dsPIC IAR C/EC++ Compiler

Reference Guide

for Microchip’s
dsPIC Microcontroller Family

COPYRIGHT NOTICE
© Copyright 2002 IAR Systems. All rights reserved.

No part of this document may be reproduced without the prior written consent of IAR
Systems. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any
eITOors or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or
kind.

TRADEMARKS

IAR, TAR Embedded Workbench, IAR XLINK Linker, IAR XAR Library Builder,
IAR XLIB Librarian, IAR MakeApp, and IAR PreQual are trademarks owned by IAR
Systems. C-SPY is a trademark registered in Sweden by IAR Systems. IAR
visualSTATE is a registered trademark owned by IAR Systems.

dsPIC and Microchip are registered trademarks of Microchip Corporation.

Microsoft and Windows are registered trademarks of Microsoft Corporation. Adobe
and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.
CodeWright is a registered trademark of Starbase Corporation.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE
First edition: April 2002
Part number: CDSPIC-1

Contents

Tables xi
Preface i
Who should read this guide xiii

How to use this guide xiii
What this guide contains xiii
Other documentation XV
Further reading XV

Document conventions XV
Typographic conventions Xvi

Part |: Using the compiler |
Introduction 3

Building applications

Compiling

Linking

Data storage
Optimization techniques

IAR language extension overview
Special function types

Extended keywords

#pragma directives

Predefined symbols

Intrinsic functions

Inline assembler

o 1 L1 L1 L1 1 A DN DA W W W

dsPIC IAR C/EC++ Compiler
iv Reference Guide

Runtime libraries

Embedded C++ overview

Customization

Processor variant

Data model

Runtime libraries

Data storage

Stack, static, and heap memory

The stack and auto variables

Static memory

Dynamic memory on the heap

Memory access methods and memory types

Memory access methods

Memory types

Pointers

Pointers and memory types

Structure types and memory types
Embedded C++ and memory types
Non-initialized memory

Located variables

Absolute location placement

Segment placement

Accessing special function registers

Anonymous structs and unions

Functions

Special function types
Interrupt functions

Segment placement

Assembler language interface

Introduction

Example of assembler function

wS\O\O\OO\O\

13
15
15
16
16
17
17
18
19
19
20
21
21
21
22
23

25

25
25
26

27

27
27

Contents __o

Calling convention 30
Function declarations 30

C and C++ linkage 30
Function parameters 31
Returning a value from a function 32
Permanent versus scratch registers 32
Examples 33
Monitor functions 33
Calling functions 34
Assembler instructions used for calling functionsc.ceeeeeeeeveeeeucnnee 34
Special function types 34
Runtime model attributes 35
Specifying runtime attributes 35
Predefined runtime attributes 36
Calling assembler routines from C 36
Creating skeleton code 37
Calling assembler routines from Embedded C++ 40
Function directives 4|
Syntax 41
Parameters 41
Description 42
Segments and memory 43
What is a segment? 43
Linker segment type 43
Placeholder segments 44
Placing segments in memory 44
The contents of the linker command file 44
Customizing a linker command file 45

Data segments 46
Static memory segments 46

The heap 50
Located data 51

Code segments

Startup code

Normal code

Exception vectors

Embedded C++ dynamic initialization

Runtime environment

The cstartup.s59 file

System startup

System termination

__low_level _init

Customizing cstartup.s59
Modules and segment parts

Call frame information

Moditying the cstartup.s59 file

Input and output
The IAR CLIB library

The IAR DLIB library

C-SPY debugger interface

The debugger terminal I/O window

Efficient coding techniques

Programming hints

Optimizing for size or speed

Saving stack space and RAM memory

Using efficient data types

Module compatibility

Part 2: Compiler reference

Data representation

Fundamentals

Alignment

Byte order

dsPIC IAR C/EC++ Compiler
Reference Guide

51
51
51
51
51

53

53
53
53
54
54
55
56
56
57
57
60
62
62

63

63
63
64
64
64

65

67

67
67
67

Contents __o

Data types 67
Integer types 67

Floating-point types 68

Pointers 70

Size 70

Casting 70

Structure types 70
Alignment 70

General layout 70

Data types in Embedded C++ 71
Segment reference 73
Summary of segments 73
Descriptions of segments 74
Compiler options 83
Setting compiler options 83
Specifying parameters 83

Specifying environment variables 84

Error return codes 85

Options summary 85
Descriptions of options 87
Extended keywords 103
Summary of extended keywords 103
Using extended keywords 103

Data storage 104

Functions 105

vii

viii

Descriptions of extended keywords
#pragma directives

Summary of #pragma directives

Descriptions of #pragma directives
Predefined symbols

Summary of predefined symbols

Descriptions of predefined symbols
Intrinsic functions

Intrinsic functions summary

DSP-related intrinsic functions

General intrinsic functions

Descriptions of intrinsic functions

Library functions

IAR CLIB library

Library object files

Header files

Library definitions summary

IAR DLIB library

Library object files

Header files

Library definitions summary

Diagnostics

Severity levels
Setting the severity level

Internal error

Part 3: Portability

Implementation-defined behavior

Descriptions of implementation-defined behavior

Translation

dsPIC IAR C/EC++ Compiler
Reference Guide

105
109

109
110

17

17
118

121

121
121
124
124

133

133
133
133
134
134
135
135
135

139

139
140
140

141

143

143
143

Contents __o

Environment 144

Identifiers 144

Characters 144

Integers 145

Floating point 146

Arrays and pointers 147

Registers 147

Structures, unions, enumerations, and bitfieldscccecoeveerereevenenneee. 147

Qualifiers 148

Declarators 148

Statements 148

Preprocessing directives 148

IAR CLIB library functions 150

IAR DLIB library functions 153

IAR C extensions 157
Why should language extensions be used? ... 157
Descriptions of language extensions 157
Index 167

dsPIC IAR C/EC++ Compiler
x Reference Guide

Tables

1: Typographic conventions used in this guide..........ccoceevieviieninieniienienecceieee, Xvi
2: Mapping Of ProCesSOT OPLIONSc..ceuverueiriienieinrirtieientieniteieente e ere e sneeseeenneerenne 9
3: Data model CharacteriStiCscccoviiuiiiiiiiiiiiiccceeee e 10
4: Runtime libraries

52 MEIMOTY LYPES wnevinrieiienieeieniee ettt ettt sttt et et sttt et sateebe et e et esbesatesaeennesnees

6: Example of runtime model attributes.........c.cevvereereriierienienieieeieniese e 35
7: Runtime model attriDULEScccueerieeriiriiriieiieieeiteet ettt 36
8: XLINK SEZMENE LYPES ..euverienreiririinieeniieieetesite sttt ettt esieesee e st et ereennesnne e 44
9: Linker command file eXampleccoccevirriiriiiniininiiiieieeeeccece e 45
10: MEMOTY LYPES ..eeuiiiiiiiiiiiiie ettt sttt s e 47
112 SEEMENT GIOUPS .c.uviiuririiieiiiitetteteetert ettt ettt st be e bt s saeeeaee 47
12: Segments in SEZMENT ZIOUPSccueerreeueerreriiieientrerteeieenteesresireetenieesseereensesmeeeane 47
131 StACK TYPES .ottt e 50
T4 T/O IS .o

15: Integer types

16: Floating-POInt LYPESccuerverrirrerreruirienireiieiiereetentetentensensestessesueesesseeseeseenneneeneens 68
17: SeZMENt SUMIMATYeouvieiiriiiiieiieieniieeteeieete sttt ettt be st et saeenes 73
18: Environment variablescccoouiviiiiiiiiiiiiiiiice e 85
19: EITOT TELUIN COARS. . .euieeuietieiieiieeieete ettt ettt ettt sttt et e sate bt e beebeeneeas 85
20: Compiler Options SUMIMATYc..ceevertereenrieriereenienteenienteeseesieeneessresieeseenresneeas 85
21: Available data models

22: Generating a compiler 1ist file (-1)...c..cocooverininiiinininnc e 93
23: Directing preprocessor output to file (--preprocess)c.cceeeevereerveerensecneennes 97
24: Specifying speed OptimiZation (=5)coccouereruererenerenenene s 99
25: Mapping Of ProCeSSOr OPtIONSc.ceueeureieurenieierientetententeeresueeneesesseeseeseeneneeaens 99
26: Specifying $ize OPtMIZAtION (-Z) «eouvervverueereerieniieneeieetenreeee sttt sieenieens 100
27: Extended KeyWOrds SUIMMATYc..cccevuerieiiniineneniinienenieeeeee oo eneeneenenne 103
28: #pragma direCtives SUMIMATYcc.ccerverieruerienenentineneneeeeeeeeeneereeseneenenenne 109
29: Predefined SymboOIS SUMIMATYccceeveerienrieriiniieieniiieieitenieesiesieenresieesneeneene 117
30: Inspecting the data model using predefined symbolsccccoceeerireeennnnne. 118
31: DSP-related intrinsic functions SUMMATYcccevverieriinineneneneneneeeeneenne 121

Xi

Xii

dsPIC IAR C/EC++ Compiler
Reference Guide

32:
33:
34:
35:
36:
37:
38:
39:
40:

General intrinsic functions SUMMATYc.c.ceceereererieneeneenenreneereereseeneene 124
IAR C Library header files

Miscellaneous IAR C Library header filesccccccooevinincnininenineceeene 134
Traditional standard C library header filesccccoverviiriniiinniiniiniccee 135

Embedded C++ library header files
New standard C library header files

Traditional C++ library header filesccccoceviiiiniiniiniiicineccecee 138
Message returned by strerror()—IAR CLIB librarycccccocevveeveivenccnennnen. 152
Message returned by strerror()—IAR DLIB libraryc...cccocceevevinieieecniennne. 156

Preface

Welcome to the dsPIC IAR C/EC++ Compiler Reference Guide. The purpose
of this guide is to provide you with detailed reference information that can
help you to use the dsPIC IAR C/EC++ Compiler to best suit your application
requirements. This guide also gives you suggestions on coding techniques so
that you can develop applications with maximum efficiency.

Who should read this guide

You should read this guide if you plan to develop an application using the C or
Embedded C++ language for the dsPIC microcontroller and need to get detailed
reference information on how to use the dsPIC IAR C/EC++ Compiler. In addition,
you should have a working knowledge of the following:

e The architecture and instruction set of the dsPIC microcontroller. Refer to the
documentation from Microchip for information about the dsPIC microcontroller

o The C or Embedded C++ programming language

o The operating system of your host machine.

How to use this guide

When you first begin using dsPIC IAR C/EC++ Compiler, you should read Part 1:
Using the compiler in this reference guide.

When you are thoroughly familiar with the dsPIC IAR C/EC++ Compiler and have
already configured your project, you can focus more on Part 2: Compiler reference.

If you are new to using the IAR toolkit, we recommend that you first read the initial
chapters of the dsPIC IAR Embedded Workbench™ IDE User Guide. They include
comprehensive information about the installation of all IAR tools and give product
overviews, as well as tutorials that can help you get started.

What this guide contains

Below is a brief outline and summary of the chapters in this guide.
Part 1: Using the compiler

e [Introduction gives an overview of the compiler techniques that allow an
application to take full advantage of the dsPIC microcontroller: code and data
storage features, optimization techniques, and language extensions.

xiii

What this guide contains

dsPIC IAR C/EC++ Compiler
xiv Reference Guide

Customization describes the available customization options: processor option,
data model, and runtime libraries.

Data storage describes how data can be stored in memory, with an emphasis on
the different memory types.

Functions describes the different ways code can be generated. Interrupt functions
are also covered.

Assembler language interface contains information about memory access
methods, how parameters are passed in registers and the C and Embedded C++
calling conventions. Runtime model attributes are also described here.
Segments and memory describes the concept of segments, introduces the linker
command file, and describes how code and data are placed in memory.

Runtime environment describes system initialization, introduces the cstartup
file, and describes some low-level I/O routines in the runtime library.

Efficient coding techniques gives hints about programming for the dsPIC IAR
C/EC++ Compiler.

Part 2: Compiler reference

Data representation describes the available data types, pointers, and structure
types.

Segment reference gives reference information about the compiler’s use of
segments.

Compiler options explains how to set the compiler options, gives a summary of
the options, and contains detailed reference information for each compiler option.
Extended keywords gives reference information about each of the dsPIC-specific
keywords that are extensions to the standard C language.

#pragma directives gives reference information about the #pragma directives.
Predefined symbols gives reference information about the predefined preprocessor
symbols.

Intrinsic functions gives reference information about the functions that can use
dsPIC-specific low-level features.

Library functions gives an introduction to the C or Embedded C++ library
functions, and summarizes the header files.

Diagnostics describes how the dsPIC IAR C/EC++ Compiler diagnostic system
works.

Part 3: Portability

Implementation-defined behavior describes how IAR C handles the
implementation-defined areas of the C language.

IAR C extensions describes the IAR extensions to the ISO/ANSI standard for the
C programming language.

Preface __o

Other documentation

The complete set of IAR Systems development tools for the dsPIC microcontroller is
described in a series of guides. For information about:

e Using the IAR Embedded Workbench™ IDE with the IAR C-SPY™ Debugger,
refer to the dsPIC IAR Embedded Workbench™ IDE User Guide

o Programming for the dsPIC IAR Assembler, refer to the dsPIC IAR Assembler
Reference Guide

e Using the linker and library tools, refer to the JAR Linker and Library Tools
Reference Guide.

e Using the Embedded C++ Library, refer to the C++ Library Reference, available
from the IAR Embedded Workbench IDE Help menu.

All of these guides are delivered in PDF or HTML format on the installation media.
Some of them are also delivered as printed books.

FURTHER READING

The following books may be of interest to you when using the IAR Systems
development tools:

e Barr, Michael, and Andy Oram, ed. Programming Embedded Systems in C and
C++. O'Reilly & Associates.

e Kernighan, Brian W. and Dennis M. Ritchie. The C Programming Language.
Prentice Hall. [The later editions describe the ANSI C standard.]

e Labrosse, Jean J. Embedded Systems Building Blocks: Complete and
Ready-To-Use Modules in C. R&D Books.

e Mann, Bernhard. C fiir Mikrocontroller. Franzis-Verlag. [Written in German.]

e Stroustrup, Bjarne. The C++ Programming Language. Addison-Wesley.

We recommend that you visit the websites of Microchip and IAR Systems:

o The Microchip website, www.microchip.com, contains information and news
about the dsPIC microcontrollers.

o The IAR website, www.iar.com, holds dsPIC application notes and other product
information.

Document conventions

‘Whenever the dsPIC microcontroller is mentioned, all derivatives of the dsPIC core
are included, unless otherwise specified.

When, in this text, we refer to the programming language C, the text also applies to
Embedded C++, unless it is explicitly mentioned.

Xv

Document conventions

TYPOGRAPHIC CONVENTIONS

This guide uses the following typographic conventions:

Style Used for
computer Text that you enter or that appears on the screen.
parameter A label representing the actual value you should enter as part of a
command.
[option] An optional part of a command.
{a | b | c} Alternatives in a command.
bold Names of menus, menu commands, buttons, and dialog boxes that

appear on the screen.
reference A cross-reference within or to another part of this guide.

Identifies instructions specific to the versions of the IAR Systems tools
for the IAR Embedded Workbench interface.

@ Identifies instructions specific to the command line versions of IAR
Systems development tools.

Table 1: Typographic conventions used in this guide

dsPIC IAR C/EC++ Compiler
xvi Reference Guide

!I!I!I!I!qul

Part |: Using the compiler

This part of the dsPIC IAR C/EC++ Compiler Reference Guide includes the
following chapters:

e Introduction

e Customization

e Data storage

e Functions

e Assembler language interface

e Segments and memory

e Runtime environment

e Efficient coding techniques.

[]

Introduction

The dsPIC IAR C/EC++ Compiler supports C and Embedded C++ for
Microchip’s dsPIC microcontroller.

This chapter first describes how an application is built by introducing the
concepts of compiling and linking.

Then the compiler is introduced, including an overview of the techniques that
enable applications to take full advantage of the dsPIC microcontroller. In the
following chapters the techniques will be studied in more detail.

Building applications
A typical application is built from a number of source files and libraries. The source

files could be written in C, Embedded C++, or assembler language. They are compiled
into object files by the dsPIC IAR C/EC++ Compiler or the dsPIC IAR Assembler.

A library is a collection of object files. A typical example of a library is the compiler
library containing the runtime environment and the C or Embedded C++ standard
library. Libraries can also be built using the IAR XLIB Librarian or the IAR XAR
Library Builder, or provided by external suppliers.

The IAR XLINK Linker is used for building the final application. XLINK normally
uses a linker command file which describes the available resources of the target
system.

COMPILING

In the command line interface, the following line compiles the source file myfile.c
into the object file myfile.r59 using the default settings:

iccdspic myfile.c

LINKING

The IAR XLINK Linker is used to build the final application. Normally XLINK
requires the following:

e A number of object files and possibly some libraries

e The standard library containing the runtime environment and the standard
language functions

e A linker command file that describes the memory layout of the target system.

Part I. Using the compiler 3

Data storage

In the IAR Embedded Workbench, XLINK is started automatically when you choose
the Build option.

In the command line interface, the following line can be used to start XLINK:
xlink myfile.r59 myfile2.r59 -f lnkdspic.xcl cldspicO0lf.r59

In this example, myfile.r59 and myfile2.r59 are object files, lnkdspic.xcl
is the linker command file, and c1dspic0l£.r59 is the runtime library.

Data storage

One of the characteristics of the dsPIC microcontroller is that there is a tradeoff
regarding the way memory is accessed, ranging from cheap access to data memory
areas up to more expensive access methods that can access any location.

One of the decisions a developer of embedded systems must make is to decide where
the different memory access methods should be used.

The dsPIC IAR C/EC++ Compiler allows you to set a default memory access method
using data models. It also allows the access method to be specified explicitly for each
individual variable.

The Data storage chapter covers memory access methods in greater detail.

Optimization techniques

The dsPIC IAR C/EC++ Compiler is a state-of-the-art compiler with a C/EC++ level
optimizer that performs, among other things, dead-code elimination, constant
propagation, inlining, common sub-expression elimination, and precision reduction.
It also performs loop optimizations such as unrolling and induction variable
elimination.

The user can control the level of optimization and decide if the basic approach is to
optimize for speed or for size.

For more information about the optimization of the dsPIC IAR C/EC++ Compiler, see
the chapter Efficient coding techniques.

IAR language extension overview

dsPIC IAR C/EC++ Compiler
4 Reference Guide

This section briefly describes the extensions provided by the dsPIC IAR C/EC++
Compiler to support specific features of the dsPIC microcontroller.

Introduction __4

SPECIAL FUNCTION TYPES

The dsPIC IAR C/EC++ Compiler supports interrupt functions. This allows
developers to write a complete application without being forced to write any part of it
in assembler language.

EXTENDED KEYWORDS

The dsPIC IAR C/EC++ Compiler provides a set of keywords that can be used for
controlling the behavior of the program. There are, for example, keywords for
controlling the memory type for individual variables as well as for declaring special
function types.

By default language extensions are always enabled in the IAR Embedded Workbench.

The command line option -e makes the extended keywords available, and reserves
them so that they cannot be used as variable names. See page 90 for additional
information.

For detailed descriptions of the extended keywords, see the chapter Extended
keywords.
#PRAGMA DIRECTIVES

The #pragma directives control the behavior of the compiler, for example, how it
allocates memory, whether it allows extended keywords, and whether it issues
warning messages.

The #pragma directives are always enabled in the dsPIC IAR C/EC++ Compiler.
They are consistent with ISO/ANSI C and are very useful when you want to make sure
that the source code is portable.

For detailed descriptions of the #pragma directives, see the chapter #pragma
directives.
PREDEFINED SYMBOLS

With the predefined preprocessor symbols, you can inspect your compile-time
environment, for example, the processor variant.

For detailed descriptions of the predefined symbols, see the chapter Predefined
symbols.
INTRINSIC FUNCTIONS

The intrinsic functions provide direct access to low-level processor operations and can
be very useful in, for example, time-critical routines. The intrinsic functions compile
into in-line code, either as a single instruction or as a short sequence of instructions.

Part |. Using the compiler 5

Runtime libraries

For detailed reference information, see the chapter Intrinsic functions.

INLINE ASSEMBLER

The asm keyword assembles and inserts the supplied assembler statement in-line on a
line-by-line basis. For example:

asm("MOV WO,W1") ;

Note: The asm keyword reduces the compiler’s ability to optimize the code. We
recommend the use of modules written in assembler language instead of inline
assembler, since the function call to an assembler routine causes less performance
reduction.

Runtime libraries

The dsPIC IAR C/EC++ Compiler supports two runtime libraries:

e The IAR CLIB Library, which is a small, efficient library well-suited for 8- and
16-bit processors. This library is not fully ANSI compliant, and does not fully
support IEEE 754 floating points.

e The IAR DLIB Library, which supports ANSI C and Embedded C++.

Note: CLIB is the default library unless you run the compiler in EC++mode.

Embedded C++ overview

dsPIC IAR C/EC++ Compiler
6 Reference Guide

Embedded C++ is a subset of the C++ programming language which is intended for
embedded systems programming. It is defined by an industry consortium, the
Embedded C++ Technical Committee. The fact that performance and portability are
particularly important in embedded systems development was considered when
defining the language.

The following EC++ features are provided:

e Classes, which are user-defined types that incorporate both data structure and
behavior. The essential feature of inheritance allows data structure and behavior to
be shared among classes

e Polymorphism, which means that an operation can behave differently on different
classes, is provided by virtual functions

e Opverloading of operators and function names, which allows several operators or
functions with the same name, provided that there is a sufficient difference in their
argument lists

e Type-safe memory management using operators new and delete

Introduction __4

e Inline functions, which are indicated as particularly suitable for inline expansion.

Excluded features in C++ are those that introduce overheads in execution time or code
size that are beyond the control of the programmer. Also excluded are recent additions
to the ISO/ANSI C++ standard. This is because they represent potential portability
problems, due to the fact that few development tools support the standard. Embedded
C++ thus offers a subset of C++, which is efficient and fully supported by existent
development tools.

Embedded C++ lacks the following features of C++:

Templates

Multiple inheritance

Exception handling

Runtime type information

New cast syntax (operators dynamic cast, static_cast,
reinterpret cast, and const_cast)

o Namespaces.

The exclusion of these language features makes the runtime library significantly more
efficient. The Embedded C++ library furthermore differs from the full C++ library in
that:

o The Standard Template Library (STL) is excluded

e Streams, strings, and complex numbers are supported without the use of templates

e Library features which relate to exception handling and runtime type information
(headers <except>, <stdexcept> and <typeinfos), are excluded.

Part |. Using the compiler 7

Embedded C++ overview

dsPIC IAR C/EC++ Compiler
8 Reference Guide

Customization

This chapter describes the configuration of the dsPIC IAR C/EC++ Compiler.
This includes an overview of the processor variants and data models. The last
section describes the standard runtime libraries that are included and how
they correspond to the compiler options.

You should read this chapter before you read the remaining chapters in Part I:
Using the compiler and the chapters in Part 2: Compiler reference.

Processor variant

The dsPIC IAR C/EC++ Compiler supports both dsPIC microcontroller cores. The
processor option reflects the presence of dsp in the target microcontroller. When you
select a particular processor option for your project, several target-specific parameters
are tuned to best suit that derivative.

The following table shows the mapping of processor options and which dsPIC cores
they support:

Processor option Supported dsPIC core
-v0 DSP instructions
-vl No DSP instructions

Table 2: Mapping of processor options

Your program may use only one processor option at a time, and the same processor
option must be used by all user and library modules in order to maintain consistency.

See the dsPIC IAR Embedded Workbench™ IDE User Guide for information about
setting project options in the [AR Embedded Workbench.

@ Use the - -cpu or -v option to specify the dsPIC core; see the chapter Compiler
options for syntax information.

Data model

The data model specifies the data memory which is used for storing:

e Non-stacked variables, i.e. global data and variables declared as static
e Dynamically allocated data, for example data allocated with malloc or, in
Embedded C++, the operator new.

Part I. Using the compiler 9

Runtime libraries

Your choice of processor option determines which memory models are available. The
following table summarizes the characteristics of the different memory models:

Const variable/

Default memory Default pointer string literal

Memory model Data model option type type placement
small --data_model=s mem __mem Data memory
large (default) --data_model=1 mem __ptr Code memory

Table 3: Data model characteristics

Your program may use only one data model at a time, and the same model must be
used by all user modules and all library modules. If you do not specify a data model
option, the compiler will use the large data model.

The default memory type is always mem, regardless of data model. The difference is
the default data pointer, whichis __mem for the small data model, and __ptr for the
large data model.

The default memory attribute can—for each individual variable—be overridden by
the use of extended keywords or #pragma directives.

See the dsPIC IAR Embedded Workbench™ IDE User Guide for information about
setting options in the IAR Embedded Workbench.

Use the data_model option to specify the data model for your project. See the
Compiler options chapter for more syntax information.

Runtime libraries

dsPIC IAR C/EC++ Compiler
|0 Reference Guide

The runtime library includes the runtime environment and the C and Embedded C++
standard libraries. The linker will include only those routines that are
required—directly or indirectly—by your application.

When building an application all parts must use the same customization settings. This
also applies to the runtime library. For the dsPIC IAR C/EC++ Compiler this means
that there is a runtime library for each combination of data and cpu models.

The runtime library names are constructed in the following way:
<type>dspic<cpu><data model><double size>.r59
where

e type can be dl for the IAR DLIB library, or c1 for the IAR CLIB library,
respectively

e cpuis either 0 or 1, matching the - -cpu/-v option

e data model is either s or 1, for small and large data, respectively

Customization __¢

e double size is either £ or 4, for 32-bit and 64-bit, respectively.

The following table shows the mapping of runtime libraries, data models, and code

models:

Library file Processor option Data model Double size
cldspic0Osf.r59 0 Small 32
cldspiclsd.r59 | Small 64
cldspic0Osf.r59 0 Small 32
cldspiclsd.r59 | Small 64
cldspic0lf.r59 0 Large 32
cldspic1ld.r59 | Large 64
cldspic0lf.r59 0 Large 32
cldspiclld.r59 | Large 64

Table 4: Runtime libraries

In order to support both dsPIC microcontroller cores, a large number of runtime
libraries are supplied. The library files are located in the dspic directory.

Note: The CLIB library is the default unless you run the compiler in Embedded C++
mode.

For information about the mapping of the -v processor option and dsPIC core, see
Table 2, Mapping of processor options, page 9.

The IAR Embedded Workbench will include the correct runtime library based on the
options you select; see the dsPIC IAR Embedded Workbench™ IDE User Guide for
additional information.

@l Specify which runtime library to use on the XLINK command line; see the JAR Linker
and Library Tools Reference Guide.

Part |. Using the compiler ||

Runtime libraries

dsPIC IAR C/EC++ Compiler
|2 Reference Guide

Data storage

This chapter first describes the fundamental ways data can be stored in
memory: on the stack, in static (global) memory, or in heap memory. Then the
different memory access methods and corresponding memory types are
described.

Memory types are discussed in relation to pointers, structures, Embedded
C++ class objects, and non-initialized memory. Placement in memory of global
and static variables is then described. Finally, the structure types struct and
union are discussed.

Stack, static, and heap memory

Data can be stored in memory in three different ways:

e On the stack. This is memory space that can be used by a function as long as it is
executing. When the function returns to its caller, the memory space is no longer
valid.

e Static memory. This kind of memory is allocated once and for all; it remains valid
through the execution of the application. Variables that are either global or
declared static are placed in this kind of memory.

@ On the heap. Once memory has been allocated on the heap it remains valid until it
is explicitly released back to the system by the application. This type of memory
is useful when the number of objects is not known until the application executes.
Note that there are potential risks connected with using the heap in systems with a
limited amount of memory or systems that are expected to run for a long time.

THE STACK AND AUTO VARIABLES

Variables that are defined inside a function—and not declared static—are named auto
variables by the C standard. A small number of these variables are placed in processor
registers; the rest are placed on the stack. From a semantic point of view this is
equivalent. The main differences are that accessing registers is faster and that less
memory is required compared to when variables are located on the stack.

Auto variables live as long as the function executes; when the function returns, the
memory allocated on the stack is released.

Auto variables are not allowed to have memory attributes orthe _no_init attribute.

Part |. Using the compiler

Stack, static, and heap memory

dsPIC IAR C/EC++ Compiler
|4 Reference Guide

The stack is not only used for storing variables declared in the program; it can also
contain:

Local variables and parameters not stored in registers

Temporary results of expressions

The return value of functions (unless it is passed in registers)

Processor state during interrupts

Processor registers that should be restored before the function returns (callee-save
registers).

The stack is a fixed block of memory, divided into two parts. The first part contains
allocated memory used by the function that called the current function, and the
function that called it, etc. The second part contains free memory that can be allocated.
The borderline between the two areas is called the top of stack and is represented by
the stack pointer, which is a dedicated processor register. Memory is allocated on the
stack by moving the stack pointer.

A function may never refer to the memory in the area of the stack that contains free
memory. The reason is that if an interrupt occurs, the called interrupt function can
allocate, modify, and—of course—deallocate memory on the stack.

Advantages

The main advantage of the stack is that functions in different parts of the program can
use the same memory space to store its data. Unlike a heap, a stack will never become
fragmented or suffer from memory leaks.

It is possible for a function to call itself—what is called a recursive function—and
each invocation can store its own data on the stack.

Potential problems

The way the stack works makes it impossible to store data that is supposed to live after
the function has returned. The following function demonstrates a common
programming mistake. It returns a pointer to the variable x, a variable that ceases to
exist when the function returns.

int * MyFunction ()
int x;
do something
return &x;

}

Data storage __o

Another problem is the risk of running out of stack. This will happen when one
function calls another, which in turn calls a third, and so forth, and the sum of the stack
usage of each function is larger than the size of the stack. The risk is higher if large
data objects are stored on the stack or when recursive functions—functions that call
themselves either directly or indirectly—are used.

STATIC MEMORY

All global and static variables will be placed in static memory. The word “static” in
this context means that the amount of memory allocated for this type of variables does
not change while the application is running.

The dsPIC microcontroller can access memory in different ways. The access methods
range from generic but expensive methods that can access the full memory space to
cheap methods that can access limited memory areas.

The following memory types and corresponding keywords exist:

Full memory addressing (__ptr) (pointer only)
datamem (__mem)

xmem (__xmem)

ymem (__ymem)

sfr (__sfr)

Pointer to constant in code memory (__constptr).

To place a variable in a memory area, you can declare it by use of extended keywords
or #pragma directives, as in these examples:

__sfr int x;

#pragma type attribute=__xmem
int y;

See Memory access methods and memory types, page 16, for a description of the
limitations and advantages of each of these methods.

DYNAMIC MEMORY ON THE HEAP

Memory for objects allocated on the heap will live until they are explicitly released.
This type of memory storage is very useful for applications where the amount of data
is not known until runtime.

In C, memory is allocated using the standard library function malloc or one of the
related functions calloc and realloc. The memory is released again using free.

In Embedded C++ there is a special keyword, new, designed to allocate memory and
run constructors. Memory allocated with new must be released using the keyword
delete.

Part |. Using the compiler |5

Memory access methods and memory types

Potential problems

Systems that are using heap-allocated objects must be designed very carefully, since
itis easy to end up in a situation where it is not possible to allocate objects on the heap,
either because there is not enough free memory on the heap or because it is
fragmented.

The heap can become exhausted because the system simply uses too much memory.
It can also become full if memory that no longer is in use has not been released back
to the system.

There is also the matter of fragmentation. This means a heap where small sections of
free memory is separated by memory used by allocated objects. It is not possible to
allocate a new object if there is no piece of free memory that is large enough for the
object, even though the sum of the size of the free objects exceeds the size of the
object.

Unfortunately, fragmentation tends to increase as memory is allocated and released.
Hence, applications that are designed to run for a long time should try to avoid using
memory allocated on the heap.

Memory access methods and memory types

dsPIC IAR C/EC++ Compiler
|6 Reference Guide

This section describes the concept of access methods and the corresponding memory
types used by the dsPIC IAR C/EC++ Compiler to access data. For each memory type
the capabilities and limitations are discussed.

MEMORY ACCESS METHODS

The dsPIC microcontroller has two separate memory spaces. Data memory, which can
be accessed efficiently, and code memory, which requires more code space and
execution time to access. Code memory is only used for const declared variables,
string literals, and initializer data. In the small data model, all const variables are
placed in mem, and the resulting code is faster and more compact. Const declared
variables can be placed in any memory by combining the const keyword with a
memory specifier, e.g. const __mem int a=34;

The data memory for the dsPIC is divided into different zones, depending on access
methods. The SFR memory is the area located between addresses 0 through 8191, also
called the Access space. This area is usually used by SFRs. The X memory is normally
used only with DSP code, and usually together with Y memory. The X memory
accesses the whole 64Kbytes data memory, except the Y memory area. The Y memory
is normally used only with DSP code, and usually together with X memory.

Data storage __o

Do not place variables in either X or Y memory unless used in DSP code, since it
places restrictions on register usage, and could result in larger and slower code. The
mem memory is the whole 64Kbytes area, and SFR, X, and Y memory are subsets of
the mem memory.

The code memory is an 8Mword large memory used for code, constants, and initializer
data. Data placed in code memory is accessed using table read instructions. This type
of access is much slower than memory access in data memory, and should generally
be avoided to gain speed for the application.

Example

The example below defines three variables—alpha, beta, and gamma—to be placed
in xmem, sfr, and in the default memory type, respectively. Note that the #pragma
directive only controls the memory placement of the next defined variable.

int __xmem alpha;

#pragma type attribute=__sfr
int beta;

int gamma;

MEMORY TYPES

Name Keyword Address range Object size Cost*

SFR __sfr 0-8192 8 Kbytes Same or
lower

X memory ___Xmem 0-65535 (excluding Y 64 Kbytes Same

memory)

Y memory ___ymem Subset of data memory <64 Kbytes Same

Data memory ~_ mem 0-65535 64 Kbytes

Constincode _ constptr 0-8M 4 Mbytes Higher

memory

Table 5: Memory types
* The cost column reflects cost relative to accessing data memory.

The chapter Assembler language interface covers this in more detail.

Pointers

In C, pointers are used for referring to the location of data or variables. This section
discusses pointers in the presence of multiple memory types.

Part |. Using the compiler 17

Pointers

dsPIC IAR C/EC++ Compiler
|18 Reference Guide

POINTERS AND MEMORY TYPES

In general, a pointer has a type. For example, a pointer that has the type int * points
to an integer.

In the dsPIC IAR C/EC++ Compiler, a pointer also points to some kind of memory.
The type of the memory is specified using a memory type keyword before the asterisk.
For example, a pointer that points to an integer stored in sfr memory has the type
int __ sfr *.

If no memory type is specified, the default memory type is used.

Variables as pointers

If a variable is declared as a pointer, the memory type of the variable itself can be
specified.

Examples

Below is a series of examples with descriptions. First some integer variables are
defined and then pointer variables are introduced. Finally a function accepting a
pointer to an integer in xmem memory is declared. The function returns a pointer to
an integer in sfr memory.

int a; A variable defined in default memory.
int __ xmem b; A variable in xmem memory.

__sfr int c; A variable in sfr memory.

int * 4; A pointer stored in default memory. The

pointer points to an integer in default memory.

int _ xmem * e; A pointer stored in default memory. The
pointer points to an integer in Xxmem memory.

int xmem * _ sfr £; A pointer stored in sfr memory pointing to an
integer stored in xmem memory.

int _sfr * myFunction/(A declaration of a function that takes a
int __xmem ¥); parameter which is a pointer to an integer
stored in xmem memory. The function returns
a pointer to an integer stored in sfr memory.

Data storage __o

In order to read the examples above, start from the left and add one qualifier at each

step:

int The basic type is an integer.

int __ xmem It is stored in xmem memory.

int __ xmem * This is a pointer to it.

int xmem * _ sfr The pointer is stored in sfr memory.

Structure types and memory types

When a variable is defined, it will be placed in a memory of a certain type. Normally
the default memory type is used but another memory type can be specified. For
structures, the entire object is placed in the same memory type. It is not possible to
place individual structure members in different memory types.

Example
In the example below, the variable gamma is a struct placed in sfr memory.

struct MyStruct
int alpha;
int beta;

__sfr struct MyStruct gamma;
The following declaration is incorrect:

struct MySecondStruct

{

int blue;
__sfr int green; /* Error! */

Embedded C++ and memory types

An Embedded C++ class object is placed in one memory type, just the way normal C
structures are. However, the class members that are considered to be part of the object
are the non-static member variables. The static member variables can individually be
placed in any kind of memory.

Remember, in Embedded C++ there is only one instance of each static member
variable regardless of the number of class objects.

Part I. Using the compiler 19

Non-initialized memory

Also note that when calling class methods, the this pointer uses the default pointer
type. This means that a pointer to the object must be convertable to the default pointer
type. The restrictions that apply to the default pointer type also apply to the this
pointer.

For the dsPIC microcontroller, all pointer types can be converted to the default pointer
type, except __constptr to __ptr in the small data model.

Example

In the example below an object, named delta, of the type MyClass is defined in
mem memory. The class contains a static member variable that is stored in sfr
memory.

// The class declaration (placed in a header file):
class MyClass
{
public:
int alpha;
int beta;

__sfr static int gamma;
Vi
// Definitions needed (should be placed in a source file):

__sfr int MyClass::gamma;

// A variable definition:
__mem MyClass delta;

Non-initialized memory

dsPIC IAR C/EC++ Compiler
20 Reference Guide

Normally the runtime environment will initialize all global and static variables when
the application is started.

The compiler supports the declaration of variables that will not be initialized using the
__no_init type modifier. They can be specified either as a keyword or using the
#pragma object_attribute directive. The compiler places such variables in
separate segments, according to the specified memory keyword. See the chapter
Segments and memory for more information.

For no_ init, the const keyword implies that an object is read only, rather than
that the object is stored in read-only memory. It is not possible to givea no_init
object an initial value.

Data storage __o

Variables declared using the = _no_init keyword could, for example, be large input
buffers or mapped to special RAM that keeps its content even with the application is
turned off.

For information aboutthe ~ _no_init keyword, see page 107. For information about
the #pragma object attribute, see page 113.

Located variables

Global and static variables can be explicitly placed at absolute addresses or in named
segments using the @ operator or #pragma location. The variables must be
declared either _no_init or const. If declared const, it is legal for them to have
initializers.

Embedded C++ static member variables can be placed just like any other static
variable.
ABSOLUTE LOCATION PLACEMENT

To place a variable at an absolute address, the argument to the operator @ and the
#pragma location directive should be a literal number, representing the actual
address. The absolute location must fulfil the alignment requirement for this type of
variable.

Example

__no_init char alpha @ 0x1000; /* OK */

#pragma location=0x1004
const int beta; /* OK */

const int gamma @ 0x1008 = 3; /* OK */

int delta @ 0x100C; /* Error, neither */
/* " no_ init" nor "const". */
const int epsilon @ 0x100F; /* Error, misaligned. */

SEGMENT PLACEMENT

It is possible to place variables into named segments using either the @ operator or the
#pragma location directive. The segment is specified as a string literal.

Part I. Using the compiler 21

Located variables

Example

__no_init int alpha @ "MYSEGMENT"; /* OK */

#pragma location="MYSEGMENT"

const int beta; /* OK */
const int gamma @ "MYSEGMENT" = 3; /* OK */
int delta @ "MYSEGMENT"; /* Error, neither */
/* " _ no init" nor "const" */

ACCESSING SPECIAL FUNCTION REGISTERS

Specific header files for a number of dsPIC derivates are included in the dsPIC IAR
C/EC++ Compiler delivery. The header files are named iochip.h and define the
processor-specific special function registers (SFRs).

Note: Each header file contains one section used by the compiler, and one section used
by the assembler.

Example

__no_init __ sfr volatile union
{

unsigned short SR;

struct

{
unsigned short C:1;
unsigned short DC:1;
unsigned short Z:2;
unsigned short OV:1;
unsigned short N:1;
unsigned short :1;
unsigned short RA:1;
unsigned short DA:1;
unsigned short :1;
unsigned short :1;
unsigned short SAB:
unsigned short OAB:
unsigned short SB:
unsigned short SA:
unsigned short OB:
unsigned short OA:

};

} @ 0x0042;

R RR R
e Rl

dsPIC IAR C/EC++ Compiler
22 Reference Guide

Data storage __o

By including the appropriate iochip.h file into the user code it is possible to access
either the whole register or any individual bit (or bitfields) from C code as follows:

// whole register access
SR = 0x1020;

// Bit accesses
CcC =1;

The header files are also suitable to use as templates when creating new header files
for other dsPIC derivatives.

Anonymous structs and unions

An anonymous struct or union is a struct or union object that is declared without a
name. [ts members are promoted to the surrounding scope. An anonymous struct or
union may not have a tag.

Notice that anonymous struct and unions are only available when language extensions
are enabled in the dsPIC IAR C/EC++ Compiler. In EC++, however, anonymous
unions are part of the language and thus always available.

In the IAR Embedded Workbench, language extensions are enabled by default.

Use the -e compiler option to enable language extensions. See -e, page 90 for
additional information.

Example

In the example below, the members in the anonymous union can be accessed, in
function £, without explicitly specifying the union name:

struct s

{

char tag;
union

{

long 1;
float f;
Vi

} st;

void f£()

{

st.1l = 5;

}

Part I. Using the compiler 23

Anonymous structs and unions

dsPIC IAR C/EC++ Compiler
24 Reference Guide

The member names must be unique in the surrounding scope. Having an anonymous
struct or union at file scope, as a global, external, or static is also allowed. This is
for instance used for declaring I/O registers, as in the following example:

union

{

char IOPORT;
struct

char way: 1;
char out: 1;

}i

} @ 0x400;

This declares an I/O register byte IOPORT at address 0x400. The I/O register has 2
bits declared, way and out.

The following example illustrates how variables declared this way can be used:

void test ()

{
IOPORT=0;
way=1;
out=1;

1

Functions

This chapter describes the interrupt special function type, and how to place
functions into named segments.

Special function types

This section describes the interrupt special function type. The dsPIC IAR C/EC++
Compiler allows an application to fully take advantage of these powerful dsPIC
features without forcing the developers to implement anything in assembler language.

INTERRUPT FUNCTIONS

In embedded systems, the use of interrupts is a method of detecting external events
immediately, for example, the pressing of a button.

In general, when an interrupt occurs in the code the microcontroller simply stops
executing the code it runs, and starts executing an interrupt routine instead. It is
imperative that the environment of the interrupted function is restored; this includes
the value of processor registers and the processor status register. This makes it
possible to continue the execution of the original code when the interrupt code has
been executed.

The dsPIC microcontroller allows many interrupt routines to be specified. Each
interrupt routine will be associated with a vector address. The vector address
corresponds to the address as specified in the dsPIC microcontroller documentation
from the chip manufacturer.

Note: An interrupt function must have a return type of void and it may not specify
any parameters.

To define an interrupt function, the _ interrupt keyword and the #pragma
vector directive can be used, for example:

#pragma vector=0x70
__interrupt void my interrupt_ routine()

{
}

When an interrupt function is defined with a vector, the processor interrupt vector
table is populated. It is also possible to define an interrupt function without a vector.
This is useful if an application is capable of populating or changing the interrupt
vector table at runtime. See the chip manufacturer’s dsPIC microcontroller
documentation for more information about the interrupt vector table.

/* Do something */

Part |. Using the compiler

25

Segment placement

The chapter Assembler language interface in this guide contains more information
about the runtime environment used by interrupt routines.

Segment placement

Itis possible to place functions into named segments using either the @ operator or the
#pragma location directive. When placing functions into segments the segment is
specified as a string literal.

Example

void f() @ "MYSEGMENT";
void g() @ "MYSEGMENT"
{
1

#pragma location="MYSEGMENT"
void h();

dsPIC IAR C/EC++ Compiler
26 Reference Guide

Assembler language
interface

This chapter describes how to write library functions in assembler language
that work together with an application written in C. It covers the calling
convention used by the dsPIC IAR C/EC++ Compiler, the runtime attributes,
and how to write a code skeleton for calling an assembler routine from C.
Some differences between the C and Embedded C++ calling conventions are
also pointed out. The chapter ends with a few words about function directives.

Introduction

This section defines a simple assembler function as a practical example of how
assembler functions are written. The example demonstrates some of the problems that
you as a developer are faced with: How are parameters and the return value
communicated from and to C? How are global variables accessed from assembler?
How do I call other functions from assembler?

Note: This is just an example. There is no need to write a piece of code of this kind in
assembler. The code generated from the compiler is just as efficient.

The next sections will cover these and other questions in more detail.

EXAMPLE OF ASSEMBLER FUNCTION

The example that we will use in the rest of this section is the assembler equivalence
of the following C function:

__no_init volatile int OUTPIN @ 0x1000;
int f (int);

extern int base;

int example (int value)

{

value += f (base);
OUTPIN = value;
return value;

}

Part I. Using the compiler 27

Introduction

dsPIC IAR C/EC++ Compiler
28 Reference Guide

The function, called example, has one parameter, value. The function starts by
calling the function £ (which could be written in C or assembler) with one parameter,
the value of the global variable base. The result of this call is then added to the
variable value.

The result of the addition is stored at the variable OUTPIN, which is a typical
memory-mapped I/O register. The same value is also used as the return value of this
function.

When planning the design of the assembler routine, the first question we must ask
ourselves is: Is it possible to call the function £ and at the same time keep all values
we need, without being forced to store some of them in memory?

When calling a function, about half of the registers must be restored to their original
content, whereas the other half can be used as scratch registers.

When calling function £, we need to keep the values of all the non-scratch registers.
Clearly, this is not possible without writing something to the memory. The best place
to temporarily store some values is the stack.

value, on the other hand, will be needed several times. If we store it on the stack, we
would be forced to access the stack several times. This is undesirable. Instead, we can
select one of the permanent registers and write its content to the stack. The value of
the parameter value can then be moved to this permanent register in order to survive
the call to £.

The non-scratch register is W10 and the parameter register is Wo. The RETURN
instruction transfers the control back to the calling function.

example:
MOV W10, [W15++]
MOV WO,W10
MOV [--W15],W10
RETURN

Next we need to load the value of the global variable base into WO, the register that
should contain the parameter of £. First we must inform the assembler that there is an
external label base. The assembler directive EXTERN is used for this. The directive is
normally placed before the function itself:

EXTERN Dbase

Assembler language interface __o

To load the code from memory, the following line us used. The value of base will be
loaded directly into R1.

MOV #base, WO
MOV.Db [Wo] ,wWo

The next step is to call the function £. This is performed using the CALL assembler
instruction. Here the parameter to £ is in W0, as expected. Again we must inform the
assembler of the presence of £:

EXTERN f
CALL f

The return value of the function £ can now be found in register wo. The next step is to
add this to value, now to be found in W1 0. In addition, we take the opportunity to use
WO as a result register, since the result of the addition is also the return value of this
instruction. The register W0 is the location where the return value should be placed.

ADD WO ,W10,WO0

The result should also be stored at the location of the memory-mapped 1/O register.
Here we use the physical address, but it would also have been possible to use a
symbolic label.

MOV W0,4096

This finishes the actual code. What else is needed? First, the code must be stored in a
segment. Then the label example must be exported from the module, and finally the
assembler directive END must be specified to mark the end of the file.

To summarize, the complete assembler source code is:

NAME example

RSEG CODE : CODE : NOROOT (2)
PUBLIC example

EXTERN base

EXTERN f

example:
MOV W10, [W15++]
MOV WO,W10
MOV #base, WO
MOV.b [WO] ,wo
CALL £
ADD WO, W10, W0
MOV WO0,4096
MOV [--W15],W10
RETURN
END

Part I. Using the compiler 29

Calling convention

Calling convention

A calling convention is the way one function in a program calls another function. The
compiler handles this automatically, but if a function is written in assembler language
you must know where and how its parameters can be found, how to return to the
program location from where it was called, and how to return the resulting value.

It is also important to know which registers an assembler-level routine must preserve.
If the program preserves too many registers, the program might be ineffective. If it
preserves too few registers the result would be an incorrect program.

FUNCTION DECLARATIONS

In C, a function must be declared in order for the compiler to know how to call it. A
declaration could look as follows:

int a function(int first, char * second);

This means that the function takes two parameters: an integer and a pointer to a
character. The function returns a value, an integer.

In the general case, this is the only knowledge that the compiler has about a function.
Hence it must be able to deduce the calling convention from this information, as
described below.

C AND C++ LINKAGE

In Embedded C++ a function can have either C or C++ linkage. Only functions with
C linkage can be implemented in assembler.

The following is an example of a declaration of a function with C linkage:

extern "C"

{
}

It is often practical to share header files between C and EC++. The following is an
example of a declaration that will declare a function with C linkage in both C and
Embedded C++:

int f (int);

#ifdef _ cplusplus
extern "C"
{
#endif

int f (int);
#ifdef __ cplusplus

}

#endif

dsPIC IAR C/EC++ Compiler
30 Reference Guide

Assembler language interface __o

FUNCTION PARAMETERS

When deciding how to pass parameters to a function, each parameter is considered in
turn. The method selected is primarily based on the type of the parameter. It is also
based on the availability of parameter registers. Passing parameters to registers is
faster than placing them on the stack.

Register parameters versus stack parameters

Parameters can be passed to a function using two basic methods: in registers or on the
stack. Clearly it is much more efficient to use registers than to take a detour via
memory.

The calling convention is designed to utilize registers as much as possible. There is
only a limited number of registers that can be used for passing parameters; when no
more registers are available, the remaining parameters are passed on the stack. In
addition, the parameters are passed on the stack in the following cases:

e Structures—structs, unions, and classes, if larger than 4 bytes
e Unnamed parameters to variable length functions, in other words functions
declared as foo(parami, . . .), for instance print£.

Hidden parameters

In addition to the parameters visible in a function declaration and definition, there can
be hidden parameters:

e If the function returns a structure, the memory location where to store the
structure is passed as an extra parameter. Notice that it is always treated as the first
parameter.

e If the function is a non-static Embedded C++ member function, then the this
pointer is passed as the first parameter (but placed after the return structure
pointer, if there is one). The reason for the requirement that the member function
must be non-static is that static member methods do not have a this pointer.

Register parameters

Register parameters use a pool of the following registers: W0-W9, W14.

8- and 16-bit parameters take the first available register, and 24/32-bit parameters take
the first available register pair of WO:W1, W2:W3, W4:W5, W6:W7, Or W8:W9.

8/16-bit values are returned in WO.
24/32-bit values are returned in WO:W1.
40-bit values are returned in A.

64-bit values are returned in WO:W1:W2:W3.

Part I. Using the compiler 3|

Calling convention

dsPIC IAR C/EC++ Compiler
32 Reference Guide

Stack parameters

Stack parameters are stored in the main memory starting at the location pointed to by
the stack pointer. Above the stack pointer (towards high memory) there is free space
that the called function can use. The first stack parameter is stored at the location
pointed to by the stack pointer. The next one is stored at the next location on the stack
that is dividable by two, etc.

:ﬂiﬁtess Free stack memory Stack pointer
4 Parameter 4
Parameter 3
Parameter 2
Parameter |
';mess The caller’s stack frame

Figure 1: Storing stack parameters in memory

RETURNING A VALUE FROM A FUNCTION

The return value of a function, if any, can be scalar (such as integers and pointers),
floating point, or a structure.

Structures

If a structure is returned that is larger than 4 bytes, the caller of the function is
responsible for allocating memory for the return value. A pointer to the memory is
passed as a “hidden” first parameter.

The called function must return the value of the location.

PERMANENT VERSUS SCRATCH REGISTERS

The w10 through W13 registers are permanent registers, while the Wo-w9 and w14
registers are available as scratch registers.

Assembler language interface __o

EXAMPLES

The following section shows a series of examples of declarations and the
corresponding calling convention. The complexity of the examples increase towards
the end.

Example |
Assume that we have the following function declaration:

int addl (int) ;

This function takes one parameter in register W0 and the return value is passed back to
its caller in register Wo.

The following assembler routine is compatible with the declaration; it will return a
value that is one number higher than the value of its parameter:

addl:
ADD #1,W0
RETURN

Example 2

This example shows how structures are passed on the stack. Assume that we have the
following declarations:

struct a_struct { long a; char b; };
int a_function(struct a_ struct x, int y);

The calling function must reserve five bytes on the top of the stack and copy the value
of the struct to that location. The integer parameter y is passed in register W0. The
register the y parameter is passed on is dependent on the size of the default memory
pointer.

Write an empty function with correct parameter and generate an assembly file as
skeleton code.
MONITOR FUNCTIONS

A monitor function causes interrupts to be disabled during execution of the function.
At function entry, the interrupt status is saved and interrupts are disabled. At function
exit, the original interrupt status is restored.

For additional information, see __monitor, page 106.

Part I. Using the compiler 33

Calling functions

Calling functions

dsPIC IAR C/EC++ Compiler
34 Reference Guide

ASSEMBLER INSTRUCTIONS USED FOR CALLING
FUNCTIONS

This section presents the assembler instructions that can be used for calling and
returning from functions on the dsPIC microcontroller.

CALL label

This is CALL, the most commonly used assembler instruction for calling functions.
The location that the called function should return to (i.e. the location immediately
after this instruction) is stored on the stack.

SPECIAL FUNCTION TYPES

In this section we will describe the special function type interrupt. The runtime
environment that is generated is also described. When writing these special functions
in assembler language, you must explicitly provide a similar runtime environment.

Interrupt functions
In the dsPIC microcontroller, when an interrupt occurs, the following happens:

e PC is stored on the stack along with the lower byte of the Status register

e PC is set to the value stored in the interrupt vector

e Registers used by the function are stored on the stack. This includes the wo-w14,
A, B, and SFR registers that are associated with the DO and REPEAT instructions, as
well as the SFR CORCON.

Other SFR registers used by the function, or the functions called by the function, must
be saved by the user.

If an interrupt for vector 0x60, for example, occurs, the processor will start to execute
code at address 0x60. We denote the memory area that is used as start locations for
interrupts, the interrupt vector table. The content of the interrupt vector is normally a
branch instruction jumping to the interrupt routine.

When an interrupt function with a vector is defined in C, the dsPIC IAR C/EC++
Compiler will generate both the code for the function and a small piece of code that
will be placed in the interrupt vector table.

Assembler language interface __o

Runtime model attributes

This section introduces the concept of runtime attributes, a mechanism designed to
prevent modules that are not compatible from being linked together into an
application.

A runtime attribute is a pair constituted of a named key and its corresponding value.
Two modules can only be linked together if they have the same value for each key that
they both define.

There is one exception: if the value of an attribute is *, then that attribute matches any
value.

Runtime attributes that start with two underscores are reserved to be used by IAR
Systems. Any other runtime attribute is available to application developers to ensure
consistency between modules.

Example

Study the object files below that could (but do not have to) define the two runtime
attributes color and taste:

Object file Color Taste
Filel blue not defined
File2 red not defined
File3 red *

File4 red spicy
File5 red lean

Table 6: Example of runtime model attributes

In this case Filel cannot be linked with any of the other files, since the runtime
attribute color does not match. Also, File4 and File5 can not be linked together
since the taste runtime attribute does not match.

On the other hand, File2 and File3 can be linked with each other and with either
File4 or File5, but not both.

SPECIFYING RUNTIME ATTRIBUTES

Runtime attributes can be specified for a module written in assembler language by
using the RTMODEL directive.

Example

RTMODEL color, red

Part I. Using the compiler 35

Calling assembler routines from C

PREDEFINED RUNTIME ATTRIBUTES

The following table shows the runtime model attributes that are available for the
dsPIC IAR C/EC++ Compiler. These can be included in assembler code or in mixed
C or Embedded C++ and assembler code, and will at link time be used by XLINK to
ensure consistency between modules.

runtime model attribute Value Description

__rt version n This runtime key is always present in all modules
generated by the dsPIC IAR C/EC++ Compiler. If a
major change in the runtime attribute scheme
occurs, the value of this key changes

__data_model sorl Reflects the data model option this module is
intended to be used together with.

__double_size 32 Sets the double size to 32 bits

__long double_size 64 Sets the double size to 64 bits

Table 7: Runtime model attributes

The easiest way to find the proper settings for the RTMODEL directive is to compile a
C or Embedded C++ module and examine the list file.

If you are using assembler routines in the C or Embedded C++ code, refer to the
chapter Assembler directives in the dsPIC IAR Assembler Reference Guide.

Calling assembler routines from C

dsPIC IAR C/EC++ Compiler
36 Reference Guide

An assembler routine that is to be called from C must:

e Conform to the calling convention described on page 30

e Have a PUBLIC entry-point label

e Be declared as external before any call, to allow type checking and optional
promotion of parameters, as in the following examples:

extern int foo(void)
or
extern int foo(int i, int j)

One way of fulfilling these requirements, is to create a code skeleton in C, compile it,
and study the assembler list file.

Assembler language interface __o

CREATING SKELETON CODE

The recommended way to create an assembler language routine with the correct
interface is to start with an assembler language source created by the C compiler.
Notice that you must create a skeleton for each function prototype.

The following example shows how to create skeleton code to which you can easily add
the functional body of the routine. The skeleton source only needs to declare the
variables required and perform simple accesses to them.

Example

In this example, the assembler routine takes an integer and a double, and then
returns a char:

int globlInt;
double globDouble;

int func(int argl, double arg2)

{
int locInt = argl;
globInt = argl;
globDouble = arg2;
return locInt;

}

void main (void)

{

int locInt = globlInt;
globInt = func(locInt, globDouble) ;

}

Note: A low optimization level is used when compiling the code to show local and
global variable access. If a higher level of optimization is used, the required references
to local variables could be removed during the optimization. The actual function
declaration is not changed by the optimization level.

In the IAR Embedded Workbench, specify list options on file level. Select the file in
the Project window. Then choose Project>Options. In the ICCDSPIC category,
select Override inherited settings. Deselect QOutput list file and instead select the
Qutput assembler file option and its suboption Include source. Also, be sure to
specify a low level of optimization.

@ Use the following options to compile the skeleton code:

iccdspic shell -1A . -s3

Part I. Using the compiler 37

Calling assembler routines from C

The -1a option creates an assembler language output file including C or Embedded
C++ source lines as assembler comments. The . (period) specifies that the assembler
file should be named in the same way as the C or Embedded C++ module, i.e. shell,
but with the filename extension s59.

The result is the assembler source file shell.s59, which contains the declarations,
function call, function return, and variable accesses.

Viewing the output file
The output file contains the following important information:

The calling conventions

The return values

The global variables

The function parameters

How to create space on the stack (auto variables)

The following list shows an example of an assembler output file with source
comments. The compiler option used to generate this particular list file example was
-s3. Note that the first parameter uses the first available parameter register Wo. The
second parameter is passed in the first available register pair; W2, W3.

NAME shell

RTMODEL "__data model", "1"
RTMODEL "__double_size", "32"
RTMODEL "__long_double_size", "32"
RTMODEL "_rt version", "1"

RSEG CSTACK:DATA:NOROOT (1)

EXTERN ~_ INIT MEM 2z~
EXTERN ~?CLDSPIC_1_00_L00"

PUBLIC func

FUNCTION func, 0203H
LOCFRAME CSTACK, 2, STACK
PUBLIC globDouble

PUBLIC globInt

PUBLIC main

FUNCTION main, 021a03H
LOCFRAME CSTACK, 2, STACK

RSEG MEM_Z:DATA:NOROOT (1)
// C:\src\dspic\test\shell.c
// 1 int globInt;
globInt:

dsPIC IAR C/EC++ Compiler
38 Reference Guide

Assembler language interface __o

DS 2
REQUIRE > INIT MEM Z°

RSEG MEM_Z:DATA:NOROOT (1)

// 2 double globDouble;
globDouble:

DS 4

REQUIRE ~_ INIT MEM Z°
// 3

RSEG CODE:CODE:NOROOT (2)

// 4 int func(int argl, double arg2)
func:

REQUIRE ~?CLDSPIC_1 00_LO0OO"

// 5 {
; * Stack frame (at entry) *
; Param size: 0
; Return address size: 4
; Saved register size: 0
; Auto size: 0
// 6 int locInt = argl;
MOV Wo, Wl
// 7 globInt = argl;
MOV W0,globInt
// 8 globDouble = arg2;
MOV W2,globDouble
MOV W3,globDouble+2
// 9 return locInt;
MOV W1l,Wo0
RETURN
// 10}
// 11

RSEG CODE:CODE:NOROOT (2)
// 12 void main(void)
main:
FUNCALL main, func
REQUIRE ~?CLDSPIC_1 00_LO0OO"
// 13 |
; * Stack frame (at entry) *
; Param size: 0
; Return address size: 4
; Auto size: 0
// 14 int locInt = globInt;
MOV globInt, WO
// 15 globInt = func(locInt, globDouble) ;

; Setup parameters for call to function func

Part I. Using the compiler 39

Calling assembler routines from Embedded C++

MOV globDouble, W2
MOV globDouble+2, W3
CALL func
MOV W0,globInt

/] 16}
RETURN
END

// 26 words in segment CODE
// 6 bytes in segment MEM Z
//

// 26 words of CODE memory
// 6 bytes of DATA memory
//

//Errors: none

//Warnings: none

For information about the runtime model attributes used in this example, see the table
Runtime model attributes, page 36.

Calling assembler routines from Embedded C++

dsPIC IAR C/EC++ Compiler
40 Reference Guide

The C calling convention does not apply to Embedded C++ functions. Most
importantly, a function name is not sufficient to identify an Embedded C++ function.
The scope and the type of the function are also required to guarantee type-safe linkage
and to resolve overloading.

Another difference is that non-static member functions get an extra, hidden argument,
the this pointer.

However, when using C linkage, the calling convention conforms to the above
description. An assembler routine may therefore be called from Embedded C++ when
declared in the following manner:

extern "C"

{
}

Memory access layout of non-PODs ("plain old data structures") is not defined and
may change between compiler versions. Therefore, we do not recommend that you
access non-PODs from assembler routines.

int my routine (int x);

To achieve the equivalent to a non-static member function, the implicit pointer has to
be made explicit:

Assembler language interface __o

class X;

extern "C"

{
}

It is possible to “wrap” the call to the assembler routine in a member function. Using
an inline member function removes the overhead of the extra call—provided that
function inlining is enabled:

void doit (X *ptr, int arg);

class X

{
public:

inline void doit (int arg) { ::doit(this, arg); }
}i

Note: Support for C++ names from assembler code is extremely limited. This means
that:

o Assembler list files resulting from compiling EC++ files cannot, in general, be
passed through the assembler.

e Itis impossible to refer to or define EC++ functions that do not have C linkage in
assembler.

Function directives

The function directives are generated by the dsPIC IAR C/EC++ Compiler to pass
information about functions and function calls to the IAR XLINK Linker. These
directives can be seen if you create an assembler list file by using the compiler option
Assembler file (- 1n).

Note: These directives are primarily intended to support static overlay, a feature which
is useful in smaller microcontrollers. The dsPIC IAR C/EC++ Compiler does not use
static overlay, as it has no use for it.

SYNTAX

FUNCTION <labels>,<value>

ARGFRAME <segments>, <size>, <type>
LOCFRAME <segments>, <size>, <type>
FUNCALL <caller>, <callee>

PARAMETERS

label Label to be decared as function.

Part I. Using the compiler 41

Function directives

dsPIC IAR C/EC++ Compiler
42 Reference Guide

value Function information.

segment Segment in which argument frame or local frame is to be stored.
size Size of argument frame or local frame.

type Type of argument or local frame; either STACK or STATIC.
caller Caller to a function.

callee Called function.

DESCRIPTION

FUNCTION declares the 1abel name to be a function. value encodes extra
information about the function.

FUNCALL declares that the function caller calls the function callee. callee can
be omitted to indicate an indirect function call.

ARGFRAME and LOCFRAME declare how much space the frame of the function uses in
different memories. ARGFRAME declares the space used for the arguments to the
function, LOCFRAME the space for locals. segment is the segment in which the space
resides. size is the number of bytes used. type is either STACK or STATIC, for
stack-based allocation and static overlay allocation, respectively.

ARGFRAME and LOCFRAME always occur immediately after a FUNCTION or FUNCALL
directive.

After a FUNCTION directive for an external function, there can only be ARGFRAME
directives, which indicate the maximum argument frame usage of any call to that
function. After a FUNCTION directive for a defined function, there can be both
ARGFRAME and LOCFRAME directives.

After a FUNCALL directive, there will first be LOCFRAME directives declaring frame
usage in the calling function at the point of call, and then ARGFRAME directives
declaring argument frame usage of the called function.

Segments and memory

This chapter introduces the concept of segments and describe the different
segment groups and segment types. It also describes how they correspond to
the memory and function types and how they interact with the runtime
environment. The chapter also contains an overview of the linker command
file, which is used for controlling the placement of segments in memory.

Note that the information in this chapter is conceptual; it is strictly generic and
not related to any particular compiler unless stated otherwise. For
product-specific details, see the linker command file included in your product
package.

The intended readers of this chapter are the systems designers that are
responsible for mapping the segments of the application to appropriate
memory areas of the hardware system.

What is a segment?

A segment is a piece of data or code that should be mapped to a physical location in
memory. The segment could either be placed in RAM or in ROM. Segments that are
placed in RAM do not have any content, they only occupy space.

The compiler has a number of predefined segments for different purposes. Each
segment has a name describing the contents of the segment. In addition, you can
define your own segments.

The IAR XLINK Linker™ is responsible for placing the segments in the physical
memory range in accordance with the rules specified in the linker command file. It is
important to remember that, from the linker's point of view, all segments are equal,
they are simply named parts of memory.

For detailed information about individual segments, see the Segment reference
chapter in Part 2: Compiler reference.
LINKER SEGMENT TYPE

XLINK assigns a segment type to each of the segments. In some cases, the individual
segments may have the same name as the segment type they belong to, for example
CODE. Make sure not to confuse the individual segments with the segment types in
those cases.

XLINK supports a number of other segment types than the ones described below.
However, most of them exist to support other types of microcontrollers.

Part I. Using the compiler 43

Placing segments in memory

By default the compiler uses only the following XLINK segment types:

XLINK segment type Description

CODE Contains executable code, constants and
initializer data

DATA Contains data placed in RAM

Table 8: XLINK segment types

PLACEHOLDER SEGMENTS

The runtime environment of the compiler uses placeholder segments, empty segments
that are used for marking a location in memory. Any type of segment can be used for
placeholder segments.

Placing segments in memory

dsPIC IAR C/EC++ Compiler
44 Reference Guide

The placement of segments in memory is performed by the IAR XLINK Linker. It
uses a linker command file that contains command line options which specify the
locations where the segments can be placed, thereby assuring that your application fits
on the target chip.

Since the chip-specific details are specified in the linker command file and not in the
source code, the linker command file also ensures code portability. Basically, you can
use the same source code with different derivatives just by rebuilding the code using
an appropriate linker command file.

The conf ig directory contains at least one ready-made linker command files. The file
contains the information required by the linker and is ready to be used. If, for example,
your application uses external RAM, you will only need to provide details about the
external RAM memory area. Remember not to change the original file. We
recommend that you make a copy and modify the copy instead.

Notice that the supplied linker command file includes comments explaining the entire
contents.

THE CONTENTS OF THE LINKER COMMAND FILE

In particular, the linker command file specifies:

o The placement of segments
o The stack size
e The heap size used by the IAR DLIB library.

The linker command file contains three different types of XLINK command line
options.

Segments and memory __4

e The CPU used, for example:
-cdspic
This specifies that we are using the dsPIC microcontroller.

e Definitions of constants used later in the file. These are defined using the -D
option.

e The placement directives (the largest part of the linker command file). Segments
can be placed using the -z and - P options. The former will place the segment
parts in the order they are found, whereas the latter will try to rearrange them in
order to make better use of memory. The - P option is useful when the memory
used to place one segment type is not continuous.

CUSTOMIZING A LINKER COMMAND FILE

The examples below show the general principles for how to set up a linker command
file. The target system is assumed to have the following fictitious memory layout:

Range Type
0x2000—0xCFFF ROM
0x20000—0x3FFFF ROM
0x0—0x1FFF RAM
0x10000-0x11FFF RAM

Table 9: Linker command file example

The ROM can be used to store CONST and CODE memory. The RAM memory can
contain segments of DATA type.

The only change you will normally have to make to the supplied linker command file
is to suit the details of the target hardware memory map.
Example |

The following will place the segments MYSEGMENTA and MYSEGMENTB in CODE
memory (that is ROM) in the memory range of 0x2000-0x2FFF.

-Z (CONST) MYSEGMENTA, MYSEGMENTB=2000-2FFF

Two segments of different types can be placed in the same memory area by not
specifying a range for the second segment. In the following example the M\YSEGMENTA
segment is first located in memory. Then the rest of the memory range could be used
by MYCODE.

-Z (CODE) MYSEGMENTA=2000-2FFF
-Z (CODE) MYCODE

Part I. Using the compiler 45

Data segments

Two memory ranges may overlap. This allows segments with different placement
requirements to share parts of the memory space, for example:

-Z (CODE) MYSMALLSEGMENT=2000-20FF
-Z (CODE) MYLARGESEGMENT=2000-2FFF

Even though it is not strictly required, make sure to always specify the end of memory
ranges. If you do this, the IAR XLINK Linker will alert you if your segments do not
fit. If you do not specify the end of memory ranges, you will not be alerted by the
linker. See the IAR Linker and Library Tools Reference Guide for more details.
Example 2

The following example will place the data segment MYDATA in DATA memory
(that is, in RAM) in a fictitious memory range:

-P (DATA)MYDATA=0-1FFF,10000-11FFF

If your application has an additional RAM area in the memory range 0xFOO0-OxF7FF,
you just add that to the original definition:

-P (DATA)MYDATA=0-1FFF, FOO0-F7FF,10000-11FFF

Note the XLINK -P option, which will make efficient use of the memory area.

Data segments

dsPIC IAR C/EC++ Compiler
46 Reference Guide

This section contains descriptions of the segments used for storing the different types
of data: static, stack, heap, and located.
STATIC MEMORY SEGMENTS

Static memory is memory that contains variables that are global or are declared static,
as described in Memory access methods and memory types, page 16.

This section describes how the segment types correspond to segment groups, and the
segments that are part of the segment groups.

Segments and memory __4

Segment naming

The fictitious example started in Customizing a linker command file, page 45, uses the
following memory types:

Memory type Range
sfr 0-0x1FFF
mem 0-O0xXFFFF

Table 10: Memory types

The static memory types in this fictitious example correspond to the following basic
segment groups. The first part of the name of a segment in each segment group
corresponds to the segment keyword:

Segment group First part of name
sfr SFR
mem MEM

Table 11: Segment groups

The variables declared in each of the groups can be divided into the following
categories:

Variables that are initialized to non-zero values

Variables that should be initialized to zero

Variables that are declared as code and therefore can be stored in ROM

Variables defined with the ~_no init keyword, denoting that they should not be
initialized at all.

When an application is started, the cstartup module initializes memory in two
steps:

It clears the memory of the variables that should be initialized to zero

It initializes the non-zero variables by copying a block of ROM to the location of the
variables in RAM.

For each of the segment groups, some of the following segments exist:

Usage Type Suffix
Zero-initialized data DATA Z
Non-zero initialized data DATA I
Initializers for the above CODE ID
Non-initialized data DATA N

Table 12: Segments in segment groups

Part I. Using the compiler 47

Data segments

dsPIC IAR C/EC++ Compiler
48 Reference Guide

The names of the actual segments are NAME _SUFFIX. For example, the segment
MEM_Z contains the mem variables that should be initialized to zero when the system
starts.

Initialized data

The data in the ROM segment with suffix ID is copied to the corresponding I segment
when the system starts.

This works when both segments are placed in continuous memory. However, if one of
the segments is divided into smaller pieces it is important that:

e The other segment is divided in exactly the same way
e Itis legal to read and write the memory that represents the gaps in the sequence.

For example, if the segments are assigned the following ranges, the copy will fail.

SFR_1I 0x1000-0x10FF and 0x1200-0x12FF

SFR_ID 0x4000-0x41FF

However, in the following example the linker will place the content of the segments
in identical order, which means that the copy will work appropriately.

SFR_I 0x1000-0x10FF and 0x1200-0x12FF

SFR_ID 0x4000-0x40FF and 0x4200-0x42FF

The ID segment can, for all segment groups, be placed anywhere in memory, since it
is not accessed using the corresponding access method.
sfr

The SFR segments must be placed in the theoretical memory range 0-0x1FFF. In this
example these segments are placed in the available RAM area 0x0000—-0x1FFF.

The segment SFR_ID can be placed anywhere in memory.

mem

The MEM segments data must be placed in the theoretical memory range 0-0xFFFF,
which is anywhere in this example.

The segment MEM_ID can be placed anywhere in memory.

The linker command file

Segments and memory __4

In this fictitious example the directives for placing the segments in the linker

command file would be:

// The ROM segments
-Z (CODE) SFR_ID,MEM ID=2000-CFFF

// The RAM segments
-Z (DATA)SFR_I,SFR_Z,SFR_N=0-1FFF
-Z (DATA)MEM I,MEM Z,MEM N=10000-11FFF

// Constants

-P (CODE) CONST=2000-CFFF

This gives the following placement of index segments:

DATA

CODE
XMEM
YMEM CONST
XMEM
CSTACK

CODE

SFR
INTVEC

The stack

The stack is used by functions to store variables and other information that is used
locally by functions, as described in the chapter Data storage. It is a continuous block
of memory pointed to by the processor stack pointer register. The cstartup module
initializes the stack pointer to the end of the stack segment called CSTACK.

Part I. Using the compiler 49

Data segments

dsPIC IAR C/EC++ Compiler
50 Reference Guide

The default linker file sets up a constant representing the size of the stack, at the
beginning of the linker file:

-D_CSTACK SIZE=size
Note that the size is written hexadecimally.

At the end of the linker file the actual segment is defined in the memory area available
for the stack:

-Z (DATA) CSTACK+_CSTACK SIZE=start-end

Stack size

The compiler uses the internal data stack, CSTACK, for a variety of user program
operations, and the required stack size depends heavily on the details of these
operations. If the given stack size is too small, the stack will normally overwrite the
variable storage which is likely to result in program failure. If the given stack size is
too large, RAM will be wasted.

Stack types

The dsPIC IAR C/EC++ Compiler supports two types of stacks: the interrupt stack
and the program stack.

The default linker command file contains the following definition:

Stack type Segment name Size in hex Memory area

User stack CSTACK 1000 800-2000

Table 13: Stack types

THE HEAP

The heap contains dynamically allocated data. Initially, the free memory of the heap
will be the memory that is placed in the segment HEAP. This segment is only included
in the application if dynamic memory allocation is actually used.

The size of the heap is defined in much the same manner as the size of the stack:
-D_HEAP SIZE=size
and

-7 (DATA)HEAP+ HEAP SIZE=start-end

Segments and memory __4

LOCATED DATA

A variable that has been explicitly placed at an address, for example by using the
compiler @ syntax, will be placed in the <memtype> A segment. It is used for items
declared as __no_init. The individual segment part of the segment knows its
location in the memory space and it does not have to be specified in the linker
command file.

Code segments

This section contains descriptions of the segments used for storing code and the
interrupt vector table.
STARTUP CODE

The segment ICODE contains code used during system setup. The startup code should
be placed at the location where the chip starts executing code after a reset.

In this example, the following line in the linker command file will place the ICODE
segment at address 0x2000:

-Z (CODE) ICODE=0x2000

NORMAL CODE

Code for normal functions is placed in the CODE segment. Again, this is a simple
operation in the linker command file:

-Z (CODE) CODE=2000-BFFF

EXCEPTION VECTORS

The exception vectors are typically placed in the segment INTVEC.

Embedded C++ dynamic initialization

In Embedded C++, all global objects will be created before the main function is
called. The creation of objects can involve the execution of a constructor.

The DIFUNCT segment contains a vector of addresses that point to initialization code.
All entries in the vector will be called when the system is initialized.

This segment can be placed anywhere in memory, for example:

-Z (CODE) DIFUNCT=0000-1FFFF

Part |. Using the compiler 51

Embedded C++ dynamic initialization

dsPIC IAR C/EC++ Compiler
52 Reference Guide

Runtime environment

This chapter will describe the cstartup file which handles system initialization
and termination. We will present how an application can control what happens
before main is called, either by providing a custom __low_level_init routine,
or by changing the cstartup file.

The standard library uses a small set of low-level input and output routines as
a base for a wide range of I/O routines. This chapter describes how the
low-level routines can be replaced by an application, so that it can use the
standard function to—for example—communicate with the outside world or
providing a memory-based file system.

This chapter also covers the methods used for communicating with the IAR
C-SPY™ Debugger.

The cstartup.s59 file

This section will cover what actions the runtime environment performs during startup
and termination of applications. In the next couple of sections customization is
discussed.

SYSTEM STARTUP
When an application is initialized, a number of steps are performed:

e The stack pointer (SP) is initialized

o The custom-provided function __low level init is called, allowing the
application a chance to perform early initializations

e Static variables are initialized. This includes clearing zero-initialized memory and
copying the ROM image of the RAM memory of the rest of the initialized
variables

e Global Embedded C++ objects are constructed

e The main function is called, which starts the application.

SYSTEM TERMINATION
An application can perform a normal termination in two different ways:

o Return from the main function
o C(Call the exit function.

Part I. Using the compiler 53

__low_level_init

Since the C standard states that the two methods should be equivalent, the cstartup
code calls the exit function if main returns. The parameter passed to the exit
function is the return value of main.

The default exit function is written in C. It calls a small function _exit provided by
the cstartup file.

The exit function will perform the following operations:

e Call functions registered to be executed when the application ends. This includes
Embedded C++ destructors for static and global variables, and functions
registered with the standard C function atexit

e All open files are closed

__exitiscalled

e When _exit is reached the system is stopped. When the application is built in
debug mode, C-SPY stops when it reaches the special code label ?C_EXIT.

An application can also exit by calling the abort function. The default function just
calls __exit in order to halt the system without performing any type of cleanup.

__low _level init

Some applications may need to initialize I/O registers, or omit the default initialization
of data segments performed by cstartup.

You can do this by providing a customized version of the routine

__low_level init, whichis called from cstartup before the data segments are
initialized. The value returned by low level init determines whether data
segments are initialized. If the function returns 0, the data segment will not be
initialized.

A skeleton for this function is supplied in the low _level init.c file, which is
installed with the product.

Note: The file intrinsic.h must be included by low level init.c to assure
correct behavior of the low level init routine.

Customizing cstartup.s59

dsPIC IAR C/EC++ Compiler
54 Reference Guide

The cstartup. s59 file itself is well commented and is not described in detail in this
guide. This section however presents some general techniques used in the file; it
covers some background knowledge that can be useful when modifying the
cstartup.s59 file. and then describes how the customized cstartup.s59 file
could be used.

Runtime environment __¢

MODULES AND SEGMENT PARTS

In order to understand how the cstartup code is designed, it is imperative to have a
clear understanding of modules and segment parts, and how the IAR XLINK Linker™
treats them.

An assembler module starts with a MODULE directive and ends with an ENDMOD
directive. Inside the module a number of segment parts reside. Each segment part
begins with an RSEG directive.

‘When XLINK builds an application, it starts with a small number of modules that have
been declared as root. It then continues to include all modules that are referred from
the already included modules. XLINK then discards unused segment parts.

Segment parts, REQUIRE, and the falling-through trick

The cstartup. s59 file has been designed to use the mechanism described above so
that as little as possible of unused code will be included in the linked application.

For example, every piece of code used for initializing one type of memory is stored in
a segment part of its own. If a variable is stored in a certain memory type, the
corresponding initialization code will be referenced by the code generated by the
compiler and hence included in your application. Should no variables of a certain type
exist, the code is simply discarded.

A piece of code or data is not included if it is not used or referred to with the REQUIRE
assembler directive.

The segment parts of the CSTART module defined in the cstartup. s59 file are
guaranteed to be placed immediately after each other. XLINK will not change the
order of the segment parts or modules since the segments are placed using the - Z
option.

The above lets the cstartup. s59 file specify code in subsequent segment parts and
modules that are designed so that some of the parts may not be included by XLINK.
The following example shows this technique:

MODULE doSomething

RSEG MYSEG : CODE : NOROOT (1) // First segment part.
PUBLIC ?do_something

EXTERN ?end of test

REQUIRE ?end of test

?do_something: // This will be included if someone refers to
// ?do_something. If this is included then
// the REQUIRE directive above ensures that
// the RETURN instruction below is included.

Part |. Using the compiler 55

Customizing cstartup.s59

dsPIC IAR C/EC++ Compiler
56 Reference Guide

RSEG MYSEG : CODE : NOROOT (1) // Second segment part.
PUBLIC ?do_something else

?do_something else:
// This will only be included in the linked
// application if someone outside this function
// refers to or requires ?do_something else

RSEG MYSEG : CODE : NOROOT (1) // Third segment part.
PUBLIC ?end of test

?end_of test:
RETURN // This is included if ?do_something above
// is included.
ENDMOD

CALL FRAME INFORMATION

When debugging an application, the IAR C-SPY Debugger is capable of displaying
the call stack, i.e. the functions that have called the current function. In order to ensure
that the call stack is correctly displayed when executing code written in assembler
language, information about the the call frame must be provided. This is done by use
of the assembler directive CFI. For more information, see the dsPIC IAR Assembler
Reference Guide.

MODIFYING THE CSTARTUP.S59 FILE

Do not modify the cstartup.s59 file unless required by your application. If you
need to modify it, we recommend that you follow the overall procedure for creating a
modified copy of the cstartup.s59 file and adding it to your project.

In the IAR Embedded Workbench

Copy the assembler source file cstartup. s59, which is supplied in the product
directory, to your project directory. Make any required modifications to the copy and
save the file under the same name.

Add the file cstartup.s59 to your project.

Select the option Ignore CSTARTUP in library on the Include page in the XLINK
category of project options. See the dsPIC IAR Embedded Workbench™ IDE User
Guide for additional information.

Rebuild your project.

Runtime environment __¢

@ From the command line

Copy the assembler source file cstartup.s59, which is supplied in the product
directory, to your project directory. Make any required modifications to the copy.

2 Use the assembler option -D to specify the memory and code model symbols, for
example:

adspic cstartup -DMEMORY MODEL=[s|1]
This will create an object module file named Cstartup.r59.

3 Specify the XLINK option -C in front of the name of the library to ignore the
standard Cstartup file. See Linking, page 3. Then link your application.

Input and output

The dsPIC IAR C/EC++ Compiler includes two different sets of runtime libraries,
with different I/O functions.

THE IAR CLIB LIBRARY

The functions putchar and getchar are the fundamental functions through which
C performs all character-based 1/0. For any character-based I/O to be available, you
must provide definitions for these two functions using whatever facilities the
hardware environment provides.

The creation of new I/O routines is based upon the following files:

® putchar.c, which serves as the low-level part of functions such as printf
® getchar.c, which serves at the low-level part of functions such as scant. To
customize getchar . c, use the method described for putchar. c.

Customizing putchar in the IAR Embedded Workbench

The following section describes the procedure for adding a customized version of
putchar to your project:

I Copy putchar. c to your project directory.

2 Make the required additions to the source putchar . c, and save it under the same
name (Or create your own routine using putchar . c as a model).

3 Add the customized putchar. c as a program module to your project.

4 Rebuild your project.

Part |. Using the compiler 57

Input and output

dsPIC IAR C/EC++ Compiler
58 Reference Guide

Customizing putchar from the command line

The following section describes the procedure for replacing the original C library with
a library containing a customized version of putchar:

Make the required additions to the source putchar . c, and save it under the same
name (Or create your own routine using putchar . c as a model).

The code example below shows how memory-mapped 1/O could be used to write to a
memory-mapped I/O-device:

__no_init volatile unsigned char DEV_IO @ address;

int putchar (int outchar)

{

DEV_IO = outchar;
return (outchar);

}

The exact address is a design decision. It can, for example, depend on the selected
processor variant.

Compile the modified putchar using the appropriate processor variant and the
--library module option, for example:

iccdspic putchar --library module
This will create a replacement object module file named putchar.r59.

Note: The code model and/or data model must be the same for putchar as for the
rest of your code.

Test the modified module before installing it in the library by using the -A XLINK
option. Place the following line into your linker command file, before the library
reference:

-A putchar

This causes your version of putchar . r59 to load instead of the one in the 1ibrary
library. For information about the XLINK options, see the IAR Linker and Library
Tools Reference Guide.

Add the new put char module to the appropriate runtime library module, replacing
the original.

Note: Be sure to save your original library file before you overwrite the putchar
module.

For example, to add the new put char module to the correct library, use the following
command:

x1lib

Runtime environment __¢

def-cpu dspic

rep-mod putchar library

exit

The library module 1ibrary will now have the modified putchar instead of the
original one.

def-cpu and rep-mod are abbreviations of the XLIB commands DEFINE-CPU and
REPLACE-MODULES. Module names are case sensitive in XLIB. For additional
information about the IAR XLIB Librarian, see the IAR Linker and Library Tools
Reference Guide.

Note: If you use XLIB to replace the original put char module, you must repeat the
steps described above whenever you change the library, for example when you
upgrade to a new version of the product.

printf and sprintf

The printf and sprintf functions use a common formatter called
_formatted_write. The ANSI standard version of _formatted_write is very
large, and provides facilities not required in many embedded applications. To reduce
the memory consumption, two smaller, alternative versions are also provided in the
standard C library.

_medium_write

The medium_ write formatter has the same functionality as formatted write,
except that floating-point numbers are not supported. Any attempt to use a $ £, %9, %G,
%e, and $E specifier will produce the error:

FLOATS? wrong formatter installed!

_medium write is considerably smaller than formatted write.

_small_write

As for _medium_write, except that it supports only the $%, $d, %o, %$c, $s, and $x
specifiers for integer objects, and does not support field width or precision arguments.
The size of _small_write is 10-15% of the size of _formatted_write.

Specifying the write formatter version

In the linker command files provided with the product, the small write formatter
can be selected with the following line:

-e_small write= formatted write

In the AR XLINK Linker, the full ANSI version is default. To use full ANSI, remove
the line.

Part I. Using the compiler 59

Input and output

dsPIC IAR C/EC++ Compiler
60 Reference Guide

To select _medium write, replace the line with:

-e_medium write= formatted write

Customizing printf

For many embedded applications sprintf is not required, and even print £ with
_small write provides more facilities than are justified considering the amount of
memory it consumes. Alternatively, a custom output routine may be required to
support particular formatting needs and/or non-standard output devices.

For such applications, a highly reduced version of the entire print £ function
(without sprintf) is supplied in source form in the file intwri . c. This file can be
modified to your requirements and the compiled module inserted into the library in
place of the original using the procedure described for putchar; for additional
information, see Customizing putchar from the command line, page 58.

Scanf and sscanf

In a similar way to the printf and sprintf functions, scanf and sscanf use a
common formatter called _formatted_read. The ANSI standard version of
_formatted_readis very large, and provides facilities that are not required in many
embedded applications. To reduce the memory consumption, an alternative smaller
version is also provided in the standard C library.

_medium_read

The medium read formatter has the same functionality as formatted read,
except that floating-point numbers are not supported. medium_read is considerably
smaller than formatted read.

Specifying the read formatter version

In the linker command files provided with the product, the medium_ read formatter
can be selected with the following line:

-e_medium read=_formatted read

In the IAR XLINK Linker, the full ANSI version is default. To use full ANSI, remove
the line.

THE IAR DLIB LIBRARY

This library contains a large number of powerful functions for I/O operations. In order
to simplify adaption to specific hardware, all I/O functions call a small set of primitive
functions, each designed to accomplish one particular task; for example, __open acts
as if it opens a file and __write outputs a number of characters.

y —

Runtime environment __¢

The primitive I/O files are located in the product directory.

1/O function File Description

__close() close.c Close a file.

__lseek() Iseek.c Set the file position indicator.
__open() open.c Open a file.

__read() read.c Read a character buffer.
__readchar() readchar.c Read a character.

__write() write.c Write a character buffer.
__writechar() writechar.c Write a character.

remove() remove.c Remove a file.

rename() rename.c Rename a file.

Table 14: 1/0 files

1/0 functions

The primitive I/O functions are the fundamental functions through which C performs
all character-based I/O. For any character-based I/O to be available, you must provide
definitions for these functions using whatever facilities the hardware environment
provides.

The primitive functions identify I/O streams, such as an open file, with a file
descriptor that is a unique integer. The I/O streams normally associated with stdin,
stdout, and stderr have the file descriptors 0, 1, and 2, respectively.

The default implementation of the primitive I/O functions maps the I/O streams
associated with stdin and stdout to the debugger; all other operations are ignored.

Example

The code in the following example uses memory-mapped I/O to write to an LCD
display.

int __ writechar (int handle, unsigned char c)

{

/* Write only if it is to standard output. */
if (handle == 1)

{

unsigned char * LCD_IO;

LCD_IO = (unsigned char *)address;
* LCD IO = c;
return c;

else

Part |. Using the compiler

61

C-SPY debugger interface

{

return -1;

}
}

C-SPY debugger interface

dsPIC IAR C/EC++ Compiler
62 Reference Guide

The low-level debugger interface is used for communicating between the debugged
application and the debugger itself. The interface is simple: C-SPY will place
breakpoints on certain assembler labels in the application. When code located at the
special labels is about to be executed, C-SPY will be notified and can perform an
action.

THE DEBUGGER TERMINAL I/O WINDOW

When code at the labels ?C_PUTCHAR, ?C_VIRTUAL_ IO, and ?C_GETCHAR are
executed, data will be sent to or read from the debugger window.

For the 2C_PUTCHAR routine, one character is taken from the output stream and
written. If everything goes well, the character itself is returned, otherwise -1 is
returned.

When the label ?C_GETCHAR is reached, C-SPY returns the next character in the input
field. Should no input be given, C-SPY waits until the user has typed some input and
pressed the Return key.

To make the Terminal I/O window available, the application must be linked with the
XLINK option Debug info with terminal I/O selected; see the dsPIC IAR Embedded
Workbench™ IDE User Guide.

Termination

The debugger stops executing if the execution of the application reaches the special
label ?C_EXIT.

Efficient coding techniques

This chapter provides hints on how to write efficient code, an overview of
Embedded C++, and information about the settings required to make object
files compatible and thus linkable.

Programming hints

This section contains recommendations on how to write efficient code for the dsPIC
microcontroller.

OPTIMIZING FOR SIZE OR SPEED

The dsPIC IAR C/EC++ Compiler allows you to generate code that is optimized either
for size or for speed, at a selectable optimization level. Both compiler options and
#pragma directives are available for specifying the preferred type and level of
optimization:

o The chapter Compiler options in Part 2: Compiler reference contains reference
information about the following command line options, which are used for
specifying optimization type and level: - -no _code motion, --no_cse,
--no_inline, --no_unroll, -s[3|6|9],and -z [3]6]9].

Refer to the dsPIC IAR Embedded Workbench™ IDE User Guide for information
about the compiler options available in the IAR Embedded Workbench.

e Refer to #pragma optimize, page 114, for information about the #pragma
directives that can be used for specifying optimization type and level.

Normally you would use the same optimization level for an entire project or file, but
the #pragma optimize directive allows you to fine-tune the optimization for a
specific code section, for example a time-critical function.

Optimization hints include the following:

e Sensible use of the memory attributes (see the chapter Extended keywords) can
improve the speed and reduce the code size in critical applications.

e Small local functions may be inlined by the compiler if declared static, which
allows further optimizations. This feature can be turned off with the
--no_inline option. See page 95 for information about this option.

® Module-local variables (i.e. variables declared static) are preferred over global
variables.

e Avoid taking the address of local and static variables.

e Avoid using inline assembler. Instead, try writing the code in C or Embedded
C++, use intrinsic functions, or write a separate assembler module.

Part I. Using the compiler 63

Module compatibility

The purpose of optimization is either to reduce the code size or to improve the
execution speed. Speed optimization alternatives sometimes also reduce the code size.

A high level of optimization will result in increased compile time and may also make
debugging more difficult since it will be less clear how the generated code relates to
the source code. We therefore recommend that you use a low optimization level
during the development phase of your project, and a high optimization level for the
release version.

SAVING STACK SPACE AND RAM MEMORY

Avoid long call chains and recursive functions in order to save stack space.
Declare variables with a short life span as auto variables. When the life spans for
these variables end, they will be popped from the stack and the previously
occupied memory can than be reused. Globally declared variables will occupy
data memory during the whole program execution. Be careful with auto variables,
though, as the stack size can exceed its limits.

Avoid passing large non-scalar parameters; in order to save stack space, you
should instead pass them as pointers.

USING EFFICIENT DATA TYPES

When declaring functions, use prototypes. They allow the compiler to generate
efficient code and provide type checking of parameters.

Floating-point types are ineffective. If possible, try to use integers instead. If you
have to use floating-point types, notice that 32-bit floats are more efficient than
64-bit type doubles.

Using bitfields larger than 1 bit generates code that is both larger and slower than
if non-bitfield integers were used.

Module compatibility

dsPIC IAR C/EC++ Compiler
64 Reference Guide

When building an application, the following options should be the same for all
modules:

Processor option (-v)
Data model (--data_model)
Double size (--64bit_doubles)

!I!I!I!I!qul

Part 2: Compiler
reference

This part of the dsPIC IAR C/EC++ Compiler Reference Guide contains the
following chapters:

e Data representation

e Segment reference

o Compiler options

e Extended keywords

e #pragma directives

o Predefined symbols

e Intrinsic functions

e Library functions

o Diagnostics.

[]

65

66

[
Data representation
This chapter describes the data types, pointers, and structure types supported
by the dsPIC IAR C/EC++ Compiler.

See the chapter Efficient coding techniques for information about which data
types and pointers provide the most efficient code.

Fundamentals

There are some basic facts that you need to know before you can use the dsPIC IAR
C/EC++ Compiler with ease.

ALIGNMENT

The alignment of a data object controls how it can be stored in memory. Objects with
alignment 2 must for example be stored at an address dividable by 2. The reason for
alignment is that the dsPIC microcontroller can access 2-byte objects using one
assembler instruction only when the object is stored at such addresses.

BYTE ORDER

The dsPIC microcontroller stores data in memory using the Little Endian method. This
means that the lowest byte is stored at the lowest address in memory.

Data types

The dsPIC IAR C/EC++ Compiler supports all ISO/ANSI C basic data types. Signed
variables are stored in two’s complement form.

INTEGER TYPES

The following table gives the size and range of each C/EC++ integer data type:
Data type Size Range Alignment

signed char 8 bits -128 to 127 |

unsigned char 8 bits 0 to 255 |

int, short 16 bits -32768 to 32767 2

unsigned int, unsigned short, 16 bits 0 to 65535 2

wchar_t

Table 15: Integer types

Part 2. Compiler reference

67

Data types

dsPIC IAR C/EC++ Compiler
68 Reference Guide

Data type Size Range Alignment
long 32bits -23 02301 2
unsigned int, unsigned long 32 bits 0to 2321 2
long long 40bits -23%t0 2% 2
unsigned long long 40 bits 0 to 240-| 2

Table 15: Integer types

Enum type

The enum keyword creates each object with the shortest signed or unsigned integer
type required to contain its value.

Char type

The char type is by default unsigned in the compiler, but the - -char_is signed
compiler option allows you to make it signed. Notice, however, that the library is
compiled with char types as unsigned.

Bitfields

In ISO/ANSIC, int and unsigned int can be used as base type for integer
bitfields. In the dsPIC IAR C/EC++ Compiler, any integer type can be used as base
type.

Bitfields in expressions will have the same data type as the integer base type.
By default the dsPIC IAR C/EC++ Compiler places bitfield members from the least
significant to the most significant bit in the container type. By using the directive

#pragma bitfields=reversed the bitfield members are placed from the most
significant to the least significant bit.

FLOATING-POINT TYPES

Floating-point values are represented by 32- and 64-bit numbers in standard IEEE
format. The ranges and sizes for the different floating-point types are:

Type Range (+/-) Decimals Exponent Mantissa
float +1.18E-38 to +3.39E+38 7 8 23
double +2.23E-308 to +1.79E+308 15 Il 52

Table 16: Floating-point types

Double can be either 32 or 64 bits in size, depending on the --64bit doubles
command line option.

Data representation 4

32-bit floating-point format

The memory layout of 4-byte floating-point numbers is:

3130 2322 0
|S| Exponent Mantissa

The value of the number is:
(-1)8 % p(Bxponent-127) 4 1 Mantissa

The precision of the float operators (+, -, *, and /) is approximately 7 decimal digits.
64-bit floating-point format

The memory layout of 8-byte floating-point numbers is:

6362 52 51 0
|S| Exponent Mantissa

The value of the number is:

(_1)8 * 2(Exponent—1023) * 1.Mantissa

The precision of the float operators (+, -, *, and /) is approximately 15 decimal digits.

Special cases
For both 32-bit and 64-bit floating-point formats:

e Zero is represented by zero mantissa and exponent. The sign bit signifies positive
or negative zero.

e Infinity is represented by setting the exponent to the highest value and the
mantissa to zero. The sign bit signifies positive or negative infinity.

e Not a number (NaN) is represented by setting the exponent to the highest positive
value and the mantissa to a non-zero value. The value of the sign bit is ignored.

e Denormalized numbers are used to represent values smaller than what can be
represented by normal values. The drawback is that the precision will decrease
with smaller values. The exponent is set to O to signify that that the number is
denormalized even though the number is treated as the exponent would have been
1. Unlike normal numbers, denormalized numbers do not have an implicit 1 as
MSB of the mantissa. The value of a denormalized number is:

(-1)S * 2(1-BIAS) * 0.Mantissa

where BIAS is 127 and 1023 for 32-bit and 64-bit floats, respectively.

Part 2. Compiler reference 69

Pointers

Pointers

The dsPIC IAR C/EC++ Compiler has six basic types of pointers: sfr, xmem, ymem,
mem, constptr, and ptr.

SIZE

The sfr, xmem, ymem, and mem pointers are 2 bytes, while the constptr and ptr
pointers are 3 bytes.

CASTING
Casts between pointers have the following characteristics:

e Casting a value of an integer type to a pointer of a larger type is performed by zero
extension.

e Casting a pointer type to a smaller integer type is performed by truncation.

e Casting data pointers to function pointers and vice versa is illegal.

e Casting function pointers to integer types would give an undefined result.

size_t

size_t is the unsigned integer type required to hold the maximum size of an object.
In the dsPIC IAR C/EC++ Compiler, the size of size t is 32 bits.

ptrdiff_t

ptrdiff t isthe type of the signed integer required to hold the difference between
two pointers to elements of the same array. In the dsPIC IAR C/EC++ Compiler, the
size of ptrdiff t is 32 bits.

Structure types

dsPIC IAR C/EC++ Compiler
70 Reference Guide

Structure members are stored sequentially in the order in which they are declared: the
first member has the lowest memory address.

ALIGNMENT

Both a struct and a union inherits the aligment requirements of its members. In
addition, the size of a struct is adjusted to allow arrays of aligned structure objects.
GENERAL LAYOUT

Members of a struct (fields) are always allocated in the order given in the
declaration. The members are placed in memory according to the given alignment
(offsets).

Data representation __4

For example:

struct
short s; /* stored in byte 0 and 1 */
char c¢; /* stored in byte 2 */
long 1; /* stored in byte 4, 5, 6, and 7 */
char c2; /* stored in byte 8 */

}os;

The following diagram shows the layout in memory:

s.s s.C pad sl s.c2 pad

— 2 bytes—| 1 byte> 1 byte > 4 bytes 1 byte | 3 bytes

The alignment of the struct is 4 bytes and its size is 12 bytes.

Data types in Embedded C++

In Embedded C++, all plain C data types are represented in the same way as described
earlier in this chapter. However, if any Embedded C++ features are used for a type, no
assumptions can be made concerning the data representation. This means, for
example, that it is not legal to write assembler code that accesses class members.

Part 2. Compiler reference 7|

Data types in Embedded C++

dsPIC IAR C/EC++ Compiler
72 Reference Guide

Segment reference

The dsPIC IAR C/EC++ Compiler places code and data into named segments
which are referred to by the IAR XLINK Linker™. Details about the segments
are required for programming assembler language modules, and are also useful
when interpreting the assembler language output from the compiler.

For information about how to define segments in the linker command file, see
Customizing a linker command file, page 45.

Summary of segments

The following table lists the segments that are available in the dsPIC IAR C/EC++
Compiler. Notice that located denotes absolute location using the @ operator or the
#pragma location directive.

Segment Description

CODE Holds the user program code.

CONST Holds the constants and string literals placed in code.

CSTACK Holds the data stack.

DIFUNCT Holds pointers to constructor blocks that should be executed by cstartup
before main is called.

HEAP Holds the heap data used by malloc and free.

ICODE Holds the startup code.

INTVEC Contains the reset and interrupt vectors.

MEM_A Holds located __mem variables.

MEM_I Holds initialized ___mem variables.

MEM_ID Holds initializer data for initialized __mem variables.

MEM_N Holds _ no_init__mem variables.

MEM_Z Holds zero-initialized __mem variables.

RCODE Holds the library code.

SFR_A Holds located __ sfr variables.

SFR_I Holds initialized __ sfr variables.

SFR_ID Holds initializer data for initialized __sfr variables.

SFR_N Holds _ no_init__ sfr variables.

SFR_Z Holds zero-initialized __ sfr variables.

Table 17: Segment summary

Part 2. Compiler reference

73

Descriptions of segments

Segment Description

XMEM_A Holds located __ xmem variables.

XMEM_I Holds initialized __ xmem variables.

XMEM_ID Holds initializer data for initialized __xmem variables.
XMEM_N Holds _ no_init_ _ xmem variables.

XMEM_Z Holds zero-initialized __xmem variables.

YMEM_A Holds located __ ymem variables.

YMEM_I Holds initialized __ ymem variables.

YMEM_ID Holds initializer data for initialized __ymem variables.
YMEM_N Holds _ no_init__ymem variables.

YMEM_Z Holds zero-initialized __ ymem variables.

Table 17: Segment summary (Continued)

Descriptions of segments

dsPIC IAR C/EC++ Compiler
74 Reference Guide

CODE

CONST

The following section gives reference information about each segment.

The linker segment type CODE, or DATA indicate whether the segment should be
placed in ROM or RAM memory areas.

This chapter mentions many of the extended keywords. For detailed information about
the keywords, see the chapter Extended keywords.

Holds user program code.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

Holds the constants and string literals placed in code.

Linker segment type

CODE

Segment reference __4

Memory range

This segment can be placed anywhere in memory.

CSTACK Holds the internal data stack. This segment and its length are normally defined in the
linker command file with the following command:

-Z (DATA) CSTACK+nn=start

where nn is the size of the stack specified as a hexadecimal number and start is the
first memory location.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory.

DIFUNCT Holds the dynamic initialization vector used by Embedded C++.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

HEAP Holds dynamically allocated data.

This segment and its length is normally defined in the linker command file by the
command:

-Z (DATA) HEAP+nn=start

where nn is the length and start is the location.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory.

Part 2. Compiler reference 75

Descriptions of segments

ICODE Holds the start-up code.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

INTVEC Holds the interrupt vector table generated by the use of the _interrupt extended
keyword.

Linker segment type

CODE

Memory range

Must start at address 0.

MEM_A Holds located _ mem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory.

MEM_I Holds initialized _mem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory.

dsPIC IAR C/EC++ Compiler
76 Reference Guide

MEM_ID

MEM_N

MEM_Z

RCODE

Segment reference __4

Holds initializer data for initialized __mem variables.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

Holds no init _mem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory.

Holds zero-initialized __mem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory.

Holds library code.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

Part 2. Compiler reference 77

Descriptions of segments

dsPIC IAR C/EC++ Compiler
78 Reference Guide

SFR_A

SFR_I

SFR_ID

SFR_N

Holds located __sfr variables.

Linker segment type

DATA

Memory range

0-1FFF

Holds initialized __sfr variables.

Linker segment type

DATA

Memory range

0-1FFF

Holds initializer data for initialized __ sfr variables.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

Holds no init _sfr variables.

Linker segment type

DATA

Memory range

0-1FFF

SFR_Z

XMEM_A

XMEM_T

XMEM_ID

Segment reference __4

Holds zero-initialized __ sfr variables.

Linker segment type

DATA

Memory range

0-1FFF

Holds located __xmem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in ymem.

Holds initialized __xmem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in ymem.

Holds initializer data for initialized __xmem variables.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

Part 2. Compiler reference 79

Descriptions of segments

dsPIC IAR C/EC++ Compiler
80 Reference Guide

XMEM_N

XMEM_Z

YMEM_A

YMEM_ T

Holds no init _xmem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in ymem.

Holds zero-initialized __xmem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in ymem.

Holds located __ymem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in xmem.

Holds initialized __ymem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in xmem.

Segment reference __4

YMEM_ID Holds initializer data for initialized __ymem variables.

Linker segment type

CODE

Memory range

This segment can be placed anywhere in memory.

YMEM N Holds __no_init__ymem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in xmem.

YMEM_Z Holds zero-initialized __ymem variables.

Linker segment type

DATA

Memory range

This segment can be placed anywhere in memory, except in xmem.

Part 2. Compiler reference 81

Descriptions of segments

dsPIC IAR C/EC++ Compiler
82 Reference Guide

Compiler options

This chapter explains how to set the compiler options from the command line,
and gives detailed reference information about each option.

Refer to the dsPIC IAR Embedded Workbench™ IDE User Guide for information
about the compiler options available in the IAR Embedded Workbench and
how to set them.

Setting compiler options
To set compiler options from the command line, include them on the command line
after the i ccdspic command, either before or after the source filename. For
example, when compiling the source prog. c, use the following command to generate
an object file with debug information:

iccdspic prog --debug

Some options accept a filename, included after the option letter with a separating
space. For example, to generate a listing to the file 1ist.1st:

iccdspic prog -1 list.lst

Some other options accept a string that is not a filename. The string is included after
the option letter, but without a space. For example, to define a symbol:

iccdspic prog -DDEBUG=1

Generally, the order of options on the command line, both relative to each other and
to the source filename, is not significant. There is, however, one exception: when you
use the -I option, the directories are searched in the same order as they are specified
on the command line.

Note that a command line option has a short name and/or a long name:

e A short option name consists of one character, with or without parameters. You
specify it with a single dash, for example -e.

e A long name consists of one or several words joined by underscores, and it may
have parameters. You specify it with double dashes, for example
--char_is_signed.

SPECIFYING PARAMETERS

When a parameter is needed for an option with a short name, it can be specified either
immediately following the option or as the next command line argument.

Part 2. Compiler reference 83

Setting compiler options

dsPIC IAR C/EC++ Compiler
84 Reference Guide

For instance, an include file path of \usr\include can be specified either as:
-I\usr\include

or as

-I \usr\include

Note: / can be used instead of \ as directory delimiter.

Additionally, output file options can take a parameter that is a directory name. The
output file will then receive a default name and extension.

When a parameter is needed for an option with a long name, it can be specified either
immediately after the equal sign (=) or as the next command line argument, for
example:

--diag_suppress=Pe0001
or
--diag_suppress Pe0001

The option --preprocess is, however, an exception as the filename must be
preceded by space. In the following example comments are included in the
preprocessor output:

--preprocess=C prog

Options that accept multiple values may be repeated, and may also have
comma-separated values (without space), for example:

--diag_warning=Be0001,Be0002

The current directory is specified with a period (.), for example:

icecdspic prog -1

A file specified by ' - ' is standard input or output, whichever is appropriate.

Note: When an option takes a parameter, the parameter cannot start with a dash (-)
followed by another character. Instead you can prefix the parameter with two dashes;
the following example will create a list file called - r:

icecdspic prog -1 ---r

SPECIFYING ENVIRONMENT VARIABLES

Compiler options can also be specified in the QCCDSPIC environment variable. The
compiler automatically appends the value of this variable to every command line, so
it provides a convenient method of specifying options that are required for every
compilation.

Compiler options __4

The following environment variables can be used with the dsPIC IAR C/EC++

Compiler:

Environment variable Description

C_INCLUDE Specifies directories to search for include files; for example:
C_INCLUDE=c:\program files\iar systems\embedded
workbench 3\dspic\inc;c:\headers

QCCDSPIC Specifies command line options; for example: QCCDSPIC=-IA

asm.Ist -z9

Table 18: Environment variables

See the dsPIC IAR Assembler Reference Guide for information about the environment
variables that can be used by the dsPIC IAR Assembler. See the JAR Linker and
Library Tools Reference Guide for information about the environment variables that
can be used by the IAR XLINK Linker™ and the IAR XLIB Librarian™.

ERROR RETURN CODES

The dsPIC IAR C/EC++ Compiler returns status information to the operating system
which can be tested in a batch file.

The following command line error codes are supported:

Code Description

0 Compilation successful, but there may have been warnings.

| There were warnings, provided that the option --warnings_affect_exit_code was

used.

2 There were non-fatal errors or fatal compilation errors making the compiler
abort.

3 There were crashing errors.

Table 19: Error return codes

Options summary

The following table summarizes the compiler command line options:

Command line option Description
--char_is_signed ‘char’ is ‘signed char’

- -cpu={0|1} Processor variant
-Dsymbol [=value] Defines preprocessor symbols
--data_model=s|1 Data model

Table 20: Compiler options summary

Part 2. Compiler reference 85

Options summary

Command line option Description

--debug Generates debug information
--diag_error=tag, tag, ... Treats these as errors
--diag_remark=tag, tag, ... Treats these as remarks
--diag_suppress=tag, tag, . .. Suppresses these diagnostics
--diag_warning=tag, tag, ... Treats these as warnings

-e Enables language extensions
--ec++ Enables Embedded C ++ syntax
-f filename Extends the command line
-Ipath Includes file path
--IARStyleMessages Generates error messages in the IAR

standard format
-l[c|C|a|A] [N] [H] filename Creates list file
--library module Makes library module

--migration preprocessor_ extensions Extends the preprocessor

--module name=name Sets object module name

--no_code_motion Disables code motion optimization

--no_cse Disables common sub-expression
elimination

--no_inline Disables function inlining

--no_unroll Disables loop unrolling

--no_warnings Disables all warnings

-o filename Sets object filename

--only_ stdout Uses standard output only

--preprocess=[c] [n] [1] filename Preprocessor output to file

--public_equ symbol[=valuel Defines a global named assembler label

-r Generates debug information

--remarks Enables remarks

--require prototypes Verifies that prototypes are proper

-s[3]6]9] Optimizes for speed

--silent Sets silent operation

--strict_ansi Enables strict ISO/ANSI

Table 20: Compiler options summary (Continued)

dsPIC IAR C/EC++ Compiler
86 Reference Guide

Compiler options __4

Command line option Description

-v{o]1} Processor variant

--warnings_affect_exit code Warnings affect exit code

--warnings_are_errors Treats all warnings as errors

-z [3]6]9] Optimizes for size

--64bit_doubles Sets size of doubles to 64 bits instead of
32

Table 20: Compiler options summary (Continued)

Descriptions of options

The following section gives detailed reference information about each compiler
option.

--char_is signed --char_is_ signed

By default the compiler interprets the char type as unsigned char. The
--char is signed option causes the compiler to interpret the char type as
signed char instead. This can be useful when you, for example, want to maintain
compatibility with another compiler.

Note: The runtime library is compiled without the - -char is signed option. If
you use this option, you may get type mismatch warnings from the IAR XLINK
Linker since the library uses unsigned chars.

This option corresponds to the Treat ‘char’ as ‘signed char’ option in the
ICCDSPIC category in the IAR Embedded Workbench.

--cpu --cpu={0]|1}
-v

Use this option to select the processor for which the code is to be generated. The
following dsPIC cores are available:

Processor option Supported dsPIC core
-v0 or --cpu=0 DSP instructions
-vlor --cpu=1 No DSP instructions

Note that to specify the processor, you can use either the - - cpu option or the -v
option. For additional information, see Processor variant, page 9.

Part 2. Compiler reference 87

Descriptions of options

--data_model

dsPIC IAR C/EC++ Compiler
88 Reference Guide

This option is related to the Processor variant option in the General category in the
IAR Embedded Workbench.

-Dsymbol [=valuel
-D symbol [=value]

Use this option to define a preprocessor symbol with the name symbo1l and the value
value. If no value is specified, 1 is used.

The option -D has the same effect as a #define statement at the top of the source file:
-Dsymbol
is equivalent to:

#define symbol

Example

You may want to arrange your source to produce either the test or production version
of your program depending on whether the symbol testver was defined. To do this
you would use include sections such as:

#ifdef testver
; additional code lines for test version only
#endif

Then, you would select the version required on the command line as follows:
Production version: iccdspic prog

Test version: iccdspic prog -Dtestver

This option can be used one or more times on the command line.

This option is related to the Preprocessor options in the ICCDSPIC category in the
IAR Embedded Workbench.

--data_model {s|1}

Use this option to select the data model for which the code is to be generated:

Data model Default memory attribute Default data pointer
s (small) ___mem ___mem
1 (large) (default) ___mem __ptr

Table 21: Available data models

If you do not include any of the data model options, the compiler uses the large data
model as default.

Compiler options __4

Note that all modules of your application must use the same data model.

Example
For example, use the following command to specify the large data model:
--data_model 1

To set the equivalent option in the IAR Embedded Workbench, select Large on the
Project>Options>General>Target option page.

--debug, -r --debug
-r

Use the - -debug or the -r option to make the compiler include information required
by C-SPY™ and other symbolic debuggers in the object modules.

Note: Including debug information will make the object files become larger than
otherwise.

This option is related to the Output options in the ICCDSPIC category in the IAR
Embedded Workbench.

--diag_error --diag error=tag, tag, ...
Use this option to classify diagnostic messages as errors. An error indicates a violation
of the C or Embedded C++ language rules, of such severity that object code will not
be generated, and the exit code will not be 0.
Example
The following example classifies warning Pe117 as an error:
--diag_error=Pell?7

This option is related to the Diagnostics options in the ICCDSPIC category in the
IAR Embedded Workbench.

--diag_remark --diag_ remark=tag, tag, ...

Use this option to classify diagnostic messages as remarks. A remark is the least
severe type of diagnostic message and indicates a source code construct that may
cause strange behavior in the generated code.

Part 2. Compiler reference 89

Descriptions of options

--diag_suppress

--diag_warning

dsPIC IAR C/EC++ Compiler
90 Reference Guide

Example
The following example classifies the warning Pe177 as a remark:
--diag_remark=Pel77

This option is related to the Diagnostics options in the ICCDSPIC category in the
IAR Embedded Workbench.

--diag_suppress=tag, tag, ...

Use this option to suppress diagnostic messages.

Example
The following example suppresses the warnings Pe117 and Pel77:
--diag_suppress=Pell7,Pel77

This option is related to the Diagnostics options in the ICCDSPIC category in the
IAR Embedded Workbench.

--diag_warning=tag, tag, . ..

Use this option to classify diagnostic messages as warnings. A warning indicates an
error or omission that is of concern, but which will not cause the compiler to stop
before compilation is completed.

Example

The following example classifies the remark Pe826 as a warning:
--diag_warning=Pe826

This option is related to the Diagnostics options in the ICCDSPIC category in the
IAR Embedded Workbench.

-e

In the command line version of the dsPIC IAR C/EC++ Compiler, language
extensions are disabled by default. If you use language extensions such as
dsPIC-specific keywords and anonymous structs and unions in your source code, you
must enable them by using this option.

Note: The -e option and the - -strict_ansi option cannot be used at the same
time.

For additional information, see IAR language extension overview, page 4.

Compiler options __4

This option is related to the Language options in the ICCDSPIC category in the IAR
Embedded Workbench.

--ec++ --ec++

In the command line version of the dsPIC IAR C/EC++ Compiler, the default
language is C. If you use Embedded C++ syntax in your source code, you must use
this option to set the language the compiler uses to Embedded C++.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCDSPIC>Language. Note that in the IAR Embedded
Workbench, EC++ is enabled by default.

-f -f filename
Reads command line options from the named file, with the default extension xc1.

By default the compiler accepts command parameters only from the command line
itself and the QCCDSPIC environment variable. To make long command lines more
manageable, and to avoid any operating system command line length limit, you use
the - £ option to specify a command file, from which the compiler reads command line
items as if they had been entered at the position of the option.

In the command file, you format the items exactly as if they were on the command line
itself, except that you may use multiple lines since the newline character acts just as a
space or tab character.

Both C and C++ comments are allowed in the file. Double quotes behave like in DOS.

Example
For example, you could replace the command line:

iccdspic prog -r -Dtestver "-Dusername=John Smith"
-Duserid=463760

with
iccdspic prog -r -Dtestver -f userinfo
and the file userinfo.xcl containing:

"-Dusername=John Smith"
-Duserid=463760

Part 2. Compiler reference 91

Descriptions of options

dsPIC IAR C/EC++ Compiler
92 Reference Guide

-I

-IPath

Use this option to specify paths for #include files. This option may be used more
than once on a single command line.

Following is the full description of the compiler’s #include file search procedure:

o If the name of the #include file is an absolute path, that file is opened.
e When the compiler encounters the name of an #include file in angle brackets

such as:
#include <stdio.hs>
it searches the following directories for the file to include:

1 The directories specified with the - I option, in the order that they were
specified.
2 The directories specified using the C_INCLUDE environment variable, if any.

When the compiler encounters the name of an #include file in double quotes
such as:

#include "vars.h"

it searches the directory of the source file in which the #include statement
occurs, and then performs the same sequence as for angle-bracketed filenames.
If there are nested #include files, the compiler starts searching the directory of
the file that was last included, iterating upwards for each included file, searching
the source file directory last. Example:

src.c in directory dir
#include "src.h"

src.h in directory dir\h
#include "io.h"

When dir\exe is the current directory, use the following command for
compilation:

icecdspic ..\src.c -I..\dir\include

Then the following directories are searched for the io.h file, in the following
order:

dir\h Current file.

dir File including current file.

dir\include As specified with the - T option.

Use angle brackets for standard header files like stdio. h, and double quotes for
files that are part of your application.

Compiler options __4

Example
icedspic prog -I\mylibl
Note: Both \ and / can be used as directory delimiters.

This option is related to the Preprocessor options in the ICCDSPIC category in the
IAR Embedded Workbench.

--IARStyleMessages --IARStyleMessages

Use this option to generate error messages in the IAR standard format. The default is
off, which uses the Microchip format.

-1 -1l[c|C|al|a]l [N] [H] filename

By default the compiler does not generate a listing. Use this option to generate a listing
to the file £ilename with the default extension 1st.

The following modifiers are available:

Option modifier Description
a Assembler file
A (N is implied) Assembler file with C or Embedded C++ source as comments

C or Embedded C++ list file
(default) C or Embedded C++ list file with assembler source as comments

No diagnostics in file

m =2 a a

Includes source lines from header files in output. Without this
option only source lines from the primary source file are included.

Table 22: Generating a compiler list file (-1)

Example
To generate a listing to the file 1ist . 1lst, use:
iccdspic prog -1 list

This option is related to the List options in the ICCDSPIC category in the IAR
Embedded Workbench.

--library module --library module

Use this option to make the compiler treat the object file as a library module rather
than as a program module. A program module is always included during linking. A
library module will only be included if it is referenced in your program.

Part 2. Compiler reference 93

Descriptions of options

--migration preprocessor__

extensions

--module_name

dsPIC IAR C/EC++ Compiler
94 Reference Guide

This option is related to the QOutput options in the ICCDSPIC category in the IAR
Embedded Workbench.

--migration preprocessor extensions

Migration preprocessor extensions extend the preprocessor in order to ease migration
of code from earlier IAR compilers. The preprocessor extensions include:

e The availability of floating point in preprocessor expressions.

o The availability of basic type names and sizeof in preprocessor expressions.

e The availability of all symbol names (including typedefs and variables) in
preprocessor expressions.

If you need to migrate code from an earlier [AR C/EC++ Compiler, you may want to
enable these preprocessor extensions.

Note: If you use this option, not only will the compiler accept code that is not standard
conformant, but it will also reject some code that does conform to standard.

Important! Do not depend on these extensions in newly written code. Support for
them may be removed in future compiler versions.

--module_name=name

Normally, the internal name of the object module is the name of the source file,
without a directory name or extension. Use this option to specify an object module
name.

To set the object module name explicitly, use the option - -module name=name, for
example:

iccdspic prog --module name=main

This option is particularly useful when several modules have the same filename, since
the resulting duplicate module name would normally cause a linker error; for example,
when the source file is a temporary file generated by a preprocessor.

Example

The following example—in which %1 is an operating system variable containing the
name of the source file—will give duplicate name errors from the linker:

preproc %$l.c temp.c ; preprocess source,
; generating temp.c
iccdspic temp.c ; module name is

; always 'temp'

To avoid this, use - -module name=name to retain the original name:

Compiler options __4

preproc %$l.c temp.c ; preprocess source,
; generating temp.c
iccdspic temp.c --module name=%1 ; use original source

; name as module name
Note: In the above example, preproc is an external utility.

This option is related to the QOutput options in the ICCDSPIC category in the IAR
Embedded Workbench.

--no_code_motion --no_code motion

Use this option to disable optimizations that move code. These optimizations, which
are performed at optimization levels 6 and 9, normally reduce code size and execution
time. The resulting code may however be difficult to debug.

Note: This option has no effect at optimization level 3.

This option is related to the Code options in the ICCDSPIC category in the AR
Embedded Workbench.

--no_cse - -no_cse
Use - -no_cse to disable common sub-expression elimination.

On optimization levels 6 and 9, the compiler avoids calculating the same expresson
more than once. This optimization normally reduces both code size and execution
time. The resulting code may however be difficult to debug.

Note: This option has no effect at optimization level 3.

This option is related to the Code options in the ICCDSPIC category in the IAR
Embedded Workbench.

--no_inline --no_inline
Use - -no_inline to disable function inlining.

Function inlining means that a simple function, whose definition is known at compile
time, is integrated into the body of its caller to eliminate the overhead of the call.

This optimization, which is performed at optimization level 9, normally reduces the
execution time, but increases the code size. The resulting code may also be difficult to
debug. In certain cases, the code size will decrease when this option is used.

The compiler heuristically decides which functions to inline. Different heuristics are
used when optimizing for speed and size.

Part 2. Compiler reference 95

Descriptions of options

--no_unroll

--no_warnings

dsPIC IAR C/EC++ Compiler
96 Reference Guide

Note: This option has no effect at optimization levels 3 and 6.

This option is related to the Code options in the ICCDSPIC category in the AR
Embedded Workbench.

--no_unroll
Use this option to disable loop unrolling.

The code body of a small loop, whose number of iterations can be determined at
compile time, is duplicated to reduce the loop overhead.

For small loops, the overhead required to perform the looping can be large compared
to the work performed in the loop body.

The loop unrolling optimization duplicates the body several times, reducing the loop
overhead. the unrolled body also opens up for other optimization opportunities, for
example the instruction scheduler.

This optimization, which is performed at optimization level 9, normally reduces
execution time, but increases code size. The resulting code may also be difficult to
debug.

The compiler heuristically decides which loops to unroll. Different heuristics are used
when optimizing for speed and size. This option has no effect at optimization levels 3
and 6.

This option is related to the Code options in the ICCDSPIC category in the IAR
Embedded Workbench.

--no_warnings

By default the compiler issues standard warning messages. Use this option to disable
all warning messages.

This option is related to the Diagnostics options in the ICCDSPIC category in the
IAR Embedded Workbench.

-o filename

Use the -o option to specify a name for the output file. The filename may include a
pathname.

If no object code filename is specified, the compiler stores the object code in a file
whose name consists of the source filename, excluding the path, plus the filename
extension r59.

Compiler options __4

Example

To store the compiler output in a file called obj . r59 in the mypath directory, you
would use:

icedspic prog -o \mypath\obj
Note: Both \ and / can be used as directory delimiters.

This option is related to the Output Directories options in the General category in
the IAR Embedded Workbench.

--only stdout --only stdout

Use this option to make the compiler use stdout also for messages that are normally
directed to stderr.

--preprocess --preprocess=[c] [n] [1l] filename
Use this option to direct preprocessor output to the named file, filename. i.

The filename consists of the filename itself, optionally preceded by a path name and
optionally followed by an extension. If no extension is given, the extension i is used.
In the syntax description above, note that a space is allowed in front of the filename.

The following table shows the mapping of the available preprocessor modifiers:

Command line option Description
--preprocess=c Preserve comments
--preprocess=n Preprocess only
--preprocess=1 Generate #1ine directives

Table 23: Directing preprocessor output to file (--preprocess)

This option is related to the Preprocessor options in the ICCDSPIC category in the
IAR Embedded Workbench.

--public_equ --public_equ symbol[=value]

This option is equivalent to defining a label in assembler language by using the EQU
directive and exporting it using the PUBLIC directive.

Part 2. Compiler reference 97

Descriptions of options

-r, --debug

--remarks

--require prototypes

dsPIC IAR C/EC++ Compiler
98 Reference Guide

-r
- -debug

Use this option to make the compiler include information required by the IAR C-SPY
Debugger and other symbolic debuggers in the object modules.

Note: Including debug information will make the object files become larger than
otherwise.

This option is related to the Output options in the ICCDSPIC category in the IAR
Embedded Workbench.

--remarks

The least severe diagnostic messages are called remarks (see Severity levels, page
139). A remark indicates a source code construct that may cause strange behavior in
the generated code.

By default the compiler does not generate remarks. Use this option to make the
compiler generate remarks.

This option is related to the Diagnostics options in the ICCDSPIC category in the
IAR Embedded Workbench.

--require prototypes

This option forces the compiler to verify that all functions have proper prototypes.
Using this option means that code containing any of the following will generate an
error:

e A function call of a function with no declaration or with a Kernighan & Ritchie
C declaration

e A function definition of a public function with no previous prototype declaration

e An indirect function call through a function pointer with a type that does not
include a prototype.

-s[3]6]9]
Use this option to make the compiler optimize the code for maximum execution speed.

If no optimization option is specified, the compiler will use the speed optimization
-s3 by default. If the - s option is used without specifying the optimization level,
level 3 is used by default. Values other than 3, 6, or 9 are rounded down to the closest
of those numbers, except 0-2, which are rounded up to 3.

Note: The -s and -z options cannot be used at the same time.

Compiler options __4

The following table shows how the optimization levels are mapped:

Option modifier Description

3 Fully debuggable

6 Heavy optimization can make the program flow hard to follow during
debug

9 Full optimization

Table 24: Specifying speed optimization (-s)

This option is related to the Optimization options in the ICCDSPIC category in the
IAR Embedded Workbench.

--silent --silent

By default the compiler issues introductory messages and a final statistics report. Use
--silent to make the compiler operate without sending these messages to the
standard output stream (normally the screen).

This option does not affect the display of error and warning messages.

--strict_ansi --strict_ ansi

By default the compiler accepts a superset of ISO/ANSI C (see the chapter JAR C
extensions). Use --strict_ansi to ensure that the program conforms to the
ISO/ANSI C standard.

Note: The -e option and the --strict ansi option cannot be used at the same
time.

This option is related to the Language options in the ICCDSPIC category in the IAR
Embedded Workbench.

For a list of the predefined symbols, see the chapter Predefined symbols, page 117.

-v -v{o0]|1}
--cpu={0]|1}

Use this option to select the processor variants for which the code is to be generated.
The following dsPIC cores are available:

Processor option Supported dsPIC core
-v0 or --cpu=0 DSP instructions
-vlor --cpu=1 No DSP instructions

Table 25: Mapping of processor options

Part 2. Compiler reference 99

Descriptions of options

--warnings_affect exit code

--warnings_are_errors

dsPIC IAR C/EC++ Compiler
100 Reference Guide

See also Processor variant, page 9.

This option is related to the CPU variant option in the General category in the IAR
Embedded Workbench.

--warnings_affect exit code

By default the exit code is not affected by warnings, only errors produce a non-zero
exit code. With this option, warnings will generate a non-zero exit code.

This option is related to the Diagnostics options in the ICCDSPIC category in the
IAR Embedded Workbench.

--warnings_are_errors

Use this option to make the compiler treat all warnings as errors. If the compiler
encounters an error, no object code is generated. Warnings that have been changed
into remarks are not treated as errors.

Note: Any diagnostic messages that have been reclassified as warnings by the
compiler option - -diag warning or the #pragma diag warning directive will
also be treated as errors when - -warnings_are errors is used.

For additional information, see --diag_warning, page 90, and #pragma diag_warning,
page 112.

To set the equivalent option in the IAR Embedded Workbench, select
Project>Options>ICCDSPIC>Diagnostics.

-z[3]6]9]

Use this option to make the compiler optimize the code for minimum size. If no
optimization option is specified, -z3 is used by default. Values other than 3, 6, or 9
are rounded up to the closest of those numbers, except 10 or above, which are rounded
down to 9.

The following table shows how the optimization levels are mapped:

Option modifier Description

3 Fully debuggable

6 Heavy optimization can make the program flow difficult to follow
during debug

9 Full optimization

Table 26: Specifying size optimization (-z)

Compiler options __4

Note: The -s and -z options cannot be used at the same time.

This option is related to the Optimization options in the ICCDSPIC category in the
IAR Embedded Workbench.

--64bit_doubles --64bit_doubles

Use this option to force the compiler to use 64-bit doubles instead of 32-bit doubles
which is the default.

This option is related to the Target options in the General category in the IAR
Embedded Workbench.

Part 2. Compiler reference 101

Descriptions of options

dsPIC IAR C/EC++ Compiler
102 Reference Guide

Extended keywords

This chapter describes the extended keywords that support specific features
of the dsPIC microcontroller, the general syntax rules for the keywords, and
a detailed description of each keyword.

For information about the address ranges for the different memory areas, see
the chapter Segment reference.

Summary of extended keywords

The following table summarizes the extended keywords that are available to the dsPIC
IAR C/EC++ Compiler:

Extended keyword

Description

Type

__constptr
__func
__interrupt
___intrinsic
__mem
__monitor
__no_init
__ptr

__root
__sfr

__Xmem

__ymem

Const memory attribute

Function pointer attribute

Supports interrupt functions

Reserved for compiler internal use only
Data memory attribute

Supports atomic execution of a function
Supports non-volatile memory

Generic pointer

Ensures that a function or variable is
included in the object code even if unused

Data memory attribute for variables
placed in sfr memory

Data memory attribute for variables
placed in xmem memory

Data memory attribute for variables
placed in ymem memory

Special function type
Function execution

Data storage

Table 27: Extended keywords summary

Using extended keywords

This section covers how extended keywords can be used when declaring and defining
data and functions. The syntax rules for extended keywords are also described.

Part 2. Compiler reference

103

Using extended keywords

dsPIC IAR C/EC++ Compiler
104 Reference Guide

In addition to the rules presented here—to place the keyword directly in the code—the
directives #pragma type attribute and #pragma object_ attribute canbe
used for specifying the keywords. Refer to the chapter #pragma directives for details
about how to use the extended keywords together with #pragma directives.

The keywords and the @ operator are only available when language extensions are
enabled in the dsPIC IAR C/EC++ Compiler.

In the IAR Embedded Workbench, language extensions are enabled by default.
Use the -e compiler option to enable language extensions. See -e, page 90 for
additional information.

DATA STORAGE

The extended keywords that can be used for data can be divided into two groups that
control the following:

e The memory type of objects and pointers (__constptr, mem _sfr,

__xmem, and __ymem).
e Other characteristics of objects (__root and __no_init).

See the chapter Data storage in Part 2: Compiler reference for more information
about memory types.

Syntax

The keywords follow the same syntax as the type qualifiers const and volatile.
The following declarations all place the variable i and j in xmem memory:

__xXmem int i, Jj;
int __xmem i, j;

Notice that the keyword affects all the identifiers.

Pointers

A keyword that is followed by an asterisk (*), affects the type of the pointer being
declared. A pointer to sfr memory is thus declared by:

char __sfr * p;

Notice that the location of the pointer variable p is not affected by the keyword. In the
following example, however, the pointer variable p2 is placed in xmem memory. Like
p, p2 points to a character in sfr memory.

__xmem char __sfr *p2;

Extended keywords __o

Type definitions

Storage can also be specified using type definitions. The following two declarations
are equivalent:

typedef char __ xmem Byte;
typedef Byte *BytePtr;
Byte b;

BytePtr bp;

and

__xmem char b;
char __xmem *bp;
FUNCTIONS

The extended keywords that can be used when functions are declared can be divided
into two groups:

e Keywords that control the type of the functions. Keywords of this group must be
specified both when the function is declared and when it is defined
(__interrupt and __monitor).

e Keywords that only control the function object defined (__root).

Syntax
The extended keywords are specified before the return type, for example:
___interrupt void alpha(void) ;

The keywords that are rype attributes must be specified both when they are defined
and in the declaration. Object attributes only have to be specified when they are
defined since they do not affect the way an object or function is used.

Descriptions of extended keywords

The following sections give detailed information about each extended keyword.

__constptr The __constptr keyword is the data pointer for constants placed in code memory.

__func __func is the function pointer keyword. It is the only function pointer keyword, and

may be omitted.

Part 2. Compiler reference 105

Descriptions of extended keywords

__interrupt

__intrinsic

_mem

__monitor

dsPIC IAR C/EC++ Compiler
106 Reference Guide

The __interrupt keyword specifies interrupt functions. The #pragma vector
directive can be used for specifying the interrupt vector. An interrupt function must
have a void return type and cannot have any parameters.

The following example declares an interrupt function with interrupt vector with offset
0x70 in the INTVEC segment:

#pragma vector=0x70
__interrupt void my_ interrupt handler (void) ;

An interrupt function cannot be called directly from a C program. It can only be
executed as a response to an interrupt request.

Itis possible to define an interrupt function without a vector, but then the compiler will
not generate an entry in the interrupt vector table. For additional information, see
INTVEC, page 76.

The range of the interrupt vectors depends on the device used. The iochip.h header
file, which corresponds to the selected derivative, contains predefined names for the
existing interrupt vectors.

The intrinsic keyword is reserved for compiler internal use only.

The __memkeyword is the data memory attribute for variables placed anywhere in the
data memory.

The __monitor keyword causes interrupts to be disabled during execution of the
function. This allows atomic operations to be performed, such as operations on
semaphores that control access to resources by multiple processes. A function
declared with the monitor keyword is equivalent to any other function in all other
respects.

Avoid using the _monitor keyword on large functions since the interrupt will
otherwise be turned off for too long.

For additional information, see the intrinsic functions __disable_interrupt, page 124,
and __enable_interrupt, page 124.

Example

In the following example a semaphore is implemented using one static variable and
two monitor functions. A semaphore can be locked by one process and is used for
preventing processes to simultaneously use resources that can only be used by one
process at a time, for example a printer.

Extended keywords __o

/* When the lock is non-zero, someone owns the lock. */
static unsigned int the lock = 0;

/* get lock -- Try to lock the lock.
* Return 1 on success and 0 on failure. */

__monitor int get_ lock(void)

{ if (the_lock == 0)
{ /* Success, we managed to lock the lock. */
the lock = 1;
return 1;
}
else
{
/* Failure, someone else has locked the lock. */
return 0;
}
1
/* release lock -- Unlock the lock. */
__monitor void release lock(void)
{
the lock = 0;
}

The following is an example of a program fragment that uses the semaphore:

void my_ program(void)

{

if (get_lock())

{

/* ... Do something ... */

/* When done, release the lock. */
release_ lock() ;

}
}

__no_init The no_init keyword is used for placing a variable in a non-volatile memory
segment and for suppressing initialization at startup.

Part 2. Compiler reference 107

Descriptions of extended keywords

__ptr

__root

_sfr

__xmem

__ymem

dsPIC IAR C/EC++ Compiler
108 Reference Guide

The no_ init keyword is placed in front of the type, for instance to place
settings in non-volatile memory:

__no_init int settings([10];

The #pragma object attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object attribute=_no_init
int settings[10];

Note: The no_init keyword cannot be used in typedefs.

The __ptr keyword is a generic pointer that can point to both code and data memory.

The __root attribute can be used on either a function or a variable to ensure that,
when the module containing the function or variable is linked, the function or variable
is also included, whether or not it is referenced by the rest of the program.

By default only the part of the runtime library calling main and any interrupt vectors
are root. All other functions and variables are included in the linked output only if they
are referenced by the rest of the program.

The root keyword is placed in front of the type, for example to place settings in
non-volatile memory:

__root int settings[10];

The #pragma object attribute directive can also be used. The following
declaration is equivalent to the previous one:

#pragma object_attribute=__root
int settings[10];

Note: The _ root keyword cannot be used in typedefs.

The __sfr keyword is the data memory attribute for variables placed in sfr memory.

The __xmem keyword is the data memory attribute for variables placed in xmem
memory.

The __ymem keyword is the data memory attribute for variables placed in ymem
memory.

#pragma directives

This chapter describes the #pragma directives of the dsPIC IAR C/EC++
Compiler.

The #pragma directives control the behavior of the compiler, for example,
how it allocates memory, whether it allows extended keywords, and whether
it outputs warning messages. The #pragma directives are preprocessed, which
means that macros are substituted in a #pragma directive.

The #pragma directives are always enabled in the dsPIC IAR C/EC++
Compiler. They are consistent with the ISO/ANSI C and are very useful when
you want to make sure that the source code is portable.

Summary of #pragma directives

The following table shows the #pragma directives of the compiler:

#pragma directive Description

#pragma bitfields Controls the order of bitfield members

#pragma constseg Places constant variables in a named segment

#pragma dataseg Places variables in a named segment

#pragma diag_default Changes the severity level of diagnostic
messages

#pragma diag_error Changes the severity level of diagnostic
messages

#pragma diag_remark Changes the severity level of diagnostic
messages

#pragma diag_suppress Suppresses diagnostic messages

#pragma diag_warning Changes the severity level of diagnostic
messages

#pragma inline Places function code inline

#pragma language Controls the IAR language extensions

#pragma location Specifies the absolute address of a variable

#pragma object_attribute Changes the definition of a variable or a function

#pragma optimize Specifies type and level of optimization

#pragma rtmodel Inserts a runtime model attribute

Table 28: #pragma directives summary

Part 2. Compiler reference 109

Descriptions of #pragma directives

#pragma directive Description

#pragma type_attribute Changes the declaration and definitions of a
variable or a function

#pragma vector Specifies the vector of an interrupt function

Table 28: #pragma directives summary (Continued)

Note: For portability reasons, the #pragma directives alignment, codeseg,
function, memory, and warnings, are recognized and will give a diagnostic
message. It is important to be aware of this if you need to port existing code that
contains any of those #pragma directives.

Descriptions of #pragma directives

This section gives detailed information about each #pragma directive.
All #pragma directives should be entered like:

#pragma pragmaname=pragmavalue

or

#pragma pragmaname = pragmavalue

#pragma bitfields #pragma bitfields={reversed|default}
The #pragma bitfields directive controls the order of bitfield members.

By default the dsPIC IAR C/EC++ Compiler places bitfield members from the least
significant bit to the most significant bit in the container type. Use the #pragma
bitfields=reversed directive to place the bitfield members from the most
significant to the least significant bit. This setting remains active until you turn it off
again with the #pragma bitfields=default directive.

#pragma constseg The #pragma constseg directive places constant variables in a named segment. Use
the following syntax:

#pragma constseg=MY CONSTANTS
const int factorySettings[] = {42, 15, -128, 0};
#pragma constseg=default

The segment name must not be a predefined segment; see the chapter Segment
reference for more information.

dsPIC IAR C/EC++ Compiler
|10 Reference Guide

#pragma directives __o

The memory in which the segment resides is optionally specified using the following
syntax:

#ipragma constseg=__sfr MyOtherSeg

All constants defined following this directive will be placed in the segment
MyOtherSeg and accessed using sfr addressing.

#pragma dataseg The #pragma dataseg directive places variables in a named segment. Use the
following syntax:

#pragma dataseg=MY_ SEGMENT
__no_init char myBuffer[1000];
#pragma dataseg=default

The segment name must not be a predefined segment, see the chapter Segment
reference for more information. The variable myBuf fer will not be initialized at
startup and must thus not have any initializer.

The memory in which the segment resides is optionally specified using the following
syntax:

#ipragma dataseg=__sfr MyOtherSeg

All variables in MyOtherSeg will be accessed using sfr addressing.

#pragma diag default #pragma diag default=tag, tag, ...
Changes the severity level back to default or as defined on the command line for the
diagnostic messages with the specified tags. See the chapter Diagnostics for more
information about diagnostic messages.
Example

#pragma diag default=Pell?7

#pragma diag_error #pragma diag error=tag, tag, ...

Changes the severity level to error for the specified diagnostics. See the chapter
Diagnostics for more information about diagnostic messages.

Example

#pragma diag_error=Pell7

Part 2. Compiler reference |11

Descriptions of #pragma directives

#pragma diag_ remark

#ipragma diag_suppress

#pragma diag warning

#pragma inline

#pragma language

dsPIC IAR C/EC++ Compiler
|12 Reference Guide

#ipragma diag_remark=tag, tag, ...
Changes the severity level to remark for the specified diagnostics. For example:
#pragma diag remark=Pel77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_suppress=tag, tag, ...
Suppresses the diagnostic messages with the specified tags. For example:
#pragma diag_suppress=Pell7,Pel?77

See the chapter Diagnostics for more information about diagnostic messages.

#pragma diag_warning=tag, tag, ...
Changes the severity level to warning for the specified diagnostics. For example:
#pragma diag_warning=Pe826

See the chapter Diagnostics for more information about diagnostic messages.

#pragma inline [=forced]

The #pragma inline directive advises the compiler that the function whose
declaration follows immediately after the directive should be inlined—that is,
expanded into the body of the calling function. Whether the inlining actually takes
place is subject to the compiler’s heuristics.

This is similar to the C++ keyword inline, but has the advantage of being available
in C code.

Specifying #pragma inline=forced disables the compiler’s heuristics and forces
the inlining. If the inlining fails for some reason, for example if it cannot be used with
the function type in question—Ilike print f—an error message is emitted.

#pragma language={extended|default}

The #pragma language directive is used for turning on the IAR language extensions
or for using the language settings specified on the command line:

extended Turns on the AR language extensions and turns off the
--strict_ansi command line option.

default Uses the settings specified on the command line.

#pragma directives __o

#pragma location #pragma location=address

The #pragma location directive specifices the location—the absolute address—of
the variable whose declaration follows the #pragma directive. For example:

#pragma location=0x10FF00
char PORT1; /* PORT1D is located at address 0x10FF00 */

The directive can also take a string specifying the segment placement for either a
variable or a function, for example:

#pragma location="foo"

For additional information and examples, see Absolute location placement, page 21
and Segment placement, page 21.

#pragma object attribute #pragma object attribute=keyword

The #pragma object attribute directive affects the declaration of the identifier
that follows immediately after the directive.

The following keyword can be used with #pragma object attribute fora
variable:

__no_init Places a variable in a non-volatile memory segment and
suppresses initialization at startup.

The following keyword can be used with #pragma object attribute fora
function or variable:

__root Ensures that a function or data object is included in the
object code even if not referenced.

Example
In the following example, the variable bar is placed in the non-initialized segment:

#pragma object attribute=_no_init
char bar;

Unlike the directive #pragma type attribute that specifies the storing and
accessing of a variable, it is not necessary to specify an object attribute in declarations.
The following example declares bar without a #pragma object_attribute:

__no_init char bar;

Part 2. Compiler reference |13

Descriptions of #pragma directives

#pragma optimize #pragma optimize=token token token

#pragma rtmodel

dsPIC IAR C/EC++ Compiler
| 14 Reference Guide

where token is one or more of the following:

s Optimizes for speed

z Optimizes for size

3|6|9 Specifies level of optimization

no_cse Turns off common sub-expression elimination
no_inline Turns off function inlining

no_unroll Turns off loop unrolling

no_code_motion Turns off code motion.

The #pragma optimize directive is used for decreasing the optimization level or for
turning off some specific optimizations. This #pragma directive only affects the
function that follows immediately after the directive.

Notice that it is not possible to optimize for speed and size at the same time. Only one
of the s and z tokens can be used.

Note: If you use the #pragma optimize directive to specify an optimization level
that is higher than the optimization level you specify using a compiler option, the
#pragma directive is ignored.

Example

#pragma optimize=s 9
int small_and used_often()

{
}

#pragma optimize=z 9
int big_and_seldom_used()

{
}

#pragma rtmodel ("key","value")

The #pragma rtmodel directive inserts the runtime model attribute key with the
value value. It must be followed by a variable, since the pragma directive is
associated with a variable. Keys beginning with __ are reserved by the compiler.

#pragma directives __o

#pragma rtmodel ("myattr", "blue")
char is_blue=1;

The runtime model attribute is then passed to the linker. If the same key is found in
another file, it must have the same value, otherwise it will not link. See RTMODEL in
the dsPIC IAR Assembler Referrence Guide for a more detailed explanation.

#pragma type attribute #pragma type attribute=keyword

The #pragma type attribute directive affects the declaration of the identifier,
the next variable, or the next function, that follows immediately after the #pragma
directive. It only affects the variable, not its type.

The following keywords can be used with the #pragma type attribute directive
for a variable:

__constptr Places a variable in constptr memory, but only for
const-declared variables

__mem Places a variable in mem memory
__sfr Places a variable in sfr memory
__xmem Places a variable in xmem memory
__ymem Places a variable in ymem memory

The following keywords can be used with #pragma type attribute directive for

a function:

__interrupt Specifies interrupt functions. Use the #pragma vector
directive to specify the interrupt vector; see page 116.

__monitor Specifies a monitor function

Example

In the following example, myBuf fer is placed in xmem memory, whereas the
variable i is not affected by the #pragma directive.

#pragma type attribute=__xmem
char inBuffer[10];
int 1i;

The following declarations, which use extended keywords, are equivalent. See the
chapter Extended keywords for more details.

__xmem char inBuffer[10];
int 1i;

Part 2. Compiler reference |15

Descriptions of #pragma directives

In the small memory model, the default pointer is __mem. In the following example,
the pointer is located in sfr memory, pointing at __mem:

#ipragma type attribute=__sfr
int * pointer;

#pragma vector #pragma vector=vector
The #pragma vector directive specifies the vector of a interrupt function whose
declaration follows the #pragma directive.
Example

#pragma vector=0x70
__interrupt void my handler(void) ;

dsPIC IAR C/EC++ Compiler
|16 Reference Guide

Predefined symbols

This chapter gives reference information about the predefined preprocessor
symbols that are supported in the dsPIC IAR C/EC++ Compiler. These

symbols allow you to inspect the compile-time environment, for example the

time and date of compilation.

Summary of predefined symbols

The following table summarizes the predefined symbols:

Predefined symbol

Description

__cplusplus
__CpU__
__DATA_MODEL__
__DATE__
__DOUBLE_SIZE
__embedded cplusplus
__FILE__
__FLOAT SIZE__
__IAR SYSTEMS_ICC_
__ICCDSPIC
__LINE__
__LONG_DOUBLE_SIZE
__STDC__
__STDC_VERSION
__TID _
__TIME__

VER

Determines whether the compiler runs in EC++ mode
Identifies the processor variant in use

Identifies the memory model in use

Determines the date of compilation

Determines the size in bytes (4 or 8)

Determines whether the compiler runs in EC++ mode
Identifies the name of the file being compiled
Determines the size in bytes (4)

Identifies the IAR compiler platform

Identifies the dsPIC IAR C/EC++ Compiler
Determines the current source line number
Determines the size in bytes (4 or 8)

Identifies ISO/ANSI Standard C

Identifies the version of ISO/ANSI Standard C in use

Identifies the target processor of the IAR compiler in use

Determines the time of compilation

Identifies the version number of the IAR compiler in use

Table 29: Predefined symbols summary

Part 2. Compiler reference

117

Descriptions of predefined symbols

Descriptions of predefined symbols

__cplusplus

CPU

__DATA MODEL

__DATE

__DOUBLE_SIZE _

___embedded_cplusplus

__FILE _

dsPIC IAR C/EC++ Compiler
|18 Reference Guide

The following section gives reference information about each predefined symbol.

This predefined symbol expands to the number 1 when the compiler runs in Embedded
C++ mode. When the compiler runs in ANSI C mode, the symbol is undefined.

This symbol can be used with #1ifdef to detect that the compiler accepts Embedded
C++ code. It is particularly useful when creating header files that are to be shared by
C and Embedded C++ code.

This predefined symbol identifies the processor variant. It expands to a number which
corresponds to the processor option in use, 0 for processor option -v0 or 1 for
processor option -v1.

This predefined symbol expands to a value reflecting the selected memory model
according to the following table:

Value Memory model
0 large
| small

Table 30: Inspecting the data model using predefined symbols

Use this symbol to determine when the file was compiled. This symbol expands to the
date of compilation which is returned in the form Mmm dd yyyy.

This predefined symbol sets the size in bytes to 4 or 8.

This predefined symbol expands to the number 1 when the compiler runs in Embedded
C++ mode. When the compiler runs in ANSI C mode, the symbol is undefined.

This symbol can be used with #ifdef to detect that the compiler accepts only the
Embedded C++ subset of the C++ language.

Use this symbol to determine which file is currently being compiled. This symbol
expands to the name of that file.

Predefined symbols __4

__FLOAT_SIZE__ This predefined symbol sets the size in bytes to 4.

__TIAR SYSTEMS_ICC__ This predefined symbol expands to a number that identifies the IAR compiler
platform. The current identifier is 5. Notice that the number could be higher in a future
version of the product.

This symbol can be tested with #ifdef to detect that the code was compiled by an
IAR Compiler.

__IccpspIC__ This predefined symbol expands to the number 1 when the code is compiled with the
dsPIC IAR C/EC++ Compiler.

__LINE__ This predefined symbol expands to the current line number of the file currently being
compiled.

__LONG_DOUBLE_SIZE__ This predefined symbol sets the size in bytes to 4 or 8.

__STDC__ This predefined symbol expands to the number 1. This symbol can be tested with
#ifdef to detect that the compiler in use adheres to ANSI C.

__STDC_VERSION__ ISO/ANSI Standard C and version identifier.
This predefined symbol expands to the number 199409L.

Note: This predefined symbol does not apply to the EC++ version of the product.

_TID__ Target identifier for the dsPIC IAR C/EC++ Compiler.
Expands to the target identifier containing the following parts:

e A number unique for each IAR compiler (i.e. unique for each target).

e The value of the -v option. For details, see Processor variant, page 9.

e Anintrinsic flag. This flag is set for dsPIC because the compiler supports intrinsic
functions.

Part 2. Compiler reference |19

Descriptions of predefined symbols

__TIME _

dsPIC IAR C/EC++ Compiler
120 Reference Guide

The TID_ _value is constructed as:
((1 << 15) | (t << 8) | (c << 4))

You can extract the values as follows:

i = (_ _TID >»> 15) & 0x01; /* intrinsic flag */
t = (_ _TID >> 8) & Ox7F; /* target identifier */
¢ = (__TID >> 4) & Ox0F; /* cpu option */

To find the value of the target identifier for the current compiler, execute:
printf("%1d", (__TID _ >> 8) & O0x7F)
For the dsPIC microcontroller, the target identifier is 59.

Note: Theuseof _TID _ isnotrecommended. We recommend you use the symbols
__ICCDSPIC__, DATA MODEL__,and _CPU__ instead.

Current time.

Expands to the time of compilation in the form hh :mm: ss.

Compiler version number.

Expands to an integer representing the version number of the compiler.

Example

The example below prints a message for version 3.34.

#if VER == 334
#pragma message "Compiler version 3.34"
#endif

Intrinsic functions

This chapter gives reference information about the intrinsic functions.

The intrinsic functions provide direct access to low-level processor operations
and can be very useful in, for example, time-critical routines. The intrinsic
functions compile into in-line code, either as a single instruction or as a short
sequence of instructions.

Intrinsic functions summary
There are two types of intrinsic functions: DSP-related intrinsic functions, and general
intrinsic functions.

DSP-RELATED INTRINSIC FUNCTIONS

DSP-related intrinsic functions are accessed using macros located in the file gsm.h
which in turn includes indsp. h. It also defines the signed integer types int16_t,
int32 tand int40_t.

The following table summarizes the DSP-related intrinsic functions:

Intrinsic function Description

__intle6_t abs_s (__intlé_t Saturated QI5 absolute value operation
varl)

__intleé_t add (__intlée_t Saturated Q15 addition

varl, __intleé_t var2)

__intle_t div_s (__intlé6_t Saturated QI5 division

varl, __intlé_t var2)

__intlé_t extract_h Truncate Q31 -> QI5

(__int32 t L_varl)

__intlé6_t extract 1 Get low word of Q31

(__int32 t L_varl)

__intl6 t mac_r (__int32 t Saturated rounded QIS5 multiply and accumulate
L _var3, __intlé6_t varl,

__intlé_t wvar2)

_ intl6 t msu r (__int32 t Saturated rounded QI5 multiply and subtract
L _var3, __intlé_t varl,
__intlé_t wvar2)

Table 31: DSP-related intrinsic functions summary

Part 2. Compiler reference 121

Intrinsic functions summary

dsPIC IAR C/EC++ Compiler
122 Reference Guide

Intrinsic function

Description

__intlé t mult (_ intlé t

varl, __intleé_t var2)

__intlé_t mult_r (__intlé6_t
varl, __intlé_t var2)

__intlé6_t negate (__intlé6_t
varl)

__intlé6_t norm_ 1 (__int32 t
L _varl)

__intlé_t norm_ s (__intlé6_t
varl)

__intlé_t round (__int32_t
L _varl)

__intlé_t round ub
(__int32 t L_varl)

__intl6_t shl (__intlé_t
varl, __ _intlé_t var2)

__intle_t shr (__intle_t
varl, __intlé_t var2)

__intle_t shr r (__intlé t
varl, __intleé_t var2)

__intle_t sub (__intle_t

varl, __intleé_t var2)
__intlé_t __xmem * add_br
(__intlé6é_t __xmem *base,
__intle_t _ xmem *ptr,

__intlé_t step)

__int32_t L_abs (__int32_t
L _varl)

__int32_t L_add (__int32_t
L varl, __int32_t L_var2)
__int32 t L deposit_h
(__intlé_t varl)

__int32 t L deposit_1
(__intlée_t wvarl)

Saturated Q15*Q15->QI5 multiplication

Saturated rounded Q15 multiplication

Saturated Q|15 negation

Returns the bit-number of the first zero-bit

Returns the bit-number of the first zero-bit

Round(Q31)->QI5

Unbiased round(Q31)->QI15

Saturated Q|15 shift left

Saturated Q|5 shift right

Saturated rounded Q|5 shift right

Saturated Q|15 subtraction

Add bitreverse. Base is base of xmem vector, ptr is
the pointer to add to, and step is in bitreverse form
and should represent a step of one, since it is also
used to calculate size of the vector.

Saturated Q31 absolute value operation
Saturated Q31 addition

Cast a QI5 value to a Q31

Create a Q31 value where the low word is the Q15
value 'varl' and the upper word is zero

Table 31: DSP-related intrinsic functions summary (Continued)

Intrinsic functions __¢

Intrinsic function Description
_int32 t L mac (__int32 t Saturated multiply and accumulate
L _var3, __intlé6_t varl,

__intleé_t wvar2)

_int32 t L msu (__int32 t Saturated multiply and subtract
L _var3, __intlé6_t varl,
__intleé_t wvar2)

__int32 t L mult (__intlé6_t Saturated QI5*QI5->Q31 multiplication
varl, __intleé_t wvar2)

__int32 t L negate Saturated Q31 negation
(__int32 t L_varl)

_int32 t L shl (__int32 t Saturated Q31 shift left

L _varl, __intlé_t var2)

_int32 t L shr (__int32 t Saturated Q3! shift right

L varl, __intlé_t var2)

_int32 t L shr r (__ int32 t Saturated and rounded Q31 shift right
L varl, __intlé6_t var2)

__int32 t L _sub (__int32 t Saturated Q3] subtraction

L varl, __int32_t L_var2)

_int40_t LL _add (__int40_t Saturated Q39 addition

LL varl, _ int40_t LL_var2)

__int40_t LL mac (__int40_t Saturated Q39 multiply and accumulate
LL_var3, __intlé_t wvarl,

__intleé_t wvar2)

_int40_t LL msu (__int40_t Saturated Q39 multiply and subtract

LL var3, _ _intleée_t varl,

__intleé_t wvar2)

__int40_t LL_negate Saturated Q39 negation

(__int40_t LL_varl)

__int40_t LL sub (__int40_ t Saturated Q39 subtraction

LL varl, __ int40_t LL var2)

void __mem * add mod(void Modulo pointer addition. Base is start of vector, size
_ _mem * base, _ intl6 t is size of vector in bytes, ptr is current pointer; and
size, void _ mem *ptr, step is the step.

__intleée_t step)

Table 31: DSP-related intrinsic functions summary (Continued)

Part 2. Compiler reference 123

Descriptions of intrinsic functions

GENERAL INTRINSIC FUNCTIONS

The following table summarizes the general intrinsic functions:

Intrinsic function Description

__asm Assembles statements inline
__clear watchdog timer Generates a CLRWDT instruction
__disable_ interrupt Disables interrupts

___enable interrupt Enables interrupts
__no_operation Generates a NOP instruction
___require Sets a constant literal

__reset Generates a RESET instruction

Table 32: General intrinsic functions summary

Descriptions of intrinsic functions

To use intrinsic functions in an application, include the header file intrinsics.h.
Notice that the intrinsic function names start with double underscores, for example:

__enable_ interrupt

asm void asm(const char *string) ;

Assembles and inserts the supplied assembler statement inline. The statement can
include instruction mnemonics, register mnemonics, constants, and/or a reference to
a global variable. Optimizations depending on control-flow analysis, register contents
tracking, etc will be disabled when using this function.

__clear_watchdog_timer void __ clear watchdog timer (void) ;

Inserts a CLRWTD instruction.

___disable_ interrupt void __ disable_ interrupt (void) ;

Disables interrupts.

__enable_interrupt void __ enable_ interrupt (void) ;

Enables interrupts.

dsPIC IAR C/EC++ Compiler
124 Reference Guide

Intrinsic functions __¢

__intleé_t abs_ s _ _intle_t abs s (__intle_t wvarl)
Returns a saturated absolute value.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé6_t add __intlé6_t add (__intlé_t wvarl, __intlé_t var2)
Generates a saturated addition instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intleé_t div_s _ _intle_t div_s (__intle_t wvarl, __intlé6_t var2)
Generates a saturated division instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé_t extract_h _ intlé_t extract h (__int32 t L_varl)

Extracts the high word of L_varl.

__intlé_t extract 1 _ intlé_t extract 1 (__int32 t L varl)

Extracts the low word of ._varl.

__intlé_t mac_r _ _intlé t mac_r (__int32 t L varl, __intlé_t wvar2, __ intlé t
var3s)

Generates a saturated and biased rounded multiply var2*var3 and accumulate
instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

Part 2. Compiler reference 125

Descriptions of intrinsic functions

__intleé_t msu r

__intlé_t mult

__intlé6_t mult_r

__intlé6_t negate

__intl6_t norm 1

__intl6_t norm s

__intleé_t round

dsPIC IAR C/EC++ Compiler
126 Reference Guide

__intl6_t msu r (__int32 t L varl, _ intlé_t var2, __intlée_t
var3)

Generates a saturated and biased rounded multiply var2*var3 and subtract instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé6_t mult (__intlé_t varl, __intleée_t var2)
Generates a saturated multiplication instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé6_t mult r (__intlé_t varl, __intlé_t var2)
Generates a saturated and biased rounded multiplication instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé6_t negate (__intlé6_t wvarl)
Generates a saturated negation instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé6_t norm 1 (__int32 t varl)

Returns the number of the first zero-bit from the left.

__intlé6_t norm s (__intlé6_t wvarl)

Returns the number of the first zero-bit from the left.

__intlé6_t round (__int32_t L_varl)

Returns a conventional (biased) rounded value.

Intrinsic functions __¢

__intlé6_t round ub __ intlé6_t round ub (__int32 t L varl)

Returns a convergent (unbiased) rounded value.

__intlé6_t shl _ intlé6_t shl (__intlé_t wvarl, __intlé_t step)
Generates a saturated shift left instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé_t shr _ intlé_t shr (__intlé_t varl, __ intlé6_t step)
Generates a saturated signed shift right instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé_t shr r _ intlé t shr r (__intlé6_t varl, _ intlé_t step)
Generates a saturated and biased rounded signed shift right instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intlé_t sub _ intlé_t sub (__intlé_t varl, __ intlé6_t var2)
Generates a saturated subtraction instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__intl6_t _ xmem * add br __ intlé6_t _ xmem * add br (__intlé_t _ xmem * base,
__intl6e_t _ xmem * ptr, _ intl6_t step)

Executes a bitreverse addition to ptr.

base points to the start of the vector, ptr is the current pointer, and step is 1
bit-reversed. For example, if the size of the vector is 256 words, and you step 1, the
bit-reversed step value would be 0x1000000 (128).

Part 2. Compiler reference 127

Descriptions of intrinsic functions

__int32 t L_abs

__int32 t L _add

__int32 t L _deposit_h

__int32 t L deposit_ 1

__int32 t L mac

__int32 t L msu

dsPIC IAR C/EC++ Compiler
128 Reference Guide

__int32 t L _abs (__int32_ t wvarl)
Returns a saturated absolute value.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

_int32_t L _add (__int32 t L varl, _ int32_ t L_var2)
Generates a Q31 saturated addition instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int32 t L _deposit_h (__intleée_t wvarl)

Returns a Q31 value where the high word is varl and the low word is zero.

__int32_t L deposit 1 (__intlé_t wvarl)

Returns a Q31 value where the low word is varl and the high word is zero.

__int32 t L mac (__int32 t L varl, _ intlé_t var2, __intlé_t
var3)

Generates a saturated multiply var2*var3 and accumulate instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int32 t L msu (__int32 t L varl, _ intlé_t var2, __intlé_t
var3)

Generates a saturated multiply var2*var3 and subtract instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

Intrinsic functions __¢

_int32 t L mult _ int32 t L mult (__intlé_t varl, __intlé_t wvar2)
Generates a Q31 saturated multiplication instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int32 t L negate _ int32 t L negate (__int32 t L varl)
Generates a Q31 saturated negation instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

_int32 t L shl _ int32 t L shl (__int32 t L varl, __intlé_t step)
Generates a Q31 saturated shift left instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

_int32 t L shr _ int32 t L shr (__int32 t L varl, __intlé_t step)
Generates a Q31 saturated shift right instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int32 t L shr r int32 t L shr r (__int32 t L varl, __intlé_t step)
Generates a Q31 biased rounded saturated shift right instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

Part 2. Compiler reference 129

Descriptions of intrinsic functions

__int32 t L _sub

__int40 t LL add

__int40_t LL mac

__int40_t LL msu

__int40_t LL negate

dsPIC IAR C/EC++ Compiler
130 Reference Guide

__int32 t L _ sub (__int32 t L varl, _ _int32 t L var2)
Generates a Q31 saturated subtraction instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int40_t LL_add (__int40_t LL_varl, _ int40_t LL_var2)
Generates an 8.31 fractional saturated addition instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int40_t LL mac (__int40_t LL _varl, _ intlé_t var2,
__intl6_t wvar3)

Generates a saturated multiply var2*var3 and accumulate to an 8.31 fractional
instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int40_t LL msu (__int40_t LL varl, _ intlé_t var2,
__intl6_t var3)

Generates a saturated multiply var2*var3 and subtract to an 8.31 fractional
instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__int40_t LL negate (__int40_t LL varl)
Generates an 8.31 saturated negate instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

Intrinsic functions __¢

__int40_t LL sub _ int40_t LL sub (__int40_t LL varl, _ int40_t LL_ var2)
Generates an 8.31 saturated subtraction instruction.

A saturated operation computes just like a normal operation, unless an overflow or
underflow occurs. If this should happen, the result will be the highest or lowest
possible representable value.

__mem * add mod void _ mem * add mod (void _ _mem * base, __ intlé_t size,
void _ mem * ptr, __ intlé_t step)

Executes a module addition to ptr.

base points to the start of the vector, size is the size of the vector in bytes, ptr is
the current pointer, and step is the step-value in bytes.

__no _operation void _ no_operation(void) ;

Generates a NOP instruction.

__require void __ require(void *);
Sets a constant literal as required.

One of the prominent features of the IAR XLINK Linker is its ability to strip away
anything that is not needed. This is a very good feature since it reduces the resulting
code size to a minimum. However, in some situations you may want to be able to
explicitly include a piece of code or a variable even though it is not directly used.

The argument to __require could be a variable, a function name, or an exported
assembler label. It must, however, be a constant literal. The label referred to will be
treated as if it would be used at the location of the ~_ require call.

Example

In the following example, the copyright message will be included in the generated
binary file even though it is not directly used.

#include <intrdspic.h>
char copyright[] = "Copyright 2002 by XXXX";
void main (void)
{
__require(copyright) ;
[... the rest of the program ...]

Part 2. Compiler reference 131

Descriptions of intrinsic functions

__reset void __ reset(void);

Inserts a RESET instruction.

dsPIC IAR C/EC++ Compiler
132 Reference Guide

Library functions

This chapter gives an introduction to the C and Embedded C++ library
functions. It also lists the header files used for accessing library definitions.

For detailed information about the C library functions, see the online
documentation supplied with the product.

The dsPIC IAR C/EC++ Compiler provides a complete set of library header
files both for the IAR CLIB library and for the IAR DLIB library. The sections
below summarize these header files.

IAR CLIB library

The dsPIC IAR C/EC++ Compiler package provides most of the important C library
definitions that apply to PROM-based embedded systems. These are of three types:

e Standard C library definitions available for user programs. These are documented
in this chapter.

@ CSTARTUP, the single program module containing the start-up code. It is
described in the Runtime environment chapter in this guide.

e Runtime support libraries; for example, low-level floating-point routines.

e Intrinsic functions, allowing low-level use of dsPIC features. See the chapter
Intrinsic functions for more information.

LIBRARY OBJECT FILES

You must create an appropriate library object file for the chosen project settings. See
the Runtime environment chapter for more information. The IAR XLINK Linker will
include only those routines that are required—directly or indirectly—by your
application.

Most of the library definitions can be used without modification, that is, directly from
the library object files that are supplied with the product. There are some I/O-oriented
routines (such as putchar and getchar) that you may need to customize for your

target application.

HEADER FILES

The user program gains access to library definitions through header files, which it
incorporates using the #include directive. To avoid wasting time at compilation, the
definitions are divided into a number of different header files each covering a
particular functional area, letting you include just those that are required.

Part 2. Compiler reference 133

IAR DLIB library

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do this can cause the call to fail during execution, or generate
error or warning messages at compile time or link time.

LIBRARY DEFINITIONS SUMMARY

This section lists the header files. Header files may additionally contain target-specific
definitions.

Header file Description
assert.h Assertions.
ctype.h Character handling.
iccbutl.h Low-level routines.
math.h Mathematics.
setjmp.h Non-local jumps.
stdarg.h Variable arguments.
stdio.h Input/output.
stdlib.h General utilities.
string.h String handling.

Table 33: IAR C Library header files

The following table shows header files that do not contain any functions, but specify
various definitions and data types:

Header file Description

errno.h Error return values.

float.h Limits and sizes of floating-point types.
limits.h Limits and sizes of integral types.

stddef.h Common definitions including size t, NULL,

ptrdiff t,and offsetof.

Table 34: Miscellaneous IAR C Library header files

IAR DLIB library

dsPIC IAR C/EC++ Compiler
134 Reference Guide

The dsPIC IAR C/EC++ Compiler package provides most of the important C and
Embedded C++ library definitions that apply to PROM-based embedded systems.
These are of the following types:

e Adherence to a free-standing implementation of the ISO standard for the
programming language C. For additional information, see the chapter
Implementation-defined behavior in this guide.

Library functions __o

e Standard C library definitions, for user programs

e Embedded C++ library definitions, for user programs

@ CSTARTUP, the single program module containing the start-up code. It is
described in the Runtime environment chapter in this guide.

e Runtime support libraries; for example, low-level floating-point routines.

e Intrinsic functions, allowing low-level use of dsPIC features. See the chapter
Intrinsic functions for more information.

LIBRARY OBJECT FILES

You must select the appropriate library object file for your chosen project settings. See
the chapter Runtime environment for more information. The linker will include only
those routines that are required—directly or indirectly—by your application.

Most of the library definitions can be used without modification, that is, directly from
the supplied library object files. There are some I/O-oriented routines (such as
__writechar and __readchar) that you may need to customize for your
application. For a description of the primitive I/O functions, see the Runtime
enviroment chapter in this guide.

HEADER FILES

The user program gains access to library definitions through header files, which it
incorporates using the #include directive. The definitions are divided into a number
of different header files each covering a particular functional area, letting you include
just those that are required.

It is essential to include the appropriate header file before making any reference to its
definitions. Failure to do this can cause the call to fail during execution, or generate
error or warning messages at compile time or link time.

LIBRARY DEFINITIONS SUMMARY

This section lists the header files. Header files may additionally contain target-specific
definitions; these are documented in the chapter IAR C extensions.

Standard C

The following table shows the traditional standard C library header files:

Header file Usage

assert.h Enforcing assertions when functions execute
ctype.h Classifying characters

errno.h Testing error codes reported by library functions

Table 35: Traditional standard C library header files

Part 2. Compiler reference 135

IAR DLIB library

Header file Usage

float.h Testing floating-point type properties
iso646.h Using Amendment |—iso646.h standard header
limits.h Testing integer type properties

locale.h Adapting to different cultural conventions
math.h Computing common mathematical functions
setjmp.h Executing non-local goto statements
signal.h Controlling various exceptional conditions
stdarg.h Accessing a varying number of arguments
stddef.h Defining several useful types and macros
stdio.h Performing input and output

stdlib.h Performing a variety of operations

string.h Manipulating several kinds of strings

time.h Converting between various time and date formats
wchar.h Support for wide characters

wctype.h Classifying wide characters

Table 35: Traditional standard C library header files (Continued)

Embedded C++
The following table shows the Embedded C++ library header files:

Header file Usage

complex Defining a class that supports complex arithmetic

exception Defining several functions that control exception handling

fstream Defining several I/O streams classes that manipulate external files

iomanip Declaring several I/O streams manipulators that take an argument

ios Defining the class that serves as the base for many I/O streams classes

iosfwd Declaring several I/O streams classes before they are necessarily
defined

iostream Declaring the I/O streams objects that manipulate the standard
streams

istream Defining the class that performs extractions

new Declaring several functions that allocate and free storage

ostream Defining the class that performs insertions

Table 36: Embedded C++ library header files

dsPIC IAR C/EC++ Compiler
136 Reference Guide

Library functions __o

Header file Usage

sstream Defining several I/O streams classes that manipulate string containers
stdexcept Defining several classes useful for reporting exceptions
streambuf Defining classes that buffer I/O streams operations

string Defining a class that implements a string container

strstream Defining several I/O streams classes that manipulate in-memory

character sequences

Table 36: Embedded C++ library header files (Continued)

Using standard C libraries in EC++

The Embedded C++ library works in conjunction with 15 of the header files from the
standard C library, sometimes with small alterations. The header files come in two
forms, new and traditional.

The following table shows the new header files:

Header file Usage

cassert Enforcing assertions when functions execute
cctype Classifying characters

cerrno Testing error codes reported by library functions
cfloat Testing floating-point type properties

climits Testing integer type properties

clocale Adapting to different cultural conventions
cmath Computing common mathematical functions
csetjmp Executing non-local goto statements

csignal Controlling various exceptional conditions
cstdarg Accessing a varying number of arguments
cstddef Defining several useful types and macros
cstdio Performing input and output

cstdlib Performing a variety of operations

cstring Manipulating several kinds of strings

ctime Converting between various time and date formats

Table 37: New standard C library header files

Part 2. Compiler reference 137

IAR DLIB library

dsPIC IAR C/EC++ Compiler
138 Reference Guide

Compatibility with standard C++

In this implementation, the Embedded C++ library also includes a number of header
files for compatibility with traditional C++ libraries:

Header file Usage

fstream.h Defining several I/O streams template classes that manipulate exteral
files

iomanip.h Declaring several I/O streams manipulators that take an argument

iostream.h Declaring the I/O streams objects that manipulate the standard
streams

new.h Declaring several functions that allocate and free storage

Table 38: Traditional C++ library header files

Diagnostics

A typical diagnostic message from the compiler is produced in the form:
filename,linenumber level[tag]: message

where filename is the name of the source file in which the error was
encountered; 1inenumber is the line number at which the compiler detected
the error; Ievel is the level of seriousness of the diagnostic; tag is a unique
tag that identifies the diagnostic; message is a self-explanatory message,
possibly several lines long.

Severity levels

The diagnostics are divided into different levels of severity:

Remark

A diagnostic that is produced when the compiler finds a source code construct that can
possibly lead to erroneous behavior in the generated code. Remarks are by default not
issued but can be enabled, see --remarks, page 98.

Woarning

A diagnostic that is produced when the compiler finds a programming error or
omission which is of concern but not so severe as to prevent the completion of
compilation. Warnings can be disabled by use of the command-line option
--no_warnings, see page 96.

Error

A diagnostic that is produced when the compiler has found a construct which clearly
violates the C or Embedded C++ language rules, such that code cannot be produced.
An error will produce a non-zero exit code.

Fatal error

A diagnostic that is produced when the compiler has found a condition that not only
prevents code generation, but which makes further processing of the source code
pointless. After the diagnostic has been issued, compilation terminates. A fatal error
will produce a non-zero exit code.

Part 2. Compiler reference

139

Severity levels

dsPIC IAR C/EC++ Compiler
140 Reference Guide

SETTING THE SEVERITY LEVEL

The diagnostic can be suppressed or the severity level can be changed for all
diagnostics except for fatal errors and some of the regular errors.

See Options summary, page 85, for a description of the compiler options that are
available for setting severity levels.

See the chapter #pragma directives, for a description of the #pragma directives that
are available for setting severity levels.

INTERNAL ERROR

An internal error is a diagnostic message that signals that there has been a serious and
unexpected failure due to a fault in the compiler. It is produced using the following
form:

Internal error: message

where message is an explanatory message. If internal errors occur, they should be
reported to your software distributor or IAR Technical Support. Please include
information enough to reproduce the problem. This would typically include:

The exact internal error message text.

The source file of the program that generated the internal error.

A list of the options that were used when the internal error occurred.

The version number of the compiler. To display it at sign-on, run the compiler,
iccdspic, without parameters.

!I!I!I!I!qul

Part 3: Portability

This part of the dsPIC IAR C/EC++ Compiler Reference Guide contains the
following chapters:

e Implementation-defined behavior

e IAR C extensions.

141

[]

142

Implementation-defined
behavior

This chapter describes how IAR C handles the implementation-defined areas
of the C language.

ISO 9899:1990, the International Organization for Standardization standard -
Programming Languages - C (revision and redesign of ANSI X3.159-1989,
American National Standard), changed by the ISO Amendment |:1994,
Technical Corrigendum [, and Technical Corrigendum 2, contains an appendix
called Portability Issues. The ISO appendix lists areas of the C language that ISO
leaves open to each particular implementation.

Note: IAR C adheres to a freestanding implementation of the ISO standard for
the C programming language. This means that parts of a standard library can
be excluded in the implementation.

Descriptions of implementation-defined behavior

This section follows the same order as the ISO appendix. Each item covered includes
references to the ISO chapter and section (in parenthesis) that explains the
implementation-defined behavior.

TRANSLATION

Diagnostics (5.1.1.3)
IAR C produces diagnostics in the form:
filename, linenumber level[tag]: message

where £ilename is the name of the source file in which the error was encountered;

linenumber is the line number at which the compiler detected the error; level is

the level of seriousness of the message (remark, warning, error, or fatal error); tag is
aunique tag that identifies the message; message is an explanatory message, possibly
several lines.

Part 3. Portability 143

Descriptions of implementation-defined behavior

dsPIC IAR C/EC++ Compiler
144 Reference Guide

ENVIRONMENT

Arguments to main (5.1.2.2.2.1)

In IAR C, the function called at program startup is called main. There is no prototype
declared for main, and the only definition supported for main is:

int main(void)

To change this behavior, see Customizing cstartup.s59, page 54.

Interactive devices (5.1.2.3)

IAR C treats the streams stdin and stdout as interactive devices.

IDENTIFIERS

Significant characters without external linkage (6.1.2)

The number of significant initial characters in an identifier without external linkage is
200.

Significant characters with external linkage (6.1.2)

The number of significant initial characters in an identifier with external linkage is
200.

Case distinctions are significant (6.1.2)

IAR C treats identifiers with external linkage as case-sensitive.
CHARACTERS

Source and execution character sets (5.2.1)

The source character set is the set of legal characters that can appear in source files. In
IAR C, the source character set is the standard ASCII character set.

The execution character set is the set of legal characters that can appear in the
execution environment. In IAR C, the execution character set is the standard ASCII
character set.

Bits per character in execution character set (5.2.4.2.1)

The number of bits in a character is represented by the manifest constant CHAR_BIT.
The standard include file 1imits.h defines CHAR BIT as 8.

Implementation-defined behavior __4

Mapping of characters (6.1.3.4)

The mapping of members of the source character set (in character and string literals)
to members of the execution character set is made in a one-to-one way, i.e. using the
same representation value for each member in the character sets, except for the escape
sequences listed in the ISO standard.

Unrepresented character constants (6.1.3.4)

The value of an integer character constant that contains a character or escape sequence
not represented in the basic execution character set or in the extended character set for
a wide character constant, generates a diagnostic and will be truncated to fit the
execution character set.

Character constant with more than one character (6.1.3.4)

An integer character constant that contains more than one character will be treated as
an integer constant. The value will be calculated by treating the leftmost character as
the most significant character, and the rightmost character as the least significant
character, in an integer constant. A diagnostic message will be issued if the value
cannot be represented in an integer constant.

A wide character constant that contains more than one multibyte character, generates
a diagnostic message.
Converting multibyte characters (6.1.3.4)

The current and only locale supported in IAR C is the ‘C’ locale.

Range of 'plain’ char (6.2.1.1)

A ‘plain’ char has the same range as an unsigned char.
INTEGERS

Range of integer values (6.1.2.5)

The representation of integer values are in two's-complement form. The
most-significant bit holds the sign; 1 for negative, 0 for positive and zero.

See Data types, page 67, for information about the ranges for the different integer
types: char, short, int, long, and long long.

Part 3. Portability 145

Descriptions of implementation-defined behavior

dsPIC IAR C/EC++ Compiler
146 Reference Guide

Demotion of integers (6.2.1.2)

Converting an integer to a shorter signed integer is made by truncation. If the value
cannot be represented when converting an unsigned integer to a signed integer of
equal length the bit-pattern remains the same, i.e. a large enough value will be
converted into a negative value.

Signed bitwise operations (6.3)

Bitwise operations on signed integers work the same as bitwise operations on
unsigned integers, i.e. the sign-bit will be treated as any other bit.

Sign of the remainder on integer division (6.3.5)

The sign of the remainder on integer division is the same as the sign of the dividend.

Negative valued signed right shifts (6.3.7)
The result of a right shift of a negative-valued signed integral type, preserves the
sign-bit. For example, shifting 0xFF00 down one step yields 0xFF80.

FLOATING POINT

Representation of floating-point values (6.1.2.5)

The representation and sets of the various floating-point numbers adheres to IEEE
854-1987. A typical floating-point number is built up of a sign-bit (s), a biased
exponent (e), and a mantissa (m).

See Floating-point types, page 68, for information about the ranges and sizes for the
different floating-point types: £loat and double.

Converting integer values to floating-point values (6.2.1.3)

When an integral number is cast to a floating-point value that cannot exactly represent
the value, the value is rounded (up or down) to the nearest suitable value.
Demoting floating-point values (6.2.1.4)

When a floating-point value is converted to a floating-point value of narrower type
that cannot exactly represent the value, the value is rounded(up or down) to the nearest
suitable value.

Implementation-defined behavior __4

ARRAYS AND POINTERS

size_t (6.3.3.4, 7.1.1)

See size_t, page 70, for information about size t in IAR C.

Conversion from/to pointers (6.3.4)

See Casting, page 70, for information about casting of data pointers and function
pointers.

ptrdiff_t (6.3.6, 7.1.1)
See prrdiff _t, page 70, for information about the ptrdiff t in [AR C.

REGISTERS

Honoring the register keyword (6.5.1)
IAR C does not honor user requests for register variables. Instead it makes it own
choices when optimizing.

STRUCTURES, UNIONS, ENUMERATIONS, AND BITFIELDS

Improper access to a union (6.3.2.3)

If a union get its value stored through a member and is then accessed using a member
of a different type, the result is solely dependent on the internal storage of the first
member.

Padding and alignment of structure members (6.5.2.1)

See the section Data types, page 67, for information about the alignment requirement
for data objects in IAR C.

Sign of 'plain’ bitfields (6.5.2.1)

A 'plain’ int bitfield is treated as a signed int bitfield. All integer types are allowed
as bitfields.

Allocation order of bitfields within a unit (6.5.2.1)

Bitfields are allocated within an integer from least-significant to most-significant bit.

Can bitfields straddle a storage-unit boundary (6.5.2.1)

Bitfields cannot straddle a storage-unit boundary for the bitfield integer type chosen.

Part 3. Portability 147

Descriptions of implementation-defined behavior

dsPIC IAR C/EC++ Compiler
148 Reference Guide

Integer type chosen to represent enumeration types (6.5.2.2)

The chosen integer type for a specific enumeration type depends on the enumeration
constants defined for the enumeration type. The chosen integer type is the smallest
possible.

QUALIFIERS

Access to volatile objects (6.5.3)

Any reference to an object with volatile qualified type is an access.
DECLARATORS

Maximum numbers of declarators (6.5.4)
IAR C does not limit the number of declarators. The number is limited only by the
available memory.

STATEMENTS

Maximum number of case statements (6.6.4.2)

IAR C does not limit the number of case statements (case values) in a switch
statement. The number is limited only by the available memory.

PREPROCESSING DIRECTIVES

Character constants and conditional inclusion (6.8.1)

The character set used in the preprocessor directives is the same as the execution
character set. The preprocessor recognizes negative character values if a 'plain’
character is treated as a signed character.

Including bracketed filenames (6.8.2)

For file specifications enclosed in angle brackets, the preprocessor does not search
directories of the parent files. A "parent" file is the file that has the #include
directive. Instead, it begins by searching for the file in the directories specified on the
compiler command line.

Implementation-defined behavior __4

Including quoted filenames (6.8.2)

For file specifications enclosed in quotes, the preprocessor directory search begins
with the directories of the parent file, then proceeds through the directories of any
grandparent files. Thus, searching begins relative to the directory containing the
source file currently being processed. If there is no grandparent file and the file has
not been found, the search continues as if the filename were enclosed in angle
brackets.

Character sequences (6.8.2)

Preprocessor directives use the source character set, with the exception of escape
sequences. Thus to specify a path for an include file, use only one backslash:

#include "mydirectory\myfile"
Within source code, two backslashes are necessary:

file = fopen("mydirectory\\myfile","rt");

Recognized #pragma directives (6.8.6)
The following #pragma directives are recognized in IAR C:

alignment
ARGSUSED
baseaddr
bitfields
can_instantiate
codeseg
constseg
dataseg

define type info
diag_default
diag_error
diag_remark
diag_suppress
diag warning

do not_instantiate
function
hdrstop

inline
instantiate
language
location
memory

message

none

Part 3. Portability 149

Descriptions of implementation-defined behavior

dsPIC IAR C/EC++ Compiler
|50 Reference Guide

no_pch
NOTREACHED
object_attribute
once

optimize

pack

__printf args
__scanf_args
type_ attribute
VARARGS

vector
warnings

For a description of the #pragma directives, see the chapter #pragma directives.

Default __DATE__and __TIME__ (6.8.8)

The definitions for _ TIME _and __DATE__ are always available.
IAR CLIB LIBRARY FUNCTIONS

NULL macro (7.1.6)

The NULL macro is defined to (void *) 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
Assertion failed: expression, file Filename, line linenumber

when the parameter evaluates to zero.

Domain errors (7.5.1)

HUGE_VAL, the largest representable value in a double floating-point type, will be
returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)
The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to fmod () is zero, the function returns zero (it does not
change the integer expression errno).

Implementation-defined behavior __4

signal() (7.7.1.1)
IAR C does not support the signal part of the library.

Terminating newline character (7.9.2)

Stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Blank lines (7.9.2)

Space characters written out to the stdout stream immediately before a newline
character are preserved. There is no way to read in the line through the stream stdin
that was written out through the stream stdout in IAR C.

Null characters appended to data written to binary streams (7.9.2)

There are no binary streams implemented in IAR C.

Files (7.9.3)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

remove() (7.9.4.1)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

rename() (7.9.4.2)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type ' char * '. The value will be printed as a hexadecimal number, similar
to using the $x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number
and converts that into a value with the type 'void *'.

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated explicitly as a - character.

Part 3. Portability 151

Descriptions of implementation-defined behavior

dsPIC IAR C/EC++ Compiler
|52 Reference Guide

File position errors (7.9.9.1, 7.9.9.4)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

Message generated by perror() (7.9.10.4)
perror () is not supported in IAR C.

Allocating zero bytes of memory (7.10.3)

The calloc (), malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
since this is an unsupported feature in IAR C.

Behavior of exit() (7.10.4.3)

The exit () function does not return in IAR C.

Environment (7.10.4.4)

An environment is not supported in IAR C.

system() (7.10.4.5)

The system () function is not supported in IAR C.

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument are:

Argument Message
EZERO no error
EDOM domain error
ERANGE range error

<0 || >99 unknown error
all others error No.xx

Table 39: Message returned by strerror()—IAR CLIB library

Implementation-defined behavior __4

The time zone (7.12.1)

The time zone function is not supported in IAR C.

clock() (7.12.2.1)
The clock () function is not supported in IAR C.

IAR DLIB LIBRARY FUNCTIONS

NULL macro (7.1.6)

The NULL macro is defined to 0.

Diagnostic printed by the assert function (7.2)
The assert () function prints:
filename:linenr expression -- assertion failed

when the parameter evaluates to zero.

Domain errors (7.5.1)

NaN (Not a Number) will be returned by the mathematic functions on domain errors.

Underflow of floating-point values sets errno to ERANGE (7.5.1)

The mathematics functions set the integer expression errno to ERANGE (a macro in
errno.h) on underflow range errors.

fmod() functionality (7.5.6.4)

If the second argument to £mod () is zero, the function returns NaN; errno is set to
EDOM.

signal() (7.7.1.1)

IAR C does not support the signal part of the library.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.

Terminating newline character (7.9.2)

Stdout stream functions recognize either newline or end of file (EOF) as the
terminating character for a line.

Part 3. Portability 153

Descriptions of implementation-defined behavior

dsPIC IAR C/EC++ Compiler
|54 Reference Guide

Blank lines (7.9.2)

Space characters written out to the stdout stream immediately before a newline
character are preserved. There is no way to read in the line through the stream stdin
that was written out through the stream stdout in IAR C.

Null characters appended to data written to binary streams (7.9.2)

There are no binary streams implemented in IAR C.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.

Files (7.9.3)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.
remove() (7.9.4.1)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.
rename() (7.9.4.2)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.
%p in printf() (7.9.6.1)

The argument to a $p conversion specifier, print pointer, to printf () is treated as
having the type void =*. The value will be printed as a hexadecimal number, similar
to using the $x conversion specifier.

%p in scanf() (7.9.6.2)

The %p conversion specifier, scan pointer, to scanf () reads a hexadecimal number
and converts that into a value with the type void *.

Implementation-defined behavior __4

Reading ranges in scanf() (7.9.6.2)

A - (dash) character is always treated as a range symbol.

File position errors (7.9.9.1, 7.9.9.4)

There are no streams other than stdin and stdout in IAR C. This means that a file
system is not implemented.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.

Message generated by perror() (7.9.10.4)

The generated message is:

usersuppliedprefix: errormessage

Allocating zero bytes of memory (7.10.3)

The calloc (), malloc (), and realloc () functions accept zero as an argument.
Memory will be allocated, a valid pointer to that memory is returned, and the memory
block can be modified later by realloc.

Behavior of abort() (7.10.4.1)

The abort () function does not flush stream buffers, and it does not handle files,
since this is an unsupported feature in IAR C.

Behavior of exit() (7.10.4.3)

The exit () function does not return in IAR C.

Environment (7.10.4.4)
An environment is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.

system() (7.10.4.5)
The system () function is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.

Part 3. Portability 155

Descriptions of implementation-defined behavior

Message returned by strerror() (7.11.6.2)

The messages returned by strerror () depending on the argument is:

Argument Message

EZERO no error

EDOM domain error

ERANGE range error

EFPOS file positioning error
EILSEQ multi-byte encoding error
<0 || >99 unknown error

all others error nnn

Table 40: Message returned by strerror()—IAR DLIB library

The time zone (7.12.1)

Time is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.

clock() (7.12.2.1)

Time is not supported in IAR C.

Note: Interface functions exist but will not perform anything. Instead, they will result
in an error.

dsPIC IAR C/EC++ Compiler
|56 Reference Guide

IAR C extensions

This chapter describes IAR extensions to the ISO standard for the C
programming language. All extensions can also be used when compiling in
Embedded C++ mode.

@ See the compiler options -e on page 90 and --strict_ansi on page 99 for
information about enabling and disable language extensions from the
command line.

In the IAR Embedded Workbench™ IDE, language extensions are enabled by
default.

Why should language extensions be used?

By using language extensions, you gain full control over the resources and features of
the target microcontroller, and can thereby fine-tune your application.

If you want to use the source code with different compilers, note that language
extensions may cause minor modifications before the code can be compiled. A
compiler typically supports microcontroller-specific language extensions as well as
vendor-specific ones.

Descriptions of language extensions

The language extensions can be categorized into different groups according to their
functionality.

Memory, type, and object attributes

Entities such as variables and functions may be declared with memory, type, and
object attributes. The syntax follows the syntax for qualifiers—such as const—but
the semantics is different.

e A memory attribute controls the placement of the entity. There can be only one
memory attribute.

e A type attribute controls other aspects of the object. There can be many different
type attributes and they must be included when the object is declared.

e An object attribute only has to be specified at the definition but not at the
declaration of an object.

See the Extended keywords chapter for a complete list of attributes.

Part 3. Portability 157

Descriptions of language extensions

dsPIC IAR C/EC++ Compiler
|58 Reference Guide

Absolute placement

The operator @ or the directive #pragma location can be used for specifying either
the location of an absolute addressed variable or the segment placement of a variable
or function. For example:

int x @ 0x1000;

void test (void) @ "MYOWNSEGMENT"

{
}

Inline assembler

Inline assembler can be used for inserting assembler instructions into the generated
function. This is seldom needed since almost all can be expressed in C with the help
of intrinsic functions.

The syntax for inline assembler is:
asm ("NOP") ;

In strict ANSI mode the use of inline assembler is disabled.

C++ style comments

C++ style comments are accepted. A C++ style comment starts with the character
sequence // and continues to the end of the line. For example:

// The length of the bar, in centimeters.
int length;

__ALIGNOF__

Every C data object has an alignment that controls how the object can be stored in
memory. Should an object have an alignment of, say four, it must be stored on an
address that is dividable by four.

The reason for the concept of alignment is that some processors have hardware
limitations for how the memory can be accessed.

Assume that a processor can read 4 bytes of memory using one instruction but only
when the memory read is placed on an address dividable by 4. Then 4-byte objects,
such as long integers, will have alignment 4.

Another processor might only be able to read 2 bytes at a time; in that environment the
alignment for a 4-byte long integer might be 2.

A structure type will inherit the alignment from its components.

IAR C extensions __¢

All objects must have a size that is a multiple of the alignment. If is not true, only the
first element of an array would be placed in accordance with the alignment
requirements.

In the example below, the alignment of the structure is 4, under the assumption that
long has alignment 4. Its size is 8, even though only 5 bytes are effectively used.

struct str {
long a;
char b;

In standard C, the size of an object can be accessed using the sizeof operator.

The ALIGNOF__ operator can be used to access the alignment of an object. It can
take two forms:

e _ ALIGNOF__ (type)
e _ ALIGNOF__ (expression)

In the second form the expression is not evaluated.

Anonymous structs and unions

C++ includes a feature named anonymous unions. The IAR Systems compilers allow
a similar feature for both structs and unions.

An anonymous structure type (i.e. one without a name) defines an unnamed object
(and not a type) whose members are promoted to the surrounding scope. External
anonymous structure types are allowed.

For example, the structure str below contains an anonymous union. The members of
the union are accessed using the names b and c, for example obj . b.

Without anonymous structure types the union would have to be named—for example
u—and the member elements accessed using the more clumsy syntax obj .u.b.

struct str {
int a;
union {
int b;
int c;
}
}i

struct str obj;

Part 3. Portability 159

Descriptions of language extensions

dsPIC IAR C/EC++ Compiler
160 Reference Guide

Bitfields and non-standard types

In standard C, a bitfield must be of type int or unsigned int. Using IAR
extensions any integer type and enums may be used.

For example, in the following structure a char is used for holding three bits. The
advantage is that the struct will be smaller.

struct str {
char bitOne : 1;
char bitTwo : 0 1;
char bitThree : 1;

i
This matches G.5.8 in the appendix of the ISO standard, ISO Portability Issues.

Incomplete arrays at end of structs

The last element of a struct may be an incomplete array. This is useful since one
chunk of memory can be allocated for the struct itself and for the array, regardless
of the size of the array.

Note: The array may not be the only member of the struct. If that were the case,
then the size of the array would be zero, which is not allowed in C.

Example

struct str {
char a;
unsigned long b[];

}i
struct str * GetAStr (int size)
{

return malloc (sizeof (struct str) + sizeof (unsigned

long) *size) ;

1
void UseStr (struct str * s)
{
s->b[10] = 0;
1

The struct will inherit the alignment requirements from all elements, including the
alignment of the incomplete array. The array itself will not be included in the size of
the struct. However, the alignment requirements will ensure that the struct will end
exactly at the beginning of the array; this is known as padding.

IAR C extensions __¢

In the example above the alignment of struct str will be 2. (Assuming a processor
where the alignment of unsigned longis 2.)

The memory layout of struct str is:

Pad byte

First element of b

Second element of b

Arrays of incomplete types

An array may have an incomplete struct, union, or enum type as its element type.
The types must be completed before the array is subscribed (if it is), and by the end of
the compilation unit if it is not.

Empty translation units

A translation unit (source file) is allowed to be empty, i.e. it does not contain any
declarations.

In strict ANSI mode a warning is issued if the compilation unit is empty.

Example

The following source file is only used in a debug build. (In a debug build the NDEBUG
preprocessor flag is undefined.) Since the entire content of the file is surrounded by
preprocessor tests, the translation unit will be empty when the application is compiled
in release mode. Without this extension, this would be considered an error.

Part 3. Portability 161

Descriptions of language extensions

dsPIC IAR C/EC++ Compiler
162 Reference Guide

#ifndef NDEBUG

void PrintStatusToTerminal (void)

{
}

#endif

/* Do something */

Comments at the end of preprocessor directives

This extension, which makes it legal to place text after preprocessor directives, is
enabled unless strict ANSI mode is used. This language extension exists to support
compilation of old legacy code; it is not recommended to write new code in this
fashion.

Example

#ifdef FOO
something

#endif FOO

Forward declaration of enums

It is possible to first declare the name of an enum and later resolve it by specifying the
brace-enclosed list.

Extra comma at end of enum list

It is allowed to place an extra comma at the end of an enum list. In strict ANSI mode
a warning is issued.

Note: C allows extra commas in similar situations, for example after the last element
of the initializers to an array. The reason is that it is easy to get the commas wrong if
parts of the list are moved using a normal cut-and-paste operation.

Example

enum {
kOne,
kTwo, /* This is now allowed. */

i

IAR C extensions __4

Unsigned int enum constants

The enum constants may be given values that fit into the unsigned int range but not
in the int range. In strict ANSI mode a warning is issued.

#include <limits.h>

enum {
kFirst 0,
KSecond = UINT_MAX

¥

Missing semicolon at end of struct or union specifier

A warning is issued if the semicolon at the end of a struct or union specifier is
missing.

NULL and void

In operations on pointers, a pointer to void is always implicitly converted to another
type if necessary, and a null pointer constant is always implicitly converted to a null
pointer of the right type if necessary. In standard C, some operators allow such things,
while others do not allow them.

A label preceding a "}"

In standard C, a label must be followed by at least one statement. Hence it is illegal to
place the label at the end of a block. In the IAR Systems compiler a warning is issued.

To create a correct standard-compliant C program (so that you will not have to see the
warning) you can place an empty statement after the label. An empty statement is a
single ; (semi-colon).

Example
void test (void)
{
if (...) goto end;

/* Do something */
end: /* Illegal at the end of block. */

}

Note: This also applies to the labels of switch statements. The following piece of code
will generate the warning.

switch (x)

{

Part 3. Portability 163

Descriptions of language extensions

dsPIC IAR C/EC++ Compiler
164 Reference Guide

case 1:
break;
default:

}

A good way to convert this into a correct program is to place a break ; statement after
the default: label.

Empty declarations

An empty declaration (a semicolon by itself) is allowed but a remark is issued.

This is useful when preprocessor macros are used that could expand to nothing.
Consider the following example. In a debug build the macros DEBUG_ENTER and
DEBUG_LEAVE could be defined to something useful. In a release build, however, they
could expand into nothing, leaving the ; character in the code.

void test (void)

{

DEBUG_ENTER() ;
do_something () ;

DEBUG LEAVE() ;
}
Single value initialization

Standard C requires that all initializer expressions of static arrays, structs, and
unions should be enclosed in braces.

Single-value initializers are allowed to appear without braces, but a warning is issued.

Example
In the IAR C Compiler, the following expression is allowed:
struct str
{
int a;
} x = 10;
Casting pointers to integers

In an initializer, a pointer constant value may be cast to an integral type if the integral
type is large enough to contain it.

IAR C extensions __4

In the example below we assume that pointers to __xmem and __sfr are 16 and 32
bits, respectively.

In the example below the first initialization is correct since it is possible to cast the
16-bit address to a 16-bit unsigned short variable. However, it is illegal to use the
32-bit address of b as initializer for a 16-bit value.

__xmem int a;
const int b=2;

unsigned short ap = (unsigned short)&a; /* Correct */
unsigned short bp = (unsigned short)&b; /* Error */
Casting integers to pointers and back in constant expressions

In constant integer expressions, it is allowed to cast an integer to a pointer and back.

Taking the address of a register variable

In standard C, it is illegal to take the address of a variable specified as a register
variable.

The IAR compiler allows this but a warning is issued.

Duplicated size and sign specifiers

Should the size or sign specifiers be duplicated (for example, short short or
unsigned unsigned), an error is issued.

"long float" means "double"

long float is accepted as synonym for double.

Repeated typedefs

Redeclarations of typedef£ that occur in the same scope are allowed, but a warning
is issued.

Mixing pointer types

Assignment and pointer difference is allowed between pointers to types that are
interchangeable but not identical, for example, unsigned char * and char *. This
includes pointers to integral types of the same size. A warning is issued.

Assignment of a string constant to a pointer to any kind of character is allowed, and
no warning will be produced.

Part 3. Portability 165

Descriptions of language extensions

dsPIC IAR C/EC++ Compiler
166 Reference Guide

Non-top level const

Assignment of pointers is allowed in cases where the destination type has added type
qualifiers that are not at the top level (for example int ** to int const **). Itis
also allowed to compare and take the difference of such pointers.

Declarations in other scopes

External and static declarations in other scopes are visible. In the following example
the variable y can be used at the end of the function, even though it should only be
visible in the body of the if statement. A warning is issued.

int test (int x)

{

if (%)

{

extern int y;
y = 1;

}

return y;

}

External or static entities declared in other scopes are visible. A warning is issued.

Non-lvalue arrays

A non-lvalue array expression is converted to a pointer to the first element of the
array when it is subscribed or similarly used.

A

-AXLINK option)vvviiiin i 58
address 25
addressing. See memory types
ANONYMOUS SIIUCIUIES . &« . v v vt e et e e e e e e 23
applications
building 3
initializing L 53
erminatingt 53
architecture, dsPIC........ Xiii
ARGFRAME (compiler function directive) 41
AITAYS « ¢ ettt e e e e e e 147
_ _asm (intrinsic function) 124

asm (inline assembler) 6
assembler directives
CEL ..o 56
ENDMOD. ... 55
EQU. .. 97
EXTERN. ... e 55
MODULE i 55
PUBLIC. e 55,97
REQUIRE i 55
RSEG.o 55
RTMODEL i 35
assembler labels
PC EXIT. .. 62
7C_GETCHAR ... 62
7C_PUTCHAR 62
7C_VIRTUAL_IO........ ..., 62
assembler language interface 27
calling assembler routines from C................. 36
creating skeletoncode. 37
assembler listfile 41
assemblermodules. L il 63
assembler, inline. 6,63
assert.h (library header file) 134-135
assumptions (programming experience) xiii
atomic operations, performing. 106

Index __o

autovariables 14

saving stack space............... ..., 64
Barr, Michael XV
bitfields

IN EXPIESSIONS « .t vv ettt et e e e 68

in implementation-defined behavior.............. 147
bitfields (#pragma directive) 68, 110
byte order, of dsPIC microcontroller................. 67
callchains. i 64
call frame information 56
call stack, displaying 56
callee-save registers, storedonstack 14
calling convention

C o 30

Embedded C++ ... 40
calloc (standard library function). 15
cassert (library header file). 137
casting, of pointers and integers. 70
cctype (library header file)........................ 137
cerrno (library header file) 137
CFI (assembler directive).o...... 56
cfloat (library header file) 137
char (data type), signed and unsigned 68, 87
characters, in implementation-defined behavior 144
--char_is_signed (compiler option) 87
_ _clear_watchdog_timer (intrinsic function) 124
CLIBLibrary.couuuiiniinennen... 133-134

CUSTOMIZING . . . ottt et 57
climits (library header file). 137
clocale (library header file) 137
_ _close (library function) 61
cmath (library header file) 137
code

excluding when linking. 55

167

placementof L i 73

portabilityof 44
SEATTUP &« o v vt vttt ettt e 51
code execution, in dsPIC microcontroller 4
codemodels il 4
code motion, disabling. 95
CODE (segment)ovuiinininennnnnnenenn 51,74
common sub-expression elimination, disabling. 95
compiler environment variables. 84
compiler error returncodesol 85
compiler listing, generating 93
compiler object file
including debug information.................. 89, 98
specifying filename.......... 96
compiler options
SELHNE .« o vt vttt e 83
specifying parameters, 83
SUMIMALY « o v v ettt et e et e e iee e 85
typographic convention. XVvi
D 88
B e e 90
S P 91
P 92
PN 38,93
S0 e e 96
S PPN 89, 98
S e e 98
20 99
in predefined symbols 119
mapping of dsPICcores....................... 9
/P 100-101
--char_is_signed 87
E] 01 P 87
mapping of dsPICcores....................... 9
--data_model L il 88
—debug L. 89, 98
—diag error. 89
--diag_remark L 89
--diag_SUPPIeSSt 90

dsPIC IAR C/EC++ Compiler

168 Reference Guide

--diag_warning il 90
SO 91
--IARStyleMessages 93
--library_module L oL 93
--migration_preprocessor_extensions 94
--module_name L., 94
--no_code_motion., 95
SO_CSE. . ot e 95
--no_inline. L L i 95
—no_unroll. L L 96
SSNO_WATNINES « o v v v oe ettt e e e 96
——only_stdout. 97
S PTEPTOCESS . v v v vt et et e e 97
—public_equ 97
—remarks. ... 98
--TEQUITE_PrOtOLYPES . o ot v ettt eee e 98
—silent. ..o 99
S-SEFCE_AnST . ..o v 99
--warnings_affect_exit code................. 85, 100
—-WarNiNGS_are_eITOTS . .« v v ve e v et e 100
--64bit_doubles L Ll 101
compiler versionnumber 120
compiling, from the command line 3
complex numbers, supported in Embedded C++......... 7
complex (library header file) 136
computer style, typographic convention XVi
consistency, module oL 35, 64
CONST (SEZMENt) . . . oo ettt e en s 74
_ _constptr (extended keyword). 105
using in #pragma directives. 115
constseg (#pragma directive) 110
conventions, typographic. XVi
copyrightnotice i i ii
cores
mapping of processor options 9
supported. 9, 87,99
_ _CPU_ _ (predefined symbol) 118-119
--cpu (compiler option) 87
mapping of dsPICcores 9

CPU variant, specifying on command line 87,99
csetjmp (library header file). 137
csignal (library header file) 137
CSTACK (segment)covvvnvninennnnnenenn 49,75
See also stack
cstartup, customizingt 54, 57
cstdarg (library header file) 137
cstddef (library header file) 137
cstdio (library header file) 137
cstdlib (library header file). 137
cstring (library header file). 137
ctime (library header file). 137
ctype.h (library header file) 134-135
C++
features excluded from EC++..................... 7
See also Embedded C++
C-SPY, low-level interface. 62
?C_EXIT (assemblerlabel) 62
?C_GETCHAR (assemblerlabel) 62
C_INCLUDE (environment variable) 85,92
?C_PUTCHAR (assembler label) 62
?C_VIRTUAL_IO (assemblerlabel)................. 62
--data_model (compileroption) 88
data
alignmentof 67
excluding when linking. 55
initialized. 48
located. i 51
non-initialized 47
non-zero initialized 47
placementof oL 73
specifying....... ... i 9
SEOTAZE . . .ottt 4,13
zero-initialized. 47
data memory, specifying 9
data models
characteriSticsvv v it e 9

Index __o

data representationc...i i 67
data types
floating point. oo 68
INEEZETS « v v vt ettt et e e e e 67
using efficiently. L L 64
dataseg (#pragma directive) 111
_ _data_model (runtime model attribute). 36

DATE_ _ (predefined symbol) 118

--debug (compiler option) 89, 98
debug information, including in object file 89, 98
declaration, of functions. 30
declarators, in implementation-defined behavior. 148
delete (keyword). 15
derivatives
mapping of processor options 9
supported. 87,99
diagnostic MeSSaAZES . .« v v vttt 139
classifying as errors. 89
classifyingasremarks. 89
classifying as warnings 90
disabling warnings 96
enablingremarks. 98
SUPPIESSING .« o v vt vttt et e 90
diag_default (#pragma directive) 111
--diag_error (compiler option) 89
diag_error (#pragma directive). 111
--diag_remark (compileroption) 89
diag_remark (#pragma directive). 112
--diag_suppress (compiler option) 90
diag_suppress (#pragma directive). 112
--diag_warning (compileroption) 90
diag_warning #pragma directive). 112
DIFUNCT (segment)coouvnininnnnennn. 51,75
directives, #pragmai ... 109
OVEIVIEWttt i 5
_ _disable_interrupt (intrinsic function) 124
disclaimer. i ii
DLIBlibrary...........cooiiiiineana.. 134-138
I/Ofunctions........... 60

169

document conventionsuuiiinan.. XV

documentation, library 133
double (datatype).ooviiii i 68
_ _double_size (runtime model attribute) 36
dsPIC architecture xiii
code eXeCution.o vttt 4
MEMOTY ACCESS - ¢ e v e tev e et e ee e eeeaenn 4
dsPIC cores
mapping of processor Optionsc.c.o..... 9
supported. 9, 87,99
dsPIC derivatives
terminology in this guide XV
dsPIC instruction setc..viuurvnenn.n. xiii
dynamic initialization. 57, 59-60
inEmbedded C++........ 51
dynamic memoryt 15
--ec++ (compiler option)l 91
_ _El (intrinsic function) 124
Embedded C++
callingconvention. 40
differences from C++ 7
dynamic initializationin..........., 51
enabling. 91
language extensionsc...iiann... 6
OVEIVIEW .\ v ittt ettt e et e et aas 6
Embedded C++ objects, placing in memory type 19
_ _enable_interrupt (intrinsic function) 124
endianness, of dsPIC microcontroller 67
ENDMOD (assembler directive) 55
enum (keyword) 68
enumerations, in implementation-defined behavior. 147
environment
in implementation-defined behavior.............. 144
TUNEIME & oot ettt et e i eeeans 53
environment variables 84
C_INCLUDE.t 85, 92
QCCDSPIC. ... 85

dsPIC IAR C/EC++ Compiler

|70 Reference Guide

EQU (assembler directive). 97
errno.h (library header file) 134-135
@ITOT MNESSAZES « « ¢ v v v v ve et e e et e e e e 139
classifying i 89
errorreturncodes. 85
exception handling, missing from Embedded C++ 7
EXCEPLON VECLOTS & . v v v v e ve e e e e e e e eeen 51
exception (library header file) 136
experience, programming.euenenen... xiii
extended keywords. o i 103
enabling. L 90
12311 68
overriding default behaviors 10
OVEIVIEW ...ttt 5
17 1L P 104
LCONSEPIT. e ottt et 105
using in #pragma directives 115
_func... 105
_nterrupt 25, 105-106, 108
See also INTVEC (segment)
using in #pragma directives 115-116
_ntrinsic. 106
CMEIM Lot 106
using in #pragma directives 115
L _MONItOr. . oot 106
using in #pragma directives 115
CNO_INIE L e 20, 107
using in #pragma directives 113
B & P 108
TOOT. ottt et e 108
using in #pragma directives 113
B 108
using in #pragma directives 115
D1 1155 1 1 108
using in #pragma directives 115
T 7 ¥4 1<) o PP 108
using in #pragma directives 115
EXTERN (assembler directive) 55

F

-f (compileroption) i 91
fatal errormessages i 139
_ _FILE_ _ (predefined symbol) 118
file paths, specifying for #include files 92
filename, specifying for objectfile 96
float (floating-point type). oo ... 68
floating-point format 68
implementation-defined behavior................ 146
SPECIal CaSES . ..ot 69
32-Dit. ot 69
A DYLeS . o et 69
64-bit. ... 69
B DYteS . ot 69
float.h (library header file). 134, 136
formats
floating-point values 68
standard IEEE (floating point) 68
_formatted_write (library function) 59
fragmentation, of heap memory..................... 16
free (standard library function) 15
fstream (library header file) 136
fstream.h (library header file) 138
_ _func (extended keyword). L. 105
FUNCALL (compiler function directive) 41
function directives L oo 41
function inlining, disabling 95
function parameters, type checking 64
function types, special 25
FUNCTION (compiler function directive) 41
functions
calling 34
using assembler instructions 34
declaring 30
executing
USING MEMOTY . « ¢ v vttt e et et eee e 13
Inlining 63
INENSIC . oot e 5,63

Index __o

FO . 57
OVEIVIEW .ottt ettt i e e 25
placinginsegments. i, 26
TECUTSIVE oot vttt e ettt e e 64
storing dataonstack. 14-15
return values from. L. 32
SEALIC « vttt 63
getchar (library function) 57
guidelines, reading i, xiii
headerfiles.......... i 135
assert.h. L 134
CLIB ... 133
ctypeh. . 134
DLIB ... oo 135
errno.h. ... 134
floath 134
iccbutlh.o oo 134
limits.h. ..o 134
mathh 134
segmp.h. ... 134
stdarg.h 134
stddef.h 134
stdioh ..o 134
stdlibh. 134
string.h. ... 134
heap 15
SIZB. vt e e 50
specified in linker command file. 44
HEAP (segment)ciiininnieaan. 50, 75
hidden parameters 31
hints
OPtIMIZAtION. . . .t v v vttt 63
PrOZIammMIng. . ..« .vvvvvt it et et eeeenenn 63

171

172

-I (compileroption) i 92
--IARStyleMessages (compiler option) 93
_ _IAR_SYSTEMS_ICC_ _ (predefined symbol). 119
iccbutl.h (library header file) 134
_ _ICCDSPIC_ _ (predefined symbol) 119
ICODE (segment).covuininiennnenen. 51,76
identifiers, in implementation-defined behavior 144
IEEE format, floating-point values 68
implementation-defined behavior 143
indspic.h (header file). L. 124
inheritance, in Embedded C++. 6
initialization
dynamic.........l 57, 59-60
modifying cstartup il 57
inlineassembler 6, 63
See also assembler language interface
inline (#pragma directive) 112
input functions, in runtime library 57
instruction set, dsPIC Xiii
int(datatype)covnint i e 67
INEEZEIS .« v vt e e ettt e et e e 67
CASLINE . o ettt et e 70
in implementation-defined behavior.............. 145
ptrdiff t. 70
SIZE L.ttt 70
internal error. 140
_ _interrupt (extended keyword) 25, 105-106, 108
using in #pragma directives. 115-116
interrupt functions
in assembler language L L. 34
inClanguage. i 25
placement in memoryouiiie.. 51
interrupt vectortable oL 25
description. 34
interrupt vectors
inassembler.......... L L il 34
specifying with #pragma directive 116

dsPIC IAR C/EC++ Compiler
Reference Guide

interrupt (function type).o 25
interrupts
disabling during function execution 33
INTVECsegmentc.iiiinenen... 76
_ _intrinsic (extended keyword). 106

intrinsic functions. 63
OVEIVIEW & . vttt ettt et e et et e eeeens 5
SUMIMALY « e vt et ettt e et et e e e eeaene 121
13 5 124
_ _clear_watchdog_timer 124
_ _disable_interrupt. i 124
N) 124
__enable_interrupt 124
_antl6_tabs_S. ... 125
_ntl6_tadd 125
o ntl6_tdiv_S. . e 125
__intl6_textract_h........ 125
__intl6_textract_l........ 125
o ntl6_tmac_r........ 125
o ntl6_tmSU_T . .o 126
_antl6_tmult ... 126
_antl6_tmult_r. ... 126
__intl6_tnegate.t 126
__intl6_tnorm_l 126
_ntl6_tnorm_Soi i 126
__intl6_tround 126
__intl6_tround_ub 127
_intl6_tshl. 127
__intl6_tshr. 127
_intl6_tshrr...... 127
_antl6_tsub ... 127
__intl6_t _xmem *add_br 127
__int32_tL_abs. 128
__int32_tL_add.......... ... 128
__int32_tL _deposit_h........... 128
__int32_tL _deposit_l 128
__int32_tL mac ... 128
_nt32_tL msu ... 128
__int32 tL mult. 129

__int32_tL negate.............., 129
__int32_tL_shl 129
_int32_tL_shr...... 129
__int32_tL_shrr..... 129
_int32_tL_sub...... 130
__intd40_tLL_add..............., .. 130
__int40_tLL_mac 130
__int40_tLL_msu 130
__int40_tLL _negate 130
__intd40_tLL_sub............. 131
__mem*add_mod.............. 131
_ _NO_OPETatioN. . .. v vttt et 131
CTEQUITE .« vt 131
S =] A 132
INTVEC (segment)c.coiuinnenn. 51,76
_ _int16_t abs_s(intrinsic function) 125
_ _int16_t add (intrinsic function) 125
_ _intl6_t div_s (intrinsic function). 125
_ _intl16_t extract_h (intrinsic function) 125
_ _intl16_t extract_I (intrinsic function) 125
_ _int16_t mac_r (intrinsic function) 125
_ _int16_t msu_r (intrinsic function) 126
_ _int16_t mult (intrinsic function) 126
_ _int16_t mult_r (intrinsic function). 126
_ _int16_t negate (intrinsic function). 126
_ _int16_t norm_1 (intrinsic function) 126
_ _int16_t norm_s (intrinsic function) 126
_ _intl16_t round (intrinsic function) 126
_ _int16_t round_ub (intrinsic function) 127
_ _intl16_t shl (intrinsic function). 127
_ _intl16_t shr (intrinsic function) 127
_ _intl6_t shr_r (intrinsic function). 127
_ _intl16_t sub (intrinsic function) 127
_ _intl6_t __xmem * add_br (intrinsic function) 127
_ _int32_t L_abs (intrinsic function) 128
_ _int32_t L_add (intrinsic function). 128
_ _int32_t L_deposit_h (intrinsic function)........... 128
_ _int32_t L_deposit_I (intrinsic function) 128
_ _int32_t L_mac (intrinsic function) 128

Index __o

_ _int32_t L_msu (intrinsic function) 128
_ _int32_t L_mult (intrinsic function) 129
_ _int32_t L_negate (intrinsic function) 129
_ _int32_t L_shl (intrinsic function) 129
_ _int32_t L_shr (intrinsic function) 129
_ _int32_t L_shr_r (intrinsic function). 129
_ _int32_t L_sub (intrinsic function) 130
_ _int40_t LL_add (intrinsic function). 130
_ _int40_t LL_mac (intrinsic function) 130
_ _int40_t LL_msu (intrinsic function) 130
_ _int40_t LL_negate (intrinsic function) 130
_ _int40_t LL_sub (intrinsic function). 131
iomanip (library header file) 136
iomanip.h (library header file) 138
ios (library header file). 136
iosfwd (library header file). 136
iostream (library header file) 136
iostream.h (library header file). 138
ISO/ANSI C

C++ features excluded from EC++................. 7

specifying strictusage., 99
1s0646.h (library header file) 136
istream (library header file) 136
I/Ofunctions0t 57
Kernighan, Brian W.. XV
keywords,extended i 5
-l (compileroption) 38,93
Labrosse,JeanJ.., XV
language extensions

Embedded C++.......... ... i 6

enabling. L 90

OVEIVIEW .\ vttt ettt et ettt e e et eeee s 4

using anonymous structures and unions 23
language (#pragma directive). 112

173

large (memory model) 10
libraries. 3
compatibility Lo 64
TUNEIMEo 10
library documentation 133
library features, missing from Embedded C++ 7
library functions. L i 133
CLIB ...t e 133-134
CUSIOMIZING . ..ottt 57
DLIB......cooiii i 134-138
I/Ofunctions. 60
getchar. L 57
printf 59
putchar. 57
TEMOVE. . oottt et ettt e e 61
TENAME. . oo\ vt ettt ettt e 61
scanf 60
sprintf 59
sscanf. 60
SUMIMALY o v v vttt et e et et e e ee e 134
Close . ..o 61

Iseeko 61

L OPCI & et e 61

read. 61
_readchar 61
4 & L1 61
_writechar. 61

library modules, creating 93
library objectfiles, 133, 135
--library_module (compiler option) 93
limits.h (library header file) 134, 136
_ _LINE_ _ (predefined symbol)................... 119
linker command files 44

CUSIOMIZING . « . o\ v e et e 45

ready-made i 44
linking, from the command line. 4
listing, generating.ttt 93
literature, recommended. XV
Little Endian. 67

dsPIC IAR C/EC++ Compiler

|74 Reference Guide

locale.h (library header file). 136

locateddata 51
location (#pragma directive) 113

example. 21
LOCFRAME (compiler function directive)............ 41
long long (datatype)coouiuinninnenenan.. 68
long (datatype)covininininii i 68
_ _long_double_size (runtime model attribute). 36

loop unrolling, disabling 96
low-level processor operations. 5,121
_ _low_level_init, customizing 54
_ _Iseek (library function) 61
malloc (standard library function) 15
Mann,Bernhard XV
math.h (library headerfile) 134, 136
_medium_write (library function) 59
_ _mem (extended keyword) 106
using in #pragma directives. 115
_ _mem * add_mod (intrinsic function). 131
memory
accessmethods 4,16
allocating in Embedded C++. 15
dynamic.o i 15
heap.o 15
non-initialized L 20
RAM,saving.o, 64
releasing in Embedded C++ 15
SEACK. « v 13
SAVINE . v v ottt e e 64
SEALIC © vttt 15
used by executing functions 13
used by global or static variables 15
memory management, type-safe 6
memory models
default 10
MEMOTY CYPES. « et vttt et et e e 16
Embedded C++ 19

placing variablesin............. 19

SUMIMALY « o v v ettt et e et e e e 17
_ _MEMORY_MODEL_ _ (predefined symbol) 118
MEM_A (segment)ccouenininennnnennn.. 76
MEM_I(segment)cooniininininnenennn.. 76
MEM_ID (segment).c.cuvuinininnenenen.. 77
MEM_N (segment)coeuinininnenennn.. 77
MEM_Z (segment).oovinininininnenenen.. 77
migration

from earlier IAR compilers...................... 94
--migration_preprocessor_extensions (compiler option). . 94
module consistency 35,64
module name, specifying 94
MODULE (assembler directive) 55
modules, assembler 55
module-local variables. 63
--module_name (compiler option) 94
_ _monitor (extended keyword). 106

using in #pragma directives. 115
monitor functions. 26, 33, 106
multiple inheritance, missing from Embedded C++ 7
namespaces, missing from Embedded C++............. 7
new cast syntax, missing from Embedded C++.......... 7
new (keyword) L. L 15
new (library header file). 136
new.h (library header file) 138
non-initialized memory 20
non-scalar parametersoeniin.... 64
--no_code_motion (compiler option). 95
--no_cse (compileroption). 95
_ _no_init (extended keyword) 20, 107

using in #pragma directives. 113
--no_inline (compiler option). 95
_ _no_operation (intrinsic function) 131
--no_unroll (compiler option) 96
--no_warnings (compiler option) 96
NULL. .. e 134

Index __o

o

-0 (compileroption) i 96
object files

library ... 133,135

specifying filename.............. 96
object module name, specifying. 94
object_attribute (#pragma directive) 20, 113
offsetof L 134
--only_stdout (compiler option). 97
_ _open (library function) 61

OPtIMIZAON « . o . vttt e 63
code motion, disabling 95
common sub-expression elimination, disabling 95
function inlining, disabling 95
hints. 63
loop unrolling, disabling 96
size, specifying L. 100-101
speed, specifying. 98
techniques 4

optimize (#pragma directive) 114

options summary, compiler 85

Oram, Andyt XV

ostream (library header file). 136

output functions, in runtime library 57

OULPUL, PIEPIOCESSOT . .« v o v v et e e e e e e een s 97

parameters
function. 31
hidden 31
non-scalar i 64
TEEISTET. . oottt e 31
specifying 83
stack. 31-32
typographic convention. XVi

permanent registersoiii . 32

placeholder segments. 44

placementof code anddata 73

175

POINLETS. « . vttt ettt ettt it e 17,147

CASLINE . o ettt e et e 70
sizeof 70
using instead of large non-scalar parameters 64
polymorphism, in Embedded C++.................... 6
porting,of code i 44
containing #pragma directives 110
#pragma directives.t 109
predefined symbols
OVEIVIEW . .ottt 5
_cplusplus. ... 118
_ CPU_ . 118-119
_ DATE_ .. 118
_ _embedded_cplusplus 118
__FILE_ _ 118
__JAR_SYSTEMS_ICC_ _.......... ...t 119
__ICCDSPIC_ _... oo 119
__LINE_ _ . 119
__MEMORY_MODEL_ _..................... 118
_ STDC e 119

__STDC_VERSION_ _........ ...t 119

_ TID o 119

__TIME_ .. 120

__VER_ .. 120
--preprocess (compiler option). 97
preprocessing directives, in implementation-
defined behavior. 148
preprocessor

extending. 94

output, directingtofile 97
preprocessor symbols, defining 88
prerequisites (programming experience) xiii
printf (library function) 59
processor operations, low-level 5,121
processor options

mapping of derivatives 9
processor variant, specifying on command line. 87,99
programming experience, required xiii
programming hints. 63
project options, Setting.ttt 9

dsPIC IAR C/EC++ Compiler

176 Reference Guide

_ _ptr (extended keyword) L L 108
ptediff t ... 134
ptrdiff_t (integertype)t 70
PUBLIC (assembler directive). 55,97
--public_equ (compiler option) 97
putchar (library function). 57
QCCDSPIC (environment variable). 85
qualifiers, in implementation-defined behavior. 148
-r (compileroption) 89, 98
RAM memory
SAVING .« o vv ettt e e 64
RCODE (segment).ouitiinininnenenan.. 77
_ _read (library function) 61
read formatter, selecting. 60
_ _readchar (library function) 61
reading guidelines xiii
reading, recommended. XV
realloc (standard library function) 15
recursive functions oLl 64
storing dataonstack 14-15
reference information, typographic convention. Xvi
TEEISIer PATAMELETS . « . ¢ v vt et e et e eee e 31
registered trademarks. L Lo oL ii
TEEISIETS . vttt et ettt e e 147
callee-save, storedonstack. 14
erasing using assembler-level routine 30
PEIMANENt « . ottt ettt e e 32
scratch L L 32
remark (diagnostic message) 139
classifying 89
enabling. L 98
--remarks (compiler option). 98
remove (library function). 61
rename (library function), 61

_ _require (intrinsic function) 131
REQUIRE (assembler directive) 55
--require_prototypes (compiler option) 98
_ _reset (intrinsic function) 132
return values, from functions 32
Ritchie, Dennis M. XV
_ _root (extended keyword) oLl 108
using in #pragma directives. 113
routines, time-critical 5,121
RSEG (assembler directive). 55
RTMODEL (assembler directive) 35
rtmodel (#pragma directive). 114
_ _rt_version (runtime model attribute) 36
runtime environmentoueneenn.. 53
runtime libraries. 6, 10
SUMIMALY « o v v ettt ettt et e e e 11
runtime model attributes 35
predefined i 36
__datamodel............ 36
__double_size......... 36
_ _long_double_size 36
B 4 A = 13 () o 36

runtime type information, missing from Embedded C++ . .7

S

-s (compileroption)o 98
saddr memory.t 10
scanf (library function). 60
scratch registerst 32
search procedure, #include files. 92
segment types, in XLINK 43
SEEMENLS. . .ottt et 43,73
CODE 51,74
COAE . .ottt 51
CONST . ..o 74
CSTACK . ..o 49,75
DIFUNCT 51,75
dynamicdata............ i 50
HEAP 50, 75

Index __o

ICODE.o 51,76
INTVEC ... 51,76
11 1 N 48
MEM_A .. 76
MEM_I. ... 76
MEM_ID.o i 77
MEM_N .. 77
MEM_Z. ... 77
NON-SEAtIC.ot 49
placeholder L. 44
placement in memory, example. 45
RCODE. 77
ST, 48
SFR_A. . 78
SFR_I .. 78
SFR_ID. ... 78
SFR_N. . 78
SFR_Z ... o 79
StAtiC 46
SUMIMALY © ¢ . v voetete ettt e e e ee e eeeen s 73
XMEM_A ... 79
XMEM_I. ... 79
XMEM_ID ... 79
XMEM_N. .. 80
XMEM_Z ..o 80
YMEM_A ... 80
YMEM_I. 80
YMEM_ID ... 81
YMEM_ N.o 81
YMEM_Z ... o 81
semaphores, Operations On. 106
setjmp.h (library header file) 134, 136
severity level, of diagnostic messages 139
specifying 140
_ _sfr(extended keyword) 108
using in #pragma directives. 115
SFR_A (segment).vuiuininnin .. 78
SFR_I(segment)ooiuiiiinennienenan.. 78
SFR_ID (segment)c.ouiuiinininenenenan.. 78

177

178

SFR_N (segment).c.ovuiininininennann. 78

SFR_Z (segment)coiuiiiininnenenan.. 79
shortaddressing i 10
short (datatype)c.oininnnin i 67
signal.h (library header file). 136
signed char (datatype)............ ... 67-68
specifying ... 87
--silent (compiler option) L. 99
silent operation, specifying 99
size optimization, specifying 100-101
SiZe_t (INteZET tYPE) - v v v v v e e e e e e 70, 134
skeleton code, creating for assembler language interface . 37
small (datamodel) 10
_small_write (library function) 59
special function registers 22
special function types, overview 5
speed optimization, specifying. 98
sprintf (library function). 59
sscanf (library function)., 60
sstream (library header file)....................... 137
StaCK 13,49
advantages and problems using. 14
contentsof L L i 14
internaldata. i 75
SAVING SPACE. - ¢ v v v e et et 64
SIZE. . ot 50
specified in linker command file. 44
stack parameters. 31-32
StACK POINEETottt 14
standarderror......... oL oo 97
standard output, specifying 97
Standard Template Library (STL), missing
fromEmbedded C++......... 7
startup code 51
See also cstartup
statements, in implementation-defined behavior. 148
static functions L Lo 63
StAtiC MEMOTY . . .« .ottt ettt e 15
stdarg.h (library header file). 134, 136
_ _STDC_ _ (predefined symbol) 119

dsPIC IAR C/EC++ Compiler
Reference Guide

_STDC_VERSION_ _ (predefined symbol). 119
stddef.h (library header file). 134, 136
Stderr. 61,97
stdexcept (library header file) 137
SEAIN ..o 61
stdio.h (library header file). 134, 136
stdlib.h (library header file) 134, 136
stdout 61,97
streambuf (library header file) 137
streams, supported in Embedded C++................. 7
--strict_ansi (compileroption) 99
string (library header file) 137
strings, supported in Embedded C++.................. 7
string.h (library header file) 134,136
Stroustrup, Bjarne i XV
strstream (library header file). 137
SITUCKUIES . . v v vt vttt ettt et e ee s 70

ANONYIMOUS .« « vt vttt e et e et e e eeen 23
in implementation-defined behavior. 147
placing in memory type. 19
symbols
predefined
overview of. 5
preprocessor, defining 88
syntax, extended keywords 104
target identifier (predefined symbol) 119
templates, missing from Embedded C++............... 7
terminology, of thisguide XV
this (POINtEr). . ..ottt 40
_ _TID_ _ (predefined symbol) 119
_ _TIME_ _ (predefined symbol) 120
time-critical routines 5, 121
time.h (library header file) 136
tips, Programmingoueuueenennenn .. 63
trademarks ii
translation, in implementation-defined behavior. 143
type checking, of function parameters................ 64

type-safe memory management. 6
type_attribute (#pragma directive).................. 115
typographic conventionso.... Xvi
uninitialized variables 20
UNHOMS . & vt eee ettt e e e e e e e e e 23,70
in implementation-defined behavior.............. 147
unsigned char (datatype)....................... 67-68
changing tosignedchar. 87
unsigned int (datatype) 67-68
unsigned long long (datatype)...................... 68
unsigned long (datatype). 68
unsigned short (datatype) 67
-v (compileroption) 99,119
mapping of dsPIC cores 9
variables
ASPOINLETS « . v et ettt e e 18
AULO .« oottt 13-14, 64
defined inside a function........................ 13
global, placementin memory 15
local. See auto variables
located in mMemMOry.ot ini i 21
module-local L i 63
placing at absolute addresses 21
placing in named segments 21
static, placementinmemory 15
uninitialized. L oL o i i 20
vector (#pragma directive) 25,116
_ _VER_ _ (predefined symbol) 120
version, of compiler......... L L. 120
WAININGS . . . oottt 139
classifyingco i 90

Index __o

disabling 96

exitcode ... 100
--warnings_affect_exit_code (compiler option). 85
--warnings_are_errors (compiler option)............. 100
wchar.h (library header file). 136
wehar_t(datatype).cvv i 67
wctype.h (library header file). 136
_ _write (library function) 61

write formatter, selecting, 59
_ _writechar (library function). 61
XMEMOTY .. oottt 16
XLINK options
AL 58
_ _xmem (extended keyword) 108
using in #pragma directives. 115
XMEM_A (SEZMENt) . ..o ovvvet e ieee e 79
XMEM_I(segment).o.vuiiiinenenenennen.. 79
XMEM_ID (segment)oouinienenenennnn.. 79
XMEM_N (SE€gMent) cvvvettineneeeeeeene 80
XMEM_Z (Segment)o.vuvnvineneananannnn.. 80
Y MeMOTY ..ottt e e 16
_ _ymem (extended keyword) 108
using in #pragma directives. 115
YMEM_A (segment)couuiununenenenennn.. 80
YMEM_I(segment).........c.ouiuiinininenennn.. 80
YMEM_ID (segment)c.ouuuiinenenenan.. 81
YMEM_N (segment)c.ovuiuiininenenennn.. 81
YMEM_Z (segment)c.ouuiuinninenenennn.. 81
-z (compileroption) 100-101

179

180

Symbols

#include file paths, specifying 92
#pragma directives
bitfields o i 68, 110
COMSESEE . v vttt e et e e e et 110
dataseg. . ..o e 111
diag default. L. 111
diag error 111
diag remark. L i 112
diag SUPPIesSvviii i e 112
diag warning. 112
inline 112
language 112
location i 113
example 26
object_attribute L 20, 113
OPtIMIZE. .« oottt et e e e e 114
overriding default behaviors 10
OVEIVIEW . ..ottt 5
rtmodel 114
SYMEAX © o v vt ettt et e e e e 110
type_attribute. 115
VECHOT. .« o v et et e et e 25,116
-A(XLINK option)vvviniin i 58
-D (compileroption)l 88
-e (compileroption) i 90
-f (compileroption) i 91
-I (compileroption) i 92
-l (compileroption) il 38,93
-0 (compiler option)c.. i 96
-r (compileroption) il 89, 98
-s (compileroption) i 98
-v (compileroption) i 99,119
mapping of dsPIC cores 9
-z (compileroption) oL 100-101
--char_is_signed (compiler option) 87
--cpu (compileroption) 87
mapping of dsPIC cores 9

dsPIC IAR C/EC++ Compiler
Reference Guide

--data_model (compiler option), 88
--debug (compiler option) 89, 98
--diag_error (compiler option) 89
--diag_remark (compileroption) 89
--diag_suppress (compiler option) 90
--diag_warning (compileroption) 90
--ec++ (compileroption) oL 91
--IARStyleMessages (compiler option) 93
--library_module (compiler option) 93
--migration_preprocessor_extensions (compiler option). . 94
--module_name (compiler option) 94
--no_code_motion (compiler option). 95
--no_cse (compiler option). 95
--no_inline (compiler option). 95
--no_unroll (compiler option) 96
--no_warnings (compiler option), 96
--only_stdout (compiler option). 97
--preprocess (compiler option). 97
--remarks (compiler option). 98
--require_prototypes (compiler option) 98
--silent (compileroption) L. 99
--strict_ansi (compileroption) 99
--warnings_affect_exit_code (compiler option). 85, 100
--64bit_doubles (compiler option) 101
?C_EXIT (assemblerlabel) 62
7C_GETCHAR (assemblerlabel) 62
7C_PUTCHAR (assemblerlabel) 62
?C_VIRTUAL_IO (assemblerlabel)................. 62
_ _asm (intrinsic function) 124
_ _clear_watchdog_timer (intrinsic function) 124
_ _close (library function) 61
_ _constptr (extended keyword). 105

using in #pragma directives. 115
_ _cplusplus (predefined symbol) 118
_ _CPU_ _ (predefined symbol) 118-119
_ _data_model (runtime model attribute). 36
_ _DATE_ _ (predefined symbol) 118
_ _disable_interrupt (intrinsic function) 124
_ _double_size (runtime model attribute) 36

_ _El (intrinsic function) 124
_ _embedded_cplusplus (predefined symbol) 118
_ _enable_interrupt (intrinsic function) 124
_ _FILE_ _ (predefined symbol) 118
_ _func (extended keyword). 105
_ _IAR_SYSTEMS_ICC_ _ (predefined symbol). 119

_ _ICCDSPIC_ _ (predefined symbol)

_interrupt (extended keyword) 25, 105-106, 108

using in #pragma directives. 115-116

_ _intrinsic (extended keyword). 106
_int16_t abs_s (intrinsic function) 125
_ _intl6_t add (intrinsic function) 125
_ _intl6_t div_s (intrinsic function). 125
_ _intl16_t extract_h (intrinsic function) 125
_ _intl16_t extract_I (intrinsic function) 125
_ _int16_t mac_r (intrinsic function) 125
_ _int16_t msu_r (intrinsic function) 126
_ _int16_t mult (intrinsic function) 126
_ _int16_t mult_r (intrinsic function). 126
_int16_t negate (intrinsic function)................ 126
_ _int16_t norm_l1 (intrinsic function) 126
_ _int16_t norm_s (intrinsic function) 126
_ _intl16_t round (intrinsic function) 126
_ _int16_t round_ub (intrinsic function) 127
_ _int16_t shl (intrinsic function). 127
_int16_t shr (intrinsic function) 127
_ _intl16_t shr_r (intrinsic function). 127
_ _intl16_t sub (intrinsic function) 127
_ _intl6_t __xmem * add_br (intrinsic function) 127
_ _int32_t L_abs (intrinsic function) 128
_ _int32_t L_add (intrinsic function). 128
_int32_t L_deposit_h (intrinsic function) 128
_ _int32_t L_deposit_I (intrinsic function) 128
_ _int32_t L_mac (intrinsic function) 128
_ _int32_t L_msu (intrinsic function) 128
_ _int32_t L_mult (intrinsic function) 129
_ _int32_t L_negate (intrinsic function) 129
_ _int32_t L_shl (intrinsic function) 129
_ _int32_t L_shr (intrinsic function) 129

Index __o

_ _int32_t L_shr_r (intrinsic function). 129
_int32_t L_sub (intrinsic function) 130
_ _int40_t LL_add (intrinsic function). 130
_ _int40_t LL_mac (intrinsic function) 130
_int40_t LL_msu (intrinsic function) 130
_ _int40_t LL_negate (intrinsic function) 130
_ _int40_t LL_sub (intrinsic function). 131
_ _LINE_ _ (predefined symbol)................... 119
_ _long_double_size (runtime model attribute). 36
_ _low_level_init, customizing 54
_lseek (library function) 61
_ _mem (extended keyword) 106
using in #pragma directives. 115

_ _mem * add_mod (intrinsic function). 131
_ _MEMORY_MODEL_ _ (predefined symbol) 118
_ _monitor (extended keyword). 106
using in #pragma directives. 115

_ _no_init (extended keyword) 20, 107
using in #pragma directives. 113

_ _no_operation (intrinsic function) 131
_ _open (library function) 61
_ptr (extended keyword)l 108
_read (library function) 61
_ _readchar (library function) 61
_ _require (intrinsic function) 131
_reset (intrinsic function) 132

_ _root (extended keyword) L. 108
using in #pragma directives. 113
_rt_version (runtime model attribute). 36
_ _sfr(extended keyword) 108
using in #pragma directives. 115

_ _STDC_ _ (predefined symbol) 119
_ _STDC_VERSION_ _ (predefined symbol). 119
_ _TID_ _ (predefined symbol) 119
_ _TIME_ _ (predefined symbol) 120
_ _VER_ _ (predefined symbol) 120
_ _write (library function) 61
_writechar (library function). 61

_ _xmem (extended keyword) 108

181

using in #pragma directives. 115

_ _ymem (extended keyword) 108

using in #pragma directives. 115
_formatted_write (library function).................. 59
_medium_write (library function) 59
_small_write (library function) 59

Numerics

4-byte (floating-point format) 69
--64bit_doubles (compiler option) 101
8-byte (floating-point format) 69

dsPIC IAR C/EC++ Compiler
182 Reference Guide

	Contents
	Tables
	Preface
	Who should read this guide
	How to use this guide
	What this guide contains
	Other documentation
	Further reading

	Document conventions
	Typographic conventions

	Part 1: Using the compiler
	Introduction
	Building applications
	Compiling
	Linking

	Data storage
	Optimization techniques
	IAR language extension overview
	Special function types
	Extended keywords
	#pragma directives
	Predefined symbols
	Intrinsic functions
	Inline assembler

	Runtime libraries
	Embedded C++ overview

	Customization
	Processor variant
	Data model
	Runtime libraries

	Data storage
	Stack, static, and heap memory
	The stack and auto variables
	Advantages
	Potential problems

	Static memory
	Dynamic memory on the heap
	Potential problems

	Memory access methods and memory types
	Memory access methods
	Memory types

	Pointers
	Pointers and memory types
	Variables as pointers

	Structure types and memory types
	Embedded C++ and memory types
	Non-initialized memory
	Located variables
	Absolute location placement
	Segment placement
	Accessing special function registers

	Anonymous structs and unions

	Functions
	Special function types
	Interrupt functions

	Segment placement

	Assembler language interface
	Introduction
	Example of assembler function

	Calling convention
	Function declarations
	C and C++ linkage
	Function parameters
	Register parameters versus stack parameters
	Hidden parameters
	Register parameters
	Stack parameters

	Returning a value from a function
	Structures

	Permanent versus scratch registers
	Examples
	Monitor functions

	Calling functions
	Assembler instructions used for calling functions
	Special function types
	Interrupt functions

	Runtime model attributes
	Specifying runtime attributes
	Predefined runtime attributes

	Calling assembler routines from C
	Creating skeleton code
	Viewing the output file

	Calling assembler routines from Embedded C++
	Function directives
	Syntax
	Parameters
	Description

	Segments and memory
	What is a segment?
	Linker segment type
	Placeholder segments

	Placing segments in memory
	The contents of the linker command file
	Customizing a linker command file

	Data segments
	Static memory segments
	Segment naming
	Initialized data
	sfr
	mem
	The linker command file
	The stack
	Stack size
	Stack types

	The heap
	Located data

	Code segments
	Startup code
	Normal code
	Exception vectors

	Embedded C++ dynamic initialization

	Runtime environment
	The cstartup.s59 file
	System startup
	System termination

	_�_low_level_init
	Customizing cstartup.s59
	Modules and segment parts
	Segment parts, REQUIRE, and the falling-through trick

	Call frame information
	Modifying the cstartup.s59 file
	In the IAR Embedded Workbench
	From the command line

	Input and output
	The IAR CLIB library
	Customizing putchar in the IAR Embedded Workbench
	Customizing putchar from the command line
	printf and sprintf
	Scanf and sscanf

	The IAR DLIB library
	I/O functions

	C-SPY debugger interface
	The debugger terminal I/O window
	Termination

	Efficient coding techniques
	Programming hints
	Optimizing for size or speed
	Saving stack space and RAM memory
	Using efficient data types

	Module compatibility

	Part 2: Compiler reference
	Data representation
	Fundamentals
	Alignment
	Byte order

	Data types
	Integer types
	Enum type
	Char type
	Bitfields

	Floating-point types
	32-bit floating-point format
	64-bit floating-point format
	Special cases

	Pointers
	Size
	Casting
	size_t
	ptrdiff_t

	Structure types
	Alignment
	General layout

	Data types in Embedded C++

	Segment reference
	Summary of segments
	Descriptions of segments
	CODE
	Linker segment type
	Memory range

	CONST
	Linker segment type
	Memory range

	CSTACK
	Linker segment type
	Memory range

	DIFUNCT
	Linker segment type
	Memory range

	HEAP
	Linker segment type
	Memory range

	ICODE
	Linker segment type
	Memory range

	INTVEC
	Linker segment type
	Memory range

	MEM_A
	Linker segment type
	Memory range

	MEM_I
	Linker segment type
	Memory range

	MEM_ID
	Linker segment type
	Memory range

	MEM_N
	Linker segment type
	Memory range

	MEM_Z
	Linker segment type
	Memory range

	RCODE
	Linker segment type
	Memory range

	SFR_A
	Linker segment type
	Memory range

	SFR_I
	Linker segment type
	Memory range

	SFR_ID
	Linker segment type
	Memory range

	SFR_N
	Linker segment type
	Memory range

	SFR_Z
	Linker segment type
	Memory range

	XMEM_A
	Linker segment type
	Memory range

	XMEM_I
	Linker segment type
	Memory range

	XMEM_ID
	Linker segment type
	Memory range

	XMEM_N
	Linker segment type
	Memory range

	XMEM_Z
	Linker segment type
	Memory range

	YMEM_A
	Linker segment type
	Memory range

	YMEM_I
	Linker segment type
	Memory range

	YMEM_ID
	Linker segment type
	Memory range

	YMEM_N
	Linker segment type
	Memory range

	YMEM_Z
	Linker segment type
	Memory range

	Compiler options
	Setting compiler options
	Specifying parameters
	Specifying environment variables
	Error return codes

	Options summary
	Descriptions of options
	--char_is_signed
	--cpu
	-D
	--data_model
	--debug, -r
	--diag_error
	--diag_remark
	--diag_suppress
	--diag_warning
	-e
	--ec++
	-f
	-I
	--IARStyleMessages
	-l
	--library_module
	--migration_preprocessor_ extensions
	--module_name
	--no_code_motion
	--no_cse
	--no_inline
	--no_unroll
	--no_warnings
	-o
	--only_stdout
	--preprocess
	--public_equ
	-r, --debug
	--remarks
	--require_prototypes
	-s
	--silent
	--strict_ansi
	-v
	--warnings_affect_exit_code
	--warnings_are_errors
	-z
	--64bit_doubles

	Extended keywords
	Summary of extended keywords
	Using extended keywords
	Data storage
	Syntax

	Functions
	Syntax

	Descriptions of extended keywords
	_�_constptr
	_�_func
	_�_interrupt
	_�_intrinsic
	_�_mem
	_�_monitor
	_�_no_init
	_�_ptr
	_�_root
	_�_sfr
	_�_xmem
	_�_ymem

	#pragma directives
	Summary of #pragma directives
	Descriptions of #pragma directives
	#pragma bitfields
	#pragma constseg
	#pragma dataseg
	#pragma diag_default
	#pragma diag_error
	#pragma diag_remark
	#pragma diag_suppress
	#pragma diag_warning
	#pragma inline
	#pragma language
	#pragma location
	#pragma object_attribute
	#pragma optimize
	#pragma rtmodel
	#pragma type_attribute
	#pragma vector

	Predefined symbols
	Summary of predefined symbols
	Descriptions of predefined symbols
	_�_cplusplus
	_�_CPU_�_
	_�_DATA_MODEL_�_
	_�_DATE_�_
	_�_DOUBLE_SIZE_�_
	_�_embedded_cplusplus
	_�_FILE_�_
	_�_FLOAT_SIZE_�_
	_�_IAR_SYSTEMS_ICC_�_
	_�_ICCDSPIC_�_
	_�_LINE_�_
	_�_LONG_DOUBLE_SIZE_�_
	_�_STDC_�_
	_�_STDC_VERSION_�_
	_�_TID_�_
	_�_TIME_�_
	_�_VER_�_

	Intrinsic functions
	Intrinsic functions summary
	DSP-related intrinsic functions
	General intrinsic functions

	Descriptions of intrinsic functions
	asm
	_�_clear_watchdog_timer
	_�_disable_interrupt
	_�_enable_interrupt
	_�_int16_t abs_s
	_�_int16_t add
	_�_int16_t div_s
	_�_int16_t extract_h
	_�_int16_t extract_l
	_�_int16_t mac_r
	_�_int16_t msu_r
	_�_int16_t mult
	_�_int16_t mult_r
	_�_int16_t negate
	_�_int16_t norm_l
	_�_int16_t norm_s
	_�_int16_t round
	_�_int16_t round_ub
	_�_int16_t shl
	_�_int16_t shr
	_�_int16_t shr_r
	_�_int16_t sub
	_�_int16_t __xmem * add_br
	_�_int32_t L_abs
	_�_int32_t L_add
	_�_int32_t L_deposit_h
	_�_int32_t L_deposit_l
	_�_int32_t L_mac
	_�_int32_t L_msu
	_�_int32_t L_mult
	_�_int32_t L_negate
	_�_int32_t L_shl
	_�_int32_t L_shr
	_�_int32_t L_shr_r
	_�_int32_t L_sub
	_�_int40_t LL_add
	_�_int40_t LL_mac
	_�_int40_t LL_msu
	_�_int40_t LL_negate
	_�_int40_t LL_sub
	_�_mem * add_mod
	_�_no_operation
	_�_require
	_�_reset

	Library functions
	IAR CLIB library
	Library object files
	Header files
	Library definitions summary

	IAR DLIB library
	Library object files
	Header files
	Library definitions summary
	Standard C
	Embedded C++
	Using standard C libraries in EC++
	Compatibility with standard C++

	Diagnostics
	Severity levels
	Remark
	Warning
	Error
	Fatal error
	Setting the severity level
	Internal error

	Part 3: Portability
	Implementation-defined behavior
	Descriptions of implementation-defined behavior
	Translation
	Diagnostics (5.1.1.3)

	Environment
	Arguments to main (5.1.2.2.2.1)
	Interactive devices (5.1.2.3)

	Identifiers
	Significant characters without external linkage (6.1.2)
	Significant characters with external linkage (6.1.2)
	Case distinctions are significant (6.1.2)

	Characters
	Source and execution character sets (5.2.1)
	Bits per character in execution character set (5.2.4.2.1)
	Mapping of characters (6.1.3.4)
	Unrepresented character constants (6.1.3.4)
	Character constant with more than one character (6.1.3.4)
	Converting multibyte characters (6.1.3.4)
	Range of 'plain' char (6.2.1.1)

	Integers
	Range of integer values (6.1.2.5)
	Demotion of integers (6.2.1.2)
	Signed bitwise operations (6.3)
	Sign of the remainder on integer division (6.3.5)
	Negative valued signed right shifts (6.3.7)

	Floating point
	Representation of floating-point values (6.1.2.5)
	Converting integer values to floating-point values (6.2.1.3)
	Demoting floating-point values (6.2.1.4)

	Arrays and pointers
	size_t (6.3.3.4, 7.1.1)
	Conversion from/to pointers (6.3.4)
	ptrdiff_t (6.3.6, 7.1.1)

	Registers
	Honoring the register keyword (6.5.1)

	Structures, unions, enumerations, and bitfields
	Improper access to a union (6.3.2.3)
	Padding and alignment of structure members (6.5.2.1)
	Sign of 'plain' bitfields (6.5.2.1)
	Allocation order of bitfields within a unit (6.5.2.1)
	Can bitfields straddle a storage-unit boundary (6.5.2.1)
	Integer type chosen to represent enumeration types (6.5.2.2)

	Qualifiers
	Access to volatile objects (6.5.3)

	Declarators
	Maximum numbers of declarators (6.5.4)

	Statements
	Maximum number of case statements (6.6.4.2)

	Preprocessing directives
	Character constants and conditional inclusion (6.8.1)
	Including bracketed filenames (6.8.2)
	Including quoted filenames (6.8.2)
	Character sequences (6.8.2)
	Recognized #pragma directives (6.8.6)
	Default _�_DATE_�_ and _�_TIME_�_ (6.8.8)

	IAR CLIB library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	IAR DLIB library functions
	NULL macro (7.1.6)
	Diagnostic printed by the assert function (7.2)
	Domain errors (7.5.1)
	Underflow of floating-point values sets errno to ERANGE (7.5.1)
	fmod() functionality (7.5.6.4)
	signal() (7.7.1.1)
	Terminating newline character (7.9.2)
	Blank lines (7.9.2)
	Null characters appended to data written to binary streams (7.9.2)
	Files (7.9.3)
	remove() (7.9.4.1)
	rename() (7.9.4.2)
	%p in printf() (7.9.6.1)
	%p in scanf() (7.9.6.2)
	Reading ranges in scanf() (7.9.6.2)
	File position errors (7.9.9.1, 7.9.9.4)
	Message generated by perror() (7.9.10.4)
	Allocating zero bytes of memory (7.10.3)
	Behavior of abort() (7.10.4.1)
	Behavior of exit() (7.10.4.3)
	Environment (7.10.4.4)
	system() (7.10.4.5)
	Message returned by strerror() (7.11.6.2)
	The time zone (7.12.1)
	clock() (7.12.2.1)

	IAR C extensions
	Why should language extensions be used?
	Descriptions of language extensions
	Memory, type, and object attributes
	Absolute placement
	Inline assembler
	C++ style comments
	_�_ALIGNOF_�_
	Anonymous structs and unions
	Bitfields and non-standard types
	Incomplete arrays at end of structs
	Arrays of incomplete types
	Empty translation units
	Comments at the end of preprocessor directives
	Forward declaration of enums
	Extra comma at end of enum list
	Unsigned int enum constants
	Missing semicolon at end of struct or union specifier
	NULL and void
	A label preceding a "}"
	Empty declarations
	Single value initialization
	Casting pointers to integers
	Casting integers to pointers and back in constant expressions
	Taking the address of a register variable
	Duplicated size and sign specifiers
	"long float" means "double"
	Repeated typedefs
	Mixing pointer types
	Non-top level const
	Declarations in other scopes
	Non-lvalue arrays

	Index

