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1. Introduction 

The image acquisition model, shown in figure 1a, demonstrates the measurement model for the 
measured signal or image r(x, y) via the output of a Linear Shift Invariant (LSI) system whose 
impulse response is the sensor’s point spread function (PSF) g(x, y); the latter is also known as 
the sensor blurring function.  The signal n(x, y) is the additive noise.  The observed signal or 
image r(x, y) is the sum of the noise and the convolution of the sensor blurring function g(x, y) 
with the “true” signal or image f(x, y): 

 ).,(),(),(),( yxnyxgyxfyxr +⊗=  (1) 

The convolution relation in the spatial frequency domain (kx, ky) is written as follows:  

 ),(),(),(),( yxyxyxyx kkNkkGkkFkkR +⋅=  (2) 

where R(kx, ky), F(kx, ky), G(kx, ky), and N(kx, ky) are the Fourier transforms of r(x, y), f(x, y), 
g(x, y), and n(x, y), respectively.  The blurring function G(kx, ky), in most practical imaging 
systems, is a radially symmetric function.  In that case, if the radial spatial frequency domain is 
defined to be 

 ,22
yx kk +=ρ  (3) 

the blurring function can be identified as G(ρ).  The blurring function G(ρ) is typically a low-
pass filter (e.g., Gaussian).  The noise n(x, y) is a white process, i.e., the spectrum 2)(ρN has a 

wide-bandwidth (flat) support band as shown in figure 1b.  
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Figure 1.  (a) Image acquisition model, and (b) noise spectrum support band. 

The deblurring process is to recover f(x, y) from the measured signal r(x, y) by applying the 
deblurring filter h(x, y) (figure 1a).  This process is also called deconvolution or restoration  
(1–3).  The straightforward deblurring filter is the inverse of the blurring function.   
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When we apply this kind of deblurring filter, we have,   

 .
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+=  (4) 

The second term usually blows up (becomes unstable) at the high frequencies where the signal 
level )(ρF  is below the noise level )(ρN . 

Several recently reviewed journal articles (4–7) have summarized the research that attempts to 
solve this problem. Demoment quotes, “Everything was summed up in a single word:  
regularization” (4).  Deblurring is an ill-posed inverse problem due to the above-mentioned 
instability.  For ill-posed (or ill-conditioned) problems, obtaining the true solution from 
imperfect data is impossible.  Regularization is a general principle to obtain an acceptable 
solution by incorporating some extra or a prior information of the imaging system.  

In summary, regularization is a method that a prior knowledge of the imaging systems (e.g., PSF 
of the system) or assumption of the true image [f(x, y)] is utilized to form a risk function.  The 
risk function is then solved by different implementations of the non-linear optimization 
problems, such as the gradient-based method, expectation-maximization (EM) technique, 
prediction error-based technique, and least square methods.  Recent research (8, 9) differs in the 
assumptions about the true image and PSF, and how these assumptions are imposed in forming 
different risk functions.  An example is that searching the solution of f(x, y) value which 
maximizes the a posterior (MAP) distribution  

 ].),(),([maxarg),( yxryxfpyxf =  (5) 

Usually, the risk function depends on the actual object which is unknown.  An appropriate 
solution has to be chosen through proper initialization of the algorithm.  Because of the nature of 
non-linear optimization problems, there is a chance that the methods may converge to local 
minima.  In addition, the convergence speed may be slow.  

Additionally, recent research has been using the various implementations of the Wiener filter 
approach.  The Wiener filter is defined as 

 
)(/)()(

)()( 2

*

ρρρ
ρρ

fn

wiener
SSG

GH
+

=  (6) 

where Sf(ρ) and Sn(ρ) are the signal and noise power spectral densities, respectively.  
Theoretically, the Wiener filter is the optimal linear filter (in Root Mean Square Error (RMSE) 
sense).  The problem with the Wiener filter is that its parameters (degradation function and signal 
to noise ratio (SNR)) are not always known and in such case, it suffers from limitations such as 
those to be discussed next.  
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When the noise power is weak (Sn(ρ)/Sf(ρ) << 1), the Wiener filter becomes 1/G(ρ), that is, 
pseudoinverse of G(ρ), which has the instability problems previously mentioned.  Theoretically, 
if G(ρ) and the SNR are known precisely, then the instability is negligible (in RMSE sense) since 
the noise is negligible.  However, in practice the SNR and G(ρ) are not known precisely and the 
estimated inverse filter 1/G(ρ) may be instable because of small errors in the estimated filter 
parameters.  On the other hand, when the noise is strong (Sn(ρ)/Sf(ρ) >> 1), the Wiener filter 
becomes G(ρ)*/[Sn(ρ)/Sf (ρ)], that is proportional to the SNR, which filters noise, but not 
effective for deblurring.  

The parametric Wiener filter is implemented using the parameter γ in the following definition:  

 .
)(/)()(

)()( 2

*

ρργρ
ρρ

fn

wiener
SSG

GH
+

=  (7) 

The effect of γ on the filter tends to emphasize (γ > 1) or de-emphasize (γ < 1) the noise and 
signal statistics, respectively.  The value of γ must be chosen carefully for reliable deblurring.  
The choice of γ is achieved through an iterative search (8).  The uniqueness and convergence are 
uncertain and the restoration is sensitive to the initial image estimate.  Combining an inverse 
filter with a weighting filter in a geometric mean filter (10) and the digital restoration in the 
wavelet domain approach (11) are also reported in the literature.   

In this report, we design a practical deblurring filter that is less sensitive to the noise, while 
removing the blurring by a desired amount.  We call it the P-deblurring filter because we utilize a 
special window, called a “power” window, to construct the deblurring filter.  The deblurring 
process applies the P-deburring filter to the input image in the spatial frequency domain: the 
method does not require an iterative approach.  Section 2 describes the structure of the P-
deblurring filter.  The design method, presented in section 3, utilizes the filter properties and 
estimates the energy of the signal and noise of the input image.  The P-deblurring filter’s 
performance is demonstrated by a human perception experiment which is described in section 4.  
The result analysis and conclusion are summarized in sections 5 and 6.  

2. P-Deblurring Filter  

The blurring function is usually a Gaussian-like function having a bell shape.  The inverse 
function’s magnitude increases at high frequencies where the noise can be magnified 
enormously.  In order to suppress the noise effect, we apply a special window called a power 
window, to the inverse blurring function.  The power window (12) is a Fourier-based smooth 
window that preserves most of the spatial frequency components in the passing band and 
attenuates quickly at the transition-band.  The power window is differentiable at the transition 
point, which gives a desired smooth property and limits the ripple effect.  A power window, and 
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a deblurring filter when applying the power window to a Gaussian blurring filter, are shown in 
figure 2.  Our deblurring filter is called the P-deblurring filter because it was derived from 
utilizing the power window.  
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Figure 2.  P-deblurring filter properties. 

For a given blurring function G(ρ), the P-deblurring filter P(ρ) is written as: 

 )(
)(

1)( ρ
ρ

ρ W
G

P ⋅=  (8) 

where W(ρ) is the power window.  The power window is defined as follows: 

 )  (9) exp()( nW ραρ −=

where the parameters (α, n) are obtained based on certain specifications.  Since the parameter n 
is the power of the smooth window, this window is called power window.  When we assume the 
Gaussian blurring function, the P-deblurring filter is defined as 

 )
2

exp(
)(
)()( 2

2

σ
ρρα

ρ
ρρ +−== n

G
WP  (10) 

where σ is the standard deviation of the Gaussian function.  
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3. P-Deblurring Filter Design 

In this section, we describe the properties of the P-deblurring filter derived from the power 
window.  Our design methods, of the P-deblurring filter based on these properties and user’s 
specifications, are then proposed.  

3.1 Properties of the P-Deblurring Filter 

3.1.1 The Peak Point 

The P-deblurring filter has a maximum magnitude at peak point as shown in figure 2.  This peak 
point is solved by setting the derivative of the P-deblurring filter zero.  That is, 

 .)(0)( 2
1

2 n
p nP

p

−=⇒=
∂

∂ σαρ
ρ
ρ

ρ  (11) 

The maximum magnitude of the P-deblurring filter is an important parameter for the filter 
design.  Here, the peak point ρp is a function of three parameters (α, n, σ).  The filter design 
criteria are derived from specifying these parameters.  

3.1.2 The Noise Separation Frequency Point 

Usually, the signal is stronger than noise in the low frequencies and weaker than noise in the 
higher frequencies.  The noise is assumed to be a white process cross a wide range of the 
frequency.  At one point, called the noise separation frequency point ρn, the signal and noise are 
equal as shown in figure 1b.  The noise is stronger than the signal for frequencies greater than ρn. 

One criteria of the filter design is to allow the magnitude of the P-deblurring filter to be 1 at the 
noise separation frequency point ρn as shown in figure 2.  In this way, the magnitude of the 
P-deblurring filter is less than 1 for frequencies greater than the noise separation frequency point 
ρn where the noise is stronger than the signal.  Meanwhile, the magnitude of the P-deblurring 
filter can be large below the noise separation frequency point ρn where the signal is strong.  This 
kind of deblurring filter provides the necessary deblurring.  Therefore, the P-deblurring filter 
satisfies the following condition: 

  (12) 
⎪
⎩

⎪
⎨

⎧

><
==
<>

=
.,1
;,1
;,1

)(

n

n

n

if
if
if

P
ρρ
ρρ
ρρ

ρ

If the SNR at the noise separation frequency point nρ  is estimated (see subsection 3.3), we can 
also solve three parameters (α, n, σ) from (10) using ρn and P(ρn) =1. 
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3.1.3 The Cutoff Frequency Point 

The cutoff frequency point of the power window, ρ0, is where the magnitude of the power 
window attenuates significantly.  This point has an important impact on the filter design since it 
controls when the inverse blurring function drops significantly.  The cutoff frequency can also 
determine the shape of the power window by solving the two parameters (α, n) (12).  

3.2 Direct Design 

In this section, we describe a direct design method of the deblurring filter which can benefit an 
imaging system that the sensor information and the noise characteristic are known.  The direct 
design method is simple and easy to implement.  The performance of this deblurring filter is 
predictable.  

Assume the blurring function is a Gaussian function.  We can specify the magnitude of the 
inverse Gaussian, mg, at one frequency point, ρg.  This frequency point ρg is calculated in the 
following: 

 )ln(2
)(

1 mgmg
G g

g

σρ
ρ

=⇒=  (13) 

where σ is the standard deviation of the Gaussian function.  The standard deviation of 
Gaussian σ  is either known or estimated by applying a curve fitting procedure to the ensemble 
magnitude spectrum (see subsection 3.3.1).  If we choose the cutoff frequency point ρ0 as ρg, the 
power window is constructed.  The P-deblurring filter is finally determined from (9).  

An example of applying the P-deblurring filter to one Forward-Looking Infrared (FLIR) tank 
image is shown in figure 3.  Note the numbers of pixels in x and y domains are different.  
However, the spatial sampling spaces, Δx and Δy, are the same.  From the discrete Fourier 
transform (DFT) equation (13),  

 π2=Δ⋅Δ⋅
xkxxN  (14) 

 π2=Δ⋅Δ⋅
ykyyN  (15) 

where Nx and Ny are the numbers of pixels in x and y domains, respectively; and are the 

sampling spaces in spatial frequency domains, respectively.  Thus, 
xkΔ ykΔ

xkΔ and are not equal to 

each other.  However, the support bands in the spatial frequency domains,  
ykΔ

 
x

xK
Δ

±=±
π

0  (16) 

 
y

yK
Δ

±=±
π

0  (17) 
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are equal to each other.  For this reason, the spectral distributions shown in 3c and 3d are square 
shaped and not rectangular shaped as in the spatial domain image.   

Gaussian filter

P-deblurredOriginal (blurred)

P-deblurring filter

(a) (b)

(c) (d)

Gaussian filter

P-deblurredOriginal (blurred)

P-deblurring filter

(a) (b)

(c) (d)  
Figure 3.  Example of the direct design for a FLIR tank image. 

Note:  (a) Original (blurred), and (b) P-deblurred images are illustrated 
in spatial domain.  (c) Gaussian filter, and (d) P-deblurring 
filters are illustrated in spatial frequency domain. 

We assume that this image is already blurred by a Gaussian function.  By selecting  

 10,*25.0 max == mgρσ  (18) 

where ρmax is the maximum frequency of the Fourier transform of the input image.  The original 
and P-deblurred tank images are shown figure 3a and 3b.  The Gaussian blurring function and 
the resultant P-deblurring filter are shown in figure 3c and d.  The deblurred tank clearly shows 
the deblurring improvement, especially around the tire area.  Figure 4 shows the one-dimensional 
(1-D) cross section of each image in figure 3.  The 1-D cross section of the tank image is a 
horizontal crossing line at the center of the tires.  The deblurring effects show equally.  

7 



 

P-deblurred

Gaussian filter P-deblurring filter

Original (blurred)

(a) (b)

(c) (d)

P-deblurred

Gaussian filter P-deblurring filter

Original (blurred)

(a) (b)

(c) (d)

Figure 4.  Cross sections of images in figure 3. 

3.3 Adaptive Design 

In this section, we describe a deblurring filter that is adaptively designed based on the estimated 
energy of the signal and noise of the image, which can benefit an imaging system with noise.  
The adaptive design estimates the noise energy and the noise separation frequency point where 
the energy of signal and noise are equal.  The noise energy is stronger than the signal energy 
beyond that noise separation frequency point.  The filter design criteria are defined to obtain a 
deblurring filter such that the filter magnitude is less than 1 at the frequencies above the noise 
separation frequency point; the filter magnitude is larger than 1 at the frequencies below the 
noise separation frequency point and the signal is strong as shown in (12).  Therefore, the 
adaptively designed P-deblurring filter is able to deblur the image by a desired amount based on 
the known or estimated standard deviation of the Gaussian blurring while suppressing the noise 
in the output image.  

3.3.1 Estimating Noise Energy and Noise Separation Frequency Point 

In this section, we outline a method to estimate the noise energy level in the spectral domain of 
the acquired image.  Let f(x, y) be the continuous input image.  We define its 1-D marginal 
Fourier transform via  

 )].,([),( )( yxfykF xxx ℑ=  (19) 
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Now consider the image that is the discrete version of f(x, y), that is, MjNifij ,,1,,,1, LL == .  
The 1-D DFT of this two-dimensional (2-D) array are discrete samples of : 

  The ensemble magnitude spectrum,
),( ykF xx

],[ 1 Nss L.,1,,1,)( MjNiF i
ij LL == S = , is computed via 

 .,1,1
1

2)( NiF
M

s
M

j

i
iji L== ∑

=

 (20) 

An example of the ensemble magnitude spectrum from one input FLIR image is shown in the 

Figure 5.  Ense

upper left corner of figure 5a. 

mble magnitude spectrum of a FLIR image.   
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 is stronger than the noise at the low frequencies an
the high frequencies.  The same figure shows the ensemble magnitude spectrum remained 
unchanged after a high frequency point.  The unchanged spectrum is mainly a noise spectrum 
since the noise dominates the signal at the very high frequencies.  Furthermore, the noise is 
commonly a white process cross a wide range of frequencies.  The noise separation frequency 
point is the frequency where the ensemble spectrum becomes unchanged (levels off).  
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In order to accurately estimate the noise separation frequency point, we first smooth the 
ensemble spectrum by convolving it with an averaging filter; denoted by SM: 

 ].,,[ 1 NsmsmSM L=  (21) 

The averaging filter is chosen to be  

  (22) 3/]111[

as an example.  After this step, the gradient of the smoothed spectrum is computed as follows:  

 .11 −+ −= iii smsmG  (23) 

Examples of the smoothed spectrum (5b) and its gradient curve for the positive frequencies (5c) 
are shown in figure 5.  The gradient curve is searched from zero frequency to the positive 
frequencies.  The search stops at a frequency point when the absolute value of the gradient is less 
than a threshold; we refer to this as the index frequency point.  Note that the selection of this 
threshold is suggested to have the index frequency point to be at the beginning point when the 
ensemble spectrum levels off.  The smooth filtering of the ensemble spectrum makes the 
threshold less sensitive to the noise.  

The value of the ensemble magnitude spectrum at the index frequency point represents the noise 
energy; the value of the ensemble magnitude spectrum near the zero frequency point represents 
the signal energy.  The SNR is computed as the ratio of the signal energy to the noise energy.  
Note the value of the ensemble magnitude spectrum at the zero frequency represents the direct 
current (DC) value of the image energy; therefore, the value is usually a very big number.  The 
calculation of SNR should avoid using this value and instead use the value nearer the zero 
frequency point.  Using the value of the ensemble magnitude spectrum, that is 1–2 pixels from 
zero frequency, is a good practice.  

The spectrum of an ideal (point) target is flat; however, the acquired spectrum of a target is 
decayed due to the blurring function.  At the index frequency point, the acquired signal value is 

SNR
1  if the ideal signal is 1.  The noise separation frequency point ρn is calculated as follows: 

 ,)ln(2 SNRn σρ =  (24) 

where σ is the standard deviation of the Gaussian function.  
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3.3.2 Filter Design 

The overall goal of the deblurring filter is to provide the satisfied output image, i.e., the proper 
deblurring and the proper noise control.  This goal can be achieved by adaptively determining the 
proper parameters of the deblurring filter based on estimated noise energy of the input image.   

As earlier stated, to construct the P-deblurring filter we need to determine three parameters  
(α, n, σ).  From the discussion above, the standard deviation of Gaussian σ is either known or 
estimated by applying a curve fitting procedure to the ensemble magnitude spectrum.  By 
specifying two distinct values of P(ρ) as shown in (9), we can solve for the other two parameters 
(α, n).  For example, one can select: 

 
.|

,1|

28.02

1

WP

P

n

n

=

=

=

=

ρρ

ρρ
 (25) 

This means that the magnitude of the P-deblurring filter is set to 1 at the noise separation 
frequency point, and the magnitude is set to W2 (W2 > 1) at 80% of the noise separation 
frequency point.  

However, the selection of W2 is not completely arbitrary.  Because the power window is less than 
1, the magnitude of the P-deblurring filter is less than the inverse Gaussian function, that is,  

 ).
2

exp( 2

2
2

2 σ
ρ

<W  (26) 

Therefore, W2 is chosen according to this condition.  There are other procedures to determine the 
other two parameters (α, n).  Caution must be used when determining these parameters, since the 
conditions of P-deblurring filter need to be met.  An example of applying the adaptive design  
P-deblurring filter to a FLIR image is shown in section 4.  

4. Perception Experiment 

In order to assess the performance of our proposed adaptive deblurring filter method, a 
perception experiment was conducted to demonstrate the P-deblurring filter effect on the target 
identification task of humans.  The image set consisted of 12 standard targets taken from a field 
test by Night Vision and Electronic Sensors Directorate (NVESD) using a longwave infrared 
sensor.  The targets in the set are well-characterized in terms of predicting range performance 
based upon sensor characteristics.  The side views of these 12 targets (at the aspect angle 90○ or 
270○) are depicted in figure 6.  Each target, posing at 12 aspect angles, makes the total image set 
contain 144 images of 12 different targets.  

11 



 

Target_01
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Target_10 Target_11 Target_12

Target_01

Target_09

Target_02 Target_03 Target_04

Target_05 Target_06 Target_07 Target_08

Target_10 Target_11 Target_12  
Figure 6.  Thermal image examples for 12-target sets. 

Experimental cell organization was based on three factors.  First, images were subjected to six 
levels of blur to simulate range effects on identification task difficulty.  Second, images were 
subjected to three different noise treatments in order to test the effectiveness of the deblurring 
algorithm on noisy images.  Third, each of the cells was processed using the deblurring 
algorithm to quantify differences between blurred and deblurred image cases as a function of 
blur.  An illustration of the experimental matrix layout and naming convention is shown in 
table 1.  

Table 1. Experiment matrix layout and naming convention.  

 Blur 1 Blur 2 Blur 3 Blur 4 Blur5 Blur 6 

Noise0 Blur AA AB AC AD AE AF 

Noise0 Deblur BA BB BC BD BE BF 

Noise1 Blur CA CB CC CD CE CF 

Noise1 Deblur DA DB DC DD DE DF 

Noise2 Blur EA EB EC ED EE EF 

Noise2 Deblur FA FB FC FD FE FF 
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The total 144 images in the first row are arranged into six blur cells in the following manner.  
The aspect angles were rotated through the blur cells so that each cell had the same number of 
images at a particular aspect angle.  Within each blur cell, there are 24 target images that have 
various aspect angles of 12 different targets.  It should be noted that the target images within a 
particular blur in the first row are the same target images for that particular blur in the noise 
adding and deblurring cells in the same column.  

Figure 7 shows Gaussian filters with six values of standard deviations that were applied to 
imagery to generate blurred images.  These six standard deviations of Gaussian filters were 
chosen to vary the observer performance, from a very high probability of a correct answer to a 
very low probability of a correct answer, with equally decreasing increment.  
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Figure 7.  Gaussian function in frequency domain.   

Three noise treatments followed.  First, there was no additional noise added to the blurred 
images.  This case is considered a low noise situation, and noted as Noise0.  For the other two 
noise treatments, two levels of white noise were added to the blurred images.  A white noise with 
a standard deviation of 100 millikelvin (mK) is added to a typical infrared image, which has the 
signal to noise ratio of 20 K and considered to be the upper bound of noise.  Based on this, the 
second noise case, noted as Noise1, is chosen to be a white noise with a standard deviation of 50 
mK, which is a typical noise situation.  The third noise case, noted as Noise2, is the white noise 
with a standard deviation of 100 mK, which is an upper bound noise situation.  An image that 
was blurred with blur level 6 and the blurred image with added noise are shown in the first row 
of figure 8.  The P-deblurred resultant images are shown in the second row of figure 8.  The  
P-deblurred images demonstrate deblurring improvement from their blurred input images, 
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especially, when the noise added in the blurred image is suppressed in the deblurred output 
image, which benefits from the adaptive design method.  

Blur4 Blur4+Noise1 Blur4+Noise2

P-deblur P-deblur P-deblur

Target_09

Blur4 Blur4+Noise1 Blur4+Noise2

P-deblur P-deblur P-deblur

Target_09

Figure 8.  Sample examples of blurred, blurred with noise, and P-deblurred images.  

Ten observers were trained using the ROC-V Thermal Recognition software to identify the 
12 target set as presented in the experiment.  Each observer was trained to a 96% proficiency in 
identification of pristine images at various ranges.  This proficiency requirement prevents 
potentially biased results stemming from subjects learning target specific characteristics during 
the testing process. 

Experimental trials were conducted using a high resolution, medical grade display in order to 
allow for accurate representation of image characteristics.  For consistency, the displays were all 
calibrated between experimental setups using a Prichard model 1980 spot photometer to ensure 
(realistically) identical minimum, mean, and peak luminance.  Each display was calibrated to a 
mean level of 5.81 foot-Lamberts.  Experimental trials were conducted in a darkened 
environment and observers were given ample time to adapt to ambient lighting conditions. 
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5. Result Analysis 

The average probabilities of identification from the experiment, P, were adjusted using the 
following equation  

 
10
9,

12
1, ==

−

−
= sg

gs

g
id PP

PP
PP

P  (27) 

to remove the probability that an observer could select the proper response simply through 
guessing 1 out 12 targets.  Previous experimental analysis indicates that the inclusion of a “sweat 
factor”normalizes probabilities to 90% for inclusion of a 10% mistake rate.  For the typical 
observer this normalization provides a more accurate reflection of observer performance by 
accounting for mistakes and unfamiliarity with the testing environment. 

The adjusted probability of identification Pid as a function of blur (range) for the different cases is 
shown in figure 9.  There was a significant improvement in human performance, as a function of 
range, when the blurred imagery was processed using the P-deblurring filter.  Noise0 Blur 
images are considered as the “baseline” images.  For the blur level 1–3 (near range), the Pid of the 
baseline images is high (60% to 90%).  However, for the blur level 4–6 (long range), the Pid of 
the baseline images is very low (10% to 30%); that is where the P-deblurring filter’s 
improvement takes place (38% to 65%).  For the blur level 4–6, the average increase of Pid is 
33% by using deblurred images vs. blurring images in the Noise0 case (figure 9a); the average 
increase of Pid is 15% in the Noise1 case (figure 9b).  In the Noise2 case, the improvement of Pid 

is negligible using the deblurred images (figure 9c).  In summary, the Pid is increased 15% to 
33% for the case of typical noise to low noise in the long range using the P-deblurring filter 
method.  
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Figure 9.  (a) Perception results of Noice0 blur vs. Noise0 deblur, and (b) perception results of 
Noise1 blur vs. Noise1 deblur. 
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Figure 9.  (c) Perception results of Noise2 blur vs. Noise2 deblur.  

In order to estimate the range performance, we assume the range is linearly increased with the 
increasing blur level since the chosen blurs generate equal increment blur effect on the images.  
In figure 9a, the Noise0 case, blurring imagery had a 50% Pid at the range 55% unit (blur level 
3.3), while the P-deblurred imagery reached the range 92% unit (blur level 5.5) for the 50% Pid.  
That is equivalent to 67% increase in range performance.  Similarly, in the Noise1 case shown in 
figure 9b, P-deblurred imagery yielded the range 67% unit (blur level 4) comparing with the 
range 58% unit (blur level 3.5) from the blurring imagery at 50% Pid.  That is about 16% increase 
in range performance.  In the Noise2 case, at 50% Pid, the range is at 63% unit (blur level 3.8) for 
P-deblurring imagery comparing with 58% unit (blur level 3.5) from blurring imagery, which is a 
9% increase in range performance.  In summary, the range performance is increased 9%, 16%, 
and 57% for the case of upper bound noise, typical noise, and low noise in the input images, 
respectively, using the P-deblurring filter method.  This quantitative analysis of the range 
performance is estimated approximately.  The accurate analysis will be based on accurate range 
calculation.  The ideal case would acquire the imagery using real range images, which is our plan 
for future research.  
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6. Conclusions 

This report proposes an adaptive deblurring filtering algorithm for noisy images.  The algorithm 
is practical, Fourier-based, and can be implemented in real-time.  The improvement using this 
algorithm for noisy blurring images is demonstrated in a human perception experiment of the 
target identification task.  The potential benefit of this practical deblurring algorithm is that it can 
be implemented into a real imaging system to compensate the sensor blurring and noise effect on 
its output images.  Another potential benefit is that if other blur sources such as motion, 
vibrations, or atmosphere can be modeled as a Modulation Transfer Function (MTF), the 
proposed adaptive deblurring filtering algorithm can still be applied.  Since the power window 
can be applied to a known inversed MTF, with respect to the estimated blur and noise, the noise 
can be suppressed in the deblurring process while the deblurring can be performed effectively.  
The proposed adaptive deblurring filtering method will work well in the cases, even when MTF 
is not monotonically decreasing, as long as the inverse of MTF is valid. 
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Acronyms and Abbreviations 

DC  direct current  

DFT  discrete Fourier transform 

EM  expectation-maximization  

FLIR  Forward-Looking Infrared 

K  kelvin 

LSI  Linear Shift Invariant  

MAP  maximum a posterior 

mK  millikelvin  

MTF  Modulation Transfer Function 

NVESD Night Vision and Electronic Sensors Directorate 

PSF  point spread function  

RMSE  root mean square error  

SNR  signal to noise ratio  

1-D  one-dimensional 

2-D  two-dimensional  
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