Drywall Contractor Online Training

Basics of Acoustics

Sound Transmission Training Module

Benefits of Sound Control

- Unwanted sounds can adversely affect building occupants
- Noise can originate from adjacent areas in a building, as well as from the exterior
- Noise can negatively impact people's hearing ability, diminish productivity, and obstruct learning
- Noise can affect occupant comfort and safety

Knowledge of the physics of sound is helpful in understanding how to control it

Acoustic Comfort Drivers

- Commercial
 - IgCC International Green Construction Code -Acoustics Sect 807
 - LEED for Schools and Healthcare specific acoustic requirements
 - ANSI S12.60-2002 Acoustical Performance Criteria Requirements and Guidelines for Schools
 - HIPAA Health Insurance Portability and Accountability Act
 - Hotel / Motel design is getting more sophisticated and specific on room acoustics

Acoustic Comfort Drivers

- Residential
 - -Separation walls in multi-family building codes
 - Noise typically #1 or #2 issue for construction lawsuits in multi-family
 - Media Rooms or Home Theaters are one of the top requested home "upgrades" in a recent NAHB survey
 - -Trend to locate laundry room near bedrooms for convenience
 - Light-weight board trend creates a latent opportunity in promoting enhanced acoustic performance
 - -Builders are trying to identify and leverage additional upgrade options where improved acoustics provide a benefit:
 - •Home offices
 - Multi-generation suites

Science of Sound

Science of Sound

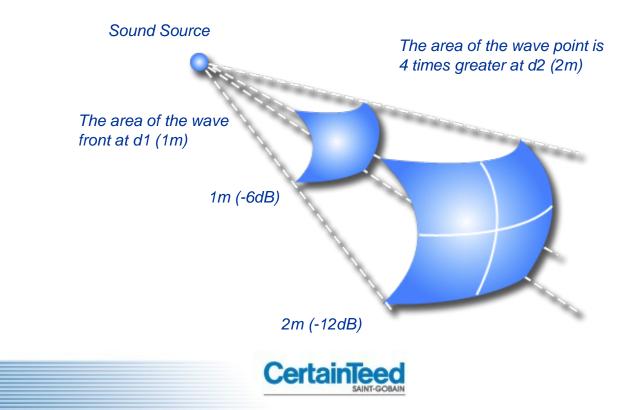
- Acoustics is the science of sound including its production, transmission and effects
- Sound is what we hear when pressure variations in the air vibrate our eardrums
- Sound waves can travel through any media (air, water, wood, steel, etc.)
- Unwanted sound is classified as noise
- To minimize unwanted sounds learn how to use acoustical products and systems – but first understand the science of sound

Sound Paths

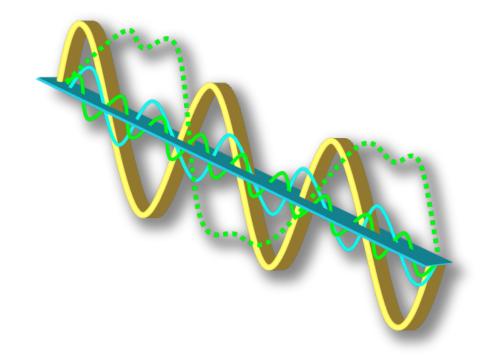
• Airborne sound – radiates from a source directly into the air.

Examples:

- Passing traffic
- Music
- Voices in the next room
- Structure borne sound travels through solid building materials.


Examples:

- Footsteps from the floor above
- A knock at the door


Sound Wave Propagation

- Sound waves spread in three dimensions, as expanding spheres of pressure waves
- Sound waves radiate directly around the source, decreasing in amplitude the further they get from the source

Frequency (Pitch)

- Frequency is the number of cycles per second made by a sound wave
- Frequency is expressed in Hertz (Hz)
- The sound we hear is usually radiated in all directions from a sound source
- Human hearing range is 16 Hz to 20,000 Hz

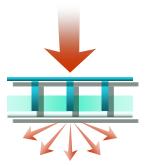
Typical Sound Pressure Levels

• Whisper	20 dB	
 Avg. Conversation 	50 dB	
 Noisy Office 	80 dB	
 Subway Train 	100 dB	
Thunder	115 dB	
 Pain Threshold 	120 dB	

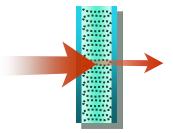
What do we hear?

Perception of dB change...

Change in sound level	Perception of loudness
+/- 1 dB	Can not be heard (Not perceivable)
+/-3 dB	Can just be heard (Just perceptible)
+/- 5 dB	Noticeable difference
+/- 10 dB	Twice (or half) as loud
+/- 15 dB	Large change
+/- 20 dB	Huge change, four times (or ¼) as loud



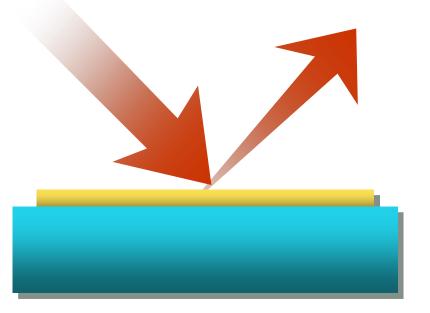
Four ASTM Test Methods for Acoustical Performance


Building materials and systems are tested for:

Sound Absorption

Impact Sound Transmission

Airborne Sound Transmission

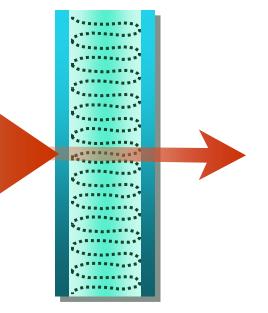

Airborne Sound Transmission through Suspended Ceilings

Sound Absorption

• Sound absorption is the ability of a material to absorb rather than reflect sound waves

Sound Absorption Specification: NRC or SAA Sound control within rooms

Airborne Sound Transmission

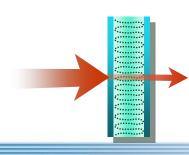


Sound Transmission

 Sound transmission loss is the decrease in sound energy expressed in decibels of airborne sound as it passes through a building construction

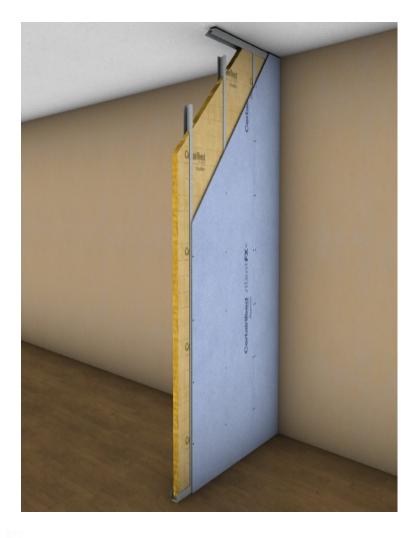
Sound Transmission Classification Specification: FSTC (Field STC)

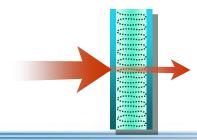
Control of room-to-room sound transmission



Airborne Sound Transmission Measurements (ASTM E90)

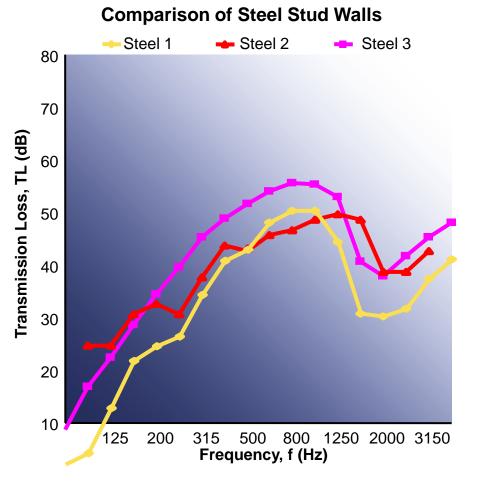
- Sound Transmission Class (STC)
- A single number rating for evaluating the efficiency of systems
- The higher the STC rating, the better
- A rule of thumb is that a 10 point increase in the STC value will decrease the perceived noise by one half

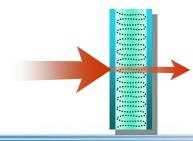

Controlling Sound through Building Assemblies


- Steel stud partition walls
- Wood stud partition walls
- Wood joist floor-ceiling assemblies
- Metal buildings
- Concrete floors

Steel Stud Partition Walls

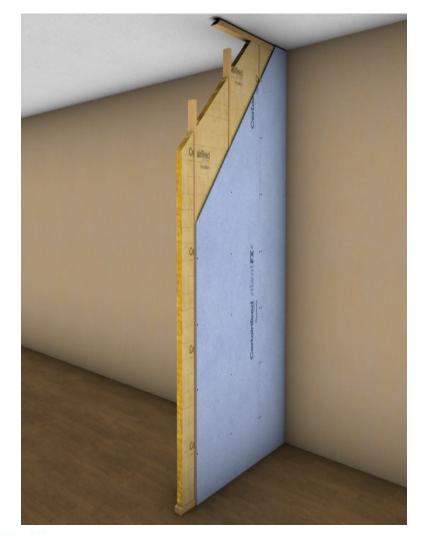
- Steel studs are acoustically resilient
- Air sealing improves sound control
- Significant increase in acoustical performance by adding CertainTeed Thermal & Acoustical fiberglass cavity insulation.
- Similar increase by using SilentFX instead of standard drywall.

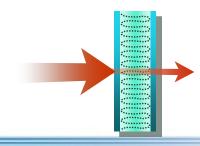




Steel Stud Partition Walls

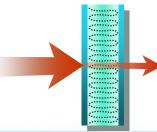
- Steel 1 STC 38 Standard construction
- Steel 2 STC 50 Double layer of standard drywall, no cavity insulation, air sealed
- Steel 3 STC 57 or greater
 5/8" SilentFX with 3-1/2" [90 mm]
 CertainTeed Thermal &
 Acoustical Fiber Glass Insulation




Airborne Sound Transmission Data

Wood Stud Partition Walls

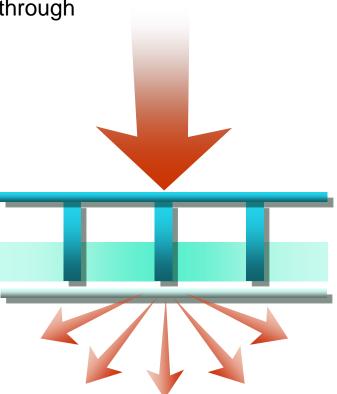
- Wood studs are acoustically stiff
- Air sealing improves sound control
- Adding CertainTeed Thermal & Acoustical fiberglass cavity insulation increases STC 2-3 points
- Increase in acoustical performance by mounting SilentFX to resilient channel.



Wood Stud Partition Walls

- Wood 1 STC 29 Standard construction
- Wood 2 STC 46 Standard 5/8" construction adding cavity insulation and air seal
- Wood 3 STC 56 or greater (system dependent) adding CertainTeed Thermal & Acoustical fiberglass insulation, mounting SilentFX to resilient channel and air seal

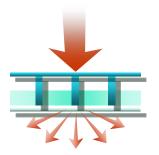
Airborne Sound Transmission Data Comparison of Wood Stud Walls Wood 1 Wood 2 Wood 3 80 70 Iransmission Loss, TL (dB) 60 50 40 30 20 10 125 800 1250 2000 3150 200 500 315 Frequency, f (Hz)

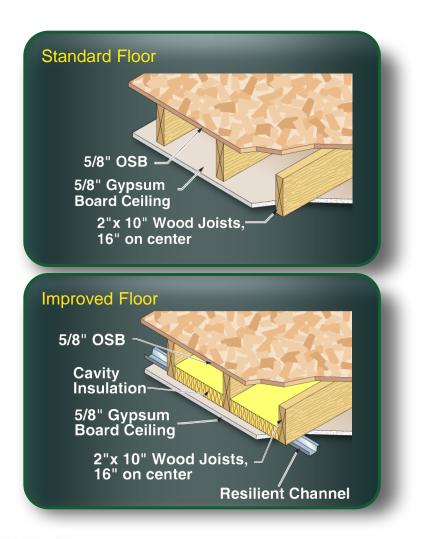


Impact Sound Transmission

 Impact sound transmission loss is expressed in decibels of airborne sound. This decrease in sound energy is measured after it passes through a floor-ceiling assembly.

Impact Insulation Class Specification: FIIC (Field) Control of floor-to-ceiling

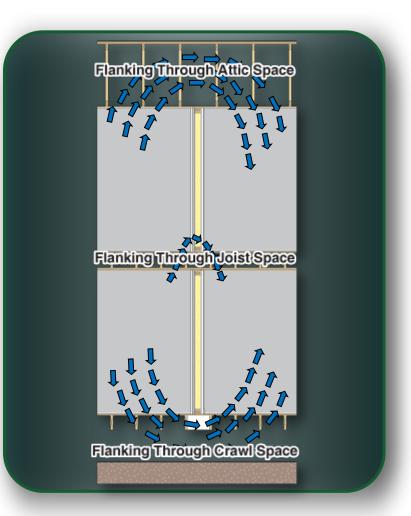

impact sound transmission.



Wood Joist Floor-Ceiling System

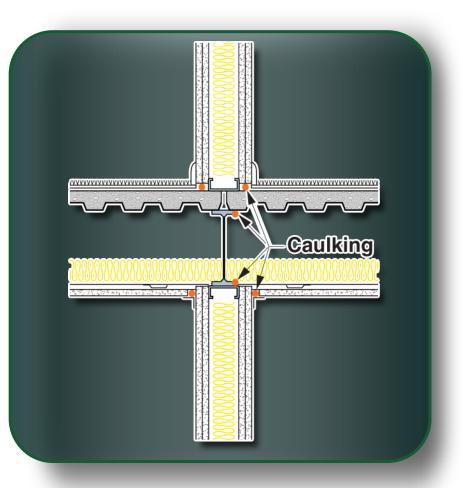
- Wood joists are acoustically stiff
- Air sealing improves sound control
- Adding cavity insulation only increases IIC 1-2 points due to the strong structural tie between the finishing materials and the frame

Designing Environments for Sound Control

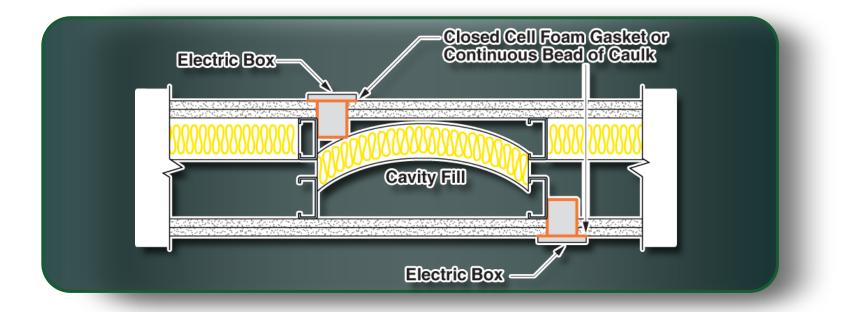

Controlling Sound Flanking

- The following recommendations are based on ASTM E497 "Standard Practice for Installing Sound-Isolating Lightweight Partitions"
- Increase the acoustical performance of sound control building assemblies by:
 - Controlling air leakage
 - Isolating structure borne sound paths
 - Compartmentalizing spaces

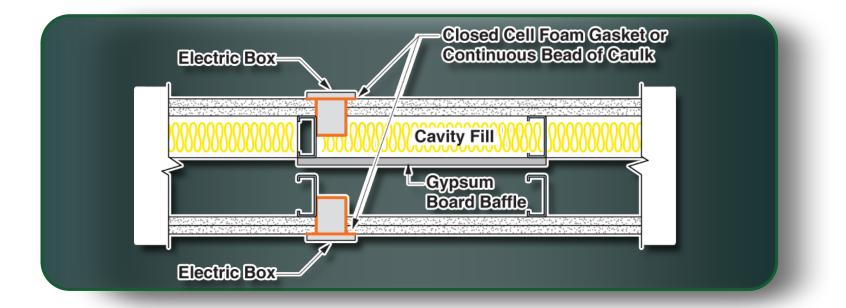
Sound Flanking Paths


- Sound energy "leaks" through paths of least resistance
- Sound is transmitted around acoustical partitions
- Blocking above, between and under partitions ensures maximum sound control

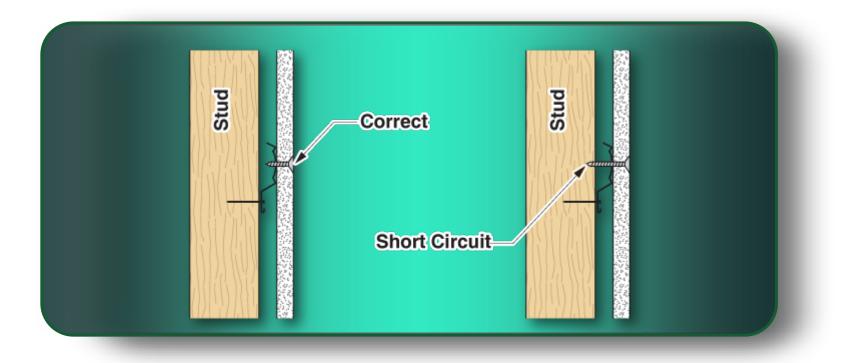
Air Sealing is Important


• Air seal barrier with acoustical sealant to increase the sound blocking benefit

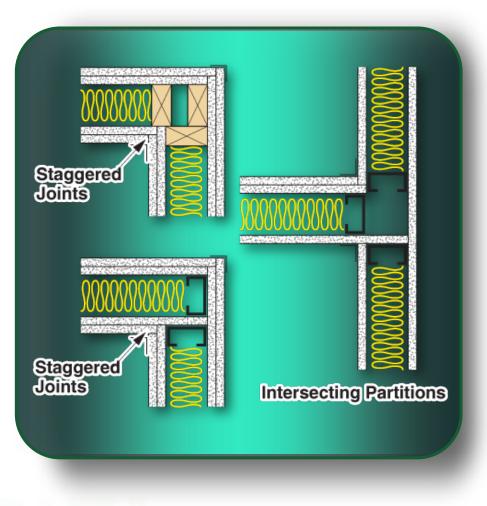
Electrical Outlet Treatments


- Air seal electrical outlets
- Stagger outlet locations to reduce direct sound paths

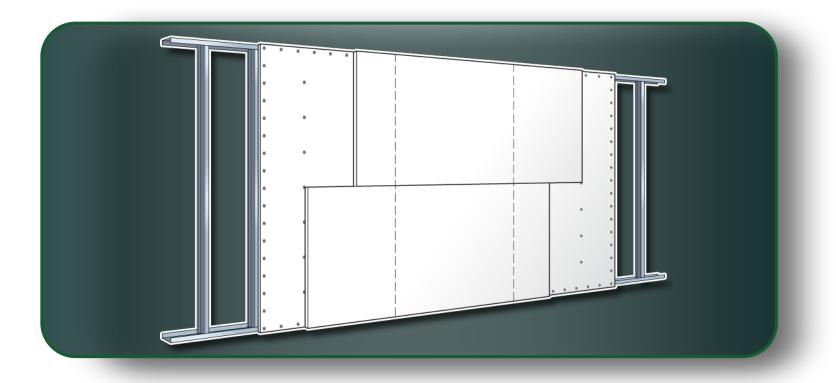
Electrical Outlet Treatments


• If outlets are not staggered, block direct paths between outlets with sound barrier

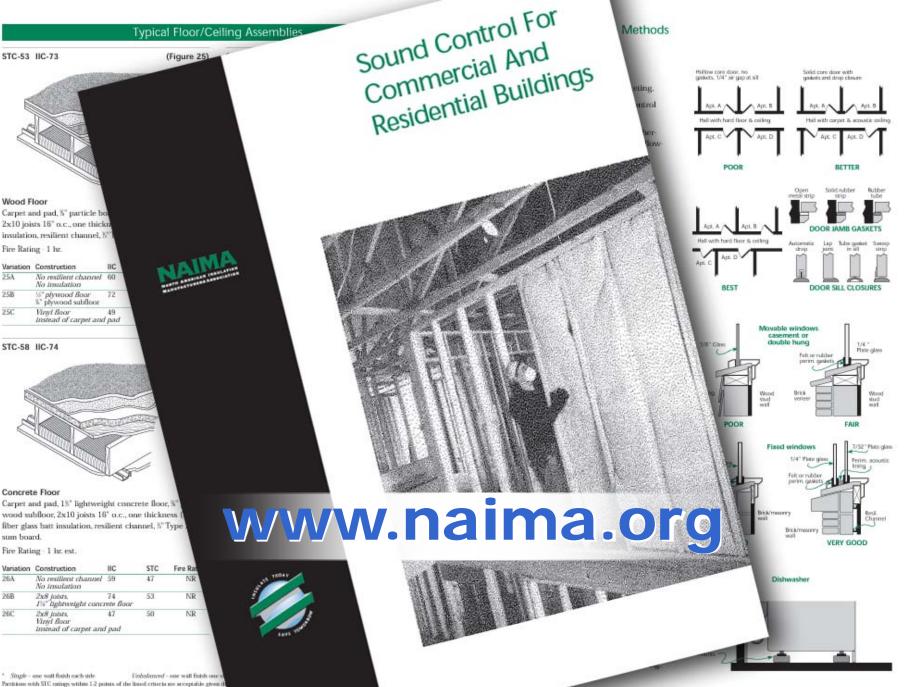
Potential Negative Impact of Fasteners


• Ensure that drywall fasteners do not short circuit resilient channel sound isolation

Wall/Corner & Floor/Ceiling Intersections


- Minimize direct contact between adjacent studs to reduce sound transmission
- Stagger drywall joints to minimize sound paths

Gypsum Board Attachment


• Stagger gypsum board seams to reduce sound transmission

Additional References

Partitions with STC ratings within 1-2 points of the listed criteria are acceptable given if of 1-2 dB on identical configurations are not unusual. (Subjectively, the human ear we

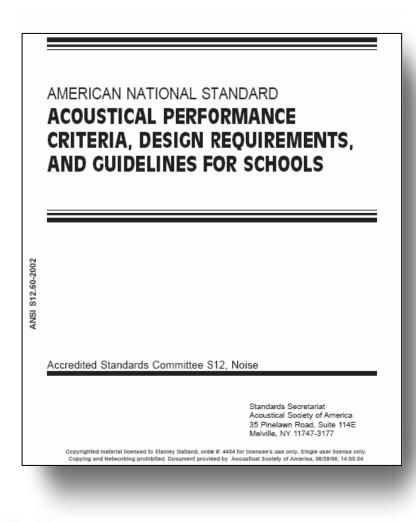
sum board.

26A

26B

260

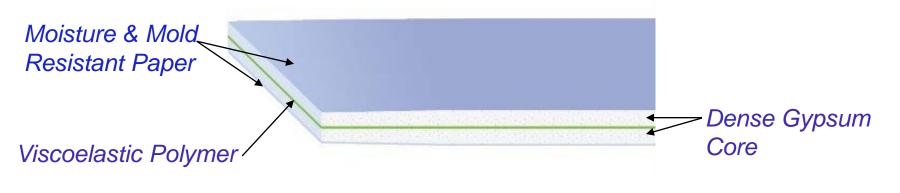
25A


25B

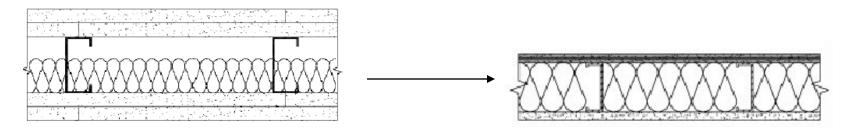
25C

Acoustical Performance Required for Schools

- ANSI S12.60-2002


- Equipment noise control
 - HVAC systems
 - Electrical systems
 - Plumbing systems
 - Instructional equipment
- Minimum background noise limit of 35 dB
- Controlling reverberation with soundabsorbing materials
- Noise isolation
 - Between interior spaces
 - Open-plan classrooms
 - Outdoor-to-indoor
 - Impact sound
 - Vibrating machinery

What is SilentFX?


- A noise-reducing gypsum board specifically designed for systems requiring high STC ratings
- Features viscoelastic applied between two specially formulated gypsum boards with a dense gypsum core
- Enclosed in 100% recycled moisture and mold paper
- Fire (Type X only) and abuse resistant
- Available in 1/2" regular & 5/8" Type X

Why use SilentFX vs traditional methods?

- More reliable than clips and channels
 - Board cannot be short circuited during or after installation
 - More consistent lab to field STC results
- Improves performance across all frequency ranges
 - Addresses high and low frequency noises that double layer gypsum board cannot
- Square foot savings
 - Achieves high STC ratings with less material allowing for thinner wall systems

Without SilentFX: STC 55 Wall thickness: 6.125" With 1 layer of SilentFX: STC 57 Wall thickness: 4.875"

Tools Available

- SilentFX Microsite <u>www.certainteed.com/silentfx</u>
- "dB Station" iPad or Android application

- 1. All of the following are drivers of the acoustic building marketplace except:
- A. Laundry room being placed near bedroom for convenience
- B. Building codes such as IgCC or LEED
- C. Smaller closets mean less clothes to help block sound from one room to another.
- D. Unwanted sound (noise) can affect occupant comfort and safety.

- 2. Sound waves are capable of travelling though:
- A. Air
- B. Water
- C. Wood
- D. All of the above

- 3. Sound waves travel:
- A. In a three dimensional form, expanding as it travels
- B. In a more lineal fashion, as directed from source to receiver
- C. Science has not yet readily determined how sound travels as of yet.

- 4. A knock on the door is an example of what type of sound:
- A. Airborne sound
- B. Structure borne sound
- C. Radiant borne sound

- 5. The number of cycles per second made by a sound wave is called:
- A. Hertz
- B. Pitch
- C. Frequency

- 6. The range of human hearing is generally considered to be between:
- A. 16 Hz to 20,000 Hz
- B. 160,000 Hz to 2,000,000 Hz
- C. 1.6 Hz to 2,000 Hz
- D. -16 Hz to 20,000 Hz

- 7. The unit in which sound is measured is called:
- A. Trebles
- B. Decibels
- C. Audibles
- D. Foibles

- 8. True or false: 3 decibels is all that is needed for a human to detect a change in sound volume.
- A. True
- B. False

9. The pain threshold for humans, measured in decibels, is considered to be:

- A. 50 db
- B. 75 db
- C. 100 db
- D. 120 db

- 10. Which of the following is not one of the 4 ASTM methods to test acoustical performance:
- A. Sound Absorption
- B. Airborne sound transmission
- C. Impact sound transmission
- D. Airborne sound transmorgrification

- 11. The difference between STC and FSTC is:
- A. One is conducted in a laboratory and the other in an actual finished construction setting in the field.
- B. Nothing, they are just two different agencies testing the same thing and compete against each other.
- C. The 'F' stands for French and is the European standard whereas the other is the United States standard.

- 12. Which of the following systems would you expect to have the highest STC rating?
- A. Steel studs, no insulation, 5/8" Silent FX board
- B. Wood studs, insulation, 5/8" Silent FX board
- C. Steel studs, insulation, 5/8" Silent FX board
- D. Steel studs, insulation, 5/8" Type X board

13. True or false: If you hang the board properly, using a noise proofing compound to seal the air will not increase sound control.

- A. True
- B. False

- 14. Impact sound transmission tests noise that is generated from:
- A. Wall systems
- B. Floor to ceiling systems
- C. Outside noise into a building
- D. Bass sounds from a large speaker system

- 15. True or false: Compartmentalizing spaces is an effective technique in controlling sound flanking.
- A. True
- B. False

- 16. Controlling sound flanking is important due to the fact:
- A. It isn't, sound 'moves' in the direction outwardly from the direction it is emitted and does not flank.
- B. Sound leaks through the path of least resistance.
- C. It isn't, science has yet to fully determine the way in which sound moves.

- 17. True or false: Sometimes small details such as the placement of electrical outlets are important in sound mitigation.
- A. True
- B. False

- 18. True or false: Resilient channel design system may lose effectiveness if fasteners are driven improperly.
- A. True
- B. False

- 19. Which of the following is not a helpful tip in wall/corner or floor/ceiling intersections:
- A. Minimize direct contact between adjacent studs to reduce sound transmission.
- B. Stagger drywall joints to minimize sound paths.
- C. Alternate walls between vertically hung and horizontally hung panels.

- 20. Using an acoustic panel as opposed to standard drywall can be advantageous for which of the following reasons:
- A. Decreased wall thicknesses as one 5/8" Silent FX panel may replace two standard 5/8" panels in tested systems.
- B. Boards are likely to be more reliable than clips and channels.
- C. Silent FX addresses high and low frequency noises that double layer gypsum board cannot.
- D. All of the above.

