
 

 

APPLICATION NOTE 

CryptoAuthLib 

Driver Support for Atmel CryptoAuthentication Devices 

 

Introduction 

The Atmel
®
 CryptoAuthLib is a software library incorporated in firmware and 

drivers designed to work with Atmel CryptoAuthentication™ devices such as the 

Atmel ATECC508A and ATSHA204A CryptoAuth devices. A few of its key 

attributes include: 

 Ease of Use – A Basic API serves the needs of most applications 

 Powerful – For sophisticated applications and developers, the full power of the 

device is available through a core API. 

 Portable – Runs on small processors and desktop systems alike. 

 Extensible – Is architected to easily support new MCU platforms or protocols. 

 X.509 Certificate Support – Has an API for storing, retrieving, and 

manipulating X.509 certificates. 

 TLS Integration APIs 

 

CryptoAuthLib is a key component of any application or device driver that requires 

crypto services from Atmel CryptoAuthentication devices. It is written in C and can 

be executed on hosts as varied as an Atmel SAMD21 ARM
®
 M0+ Cortex, Windows 

PC, or embedded Linux platform. 

This document discusses CryptoAuthLib, how to get started, how to incorporate it 

into an application, general design and use patterns, and the integration details 

required if CryptoAuthLib is to be ported into a hardware platform not currently 

supported by CryptoAuthLib. 
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1 CryptoAuthLib Overview 

CryptoAuthLib is divided into several API categories covering various features of crypto authentication 

application needs. The primary APIs are: 

 Basic API – Best for ease of use. 

 Core API – Best for use of any device feature, power developer. 

 PKI X.509 Certificates – PKI applications which store and retrieve X.509 certificates. 

 PKI TLS – Secure communication key agreement protocols. 

 Crypto Utilities – General software hash implementations. 

 HAL – Hardware abstraction layer integrates with physical interfaces. 

Additional details regarding these APIs are discussed in Section 3.1, “CryptoAuthLib API Levels”. 

1.1 X.509 Certificates 

A critical element of most applications using an ATECC CryptoAuthentication device is the ability to store and 

retrieve PKI X.509 certificates from the device. CryptoAuthLib incorporates powerful certificate management 

features saving the developer many hours of development time writing certificate management code for a 

specific driver. 

1.2 TLS Integration API 

An increasingly common need and application of the ATECC508A is to help create secure communication 

channels. Using the hardware abstraction API of OpenSSL, CryptoAuthLib supports the APIs needed to 

integrate TLS with the ATECC508A and future ECDH-capable CryptoAuth devices. 

1.3 Flexible and Optimized 

CryptoAuthLib is organized so the developer may easily incorporate or exclude different types of functionality 

from the driver or application. For example, the TLS implementation is not required if not creating a secure 

channel with OpenSSL and TLS. If the authentication scheme doesn’t involve certificates, the certificate support 

portion of the library does not need to be included. 

1.4 API Documents 

The CryptoAuthLib API documentation is available as a navigable linked HTML and is contained in the 

docs/html directory of the CryptoAuthLib distribution (launch index.html with a web browser). 
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Figure 1-1. CryptoAuthLib Launch Index.html 
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2 General Architecture 

Figure 2-1. General Architecture 
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3 CryptoAuthLib “Hello World” 

This “hello world” example demonstrates how easy it is to perform an operation with a CryptoAuthentication 

device. In this case, generate a random number using the ATECC508A hardware random number generator 

using the CryptoAuthLib Basic API. This code is excerpted from an Atmel Studio application starting with an “LED 

Toggle” example for the Atmel SAM D21 and adding some CryptoAuthLib function calls to get a random number. 

Hello World Example 

#include <asf.h> 
#include "cryptoauthlib.h" 
 
int main(void) 
{ 
 uint8_t random_number[32]; 
  
 system_init(); 
 
 /*Configure system tick to generate periodic interrupts */ 
 SysTick_Config(system_gclk_gen_get_hz(GCLK_GENERATOR_0)); 
 
 config_led(); 
 
 // initialize CryptoAuthLib for an ECC default I2C interface 
 atcab_init(&cfg_ateccx08a_i2c_default); 
 
 atcab_random(&random_number);  // get a random number from the chip 
 
 // use random for challenge and authentication… 
 
 while (true) { 
  // your application code 
 } 
} 
 

Step 1 To start, include the cryptoauthlib.h header file.  

 

Step 2 Call atcab_init() with a pointer for a standard default configuration for an ATECC508A I
2
C 

interface.  

 

Step 3 Call atcab_random() passing a pointer to some space to receive the 32 byte random number.  

 

This is a trivial example which demonstrates that with two basic function calls, it is easy to start exercising the 

CryptoAuthentication device and be on the way to building full-fledged authentication enabled applications. 

 

  

atcab_init()needs only to be called once in the life of the application if the application will only be 

communicating to one CryptoAuthentication device. There are a few other things shown later which 

the compiler will need in order to build it, but this is the essence of jumping into CryptoAuthLib. 



 

 

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE]  
Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016 

7

 

7 

3.1 CryptoAuthLib API Levels 

The CryptoAuthLib can be accessed at four levels: 

 Basic API – Convenient, simple access to CryptoAuthentication devices. 

 Core API – Powerful CryptoAuthentication Datasheet Command Primitives. 

 PKI API – Certificates, Crypto utilities, and TLS communication support. 

 Hardware Abstraction Layer (HAL) – Communicate to a device through a HAL hiding the physical details 

from the code. 

3.1.1 Basic API 

The Basic API is the easiest way to get started and is often the most convenient way to use the 

CryptoAuthentication devices for most applications whether a novice or expert.   

Basic API methods manage device states such as wake, idle, and sleep to avoid built-in watchdogs, as well as 

account for execution times of the device. In short, some of the lower-level details working with the device are 

handled with the Basic API leaving the developer to focus on what the application is suppose to do. 

Basic API methods tend to combine a sequence of lower level commands in order to accomplish a particular 

transaction type with the CryptoAuthentication device. 

3.1.2 Core API 

Using the Core API datasheet command primitives requires much more knowledge about how the 

CryptoAuthentication device works and requires that other device states are managed such as wake, idle, and 

sleep. If the Basic API is used, those details are managed automatically; therefore it’s recommended that the 

Basic API is used until device familiarity is gained or additional functionality is required from the device that isn’t 

in the basic API methods.  

The datasheet command primitives expose the full power of the Atmel CryptoAuthentication devices for those 

occasions when needed. With CryptoAuthLib, the Basic API and/or the datasheet command primitives are both 

in the same application. 

3.1.3 PKI – Certificate API 

The CryptoAuthLib Certificate API provides the mechanisms needed to store X.509 certificates in an ATECC 

device, as well as read and reconstruct the certificate in memory.  

In handling certificates, a certificate can be thought of as a two-part entity.   

1. The first part is the “boiler-plate”, the data that never changes regardless of the certificate specifics. As the 

name suggests, the boiler-plate is effectively a template.    

2. The second part is the dynamic data that changes from device to device. Dynamic data is used to drop into 

the certificate to make it a valid X.509 certificate. 

The Certificate API helps store the dynamic data of a certificate into the ATECC device. When the full X.509 

representation is needed, the Crypto API provides function calls that can be used to reconstruct the full X.509 

certificate using the template and the data read from the ATECC device. 

3.1.4 PKI - TLS API 

The TLS API provides a set of methods to implement the OpenSSL callbacks required to integrate an 

ATECC508A or future ECDH capable devices with TLS. There is a separate Application Note discussing the 

details of the TLS API integration with OpenSSL. The TLS API provides the mechanism needed to create TLS 

session keys using the ECDH protocol and services from the Atmel CryptoAuthentication device. 
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3.1.5 Crypto Utilities API 

The Crypto Utilities API provides various hash algorithm support on the host, in software such as SHA1 and 

SHA-256. The Basic and Core APIs provide support for SHA-256 via the CryptoAuthentication devices which 

support the command. The Crypto Utilities API is for application support of hosts which may not have access to a 

CryptoAuthentication device or requires support such as SHA1 not supported in the hardware. 

3.1.6 Hardware Abstraction Layer (HAL) API 

The HAL provides an extremely powerful way to separate the concerns of manipulating hardware from the 

CryptoAuthentication commands and higher level application use of those commands to perform authentication 

duties. 

The HAL provides an interface to the CryptoAuthentication device using whatever communication mechanism it 

chooses including wire-level protocols, compiler library support for the protocol, and manages multiple busses or 

interface instances. 

If porting CryptoAuthLib to a platform not currently supported by Atmel, it is primarily a matter of implementing the 

HAL API for the specific target platform. The remaining CryptoAuthLib is written to be very portable among 

various compilers and architectures. 

3.2 CryptoAuthLib Naming Conventions 

Methods include: 

 Core Datasheet API: Start with the prefix “atca_” letters standing for “Atmel CryptoAuthentication”. This 

separates the C namespace in a way unlikely to conflict with functions from all the other subsystems 

typically found in an embedded applications 

 Basic API: Start with “atcab_”.  Anytime a method prefixed with atcab_, it came from the Basic API. 

 Helpers: These methods fall into several categories. The main ones include:  

– Crypto: Software implementations of various crypto algorithms such as SHA1 and SHA256.   

Crypto methods are prefixed with “atcac_”.  

– TLS (Transport Layer Security) Communication Protocols: TLS methods are prefixed with 

“atcatls_”. 

– Cert: Functions related to certificate manipulations in memory and to and from the ATECC devices.  

Cert functions are prefixed with “atcacert_” 

– Host: Functions related to performing host-side parallel computations in order to compare with 

values received from the CryptoAuthentication devices. Host functions are prefixed with “atcah_” 

Table 3-1. CryptoAuthLib Naming Conventions 

Methods Prefix 

Core Datasheet API atca_ 

Basic API atcab_ 

Helpers  

 Crypto atcac_ 

 TLS atcatls_ 

 Cert atcacert_ 

 Host atcah_ 
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3.3 CryptoAuthLib Directory Structure  

The directory structure of CryptoAuthLib intuitively follows the basic design library as illustrated below. 

Figure 3-1. CryptoAuthLib Directory Structure 

 

 

3.4 API Documents 

The CryptoAuthLib API documentation can be accessed by going to cryptoauthlib/docs/html/index.html.  

3.5 Placing CryptoAuthLib In Your Project 

The CryptoAuthLib source tree can be placed just about anywhere in the project source tree as long as the 

compiler is notified on how to include files required by it. (See Section 3.6, “Compiling CryptoAuth Hello World 

with Atmel Studio”). However, for Atmel Studio projects, it is commonly included as a subdirectory under the ./src 

folder. 

Figure 3-2. CryptoAuthLib Source Tree 
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3.6 Compiling CryptoAuth Hello World with Atmel Studio 

Of course there’s more to writing any hello-world application than tossing in a few lines of code. The compiler 

must be notified on how to build the application, such as which files to include and exclude and which symbols to 

define that control the behavior of the library.    

This section discusses how to setup Atmel Studio to compile CryptoAuthLib. The same principles apply to other 

compilers and platforms as well. 

3.6.1 Set Include Path to CryptoAuthLib 

Set the include path to the CryptoAuthLib directory:  src/cryptoauthlib/lib    

Do this by going to the Project Properties > select Toolchain > select src/cryptoauthlib/lib in the directories 

dialog list as highlighted in the screen shot below and add to include this path. 

Most code and headers for the library can be found under the library directory. 

Figure 3-3. CryptoAuthLib Path Selection 
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3.6.2 Choosing the Appropriate CryptoAuthLib HAL 

Since all HAL implementations come with CryptoAuthLib, the IDE (Atmel Studio, for example) needs to be 

notified to include certain HAL files and exclude others.  

For example, if using I
2
C with an ASF application on a SAM D21, there’s a CryptoAuthLib HAL implementation for 

that combination. Those files must be selected and all other HAL implementations that do not apply should be 

excluded. 

Figure 3-4. HAL Implementation Examples 

 

 

This example shows selecting the HAL for SAM D21 and ASF. The files selected are: 

atca_hal.c 
atca_hal.h 
 

These are the two files that define the HAL interface for any implementation and are required regardless of which 

HAL chosen. Also shown selected are: 

hal_samd21_i2c_asf.c 
hal_samd21_i2c_asf.h 
hal_samd21_timer_asf.c 
 

These files implement the HAL API using the ASF I
2
C API for SAM D21 (and SAM R21). 
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3.6.3 Defining Compiler Symbols 

The CryptoAuthLib is designed to be a very flexible, but easy system to use. Part of the flexibility of 

CryptoAuthLib is the support for multiple types of hardware interfaces such as I
2
C, Single-Wire, and UART 

interfaces. In order for the CryptoAuthLib code to know what interface type to build, one or more interface 

symbols must be defined. 

In the example below, two compiler symbols are added to an Atmel Studio project. To add two symbols, use 

Project Properties > select Toolchain > then select the two symbols from the Defined symbols (-D) list. 

ATCA_HAL_I2C 
ATCAPRINTF 
 

ATCA_HAL_I2C allows the compiler to pull in a HAL implementation for I
2
C. Other choices include:  

 ATCA_HAL_SWI  Single-Wire Interface; typically bit-banged. 

 ATCA_HAL_UART  Used with either Kit Protocol or using the UART to encode/decode Atmel 

Single-Wire Interfaces. 

Figure 3-5.  

 

 

ATCAPRINTF allows the compiler to build the CryptoAuthLib functions which use the sprintf family of C library 

functions. For space optimization reasons, there may be an application for which is not wanted to be pulled into 

the sprintf family. In that case, do not define ATCAPRINTF in the project; however, certain helper functions that 

use printf will not be usable. 
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4 CryptoAuthLib Object Model 

Although CryptoAuthLib is implemented in C, it follows an object-oriented design method in order to help make it 

easier to develop and use. If sticking with the Basic API, the details in this section are not required.  

There are three primary object types in CryptoAuthLib: 

 ATCAIface 

 ATCACommand 

 ATCADevice 

Figure 4-1. CryptoAuthLib Object Design – ATCADevice  

    ATCADeviceType  

    ATSHA204A  

    ATECC108A  

    ATECC508A  

    ATAES132A  

    ….  

      

  ATCACommand    

  CheckMac    

  Counter    

  DeriveKey    

  ECDH    

  GenDig    

  GenKey    

  HMAC    

  Info    

  Lock    

ATCADevice  MAC    

ATCACommand  Nonce    

ATCAIFace  Pause    

  PrivWrite    

  Random    

  Read    

  SHA    

  Sign    

  UpdateExtra    

  Verify    

  Write    

  execution time map    

      

  ATCAIFace  ATCAIFaceCFG  

  ATCAIFaceCFG  device type  

  init  I2CSlaveAddress  

  send  I2CBusNum  

  receive  I2CBaud  

  sleep  SWIBusNum  

  wake  UARTBaud  

  idle  UARTStopBits  

  void *hal_data  UARTDataBits  

    UARTParity  

 

These objects form the Core API of CryptoAuthLib. The Basic API uses these objects to implement higher level 

functions in a simpler way so the Basic API in that sense is a client of the Core API and these objects. 
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4.2 ATCADevice 

ATCADevice is a composite of ATCAIface and ATCACommand instances. There is one instance of an 

ATCADevice per physical device expected to manage the system. 

In the case of the Basic API, initializing the Basic API creates an ATCADevice behind the scenes which is used 

for all Basic API operations. This simplifies access to the CryptoAuth device yet maintains the full power of the 

object model with no redundant implementations between Basic and Core APIs. 

4.3 ATCAIface 

ATCAIface defines an API for a logical interface representing a channel to communicate with the physical 

hardware, a CryptoAuthentication device. Its purpose is to hook associated HAL API methods so that all the 

upper layers of CryptoAuthLib do not need to be concerned with the physical level details of communicating to 

the device. Whether the device is a single-wire device, I
2
C, UART, or some other physical level of a transport 

mechanism, the Core and Basic API levels do not need to know the details. 

This allows applications to easily be ported to different CryptoAuthentication physical interfaces including I
2
C, 

Single-Wire Interface, and Kit protocol without changing the application, only the configuration of the interface to 

communicate to the physical device. 

An ATCAIface instance has a few basic methods which have analogs in the HAL implementation for the physical 

layer.  

Besides the constructor and destructor, an ATCAIface object provides the following methods to its clients: 

// IFace methods 
ATCA_STATUS atinit(ATCAIface caiface); 
ATCA_STATUS atsend(ATCAIface caiface, uint8_t *txdata, int txlength); 
ATCA_STATUS atreceive(ATCAIface caiface, uint8_t *rxdata, uint16_t *rxlength); 
ATCA_STATUS atwake(ATCAIface caiface); 
ATCA_STATUS atidle(ATCAIface caiface); 
ATCA_STATUS atsleep(ATCAIface caiface); 
 
// accessors 
ATCAIfaceCfg * atgetifacecfg(ATCAIface caiface); 
void* atgetifacehaldat(ATCAIface caiface); 

 

ATCAIface provides a way to initialize the hardware interface, send wake, idle and sleep commands, and send 

and receive byte streams to the actual CryptoAuthentication device. 

Each of these methods is an entry point associated with an equivalent HAL method to implement the intent of the 

function at the physical layer. 

The ATCAIface is a key concept in CryptoAuthLib and provides a major mechanism used to port the library to 

many different types of physical interfaces, as well as framework APIs. 
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Figure 4-2. CryptoAuthLib Object Design – ATCAIFace  

  ATCAIFaceCFG    

  I2CSlaveAddress    

  I2CBusNum    Active  

  I2CBaud    

  SWIBusNum    

  UARTBaud    

  UARTStopBits    

  UARTDataBits    

  UARTParity    

      

ATCAIFace    hal_samd21_i2c_asf.c  

ATCAIFaceCFG  ATCAHal_I2C    

init  init    

send  send  hal_sam4s_i2c_asf.c  

receive  receive    

sleep  sleep    

wake  wake    

idle  idle    

void *hal_data  void *hal_data    

      

  ATCAHal_SWI  hal_samd21_swi_gpio.c  

  init    

  send  hal_samd21_swi_uart.c  

  receive    

  sleep    

  wake    

  idle    

  void *hal_data    

      

  ATCAHal_UART  hal_samd21_kit_uart.c  

  init    

  send    

  receive  hal_START.c  

  sleep    

  wake  hal_linux.c  

  idle    

  void *hal_data  hal_dsPIC33FJ.c  
      

 

From the above diagram, there could be one of many different physical HAL implementations that are compatible 

with an ATCAIface object. That is the purpose of the HAL; to implement the methods in ATCAIface in a way that 

the client of the ATAIface object is unaware of the physical implementation used to communicate to the device. 

Since ATCAIface is a logical interface rather than a physical interface, it could be imagined that a HAL 

implementation using a wireless technology to communicate with a remote CryptoAuth device as though it 

existed locally through a hardware interface. More practically speaking, the logical interface doesn’t need to 

change whether the HAL implements a bit-banged or UART-based single wire protocol. 
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4.3.1 ATCAIfaceCfg 

A related object is the ATCAIfaceCfg object which describes the parameters of a logical interface. This object 

instance is passed to the ATCAIface constructor method. The ATCAIfaceCfg is a union of several different types 

of interfaces; however, only one is considered active per ATCAIfaceCfg instance. Each interface type is a 

structure within the union. 

Each type of interface is defined in logical terms, not physical. For example, an I
2
C bus number scheme is 

logically defined with an ATCAIfaceCfg object. It’s the HAL implementation’s job to map the logical bus number to 

the hardware it is targeting. Logical I
2
C bus number 1 could mean a SERCOM1 on SAM D21, but could mean 

something different to a different HAL implementation. 

Generally, the ATCAIfaceCfg parameters correspond to specific development boards in a way which implies 

some tacit knowledge of how the HAL works. For this reason, the ATCAIFaceCFG details often change based on 

the target runtime environment. 

Some default configurations can be found in the core API directory, atca_cfgs.c and atca_cfgs.h.  

Default I
2
C Configuration for Communicating to a CryptoAuth Xplained Pro board Using a SAM D21 Xplained Pro 

Example 

ATCAIfaceCfg cfg_ateccx08a_i2c_default = { 
 .iface_type = ATCA_I2C_IFACE, 
 .devtype = ATECC508A, 
 .atcai2c.slave_address = 0xC0, 
 .atcai2c.bus = 2, 
 .atcai2c.baud = 400000, 
 //.atcai2c.baud = 100000, 
 .wake_delay = 800, 
 .rx_retries = 20 
}; 

 

These attributes are all valid definitions regardless of whether the I
2
C bus is implemented on a SAM D21 or even 

a non-Atmel MCU. It can be thought of as “I
2
C is I

2
C regardless of what micro is implementing it.” Therefore, 

every I
2
C device has an address, a baud rate, etc.    

As a result, it defines various logical attributes of the I
2
C interface including the actual interface type, the device 

type expected on the bus, the logical bus number (2), and the address of the device. The HAL implementation 

maps these logical parameters to their physical implementation, so the HAL could map logical bus 2 to any I
2
C 

module it knows about. In the case of Atmel SERCOM based devices, logical bus number maps to the SERCOM 

number of the MCU. 
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4.4 How the HAL is Linked to ATCAIFace 

This section covers an example showing how the HAL methods are initialized in the interface instance without 

having the HAL implementation bleed into the top layers. ATCAHAL is used temporality as an intermediary object 

to facilitate the connection, which at that point can be deleted. 

Figure 4-3. CryptoAuthLib Object Design – HAL and ATCAIFace  

ATCAIFace      

ATCAIFaceCFG      

init      

send      

receive      

sleep      

wake      

idle  struct_ATCHAL    

void *hal_data  init    

  send    

  receive    

  sleep    

  wake    

  idle    

  void *hal_data    

      

      

  hal_samd21_i2c_asf.c    

  myinit    

  mysend    

  myreceive    

  mysleep    

  mywake    

  myidle    

  i2c_hal_asf *    

      

      

      

  i2c_hal_asf      

  i2c_master_module  ASF SERCOM1   

  i2c_packet      

 

4.5 ATCACommand 

The ATCACommand is an object that builds commands as an array of bytes to send to the CryptoAuthentication 

device. ATCACommand does not send the command, it only builds the command. As part of that process, it 

accepts a packet, ATCAPacket, which contains the parameters for the command. From that information, it 

determines the expected length of the response packet and computes the CRC of the command to send. 

 
  

hal_iface_init( ifacetype, ATCAHAL *) 
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5 Porting Guide for CryptoAuthLib 

This section covers the design of CryptoAuthLib which allows it to be adapted to numerous architectures and 

platforms. The current CryptoAuthLib can be built using: 

 AtmelStudio 6 GCC / ARM / ASF I2C SERCOM HAL 

 AtmelStudio 7 GCC / ARM / START I2C HAL 

 Microsoft Visual Studio / Windows HID HAL 

 Linux GCC / CDC-Kit Protocol HAL 

 

This list will continue growing over time, so check the Atmel website often for updates to CryptoAuthLib. 

When it is required to write a driver for a platform for which there is not yet a HAL implementation, it is generally 

very straightforward to write a new HAL implementation; implement a handful of methods to tie the device 

communication hardware (ie: I
2
C) to CryptoAuthLib. CryptoAuthLib is unaware of the lower level implementation 

details. Those details are up to the developer to decide as the HAL writer. 

5.1 Writing Your Own Hardware Abstraction Layer (HAL) 

CryptoAuthLib defines a hardware abstraction layer (HAL) API. The only thing required to adapt CryptoAuthLib to 

a new platform is to implement the HAL API targeting the hardware. Architecture specific code is isolated to the 

HAL implementation and a successful HAL implementation will not allow any architecture specific details to 

“bleed” into the upper layers. 

HAL implementations belong in files in the ‘hal’ folder of CryptoAuthLib  lib directory.  There are many more 

./hal/ files published with CryptoAuthLib than will ever be used in a single application because several 

architectures, frameworks, and protocols are represented in different HAL implementations and not all of them 

will apply. 

 

 

The file naming convention for a HAL implementation file is: 

hal_[processor]_i[nterface]_[framework] 
 

For example, the HAL for a SAMD21 I
2
C using the ASF is: 

hal_samd21_i2c_asf.c 
hal_samd21_i2c_asf.h 

 

For HAL timer implementation of the same example: 

hal_samd21_timer_asf.c 

 

These files are then included in the application’s Makefile or IDE project file. 

http://www.atmel.com/


 

 

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE]  
Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016 

1

9

 

19 

5.2 HAL API 

The API is quite simple. In general, for each major type of interface such as I
2
C, Single-Wire, and UART, there is 

a set of HAL methods. Only the methods required to implement the particular physical interface are required. In 

other words, it is not required to implement the physical interfaces on the platform chosen if that interface type will 

not be used.    

Each interface type has the following method types: 

 Init – Called by CryptoAuthLib when a device interface is requested. 

 PostInit – Called as the last step in the init to give HAL implementer an opportunity to perform any 

house-keeping required after the init is complete. 

 Send – Called whenever a stream of bytes needs to be sent to a CryptoAuth device. 

 Receive – Called whenever CryptoAuthLib is expected to receive bytes from the CryptoAuth device. 

 Wake – Called when the device is about to be accessed and must be in the wake state. 

 Idle – Called when the intermediate result in the SRAM of the CryptoAuth device (TempKey) is required 

and the watchdog timer of the device is likely to expire (which would erase TempKey). 

 Sleep – Is for low-power applications which want to put the CryptoAuth device into sleep state. 

 Release – Called when the interface usage is complete. 

 

Each interface type has a variation on these names related to the interface name. This allows multiple types of 

interfaces to be used simultaneously with CryptoAuthLib. For example, an application that is a bridge between 

UART and Kit Protocol to an I
2
C device can be implemented. 

The only other aspect of HAL besides the device interface is the timer interface used for execution delays during 

CryptoAuthentication device operations. 

A CryptoAuthLib ATCAIface object has exact corresponding methods that map to a specific HAL API but in the 

process abstracts the physical level interface from the rest of CryptoAuthLib, so it doesn’t need to be concerned 

with the physical details of communicating with the device. 

5.2.1 I
2
C HAL API 

I
2
C HAL declarations: 

#ifdef ATCA_HAL_I2C 
ATCA_STATUS hal_i2c_init( void *hal, ATCAIfaceCfg *cfg); 
ATCA_STATUS hal_i2c_post_init(ATCAIface iface); 
ATCA_STATUS hal_i2c_send(ATCAIface iface, uint8_t *txdata, int txlength); 
ATCA_STATUS hal_i2c_receive( ATCAIface iface, uint8_t *rxdata, uint16_t *rxlength); 
ATCA_STATUS hal_i2c_wake(ATCAIface iface); 
ATCA_STATUS hal_i2c_idle(ATCAIface iface); 
ATCA_STATUS hal_i2c_sleep(ATCAIface iface); 
ATCA_STATUS hal_i2c_release(void *hal_data ); 
ATCA_STATUS hal_i2c_discover_buses(int i2c_buses[], int max_buses); 

ATCA_STATUS hal_i2c_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found ); 
#endif 
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5.2.2 SWI HAL API 

Single-Wire Interface API HAL declarations: 

#ifdef ATCA_HAL_SWI 
ATCA_STATUS hal_swi_init(void *hal, ATCAIfaceCfg *cfg); 
ATCA_STATUS hal_swi_post_init(ATCAIface iface); 
ATCA_STATUS hal_swi_send(vATCAIface iface,, uint8_t *txdata, int txlength); 
ATCA_STATUS hal_swi_receive( ATCAIface iface, uint8_t *rxdata, uint16_t *rxlength); 
ATCA_STATUS hal_swi_wake(ATCAIface iface); 
ATCA_STATUS hal_swi_idle(ATCAIface iface); 
ATCA_STATUS hal_swi_sleep(ATCAIface iface); 
ATCA_STATUS hal_swi_release(void *hal_data ); 
ATCA_STATUS hal_swi_discover_buses(int swi_buses[], int max_buses); 
ATCA_STATUS hal_swi_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found); 
#endif 

5.2.3 UART HAL API 

#ifdef ATCA_HAL_UART 
ATCA_STATUS hal_uart_init(void *hal, ATCAIfaceCfg *cfg); 
ATCA_STATUS hal_uart_post_init(ATCAIface iface); 
ATCA_STATUS hal_uart_send(ATCAIface iface, uint8_t *txdata, int txlength); 
ATCA_STATUS hal_uart_receive( ATCAIface iface, uint8_t *rxdata, uint16_t *rxlength); 
ATCA_STATUS hal_uart_wake(ATCAIface iface); 
ATCA_STATUS hal_uart_idle(ATCAIface iface); 
ATCA_STATUS hal_uart_sleep(ATCAIface iface); 
ATCA_STATUS hal_uart_release(ATCAIface iface); 
ATCA_STATUS hal_uart_discover_buses(int uart_buses[], int max_buses); 
ATCA_STATUS hal_uart_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found); 
#endif 

5.2.4 KIT CDC USB 

#ifdef ATCA_HAL_KIT_CDC 
ATCA_STATUS hal_kit_cdc_init(void *hal, ATCAIfaceCfg *cfg); 
ATCA_STATUS hal_kit_cdc_post_init(ATCAIface iface); 
ATCA_STATUS hal_kit_cdc_send(ATCAIface iface, uint8_t *txdata, int txlength); 
ATCA_STATUS hal_kit_cdc_receive( ATCAIface iface, uint8_t *rxdata, uint16_t *rxlength); 
ATCA_STATUS hal_kit_cdc_wake(ATCAIface iface); 
ATCA_STATUS hal_kit_cdc_idle(ATCAIface iface); 
ATCA_STATUS hal_kit_cdc_sleep(ATCAIface iface); 
ATCA_STATUS hal_kit_cdc_release(void *hal_data); 
ATCA_STATUS hal_kit_cdc_discover_buses(int i2c_buses[], int max_buses); 
ATCA_STATUS hal_kit_cdc_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found); 
#endif 

5.2.5 KIT HID USB 

#ifdef ATCA_HAL_KIT_HID 
ATCA_STATUS hal_kit_hid_init(void *hal, ATCAIfaceCfg *cfg); 
ATCA_STATUS hal_kit_hid_post_init(ATCAIface iface); 
ATCA_STATUS hal_kit_hid_send(ATCAIface iface, uint8_t *txdata, int txlength); 
ATCA_STATUS hal_kit_hid_receive(ATCAIface iface, uint8_t *rxdata, uint16_t *rxlength); 
ATCA_STATUS hal_kit_hid_wake(ATCAIface iface); 
ATCA_STATUS hal_kit_hid_idle(ATCAIface iface); 
ATCA_STATUS hal_kit_hid_sleep(ATCAIface iface); 
ATCA_STATUS hal_kit_hid_release(void *hal_data); 
ATCA_STATUS hal_kit_hid_discover_buses(int i2c_buses[], int max_buses); 
ATCA_STATUS hal_kit_hid_discover_devices(int busNum, ATCAIfaceCfg *cfg, int *found); 
#endif 
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5.2.6 HAL for Timers 

CryptoAuthLib needs very simple timing support, primarily for execution delays while the CryptoAuth device is 

performing an operation.   These methods generally map easily to your platform’s delay timer library methods: 

void atca_delay_us(uint32_t delay); 
void atca_delay_10us(uint32_t delay); 
void atca_delay_ms(uint32_t delay); 

5.2.7 General HAL Development Approach 

In creating a new HAL, the typical approach is to map each HAL API method to a library method supported by the 

platform’s compiler and libraries. Most embedded systems have pre-built libraries for I
2
C, GPIO, and UART. 

Moreover, the HAL must implement some level of interface management where it is envisioned there will be 

multiple instances of a CryptoAuthentication device within the system. 

Bus and device discovery implementations can relatively be complicated or simple depending upon the 

developer’s needs. To get up and running quickly, it’s often easiest to leave the discovery APIs stubbed out and 

not used by the application until later in the application’s life-cycle as it requires it. 

The main notion behind the discovery APIs is to hide the complexity of interrogating the MCU for identifiable 

buses and the buses for devices that respond to the application. The result of a discovery is a list of 

ATCAIfaceCfg objects that can be used to instantiate ATCADevice objects so it is easily addressed with the full 

power of the CryptoAuthLib. The discovery API is primarily for dynamic hardware environments where 

CryptoAuthDevices may come and go on the bus. If this use-case is unnecessary, leave the discovery API 

stubbed out for another implementation as needed. 
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5.3 Considerations When Writing a HAL Implementation 

Every type of communication mechanism has various considerations based on the physical attributes of the 

method. 

5.3.1 Bus Interfaces 

I
2
C, as an example, implements a bus and therefore can have multiple devices on each bus. There may be 

multiple CryptoAuthentication devices on the same bus, each device having a different address. Alternativley, 

there could be multiple busses, each with one or more CryptoAuthentication devices on them.  The HAL 

implementation must consider the architecture it wants to support. 

CryptoAuthLib only knows about an abstract interface, ATCAIface object. That interface is tied to a particular 

HAL implementation. ATCAIface maintains logical configuration information for a specific device on the bus. If 

multiple devices are present on the same bus, the HAL must implement the notion of a local bus interface to 

which there are multiple interfaces reference the same bus. This way, the HAL maintains the bus master while 

the CryptoAuthLib maintains the notion of multiple instances of CryptoAuthentication devices. 

  

Please have a look at existing HAL implementations found the ../hal/ directory.  For example, 

hal_samd21_i2c_asf.c implements a bus master architecture where each ATCAIface instance adds 

a reference count to the bus master each time the hal_i2c_init() method is called when an 

interface is instantiated.  It also manages multiple busses. 

5.3.2 UARTs 

UART is a very flexible interface type. It can be used to drive a single-wire protocol or it can communicate typical 

serial data of the developer’s own choosing to a remote device. An application level protocol can be layered over 

a physical HAL interface type and leave it at the HAL level.  

For example, various Atmel CryptoAuthentication kits such as the Atmel AT88CK101-xxx, AT88CK490, and 

AT88CK590 kits use a serial communication protocol called Kit Protocol. There is an implementation of Kit 

Protocol that uses UART HAL to communicate with these kits.    

This allows CryptoAuthLib implementation to run with a CDC USB port talking to AT88CK101-xxx, for example, 

on an Ubuntu Linux system. 

Example the ./lib/hal directory for files related to ‘kit’ and ‘cdc’. 

The Kit Protocol with UART is one example of a UART protocol. Another is the Atmel Single-Wire protocol 

implemented with a UART versus being bit-banged. Think of UART as a physical manifestation of a specific 

serial protocol that needs to be implemented. 

5.3.3 HID Devices 

Similar to UART, it is possible to build HAL implementations that communicate via HID USB. Check out the 

./lib/hal directory for files related ‘hid’ for an example HAL implementation for Windows HID.   
  



 

 

CryptoAuthLib: Support for Atmel CryptoAuthentication Devices [APPLICATION NOTE]  
Atmel-8984B-CryptoAuth-CryptoAuthLib-ApplicationNote_012016 

2

3

 

23 

5.3.4 Adding a Completely New Type of Physical Interface 

The current CryptoAuthLib supports the following interface configurations (ATCAIfaceCfg): 

 I
2
C (most common) 

 Single-Wire UART (Atmel Single-Wire Protocol)  

 UART / CDC USB (Kit Protocol) 

 HID 

 

As mentioned, new serial protocols besides Kit can be added and still use the existing HAL implementations.  

However, if there is a need for a completely new type of physical level interface, the process is straightforward.  

A new embedded structure to the union of ATCAIfaceCfg object (see atca_iface.h) that reflects the physical 

interface would be needed.   

Keep in mind the ATCAIFaceCFG is explicitly defined to be a “Logical” reflection of the interface type. For 

example, in I
2
C there is a logical bus number. The HAL implementation can map that logical bus number to any 

physical bus of his or her choosing. It so happens that logical bus number 0 maps to SERCOM0 in a SAMD21 

ASF implementation, and bus number 1 to SERCOM1, and so on. There is no rule that says this must be so. 

  

The configuration structure holds logical data about an interface, but the HAL is the one that maps that 

to a physical manifestation of that logical device. 
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6 Updating an Application With New CryptoAuthLib Releases 

In general, Atmel strive’s to keep the CryptoAuthLib API as stable as possible so that updating the application to 

use a new release of CryptoAuthLib is simple and pain-free. Atmel build’s its own set of applications for 

professional personalization services and other cases, so Atmel is sensitive to the need to keep the API stable as 

possible. 

In most cases, it’s a simple matter of replacing the CryptoAuthLib code files in the project and recompiling 

(assuming the CryptoAuthLib has not been modified directly.) 

The atcab_version() method can be used to determine the current version of the library. The library is 

intended to be used and released as a complete set of files; therefore, it is not advisable to modify the 

CryptoAuthLib files or mix and match files from one revision to another. The atcab_version() string is a date of 

the format yyyymmdd, so it is possible for the application to determine, based on the string, whether a library 

implementation is up to date according to its requirements. Most developers statically link CryptoAuthLib with 

their firmware, so compatibility is known at compile and test time. 

From time to time, APIs may change, new features get added and bugs get fixed. The new library can be 

incorporated into a project by replacing the files found in the cryptoauthlib directory of the project.   

Once replaced and recompiled, insure the new CryptoAuthLib update works appropriately in the run-time 

environment. The Unit test runners can be executed by adding the cryptoauthlib/test directory to the project 

and rebuilding.  

atca_unit_tests(ATECC508A) 

atca_basic_tests(ATECC508A) 

certdata_unit_tests() 

certio_unit_tests() 

 

If using a CryptoAuthentication device other than ATECC508A, substitute the appropriate device name in place 

of the parameters above. 

The cryptoauth-d21-host tester Atmel Studio solution can be reviewed for examples on how to kick off unit tests 

and basic tests and choose to only run specific tests relevant to the application by “cherry picking” the specific 

Unity tests found in the files: atca_basic_tests.c or atca_unit_tests.c. 

 

7 Revision History  

Doc Rev. Date Comments 

8984B 01/2016 Updated to reflect latest features and API changes. Removed SPI. 

8984A 10/2015 Initial document release. 
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