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ABSTRACT

Dynamic program analysis is commonly used to vet Android appli-
cations. One approach is targeted execution, in which interesting or
suspicious code is specifically targeted and analyzed dynamically.
However, faithful execution to just the paths that reach these targets
can be difficult due to the dependencies they have on other parts of
the application. Prior works that handle dependencies must favor
either soundness or completeness to the detriment of the other.
Techniques that rely on precise dependency tracking ultimately
result in lower coverage of targets due to overhead. Meanwhile,
other techniques that aim for completeness by ignoring or bypass-
ing dependencies lead to unsound execution and false positives.
In this paper, we treat dependencies through the lens of a path
context, which represents the program state expected by the path
as it is executing. We propose an approach that provides better
completeness and low false positives using Context Approximation
and Refinement (CAR), which combines static constraint analysis
and dynamic error recovery to infer a context based on the desired
path flow and refine it during execution. We show that the inte-
gration of CAR with targeted execution can reach 3.1x more target
locations in popular Android applications than the existing state
of the art while having a false detection rate of 9%, enabling more
complete analysis and detection of security-sensitive behaviors.
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1 INTRODUCTION

Mobile devices have become an intrinsic part of daily life and the
use of third-party applications on these devices provides a variety
of beneficial functionality and services. With an estimated 2.8 mil-
lion applications on the Google Play store, attackers who create
and distribute malicious applications (i.e. malware) for gain are
naturally drawn to such a large market and user base. To maintain
the security of their users, application marketplaces endeavor to
remove malware from their offerings by analyzing submissions
to detect whether they perform any malicious behavior. Dynamic
program analysis techniques are commonly used to perform this
security analysis due to their precision, but they are limited by code
coverage since only code that is executed during testing can be
analyzed.

A challenge to these analysis is scalability. Purely dynamic analy-
ses are generally unable to obtain significant code coverage on real
applications and may thus miss malicious functionality [2, 15, 20, 27,
41]. An alternative approach is to guide the dynamic analysis with
statically extracted information, so as to only execute sections of
the application that are likely to contain malicious code [7, 48, 49].
Critical to the success of such approaches is the precision and scal-
ability of the static analysis component—an overly precise static
analysis will not scale, while an overly imprecise analysis may not
provide the information required for the dynamic analysis to reach
and execute malicious code, thus preventing it from detecting the
malicious code. In particular, paths in Android applications may
depend not only on the inputs to the entry point method, but on the
properties of the method’s parent object, as well as the properties
of other objects in the application.

We represent a path’s dependencies through its context, which we
define as the constrained inputs and program state that satisfy these
dependencies and are required for the path to execute. However,
statically extracting the complete context does not scale [48, 49],
resulting in an incomplete context and the inability to execute and
dynamically analyze application paths. Guided symbolic execu-
tion [5, 30, 53] can resolve path dependencies as they arise but
requires expensive symbolic tracking of all program state, which
can also result in low coverage due to scalability issues, and they
cannot easily integrate with dynamic analysis tools that operate on
concrete execution. Other work that ignore context altogether by
skipping the parts of the path that enforce the dependencies (e.g.
through instrumented forced branching [34, 46] or arbitrary invo-
cation [32]) can lead to the execution of unsound (i.e. infeasible)
paths, resulting in many false positives.

In this work, we propose a different approach, Context Approxi-
mation and Refinement (CAR), to achieve a balance between forced
execution, which produces unsound paths, and complete context
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class EnterKeyListener implements View.OnKeyListener {
@Override
public void onKey(View v, int code, KeyEvent event) {
if (code == KeyEvent.KEYCODE_ENTER) {
handleEnterKey(v, event);
} 3}
private void handleEnterKey(View v, KeyEvent event) {
UserInputText textView = (UserInputText)v;
textView.checkText();
1}
class UserInputText extends EditText {
static public String keyword = null;
int detectionMode = 0;
public List<String> detectedInput = null;

public void checkText() {
if (detectionMode == 2 3& detectMode2()) {
recordInput(getText());
<target sensitive action>
} else { ... }
}
private boolean detectMode2() {
return hasKeyword() && keyword.equals(getText());

}
private boolean hasKeyword() {

return keyword != null && !keyword.isEmpty();
3

private void recordInput(String text) {
detectedInput.add(text);
write(<output file>, detectedInput);
1}

/* Secondary activity in the application =*/
class InnerActivity extends Activity {
@Override
public onResume(Bundle savedInstanceState) {
View view = new UserInputText(...);
View.OnKeyListener listen = new EnterKeyListener();
process(view, listen);

view = new OtherTextView(...);
listen = new OtherKeyListener();
process(view, listen);

}

private void process(View v, View.OnKeyListener k) {
/* Register a key event handler for the view */
v.setOnKeyListener(k)}

}

/* Called by an SMS receiver elsewhere (not shown) */
public void onSmsReceived(SmsMessage msg) {
if (msg.getOriginatingAddress().equals(
ServerInfo.getAddress())) {

UserInputText view = findViewById(...);
view.detectionMode = extractMode(msg);
view.detectedInput = new ArrayList<String>();
UserInputText.keyword = extractKeyword(msg);

)

3

(a) Target path that performs a sensitive action when a keyword is
detected in the user’s input after they press the “enter” key

(b) Dependent code paths that register the key event handler with
the framework and set the heap variables to their expected state

Figure 1: Example of targeting sensitive behavior in an Android application

extraction, which does not scale. Rather than tracking dependent
paths precisely or ignoring them altogether, we show how the com-
bination of static constraint analysis and dynamic error recovery
can approximate a context for a path such that execution is driven
to the target code location. The approximation is constructed to re-
duce the amount of false positives, which we define as the execution
of unsound paths. CAR achieves this by: (1) generating an initial
context inferred from the desired control flow and (2) dynamically
refining the incomplete context when any unresolved dependencies
trigger errors during the path’s execution. The hybrid approach
to dependency resolution enables CAR address the trade-offs that
must be made in static dependency tracking between precision,
completeness, and scalability. Through the combination of static
and dynamic resolution, we can achieve much greater coverage of
target behaviors in an application while maintaining reasonable
soundness in the paths that are executed.

We implement CAR on an existing Android targeted execution
framework, T1ro [49], which statically extracts target paths for a
configurable set of behaviors. The paths are then executed dynami-
cally to trigger and analyze the behaviors. We show that the use of
approximated contexts for targeted dynamic analysis enables much
higher coverage of target code locations in applications, including
accesses to sensitive device functionality for security analysis.

We make four main contributions:

(1) We describe CAR, which effectively resolves dependencies
for an targeted code path by approximating and refining its
expected context through hybrid static and dynamic analysis.

(2) We design and implement CAR for Android application anal-
ysis to show how context approximation can be used for
targeted execution.

(3) We evaluate CAR on the most popular applications in Google
Play and show that it is able to reach 3.1x more non-trivial
target locations for an application than the existing state of
the art, with a false detection rate of 9.0%.

(4) We show that the use of approximated contexts for path
driving can uncover a variety of security-sensitive behaviors
in both benign and malicious applications.

We begin by providing background on the challenges of isolated
path execution in Android in Section 2. We then present our design
for CaR in Section 3 and provide implementation details in Section 4.
We evaluate CAR on popular applications from Google Play in
Section 5 and compare it against several state-of-the-art dynamic
tools. We discuss our limitations in Section 6 and the related work
in Section 7. Finally, we conclude in Section 8.

2 MOTIVATING EXAMPLE

In Figure 1, we present an example of a code path to a sensitive
behavior in an Android application, in which the execution of the
path depends on data from other parts of the application. While this
is not extracted from a real application, it contains code patterns
similar to what we have seen.

Figure 1(a) shows a sensitive action taken when a keyword is
detected within the user’s text input after the user presses the “enter”
button. The key event handler (EnterKeyListener) is the entry-
point of this path. It first checks if the key pressed is the “enter”
key and if so, it calls UserInputText, a custom Ul text element, to



check the user’s input text. It determines whether a keyword has
been loaded, checks it against the user’s input, and saves the input
text if the keyword was detected. Finally, it performs a sensitive
action if these conditions have been met (e.g. it may send the input
text to a network server or access a device sensor).

If we wished to target the sensitive action and trigger it dynami-
cally, the call path that reaches the target is:

1) EnterKeyListener: :onKey()

2) EnterKeyListener: :handleEnterKey()

3) UserInputText: :checkText()

4) <target sensitive action>
Based on the path constraints, we can surmise that the path depends
on its inputs, heap state, and Android framework state.

Figure 1(b) shows how the non-input dependencies are normally
satisfied by the execution of other application paths. For example,
onSmsReceived should be executed (with appropriate context) be-
fore checkText in the target path is executed. Furthermore, there
may be recursive constraints or dependencies in the dependent
paths; for instance, the detectionMode and keyword fields are set
on receipt of an SMS message from a certain address, which might
be set in yet another dependent path. Likewise, the enclosing com-
ponent, InnerActivity, is not the application’s main activity and
may require navigation through multiple screens in the UI flow
before it can be started.

To execute the path in Figure 1(a), the path’s constraints must
be resolved. A dynamic approach, such as guided symbolic execu-
tion [5, 30, 53], would resolve dependencies along the target path
by symbolically tracking the input and non-input variables that are
accessed (e.g. detectionMode and keyword). However, this track-
ing is expensive and requires a symbolic execution environment
that does not integrate easily with the numerous dynamic analysis
tools are based on concrete execution [11, 14, 19, 42, 43, 51, 56].

A hybrid approach could instead use static analysis to resolve de-
pendencies and guide concrete execution of the path [34, 35, 46, 48,
49]. There are several methods of static guiding, which are differen-
tiated by the execution abstraction used. A holistic abstraction that
is faithful to normal execution (i.e. sound) is to abstract at the level
of the Android framework, which manages the application’s execu-
tion and facilitates access to underlying hardware. IntelliDroid [48]
and TIro [49] guides execution by injecting events into the frame-
work to trigger a target path. They use static dependency tracking
to determine exactly which framework events to inject such that
the path’s constraints and dependencies are resolved. For Figure 1,
they might execute the following ordered chain of events to reach
the target code:

i) Ul or lifecycle event(s) to start InnerActivity
ii) Lifecycle event to register EnterKeyListener

iii) SMS event with an input message that sets the required

values for detectionMode and keyword

iv) Ul key event for the target path from onKey ()

There are two drawbacks to this approach: (1) the breadth of
the abstraction can be large and satisfying each dependency at run-
time requires custom Android framework modifications for each
event type; and (2) the complexity of the abstraction can become
excessive for long paths, requiring the tracking of a large number
and variety of constraints, which may require models for complex
operations (i.e. string operation) and result in exponentially long

constraint solving time. Decreasing breadth while maintaining com-
plexity maintains precision, but limits the types of paths that can be
analyzed dynamically. For instance, IntelliDroid does not support
the injection of UI events, which precludes it from triggering paths
in most Android applications (it would also be unable to inject the
Ul key event in our example). In contrast, reducing complexity by
discarding paths with unsupported operations or excessive length
reduces completeness.

One solution might be to decrease the amount of dependency
tracking required, enabling greater coverage of target code in exe-
cution (i.e. completeness). GroddDroid [1], Harvester [34], Direct-
Droid [46], and AREs [6] operate on path slices leading to target
code locations (i.e. they abstract at the instruction level). To guide
execution, they use static instrumentation to force specific branch
outcomes. Instead of resolving dependencies, this essentially by-
passes them since the branch conditions are no longer enforced.
Forcing branch outcomes and ignoring their dependencies can en-
sure that target paths are executed in full; however, this can easily
lead to inconsistent data values such as the forcing of the null check
in Line 26. This leads to an inconsistency if the checked object is
actually null, the branch is forced anyway, and the object is then
dereferenced later in the line. Forcing of multiple branches can
also lead to a combination of infeasible branch outcomes, as pro-
gram logic is modified without reconciling the control flow with
the data compared within the branches. This can lead to the exe-
cution of unrealistic or unsound paths. As such, forced execution
is well-suited for obtaining coverage but less so for the analysis
of security-related behaviors, which usually require tracking how
applications access and manipulate system resources and data. Due
to soundness issues, it is not a reliable means for determining if an
application will perform a malicious action.

Other work, such as FuzzDroid [35] or CrashScope [28], abstracts
at the application level. FuzzDroid achieves semi-targeted execution
by manipulating the inputs received at application entry-points and
framework APIs. However, it does not track or resolve dependencies
on state within the application, such as the constraints on the
detectionMode and keyword fields; it would have to execute the
dependent paths in order by chance to reach the target code location.
This is also true for any other untargeted fuzzing tool.

In CAR, we propose a fully targeted approach that achieves a
balance between forced branching, which is unsound, and full de-
pendency tracking across the Android system, which is unscalable.
Instead, we target paths by abstracting at the level of code objects
and guide execution by controlling the inputs, fields, and method
return values accessed by a path. There are several advantages to
an object-level abstraction. First, abstracting at the granularity of
an object, as opposed to the entire Android framework, reduces
dependencies on dynamic components like the underlying Android
system, and allows injection of inputs and dependencies simply by
calling object methods or setting object properties without having
to understand Android framework APIs. Dependencies on state
within the application and from the framework, such as heap vari-
ables or API calls, are implicitly handled, as accesses to this state are
performed through field accesses and method invocations. Second,
unlike smaller abstractions such as a path slice, injecting and ma-
nipulating objects enables the full execution of methods in the path,
resulting in greater soundness. Also, the tracking of dependencies



on object accesses ensures that the data accessed within a path is
consistent. In our example from Figure 1(a), CAR would trigger the
target path by injecting the input object v such that the constrained
field access to v.detectionMode is satisfied. It will also ensure that
the static field access to UserInputText: : keyword is satisfied by
controlling the field value visible to the target path.

3 DESIGN

Using the object-level abstraction for targeted execution, CAR con-
structs a context for a target path to resolve its dependencies on
inputs, fields, and methods. However, using static dependency track-
ing to construct this context a priori can fail due to the trade-off
between precision, completeness, and scalability. When this hap-
pens, the unresolved dependencies limit dynamic target coverage or
lead to unsound paths. CAR addresses this in a hybrid approach. We
start from a set of statically extracted constraints that are necessar-
ily incomplete due to the trade-offs that must be made (Section 3.1).
We account for this by separating the constraint extraction and
dependency resolution of a path into three levels of progressive
approximation (realized, modeled, and unconstrained). Static con-
straints are used to infer an initial approximate context for the path.
This context is constructed at run-time using a statically generated
path driving framework (Section 3.2). We then refine this context
dynamically by monitoring for unresolved dependencies and re-
solving them by re-using objects from the application’s execution
(Section 3.3).

3.1 Static constraint analysis

The initial static analysis to extract target paths uses an existing
targeted execution framework for Android, Tiro [49]. It first con-
structs a conservative context-insensitive call-graph to find code
paths to a set of configurable target behaviors. We define a target
code path as the interprocedural control-flow path from an entry-
point to a target location, where an entry-point is any location
where normal execution can be transferred from Android frame-
work code to application code (e.g. a callback method). For each
path, a context- and flow-sensitive analysis extracts its constraints
on inputs, fields, and methods that define its execution. Constraints
on inputs can be resolved by injecting the path’s entry event with
values derived from the solved constraints. Constraints that cannot
be resolved through entry-point inputs (e.g. heap or framework
API values) form dependencies on other paths in the application.
The separation of the initial path extraction from the constraint
analysis balances the need for coverage when detecting target be-
haviors and the need for precision when extracting path constraints.
The precision required to determine the exact program values re-
quired for the path (akin to symbolic execution) is expensive and
impractical to perform over the entire application. The trade-off
between the precision and cost of this analysis impacts its complete-
ness: to fully analyze all constraints, it requires performing precise
symbolic constraint analysis over methods directly in the target’s
call path and all side/auxiliary methods they invoke; essentially,
this is comprises of the sub-graph of the call-graph starting at the
path’s entry-point, which can be prohibitively large. In our earlier
example from Figure 1, this would require constraint analysis over

the methods in the target call path as well as the auxiliary meth-
ods detectMode2(), hasKeyword(), getText(), recordInput(),
write(), and any other methods they may invoke.

A purely static analysis can sacrifice the precision of this anal-
ysis for scalability such that constraints and dependencies can be
tracked across this sub-graph and across the application (albeit
imprecisely). However, in a hybrid system where the static results
are then used to generate values for execution, this can result in
under-constrained program state that does not actually resolve a
path’s dependencies dynamically, resulting in the incomplete execu-
tion of the path. For instance, the imprecise results of an any-path
analysis may indicate that a constrained variable may have one of
several values (due to the union of data flows from different paths)
while only one of these values is actually valid for a particular
target path. Previous hybrid tools accounted for this by using a
different trade-off where precision is maintained but completeness
is heuristically scaled back: IntelliDroid [48] and Tiro [49] only
perform constraint analysis on the methods directly in the target’s
call path and one level of auxiliary methods they invoke, and Har-
vester [34] uses a cut-off value to limit the depth of analysis into
callers and callees when computing the path slice to force execute.
Constraints imposed by code in deeper auxiliary/callee methods are
ignored and unresolved. This is propagated when the constraints
are used to perform dependency tracking, resulting in unresolved
dependencies and incomplete execution of target paths.

The key intuition behind CAR’s design is that a combination of
both static and dynamic techniques can be used to mitigate this
limitation. We directly address the trade-off between precision, com-
pleteness, and scalability by separating the dependency resolution
of a target path into three levels of approximation, each of which
are handled separately. This separation is illustrated in Figure 2 for
the code example in Figure 1.

approximated context

onKey H handleEnter.. H checkText H <target>

!

ST l detectMode?2 |
realized target path I i
_________ C{ — I—
} hasKeyword H getText |

Figure 2: Separation of the target path flow based on the ap-
proximation level and scope of the constraint analysis

The approximation is determined by the scope of the static con-
straint analysis (i.e. the depth of auxiliary methods analyzed). Meth-
ods that are within the scope form the realized path and are executed
in full with constrained inputs. Methods at the boundary of the
scope (they are invoked by realized methods but are themselves
excluded from constraint analysis) are modeled if there are any con-
straints on their return values. These constraints will be captured
by the analysis performed on their realized caller methods. We treat
the constrained return values as part of the program state accessed
by the path and encode them in the approximated context.



All other methods that might be invoked by the target path are
unconstrained. We execute them to ensure that any side effects are
performed and can be analyzed later, such as updates to persistent
storage or the scheduling of future tasks. These side effects are
essentially implicit dependencies that our object-level constraint
analysis does not track but that might affect the semantics of the
path. One might expect that it would also be beneficial to likewise
execute modelled methods and then force their return values to the
constrained values. However, we find that this, similar to forced
branching, results in inconsistencies between program state mod-
ified by the method and its forced return value, and can lead to
excessive loss of analysis soundness. Unconstrained methods do
not need to have their return values forced.

In Figure 2, which is based on a constraint analysis that ex-
tends to one level of auxiliary methods, the methods in the tar-
get’s call path and the callee v.detectMode2() would be realized,
while v.hasKeyword() and v.getText () are modeled since they
must return specific values for the path’s control flow. The method
v.recordInput() is unconstrained, as the realized path imposes
no constraints on its return value.

Any program state that influences the normal control flow of the
realized path is handled by the context we generate from the con-
straint analysis. Therefore, the execution of unconstrained methods
does not directly affect the realized path, except if an error occurs
while the method is running. These errors, which will trigger unde-
sired exceptional control flow, arise due to unresolved dependencies
(since constraint analysis was not performed for these methods).
Car handles these dependencies during execution through dynamic
context refinement, which tries to recover from the errors. We de-
scribe the refinement process in Section 3.3.

The scope of the static constraint analysis and degree of path re-
alization are configurable. Increasing it will result in greater sound-
ness but requires more resources and can reduce coverage if the
larger approximated context must satisfy constraints that cannot
be resolved statically (e.g. a constrained encrypted value). Reducing
the scope will result in more unconstrained methods requiring dy-
namic context refinement, which is based on heuristics and can lead
to the execution of unsound paths. In CAR, we perform constraint
analysis with one level of auxiliary methods which, from our cover-
age and false positive results, achieves a good balance of soundness
and completeness through the size of the approximated context (i.e.
number of solved constraints) and the amount of dynamic recovery.

3.2 Generating an approximate context

While static constraint analysis can determine the values required
to resolve a path’s dependencies, concrete execution of the path re-
quires that these values be injected into application as it is running.
The dependencies can include constrained inputs and global/system
state that the path accesses. To inject the constrained values for
concrete execution of the target path, CAR uses the context to set
up the dependent state required.

Given an extracted path, CAR triggers the path dynamically by
directly invoking its entry-point method. The path’s dependen-
cies are resolved through a generated context that is automatically
inferred from its constraints. The construction of the context is

similar to the generation of input values from constraints in sym-
bolic execution systems; however, in CAR, we want to generate
the context for input and non-input variables, and enforce it as
the target path is executed concretely. CAR uses a static phase that
generates code to set up the context (which we call the path-driving
framework) and a dynamic phase that invokes the generated code
to produce the context at run-time. The majority of the work in
constructing the initial approximated context is therefore in the
static generation of the code in the path-driving framework. The
generation and invocation of this code is fully automated and is
performed for each target path.

The path-driving framework consists of a test harness that sets
up each path with classes, methods, and fields that contain the mod-
eled values for the path. In addition to this context, the framework
will directly invoke the path’s entry-point method to trigger the
path.

3.2.1 Inferring and constructing the context. For each variable in a
path’s constraints, we infer the context by encoding a value from
the solved constraints that can satisfy it—we refer to these as the
enforced context value for a given constrained variable. There can
be many values that satisfy the constraints and therefore many
feasible contexts, though we only generate one for each path. For
Figure 1, a context that can satisfy the target path’s constraints
might be:
o =UserInputText { detectionMode = 2,
hasKeyword() = true,
getText() =7a” }
code = KeyEvent.KEYCODE_ENTER
event = KeyEvent {}
UserInputText :: keyword ="a”

To enforce context values when injecting the target path, CArR
considers whether they are input or non-input variables and whether
they are primitives or objects (we treat strings as primitive-like).
The primary challenge is constraining accesses to objects. For ex-
ample, to enforce the context for Figure 1, we must inject the target
path with an object for the variable v such that when the path
accesses the field detectionMode at Line 17 and invokes the meth-
ods hasKeyword() and getText() at Line 23, it receives the con-
strained context values. To accomplish this, CAR generates a con-
strained subclass for each constrained object, which is a modified
version of the variable’s class type similar to the mock classes used
in unit testing [26]. Each constrained subclass is only used within
the context for one path for a particular constrained object vari-
able. Constraints placed on members of the object are handled by
controlling method return and field values. Method return values
(i.e. for modeled methods) are handled by overriding the method
in the constrained subclass such that they return their context val-
ues. Field members are set to their context values in the subclass’s
constructor when the object is initialized. An example of the con-
strained subclass generated for the input object for v in Figure 1 is
shown in Figure 3(a).

3.2.2  Driving the target path. In addition to initializing constrained
variables with context values (either a solved primitive value or an
instantiated constrained subclass object), they must be injected with



class ConstrainedUserInputText_Path@ extends

UserInputText {

public ConstrainedUserInputText_Path@(Context c) {
super(c);
this.detectionMode = 2;

}

@0verride public bool hasKeyword() {
return true;

}

@Override public String getText() {
return "a";

T}

(a) Constrained subclass enforced for the input object for v

public static void PathDrivero {
EnterKeyListener receiver = new EnterKeyListener();
View argl = new ConstrainedUserInputText_Pathe(null);
int arg2 = KeyEvent.KEYCODE_ENTER;
KeyEvent arg3 = new KeyEvent (0, 0);
/* Constrain global heap state x/
UserInputText.keyword = "a";
/* Inject the path by invoking its entry-point */
receiver.onKey(argl, arg2, arg3);

}

(b) Path driver method constructing the path’s context at run-time

Figure 3: Path-driving framework automatically generated
by CaR for the target path in Figure 1

the target path. Input constraints are enforced by passing their con-
text values as arguments to the invocation to the path’s entry-point
method. Non-input constrained variables include accesses to static
fields and return values for static method invocations. For static
fields, we explicitly set the field to its context value prior to inject-
ing the target path. For static methods, we instrument the method
to return the context value when the target path is executing and
to invoke the method’s original functionality otherwise.

To manage the constrained variables and context values, a central
path driver method is generated for each path to construct its
approximated context at run-time. When invoked, it instantiates
the constrained subclasses, sets the input and non-input constrained
variables, and injects the path’s entry-point method with initialized
inputs. For unconstrained primitive inputs, they are set to zero or an
empty string. If they are unconstrained objects, they are initialized
with an instantiated object of the declared input parameter type
(or a concrete subtype if it is abstract), with fields set to a default
zero or null value. Figure 3(b) shows the path driver method for
the target path in Figure 1. During dynamic analysis, this method
will be invoked in the application’s process to inject the target path,
which in turn will trigger the target sensitive location.

3.3 Dynamic context refinement

The approximated context set up by the path-driving framework
is limited by the scope of the static constraint analysis. Uncon-
strained methods that are invoked by the target path, but were
not analyzed, may depend on program state outside of the gen-
erated context. This can occur for the target path in Figure 1 for
v.recordInput(), which is an unconstrained auxiliary method.
Its dereference of detectedInput imposes a dependency since the
field may not yet have been initialized. When the target path is
triggered with the approximated context, execution can end pre-
maturely in a runtime exception or crash inside recordInput()

without reaching the target sensitive location. CAR handles un-
resolved dependencies by refining the path’s incomplete context
through dynamic dependency recovery. In essence, the dependen-
cies which could not be resolved through static means (i.e. tracked
by constraint analysis and resolved in the generated context) are
now handled by inferring them from the resulting dynamic de-
pendency error. The refinement process is composed of two parts:
monitoring for unresolved dependency errors and recovering from
the error to return to the target path.

3.3.1 Unresolved dependency monitoring. Unresolved dependency
errors usually occur when an unconstrained input for the realized
path (e.g. detectedInput in argl in Figure 3(b)) is passed to an
unconstrained method that does impose a constraint. The most com-
mon error is a runtime-generated NullPointerException, mainly
due to the default null values CAR uses for unconstrained vari-
ables. Other common errors are InvalidArgumentException and
IllegalStateException, which are thrown by the application af-
ter a check for well-formed input. For primitive variables, a runtime
ArithmeticException can be thrown for divide-by-zero errors. In
general, technically any exception can be thrown by the application
in response to unexpected (i.e. unresolved) program state. We in-
strument the Android runtime’s (ART) exception handling code to
detect when common dependency-related exceptions occur while
a path driver method is executing a target path.

3.3.2  Error recovery. Recovery from a dependency error requires
the identification of the error’s root cause, which is the dependent
variable that is incorrectly unconstrained during the execution of
an unconstrained method. For exceptions generated by the runtime,
such asNullPointerException, the root cause can be identified by
the runtime processes that generated the exception. For exceptions
that are thrown by the application, the cause of the exception is
determined by the application itself (e.g. in a conditional branch
performing an error check) and the runtime environment only
propagates the exception object. Therefore, to identify the root
cause, information from the application’s control and data flow
is required. This can be provided to CAR’s dynamic refinement
through an intraprocedural static analysis of throw instructions to
extract their root cause variables and/or conditionals.

In the current implementation of CAr, we only perform full
recovery for runtime-generated exceptions where the root cause
of the dependency error is available directly from the runtime.
This covers the Nul1PointerException, which comprises over 75%
of dependency-related errors in our evaluation. For other errors,
such as I1legalState/ArgumentException, we perform partial
recovery by suppressing the exception and continuing execution in
the caller of the excepting method (i.e. oblivious to the failure [36]).
As unresolved dependencies only occur in unconstrained methods,
the realized path is not affected. CAR’s implementation can be
extended to instead recover fully from these exceptions by using
static information.

To recover from a NullPointerException, CAR identifies the
error’s root cause from the runtime’s exception processing routines,
which track the register that caused the error. CAR overwrites this
variable with the address of an object that can resolve the depen-
dency, which we call the recovery object, and transparently returns



execution to the instruction where the error occurred (i.e. the re-
covery location). Since the register now contains a value expected
by the application, execution continues along the target path as if
the error never occurred. The recovery object does not affect the
control flow of the realized target path, as dependency recovery
is needed only for unconstrained methods (any variables influenc-
ing the realized path would have been captured by the constraint
analysis and already resolved).

To obtain the recovery object, a seemingly obvious approach
would be to simply instantiate an object based on the declared type
of the root cause variable. However, it is unclear how to initialize
the object properly, as constraints are not extracted for uncon-
strained methods. Initializing the fields of the object to null values
will trigger further errors in the execution, as the application will
expect objects to be initialized properly. Invoking the default con-
structor may set some fields to an expected default value but many
application classes define a custom parameterized constructor that
populate its fields from the arguments (it may even throw a further
exception if these arguments are null). Instantiating other objects
to populate the fields can lead to a series of instantiations due to
chained object references. In the worst case, one might reinstantiate
all of the objects in the application for each recovery.

Instead, CAR heuristically obtains the recovery object by re-using
an already instantiated object from the application. It maintains a
cache of recently allocated objects and constrains the re-used object
based on type compatibility with the root cause variable. By re-
using objects in this way, we are essentially resolving a dependency
as if the injected path had been triggered normally and preceded
by its dependent paths that would have provided the dependent
object. If no compatible object can be found, CAR then instantiates
a new object and initializes it with null values.

To complete the example from Figure 1, if detectedInput is null
when the realized target path executes, a NullPointerException
will be thrown in recordInput() at Line 29. When the exception
is generated, CAR will detect that a dependency error has occurred
in a target path, determine that the faulting instruction is a method
invocation, and that the (null) receiver object is a List. It will
search for a previously allocated List object or instantiate a new
concrete subclass of List (e.g. ArrayList). After generating the
recovery List object, CAR will set the register for detectedInput
to its address and return the execution to recordInput(). The
invocation in Line 29 will succeed and the execution will continue
to the file write instruction and the target sensitive action.

4 IMPLEMENTATION

CAR’s implementation consists of: (1) a static context inference
component to extract target paths and generate approximated con-
texts, (2) a dynamic driving controller to inject the paths, and (3)
an instrumented version of the Android OS (AOSP) to facilitate
the path driving process and perform dynamic context refinement.
The static component is in Java and operates directly on the ap-
plication’s bytecode (APK file). It uses Soot [45] for its base static
analysis and Z3 [10] for constraint solving. The dynamic controller
is in Python and the instrumentation of AOSP is for Android 10.

4.1 Static targeting and context inference

We base the static extraction of target paths and constraints on
the publicly available static component of Tiro [49]. We augment
TIRO’s constraint analysis with greater support for different types
of constraints, including class type constraints and non-null con-
straints for instance object accesses.

For each path, CAR must generate code to construct the approx-
imated contexts and create the path driving framework. We also
instrument application code at target locations to log when a target
has been reached (for evaluation). We use Soot’s [45] bytecode
generation to construct these elements and store them with the rest
of the static analysis output (we do not repackage the original APK
or binary of the application).

4.1.1 Generating constrained subclasses. For each constrained ob-
ject variable, the generation of its constrained subclass in the path-
driving framework requires identifying the base class to extend.
One might assume that this would be the constrained variable’s
declared type in the application bytecode, but it often cannot be
directly used for two reasons: (1) the declared type is abstract and
cannot be instantiated to create a context object (especially true for
constraints on inputs of entry-point methods), and (2) the target
path itself may assume a specific type (i.e. it imposes type con-
straints, like Line 8 in Figure 1). To resolve these conditions, when
performing static constraint analysis, CAR also extracts type con-
straints for variables used in class- or type-related operations, such
as cast, instanceof, and any object accesses. When constructing
a constrained object, it searches the application’s class hierarchy
tree for a concrete class that fulfills all of the type constraints on the
variable. If there are multiple such classes, CAR randomly chooses
the most specific subclass (i.e. a leaf of the class hierarchy tree),
preferring an application class over one declared by the Android
framework or Java runtime library. This heuristic is based on the
notion that the application has extended a class for a purpose and
unconstrained methods may depend on the extra functionality.

4.1.2 Initialization of constrained subclasses. When CAR gener-
ates constrained subclasses for approximated contexts, it needs to
specify how they should be initialized when they are instantiated.
We assume that a constrained subclass should behave in the same
manner as its extended base class for unconstrained members. For
each constrained subclass, we generate a constructor method that
invokes the base class’s constructor, which will presumably set all
unconstrained fields to their initial or default values. CAR heuris-
tically chooses to invoke the base constructor method with the
fewest input parameters. In cases in which the base class construc-
tor requires input arguments, we set them to a default zero or null
value if they are unconstrained by the target path. The generated
constructor will set any constrained field members after the base
constructor invocation to ensure the enforced context values are
visible to the target path

We found that some classes are meant to be constructed in a
certain way and may rely on a static initializer method to ensure
all state is initialized properly. For instance, the MotionEvent class
in the Android framework is backed by a native class that pro-
vides most of its functionality. Rather than using constructors,
static initializer methods are provided to ensure that when the



Java MotionEvent class is instantiated, the native backend object
is created as well—if the native object is not constructed, we find
that segmentation faults arise later when the Java object is used.
We identified several commonly used classes that are irregularly
constructed and specifically invoke their initializer methods when
we need to create a constrained subclass for them.

The construction of constrained subclasses can be recursive if
constraints exist for chained object references. For instance, a path
may require that when method x. foo() is invoked, it returns an
object y where the field y. a contains a specific value. CAR would
first construct a constrained subclass for x that overrides method
foo(). This method must return a constrained object for y, so it
constructs another constrained subclass where field a is set to the
required context value.

Our current implementation returns only one context value for
each constrained variable. However, we can easily return a sequence
of values for cases when the path makes multiple accesses to the
same object/state (e.g. invocations to the same method) and expects
a different value for each access.

4.2 Dynamic driving controller

The dynamic controller receives information from the static com-
ponent, including the extracted target paths and their path driving
code, and runs on a machine connected to a physical Android de-
vice. For each application, it sequentially injects each target path
by sending a control message to a custom system service running
within an instrumented OS on the test device. It monitors the output
log to determine whether the target location for each path has been
reached and to restart the application on a crash, which usually
occurs when an incomplete context is inferred for a target path and
our heuristics for dynamic recovery fail.

4.3 Custom Android OS

Our modifications to AOSP span ~3000 added or modified lines of
code and include instrumentation of the Android framework and
the Android runtime (ART).

4.3.1 Delivery of injected paths. We instrument the framework to
add a custom system service to deliver injected events. Through
socket and interprocedural (IPC) calls, the service invokes the path
driving frameworks in the application’s main thread. To load our
custom path driver methods and contexts, we modify the class
loader within ART. When an context class is requested, the class
loader will load it from CAR. We also load instrumented application
classes in this way so that the code modifications occur only in
memory and the application cannot detect any changes to its binary,
which often trip code integrity checks.

4.3.2  Dynamic dependency recovery. CAR’s dynamic context re-
finement and recovery of dependency errors involve instrumenting
ART’s code interpretation processes. Monitoring requires the mod-
ification of exception handling code to detect when an exception is
thrown. For recovery, we instrument locations where null excep-
tions are generated by ART. The recovery process is architecture
dependent due to the manipulation of machine registers, including
the PC. We currently implement dependency recovery for ARM
and we force ART to run in ARM mode, if possible. This was not an

issue with our datasets since applications containing native code
usually include both ARM and ARM64 binaries for greater com-
patibility. Also, the generation of recovery objects requires a cache
of previously allocated objects. We instrument the class initializa-
tion process to store the addresses of allocated objects in reverse
chronological order.

4.3.3  Null recovery instrumentation in ART. The exact method of
recovering from a dependency-related null pointer exception in
ART depends on the current execution mode and whether the code
is precompiled.

When ART is in the DEX “interpreter” mode, the routines for
handling object access instructions contain explicit checks for a
null receiver object. We add a hook into these checks to determine
whether the null error is occurring during CAR’s path driving, which
we determine by searching backward through the stack trace to find
a path driver caller method. If so, the recovery process is triggered
and the recovery object is returned to the original object access
routine, which can now operate on the non-null receiver.

When ART is in “quick” mode, it is executing precompiled DEX
code. Object accesses in this mode are handled in one of two ways:
through a trampoline function to handle a virtual field or method
reference (when the compiler cannot statically resolve the receiver
type precisely) or a direct native memory access at the resolved
field/method offset within the receiver object. For the trampoline
case, explicit null receiver object checks are also present within
the trampoline function and dependency recovery proceeds in the
same manner as the interpreter mode.

For direct native memory accesses, a null receiver object will
result in a segmentation fault when ART tries to access a field or
method within. ART has a custom signal handler that will triage
the segmentation fault and eventually generate a NullPointer-
Exception object to be thrown. We instrument the signal handler
at the point when it has determined that the signal is the result of a
null pointer error. We then identify the DEX instruction correspond-
ing to the native PC where the error occurred and use the declared
receiver class type for the generation of the recovery object. We
determine the machine register assigned to hold the receiver vari-
able for the DEX instruction and overwrite it with the address of
the generated recovery object. Using the signal context from the
original segfault signal, we restore the machine’s context to the
PC where the error originally occurred, with the original register
values (with the exception of the register now holding the recovery
object). The execution should return to the faulting instruction,
with the memory access now performed on the recovery object’s
address rather than a null address.

5 EVALUATION

We evaluate CAR on popular applications from the Google Play
application marketplace to demonstrate its ability to generate con-
texts and trigger a wide range of target sensitive behaviors in large,
complex applications. We are interested in answering the following
research questions:

Q1: Does the use of context approximation and refinement im-
prove dependency resolution for targeted execution?



Q2: Is CaRr effective at reaching target code locations in Android
applications?

Q3: Are the paths that CARr executes sound, despite forgoing full
dependency tracking?

(Q4: Can CAR uncover new security-sensitive behaviors?

5.1 Experimental setup

We ran CAR’s static component on machines with Intel Xeon E5-
2650 CPUs, with a JVM configuration of 200 GB of memory and
24 threads. The dynamic driving controller ran on an Intel i7-3770
machine with a tunneled USB-A connection to physical Android de-
vices. ! We tested on Pixel and Pixel 2 devices running our modified
version of Android 10 without Google Play Services installed. We
used the same device type for all of the testing for each application.

5.2 Dataset

To demonstrate CAR’s generalizability on a variety of common
applications, we crawled the Google Play marketplace for the bi-
naries and metadata of all free applications in June 2019. To form
our dataset, we sorted Google Play’s application categories into 15
related category groups. For each group, we extracted the 25 most
popular applications (determined by the total number of down-
loads), resulting in 375 applications in total. This set includes well-
known applications such as Facebook, WhatsApp, Pokémon Go,
Spotify, BBC News, Microsoft Office, eBay, Instagram, Uber, and
AccuWeather.

Several applications crashed when launched on our test devices
due to device incompatibilities or dependencies on Google Play
Services, which is not included with AOSP. Some applications trig-
gered errors in our version of Soot, due to incomplete support for
specific DEX instruction sequences. We skipped them, resulting in
an effective dataset of 310 applications.

5.3 Effectiveness of contexts for dependency
resolution (Q1)

To evaluate CAR on a variety of sensitive behaviors and paths, we
configured it to target the sensitive source and sink methods from
FlowDroid [3]. While we are not performing taint analysis, the
methods include a variety of different sensitive actions on Android
that are likely of interest when performing security analysis. In
addition, we also target invocations to reflection APIs, code loading
APIs, and native methods, which may be used for obfuscation. In
total, we target over 235 different APIs in our evaluation, which is
likely greater than what would be targeted during realistic usage.
This overapproximation of targets places greater strain on the static
and dynamic analyses, as more paths must be targeted, and allows
us to fully exercise CAR’s abilities.

We compare CAR’s ability to resolve dependencies for targeted
execution against IntelliDroid [48] and T1iro [49], which are similar
hybrid targeted execution frameworks for Android. Tiro is based
on IntelliDroid and they employ the same target path extraction
and dependency resolution techniques, which favor precise static
dependency tracking. As CAR uses the initial targeting from TIRo, it

! Tunneling over SSH and VPN was required due to COVID-19 access restrictions for
the building where our analysis infrastructure was located.

also extracts the same target paths. We execute the target paths dy-
namically with CAR and measure the effectiveness of using contexts
to resolve dependencies. We were unable to run IntelliDroid [48] or
Tiro [49] as their dynamic frameworks only support Android 4.3
and 6.0, respectively, which is incompatible with our devices and
our dataset (Android 4.3 also predates ART, where we implemented
CAR’s dynamic dependency recovery). Instead, we analyze the out-
put from their dependency analysis and generously assume that the
lack of dependency tracking errors reported by IntelliDroid/Tiro
means they would have triggered the path.

Of the targets triggered by CAR, IntelliDroid/T1Ro reported in-
complete dependency tracking or unsupported event injection for
72.1%. These errors would have prevent the tools from executing
the target paths at run-time. This would result in IntelliDroid/T1ro
reaching less than a third of the targets reached by CAr—an im-
provement of 3.6x in target coverage.

Of the paths that IntelliDroid/T1ro could not execute, we ana-
lyzed the techniques used by CAR to resolve their dependencies.
Statically generated contexts were necessary in 84.7%. Dynamic
context refinement in unconstrained methods was necessary in
53.3%. This consisted of recovery from runtime-generated null ex-
ceptions, with 92.7% of the recovered paths re-using objects from
the application. Other dependency-related exceptions that were
only partially recovered (by suppressing the exceptional control
flow) occurred in 18.1%, with I1legalStateException’s forming
the majority of the cases (13.5%). CAR’s ability to reach the targets,
despite the approximations made in the static constraint analysis,
shows the effectiveness of hybrid dependency resolution techniques
over purely static tracking.

5.4 Triggering target locations (Q2)

5.4.1 Evaluation on EvaDroid. Due to lack of availability and/or
incompatible Android versions, we were unable to run previous
targeted or forced execution tools to compare against CAR on the
Google Play dataset. Instead, we ran CAR on the EvaDroid test
suite [6], which was used to evaluate several previous tools [38].
We compare CAR’s results with these published numbers for Droid-
Bot [20] (a purely dynamic exploration tool), GroddDroid [1] (a hy-
brid GUI exploration and forced execution tool), and IntelliDroid [48].

EvaDroid contains 22 synthetic applications representative of
evasive malware. “Payloads” are hidden from dynamic analysis
through complex activation conditions, such as timing conditions
or device fingerprinting. We ran CAR on the EvaDroid dataset and
in Table 1, we compare CAR’s payload coverage with the results
from the previous study. We also confirmed that CAr triggered no
false positive paths on the test applications.

CAR can reach a greater number of payloads than the purely
dynamic tool, DroidBot; this agrees with the results from our large-
scale evaluation below. It also achieves greater payload coverage
than GroddDroid, likely because GroddDroid only forces branches
encountered during its initial dynamic GUI exploration, which
has limited coverage. CAR also outperforms IntelliDroid, which is
expected from our results in Section 5.3.

5.4.2  Large-scale evaluation. We perform a large-scale compar-
ison of target coverage in popular applications against several
state-of-the-art dynamic GUI and model-based exploration tools:
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Figure 4: Comparison of non-trivial sensitive targets triggered by Car and by existing dynamic driver tools

The solid green bars (left axis) show the average improvement in the number of non-trivial targets triggered by CAR against the best-performing tool

(Monkey, DroidBot, or APE) for each application. The striped blue bars (right axis) show the percentage of applications for which CAR triggers the greatest

number of targets of all the dynamic tools tested.

Tool Payloads triggered
CAr 73%
DroidBot  (evaluation from [38]) 17%
GroddDroid (evaluation from [38]) 37%
IntelliDroid (evaluation from [38]) 33%

Table 1: Comparison of payload coverage on the
EvaDroid [6] test suite of evasive applications

Monkey [27], DroidBot [20], and APE [15]. We ran the tools for
an average of three hours for each application, using the default
configuration for DroidBot and APE, and a throttle of 100 ms for
Monkey similar to previous work (and gives a slight edge in its
coverage [31]). To account for the delays caused by CAR’s dynamic
dependency recovery, we conservatively used a longer wait time of
10 seconds between injections for CAR (this could have been signifi-
cantly reduced, as we explain in Section 5.9). We also identified the
targets that were trivially triggered without any user input during
the first 30 seconds when the application launched. We remove
these targets in our comparisons, as they can be reached without
the use of any tool.

In Figure 4, we show CAR’s improvement in triggering target
behavior on our dataset. CAR dynamically reached 125 sensitive tar-
gets for each application on average. When comparing CAR to each
tool individually, CAR triggered 4.5x more non-trivial targets in an
application than Monkey, 5.2x more than DroidBot, and 7.1x more
than Ape. However, we also found that between Monkey, DroidBot,
and APE, some perform significantly better for certain applications
than others. We compared CAR against the best-performing tool for
each application and found that we were able to reach an average of
3.1x more targets. Furthermore, CAR triggered the greatest number
of targets for 92.3% of the applications.

CAR showed the greatest improvement in the “Communication”
and “Social” categories (> 5x more non-trivial targets). These appli-
cations often require the user to log in before certain functionality

can be accessed,; this log-in dependency blocked the GUI exploration
tools from making much progress.

In addition to the blanket coverage, we also considered which
targets were triggered by CAR and by the other tools. Figure 5 shows
a breakdown of targets triggered in an application by the various
tools, including those trivially triggered during the application’s
launch. A large portion (44.2%) were reached only by CAR.

Triggered only by CAR

Triggered by CAR and
other tool(s)

Triggered only by Monkey,
DroidBot, and/or APE

Triggered during application
launch (i.e. trivial)

Est. false detection rate

Figure 5: Average breakdown of the sensitive targets trig-
gered by the different dynamic tools

5.5 False positives (Q3)

Of the 44.2% of newly triggered targets in Figure 5, we manually
inspected a subset to determine whether they are truly reachable
or whether they were the result of unsound path execution (i.e.
false positives). Our sample set was chosen as follows: (1) for each
category, we randomly sampled five applications; (2) for each ap-
plication, we computed the list of targets that were triggered by
CAR but not by any other tool; (3) we randomly chose one of those
targets and analyzed the decompiled code that would trigger it. In
total, we manually inspected 75 target paths.

Our primary objective was to determine whether a target newly
triggered by CAR would be executed during normal execution. From
our experience, applications often include third-party libraries in
their APKs but may not use all of the code within them. Since CArR
invokes path entry-point methods directly, it is possible that some
of the injected events would not have been registered or triggered



during normal execution. For each target in our sample set, we
checked whether all of the invocations, control flows, and data
flows were valid across the path methods. We also checked whether
the path’s entry-point is live. For entry-point event handlers that
must be registered with the framework, we recursively checked the
path(s) to the registration call-sites.

We determined that 18.7% of the sampled targets were reached
through infeasible paths, where the samples were drawn from the
subset of targets that were triggered only by CAR. When we trans-
late this rate across all of the targets triggered by CAr and assume
that overlapping targets that were also reached by Monkey, Droid-
Bot, and/or APE are true positives, we have a false detection rate
of 9.0%. This was heavily skewed by the targets sampled from the
“Games” category, where 4 out of 5 inspected targets were deter-
mined to be dead code. For the rest of the categories, the average
number of false positives found was 0.7 out of 5.

We found the underlying reason to be static imprecision in the
points-to analysis when extracting target paths. This manifested in
two ways: (1) the entry-point analysis incorrectly identified event
handlers as application entry-points due to the conservative alias-
ing of objects at registration call-sites; and (2) method invocation
edges were incorrectly constructed in the call-graph due to con-
servative aliasing of the invocations’ receiver objects. All the false
positives found were located in first- or third-party libraries pack-
aged with the applications as determined by the package name
of methods in the paths. The spike of false positives within the
“Games” category is likely due to the large number of libraries used,
including graphics rendering, analytics, and advertisement libraries.
Libraries introduce a great deal of code that must be analyzed but
may not necessarily be used by the main application, increasing
the effects of conservatism due to imprecision.

5.6 Analysis of newly triggered targets

During our manual analysis, we also enumerated the different rea-
sons why the other dynamic tools were unable to trigger the cases
where the target was a true positive for CAR (i.e. not a false positive
from the previous section). For 21%, the target could not be reached
by the other tools because the application was blocked by a login
screen. For a further 15% of cases, the application was blocked by
a dialog for Google Play Services. For 13%, the target could only
have been reached for certain devices or versions or if a specific
error, such as a network failure, had occurred. While these condi-
tions could not have been achieved in our test environment, CAR’s
inferred path contexts was able to mimic the environment required.

For the remaining 51%, we found that they could have been
reached by normal Ul interactions or system event injections. How-
ever, a few would have required extremely complex interactions
between event paths. In one case, the target occurs after the user
purchases a travel package through the application, is located at
an airport, and has Uber installed on their device. The conditions
required for this path include UI flow across multiple screens (pur-
chase process), input that is difficult to generate (purchase informa-
tion), specific system state (location), and dependence on other in-
stalled applications. CAR directly invoked the location event handler
for the target path, thus bypassing the multiple purchase-related

Sensitive Google Play Creepware
functionality

Apps Calls Cxt. Apps Calls Cxt.
Location 84 237 89% 14 42 86%
Personal data 6 6 83% 4 4 100%
Media 3 3 100% 1 100%
Telephony 7 11 100% 4 4 50%
Network 59 99 74% 11 20 85%
Files 220 1199 88% 63 361 10%
Databases 76 187 90% 11 47 94%
Package mgr. 134 222 93% 12 21 90%
Reflection 169 447 84% 25 113 75%
Code loading 7 7 71% 10 10 60%
Native code 223 1090 88% 29 120 68%

Table 2: New sensitive behaviors missed by other tools that
only CaRr could find (and the percentage requiring contexts)

requirements, and used the path’s context to return true when the
application queried the framework for the other application.

5.7 Analysis of sensitive behaviors (Q4)

The new behaviors uncovered by CAR ranged over a variety of
different security-sensitive actions missed by the other tools. In
Table 2, we break down the sensitive actions that only CAR was able
to find. We further show that CAR’s context-based techniques were
essential and measured the percentage that required contexts or
dynamic dependency recovery. Since our original dataset contained
only benign applications, we also compared CAr and Monkey on
a set of 91 malicious applications recently labeled as evasion or
surveillance “creepware” [37]; these were used for interpersonal
attacks, such as harassment or stalking.

CAR operates effectively on both benign and malicious applica-
tions and uncovers new sensitive or malicious behaviors missed
by the other tools. This ranged from recurring location accesses
that leak location data to the network, to accesses to local email
accounts hidden under misleading UL We also found cases in which
code was dynamically loaded on paths that only CARr was able to
trigger.

To verify that CAR is able to uncover sensitive behaviors in
malicious applications, we ran CAR on the Creepware [37] dataset
and find it can detect a variety of malicious behaviors that were
manually confirmed to be true positives. We provide an analysis of
these cases below to demonstrate CAR’s ability to uncover malicious
or evasive activity in applications, by guiding or targeting execution
toward sensitive actions. While a dynamic taint tracking tool would
have been ideal for detecting the cases of private data leakage, we
were unable to integrate CAR with previous taint tracking tools
because they were implemented for older versions of Android or
their implementation was not fully available [11, 42, 54] We instead
relied on manual analysis and instrumentation to determine the
flow of data triggered by CAR’s targeting.

Periodic background location tracking: One malicious appli-
cation was intended to surreptitiously track the location of an
unsuspecting victim. It uses Android’s alarm service was used to



periodically invoke a location gathering method, which regularly
accesses the device’s location data and send it to the network. CAr
was able to trigger the periodic location gathering function and ex-
ecute this behavior by directly invoking the alarm callback method
and using contexts to resolve the dependencies and constraints
imposed by the callback path. In contrast, Monkey was unable to
access this functionality due to log in and set up requirements that
were necessary to enable the tracking. The leakage of location data
in the background is performed without user awareness and should
be triggered for dynamic security analysis to evaluate whether an
application violates the privacy of the device’s user.

Location tracking on alocation change: There are several meth-
ods of accessing location information, including a callback-based

approach. One application registers a location callback that is in-
voked by the framework when the device’s location has changed.
The application then stores the new location information into a

cloud storage location and sends it to the network asynchronously.
CAR was able to execute the location leakage path while Monkey

was unable to trigger the location change required for the callback

to be activated.

Leakage of private data to the network: A large number of the
tested malicious applications (approximately half) are surveillance
applications that registers the device for a tracking service. This
tracking enables the device’s location, phone number, identifiers,
photos, videos and/or received messages are sent to a third-party
(supposedly for emergency situations, though this functionality
can also be used for spying). In some of the applications, Monkey
was able to trigger the private data leakage. However, in at least
two of the tracking applications, CAR was able to trigger private
data leakage of device identifiers and location data to the network
that Monkey was unable to reach. This was primarily due to a
requirement to register the device with the tracking service, which
CAR was able to bypass.

Transmitting microphone recording over Bluetooth: A spy-
ing application streams input from the microphone to a Bluetooth
headset, allowing someone to eavesdrop on the device’s surround-
ings and on the user’s conversations. The functionality is only
accessibly if a Bluetooth headset is connected to the device. Other
dynamic tools would have difficulty triggering the spying behavior
unless the analysis environment specifically includes such a headset.
CAR used its contexts to resolve the system Bluetooth dependency.

Hidden access to device accounts: One application provided a
“cloning” functionality, in which the application’s main activity
shows a set of public accounts and a secondary hidden activity
enables access to a set of private accounts. We manually confirmed
that CAR was able to access both interfaces and detect access to both
sets of accounts. The hidden interface would have been particularly
difficult for dynamic tools such as Monkey, as there were complex
UI actions required to make the activity visible. In contrast, CAR
was able to trigger the intentionally hidden account functionality.
Similarly, we also found similar evasive applications that hide an
account-related activity behind a calculator interface. The hidden
accounts are accessible only when a specific password is entered

into the calculator. CAR was able to explore past the initial calculator
interface without having to decipher the correct password.

5.8 False negatives

While there is overlap in the targets reached by CAr and the other
tools, we did find that 9.1% of all triggered targets in Figure 5 could
be reached by at least one of the other tools but were missed by
CAR. We consider these known false negatives of CAR. We manually
analyzed 15 of these targets across all of the categories and found
the following underlying reasons: (1) incomplete object handling
across Android interprocedural (IPC) invocations; (2) incomplete
handling of constraints, especially for lists and arrays; (3) reliance
on the stack trace for dependency error monitoring, which misses
errors in new threads as they have a new stack; (4) constraints on
the results of one-way computations, such as encryption or hashing,
which could not be inversed to generate a context value; and (5) any-
path extraction of target paths, which may extract infeasible paths
to a target due to the conservative call-graph and miss a true path.

Items (1) - (3), which applied to over 75% of the sampled false
negatives, are artifacts of the implementation and can be fixed with
more engineering. They were the primary reason why CAR pro-
duced lower coverage in a few applications. (4) is a fundamental
limitation of symbolic analysis, although in some cases, it was miti-
gated when the required result of a one-way computation can be
statically extracted and set by a modeled method. (5) can be miti-
gated by sampling more paths for each target, though the extraction
of all paths to a target would ultimately be exponential.

5.9 Performance

We measure the performance of the static and dynamic compo-
nents of CAR separately on our Google Play dataset. We ran the
static context inference analysis with a timeout of 240 minutes
and retrieved partial results in cases in which full analysis had not
completed. For most applications, the full time was used. For the
dynamic component, we injected all of the paths extracted by the
static analysis (maximum of 2700 for each application). We throt-
tled CAR execution with a conservative wait time of 10 seconds for
a target to be reached before injecting the next path. On further
analysis, this could have been significantly reduced as an average
path took 1.4 seconds to reach the target location.

We examined the sensitive targets triggered over the duration
of the analysis for each tool and plotted the cumulative number of
triggered targets in Figure 6. While only a portion of the statically
extracted targets were dynamically triggered by the tested tools,
we suspect that many of the unreached targets were actually in-
feasible due to static imprecision. CAR steadily made progress as it
injected each statically extracted path. For the others, while they
were successful at finding targets near the beginning, they made
significantly less progress over time. After an hour of analysis, CAR
already shows a large improvement in the number of triggered
targets.

6 DISCUSSION AND LIMITATIONS

As stated in Section 5.8, a fundamental limitation is that some
constraints cannot feasibly be solved. Furthermore, injecting path
entry-point methods directly can lead to the execution of paths
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that might not occur normally if their entry-points were never
registered with the framework. Because the dynamic dependency
recovery refines the context heuristically, it may also construct
infeasible contexts that would never occur during normal execu-
tion (by returning an incorrect recovery object). All of these can
affect the soundness of the paths triggered; however, these issues
are not unique to CAR. Forced execution tools will also execute in-
feasible paths from unreachable entry-point methods and incorrect
data accesses, especially as they enforce branch outcomes without
ensuring that the accompanying data dependencies are resolved.
Furthermore, without analysis of how data values are used, forced
execution can result in infeasible control-flow paths due to the
forcing of a normally impossible combination of branch outcomes.

CaR’s constraint analysis ensures that the extracted path is con-
sistent with respect to the data it accesses; the context will either
contain values that satisfy all of the constraints imposed by the
path’s conditional branches or, if the branches required are incom-
patible and the path is infeasible, no context would be generated.
We believe CAR achieves a good balance between its sources of
unsoundness and its coverage of target locations, demonstrated
by its ability to outperform existing dynamic tools in target cov-
erage while maintaining a 9.0% false detection rate on popular
applications. In addition, our false positive evaluation in Section 5.5
showed that the primary source of infeasible paths in CAR were due
to static imprecision (i.e. over-conservative entry-point detection
and points-to analysis), which also affect forced execution.

7 RELATED WORK

CAR is most closely related to other targeted dynamic analysis tools.
IntelliDroid [48] and TIro [49] perform targeted execution of An-
droid applications, though they rely on precise static dependency
tracking and resolution. Similarly, guided symbolic execution tools
such as Applntent [53], WatSym [30], and [5] implicitly handle de-
pendencies by modeling the program state symbolically. However,
the resources required to precisely track and resolve the program
state either statically or dynamically can ultimately reduce the cov-
erage of targets due to overhead. Furthermore, guided symbolic
execution cannot easily integrate with dynamic analysis tools that
require concrete execution of the application. GroddDroid [1], Har-
vester [34], DirectDroid [46], and ARES propose forced execution,
which bypasses a path’s constraints on its dependencies by en-
forcing specific branch outcomes. Forced branching can lead to
unsound or infeasible paths, resulting in false positives.

CAR’s static constraint analysis is related to symbolic execu-
tion (such as EXE [9] and KLEE [8]) and concolic execution (such
as DART [13], CUTE [39], and ACTEve [2]). Rather than track-
ing constraints dynamically, which adds significant overhead, CAR
uses hybrid dependency resolution. UC-KLEE [32], which performs
under-constrained symbolic execution by invoking arbitrary meth-
ods directly, is in a way bypassing the dependencies of the path.
The preconditions imposed by a method on its inputs [18, 32] are
similar to contexts. We can achieve more sound execution by ex-
ecuting paths rather than individual methods. CAR is also similar
to chopped symbolic execution [44], in which irrelevant function
calls are skipped. Chopped functions are similar to CAR’s modeled
methods and any unconstrained methods that are aborted.

Car s a hybrid tool and is related to other static-guided dynamic
analysis tools. Brahmastra [7], AppDoctor [17], SmvHunter [40]
and SmartDroid [57] guide execution by driving component and
Ul transitions, which are more coarse-grained than code paths,
and they do not handle dependencies between event paths. Con-
tentScope [58] generates inputs for paths in content providers and
also does not handle inter-path dependencies. AppAudit [50] and
Applntent [53] use static analysis to guide approximate or symbolic
execution, respectively, for the verification of static information
flows. In contrast, CAR guides concrete execution and can be inte-
grated with general dynamic analyses. CAR’s static component is
also similar to other static Android tools, such as FlowDroid [3],
Epicc [29], Apposcopy [12], Amandroid [47], CHEX [21], and [52].

CAR’s aims to drive the execution of Android applications, simi-
lar to testing frameworks such as DynoDroid [22], EvoDroid [23]
and Sapienz [24], and model-based explorers such as ApE [15],
Stoat [41], DroidBot [20], TrimDroid [25], and A3E [4]. Fuzzing
tools, such as AFL [55], are also commonly used outside of An-
droid. They aim for full coverage, while CAR focuses on coverage
of target locations. The techniques we use to focus execution to
target paths enables greater coverage of locations of interest to
an analyzer. Semi-targeted exploration, such as FuzzDroid [35]
and Xdroid [33], inject system/framework values, which also helps
resolve dependencies on framework state. CrashScope [28] dynam-
ically triggers application crashes by exploring different system
configurations; however, it does not handle dependencies on data
within the application. Similarly, generating useful test inputs, such
as TextExerciser [16], is also a form of guided fuzzing.

8 CONCLUSION

We present CAR, a hybrid approach to dependency resolution through
context approximation and refinement. We use a combination of
static constraint analysis and dynamic error recovery to resolve
dependencies on program state while mitigating the trade-off that
must be made between precision, completeness, and scalability in
static dependency tracking. We applied CAR to the targeted exe-
cution of Android applications and were able to reach 3.1x more
non-trivial sensitive targets for an application with a false detection
rate of 9.0%. These sensitive behaviors, which would have other-
wise been missed, are essential for the security analysis of Android
applications.
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