
WHITE PAPER – AUGUST 2017

DRIVING DIGITAL
TRANSFORMATION WITH
CONTAINERS AND KUBERNETES
How Kubernetes Manages Containerized Applications
to Deliver Business Value

W H I T E PA P E R | 2

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

Table of Contents

Introduction ...3

The Digital Transformation and the Shift to
Containerized Applications ..3

Cloud-Native Applications and 12-Factor Apps .. 4

Methodology for Delivering Software as a Service ..5

A Concise Overview of Kubernetes ..6

Kubernetes Object Model ...7

Maintaining the Desired State ...7

Business Value of Kubernetes ...8

Kubernetes for Cloud-Native and 12-Factor Applications ..8

An Example Use Case ...10

Container Technology Solutions from VMware .. 11

vSphere Integrated Containers ... 11

Wavefront by VMware .. 13

Pivotal Container Service .. 13

Conclusion .. 14

W H I T E PA P E R | 3

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

Introduction
Kubernetes manages containers. Containers package applications and their
dependencies into a distributable image that can run almost anywhere,
streamlining the development and deployment of software. By adopting
containers, organizations can take a vital step toward transforming themselves
into agile digital enterprises focused on accelerating the delivery of innovative
products, services, and customer experiences. Enterprises can become the
disrupters instead of the disrupted.

But containers create technology management problems of their own, especially
when containerized applications need to be deployed and managed at scale, and
that’s when Kubernetes comes into play. Kubernetes orchestrates containerized
applications to manage and automate resource utilization, failure handling,
availability, configuration, scalability, and desired state.

This paper describes Kubernetes, explains its business value, explores its use
cases, and illuminates how it can accelerate your organization’s digital
transformation.

The Digital Transformation and the Shift to
Containerized Applications
The rate of technological innovation is, according to the The New York Times,
increasing and expanding.1 In response, digital transformation has become an
established objective for many enterprises, and the adoption of digital initiatives is
now widespread.2

The reasons enterprises are undergoing digital transformation are clear:

• Create new applications that engage customers in innovative and
captivating ways.

• Improve operations to more efficiently deliver better products and services
at a lower cost to the business.

• Generate new revenue streams by rapidly adapting to changes in market
conditions and consumer preferences.

“The future,” Gartner Research says, “will belong to companies that can create the
most effective, smart and autonomous software solutions.”3 But the ingredients
for building effective, autonomous applications are less clear than the desired
outcomes.

To be effective in this era, applications require an architecture that fosters fluid,
rapid, responsive development and deployment while still maintaining the security,
performance, and cost-effectiveness of established patterns. Containers provide
the basis for a new application architecture that supports digital transformation
and lays the foundation for innovation.

DOCKER CONTAINER DEFINED
With containers, Docker has defined
a standard format for packaging
and porting software, much like ISO
containers define a standard for
shipping freight. As a runtime instance
of a Docker image, a container consists
of three parts:

• A Docker image

• An environment in which the image
is executed

• A set of instructions for running
the image

—Adapted from the Docker Glossary

1 “Digital Transformation Going Mainstream in 2016, IDC Predicts”, Steve Lohr, The New York Times, November 4,
2015.

2 “New Research Finds Investment from Outside IT Is Key to Digital Transformation Success”, from the Business Wire, The
New York Times, May 11, 2017.

3 “Digital Transformation Going Mainstream in 2016, IDC Predicts”, Steve Lohr, The New York Times, November 4, 2015.

https://docs.docker.com/glossary/?term=container
https://bits.blogs.nytimes.com/2015/11/04/in-2016-digital-transformation-goes-mainstream-idc-predicts/?_r=1
http://markets.on.nytimes.com/research/stocks/news/press_release.asp?docTag=201705110301BIZWIRE_USPRX____BW5031&feedID=600&press_symbol=45098265
https://bits.blogs.nytimes.com/2015/11/04/in-2016-digital-transformation-goes-mainstream-idc-predicts/?_r=1

W H I T E PA P E R | 4

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

Enterprises are increasingly adopting container technology. A recent survey by
451 Research revealed a profile of impressive implementation for an emerging
ecosystem.4 Organizations that are adopting containers see them as a fast track
to building and deploying cloud-native applications and twelve-factor apps.

Cloud-Native Applications and 12-Factor Apps
The Cloud Native Computing Foundation, a project of The Linux Foundation,
defines cloud-native applications as follows:5

1. Containerized—Each part (applications, processes, etc.) is packaged in its own
container. This facilitates reproducibility, transparency, and resource isolation.

2. Dynamically orchestrated—Containers are actively scheduled and managed
to optimize resource utilization.

3. Microservices oriented—Applications are segmented into microservices. This
segmentation significantly increases the overall agility and maintainability of
applications.

Kubernetes covers the second part of the definition by scheduling and managing
containers. For the third part, both Kubernetes and Docker help implement
microservices.

The key element, however, is the container—a process that runs on a computer or
virtual machine with its own isolated, self-described application, file system, and
networking. A container packages an application in a reproducible way: It can be
distributed and reused with minimal effort.

Docker containers are the most widely deployed container. A manifest, called a
Dockerfile, describes how the image and its parts are to run in a container on a
host. To make the relationship between the Dockerfile and the image concrete,
here’s an example of a Dockerfile that installs MongoDB on an Ubuntu machine
running in a container. The lines starting with a number sign are comments
describing the subsequent commands.

MongoDB Dockerfile from https://github.com/dockerfile/mongodb

Pull base image.

FROM dockerfile/ubuntu

Install MongoDB.

RUN \

 apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv

7F0CEB10 && \

 echo ‘deb http://downloads-distro.mongodb.org/repo/ubuntu-

upstart dist 10gen’ > /etc/apt/sources.list.d/mongodb.list && \

 apt-get update && \

 apt-get install -y mongodb-org && \

 rm -rf /var/lib/apt/lists/*

Define mountable directories.

4 “Application containers will be a $2.7bn market by 2020, representing a small but high-growth segment of the
CloudEnabling Technologies market”, 451 Research, Jan. 10, 2017.

5 This definition is from the FAQ of the Cloud Native Computing Foundation, https://www.cncf.io/about/faq/.

https://451research.com/blog/1351-applicationcontainers-will-be-a-$2-7bn-market-by-2020,-representing-a-small-but-high-growth-segment-of-the-cloud-enablingtechnologies-market
https://451research.com/blog/1351-applicationcontainers-will-be-a-$2-7bn-market-by-2020,-representing-a-small-but-high-growth-segment-of-the-cloud-enablingtechnologies-market
https://www.cncf.io/about/faq/

W H I T E PA P E R | 5

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

VOLUME [“/data/db”]

Define working directory.

WORKDIR /data

Define default command.

CMD [“mongod”]

Expose port 27017 for the process and port 28017 for http

EXPOSE 27017

EXPOSE 28017

Methodology for Delivering Software as a Service
In contrast, the 12-factor app is defined as much by its processes as by its
systemic properties. It is a methodology for developing a software-as-a-service
(SaaS) application—that is, a web app—and typically deploying it on a platform-
as-a-service (PaaS), such as Pivotal Cloud Foundry. Here are the 12 factors with a
brief explanation of each one:6

1. Deploy the application many times from one codebase. The codebase is
stored in a repository, managed with a version control system such as Git as it
is modified, and then deployed many times as a running instance of the app
from that the same codebase. As a result, a deployment is often running in
three environments: on each developer’s local environment, in a staging
environment, and in the production environment.

2. Declare and isolate dependencies. The app does not implicitly rely on system-
wide packages; instead, it declares the dependencies in a declaration manifest.
Explicitly declaring dependencies makes it easier for new developers to set up
their development environment.

3. Store the configuration in the environment, not the code. For configuration
information that varies by deployment, the app stores the information in
environmental variables. The environmental variables are granular controls
that are managed independently for each deployment so that the app can
easily scale into more deployments over time.

4. Connect to supporting services, such as a database or a storage system,
instead of including it in the code. The app treats such services as resources
that can be attached to or detached from a deployment by modifying the
configuration.

5. Treat build and run as separate stages. A deployment of the codebase takes
place in three separate stages: build, release, and runtime. The build stage
converts the codebase into an executable—a build— and then the release
stage combines the build with the configuration to produce a release that’s
ready for execution in the runtime environment.

6. Run the app as stateless processes. The processes share nothing with other
processes, and data that must persist is stored in a database running as a
stateful supporting service.

6 The twelve factors are paraphrased from the descriptions at the Twelve-Factor App web site.

https://12factor.net/

W H I T E PA P E R | 6

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

7. Expose services by using port binding. Taking HTTP as an example, the app
exports HTTP as a service by binding to a port and listening on the port for
incoming requests.

8. Scale out by adding concurrent processes. The app handles workloads by
assigning each type of work to a process type. A web process, for example,
handles HTTP requests, while a worker process manages background tasks.

9. Ensure durability with disposability. Processes are disposable—they can be
started or stopped quickly to make sure that the application can be changed
or scaled easily.

10. Make development and production peers. The app is geared toward
continuous deployment by allowing developers to integrate new code quickly
and to deploy the app themselves in a production environment. The
production and development environments should be as similar as possible.

11. Process logs as event streams. The app neither routes nor stores the output
stream from its logs but instead writes it as a stream of data to standard
output, where it is to be collected by the execution environment and routed to
a tool or system, such as Hadoop, for storage or analysis.

12. Run one-off management scripts and tasks, such as a database migration, in
an environment identical to that of the app’s long-running processes.

Containers and Kubernetes help satisfy aspects of these imperatives. Containers,
for example, play a key role in 12-factor apps by letting you declare and isolate
dependencies. Containers also help ensure durability with disposability by, among
other things, starting quickly and stopping gracefully. Many of the other factors
are supported by Kubernetes.

A Concise Overview of Kubernetes
Google originally developed Kubernetes. The company uses its predecessor,
called Borg, to initiate, schedule, restart, and monitor public-facing applications,
such as Gmail and Google Docs, as well as internal frameworks, such as
MapReduce.7 Based on Google’s original system plus enhancements from the
lessons learned with Borg, Kubernetes is an open source orchestration system for
containers that can work in your data center, across clouds, and in a hybrid data
center. Kubernetes automatically places workloads, restarts applications, and
adds resources to meet demand.

Here, briefly, is how it works. A Kubernetes cluster contains a master node and
several worker nodes. Then, when you deploy an application on the cluster, the
components of the application run on the worker nodes. The master node
manages the deployment.

Kubernetes includes these components:

• The Kubernetes API
• The Kubernetes command-line interface, kubectl
• The Kubernetes control plane

7 Large-Scale Cluster Management at Google with Borg, Research at Google, 2015.

MANAGING CONTAINERIZED
APPLICATIONS WITH KUBERNETES

Kubernetes orchestrates distributed,
containerized applications to:

• Optimize utilization of computing
resources.

• Provide policies for scheduling.

• Maintain desired state.

• Handle faults and failures with
automation.

• Provide high availability.

• Monitor jobs in real-time.

• Manage an application’s
configuration.

• Dynamically scale to meet changes
in demand.

https://research.google.com/pubs/pub43438.html

W H I T E PA P E R | 7

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

The control plane comprises the processes running on the Kubernetes master and
on each worker node. On the master, for example, Kubernetes runs several
processes: the API server, the controller, the scheduler, and etcd. The worker
nodes run the “kubelet” process to communicate with the master and the proxy
process to manage networking.

Kubernetes Object Model
One of the keys to the Kubernetes system is how it represents the state of the
containerized applications and workloads that have been deployed. Kubernetes
represents state by using “objects,” such as service, namespace, and volume.
These objects are typically set by an object specification, or spec, that you create
for your cluster.

In the Kubernetes object mode, the concept of a Pod is the most basic deployable
building block. A Pod represents an instance of an app running as a process on a
Kubernetes cluster. Here’s where the Docker runtime comes back into the
equation—Docker is commonly used as the runtime in a Kubernetes Pod.

Kubernetes also includes Controllers that implement most of the logic in
Kubernetes. The Controllers provide features such as the replica set and the
stateful set.

Maintaining the Desired State
The Kubernetes control plane manages the state of all these objects to ensure that
they match your desired state. You can specify a desired state by creating an
object specification for a service with a YAML file. Here’s an example:

apiVersion: v1

kind: Service

metadata:

 name: nginx-demo-service

 labels:

 app: nginx-demo

spec:

 type: NodePort

 ports:

 - port: 80

 protocol: TCP

 name: http

 selector:

 app: nginx-demo

apiVersion: v1

kind: ReplicationController

metadata:

 name: nginx-demo

spec:

 replicas: 3

ADVANTAGES OF USING KUBERNETES

• Consolidate servers and reduce costs
through efficient resource utilization.

• Elegantly handle machine failure
through self-healing and high
availability.

• Ease and expedite application
deployment, logging, and
monitoring.

• Automate scalability for containers
and containerized applications.

• Decouple applications from
machines for portability and
flexibility.

• Easily modify, update, extend,
or redeploy applications without
affecting other workloads.

W H I T E PA P E R | 8

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

 template:

 metadata:
 labels:

 app: nginx-demo

 spec:

 containers:

 - name: nginx-demo

 image: myrepo/nginx

 ports:

 - containerPort: 80

When you submit this file to the Kubernetes master with the kubectl command-
line interface, the Kubernetes control plane implements the instructions in the file
by starting and scheduling applications so that the cluster’s state matches your
desired state. The Kubernetes master and the control plane then maintain the
desired state by orchestrating the cluster’s nodes, which can be actual servers or
virtual machines.

The core of the architecture is an API server that manages the state of the
system’s objects. The API server works with Kubernetes subcomponents, or
clients, that are built as composable microservices, such as the replication
controller specified in the YAML file. The replication controller regulates the
desired state of pod replicas when failures occur.

Business Value of Kubernetes
Returning to the digital transformation, Kubernetes uses this architecture to
manage containerized applications in a distributed cluster. The results help fulfill
the business promise of digital transformation:

• Kubernetes makes it easier and cheaper to run applications in public, private, or
hybrid clouds.

• Kubernetes accelerates application development and deployment.

• Kubernetes increases agility, flexibility, and the ability to adapt to change.

Kubernetes for Cloud-Native and 12-Factor Applications
Kubernetes makes containerized applications work in a manageable way at scale.
Recall the second part of the definition of cloud-native applications: They are
dynamically orchestrated in such a way that containers are actively scheduled and
managed to optimize resource utilization. Kubernetes does exactly that. It
orchestrates containers and their workloads to optimize the utilization of the
virtual machines and physical servers that make up the nodes in a cluster.

Revisiting the 12 factors further illustrates how Kubernetes streamlines application
management. In general, Kubernetes can deploy and run 12-factor apps.

W H I T E PA P E R | 9

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

HOW KUBERNETES AND CONTAINERS STREAMLINE APPLICATION MANAGEMENT

Factor Benefit

1. Deploy the
application many
times from one
codebase.

Kubernetes can deploy applications with one code base many
times by giving a pod a specification that includes a container
image reference.

2. Declare and isolate
dependencies.

Containers can express dependencies.

3. Store the
configuration in the
environment, not the
code.

You can store aspects of an application's configuration in the
Kubernetes environment. For example, the ConfigMaps
construct separates configuration artifacts from an image’s
instructions.

4. Connect to
supporting services,
such as a database,
instead of including
it in the code.

Kubernetes lets you deploy supporting services, such as a
database, in separate containers and then manages all the
containerized components together to ensure availability and
performance.

5. Treat build and run
as separate stages.

You can, for example, build the application by using Jenkins (a
pipeline automation server separate from Kubernetes) and
then run the Docker images by using Kubernetes.

6. Run the app as
stateless processes.

Kubernetes makes it easy to run stateless applications.
Kubernetes allows states to be maintained independently in an
etcd data store, for instance, while the application runs.
Kubernetes also allows you to attach persistent storage. The
spec file defining a Pod, for example, can require a persistent
volume; if the Pod goes down, the replacement Pod connects
to the same persistent volume.

7. Expose services by
using port binding.

Kubernetes includes configuration options for exposing
services on ports. In the nginx example YAML file that
appeared earlier, the nginx web server was bound to Port 80
and exposed as a service.

8. Scale out by adding
concurrent
processes.

Kubernetes scales an application by adding more Pods.
Kubernetes can use the replication controller, for example, to
add multiple Pods at the same time.

9. Ensure durability
with disposability.

Containers running in Kubernetes are seen as mutable—they
are to be stopped and replaced on demand or on a schedule.

10. Make development
and production
peers.

The Kubernetes environment lets development and production
code be rigorously tested in the same way. For instance, you
can use a Kubernetes deployment with two pods, one pod
that contains the production environment and another pod
that contains the staging environment, which in effect makes
staging and production peers. In addition, the environment
specified in a container is uniform across development and
production environments.

11. Process logs as
event streams.

Kubernetes lets you access the standard output of a container
so that you can process its output as a data stream with the
tool of your choice, such as VMware vRealize® Log Insight™.

12. Run management
tasks as one-off
processes.

You can schedule a Pod consisting of the application container
using a different entry point to run a different process, such as
a script to migrate a database.

W H I T E PA P E R | 1 0

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

An Example Use Case
A short case study provides a high-level use case for managing containers with
Kubernetes.

A taxicab company in a major metropolitan area is losing riders to car-sharing
services, imperiling its once-strong local market share. It needs to transform itself
into a digital enterprise capable of competing with car-sharing companies. To do
so, the company wants to develop its own mobile app, cost-effectively run the app
in its modest data center, and attempt to provide innovative services.

To its credit, the taxi company retains a number of advantages: a well-known,
long-established local brand with a reputation for timely, courteous, safe drivers.

As recently hired developers work on the mobile app, the taxi company
modernizes its data center with commodity hardware and virtualization. To
maximize resource utilization of its small data center and to minimize costs, the
company plans to run its new app in Docker containers on virtual machines.
Kubernetes will orchestrate the containerized application.

After being rolled out and advertised in and on its cars, the app is an instant
success. To meet fluctuations in use of the app, the company uses Kubernetes to
dynamically scale the number of containers running the app. For example, when
metrics for the app hit a predefined threshold indicating high usage, which
typically happens during rush hour, the company’s DevOps team uses the
horizontal pod autoscaling feature of Kubernetes to automatically maximize the
number of containers so that the system can match demand. At 4 am, in contrast,
the number of containers is reduced to elastically match the low demand at that
time, conserving resources.

The mobile app correlates ride requests with location. By mining the data and
combining it with its intimate historic knowledge of the city’s patterns, the cab
company can station cabs in the perfect locations for hailing customers—
preempting some car requests to the competition. What’s more, because the
company processes the app’s logs as event streams, the company can do this
dynamically during day and night, shifting cars to hot spots.

Because the company implemented the app by using containers, developers can
roll out new changes daily. The data that the app collects helps the company
pinpoint new features and quickly innovate to focus on its strengths, such as
identifying recurring customers and rolling out a rewards program to retain them.

The business benefits of the company’s technical agility, containerized application,
and Kubernetes orchestration add up to a competitive advantage:

• The scheduling policies in Kubernetes give the company the elasticity it needs to
dynamically match demand in a cost-effective way with its modest but now-
modernized data center.

• Faults and failures are handled automatically by Kubernetes, reducing
troubleshooting demands on its small DevOps staff.

• The seamless modification of the app and its features helps the company beat its
bigger, less local rivals by being more agile and better able to apply its
knowledge of local patterns.

BENEFITS FOR DEVELOPERS

The business value of containers and
Kubernetes isn’t limited to the business
as a whole or the office of the CIO.
Developers like containers because
they make life easier, development
more engaging, and work more
productive.

• Portability: Containers let developers
choose how and where to deploy
an app.

• Speed: Containers expedite
workflows like testing and speed up
iterations.

• CI/CD Pipeline: Kubernetes and
containers support continuous
integration and continuous
deployment.

• Flexibility: Developers can code on
their laptops when and where they
want with the tools they like.

• The 13th Factor: Containers and
Kubernetes are seen as fashionable
technologies. Developers are highly
motivated to use them.

W H I T E PA P E R | 1 1

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

• Containers and Kubernetes make it easier and cheaper to run the app.

• The ease with which the DevOps team can port containers from the test
environment to production accelerates the development and deployment of new
features.

Container Technology Solutions from VMware
In a recent report titled “Closing the Digital Transformation Confidence Gap in
2017,” The Hackett Group surveyed executives from more than 180 large
companies. The report found a wide confidence gap “between the high
expectations for digital transformation’s business impact and the low perception
of the business’s capability to execute digital transformation.” The Hackett group
says that the findings demonstrate the need for IT to invest in the necessary tools
and to adopt rapid application development techniques, such as agile processes.8

Cloud-native solutions from VMware help you quickly and cost-effectively
put containers into production, improving your ability to carry out digital
transformation.

Running containers on VMs also adds a beneficial level of security to containerized
applications, especially in the context of the third tenet of cloud-native
applications—microservices. According to a Docker white paper on security,
“Deploying Docker containers in conjunction with VMs allows an entire group of
services to be isolated from each other and then grouped inside of a virtual
machine host.”9

Deploying containers with VMs encases an application with two layers of isolation,
an approach that is well-suited to cloud-style environments with multitenancy and
multiple workloads. “Docker containers pair well with virtualization technologies
by protecting the virtual machine itself and providing defense in-depth for the
host,” the Docker security white paper says.

vSphere Integrated Containers
A comprehensive container solution built on VMware vSphere, VMware vSphere
Integrated Containers runs modern and traditional workloads side by side in your
VMware software-defined data center with enterprise-grade networking, storage,
security, performance, and visibility.

With support for Docker containers, vSphere Integrated Containers empowers
you to immediately use container technology to enhance developer productivity
and business agility. The solution helps transform your organization into a digital
enterprise and to modernize your data center by deploying containerized
applications.

8 Despite High Expectations for Digital Transformation Led by Cloud, Analytics, Robotic Process Automation,
Cognitive & Mobile, IT & Other Business Services Areas See Low Capability to Execute, The Hackett Group,
March 16, 2017. A version of the research is available for download, following registration, at
http://www.thehackettgroup.com/research/2017/social-media/key17it/.

9 Introduction to Container Security, Docker white paper, Docker.com.

http://Despite High Expectations for Digital Transformation Led by Cloud, Analytics, Robotic Process Automa
http://Despite High Expectations for Digital Transformation Led by Cloud, Analytics, Robotic Process Automa
http://www.thehackettgroup.com/research/2017/social-media/key17it/
https://www.docker.com/sites/default/files/WP_IntrotoContainerSecurity_08.19.2016.pdf

W H I T E PA P E R | 1 2

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

Architecture Overview
The following diagram illustrates the high-level architecture of vSphere Integrated
Containers.

NSX ESXi vSAN

Virtual Container Hosts Docker Container Hosts

Provisioning / Scheduling

Physical Infrastructure

S
ec

ur
ity

 /
M

ic
ro

-s
eg

m
en

ta
tio

n
R

eg
is

try

S
ec

ur
ity

M
an

ag
em

en
t C

Docker Engine

Linux Kernel

C C

Linux Kernel

C

Linux Kernel

C

Linux Kernel

C

Figure 1: High-levelarchitecture of vSphere Integrated Containers

This architecture gives you two container deployment models:

• Virtual container hosts: vSphere Integrated Containers takes advantage of the
native constructs of vSphere to provision containers. By deploying each
container image as a virtual machine, vSphere Integrated Containers extends the
availability and performance features of vSphere to containerized workloads,
including VMware HA, vMotion and Distributed Resource Scheduler. In addition,
developers can consume a Docker API.

• Docker container hosts: Developers can self-provision native Docker container
hosts on demand and run them on vSphere. The ticketless environment that
vSphere Integrated Containers provides lets developers use Docker tools while
giving IT teams governance and control over the infrastructure.

Components
Each of the components of vSphere Integrated Containers is an open source
project:

• vSphere Integrated Containers Engine: A container runtime for vSphere, the
engine enables software engineers to develop in containers and deploy
containerized apps alongside traditional VM-based workloads on vSphere
clusters.

• Harbor: An enterprise-class private container registry that stores and distributes
container images, Harbor extends the open source distribution of Docker with
such enterprise functionality as identity management, role-based access control,
and auditing.

• Admiral: A container management portal, Admiral supplies a user interface for
DevOps teams and others to provision and manage containers. Admiral can,
for instance, show metrics about container instances. Cloud administrators
can manage container hosts and apply governance to their usage, including
capacity quotas.

W H I T E PA P E R | 1 3

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

Capabilities
vSphere Integrated Containers includes a unified management portal that is
integrated with identity management to securely provision containers. Developers
and DevOps can serve their own requirements by creating Docker container hosts
on demand.

The result enables application development teams to build, test, and deploy
containerized applications. The solution supports agile development practices
and DevOps methodologies like continuous integration and continuous
deployment (CI/DI).

Wavefront by VMware
Wavefront® by VMware efficiently monitors containers at scale. The Wavefront
platform includes dashboards that give DevOps real-time visibility into the
operations and performance of containerized applications and Kubernetes
clusters.

The Wavefront service can measure, correlate, and analyze data across containers
and Kubernetes clusters. The dashboard displays data on the performance of
microservices and resource utilization to help you identify issues and optimize
applications. The data can, for example, help make decisions about how and when
to scale a container environment. For more information, see VMware and
Wavefront.

Pivotal Container Service
VMware® Pivotal Container Service offers production-grade Kubernetes for
enterprises to reliably deploy, run, and operationalize modern and traditional
applications across private and public clouds. Based on the open source project
Kubo, Pivotal Container Service delivers high availability, advanced security, and
operational efficiency for enterprises to shorten time to market, increase
developer productivity, and lower operating expenses.

To provide a fast path to production for microservices and containerized
workloads, Pivotal Container Service establishes a unified virtualization and
container infrastructure on VMware vSphere or in a VMware software-defined
data center.

Components
Pivotal Container Service includes the following components:

• Production-grade Kubernetes.

• BOSH. It is an open source system that unifies release engineering, deployment,
and lifecycle management for small- and large-scale cloud software. Well-suited
to large distributed systems, the system performs monitoring, failure recovery,
and software updates with zero-to-minimal downtime. BOSH supports multiple
infrastructure-as-a-service providers, including VMware vSphere, Google Cloud
Platform, Amazon Amazon Elastic Compute Cloud (EC2), and OpenStack.

THE BENEFITS OF MICROSERVICES

Coupled with containers, microservices
are increasingly becoming the
architectural pattern of choice for
developing a new application. The
architecture breaks up the functions
of an application into a set of small,
discrete, decentralized, goal-oriented
processes, each of which can be
independently developed, tested,
deployed, replaced, and scaled.

• Increase modularity

• Make app easier to develop and test

• Parallelize development: A team
can develop and deploy a service
independently of other teams
working on other services

• Support continuous code refactoring
to heighten the benefits of
microservices over time

• Drive a model of continuous
integration and continuous
deployment

• Improve scalability

• Simplify component upgrades

https://www.vmware.com/company/acquisitions/wavefront.html
https://www.vmware.com/company/acquisitions/wavefront.html

W H I T E PA P E R | 1 4

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

• VMware ESXi™. The industry-leading, purpose-built bare-metal hypervisor, ESXi
installs directly onto your physical server, enabling it to be partitioned into virtual
machines.

• VMware NSX®. This network virtualization technology for modern application
architectures provides key networking capabilities to Kubernetes clusters.

Conclusion
Building and deploying containerized applications on VMware infrastructure drives
business value through digital transformation. VMware solutions enhance
developer productivity, business agility, IT flexibility, and application scalability.
The result helps you adapt to changes in the marketplace and shorten the time it
takes to bring an application to market.

LEARN MORE ABOUT ...

To learn how solutions from VMware
can help you build, run, and manage
cloud-native applications, visit:
cloud.vmware.com/cloud-native-apps

http://cloud.vmware.com/cloud-native-apps

W H I T E PA P E R | 1 5

DRIVING DIGITAL TRANSFORMATION WITH
CONTAINERS AND KUBERNETES

VMware, Inc. 3401 Hillview Avenue Palo Alto CA 94304 USA Tel 877-486-9273 Fax 650-427-5001 www.vmware.com
Copyright © 2017 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. VMware products are covered by one or more patents listed
at http://www.vmware.com/go/patents. VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks and names mentioned herein may be
trademarks of their respective companies. Item No: VMW_17Q3_WP_Driving-Digital-Transformation-with Kubernetes_FINAL2_081617
08/17

