Dryad: Distributed Data-
Parallel Programs from
Sequential Building Blocks

Talk structure:
technical meat, then
criticism

Dryad Goal

® Create a general-purpose distributed data
flow execution platform

® | ess restrictive semantics than MapReduce
framework

® Extract parallelism from dependencies, not
from within subroutines

Dryad Model

® Subroutines are vertices

® Communication channels are edges

Dryad Model

® Subroutines are vertices
® Programs created from “factories”

® Some pre-defined vertex classes (e.g.,
mabp, reduce)

® Communication channels are edges
® Transmit structured but untyped items

® TCP disk, memory pipes supported

Dryad Architecture

® |ob manager schedules vertices on machines
® Greedy algorithm

® Vertices are deterministic, and graph is
acyclic, so manager can easily restart

® Runtime manager can reschedule vertices
for better locality (local disk or memory)

® Graphs manually constructed...

Graph Operators
o ©

(B>=C) || (B >=D)

E = (AS >= C >= BS) E || (AS >= BS) (A>=C>=D>=B) || (A>=F>=B)

Figure 3: The operators of the graph description language. Circles are vertices and arrows are graph edges. A triangle at the bottom of a
vertex indicates an input and one at the top indicates an output. Boxes (a) and (b) demonstrate cloning individual vertices using the = operator.
The two standard connection operations are pointwise composition using >= shown in (c) and complete bipartite composition using >> shown in
(d). (e) illustrates a merge using | |. The second line of the figure shows more complex patterns. The merge in (g) makes use of a “subroutine”
from (f) and demonstrates a bypass operation. For example, each A vertex might output a summary of its input to C which aggregates them
and forwards the global statistics to every B. Together the B vertices can then distribute the original dataset (received from A) into balanced
partitions. An asymmetric fork/join is shown in (h).

Refinement

® “|f a computation is associative and
commutative, and performs a data
reduction, then it can benefit from an
aggregation tree.”’

® Um, how do you detect this
automatically?

® Unclear if implemented...

Refinement

Figure 6: A dynamic refinement for aggregation. The logical
graph on the left connects every input to the single output. The lo-
cations and sizes of the inputs are not known until run time when it
is determined which computer each vertex is scheduled on. At this
point the inputs are grouped into subsets that are close in network
topology, and an internal vertex is inserted for each subset to do a
local aggregation, thus saving network bandwidth. The internal ver-
tices are all of the same user-supplied type, in this case shown as
“Z” In the diagram on the right, vertices with the same label ('+' or
'*') are executed close to each other in network topology.

w B &

Figure 7: A partial aggregation refinement. Following an input
grouping as in Figure 6 into k sets, the successor vertex is replicated
k times to process all the sets in parallel.

Evaluation: in discussion
section

Criticism intended as
a means to
discussion, not as
definitive verdict

(read: I'm not this much of a jerk in
real life)

Criticism intended as
a means to
discussion, not as
definitive verdict

(read: I'm not this much of a jerk in
real life--I think)

One plausible (?)
interpretation of events

GOOG: Here’s MapReduce!

Published 2004

GOOG: Here’s MapReduce!

Published 2004

The Worla:

Amaaazingg!!

GOOG: Here’s MapReduce!

Published 2004

The Worla:

Amaaazingg!!

Hadoop born 2007

GOOG: Here’s MapReduce!

Published 2004

TheWorld: ~ M3R:USTOO,
GUYS!

Amaaazingg!!
@ 9 P
; - b

Hadoop born 2007 Dryad born 2007

Which do you prefer!?

select distinct p.objID
from photo0bjAll p
join neighbors n call this join
on p.objID = n.objID
and n.objID < n.neighborObjID
and p.node = 1
join photoUbjAll 1 call this join “Y"
on l.objid = n.neighborObjID
and 1.mode = 1
and abs((p.u-p.g)~(1.u~1.g))<0.05
and abs((p.g-p.r)-(1.g-1.r))<0.06
and abs((p.r-p.1)-(1.r-1.1))<0.05
and abs((p.i-p.2z)-(1.1-1.2))<0.06

SQL

uym

We mapped the query to D
the Dryad computation shown
in Figure 2. Both data files
are partitioned into n approx-
imately equal parts (that we
call Uy through U, and N\
through N,) by objID ranges,
and we use custom C++ item
objects for each data recoed
in the graph. The vertices
Xi(for1 < & € n) imple
ment join *X" by taking their
partitioned U; and N; inputs
and merging them (keyed on
objID and filtered by the
< expression and p.mode=1)
to produce records containing
objID, neighborObjID, and
the color columns correspond-
ing to objID. The D vertices
distribute their output records
to the M vertices, partition-
ing by neighborObjID using
a range partitioning function
four times finer than that used
for the input files. The number
four was chosen so that four Figure 2: The communica-
pipelines will execute in paral- tion graph for an SQL query.
lel on each computer, because Detais are in Section 2.1.
our computers have four pro-
cessors cach. The M vertices perform a non-deterministic
merge of their inputs and the § vertices sort on neigh-
borObjID using an in-memory Quicksort. The output
records from Sy-a...5: (for i = 1 through n) are fed into
Y, where they are merged with another read of U to im-
plement join “Y™. This join is keyed on objID (from U) =
neighborObjID (from 8), and is filtered by the remainder
of the predicate, thus matching the colors. The outputs of
the Y vertices are merged into a hash table at the H vertex
to implement the distinct keyword in the query. Finally, an
enumeration of this hash table delivers the result. Later in
the paper we include more details about the implementation
of this Dryad program.

Dryad, in English

Which do you prefer?

® “A programmer can master the APIs
required for most of the applications in a
couple of weeks.” (emph. added)

® | can teach my (hypothetical) toddler to
MapReduce in an afternoon.

® “Dryad is not a database engine; it does not
include a query planner or optimizer’--
Damn! | sure wish it did...

Which do you prefer?

Each <Q> s:
________ K. @ @

Each
®

¢

-

Figure 9: The communication graph to compute a query his-
togram. Details are in Section 6.3. This figure shows the first cut
“naive” encapsulated version that doesn'’t scale well.

Ehh, this doesn’t look too “naive”!

Which do you prefer?

B . b
A S| Each [] 450 "] 33.4GB
450 Q) 450 /m
</ Each IS
‘/_Sf\‘ A 118 GB
I‘_ 4 IS l'_o_/" T 217 T
V4 -i—\‘ l/ -A'\‘. / -i‘\‘ / \ \ 1 54 GB
@ P |)| © 10,405
NEEAPARAT S
99.71 3 \\\z/‘ \-_x_./ '_x_/' 99 71 3 1 0.2 TB

Figure 10: Rearranging the vertices gives better scaling performance compared with Figure 9. The user supplies graph (a) specifying that
450 buckets should be used when distributing the output, and that each Q' vertex may receive up to 1GB of input while each T° may receive up
%0 600MB. The number of Q' and T" vertices is determined at run time based on the number of partitions in the input and the network locations
and output sizes of preceding vertices in the graph, and the refined graph (b) is executed by the system. Details are in Section 6.3.

Which do you prefer?

a A
450 Each @ ' Each @ 40 [334GB
} t < t
A Y/)
\ ,,/ \.\ v
{F}/ 20 Qb \C) | Each is: @\/ o <R>
|k R { rros
\ (s) | i | (D) 17
T } AN }\ f t\ f t\ 154 GB
y ~\,\/ ',l__vp_/." \C/ ‘\C /.'I | @./ 10,405 < >
/4)(\ NS M
(M) | (MS) | (MS)
—.99.713 Y | | A 99,713 17 10278

Figure 10: Rearranging the vertices gives better scaling performance compared with Figure 9. The user supplies graph (a) specifying that
450 buckets should be used when distributing the output, and that each Q' vertex may receive up to 1GB of input while each T" may receive up
10 600MB. The number of Q' and T vertices is determined at run time based on the number of partitions in the input and the network locations
and output sizes of preceding vertices in the graph, and the refined graph (b) is executed by the system. Details are in Section 6.3.

manually optimized...

Why not MapReduce!

® Restrictive semantics

® Pipelining Map/Reduce stages possibly
inefficient

® Solves problems within a narrow
programming domain well

Why not MapReduce!

® DB community: our parallel RDBMSs have
been doing this forever...

® cf. Stonebraker

® Not this paper’s approach

Why not MapReduce!

® DB community: our parallel RDBMSs have
been doing this forever...

® cf. Stonebraker

® Not this paper’s approach

Are these just a bunch of
old database guys complaining that no
one uses their stuff?

Wow! It looks like MR there’s a
lot of room for improvement...

Wow! It looks like MR there’s a
lot of room for improvement...

...too bad the authors didn’t make
an effort to demonstrate this

Evaluation: a missed
opportunity

16.0
14.0 % Dryad In-Memory -
#-— Dryad Two-Pass /‘/
120+ _, SQLServer 2005 | ‘_,/,,4-,
10.0
Q.
P Q
EB; 8.0
.’~ .
6.0 :
P =
4.0 -
20 .
,'77
0.0 | T ‘]
0 2 4 : 8 10
Number of Computers

Evaluation: a missed
opportunity

Speed-up

16.0
14.0 +— % Dryad In-Memory —A
#— Dryad Two-Pass /A/
120 77 o sqLserver 2005 | ‘,/’*
10.0
8.0 -
..-"‘.7: .
6.0 =
-
-
4.0 .'
2.0 —
e
0.0
0 2 4 6 8 10

Number of Computers

Evaluation: a missed
opportunity

16.0
14.0 - 4 Dryad In-Memory —A
#— Dryad Two-Pass &
12017 e —saLserver2005 |, %
10.0
Q.
T
3 80
2 —
“ 6.0 o
[
=
4.0 -
0
2.0 =
0.0 v ' ' 1
0 2 4 6 8 10

Number of Computers

Evaluation: a missed

opportunity

Speed-up

16.0

14.0

12.0

10.0

4.0

2.0

0.0 -

| | —#&— Dryad In-Memory

#-— Dryad Two-Pass

| —— SQLServer 2005 ‘/

0 2 4 6
Number of Computers

10

Where’s the comparison
to a more restrictive
framework?

Evaluation: a missed

opportunity

Speed-up

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

| | —#&— Dryad In-Memory

#-— Dryad Two-Pass

| —o -SQLServer 2005 ‘/

0 2 4 6
Number of Computers

10

Where’s the comparison
to a more restrictive
framework?

You beat single-node M$
SQL Server!
Congratulations!
<pat on back>

Evaluation: a missed

opportunity

Speed-up

16.0

14.0

12.0

10.0

&
o

o
o

2.0

0.0

| | —#&— Dryad In-Memory

#-— Dryad Two-Pass
+— SQLServer 2005

0 2 4 6

Number of Computers

10

Where’s the comparison
to a more restrictive
framework?

You beat single-node M$
SQL Server!
Congratulations!
<pat on back>

How does that scaling
graph change when we go
to 100 computers? 1000?

Evaluation: a missed
opportunity

They couldn’t compare to a MR implementation,
but they could try to approximate one...

What about lines of code/program complexity?
What about demonstrating fault-tolerance!?
What about comparing against a parallel RDBMS?
® Probably makes M$ $QL $erver look bad

® Science & truth versus commercial expediency!?

There are these funny things
called gigabytes...

There are these funny things
called gigabytes...

10,160,519,065,748 Bytes
9462 GB

153,703,445,725 Bytes
143 GB

118,364,131,628 Bytes
110 GB

33,375,616,713 Bytes.
31 GB

Even if the authors didn’t
show me what | wanted,
can | get something out
of the paper? Is there a
lesson here!

Design

What was surprising here?

What would you have done differently?

Design

What was surprising here?
What would you have done differently?

Is this obvious?

Design

What was surprising here?
What would you have done differently?

Is this obvious?

Caveat: sometimes the best
solutions are obvious in
retrospect.

Is this one of them!?

Systems gurus: what do you think
about Dryad versus the dataflow
programming of the 70s, 80s, and 90s!?

Adoption

® e-Science =!="no one at M$ even uses this stuff”
® Data mining uses logs, but isn’t necessarily in use

® Scheduler assumes job “is the only job running on
the cluster”

® Nebula =="very popular ‘front end’”

Adoption

® e-Science =!="no one at M$ even uses this stuff”
® Data mining uses logs, but isn’t necessarily in use

® Scheduler assumes job “is the only job running on
the cluster”

® Nebula =="very popular ‘front end’”

MapReduce: designed for production use
M$R: designed as research (?)
(not a bad thing, but worth acknowledging)

Adoption

No freely available Dryad implementation
(also, runs on M$ stack)

Future prospects

This seems useful and could likely beat MapReduce
Higher-level languages key

® Plug in Dryad as Pig backend--screaming perf?
Good idea, bad implementation?

o MS$ platform != FLOSSy goodness that makes
Hadoop so popular

Still waiting for killer “here’s when MR sucks”
paper...

Future prospects

Props to authors for “Building on Dryad”
section #futureworkmeansbrokenpromises

« e &£ 4 5 s
o X § - o
2.3 . '
. E Yy
e g
a0 ’.f 3
-
>
v AR

There is light in
the darkness!!!!

Progress!

“DryadLINQ:A System for General-Purpose

Distributed Data-Parallel Computing Using a High-
Level Language”, OSDI 2008

“SCOPE: Easy and efficient parallel processing of
massive data sets’,VLDB 2008

“Distributed Data-Parallel Computing Using a High-
Level Programming Language”, SIGMOD 2009

“Distributed Aggregation for Data-Parallel Computing:
Interfaces and Implementations”, SOSP 2009

Progress!

These researchers (and their
colleagues) actually
followed through

Maybe this wasn't the
paper I'd hoped for, but
at least they developed
the system further...

Any experts in audience care to
comment!

PROMISES HIGHEEERE
LANGUAGES AS “FUTURE

WRITESA+TOP-TIER
PUBS ON THEM

Good Guy MSR

Meanwhile, in Mountain View...

Meanwhile, in Mountain View...

INVENTS MAPREDUCE

Edit: actually, Pregel,
Dremel, etc.

JESN'T SHARE FUTURE
IGH-LEVEL LANGUAGE
SUPPORT

Scumbag Google

—4.i- iicgg 2 w‘m@{,:yzk ot S

End

