
Dryad: Distributed Data-
Parallel Programs from

Sequential Building Blocks

Talk structure:
technical meat, then

criticism

Dryad Goal

• Create a general-purpose distributed data
flow execution platform

• Less restrictive semantics than MapReduce
framework

• Extract parallelism from dependencies, not
from within subroutines

Dryad Model

• Subroutines are vertices

• Communication channels are edges

Dryad Model

• Subroutines are vertices

• Programs created from “factories”

• Some pre-defined vertex classes (e.g.,
map, reduce)

• Communication channels are edges

• Transmit structured but untyped items

• TCP, disk, memory pipes supported

Dryad Architecture

• Job manager schedules vertices on machines

• Greedy algorithm

• Vertices are deterministic, and graph is
acyclic, so manager can easily restart

• Runtime manager can reschedule vertices
for better locality (local disk or memory)

• Graphs manually constructed...

Graph Operators

Refinement

• “If a computation is associative and
commutative, and performs a data
reduction, then it can benefit from an
aggregation tree.”

• Um, how do you detect this
automatically?

• Unclear if implemented...

Refinement

Evaluation: in discussion
section

Criticism intended as
a means to

discussion, not as
definitive verdict

(read: I’m not this much of a jerk in
real life)

Criticism intended as
a means to

discussion, not as
definitive verdict

(read: I’m not this much of a jerk in
real life--I think)

One plausible (?)
interpretation of events

GOOG: Here’s MapReduce!
Published 2004

GOOG: Here’s MapReduce!

The World:

Amaaazingg!!

Published 2004

GOOG: Here’s MapReduce!

The World:

Amaaazingg!!

Hadoop born 2007

Published 2004

M$R: US TOO,
 GUYS!

GOOG: Here’s MapReduce!

The World:

Amaaazingg!!

Hadoop born 2007 Dryad born 2007

Published 2004

Which do you prefer?

SQL

Dryad, in English

Which do you prefer?

• “A programmer can master the APIs
required for most of the applications in a
couple of weeks.” (emph. added)

• I can teach my (hypothetical) toddler to
MapReduce in an afternoon.

• “Dryad is not a database engine; it does not
include a query planner or optimizer”--
Damn! I sure wish it did...

Which do you prefer?

Ehh, this doesn’t look too “naïve”!

Which do you prefer?

Which do you prefer?

manually optimized...

Why not MapReduce?

• Restrictive semantics

• Pipelining Map/Reduce stages possibly
inefficient

• Solves problems within a narrow
programming domain well

Why not MapReduce?

• DB community: our parallel RDBMSs have
been doing this forever...

• cf. Stonebraker

• Not this paper’s approach

Why not MapReduce?

• DB community: our parallel RDBMSs have
been doing this forever...

• cf. Stonebraker

• Not this paper’s approach

Are these just a bunch of
old database guys complaining that no

one uses their stuff?

Wow! It looks like MR there’s a
lot of room for improvement...

Wow! It looks like MR there’s a
lot of room for improvement...

...too bad the authors didn’t make
an effort to demonstrate this

Evaluation: a missed
opportunity

Evaluation: a missed
opportunity

Evaluation: a missed
opportunity

Evaluation: a missed
opportunity

Where’s the comparison
to a more restrictive

framework?

Evaluation: a missed
opportunity

Where’s the comparison
to a more restrictive

framework?

You beat single-node M$
SQL Server!

Congratulations!
<pat on back>

Evaluation: a missed
opportunity

Where’s the comparison
to a more restrictive

framework?

You beat single-node M$
SQL Server!

Congratulations!
<pat on back>

How does that scaling
graph change when we go
to 100 computers? 1000?

Evaluation: a missed
opportunity

• They couldn’t compare to a MR implementation,
but they could try to approximate one...

• What about lines of code/program complexity?

• What about demonstrating fault-tolerance?

• What about comparing against a parallel RDBMS?

• Probably makes M$ $QL $erver look bad

• Science & truth versus commercial expediency?

There are these funny things
called gigabytes...

9462 GB

143 GB

110 GB

31 GB

There are these funny things
called gigabytes...

Even if the authors didn’t
show me what I wanted,
can I get something out
of the paper? Is there a

lesson here?

Design

What was surprising here?

What would you have done differently?

Design

What was surprising here?

What would you have done differently?

Is this obvious?

Design

What was surprising here?

What would you have done differently?

Is this obvious?
Caveat: sometimes the best

solutions are obvious in
retrospect.

Is this one of them?

Systems gurus: what do you think
about Dryad versus the dataflow

programming of the 70s, 80s, and 90s?

Adoption

• e-Science =?= “no one at M$ even uses this stuff”

• Data mining uses logs, but isn’t necessarily in use

• Scheduler assumes job “is the only job running on
the cluster”

• Nebula == “very popular ‘front end’”

Adoption

• e-Science =?= “no one at M$ even uses this stuff”

• Data mining uses logs, but isn’t necessarily in use

• Scheduler assumes job “is the only job running on
the cluster”

• Nebula == “very popular ‘front end’”

MapReduce: designed for production use
M$R: designed as research (?)

(not a bad thing, but worth acknowledging)

Adoption

No freely available Dryad implementation
(also, runs on M$ stack)

Future prospects

• This seems useful and could likely beat MapReduce

• Higher-level languages key

• Plug in Dryad as Pig backend--screaming perf?

• Good idea, bad implementation?

• M$ platform != FLOSSy goodness that makes
Hadoop so popular

• Still waiting for killer “here’s when MR sucks”
paper...

Future prospects

Props to authors for “Building on Dryad”
section #futureworkmeansbrokenpromises

There is light in
the darkness!!!!

Progress!

• “DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a High-
Level Language”, OSDI 2008

• “SCOPE: Easy and efficient parallel processing of
massive data sets”, VLDB 2008

• “Distributed Data-Parallel Computing Using a High-
Level Programming Language”, SIGMOD 2009

• “Distributed Aggregation for Data-Parallel Computing:
Interfaces and Implementations”, SOSP 2009

Progress!
These researchers (and their

colleagues) actually
followed through

Maybe this wasn’t the
paper I’d hoped for, but
at least they developed

the system further...

Any experts in audience care to
comment?

PROMISES HIGH-LEVEL
LANGUAGES AS “FUTURE WORK”

WRITES 4+ TOP-TIER
PUBS ON THEM

PROMISES HIGH-LEVEL
LANGUAGE AS
FUTURE WORK

PROMISES HIGH-LEVEL
LANGUAGE AS
FUTURE WORK

Good Guy MSR

Meanwhile, in Mountain View...

Meanwhile, in Mountain View...

Scumbag Google

Edit: actually, Pregel,
Dremel, etc.

End

