Drill: Classify each number as natural, whole, integer, rational, or irrational.
Write as many as apply.

```
1. 7.4569594...
2. -5 3/4
3. -79
4. }
5. 0
6. V16
```


Categories of Numbers in the REAL Number System

- Natural Numbers
- Whole Numbers
- Integers
- Rational Numbers
- Irrational Numbers

Natural Numbers

- Are the counting numbers
- $\{1,2,3,4,5,6,7,8, \ldots\}$

Whole Numbers

- All of the counting numbers and zero.
- $\{0,1,2,3,4,5,6,7, \ldots\}$

INTEGERS

- Are all of the natural numbers, their opposites and zero.
- $\{\ldots,-4,-3,-2,-1,0,1,2,3,4, \ldots\}$

Real Numbers

- Real numbers consist of all the rational and irrational numbers.

Rational Numbers

- Numbers that can be expressed as a fraction (a/b).
- This set includes the integers, terminating decimals, and repeating decimals.
- Some examples:
- $2=2 / 1$
- $31 / 4=13 / 4$
- $-0.25=-25 / 100$
- $1 / 3=0.33333333333333333333333$

Irrational Numbers

- Numbers that CANNOT be expressed as a fraction of integers.
- In decimal form, they are the numbers that go on forever without a repeating pattern.
- Some examples:
- $\mathrm{V} 2=1.4142$...
- $\pi=3.1415 \ldots$
-45.9492...

Venn Diagram of REAL Number System

Real Numbers

Tree Diagram of Real Number System

Let's practice

Directions: Identify each number below as natural, whole, integer, rational, irrational, or real. More than one answer can apply.

Let's practice

Directions: Identify each number below as natural, whole, integer, rational, irrational, or real. More than one answer can apply.

> Natural, Whole, integer, rational, real

Use < (less than), > (greater than), or = (equal to) to compare

$$
\begin{aligned}
& \text { 1. } \frac{2}{3}=\frac{6}{6} \quad 5 \cdot \frac{12}{12}=1 \\
& \text { 2. (5). } 65 \\
& \text { 6. } \Pi \text { I } \Theta \frac{21}{7} \\
& 3 . \\
& \text { 7. } \\
& \text { 4. } \frac{3}{10} \text { © } \\
& \text { 8. }{ }_{20}^{30}=.25
\end{aligned}
$$

Radical Expressions

Each square root is between two integers. Name the two integers.

10 and 11

3 and 4

Use a calculator to find each value. Round to the nearest tenth.
3. $\sqrt{2}$
1.4
4.

11.1

The Real Number Line

The negative real numbers are the coordinates of points to the left of the origin 0 .

The real number zero is the coordinate of the origin O.

The positive real numbers are the coordinates of points to the right of the origin O.

Ordering Real Numbers

- The symbols:

1. $a<b$ (a is less than b)
2. $a>b$ (a is greater than b)
3. $a=b(a$ is equal to $b)$

- The new rules:

1. If a is negative and b is positive: $a<b$
2. If a and b are positive and a>b, than-a<-b.

- Examples:

1. $-3<5$
2. $-7<-3$

Do you know HOW?

- On your number line, plot:
$-7,9,-3 / 2,2.7,5.9$, and $1 / 4$
- Which is greater, -143 or 12 ?
- Which is greater, -41 or -1 ?
- Which is greater, 0 or 5 ?
- Which is greater, 0 or -5 ?

What do Positive and Negative Numbers MEAN?

To which of the following words describing change would you associate with positive numbers? Which with negative numbers?

decrease	surplus	loss		deficit
below sea level	gain		dēbit	
${ }_{\text {cretdit }}$		incretase		above sea level

Can you think of any more?

Use an integer to describe the following:

- Kalamazoo is 780 feet above sea level.
- I lost $\$ 5$ betting at the track.
- The temperature decreased by 7 degrees.
- I dove 20 feet below sea level.
- I made \$143 on that stock!
- The temperature warmed up by 3 degrees.
- Illegal formation: 10 yard penalty!

Opposites

- To find the opposite of a (nonzero) real number, change its sign.
- The opposite is equally far from the origin, but in the "opposite" direction.

Opposites

- To find the opposite of a (nonzero) real number, change its sign.
- Find the opposite of:

1. 679
2. -34
3. -13
4. $1 / 4$

Distance and Absolute Value

- A distance is never negative
- The absolute value of a number is its distance from the origin on the number line.

Number line

- How far is 3 from zero?

How far away is Ohio?

- How far is -3 from zero?

$|x|$ "the absolute value of x "

- $|3|$ asks how far from zero is 3 ?

- $|-5|$ asks how far from zero is -5 ?

Absolute Value

- Always gives a positive answer or zero.
- If there is arithmetic inside the absolute value symbol do that first, then take the absolute value of the answer.

- Real numbers include natural numbers, whole numbers, integers, rational numbers, and irrational numbers.
- Real numbers can be laid out along a number line.
- Positive numbers > Negative Numbers
- Negative numbers are ordered in reverse
- Positive and negative numbers can describe change.
- Changing the sign of a real number gives its opposite.
- Absolute value is like distance, sign is like a direction.

Lesson Quiz

Write all classifications that apply to each number.

1. $\sqrt{2}$ real, irrational 2. $-\frac{\sqrt{16}}{2}$ real, integer,

4.

rational

