & 1 wood

A new road must always connect to one of the player’s existing roads, settle-

ments or cities. Only one road can be build on a given path. The first player to

build a continuous road of at least 5 road pieces (not counting forks), obtains

the Longest Road Card, which is worth two Victory Points. If another player

exceeds the current longest road, the Longest Road Card is stolen, along with

the corresponding points.

(b) Settlement: 1 clay & 1 wood & 1 sheep & 1 wheat

A settlement can only be build at an intersection if all three adjacent inter-

sections are unoccupied and must be at least connected to one road. Each

settlement is worth one Victory Point and results in one additional Resource

Card when active after the dice roll.

(c) City: 3 ore & 2 wheat

A city can only be build upon a previously built settlement, where the settle-

ment piece is taken off the board for further use, as the game unfolds. Each

city is worth two Victory Points, and results in two additional Resource Cards

when active after the dice roll.

(d) Buying a Development Card: 1 ore & 1 sheep & 1 wheat

There are three types of Development Cards: Knight, Progress Card and

2.2. RULE CHANGES 7

Victory Point. After this card is bought and played it is never returned to the

supply stack, as it remains in the hands of the player.

2.1.4 Playing Development Cards

At any time during the turn, the player is allowed to play one Development Card

bought in one of the previous rounds. The Knight Card activates the robber,

therefore the same procedure is followed, as when the dice roll outcome equals

to seven. When a player has collected and played three Knight Cards, he/she

obtains the Largest Army Card, which is worth two Victory Points. If another

player exceeds the number of played Knight Cards, the Largest Army Card is

stolen, along with the corresponding points. There are three types of Progress

Cards: Road Building, Year of Plenty and Monopoly. If the player chooses to play

the Road Building Card, he/she can immediately build two roads for free. If the

Year of Plenty Card is played, the player can choose two Resource Cards from the

supply stack. When the Monopoly Card is played, the player chooses one type of

resource and steals all resources of the same type from other players. A Victory

Point Card remains hidden until the last move, when the player in turn is sure to

have all 10 points.

2.2 Rule changes

From the rules of the SoC, it is apparent that the complexity of game logic even

increases with using extensions, so our first limitation was to implement the game

with a standard set-up model of four players. Following the example of rule changes

introduced by Szita et al. in [17], we further limited our agents to Maritime Trade

only. Similarly to the opinion of aforementioned authors, we believe that these

rule changes do not significantly alter the game, nevertheless, they do handicap

our agents playing strength. In addition, for the purpose of reducing the measuring

time of several game simulations, the end condition was changed (only 7 Victory

Points required for victory).

8 CHAPTER 2. THE SETTLERS OF CATAN

2.3 Previous implementations

There have been several attempts in developing strong playing agents in the SoC,

including the use of Reinforcement learning strategies by Pfeiffer in [15] that some

consider to be the first step in applying advanced machine learning techniques for

solving complex game problems. Moreover, researchers have also been exploring

the validity of using multi-agent approaches to create game playing bots with a

centralized logic, as is demonstrated by Branca and J. Johansson in [4]. Classic

approaches in AI require either a high level of domain knowledge or a long response

time from game playing agents in complex game situations. Monte Carlo Tree

Search (MCTS), on the other hand, requires very little or no domain knowledge,

using only randomized simulations with a pre-defined tree policy. Indeed, the

implementation of MCTS based playing agents has been repeatedly applied to a

great variety of deterministic two-player games, such as game of go, chess, checkers,

solitaire, travelling salesman problem and more, as outlined in the survey of MCTS

methods by Browne et al. [5]. Moreover, MCTS has also been applied in non-

deterministic multi-player games, in particular Szita et al. [17], have shown that

MCTS can be adapted successfully to the SoC board game. Their implementation

of the game, SmartSettlers is a Java based program, using the open-source client-

server oriented implementation, JSettlers, as the baseline with GUI. Szita et al. [17]

mention other computer implementations of the game, namely Castle Hill Studios’s

version, part of Microsoft’s MSN Games.

Note that some other work which does not focus on AI agent development

specifically, is nevertheless closely related to the game, and can therefore provide a

good understanding of the game. Furthermore, when implementing Monte Carlo

Tree Search in the SoC, there is a level of abstraction needed for a well planned

implementation of agents. Such a framework is proposed by G.J.B. Roelofs in [16].

Chapter 3

Multi-armed Bandit problem

First introduced by Herbert Robbins in 1952, a Multi-armed Bandit (MAB) prob-

lem can be regarded as the problem in which a gambler is playing a set of slot

machines (sometimes referred to as arms) at a Casino. The gambler’s objective is to

play the best arm sequence, in order to maximize the sum of rewards. Essentially,

the algorithms designed to handle a MAB problem, typically find balance between

the so called exploration and exploitation, iteratively optimizing and guiding the

gambler to find the best arm. Such problems arise on many occasions, notably in

the context of on-line planning, ad placement in web advertisement, clinical trials,

etc.

There are at least as many approaches to tackle the exploration vs. exploitation

dilemma, as there are variants of MAB problems. The survey on MAB problems

performed back in 2008 by Mahajan and Teneketzis [13] mentions the follow-

ing: Superprocesses, Arm-acquiring Bandits, Switching Penalties, Multiple Plays

and Restless Bandits. Several of these are related with one another and can be

sometimes converted into another. Furthermore, there are optimal and approxi-

mate strategies, depending on how much accuracy can be sacrificed for efficiency.

To only name a few: semi-uniforms, Thompson sampling, Pricing poker, Lin-

UCB, Kernel UCB, Gittins index, etc. Moreover, studies have been conducted,

researching the empirical evaluation and effectiveness of several theoretically well-

understood approaches. One of such studies was performed by Kuleshov and

Precup [11], where the authors empirically study the most popular solutions to

MAB problems, namely ε-greedy, Boltzmann Exploration (Softmax), Pursuit Al-

9

10 CHAPTER 3. MULTI-ARMED BANDIT PROBLEM

gorithms, Reinforcement Comparison and Upper Confidence Bound (UCB), in the

context of clinical trials. In this chapter we seek to establish a formal description

of a Classical MAB problem and present ways for solving such problems.

3.1 The Classical MAB

According to Mahajan and Teneketzis in [13], MAB problems are a class of sequen-

tial resource allocation problems concerned with allocating one or more resources

among several alternative (competing) projects. A bandit process is defined as a

special type of Markov Decision Process in which there are two possible actions:

freeze and continue. The latter produces a reward and results in a change of

state according to Markov dynamics. More specifically, the classical MAB prob-

lem is a collection of k independent single-armed bandit processes. It therefore

also consists of the so called controller or processor. At each step the controller

chooses to operate exactly one arm while the others remain frozen. In order to

demonstrate how the system evolves, Mahajan and Teneketzis [13] assume that

each arm i, i = 1, 2, ..., k is represented by sequences (Xi(Ni(t)), Ri(Xi(Ni(t))));

Ni(t) = 0, 1, 2, ..., t; t = 0, 1, 2, ..., where Ni denotes the number of times the arm

has been pulled until time t and Ri denotes the reward generated by arm i at

time t. They further assume that U(t) = (U1(t), ..., Uk(t)) denotes the action

taken by the controller at time t and Wi(n); i = 1, ..., k; n = 0, 1, ... a sequence of

state-independent variables. The system evolves according to

Xi(Ni(t)) =







Xi(Ni(t)), if Ui(t) = 0,

fN(t)(Xi(0), ..., Xi(Ni(t)),Wi(Ni(t))), if Ui(t) = 1,
(3.1)

and

Ni(t+ 1) =







Ni(t), if Ui(t) = 0,

Ni(t) + 1, if Ui(t) = 1,
(3.2)

for all i = 1, 2, ..., k, therefore t represents the local time of each arm, only increas-

ing when Ui(t) = 1. The MAB problem, originally formulated in 1940 determines

the so called scheduling policy that maximizes the accumulated reward of pulling

arms until time t = k. The problem was known to be solved using Stochastic Dy-

namic Programming (SDP) techniques, despite its unoptimized approach. Other

3.2. GITTINS INDEX 11

possible approaches to solving the problem evolved, one of them discovered by

Gittins and Jones in their work dating back to 1972 [9]. In the following sections

we briefly describe the idea behind Gittins index and continue to show the possible

application of TS in MAB.

3.2 Gittins index

The Gittins index is a measure of reward (a real scalar value) associated to the state

of a stochastic process with a reward function and a probability of termination.

The arm is chosen based on the Gittins index. Such a policy of choice is commonly

referred to in the literature as the index policy and it follows the Theorem 3.2.1,

originally proved to be the optimal solution by Gittins and Jones and others (eg.

short proof by Tsitsiklis [18] and alternative proof by Weber [19]).

Theorem 3.2.1 (Gittins index Theorem) The expected discounted reward obtained

from a simple family of alternative bandit processes is maximized by always con-

tinuing the bandit having greatest Gittins index

Gi(xi) = sup
r≥1

E

[

∑τ−1
t=0 ri(xi(t))β

t

∣

∣

∣

∣

xi(0) = xi

]

E

[

∑τ−1
t=0 βt

∣

∣

∣

∣

xi(0) = xi

] ,

where τ is a stopping time.

Since the algorithm’s discovery, many variations have been applied on several

types of MAB problems; nevertheless, there are certain difficulties with Gittins

index that we wish to mention. The first one is, that it is very hard to compute,

especially where performance is of utmost importance. Another problem is the

required independence of arms, which results in an unknown performance and

optimality in some applications.

3.3 Upper Confidence Bound

For MAB problems it is useful to determine the Upper Confidence Bound (UCB)

that a certain arm will be the optimal choice. The UCB class of algorithms have

12 CHAPTER 3. MULTI-ARMED BANDIT PROBLEM

been introduced by Lai and Robbins in [12] where they show that such algorithms

guarantee that the number of inferior arms pulled is bounded. Furthermore, Auer

et al. have proposed a simple version of the UCB algorithm, named UCB1 in their

Finite-time analysis of the MAB problem [2]. The proposed strategy focuses on

pulling an arm with the maximum value of

UCB1 = X̄j +

√

2 log n

nj
, (3.3)

where X̄j denotes the average reward from arm j, nj the number of times arm j has

been pulled and n the overall number of pulls so far. Note that the first part of the

sum encourages the exploitation, while the second part encourages the exploration

of less visited arms. There have been several developments and variations of the

UCB algorithm, some of which are mentioned in the survey by Browne at al [5].

This approach can be directly implemented into trees which we further discuss in

Chapter 4 in section Upper Confidence Bound for Trees (UCT).

3.4 Thompson sampling

Dating back to 1933, Thompson studied the problem of finding out which one of

two drugs was better when testing them on a patient population under the con-

straint that as few people as possible should be subjected to the inferior drug. He

suggested to adjust the proportions of the future test subjects to the probabilities

P and P − 1. This ensures that the future test subjects are more often a part of

superior treatment, rather than inferior one.

Mellor defines Thompson sampling (TS) in his dissertation [14] as a randomised

probability matching (also referred to as posterior sampling) strategy for the MAB

problem. For each decision, the probability of an arm being pulled matches the

probability that the arm is in fact the optimal arm, given all past observations of

arm pulls.

Assuming the regular contextual bandit settings, this paragraph provides a

formal description of TS in MAB. At each round the algorithm is able to choose

an action a from the set of actions A and observe the reward r. TS can be

best explained by establishing a set of past observations D that contains pairs of

actions and rewards (ai, ri), modelled by a parametric likelihood function P(r|a, θ)

3.4. THOMPSON SAMPLING 13

depending on parameters θ. Given some prior distribution P (θ), the goal is to

select actions such as to maximize the expected reward, maxa E(r|a, θ
∗). For a

simple demonstration, Algorithm 1 outlines the procedure of TS.

Algorithm 1 Thompson sampling

D ← ∅

for t = 1, ..., T do

Draw θt according to P(θ|D)

Select action at = argmaxa Er(r|a, θ
t)

Observe reward rt

D = D ∪ (at, rt)

end for

14 CHAPTER 3. MULTI-ARMED BANDIT PROBLEM

Chapter 4

Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a simulation based search algorithm. It

has proven to be the most successful approach in computer Go and it is rapidly

replacing other search algorithms as the method of choice on other domains such

as General Game Playing, Amazons, real time strategy games, etc. Computer Go

is said to be one of the greatest challenges in AI. The research done on Go playing

agents was until recent innovations1 unable to produce agents that could beat

top human players. Despite the fairly simple rules of the territorial board game,

the game is extremely hard to master and has been used in the Chinese culture

as a measure of intelligence for centuries. The problem when developing efficient

agents is a large number of possible moves at each step. Specifically in MCTS,

this number coincides with the branching factor, which exponentially increases the

search space.

The basic idea of tree search algorithms is to imagine the game as a finite

number of possible states, which occur as a result of a move. With MCTS, the

states of the game are represented as nodes. New nodes are added to the search

tree incrementally and each node contains a value that predicts which player will

win the game, according to numerous randomly simulated games from that state.

The value of the node can be simply an average outcome of all simulated games.

1A British artificial intelligence company named Google DeepMind, founded in 2010,

has released a computer program named AlphaGo to play the board game Go. In October

2015 this was the first program to beat a professional human player without handicaps on

a 19 ∗ 19 board.

15

16 CHAPTER 4. MONTE CARLO TREE SEARCH

A search tree is used to guide simulations along promising paths by selecting the

child node with the highest value. It is said that the evaluation function continues

to improve from knowledge gained by additional simulations and will, given infinite

memory and computation time, converge to the optimal solution. In this chapter,

we discuss the general MCTS algorithm and put forward the most important

variations that evolved through research, mostly done on computer Go programs.

4.1 The general algorithm

The basic MCTS process builds a tree in an incremental asymmetric manner until

a predefined computational budget is reached (time, memory) at which point the

search is stopped and the best action returned2. For each iteration of the algorithm

a tree policy is used to determine which is the most promising path in the current

search tree. This step involves the addition of a leaf node in the search tree. The

tree policy is the one balancing exploration (explore areas that have not been

sampled yet) vs. exploitation (further exploit areas that appear to be promising).

There are multiple strategies for selecting a tree policy, like progressive pruning,

simulated annealing, etc. Chaslot et al. published a paper called Monte Carlo

Strategies for Computer Go, where they are all described in detail [7].

After a path is determined by the tree policy, a simulation is carried out from

the leaf node of the path and the values of tree nodes are updated. For simulating

games from a certain node, a default policy is used. The default policy can be based

on random roll-outs, or it can include a more sophisticated strategy of game play.

Previous machine learning approaches have focused on optimising the strength of

the default policy, under the assumption that a stronger policy will perform better

in a Monte Carlo search. According to the survey [5], in practice this assumption

is often incorrect, and in general it can be difficult to find a default policy that

performs well in the search. What is more, it is important to realize the trade-off

between the positive results from including extra logic into the default policy and

the resulting increase of resource consumption. To further clarify the idea behind

2Note that the child is selected by a specific mechanism: Max child, Robust child,

Max-Robust child, Secure child. Detailed description of mechanisms after termination can

be found in [5]

4.2. UPPER CONFIDENCE BOUND FOR TREES 17

the general algorithm, we would like to point out the four steps applied in every

search iteration (also shown in Figure 1):

1. Selection: Starting at the root, a child node is selected in accordance with

the tree policy.

2. Expansion: One or more child nodes are added to the tree.

3. Simulation: A simulation is run from the new node in accordance with the

default policy.

4. Backpropagation: The simulation results are backed up and the values of

the nodes are updated.

4.2 Upper Confidence Bound for Trees

The Upper Confidence Bound for Trees (UCT) algorithm treats each state of the

search tree as a MAB, in which each action corresponds to an arm of the bandit.

The tree policy selects actions by using the UCB1 algorithm, which maximises an

upper confidence bound on the values of actions3. It is commonly said to be using

the so called optimism in the face of uncertainty principle with the inclusion of a

bonus based on an upper confidence bound of the current value. Specifically, the

action value is augmented by an exploration bonus that is highest for rarely visited

state-action pairs. The tree policy selects the action a∗ maximising the value

Q′(s, a) = Q(s, a) + c

√

lnN(s)

N(s, a)
(4.1)

a∗ = argmaxQ′(s, a) (4.2)

where Q(s, a) is understood to be a scalar within [0,1], N(s) the number of times

a current (parent) node has been visited, N(s, a) the number of times action a has

taken place and c is a scalar. There is a balance between the first (exploration) and

the second (exploitation) term in the equation. When N(s, a) = 0, the UCT value

Q′(s, a) = ∞, so that previously unvisited children are assigned the largest value

3We discuss the UCB1 algorithm in Chapter 3 in section Upper Confidence Bound

18 CHAPTER 4. MONTE CARLO TREE SEARCH

and are explored immediately. The benefits of MCTS are usually not realised until

the algorithm is adapted to suit the domain at hand, hence the performance of UCT

can be significantly improved by incorporating domain knowledge in the default

policy, as previously stated by Gelly and Silver in [8]. We continue to explore

different variations of UCT by describing them briefly and discussing advantages

and disadvantages.

4.3 Rapid Action Value Estimation

MCTS separately estimates the value of each state and action, therefore it can

not generalize related moves and positions. What is more, in the game of Go the

value of a move is often unaffected by the moves placed elsewhere on the board. It

is therefore useful to rapidly evaluate a reoccurring move (state-action pair). The

Rapid Action Value Estimation (RAVE) uses the AMAF (All Moves As First)

heuristics and provides a simple way to share knowledge between related nodes

and moves in the search tree. The idea of the AMAF heuristic is to compute

AMAF value as a general value for each move, regardless of when it is used. The

AMAF value is the mean of all simulation outcomes in which action a is selected

at any turn after state s is encountered, as noted by Gelly and Silver in [8]. In

RAVE instead of computing the UCT value, the state-action pairs are evaluated

following the equation 4.3

Q̄γ(s, a) = Qγ(s, a) + ¯B(s, a), (4.3)

where Qγ(s, a) is the AMAF value and ¯B(s, a) is the level of bias, which depends on

the individual pair. Note that assuming the values of moves are truly independent,

this rough value estimation provides a much faster extension of the algorithm and

therefore the agent gains more information. Unfortunately, the algorithm can

often be wrong when evaluating the moves, precisely because of the independence

of moves assumption. More often, a move will not have the same effect on the

game state at different stages of a game, hence the same evaluation of such moves

is false. A good example would be to consider the SoC - a simple strategy will

favour building roads and settlements in the beginning of the game in order to

gain power over the territory and resources. The Monte Carlo RAVE algorithm

4.4. HEURISTIC PRIOR KNOWLEDGE 19

settles this issue by combining the calculation of UCT and AMAF value with a

weighted sum as follows

Q∗(s, a) = (1− β)(s, a)Q(s, a) + β(s, a) ¯Q(s, a), (4.4)

where β(s, a) represents a weight for a state-action pair, Q(s, a) represents the MC

value4 and ¯Q(s, a) the AMAF value.

By incorporating the optimism in the face of uncertainty principle, the so

called UCT-RAVE algorithm is yet another extension that combines the AMAF

and UCT values for move evaluation. The algorithm, similarly to MC-RAVE, takes

advantage of the rapid estimates, while also using the UCT evaluation of moves

following the equation 4.1. In contrast, the algorithm uses a schedule to determine

the evaluation method, rather that a weighted sum. Intuitively, when the schedule

decreases to zero, the algorithm becomes equivalent to UCT. According to Gelly

and Silver [8], typically a hand-selected schedule is applied, yet there has also been

an attempt to derive a statistical model for MC-RAVE. Another development was

the usage of a Minimum Squared Error (MSE) schedule, which assumes that both

AMAF and MC values are Bernoulli random variables.

Rapid action value estimation and its variants have been researched in the

context of the game of Go, where the state-action pairs are not necessarily unique

throughout the search tree. On the other hand, the search tree built in the domain

of the SoC contains only unique state-action pairs, since the pieces, once placed

on the board, can not be removed until the end of the game. Therefore, only when

all players subsequently pass the move and the next player passes the move again,

the state-action pair could be regarded as not unique.

4.4 Heuristic prior knowledge

In order to further improve the performance and reduce uncertainty for rarely en-

countered positions, Gelly and Silver describe how they incorporate prior heuristic

knowledge by using a heuristic function H(s, a) and a heuristic confidence function

C(s, a). When a new node is added to the tree, it is initialized according to the

4MC value is the mean outcome of all simulations in which action a was selected at

state s.

20 CHAPTER 4. MONTE CARLO TREE SEARCH

heuristic function Q(s, a) = H(s, a) and N(s, a) = C(s, a). After the initialization

the values are updated normally as they were in Monte Carlo simulation. Heuristic

was applied to MC-RAVE and UCT-RAVE, but according to their measurements,

heuristic MC-RAVE outperformed heuristic UCT-RAVE.

22 CHAPTER 4. MONTE CARLO TREE SEARCH

Chapter 5

Thompson sampling in Monte

Carlo Tree Search

Thompson sampling (TS) has become in the recent years a very popular method

of web advertisement and has been continuously applied in many different areas

to solve complex decision problems and planning. Empirical studies show that

TS is able to achieve similar or sometimes even better performance than other

types of algorithms in practice. Nevertheless, the research community appeared

to be reluctant in applying TS, due to the lack of theoretical analysis and proof

of convergence. The purpose of this chapter is to discuss selected related work

concerning TS and its applications in MCTS, reflect upon its application in the

SoC and discuss our program and its contributions in detail.

5.1 Preliminary investigations

Agrawal and Goyal [1] have shown that the TS algorithm achieves logarithmic ex-

pected regret for the stochastic MAB problem. Research also shows that there have

been further developments in theoretical analysis of the algorithm, in fact Kauf-

mann et al. published the first proof of the asymptotic optimality of Thompson

sampling for Bernoulli bandits in 2012 [10]. Furthermore, in research paper [3], Bai

et al. presented a novel approach for MCTS using Bayesian mixture modelling and

inference based Thompson sampling and apply it to the problem of online planning

23

24

CHAPTER 5. THOMPSON SAMPLING IN MONTE CARLO TREE

SEARCH

Table 5.1: The hidden probabilities of arms’ rewards in a test MAB environ-

ment, where ε varies.

Arm 0 Arm 1 Arm 2 Arm 3 ... Arm 8 Arm 9

0.5 0.5-ε 0.5-ε 0.5-ε ... 0.5-ε 0.5-ε

in MDPs. Their experimental results show that their approach beats the state-

of-the-art UCT approach. What is more, very good results have been obtained

by Wu et al. in their work proposing the Double Thompson sampling for Dueling

Bandits [20]. The aforementioned authors present the regret analysis and provide

regret measurements demonstrating the efficiency of the proposed solution.

Following the results of An Empirical Evaluation of Thompson sampling pub-

lished by Chapelle and Li [6] we have similarly tested the performance of TS in

comparison to UCB on a trivial MAB problem. Similarly to the authors, we have

obtained very positive results, demonstrating that the regret of TS does indeed

increase slower than the regret1 of UCB. The measurements were done using a sim-

ple model of a 10-armed bandit. The hidden winning probabilities of individual

arms are presented in Table 5.1. From Figure 2 we deduce that TS only requires

about 1000 simulations to outperform the UCB. Note that the regret is averaged

over 10 trials.

As TS has, to the best of our knowledge, never been implemented in the tree

policy of MCTS nor tested on the board game of SoC, we sought to explore the

possibility of our program to outperform the standard UCT algorithm. Instead of

evaluating moves according to the UCB value, our program selects random samples

of each arm from a posterior Beta distribution, which is updated accordingly. The

Beta distribution was selected because it is a conjugate prior distribution to the

Bernoulli distribution. It is a continuous probability distribution, defined on the

interval [0,1] and parametrized by positive real shape parameters α and β. We

incorporate TS in the tree policy of MCTS as is presented in Algorithm 2, where

Si represents the number of successful plays of arm i, Fi the number of failures

1Note that the cumulative regret is calculated as a difference between the winning

probability of a chosen arm and the winning probability of the optimal arm at time T .

26

CHAPTER 5. THOMPSON SAMPLING IN MONTE CARLO TREE

SEARCH

Algorithm 2 MCTS with Thompson sampling in the Tree Policy

α← 1, β ← 1, Si ← 0, Fi ← 0

procedure TS Search

Create a root node v0 with game state s0

while within computational budget do

v1 ← Tree Policy(v0)

∆← Default Policy(s(v1))

Backup(v1,∆)

end while

return a(Best Child(v0))

end procedure

procedure Tree Policy(v)

while v is non-terminal do

if v not fully expanded then return Expand(v)

else

v ← Best Child(v)

end if

end while

end procedure

procedure Best Child(v)

for every child i of v do

Draw θi according to Beta(Si + α, Fi + β)

end for

Select the child with max θi

end procedure

5.2. STRUCTURE OF OUR PROGRAM 27

procedure Default Policy(s)

while s is non-terminal do

randomly choose valid action a

s← f(s, a)

end while

return reward for state s

end procedure

procedure Backup(v, ∆)

vi ← v

while vi is not null do

if ∆ is a win then

Si ++

else

Fi ++

end if

vi ← parent of vi

end while

end procedure

28

CHAPTER 5. THOMPSON SAMPLING IN MONTE CARLO TREE

SEARCH

the purpose of testing the performance of MCTS on more trivial domain examples.

Initial measurements on MCTS-based implementations in trivial game situations

have shown the trend of increasing performance compared to random moves. Af-

ter the implementation of the SoC and its main components2, we were able to

incorporate the game logic into the MCTS-based implementation. What is more,

we have implemented two basic strategy playing agents, in order to have a more

realistic comparison of the agent’s strengths.

5.3 Basic strategy playing agents

We have chosen to implement two agents that are engaging to play the game using

a particular strategy. To further illustrate, we continue to describe the two most

commonly adopted strategies of game play.

5.3.1 Expand early: clay & wood

In compliance with the rules noted in Chapter 2, a player might seek to expand

his/her territory early in the game so as to gain more control over various resources.

This strategy aims to start buying Development Cards, obtaining the longest road

or largest army later in the game. However, in order to build settlements it is

absolutely necessary to build roads first, hence the player should begin the game

by positioning himself next to clay and wood resources, while keeping in mind

the desired variety of resources for immediate expansion. Finally, building a city

requires prior existence of a settlement, therefore the player seeks to build cities

later in the game as well, depending on the available resources.

5.3.2 Develop more than grow: ore & wheat

Another possible and effective strategy is for the player to develop fairly soon in

the game and try building as many cities as possible. Furthermore, this strategy

favours playing Development Cards, which eventually leads to largest army. In

the SoC it is understood that there is a shortage of ore and clay on the board,

2We have also included a basic GUI to enable testing the program’s strength against a

human player.

5.4. TESTING AGAINST HUMAN PLAYERS 29

which increases the importance of initially positioned settlements to border ore

producing tiles, when playing this strategy.

Our agents were developed to behave similarly to the above described game

strategies. We would like to stress that in practice, the initial set-up has an

enormous effect on the performance of agents, as previously studied by Gelly and

Silver, hence our agents (MCTS, as well as strategy agents) are playing intelligently

from the start of the game. To further clarify, this means, that MCTS agents

perform the predefined number of simulations in the first phase of the game as

well. The strategy playing agents, on the other hand, play according to a fixed

strategy for placing initial pieces. Note that strategy playing agents have been

developed to also favour positioning initial settlements on vertices bordering good

resource production tokens, i.e. 6 and 8.

5.4 Testing against human players

In this section we briefly describe the design of a minimized user interface, built to

enable testing the program against a human player, and the observations obtained

from testing the agents. Figure 3 shows the representation of the game board after

the console prompt for user input. Twenty games have been played against the

developed agents allowing 4000 simulations per a MCTS move, with a 17/20 win

rate of the author. In most cases, MCTS-based agents obtained more points than

strategy playing agents. In fact, we have observed that the MCTS-UCT agent

has mostly performed second best. Note that, the performance was estimated not

only in the number of points obtained, but also in the amount of built pieces on

the board and bought Development Cards, which gives a player advantage in the

following rounds. Our observations of the performance of agents are concurrent

with the obtained regret and average win rate measurements presented in Section

5.5. As expected, an experienced human player is still superior to the agents.

Not only does an experienced human have better abilities to strategically plan

the moves, the player has also an overview of the current game state, including

resource and Development Cards of opponents.

For the purpose of faster performance measurements, we have altered MCTS-

based agents to only have 1 out of 7 possible moves at a given time:

30

CHAPTER 5. THOMPSON SAMPLING IN MONTE CARLO TREE

SEARCH

1. trade,

2. build road,

3. build settlement,

4. build city,

5. buy a Development Card,

6. play a Development Card,

7. and pass the turn.

This alteration changes the game, as in the SoC it is expected to make multiple

moves when possible. We have tested the agents again, this time allowing the

human player to make only 1 move per turn, removing the advantage of multiple

actions from human agents, so that all agents behave similarly. We have observed

similar results, reaching a 16/20 win rate for the human player. Nevertheless, the

number of rounds per game has noticeably exploded, an average game taking about

100 rounds to finish. Note that even for a human player, it became more difficult

to plan moves, as the game logic forced the player to only make one move per

turn. Various game plays that are in practice very useful, have become impossible

to perform.

To further illustrate, such a scenario may occur when a player is preparing to

play the Development Card of type Year of plenty. This card is often played when

the player lacks one resource in particular and therefore seeks to play this card

only when he has other sufficient resources to do several moves. Imagine if you

will, that a player possesses the following Resource Cards: 1 clay, 1 wood, 1 sheep,

1 wheat and 3 ore. Furthermore, imagine that the player had obtained 8 Victory

Points and the Development Card of type Year of Plenty in previous rounds. If the

player were able to play the game according to the official game rules, assuming

the game state allows this player to build another settlement, he/she would win

performing the following:

1. Play the Development Card of type Year of plenty and gather 2 Resource

Cards of type wheat from the supply stack,

5.5. PERFORMANCE MEASUREMENTS 31

2. Build another settlement and obtain 1 extra Victory Point,

3. Build a city on one of the previous settlements and obtain another Victory

Point, consequently winning the game with 10 points.

Being forced to only make 1 move per turn, introduces a level of uncertainty that

the player will keep his resources until the next turn. One might argue that this

game play can be divided into three turns. In the first turn, the player builds the

settlement, which also reduces the risk of loosing resources. In the second turn

the player plays the Development Card and in the third turn the player builds the

city - that is if the resources were not lost during the last turn. Not only is there

increased risk of loosing the resources needed in each following turn, there is also

a greater chance of opponents winning the game in the meantime. Indeed, this

kind of game play was adopted while testing, yet there is a significant disturbance

caused by the limited game rules, which consequently lead to the deduction, that

such limitations are too large and change the game significantly.

With further alterations to the primarily developed TS agent, we were able to

increase its performance compared to the state-of-the-art UCT approach. While

testing the agents against a human player, we were able to observe similar win-

ning rates for the human player, however, the strength of the TS agent increased

accordingly. We further discuss the performance of the altered TS agent in the

following section.

5.5 Performance measurements

Finally, we present the performance measurements of our implementation of TS

in MCTS against other agents. While performing runs of multiple games with a

varied number of possible MCTS simulations per move, we have been taking note

of the individual agent’s average win rate and regret3. The measurements were

performed primarily on agents with the possibility of making multiple moves in one

turn, secondly on agents allowed to make a single move at each turn and thirdly

3Notice that in comparison to the regret measured in the empirical evaluation in Section

5.1, this regret is calculated as a relation between the number of lost and won games at

time t. The regret is normalized according to the number of games measured.

5.5. PERFORMANCE MEASUREMENTS 33

move are allowed, the strategy playing agents never win. On the other hand, the

results show a consistent defeat of the MCTS-TS agent by the MCTS-UCT agent.

As previously mentioned, an alternative version of the program has been de-

veloped, where the focus was set on decreasing the branching factor, e.i. possible

moves per turn, to enable learning on trees developed in depth, rather than learn-

ing from trees with a maximum depth of 3, at best. Initially, our reasoning led us

to develop a single move as a combination of 6 basic moves: trade, build a road,

build a settlement, build a city, buy a Development Card, and play a Development

Card. Since multiple moves are allowed, this results in 26 = 64 possible moves

at each turn, evidently causing a branching factor of 64. The alternative version

of the program, therefore includes modified agents where only one of the basic

moves is allowed, decreasing the branching factor efficiently to 7. Unfortunately,

this caused a decrease in the overall performance of all agents, which we under-

stand to be present, due to the significant modification of removing the possibility

of combined moves. In the SoC, the ability to trade and make another move in

the same turn is precisely how the game advances. As our initial implementa-

tion includes the possibility of combined moves per turn, the possible moves were

not calculated in advance. After the tree policy, a random combination of basic

moves was decided upon before it was confirmed to be possible. This resulted in

a number of non-beneficial simulations, which did not greatly damage the overall

performance of the program. With the alternative version, however, we had to

include the prior calculation of possible moves, without which the game developed

very slowly. Typically, the game ended in about 30 to 60 rounds, without the

additional calculations it ended only after 150 to 300 or more. Finally, the score

required for the end of the game was reduced to 7. The alternative version of the

program manages to compute the same amount of games and number of tree sim-

ulations in half of the time, yet MCTS-UCT agent remains superior to MCTS-TS

agent. Final regret and average win rate measurements are presented in figures 11

and 12. As previously discussed, we have reason to believe that such alterations

of game rules change the game significantly and we therefore continue to address

the initial version of the program.

Previously demonstrated by the aforementioned empirical studies in Section

5.1, TS is proven to be efficient in the domain of a classical MAB problem, therefore

34

CHAPTER 5. THOMPSON SAMPLING IN MONTE CARLO TREE

SEARCH

the decreased performance might exist due to the domain differences. Furthermore,

we point out that in comparison with the classical MAB problem, the hidden

winning probabilities of nodes might vary throughout the search space, whereas in

the supporting study they remain unchanged. To further clarify, consider the fact

that building roads towards the end of the game, while already fully expanded,

might be regarded as a loss of resources, while doing so in the beginning brings

greater success. Having said that, we have made further alterations to the TS node

evaluation to include the information gained with multiple MCTS simulations. As

previously studied by Chapelle and Li in [6], the attempt to increase performance

of the MCTS-TS agent was wade by introducing posterior reshaping and drawing

samples from a modified distribution. We have modified the evaluation of nodes

to sample the Beta distribution as presented in Algorithm 3, where φ represents

the aforementioned exploration bonus
√

logN(s)
N(s,a) in Section 4.2.

Algorithm 3 Modified Thompson sampling node evaluation

procedure Best Child(v)

for every child i of v do

Draw θi according to Beta(Si+α
φ

, Fi+β

φ
)

end for

Select the child with max θi

end procedure

By including the exploration bonus in the positive shape parameters of the

Beta distribution, the drawn samples devalue the nodes causing the increased

behaviour of exploring instead of exploiting the tree. To further demonstrate the

behaviour of posterior reshaping, we present the figures of a Beta distribution when

φ = 0.5, 1.0, 1.5 in figures 4, 5 and 6. We present the regret and average win rate

measurements of individual agents when using the altered TS agent in Figures 7

and 8. Regret measurements reflect a similar performance of UCT compared to

TS. With increasing the number of possible simulations, however, the TS agent

outperforms the UCT agent.

In the future, our work may be extended in many ways including the full imple-

mentation of game logic with Domestic Trade and better strategy playing agents

5.5. PERFORMANCE MEASUREMENTS 37

Figure 7: Regret of agents playing against the altered MCTS-TS agent in-

cluding combined moves per turn and posterior reshaping.

Figure 8: Average win rate of agents playing against the altered MCTS-TS

agent including combined moves per turn and posterior reshaping.

38

CHAPTER 5. THOMPSON SAMPLING IN MONTE CARLO TREE

SEARCH

Figure 9: Regret of agents playing against the primarily developed MCTS-TS

agent including combined moves per turn.

Figure 10: Average win rate of agents playing against the primarily developed

MCTS-TS agent including combined moves per turn.

5.5. PERFORMANCE MEASUREMENTS 39

Figure 11: Regret of agents playing against a MCTS-TS agent without com-

bined moves per turn or posterior reshaping.

Figure 12: Average win rate of agents playing against a MCTS-TS agent

without combined moves per turn or posterior reshaping.

40

CHAPTER 5. THOMPSON SAMPLING IN MONTE CARLO TREE

SEARCH

Chapter 6

Conclusion

This Master’s Thesis introduces a novel approach into the tree policy of the MCTS

algorithm. We have successfully implemented a TS-based approach not only in

trivial games such as Gomoku, but also in a new domain, namely the board game

the Settlers of Catan. Our program is implemented in C, with certain limitations

regarding the rules of the game; namely, we have excluded the trading between

agents and limited the game play to four agents at a time. We have made some

further modifications for the purpose of acquiring measurements faster, which

have had some negative effects on the MCTS-based agents’ performance. We have

made further alterations to the TS agent, including the posterior reshaping of

distribution, which increased the performance of TS agent significantly, causing

it to outperform the state-of-the-art UCT approach as the number of allowed

simulations per move increases.

Our research also includes the study of different algorithms approaching a

MAB problem. After the study of the Gittins index, UCB, TS, UCT, RAVE and

its varieties, we deduced that modifying the tree policy of MCTS may result in

promising results. What is more, we have found supporting studies documenting

the empirically measured superiority of TS over UCB on a classical MAB problem.

Hence, we chose to implement one of the most popular algorithms applied in online

advertising, TS, into the tree policy of MCTS and measure its performance against

the state-of-the-art UCT algorithm on the board game the Settlers of Catan. Since,

to the best of our knowledge, such an approach has never been studied before, we

present this as our main contribution to the field.

41

42 CHAPTER 6. CONCLUSION

Bibliography

[1] S. Agrawal and N. Goyal. Analysis of Thompson sampling for the Multi-armed

Bandit problem. arXiv preprint arXiv:1111.1797, 2011.

[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the Multi-

armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[3] A. Bai, F. Wu, and X. Chen. Bayesian mixture modelling and inference

based Thompson sampling in Monte-Carlo tree search. In Advances in Neural

Information Processing Systems, pages 1646–1654, 2013.

[4] L. Branca and S. J. Johansson. Using multi-agent system technologies in

Settlers of Catan bots. City, 2:3, 2007.

[5] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlf-

shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of

Monte Carlo tree search methods. IEEE Transactions on Computational In-

telligence and AI in Games, 4(1):1–43, 2012.

[6] O. Chapelle and L. Li. An empirical evaluation of Thompson sampling. In

Advances in neural information processing systems, pages 2249–2257, 2011.

[7] G. Chaslot, J.-T. Saito, B. Bouzy, J. Uiterwijk, and H. J. Van Den Herik.

Monte-Carlo strategies for computer Go. In Proceedings of the 18th BeNeLux

Conference on Artificial Intelligence, Namur, Belgium, pages 83–91. Citeseer,

2006.

[8] S. Gelly and D. Silver. Monte Carlo tree search and Rapid Action Value

Estimation in computer Go. Artificial Intelligence, 175(11):1856–1875, 2011.

43

44 BIBLIOGRAPHY

[9] D. M. Jones and J. C. Gittins. A dynamic allocation index for the sequential

design of experiments. University of Cambridge, Department of Engineering,

1972.

[10] E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptoti-

cally optimal finite-time analysis. In International Conference on Algorithmic

Learning Theory, pages 199–213. Springer, 2012.

[11] V. Kuleshov and D. Precup. Algorithms for Multi-armed Bandit problems.

arXiv preprint arXiv:1402.6028, 2014.

[12] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.

Advances in applied mathematics, 6(1):4–22, 1985.

[13] A. Mahajan and D. Teneketzis. Multi-armed Bandit problems. In Foundations

and Applications of Sensor Management, pages 121–151. Springer, 2008.

[14] J. C. Mellor. Decision making using Thompson sampling. 2014.

[15] M. Pfeiffer. Reinforcement learning of strategies for Settlers of Catan. In

Proceedings of the International Conference on Computer Games: Artificial

Intelligence, Design and Education, 2004.

[16] G. Roelofs. Monte Carlo tree search in a modern board game framework.

research paper available at umimaas. nl, 2012.

[17] I. Szita, G. Chaslot, and P. Spronck. Monte-Carlo tree search in Settlers of

Catan. In Advances in Computer Games, pages 21–32. Springer, 2009.

[18] J. N. Tsitsiklis. A short proof of the Gittins index theorem. The Annals of

Applied Probability, pages 194–199, 1994.

[19] R. Weber et al. On the Gittins index for Multiarmed bandits. The Annals of

Applied Probability, 2(4):1024–1033, 1992.

[20] H. Wu, X. Liu, and R. Srikant. Double Thompson sampling for Dueling

Bandits. arXiv preprint arXiv:1604.07101, 2016.

	Povzetek
	Abstract
	Razširjen povzetek
	Introduction
	The Settlers of Catan
	Game rules
	Rule changes
	Previous implementations

	Multi-armed Bandit problem
	The Classical MAB
	Gittins index
	Upper Confidence Bound
	Thompson sampling

	Monte Carlo Tree Search
	The general algorithm
	Upper Confidence Bound for Trees
	Rapid Action Value Estimation
	Heuristic prior knowledge

	Thompson sampling in Monte Carlo Tree Search
	Preliminary investigations
	Structure of our program
	Basic strategy playing agents
	Testing against human players
	Performance measurements

	Conclusion

