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ABSTRACT
s

Several aspects of group theory that prove useful for various signal processing
applications are presented

LChapter I begins with a discussion of signal processing activities and goals at an
abstract level, and continues with a look at the mathematical underpinnings of this
subject. There follows a list of specific mathemat:il results that seem to be of
greatest relevance to signal processing. )

Chapter II surveys the role played by infinite groups in modeling signals and filters.
Here substantial use is made of the associated harmonic analysis, in the abelian case
the dual group serves as the natural frequency domain. |

Chapter 11l presents a fairly detailed review of the representation theory of finite
groups, through the Plancherel formula. The essential idea here is to then use those
special unitary transforms which are also group transforms for digital signal
compression and decorrelation, and the associated group filters as fast suboptimal
Wiener (or other) filters. Initial evidence suggests that nonabelian group filters can
improve on the standard DFT/FFT methods without significant increase in
computational complexity.

Chapters 1 and III are written at an elementary level for wide access; Chapter i is
written at a higher level, requiring some background in functional and harmonic
analysis. Comments are inserted throughout to suggest various generalizations of the
material under discussion.

Chapter 1V contains a summary of the main points and conclusions, and suggests
some directions for further research, particularly on the use of finite nonabelian
group transforms and filters.
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MATHEMATICAL FOUNDATIONS OF SIGNAL PROCESSING
II. THE ROLE OF GROUP THEORY

I. BACKGROUND TO SIGNAL PROCESSING

In this introductory chapter we will set down some general principles and philosophy of
signal processing, while atterpting to avoid the details of specific applications. The field is by
now far too vast and multifaceted to permit any simple summary or encapsulation. Cur aims will
be modest: to agree on some terminology, some historical background, and some of the goals of
signal processing. There follows a brief resume of the problems and methods of signal processing.

Together this material is intended to furnish a compressed understanding of the field at an
abstract level.

An inevitable consequence of an author’s professional experience and personal predilections
is a particular and usually subjective answer to the basic questions: What is interesting? What is
important? In the present context this results in a neutral, mathematical approach, free of
implementation considerations and the requirements of specific technologies. We are searching for
mathematical paradigms of some elegance and widespread applicability. There is some anaiogy
here with physical theories and formulas, where a single principle can be given a crisp
mathematical formulation and then applied in a variety of real situations. There are also certain
more specific analogies between physics and signal theory, based on a comn.on underlying
mathematica! formulation. A familiar example is the uncertainty principle wnich, in its
mathematical essence, is an instance of the local/global duality between Fourier transform pairs
(see below, Section 11.4). But such analogies should not be pressed too far, because the basic
tools of signal processing (Fourier transform, bandlimited function, stationary process, etc.) are
after all, mathematical and not empirical in nature. We have a greater freedom in selecting siyn:!

models than physical models; utility and efficiency are the major criteria, rather than agreemert
with experimental data.

This report represents a continuation of the author’s interest in the foundations of signal
processing. An earlier paper [1] provided a detailed operator-theoretic treatment of discrete-time
single-channel signal processing. In the terminology of Section 11.2 below such a signal would be
described as a weakly stationary random process on the group of integers. Extensions of some of
the basic results of [1] to modeling and filtering processes on more general groups are given in
Sections 11.2-11.4, Later, in 1983, the author gave a course “Fundamentals of Signal Processing”
at the Lincoln Laboratory, which remains available on videotape. There the view was taken that
a common goal of signal processing activity is to identify a model which in some sense explains a
given pattern of observations. If the model is considered as an unknown element of a suitable
Hilbert space, and is assumed related to the observations by a linear (and often compact)
transformation, then estimates of the model can be constructed by operator-theoretic methods
again; for example, by the use of singular vector expansions, pseudoinversion, and regularization.
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The resulting estimates often have interpretation as various types of spline functions, and also as
Bayes estimates for an appropriate prior. This methodology can also be viewed as yielding
particular cases of general optimal algorithms [2].

In contrast to these purely Hilbert space techniques we are going to consider below the
role played in signzl processing by another fundamental mathematical structure — groups. In
Chapter II we discuss several signal models that can be defined on and/or analyzed in terms of
an underlying group structure. This material is presented as a rapid survey at a fairly advanced
level. In Chapter 1II we take an opposite tack, and go into some more elementary material in
greater detail. There the emphasis is on ‘finite’ — the application of finite groups to finite
dimensional signal processing. We discuss the use of group transforms, especially those that are
‘fast’, for coding and patter.. recognition purposes, and group filters, for signal estimation. This
material is of real practical value and there are ample opportunities for further research. Our
intent is primarily to expose the basic concepts and issues.

I.i WHAT IS SIGNAL PROCESSING?

Let us begin with a provisional definition: a signal is the output of an array of sensors
configured in time and/or space. According.y, then, a signal represents observations made of
some physical process and, we presume, it carries information per. aning to the state of some
physical system.

Most signals of engineering interest occur in the context of remote sensing. We will
understand this term to refer, in a generic way, to observations made at a distance by devices
sensitive to some sort of energy. This energy could be electromagnetic in nature (gamrma «nd
x-rays, visible light, infrared, radio and television, etc.), acoustical, or vibrational (mechanical,
seismic) Remote sensing systems may be classified as active or passive, according as the received
encrgy is that produced by a maa made transmitter and then scattered by an object of inturest,
or is produced (or reflected) by the object alone.

Passive systems naturally occur in the contexts of astronomy, photography, satellite
scanning, and geophysical recording. Of course, in a different, nonengineering, direction, we
might include economic systems. Active systems include radar/sonar, a variety of medical
imaging devices (CAT, NMR, PET, US, etc.), industrial procedures employing CAT-like
equipment for quality testing purposes, often called nondestructive evaluation (NDE), and seismic
prospecting.

Naturally, each of the above areas is a maiar field in itself, and so there is by now a massive
literature in signal processing and its applicatiors: many conference proceedings, including the
annual ICASSP Proceedings from the 1EEE, several specialized journals and 200 or so books.
The present report is intended to have a small overlap with this literature.

It is possible to partition the history of signal processing in the 20th century into 3 eras, as
indicated in the rollowing table (I-1). Of ccurse, such brevity cannot do justice to all the
developments and authors involved in the signal processing business; our table is intended only to




TABLE I-1
Eras of Signal Processing in the 20th {;entury

Physical: Vacuum tubes, lumped circuits
1910- Analytical: Impulse response, transfer function,
1940 transform methods
Names: Fourier/Laplace, Bode, Nyquist
Physical: Microwave circuits
1940- Analytical: Statistical concepts (correlation,
1960 matched filters, information theory)
Names: Gabor, Shannon, Wiener
Physical: Digitial computer (permits realization

of arbitrary transfer functions),
integrated circuits, optical technology

1960- Analytical: Digital filters, spectrum estimation,
Present fast Fourier transform, linear inverse theory

Names: Kailath, Oppenheim, Siepian, Tukey

be suggestive rather than complete. What we do want to stress is that current signal processing
activity draws on many disciplines from within mathematics, as well as on computer science and
integrated circuit technology. There is in general an ongoing dynamic interplay between
algorithms and architecture. A broad survey of the field at present is given in the collection [4],
edited by T. Kailath; again, there is little overlap with the present work.

Let us now restate our provisional definition of a signal as follows: the sensor output
referred to at the beginning of this section will now be called dara (often, measurements,
observations, —). The phrase ‘signal processing’ will henceforth be replaced by data processing,
and will be taken to mean the purposeful modification of data in order to eliminate redundancy
or to extract information. Let us in turn take this last phrase to mean the construction (or,
identification) of a mathematical model which, in some sense, ‘explains’ the data. Finally, we
make the following definition: a signal is an unobservable mathematical quantity related to the

. data whose value can be inferred from an identified model.

What do we want to learn from data processing? A couple of very abstract goals were stated
above. Somewhat more specifically we list the following possible goals as indicative of the major
problems of the field:
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s Data compression, decorrelation and feature extraction (efficient
representation for display, storage, transmission, pattern recognition, etc.)

e Ruocognize significant aspects of the data (trends, periodicities, etc.)
e  Signai detection
¢  Signal estimation

e  Simulation (use of an identified model to generate more, artificial, data
which, in some sense, behaves like the origina! data)

Now, in terms of a specific goal, one of the most interesting ensuing questions (subjectively
speaking, again) concerns the nature of the actual operations that we elect to perform on the
data. How are these to be justified; why do we do one thing and not another? Some of the
factors which impinge on ‘s gecision are the following:

e  goal of the processing (as above)

o model structure (physical or synthetic)
e  prior information and constraints

o  performance criterion

¢  nature and amount of data

e  computational time available (circuit speed, necessity for real-time
operation, etc.)

In a way, these factors collectively define an abstract paradigm for data processing, in that we
may expect their specification to (eventually) result in the choice of a particular numerical
algorithm.

We might offer two further comments about the design and use of algorithms. We have just
indicated that many factors must be specified before an algorithm can possibly emerge. This is
exactly the reason there is such a diversity of data processing algorithms extant, and why so
often two of them are not directly comparable. Thus, when trying to select from among the
legion of available algorithms, one’s first task is to be sure that it was designed to achieve the
user’s goal and that it is consistent with the other factors just listed. There are other general
desiderata also, when selecting an existing algorithm or attempting to design one’s own. There
should be a ‘good question® in the background, thiat is, a well-defined or, more technically, a
well-posed problemn whose solution exists uniquely, for given data, and depends continuously on
the data. The (approximate) solution should be efficiently computable and stable with respect to
measurement errors (‘noise’). (Even well-posed problems often result in numerically ill-conditioned
equations as, for example, in the common case of computaticn of the pseudoinverse of a linear
operator of finite rank. Naturally, ill conditioning will amplify any measurement noise present.)




These desiderata, along with that of rapid convergence as the associated discretization decreases,
while giving guidance in algorithm design, also show that considerable care and effort are
required. Thus, the first comment about algorithm design is that it is both hard to do well and
hard to compare competing results,

The second comment pertains at a more philosophical level to this entire business of what
might be termed the algorithmic-centered approach to engineering problems. In this approach, as
just outlined, one designs an algorithm based on the physics and geometry of a particular
observational situation, and in accord with the preceding general guidelines, then another
algorithm is proyosed and analyzed, and so forth, The existence of so many algorithms in the
engineering literature suggests that this appioach is indeed widespread.

An alternative, gradually acquiring some well deserved acceptance, is what might be termed
the information-centered approach. Here one basically indicates the type and quantity of
information (that is, models plus data) available about an unknown signal. along with a
performance criterion. The theory then reveals an optimal algorithm which results in the
minimum possible error, relative to the assigned performance criterion. The theory can also yield
bounds on problem complexity (basically the cost to carry out the solution), and optimal
information (of a given type and quantity). This latter, and ncwer, approach to dealing with
problems involving unceriainty has been developed by J. Traub and co-workers and presented in
the monographs [2,3]. More recently, it is begining to be discovered by engineers [5].

We conclude this section with a few remarks about the epistemological aspects of signal/data
processing. In this, as in any other instance of scientific inquiry, it must be recognized that it is
not possible to ‘know reality’ but, at best, how reality interacts with some sort of probe. That is,
to paraphase Kant, our representation of things does not conform to these things as they are ‘in
themselves;' rather, they conform to our mode of representation. So we can make sense of the
world only by imposing some structure originating from the mind upon it. This is the sense of
the dictum of Protagoras that ‘man is the measure of all things.' Therefore, we must acknowledge
that the observer’s presence is inevitable and ubiquitous in the finai result because of the plan of
observation. It follows that knowledge does not represent certainty, hence 1s ..ot final, but rather
open to improvement; we approximate truth by stages. We can never reach compicte knowledge
of reality, but we can obtain encodings (models) of it in terms of prior knowledge of the plan of
observation. These models should be, as already suggested, the solutions to ‘good questions;’ each
of them provides some insight into the overall situation, and a set of such models will eventually
permit decisions to be made. We accept the unfortunate fate that most (all?) important decisions
must be made on the basis of insufficient information, and we do as well as possible by means of
the scientific method in general and data processing in particular.

Such philosophical speculacsns associated with scientific induction can be traced back to
Plato and the question: “how can you :7ek what you do not know?". They were developed
further by R. Descartes, 1. Kant, D. Hume, aud more recently by A. Eddington, K. Popper,
R. Von Mises, inter alia. A convenient survey is given by W. Salmon in [6].
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1.2 MATHEMATICAL METHODS IN SIGNAL PROCESSING

One way to acquire at least a superficial understanding of a scientific field is to organize it
conceptionally into problems, methods, and results. We have already listed the major problems in
signal processing in a generic way, and we will look at a few of these in more detail in Chapter III.
We next want to briefly survey the major mathematical fields useful in signal processing, and
then in Section 1.3 a fcw examples of specific mathematical results that are of particular
usefulness for signal processing. Several further mathematical models and theorems occur ir the
next chapter.

Once more we take time out to emphasize the subjective nature of our approach, as well as
the eclectic nature of our subject. Signal processing draws upon many disciplines besides
mathematics; for example, physics, systems and information theory, numerical analysis and
computer science, digital circuit technology, etc. One need not be expert in all these fields (if it .
were possible!) in order to do signal processing. In particular, while a great deal of mathematics
can be involved (as in physics), it is not all necessary to work productively on many problems.

Thus each individual makes his own decision about how far to go in certain directions.

Having reitcrated this position we now survey somc uscful areas of mathematics. As noted
below in Section 11.1, most practical data processing involves the manipulation of finite arrays of
real or complex numbers. Thus it is immediately apparent that the methods of linear algebra will
be crucial. Note only must the basic concepts [rank, (pseudo) inverse, eigenvalue/vectesr,
condition, etc.] be mastered, but of equal importance is the need for stable numerical algoruhims
to compute these quantities. For example. a variant of Pisarenko’s method of harmonic retrieval
identifies the number of pure tones observed in noise as the rank of a certain hermitian matrix.
For numerical determination of rank, pseudoinverse, and the solution of ill-conditioned systems
of linear equations, the singular value decomposition is now the method of choice [7, 8].
Unfortunately, it is very computationally intensive and hence more suited to off-line treatment in
sophisticat¢ § hardware. For real-time on-board applications the search of efficient high speed
reatizations of linear algebraic procedures continues, both in the areas of improved (‘parallel’)
algorithms uidl 2 specialized hardware (array processors) utilizing VLSI technology.

Due to the ubiquitous presensce of noise and impurities in observational devices, the data to
be analyzed is never exact; that is, in the words of John Tukey, “what is measured is not the
truth”. Thus, as in many other aspects of life in general, it is necessary to look through noise
when constructing estimates of unobservable signals. The mathematical methods for treating
errors in data and the resulting estimates come from the fields of probability and statistics. The
vital concepts are conditional distributions and expectations, limit theorems, the behavior cf
empirical distributions, probability density estimation, Neyman, Pearson theory, etc. Very
commonly, received data is modeled as a realization of a stochastic process over some domain.
The major theme of this report is to work with this setup under the further assumption that the
domain has the structure of a group. Then the process can be viewed as a probability measure
over a space of functions (sample paths) defined on the group. Such spaces often possess a great
deal of rich mathematical structure (a Hilbert space, a Banach algebra, etc.), and so detailed
(orthogonal) decompositions of the data are available.




We think it fair to say that the mathematical mainstream of the first half of the 20th century
involved the simultaneous development of the manifestions of the concepts of groups and Hilbert
spaces. These interlocked through the concept of a group representation, that is a continuous
homomorphism of a given locally compact group into the unitary group on some Hilbert space.
These developments were driven especially by the (then) new ideas and requirements of quantum
mechanics, and are associated with the names of Hilbert, Weyl, von Neumann, Stone, along with,
of course, many others. Other ear'v motivations came from studies in integral equations (Riesz),
formalization of Brownian motion \ Niener), models for prediction of time series (Wold,
Kolmogorov), and Fourier series expansions (see below).

While it is true that all Hilbert spaces of the same orthogonal dimension are abstractly
equivalent, they can differ greatly according to the nature of their elements. For signal processing
applications useful Hilbert spaces can be considered to belong to one of three main types: L2
spaces, :eproducing kernel spaces (RKHS), and spaces of Hilbert-Schmidt operators acting on a
fixed underlying Hilbert space, If P is a probability measure, L2(P) is the corresponding space of
random variables with finite variance. If G is a finite or compact topological group, L%(G) is
defined with respect to the associated Haar measure and forms a Hilbert space of exceptionally
rich structure known as an H*-algebra [9). The possibility of using such a space as a setting for
signal or data models is provocative an is given a preliminary look in Chapter 111. By contrast,
reproducing kernel spaces generally contain very smooth or even analytic functions, and these
elements can naturally serve as models of unobservable signals about which some information is
available as data or constraints. Examples are the various Sobolev spaces whose elements are
real-valued functions of one or several variables, each of a certain fixed degree of
differentiability, Fock spaces of (Volterra) series of homogenious polynomials on a separable
Hilbert space, and Hardy, Bergman, and Paley-Wiener spaces of analytic functions. The latter are
a special importar . ¢, constituting as they do models of strictly bandlimited signals. Finally,
Hilbert-Schmidt operators generalize matrices normed by the rule

a2 = 3lagl2

which can serve as models of 2-dimensional data. On an L2 space, for instance, the Hilbert-
Schmidt operators are just the integral operators defined by a square integrable kernel. In general
these operators are compact with square-summable singular values.

Now Hilbert space theory primarily concerns the study of operators acting between these
spaces. In data processing operators occur both in the preliminary modeling and in the solution
procedure. Thus we often assume that noise-free data occurs as the value assumed by some
operator at the unknown signal. The operator models the effect of a communications channel
and/or a measuring device, perhaps after some linearization and approximation. For example, a
sateilite detector might measure upwelling radiation at selected frequencies. This radiation at
frequency v is (approximately) related to temperature T by an integral operator of the form

L) = [Kp. QT@Mdq
Q,




where (, is the volume within the detector field of view when the subsatellite point is p, and the
kernel K, is determined from the equations of radiation transfer. Here we think of the
atmospheric temperature T as the not-directly-observable signal of interest (perhaps as an input
to some weather forecasting program), and values of I, as the data.

On the other hand, with the exception of some simple detection problems, virtually all data
processing applications involve the transformation of one (received) signal into another. Hence by
restricting attention to linear transformations and assuming that the data can be considered
mathematically as belonging to some Hilbert space, a powerful and general theory can be built
up from the already available operator theory. Let us therefore agree to define a (linear) data
processor to be an operator acting from the data or sample space into a signal or model space.
Note that once these two spaces are specified, then so are their operators. That is, the operators
exist independently of any particular data analysis situation, and our task is to select one of them
that best fits the available information and performance criterion. In practice, a suboptimal
choice may be made for reasons of computational efficiency. This theme is elaborated on in
Chapter 111 (see also the comments on the ‘spline algorithm’ in Section 1.3).

At this point we have offered some general motivation for the use of linear algebra/operator
theory and probability/statistics for signal processing models. We also alluded to the close
connection between Hilbert spaces and groups through the representation concept. We now want
to conclude this section with an attempt to delineate the basic role of group theory in signal
processing. More detailed discussions of specific technical issues occur throughout the rest of this
report.

It is commonplace that Fourier techniques (series and transforms) have been, and continue
to be, of decisive importance in signal processing modeling. The historical reasons for this go
back to the study of lumped linear time-invariant electrical circuits. The linear differential
equations relating circuit voltage (or current) to external voltage (or current source) preserve the
frequency of a sinusoided input. More generally, any linear time-invariant system has the
harmonic exponent: ils t — e!At as eigenfunctions, for appropriate choice of A. Hence the system
response to any (reasonable) input can be determined from the Fourier series expansion of that
input. Fourier methods also permit solution of models for general electromagnetic radiation
based on the wave equaion. More recently, there has been the explosive development in
computer-based methods for processing discrete data, by means of various ‘fast’ algorithms for
the discrete Fourier transform. Sometimes the intent is to simply do fast digital data filtering,
which is essentiaily a convolution of a data vector with the filter impulse response. Alternatively,
spectsal analysis of stationary data may be the goal, and here Fourier methods are required also
of the very definition of the desired quantity (power spectral density function).

Now, all the Fourier transforms and expansions just alluded to are merely instances of a
much more general situation. This is the field of ‘abstract harmonic analysis’, the study of
functions defined on lccally compact groups in terms of the associated (unitary) representations.
We can't seriously contemplate summarizing this field which has been under active development
since the publication of Weil's book [10] in 1941, The first English source for this material is
Loomis [9]. followed by Rudin [11] and the encyclopediac treatise of Hewitt and Ross [12],
among others. However, we will offer just a few remarks aimed at providii = a little perspective.




If we think of an element x of a (separabie) Hilbert space as a mathematical model of a
signal or a wave, we know from the elementary theory of such spaces that x can be expressed as
a convergent series in terms of an arbitrary orthonormal basis {Qn} :

x= z cnlns

and in fact the coefficients c,, are specified uniquely by the inner products c, = <x, §,>. A
problem arises in view of the arbitrariness here: there is generally no natural way to carry out
this decomposition. If, for example, x is a function defined on a compact interval then
permissible choices of {Q,drange from scaled trigonometric functions to orthogonal polynomials to
step functions. To attempt a physical analogy we might say that, unlike a specific device (a clock,
a car, etc.), a wave has no intrinsic parts.

A partial remedy exists if there is some additional structure available. Suppose in particular
that our Hilbert space is L2(G), where G is some unimodular locally compact group and the
integration is done with respect to its Haar measure. (The existence of a positive regular Borel
measure on a locally compact group, which is invariant with respect to left, or right, translations,
and which is unique up to a constant positive multiple, was the first major success of abstract
harmonic analysis in the 1930s. Such measures are called left, or right, Haar measures, and
permit the notion of invariant integration over G. Groups for which every left Haar measure is
also a right Haar measure are termed unimodular. These include abelian, discrete, and compact
topological groups, as well z; semisimple Lie groups; ir such cases we may speak simply of the
Haar measure, which is unique up to a normalization constant. This latter is usually chosen so
that the measure of G is 1 when G is compact, and so that the measure of each element of G is
1 when G is discrete, although this is clearly inconsistent when G is finite. When G is the
additive group R?, the Haar measure is proporticnal to ordinary Lebesque measure.) Suppose in
particular that G is compact. Then there are distinguished orthonormal bases for L2(G), whose
elements are of the form

2g) =< U(g)y,z>,2¢G

where U is an irreducible unitary representation of G on a (necessarily finite dimensional) Hilbert
space. If G is separable (an inessential restriction for practical purposes), there are only countably
many inequivalent irreducible representations. The cot.csponding expansion of elements of L4(G)
in terms of thesc special basis elements is a generalization of the classical Fourier series, to which
it reduces when G = the circle group (the multiplicative group of complex numbers of

modulus 1). Actually the classical theory is a bit easier because the circle group is abelian, so that
the irreducible representations are one-dimensional (called ‘characters’ in this case), and hence can
effectively be avoided. The basic point here is that the role of the simple harmonic exponentials

t — e for the circle group is played more generally for any compact groups by its irreducible
representations. This collection cf results is known as the Peter-Weyl theory.
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A final remark pertains to the all-important concept of the Fourier transform. This operator
is defined for every f ¢ L1(G) by the rule

f = [ @) <& > dmgl®) (@0
G

if G is abelian and v is a character on G, or by

f0) = f f@) Mg dmg(e) (12)
G

if G is compact. In each case mg(*) denotes the Haar measure on G. In Equation (I.1) fisa
continuous function defined on the dual group I', which consists of all the (continuous)
characters on G, while in Equation (1.2) f is defined on the unitary dual object T', which consists
of all equivalence classes of (continuous) irreducible unitary representations of G. Note that in
this latter case each value f(A) is an operator on a certain finite dimensional Hilbert space. In
cach case f is termed the Fourier or group transform of f, and uniquely determines f. In the
abelian case, there is a choice of Haar measure m on T" so that if f LI(I") then the inversion

formula

f® = f <gv>f dnpix (13)
r

holds a.e. on G. (Usually, in fact, f is contrained to some class of smooth functions — the
Schwartz class, the continuous positive definite functions, etc. — in such cases Equation (1.3) is
valid on all of G.) Also in this case the transform can be defined on L2(G) so as to be a unitary
with range L4(T"). In the compact case, with proper interpretation of L%(T), the transform is again
a unitary cperator. These statements are known as Plancherel’s theorem, and can, in fact, be
extended to the general (separable) unimodular group [13), but this generality is not required
below.

Since many of the classical groups are abelian the abstract group (Fourier) transform defined
by Equation (1.1) extends and unifies all variants of the Fourier transform that occur in signal
processing. All the familiar and important properties of the classical transforms remain valid.
Thus, with the proper definitions, translations on G are converted into multiplications, and the
convolution of two functions in L{(G) has a transform equal to the product of the individual
transforms. Also, in the abelian case, there are a variety of results centered around the duality
formula

(G/H) " = H+ (1.4)

where H is a closed subgroup of G, and its annihilator HL ={ veG: <h, y> = 1, heH}. For
instance, the Haar measure mg y on the quotient group G/H may be chosen o that
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fi@dmge) = [ dmgy (O [fg+hdmyh) (15)
G G/H H

a result known as Weil's formula. In Equation (1.5) my is Haar measure on H aind £ is the coset
g+ H.

We will be interested in the following generic applications of the Fourier transform. First, it
serves to diagonalize convolution operators on a locally compact abelian or compact group. Such
operators are discussed briefly in Section 11.3 as generalizations of time-invariant filters, and in
Chapter III as group filters. Second, on the finite groups of Chapter I1I therc are .ast algorithms
for computing the Fourier transform. (Just how ‘fast’ such algorithms are for a particular group
G, depens; in an interesting way on the subgroup structure of G; the determination of this
structure is a very difficult problem in general, but tractible in special cases. For instance, if G is
abelian the issue reduces to the factorization of G into cyclic subgroups or, in an another
approach, to the behavior of the group characters on the cosets determined by the members of a
composition series. These fast transforms cun in turn be used to compute group filters which, in
turn, can serve as suboptimal approximants to Weiner filters. Further discussion is given in
Chapter 111.) Finally, partial Fourier transforms are often used for purposes of data compression
and feature extraction for pattern recognition. We use this term to mean any linear
transformation T on L%(G), where G is a unimodular locally compact group, of the form given
by the right hand side of Equation (1.2), and where A is any unitary representation of G. Thus if
f is a received datum which can be considered to belong to L%(G), then T(f) is a statistic whose
value, often called a spectral component or a feature of f, contains information about the
underlying signal. Thus T(f) could be used as a basis for classifying the datum { into two or
more pattern classes, or, if the dimension of the representation A is small relative to that of
L%(G), as one means of data compression. Note that for the practical case of finite dimensional
data we have many choices for both G and A, so this approach subsumes many special cases.

1.3 MATHEMATICAL RESULTS IN SIGNAL PROCESSING

Earlier we suggested the decomposition of a scientific field into problems, methods, and
results, for the purpose of obtaining some insight into its activities. At this point we have
discussed some problems and methods, at a fairly abstract level, and from a mathematical
d'rection. We will conclude this chapter by indicating a few specific results.

Now evidently the huge literature in signal processing is teeming with ‘results’, so we are
going to have to be raiher choosy here. Before presenting our brief list of results we therefore
indicate the criteria for their inclusion. First the result should be a definite, crisp, and nontrivial
mathematical theorem, or at least a tightly knit collection of such. Further it should not just sit
in solitary spl.ndor but in fact it should have engendered significant further developments.
Finally it, and;or some of these ensuring developments, should be widely use” in signal
processing practice. We also acknowledge the subjective nature of both these criteria, and of the
decision as to whether this or that result meets all of them. Such subjectivity is a recurrent theme
of this report.
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Here is our list of results, followed by some brief comments.
¢  Karhounen-Loeve expansion

¢  Spline algorithm

¢  Maximum entropy principle

¢  Sampling theorem

e  Kolmogorov isomorphism

. Fast Fourier transform

Experienced readers will, no doubt, consider other results deserving of mention; examples might
be some version of a stochastic filter (Wiener, Kalman, ...), the Levinson-Durbin method for
fast solution of Toeplitz linear systems, etc. We simply feel that at least one of our three criteria
are left unsatisfied by other resulis.

The original K-L expansion (1947) represented a stochastic process defined on a compact
interval, with continuous covariance function, as an infinite linear combination of orthonormal
functions, with mean square convergence. This had the practical effect of ‘coordinatizing’ the
process by the countable set of random coefficients which, most importantly, turn out to be
uncorrelated if the basis functions are chosen to the eigenfunctions of the integral operator
defined by the covariance function. Truncation of this infinite expansion results in a minimum
mean square error, for a fixed number of terms, and also minimizes an entropy function. Thus
the K-L expansion is in several respects an ogtimai way to decompose (th.c sample functions of)
the given process. Applications to signal detection scon followed (1950).

Nowadays there are many generalizations. The siinplest is to replace the original pracess by
a second order probability measure on a Hilbert space and to expand a random vector in the
eigenvectors of the associated covariance operator. This operator, being self-adjoint and nuclear,
has indeed an orthonomal basis of eigenvectors. and the resulting expansion converges with
probability one. When the Hilbert space is finite dimensional there are a variety of applications
to pattern recognition and data compression, and here the K-L expansion serves as a benchmark
for the performance of other suboptimal but faster data processors (see Chapter 111 and, for
example, [14]).

A different direction of generalization is to the case of Gaussian measures on a general
Banach space; for example, the space of continaous functions on a compact metric space. From
such work we learn, inter alia, that the K-L expansion over an interval converges uniformly with .
probability one, at least in the Gaussian case. For one such result, unifying several earlier ones
we refer to [15] where, in particular, the role of the RKHS associated to a given Gaussian
measure is stressed. -

As a familiar example consider classical Brownian motion on the interval [0, 1]. Its
covariance function is min(s, t) for 0 < s, t < | and consequently its K-L expansion is a random
Fourier sine series with zero-mean independent Gaussian coefficients. On the other hand, its
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associated RKHS is the Sobolev space consisting of absolutely continuous functions on [0, 1],
vanishing at 0, and with square-integrable derivative. Proceeding in this direction we would be
led to the classical Wiener measure on the Banach space of continuous functions C[0, 1], as the
space of sample paths of Brownian motion, and then to the more recent unifying theory of
abstract Wiener spaces. But that is another story [16).

The spline algorithm, as we are using this term, is a very general procedure for estimating an
unknown element in a Hilbert space from partial information about it. The desired element is
often construed as a modei of some observed phenomenon, but the choice of the underlying
Hilbert space is also part of the modeling procedure. In the simplest (noise-free) case it is
assumed that a finite amount of linear information about the element is available, along with a
bound on its norm. The optimal estimate, in a minimax sense, is then the value of the
pseudoinverse of the data operator at the data vector. This is the classic prototype of a linear
data processor as defined in the preceeding section. The optimal estimate, so obtained, is
sometimes called an abstract interpolating spline. This is because when the data consists of a
samp!cd values, and the Hilbert spece is the Sobolev space of smooth functions on an interval,
with square integrable second derivative, the estimate turns out tc be the (unique) cubic spline
interpolant of the data.

The early results on spline functions (piecewise polynomial functions joined smoothly, but
not analytically, together) are due to Schoenberg and Sard in the late 1940s. The Hilbert space
formalization, originally termed the ‘hypercircle inequality’ because of its geometric interpretation,
was made by Golomb/Weinberger [17] and de Boor-Lynch [18]. During the last 15 years this
basic result has evolved into two dynamic and powerful data processing methodologies: linear
inverse theory (e.g., [19, 20]) and the theory of optimal algorithms [2] already mentioned in
Section 1.1.

One much-used application is the extrapolation of a bandlimited function from sampled data
or, equivalently, the estimation of the spectrum (Fourier transform) from such data. In the latter
case the resulting estimate has been termed the ‘modified discrete Fourier transform’ [21], and is
used with over-sampled (higher than Nyquist rate) data. Another application occurs in the
burgeoning field of tomography, where the reconstruction of cross-sectional tissue densities is
attemapted, based on the observed attenuation of a finite number of x-ray beams [22, 23).

The Principle of Maxin.um Entropy (PME) has a complex and controversial history, which
is reviewed by E. Jaynes in [24], for example. Involved have been pioneers in the foundations of
probability, from Laplace to Jeffries, of statistical mechanics, including Boltzmann and Gibbs,
and of information theory, especially Shannon. In one direction, popularized by Jaynes and
S. Kullback, it provides a systematic way of estimating probability distributions from known
constraints; often these latter are certain moments of the distribution. Indeed, virtually all
standard probability distributions can be so derived and characterized. PME has been used in
statistical decision making to assign probabilities to possible outcomes, and therefore to permit
business and economic decisions. Currently PME has been subsumed by PMCE, the Principal of
Minimum Cross-entropy, a very general method of inductive inference wherein a probability
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distribution is singled out as ‘closest’ to a given prior from within the class of all distributions
obeying known constraints. Here closeness of a pair of distributions p, q is measured by their
cross-entropy

H(p, @) =  log(dp/dq) dp, (L.6)

assuming that p is absolutely continuous wrt q (if not, H(p, q) = + ). Among its many
consequences PMCE can be used to neatly derive the classical method of maximum liklihood for
statistical parameter estimation See [25] for a summary of the methodology, references to earlier
work and applications to pattern classification, speech processing, image enhancement, and
particularly to spectrum estimation,

It is this latter area, of course, that is of greatest overall sigt.ilicance in signal processing.
Initially PME was introduced to the signal processing community by J. Burg in 1967 [26], as a
new procedure for estimating the power spectrum of a stationary time series from partial
knowledge of its autocorrelation function. Earlier . nproaches implicit!v assumed this function to
vanish for sufficiently large time lags, as they utilized the Fourier trans‘orm of the product of a
window function of compact support with the known or estimated autocorrelation function.
Burg’s idea was to view the spectrum estimation as an infinite dimensional optimization, wherein
the entropy of the process, taken proportional to the integral of the logaritt m of the spectral
density function (the underlying random process being assumed Gaussian), was maximized subject
to the linear constraints imposed by the known values of the autocorrelation function. The
solution turned out to be the spectrum of an autoregressive process of an order equal to the
number of constraints less 1. In time, a better mathematical result has emerged, one that removes
both the stationarity and Gaussian assumptions [27].

Nowadays the maximum entropy method is seen as the first of several parametric methods
for spectral estimation, each involving a model fit, in some sense, to given time series data. These
often provide superior frequency resolution compared with classical techniques. Meanwhile
research based on PME has swung in the direction of multivariate spectrum estimation (see, e.g.,
the survey [28]), where, even with uniform sampling, the maximum entropy spectral estimate is
not the same as an autoregressive model fit.

The remaining three of our distinguished results have some definite group-theoretic content
and are consequently d*~cussed in subsequent sections of this report.
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II. ASPECTS OF GROUP THEORY IN SIGNAL MODELING
AND SAMPLING

Guided by the philosophy explained in the preceding chapter, namely, to search for
mathematical paradigms and to justify operations on data, we review next some fundamental
models of data processing with main emphasis on those where group theory plays a role. We
stress that the attempt here is to describe a unified and systematic approach to a great diversity
of problems. Hence a recurrent theme will be that evea if a group is not immediately apparent in
certain situations, it may be useful, in the above sense, to try to uncover a group ‘lurking’ in the
background, or even to impose a group structure, on account of the immense body of theory and
technique that then becomes available.

IL.1 BASIC ALGORITHMS OF DATA PROCESSING

We begin with sorme empirical observations concerning the practice of con.puterized data
processing. Whatever the original nature of the data, it is usually subjected to a series of
pre-processing steps that serve to reduce it to finite dimensional form. Among these steps might
be truncation, discretization and sampling, quantization, etc. This reduced data is called a block
and its dimension the blocklength. The latter is determined by various factors, especially
computer storage limitations, and the physical and statistical nature of the original data. In
particular, successive data blocks must be treated as independent of one another, and only
statistical associations between components of a block can be considered.

We also observe that most data processing algorithms involve a transformation of a data
block into another block, possibly of a different length. Further, these transformations are
usually linear, perhaps achieved as a composite of several relatively <imple linear transformations.
This is not surprising given the highly developed theory of linear transformations vis-g-vis any
other class of transformations. We will continue this tradition and discuss only linear data
processors,

Next, we observe that the most common data processing algorithms are (variants of) the
Wiener-Kalman filter and the fast Fourier transform (FFT). In order to better focus our
attention we will continue to enforce the assumption just made about the way the data is
presented for processing, namely, block by block. This will climinate from further consideration
the Kalman-type recursive filters.

The term ‘Wiener filter’ is used generically for a linear transformation of the data chosen so
as to minimize the average error in estimating a signal contained in the data. In the present
simple situation of nonrecursive block data we can write

y = s + 7 (1L 1)

(data) (signal) (noise)

and then the Wiener filter W is defined by
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E|s-Wyl|2=min . (IL2)

This minimization can be carried out by standard quadratic optimization techniques in the space
of suitably dimensioned matrices, with inner product defined by <A, B> = trace (AB*); the
result, for zero-mean signal and noise, is

W=C,, C;l=C, (C,+Cp)y! (I1.3)

The middle term in Equation (I1.3) is the product of the cross-covariance matrix of the signal
and the data with the inverse of the covariance matrix of the data. Under the conventional
assumption of signal and noise independence (or just zero-correlation), we have further

Cy =G + C,, as indicated.

A major extension of the foregoing model, deserving of brief mention here, is to the
situation where the unknown signal x belongs to a Hilbert space H), is transformed by a linear
operator A into a second Hilbert space H,, and is observed there in the presence of noise process
n, modeled as a zero-mean weak H-valued random variable. Thus

y = AX) + 1 . (11.4)

‘The operator a represents the effect of a measurement device (probe) and/or a communication
channel. Problems leading to such raodels abound in optics, geophysics, biomedicine, etc., where
typically x is a function representing some physical variable of interest across a continuum of
values of one or more variables.

Successful estimates of x in Equation (I1.4) by means of a linear operator B:H,~H, will
depend on proper incorporation of prior information about x, either deterministic or stochastic.
Usually the operator A is compact (if not actually of finite rank) and then methods involving
pseudoinversions and singular function expansions can be employed. The concept of
regularization, to compensate for the ill-posed nature of Equation (11.4), is important here. But
all this is essentially pure Hilbert space theory and, so far at least, does not seem to have
benefited from group theoretic techniques. So we will conclude this brief excuision by noting that
the problem of recovering x from y in Equation (11.4), given prior information or constraints on
X, is what we mean by a ‘linear inverse problem’, and that selected references have been provided
following the discussion of the spline algorithm in Section 1.3.

Returning now to our theme of basic algorithms, we next discuss the FFT. This is, of
course, just an accelerated procedure for computir.g the discrete Fourier transform (DFT). The
latter amounts to multiplying a given data block y by a particular unitary matrix Fy, where N is
the blocklength of y and

FNszmn , lém,nSN s

with wy = exp (-2mi/N). Thus, the DFT is another linear transformation which can be applied
to data vectors of arbitrary (finite) dimension, However, unlike the Wiener filter above, which is
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defined by a clearly stated purpose, it is not clear, a priori, why a DFT would be applied as part
of a data analysis procedure. Indeed, the DFT is defined independently of any assumptions
concerning the nature of the data, In fact, as we shall discuss in greater detail in the next
chapter, the DFT is but one of a large class of unitary transforms associated with groups of
finite order. These are the so-called group (Fourier) transforms, the formal definition of which
was given in Section 1.2 for locally compact abelian or general compact groups.

Also in the rext chapter we will carefully examine the rationale for taking unitary
transforms of data. Roughly a unitary transform represents the data vector in a new coordinate
system while preserving the essential information contained in the data. Depending on the
particular goal of the data processing we may expect a judiciously chosen unitary transform to
reveal hidden features of the data (as in pattern recognition or spectral analysis), or to result in
more nearly uncorrelated coordinates for quantization or coding purposes. Although there is, for
any signal, an optimal unitary transform that decorrelates the signal, namely the discrete
Karhounen-Loeve transform (DKLT), its practical usefulness is limited by severe computational
difficulties, as well as possible lack of knowledge of the true signal statistics. Thus other unitary
transforms, that are both data independent and computationally efficient, may be considered as
suboptimal alternatives.

In addition to the role just described, group transforms also serve as components of a class
of hnear transformations called group filters. These transformations, which may equivalently be
described as group convolutions, are again data independent and may, depending on the internal
structure of the underlying groups, be computationally efficient. Hence group filters offer the
possibility of doing fast suboptimal Wiener filtering. And, since convolutions are defined on all
groups, avelian or not, we see that any (finite) group can be used to define a family of data
processing operations, the success of which is a function of the group structure, the signal
statistics and, of course, the overall purpose of the processing.

The upshot of this section has been to suggest, in addition to the well recognized roles
played by Hilbert space/operator theory and by probability/statistics in signal processing, a
significant role also for group theory. This particular role, namely the use of group transforms
and filters, as fast and convenient approximations to a variety of data processing tasks, will be
further described in the next chapter. The remainder of this chapter is devoted to a brief resume
of several other aspects of group theory in signal processing. Each of these topics deserves more
attention than can be provided in the present report. Hence they will be introduced merely to
buttress our theme that a group-theoretic viewpoint is a fruitful one for many reasons in the
design of signal models and data processors.

1.2 STATIONARY SIGNALS

Random data is usually modeled as a realization of a stochastic process. Thus a general
mathematical task is to define and study relatively simple processes whose realizations, or sample
paths, can reglicate observations. Now a stochastic process consists of a family of random
variables, whose values may be real, complex, or higher dimensional vectors. The family is often
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thought of as indexed by an integer or real variable representing ‘time’, but other index sets are
not uncommon. For example, indices may comprise a set of 2- or 3-dimensional points, which
ce.respond to the geometric distribution of sensors, whose outputs are the data. In any event, it
1s important to distinguish between the random variables which together define the process and
the realizations, considered as functions on the index set. The process may equally well be viewed
as a probability distribution on various function spaces over the index set, any one of which may
be called the ‘sample space’. (In particular, in the computerized processing of the preceding
section, the data can be considered as a random sample from a finite dimensional distribution.)
Both these distinct views of a stochastic process lend themselves to applications of group theory
and the corresponding harmonic analysis. For the next couple of sections we will emphasize the
former view, and tte switch back to the latter (sample space distribution) view,

Classically, stationary processes vere proposed as models for signals whose statistical
fluctuations appeared to be independent of time. The simplest of several possible precise
definitions is that the process mean should be a constant, and that the covariance fun<tion
evaluated at points s, t, should depend only on the difference t-s. Such processes are called
weakly (or, wide-sense) stationary. More restrictive definitions of stationarity may be given; these
involve invariance to time shifts of higher moments, or of the entire fainily of finite dimensional
distributions. However, these will not be required for what follows.

As far back as 1948 it was recognized that this definition involved the (additive) group
structure of the integers or the real numbers, according as time was represented discretely or
continuously. It was then a short leap (as least for mathematicians!) to extend the definition of
weak stationarity to processes defined on any locally compact abelian (Ica) group. Thus if G is
such a group, and L(z) (P) is the space of zero-mean second order random variables with respect
to the probability measure P, we say that the (continuous) mapping g—Xg, from G into L(z) (P), is
a weakly stationary stochastic process on G if

E (ngh) = E (xg,thw)
E (xg-h-xe)
r(g - h)

for all g, h, k € G, and e = identity element of G; the function r just defined on G is the
covariance function of the process. A final bit of abstraction can be obtained by replacing the
space L(Z) (P) by an arbitrary Hilbert space H and then defining the function r by

<(xg. Xp> = <xg_h, > = r(g-h) . (11.5)

It is remarkable that so much structure ensues from this simple hypothesis of weak
stationarity. First of all, it turns out that this concept is fundementally linked with that of a
unitary representation of G in H. Indeed, given such a representation U, that is, a (continuous)
homomorphism from G into the group of unitary operators on H, and any vector x ¢ H, then
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Xg = U(g)yx is weakly stationary. And conversely, if x,; is a given weakly stationary mapping of
G into H, with covariance function r, there exists a unitary representation U of G on H, and

x ¢ H such that r(g) = <U(g)x, x>. These facts do not require that G be abelian, and will
reappear in Section II1.3 in the context of general finite groups.

Next, it follows from Bochner’s theorem that, owing to the positive definiteness of r, there is
a finite positive (regular Borel) measure u on the dual group I such that

@) = § v@duy), g6 . (IL6)
r

This u is called the spectral measure of the process Jx,t, and its Radon-Nikodym derivative with
respect to the Haar measure on T is called the spectral density of 3xg".

Equation (I1.6), a general version of the so-called Wiener-Khinchine relation, connects a
‘time-domain’ concept, the covariance function r, with a ‘frequency-domain’ construct, the spectral
measure u. In particular, it exactly locates the proper domain of definition of the latter as the
(Borel field of) the dual group. Thus given a weakly-stationary process defined on any group,
discrete or not, of any dimension, we know where to set up a frequency domain analysis. In fact,
we can achieve a very tight yet decoupled relation between these two domains, as indicated next,
using another group theoretic result.

Given a weakly stationary H-valued process 3’(8%’ ge¢G, we can make the association

Tixg — <g, >

between the elzment X, in H and the character defined by g on I'. Because the spectral measure
u is finite, these characters generate the space L%(I", u), and it turns out the T can be extend=2
1o an isomory hism between this space and the closed subspace H, of H spanned by ;xgg. This
result is known as the Kolmogorov isomorphism, since Kolmogorov orginally proved the special
case where G is the group of integers. In this way we can replace the rather mysterious space H,,
in practice consisting of linear functions of the random variables 3"82‘ by a more familiar function
space LI, u).

The isomorphism just mentioned can be explicitly implemented in terms of a stochastic
integral, which can in turn be rather easily derived from a generalized version of Stone’s theorem.
This generalization states that any (weakly) continuous unitary representation U of an lca group
G can be expressed as an integral of a ‘resolution of the identity’ E on [I':

U@ = J < v> dEG), &G . (1.7)
r

Here E is a strongly countably additive measure on I whose values are orthogonal projections on
H, and with E(I') = L. Thus U is a kind of abstract Fourier transform of the projection-valued
measure E. The validity of Equation (11.7) proceeds from Bochner's theorem and some general
measure theory.
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It follows that we can express our original H-valued process ;xgi in the form
X, = Uk, = J <g v>dEM) %,
r

where now the integrator is the H-valued orthogonally scattered measure W whose value at any
Borel set B C I is the vector W(B) = E(B) * x,. When H = Lg (P) this expression is the
stochastic integral just mentioned, and defines the inverse of the Kolomogrov isomorphism:

T(xg)) = <g, > ;

X = T1(<e>) = J <g v>dWe), &G (1L8)
r

Classically, this formula is Cramer's representation of the process as the Fourier transform of a
random measure with orthogonal increments. Finally, the connection between Equations (11.6)
and (I1.8) is simple: u = || W(-) ||2

With these general principles established, more specialized models can be developed, based
on the integration of various stochastic measures, For example, we may say that a ‘white noise’
on the group G is a stochastic measure W whose associated scalar measure uyw( = || W() ||2) is
a Haar measure on G. The convolution of an L2-function ¢ on G with W then results in a
certain weakly stationary process

x = J o-dWH) . G (L)
G

which is a generalization of the classical ‘moving aver 2e'. These latter occur when G is the
group of integers Z = int; the white noise reduces to a sequence of zero-mean uncorrelated
random variables 3Wn of variance 1, and ¢ becomes a square summable sequence ’¢n$. Then
Equation (11.9) is just

-
Xn = O Ank Wk o (11.10)

k=-oc

the usual moving average representation.

In general, a weakly stationary process has the form of Equation (11.9) if and only if
its spectral measure is absolutely continuous wrt Haar measure on I'{39].

A more leisurely presentation of the preceding ideas is given in [1] for the special case of
discrete processes, that is, the case where G is the group of integers. The theory of (Fourier)
analysis on Ica groups is succinctly set forth in [2, Chapter 1]. The general theory of orthogonally
scattered measures is due to P. Massani [3}; a bricf review uccurs in [1]. Second order weakly
stationary processes were first defined on Ica groups by J. Kampé de Fériet; a more recent
treatment is [4]). The survey paper [1] contains numerous further references.
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IL3 TIME-INVARIANT FILTERS

Filters are devices which purposefully modify data as, for instance, the Wiener filter already
discussed in Section II.1. Thus, mathematically speaking, a filter can be viewed as simply a
(usually linear) transformation of data, and indeed this is the general view taker in this report.
But traditionally the term ‘filter’ is used in a more specific context, to denote a linear
transformation which is time-invariant and causal (nonanticipating). Thus a filter appears as a
special type of operator on a sample space for the underlying process whose realizations are the
possible data. As such, the filter is defined somewhat independently of the process; the main
requirement being that the domain of the filter contain the path space of the process.

Now w..¢n the sample paths are defined along the real line, or a discrete subset thereof, the
filter is termed ‘time-invariant’ if a shift in an input to the filter is preserved in the output. This
notion can be readily extended to the group context: if G is an Ica group, and T a filter whose
domain is a translation-invariant space M of functions defined on G, the T is called invariant if

T -g] = TwW(-2 , (11.11)
for each geG and ueM. That is, T commutes with the family {r, - geG% of translation operators
defined by the elements of G:T ~ Tg T Tg” T, where by definition Tg(u)(x) = u(x - g), geG, ueM,

The mathematical issues here incluje the following:

(a) For a given translation-invariam space M, what is the structure of operators
T that satisfy Equation (11.11)? This question may be extended to include
cases where the range of T lies in a second translation-invariant space.

(b) When does there exist a ‘frequency-response function? Based on the classical
situation this should be a (measuraole) function ¢, defined on the dual group,
such that the action of T is equivalent under the group (Fourier) transform to
multiplication by @. A4 fortiori, the space M of (a) is now L%(G).

(c) When can the stochastic process ixg:geGg which is generating our observations
be realized in L%(G), or in some other translation-invariant subspace M for
which the answer to the question of (a) is ‘interesting?

These are questions difficult to answer at a high level of generality. Most of the available
answers  {a) and (b) have, in fact, only become available in the last 20 years, primarily from
research in harmonic analysis. Here we just indicate a couple of special cases. First lct T be a
continuous linear transformation either from L2(G) into C(G), or from LYG) into L%(G), and
suppose that T commutes with all the translation operators 7 [here C(G) is the space of all
continuous functions defined on G] Then T is convolution with a fixed L2 function ¢; that is,

T = 1% o) = f fx-po@)dg (IL.12)
G
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This was established in [5] along with several other similar results.

Let us next consider the case where T is an operator on L%(G) that commutes with
translations. Here the situation is a bit murky, but the basic result is that any such T is
convolution with a ‘pseudomeasure’ on G [5, 7]. This includes, but is not limited to, the case
where there is a bounded measure 4 on G for which

TOE = £*u) = f fx - g) dule)
G

Things become a bit clearer (as is so often the case!) by taking a group (Fourier) transform.
Under its action, suitably defined [5, Section IV], pseudomeasures corresponding uniquely to
(locally) essentially bounded functions on the dual group, and the operation of convolution with
a pseudomeasure goes over into multiplication by the corresponding function. In this way we
obtain a general answer to (b).

A similar result, but allowing T to be only closed and densely defined, later obtained in [6],
by very different (operator-theoretic) methods, where it was termed a ‘generalized Bochner
theorem’. The criginal Bochner theorem (1929) pertained to the case where G is the group of real
numbers. So, the upshot is that, when G is a group, any invariant filter on L2(G) is unitarily
equivalent, via the group (Fourier) transform, to a bounded multiplication operator on L%(G).

In general, any operator acting between a pair of translation-invariant function spaces
defined on an Ica group G, and commuting with the translation operators, is termed a ‘multiplier’
for that pair. Thus, for example, it can be shown that the correspondence T—¢ defined in
Equation (I1.8) above is actually an isometric isomorphism between the space of all multipliers
for the pair [L!(G), L%G)), and the space L%(G). Similarly, the space of multipliers of L(G) is
isometrically isomorphic to L=(G), and also to the (suitably defined and normed) space of
pseudomeasures on G. Which form of the multiplier (invariant filter) we use depends on whether
we want to opera‘c in the ‘time domain’ G or the ‘frequency domain’ I'. The abstract theory of
multipliers is surveyed by Larsen [7].

Finally, as to question (c), we observe that many interesting processes on G cannot be
realized in L%(G), although there is, of course, no problem when G i» of finite order (the case of
interest in the next chapter). Otherwise, we have a simple sufficient condition, under a mild
measurability restruction on the process, that the function g—var(x,) be integrable. It is
interesting to note (for some, if not for present purposes) that a (measurable) second order
process on G can always be realized in some weighted L2 space over G [8). For this result the
group structure of G plays ro role and, indeed, such spaces need not be translation invariant.

In this brief review of sample space filtering we have concentrated on understanding the
time-invariance aspect in the general group context. Causality depends on an ordering of the
group, so that the terms ‘past’ and ‘future’ havc a meaning. When G is a subgroup of the real
numbers the frequency response function of a stable casual time-invariant filter can be extended
to an analytic function. But it seems to be somewhat artificial to try to define these terms in
general, so we will not pursue the matter further.
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A second point oi view of the concept of a filter is to view such as a linear transformation
on the (Hilbert) space generated by the random variables comprising the process of interest. Thus
let §xg:geG be a weakly stationary H-valued process defined on the ica group G. As before, the
subspace of H spanned by the x, is denoted H,. We know from Section IL.2 that there is a
unitary representation g—U(g) associated with this process. This in turn, according to
Equation (I1.7), is defined by a resolution of the identity E(-) on I'. An operator T on H, might
now be called time-invariant (sometimes also called ‘U-stationary’) if it commutes with all U(g),
geG. A question of long interest is to determine the structure of such operators, which for short
we may now refer to as ‘filters’. The basic goal is to assert that T is an E-integral; that is,

T = [ ¢(yNEM) (IL13)
r

where ¢ is some measurable function on G. This equation means that for yeH,,

0 = Jomdw, () (IL14)
r

where Wy is the orthogonally scattered H,-valued measure defined by Wy(B) = EB)'y, BCG.
Actually, the integral in Equation (11.14) can only be defined provided that ¢ e Lz(uy), where u,
is the spectral measure on G associated with Wi py = || Wy() ||2. This requirement, sometimes
termed the ‘matching condition’ in the signal processing literature [10], naturally holds when ¢ is
(essentially) bounded. The function ¢ may now be termed the frequency response function of the
filter T. Conditions for the validity of Equation (I1.13) are provided in [6, 9]; they involve further
restrictions on either the group U(g):geG or on the operator T. The simplest of these conditions
[6] is that there should exist a cyclic vector in H, for U(g):geG or, in other words, this group of
operators should ha /e unit multiplicity.

If yg = T(xp). geG, represents the output of the filter T, it is clear that ;yg% is again weakly
stationary with the same shift group 3U(g):geG as 3’(3%- The value of the representation (11.13) for
T is that it permits an easy but rigorous derivation of the ‘frequency domain’ behavior of the
filter. Namely, if W, and W, are the orthogonally scattered measures corresponding to 3xg§ and
Yg » respectively, then it follows that

W, B) = J o) dW, ()
B
for all Borel sets B C I". For the associated spectral measures this implies that

uy B = f o) dW, ()
B
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and consequently that duy/duy = |¢(-)|2 Finally, we see that if u, is absolutely continuous wrt
Haar measure on G, then so is u; if so, the corresponding spectral density functions f, and fy
are related by

fy = [6()|>fy, ae

This is a fundamental relationship in signal processing and points up the important role of the
function | ¢( )|2, known as the filter gain’.

Derivation of these results and discussion of some of their implications is given in [1]. We
emphasize once more that we have indicated two complementary approaches to rigorous time-
invariant filter definition and design over groups: filtering can be done by an operator either on
the sample space or on the space generated by random variables. In the first case the filter is
defined independently of the process; otherwise, it is defined directly in terms of the unitary shift
group of the process, which is assumed weakly stationary,




I1.4 NONSTAT!ONARY SIGNALS

Unfortunately, the elegant theory of weakly stationar signals fails (o encompass many
signals of interest. Such signals may exhibit a time-dependent mean (a ‘trend’) and other higher
moments. There are two generic approaches to this real difficulty: transform the data to regain
stationarity or recognize the data as belonging to a broader signal class for which some (useful)
structure theory exists. The first approach includes such filtering tasks as detrending and general
‘prewhitening’ of the data along with statistical tests of stationarity applied to the residuals. The
other approach is of greater mathematical substance and involves defining and characterizing
larger classes of signals, hopefully retaining some of the useful results available in the stationary
class.

This transition away from stationarity bears some analogy with similar movements in more
familiar settings: from linear to nonlinear differential equations, say, or from normal to non-
normal operators. In each of these contexts we leave behind a highly developed and successful
discipline to encounter a comparative wilderness, which can at best be comprehended by a variety
of special cases, techniques and approximations.

A succession of attempts by eminent probabilists (Loéve, Karhounen, Cramér, Bochner,
Rozanov, Rao) to define a viable extension of (weak) stationarity began almost 40 years ago and
has culminated in the concept of (weak) harmonizability. It is now understood that this concept
may be approached in several equivalent ways, each resulting from a generalization of the
corresponding construct in the stationarity theory. Thus one may attempt to extend the Weiner-
Khinchine relation Equation (I1.6) between the covariance function and the spectral measure of
the process, the Cramer representation Equation (11.8) of the process as the Fourier transform
of an orthogonally scattered vecto: measure, or the operator description obtained from
Equation (11.7) and the concept of a unitary representation. In particular, the dependence of the
covariance functions or equivalently, the spectral measure, on a single variable must be relaxed.
Yet at the same time it is desirable to maintain ties with Fourier analysis so as to conserve the
frequency interpretation of linear filtering.

This is not the place to delve into the many measure-theoretic technicalities required to
precisely make the various definitions of weak harmonizability and to establish their equivalence.
For such details the recent survey of M. Rao [11] may be consulted. Here we will just take note
of a few highlights.

Probably the most straightforward definition is that an H-valued weakly harmonizable
process on an lca group G is a bounded weakly continuous mapping g—x, from G into H of the
form

X * [<g.v>dWn) . (1L.15)
-

where W is a vector measure on the Borel algebra of the dual group I'. Thus W is merely
countably additive and no longer necessarily orthogonally scartered as in the earlier stationary
case Equation (11.15) is a very general Fourier transform relation, so that this new concept
conserves some link with harmonic analysis.
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One immediate consequence of this definition is that if T is a bounded linear operator on H,
and ;xgzgeGi is a weakly harmonizable H-valued process, then so is y; = T(x,). Thus this new
class of processes is closed under the application of arbitrary linear operations, a situation which
definitely does not obtain for the stationary processes (or even for other more restricted
definitions of harmonizable processes). This fact has the implication that any well-defined linear
filter, time-invariant or not, applied to a weakly harmonizable input yields an output of the same
sort, an observation first made in a more restricted fashion in [12]. Hence, for systems analysis
purposes this is as wide a class of processes as needs be considered.

A second, but less immediate consequence of the definition is the following expression for
the covariance function R of the process:

R(g, h) = <xp, x> = J’ f<ng> F(dy,d\) (11.16)
rr ’
where the integrator set function F is defined by
F(A, B) =<W(A), W(b)> (11.17)

for A, B, Borel subsets of I'. The integration in Equation (11.16) can be a little tricky since F
need not define a measure on I' X T, unless it is of bounded variation. However, when the proper
integral is used (the so-called Morse-Transue integral) as explained in [11], then the covariance
formula Equation (11.12) provides a characterization of weakly harmonizable processes. Even
when F does define a bona fide measure, which we might then refer to as the spectral measure of
the process, we observe from Equation (I1.17) that it will generally be complex-valued, unlike the
positive spectral measures corresponding to the weakly stationary processes. Weakly harmonizable
processes with a spectral measure arc now commonly referred to as strongly harmonizable and

are often encountered in the engineering literature (primarily for the case G = %real numbers%;
[12, 13)).

If ;xg:ge(}% is a weakly stationary H-valued process, and P is an orthogonal projection on
H, then by what has already been noted the process ;P(xg):geGi is weakly harmonizable.
Remarkably, there is a valid converse statement which provides an elegant characterization of
weakly harmonizable processes [11, 14]. Namely, let ;yg:geGg be weakly harmonizable in the
Hilbert space H. Then there exists a larger Hilbert space K and a weakly stationary K-valued
process ’xg:geG$ such that y, = P(x,), geG, where P is the orthogonal projection from K onto
H. Thus each weakly harmonizable process on the Ica group G appears as a projection of an
associated weakly stationary process on G, defined in an enlarged Hilbert space. Equivalently, a
weakly harmonizable process can always be ‘dilated’ to a weakly stationary process. This fact is
naturally related to previously known results concerning unitary dilations of contraction
operators, and to Naimark’s theorem concerning the dilation of a positive-definite operator
function on G to a unitary representation of G [15).

A rather different approach to the treatment on nonstationary signals also originated in the
mid 1940s, and continues vigorousiy into the present time. This approach, the joint time-
frequency representation of signals, emmanates primarily from the community of physicists and
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electrical engineers, and has associated with it the names of Wigner, Gabor, Ville, Woodward,
Rihaczek, Cohen, inter alia. The analysis and design of radar waveforms [16, 17] was a primary
engineering motivation. More recently, this work has been applied to the detection of phase-
modulated signals in noise [18]. In a different direction efforts have becn made to absorb some
of the resulting constructs (such as the radar ambiguity function) into a general mathematical
framework, specifically, that of nilpotent harmonic analysis [19, 20]. The key mathematical object
in this work is a certain Lie group known as the real Heisenberg group.

The essential idea here is that the energy of nonstationary signals is distributed in both time
and frequency. This is already clear with audio signals where both the pitch and the time of
origin of a tone can be heard. It is also a well-known aspect of radar signals where the echo is
subjected to both a time delay and a frequency (Doppler) shift, depending on the range and
radial velocity of the target. Hence it is desirable to express the signal as a function of both time
and frequency. Without trying to be overly detailed we next indicate two generic approaches to
this problem.

As we know from Section 11.2 the spectral content of a weakly stationary process is
independent of the time index. In the standard cases of engineering practice, this index runs
through either the group of real numbers or a discrete subgroup thereof. in such cases consistent
estimates of the spectral density function of the process are conventionally obtained as the
squared magnitude of the Fourier transform of a suitably windowed segment of a sample
function of the process. (Naturally, an ergodic hypotheses must be invoked here for the validity
of such inferences.) The frequency resolution of the resulting estimates then depends on the
window length. Now when the signal is not stationary we may, on the one hand, ‘ry to select a
window of sufficiently short length that the signal portion under this window is approximately
stationary. In this way we are led to a compromise between resolution in time and in frequency.
Sliding a given window along the data then permits a display of the variations in frequency as a
function of time. Such joint functions of time and frequency are called ‘spectrograms’ [21].

A second appreach to nonstationary signal analysis is to aviempt a direct definition of a
function of time t and frequency w which somehow measures the distribution of signal energy
over the (t, w) plane. There are several desiderata here. The correspondence between a signal {
and its proposed distribution F should ideally be

(1) bilinear in
(2) non-negative
(3) possessed of correct marginals.
This last requirement refers to the result of integrating F over all t or over all w:

j‘ F(t, w) dw = | f(1)|2
j‘ Fit, w) dt =|{fw)|2 .
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where f is the suitably normalized Fourier transform of f. Unfortunately it is not possible to
satisfy all these three desiderata simultaneously.

At present there are many choices available of what might be called ‘pseudodistributions’,
that is, functions F obeying some of the above criteria. For instance, the rule

[+ o]
- 1 -Bt-irartifu
F(t, w) o f:!;fe whbu k(4, 7)

f(u+7/2) f(u - r/2)dudrdd

(11.18)

where k is a rather arbitrary kernel subject to k(0, 7) = k(6, 0) = 1, has the correct marginals, and
is bilinear in f provided that k is independent of the signal f. These distributions are said to
constitute Cohen’s class [22). Special choices of k yield many popular distributions, including
those of Wigner (take k = 1) and Rihaczek [take k(f, 7) = cos(f7/2)]. The Wigner distribution is
of interest for several reasons: its 2D Fourier transform is the familiar ambiguity function of
radar theory and any member of Cohen’s class can be obtained from it by convelution with an
appropriate measure. Further, in a certain technical sense, the Wigner distribution comes the
closest from Cohen’s class to being non-negative [22]. In addition to these somewhat theoretical
reasons the Wigner distribution has been applied to a variety of practical data processing tasks;
sce [18] and the thesis [23] together with its references.

The study of the many properties, interrelations and applications of these functions is a
major occupation of modern signal processing workers. Extention of these aspects from thz real
line to its discrete subgroups has begun, and in time we may expect the theory to slowly progress
to signals defined over more general Ica groups.

In addition to the aspect just suggested of one possible role of group theory in joint time-
frequency signal analysis, there is another, both more profound and less expected. Restricting our
attention for the remainder of this section to signals defined on the group R of real numbers, we
are making reference to the appearaice of the real three-dimensional Heisenberg group H.
According to Schempp [19], this group “. .. stands at the crossroads of quantum mechanics and
signal theory.” Again, without intending to be overly detailed, we m:dicate a little of the relevant
background.

The mathematical embodiment of the unc..tainty principles of conjugate quantities in
nownrelativistic quantum mechanics occurs both as Heisenberg's inequality for Fourier transforms
of functions in L2(R):

o oo
Jafi2de [ ofw)?dw> E}/16n2 (11.19)
o0 o0
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where E¢ = lifl|2, and as the commutativity relation
PQ-QP =cl (11.20)

for a corresponding pair of self-adjoint operators P, Q and a pure imaginary constant c. In the
classical single particle case, P and Q are the position and momentum observables, and ¢ = h/ 21,
h = Planck’s constant. The Heisenberg inequality then expresses the impossibility of exact
simultaneous measurement of both these quantities. It does this by the interpretation of

Equation (II.19) as a lower bound on the product of the variances of the observables P and Q in
any state f. (When E; = [, the function

B~ J' | f(t)) 2dt
B

defines a probability measure on the real line R, and is considered to define the probability that
our particle is found in the Borel set B.)

The relation (I1.20) was given a group theoretic interpretation long ago by Weyl, who
replaced the nperators P and Q by the one-parameter groups on unitary operators which they
generate. Further, a connection was made with the Heisenberg group H, already mentioned. By
definition, H, is the subgroup of all 3 X 3 real matrices of the form

lac
g=|{01b . (IL.21)
001

As such, H is both noncompact and nonabelian. It turns out that there is a deep connection
between the group version of Equation (I1.20) and corresponding commutativity relations between
the one-parameter subgroups of H obtained from the matrices Equation (II.21) by fixing two of
a, b, ¢ at zero. From this one can eventually obtain a description of the irreducible unitary
representations (of dimension > 1) of H; on L2(R). These have the fcrm

Up(@f(t) = eirc*a) fe+b) , feL2AR) (11.22)

for geH, and for any real A # 0. In particular, U, is often called the linear Schrodinger
tepresentation of H;. For this background material we refer to [24, 25].

Now, even though there is no analogue of Planck’s constant in signal theory, there is a well-
known uncertainty principle that applies to radar measurements. It essentiaily places limits on
achievable resolution performance in range and range rate. This principle can be arrived at
through an analysis of the ambiguity function A. As already noted, A is the Fourier transform of
the Wigner distribution W, a special case of Equation (11.18). Up to an inessential phase factor
the ambiguity function is obtained by cross-correlating a given signal with its time and frequency
shifted version:

Alr, @) = J'f(t+—72r-)f(t——£-)e'i““ dt . (11.23)
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Unlike the real-valued W, this function may be complex-valued. Nevertheless, we always have
|At, w)| < A(0,0)

and
Al = AQ, 0= E;

indicating a constant volume under the surface | A(r, w) |, independ=nt of the signal f. This

implies the impossibility of concentrating A (or W, for that matter) around a particular point, as
would be desirable for separating closely spaced targets. In general, it follows that separability in
one variable is only to be gained at the expense of self-clutt:r and masking in the other variable.

Now, rewriting the ambiguity function A in Equation (I1.23) as
o0 — .
Alt,w)= ¢ J‘ fu+7) f(u) elevdu
L0

(|#| = 1) and comparing with the representation formula (I1.22), we see that
At w) =< Uy g, £> . (11.24)

Here g is restricted to elements of the form (I1.21) with ¢ =0 (and with the identifications a = -w,
b =), and the bracket notation on the right hand side refers to the inner product in L%(R).
Intuitively, we think of f as the envelope of a radar pulsc of finite energy and Equation (I1.24)
expresses the cross correlation of the pulse with its echo.

The foregoing relation (I1.24) is the basic connection between the theory of radar waveform
design and hanrn.unic analysis on the real Heisenberg group. For a detailed survey of this link
and its many consequences, one may consult the papers of Schempp [27 + cited literature], and
[20]. Unfortunately, the mathematical prerequisites for a careful development of this material are
rather severe.

The Heisenberg group concept is somewhat more general and ubiquitous than might be
inferred from the preceding remarks. Given any commutative ring with identity or any lca group,
an associated Heisenberg group can be defined. Thus, in the ring case, we can use the matrices of
the form (IL.21), with a, b, ¢ ring elements. Or, in the case of an lca group G, we can take the
set G X ' X T with multiplication

@8 s (hht=@+h g+h st<g h>)

as the associated Heisenberg group; here T is the circle group. The resulting construct plays a
key role in many aspects of the accompanying harmonic analysis [26-30].

For an example, when G is a (separable) Ica group, the group (Fourier) transform
F:LYG)~LXT) can be shown to intertwine two irreducible (unitary) representations of H on
L2(G) and on L%(I"; here H is the Heisenberg group associated with G. This essentially
characterizes Fg; and leads to a factorization of Fg; into a product of three unitary operators.
When specialized to the finite group Z/rs, where Z is the group of integers and r, s are integers
> 1, the Cooley-Tukey FFT algorithm is obtained [28, 29). This algorithm is also derived in
Section 1I1.4 below by a more direct group-theoretic procedure.
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II.5 SAMPLING THEOREMS

Of the relative handful of significant mathematical theorems inspired by signal processing
requirements, the most prominent is the so-called Sampling Theorem. Actually there is now a
whole genre of results, loosely called sampling theorems, that pertain to the recovery of either
deterministic or random signals from certain discrete information (‘samples’). A rather complete
survey of these results (up to 1977) has been given by Jerri [31]. Here we shall just look at a
couple of prototypes in order to once again point out a group-theoretic setting.

For a deterministic signal the intuitive idea is that complete specification of the signal from a
sequence of equally-spaced sample values is possible, provided that the signal does not vary too
rapidly. This last phrase is taken to mean that the frequency spectrum of the signal is eventually
zero. The relation between an upper bound on the spectrum and a sample spacing sufficient for
recovery is a reciprocal one: if the spectrum vanishes outside the interval [~ 7, then the signal is
uniquely specified by its set of sample values taken at the points ;kazk =0, xI, £2, .. ‘ , where
0 <a < /7. In fact, we have the famous sampling formula

f(t) = § f(ks/7) sinc[r(t - km/7)] , (i1.25)

valid for functions f ¢ L{R) whose Fourier transform vanishes (ae) beyond the interval [-7 7];
here

l , x=0
sinc(x) =¢
sin X
X , x#0

This formula is associated with the names of Cauchy (1841), Whittaker (1915), Nyquist (1928),
Kotelnikov (1933), and Shannon (1949), who introduced and rediscovered it in various contexts.
In addition to its well-known utility in communications theory (A/D, D/A conversion), formula
(I1.25) serves as the basis for a variety of numerical approximation procedures. In this setting the
formula is known as the cardinal series expansion of f; see the survey by Stenger {32].

Proofs of the sampling formula are Fourier-analytical in nature. The nicest one proceeds
from the Plancherel theorem, which establishes that the Fourier transform f—f can be extended
from LY(R) N L%(R) to be a unitary operator on L2(R). (This theorem, of course, remains valid
if R is replaced by an lca group.) The so-called Paley-Wiener space PWE, then is defined as the
image of the (inverse) Fourier transform of the subspace of L%(R) consisting of thost functions
which vanish ae outside of [-7, 7). As is well known, the space PWE, is that subspace of L*(R)
whose elements { can be extended to the complex plane so as to be entire functions of
exponential growth there:

PWE, = | feLAR)f@)|< ¢ exp (r]2])]}
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This Hilbert space of analytic functions, equipped with the reproducing kernel
K(z,w)= Lsinc rz-w) (11.26)

is thus rich in structure and its elements serve as mathematical models of ‘bandlimited signals.’

The convergence in Equation (I1.25) results from the fact that the shifted sinc functions are
the (inverse) Fourier transform of the standard expotential basis

{ ! exp (irkt/7)k =0, 1, £2, .. ]\
vV 2r }

on the interval [-r r]. Because this basis is orthonormal and the Fourier transform is unitary, the
expansion (I1.25) is just an expansion in an orthonormal basis in PWE,. However, by making
use of the reproducing kernel properties of the space PWE_, one can also see that the
convergence in Equation (I1.25) is actually uniform on horizontal strips in the complex plane.

None of the foregoing analysis directly involves any group theory. Yet in view of the
translations evident in formula (I1.21), we might expect that a group theoretic version should
exist. Certainly it is not particularly difficult to extend the sampling formula to several variables,
that is, to produce a formula analogous to (I1.25) that is valid for bandlimited functions on R",
n 2 | [33). [Actually, such generalizations date back to work of Parzen (1956) and Peterson and
Middleton (1962).] And, in fact, as we shall indicate momentarily, a rather compliete
generalization of the formula exists for any Ica group [34].

Before doing so, however, we briefly consider another type of extended sampling formula by
asking whether it is possible to replace the sinc function in Equation (I1.25) by other functions.
That is, we are looking for expansions of the form

f(t) = 2 f(ak) ot - ak) (11.27)

k=

(again valid for feL2(R), with the constraint that f have compact support. Convergence in
Equation (I1.27) should at least be in the metric of L3(R) and perhaps be uniform, if we are
lucky. This kind of sampling formula might be more useful than the traditional one because of
more tavorable behavior of the function ¢. For example, the smoother @ is, the more rapidly ¢
will decay, and then fewer terms on the right side of Equation (I11.27) will be needed to
adequately approximate f(t).

The key condition for an expansion of this form to hold is that of reciprocal relationship
between the size of the support of f and sample spacing «. Suppose that we can find open sets
V, W satisfying

supp(f)CVC\-/CW ,
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and that W is so small that the translates
§(w+ 2mk/ack =0, 21, £2, .. |

are pairwise disjoint. Then there exists an infinitely differentiable function ¢ such that ¢y =1 on V
and ¢ = 0 outside of W, One can now show the following [35]:

(a) the measure of W is finite;
(b) hence feLlN L2(R) and so f must be continuous;

(¢c) with ¢ the inverse Fourier transform of ¢, the series in (11.23) converges
uniformly to f.

Returning now to the problem of extending the classical sampling formula (I1.25) to a group
context, we let G be an arbitrary Ica group. The role of the sampling points {k=/rt will be
played by a discrete subgroup H of G, and the goal, for a given f ¢ L%(G), is an expansion of the
foim

fig)= 3 f(h) #(g-h) (11.28)
heH

for a suitable function . As is to be expected, the matter depends on the size of the support of
the group (Fourier) transform f. We waat it to be small relative to H, and we make this precise
by introducing the annihilator A of H: A= HL = §y e'<h, y>=1,he Hi. As an example,
when G=R and H =« Z for some fixed @ >0, then '= R and A = (2m/a)Z (here Z is the
group of integers). Now we shall require that f vanish ae outside of an open set Q which has the
property that its translates {Q) + y:y ¢ At are pairwise disjoint. With this setup one can now
establish the following, originally proved in [34] under the further assumption that the subgroup
A also be discrete:

(a) the (Harr) measure of ) is a positive number 2 < oo;

(b) the restrictions of the character functions 8! <h, >, h ¢ H, to {1 form an
orthonormal basis for L2(0);

(c) hence, if the function ¢ is defined as the inverse Fourier transform of the
characteristic function of ), then ¢ is continuous and positive definite, and
the set of translates ;B"¢(- - h)h € H} is an orthonormal set in L3(g).

(d) fis continuous and the expansion (11-28) holds both uniformly on g and in
the metric of L%(G).

Thus this argument basically parallels that already available for the classical case here G = R. But
it reveals a little more; for instance, that a function on R may have an unbourded spectrum and
yet still be completely determined by its values at the discrete sampling instants ;kag .

Finally, we want to indicate that analogous results are valid for random signals defined on
groups. For stationary processes dcfined R, the corresponding sampling formulas go back to
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Balakrishnan [36] and Lloyd [37]. In general, if 3xg:geG$ is a weakly stationary process on an
Ica group G, as defined in Section II.2, and H is a closed subgroup of G, we say that %x g is
determined by its samples {xh:heH% if the Hilbert space H, is the closed linear span of ;xh .
Then one can show that if the support of the spectral measure of the process gxgi has the
property that its translates by the members of the annihilator of H are pairwise disjoint, the
process is determined by its sarples along H in the above sense. This result can in turn be fairly
easily extended to cover (strongly) harmonizable processes on G as defined in Section I1.4 [35].

In the classical case (G = R, H = aZ) much effort has been devoted to establishing sampling
formulas similar to (I1.25) or (I1.27) that would converge, or at least be summable, in one sense
or another to a given random process. For example, if the series in (I1.25) is truncated to terms
with [k| < N, if f denotes a weakly stationary process on R whose spectral measure is supported
by the interval [-r + y, - ¥] for some y > 0 (the ‘guard band’ assumption), then for |t| < m/2r
the mean square error en(t) in approximating the random variable f(t) by the truncated series
obeys an inequality of the form en(t) < c(t)/N, with lim c(t) = 0 as t—0 [38].

Mean square convergence can in fact be established for sampling expansions of a large class
of nonstationary processes on R which are bandlimited in a suitable sense. See for example [35]
again, and its references, for a precise statement. A formula similar to (I1.26) is obtained (with
H = a Z, as usual), and shown to converge almost surely, as well. For these resuits the key
technical requirement of the process is that the (two-dimensional) Fourier transform of the
covariance function of the process exist as a distribution in a c2rtain Sobolev space on R2, and
that its support be contained in an open set whose translates by the poinis {ka"(ls ke Z} are
pairwise disjoint. ‘

Returning once more to the general group context of the third paragraph above, we remark
that it is possible to establish a sampling expansion for (strongly) harmonizable processes defined
on G, given certain assumptions on the process and the subgroup H along which the process is
sampled. Namely, it is supposed that H is an infinite closed discrete cyclic subgroup of G, and
that the spectral measure of the process §xg:geG§ [as defined below Equation (II.17)] has its
support contained in an open subset of I' X I' whose translates by the points (a, a), for « in the
annihilator of H, are pairwise disjoiat. The generalized sampling formula then appears as

Xg = lim 2 sn(h) cg(h)xy, geG ,

=% heH

where the ¢, are numerical coefficients, and the s, are uniformly bounded functions of finite
support on H that converge to the characteristic function of the identity element of H [35]. These
arise from an extension to the group setting of a classical summation method for Fourier series.
It would appear that some work remains to be done in this area before the exact conditions for
a valid sampling formula are obtained, and the variety of relevant summability methods is
specified.
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III. DATA PROCESSING OVER FINITE GROUPS

We now want to return to the context of Section II.1, which should be reread at this time,
and work through in greater detail some of the mathematical aspects of linear data processing, as
defined there. Hence, throughout this chapter we will model the observations as a random
element in (equivalently, a probability measure on) a finite dimensional Hilbert space. Our
emphasis will be on the choice of ‘good’ orthonormal coordinate systems to facilitate the data
processing task at hand. Any such choice leads immediately to a corresponding unitary operator
by which to transform the data. Particular attention will be paid, as already promised in
Section II.1, to those unitary operators which are group (Fourier) transforms wrt some
underlying group structure. The interesting trade-offs here concern the choice of group, whose
structure then determines the transform complexity and hence computational efficiency, the
nature of the signal and noise statistics, the estimation errors or distortion, and the amount of
data compression.

IIL.1 UNITARY OPERATORS FOR DATA PROCESSING

Following the preceding introduction and the background of Section II.] we now consider
data in the form of an element y belonging to a finite dimensional Hilbert space Y. The precise
nature of y and Y is not too important initially, but typically it will be the case that y is a
column vector (y|, . . ., yN)! so that Y is the space CN of all complex N-tuples with the usual
algebraic operations and inner product

N
<ll, V> 2 Uj Vj
g

Alternatively, y might model an image and so would appear after preprocessing as a matrix Lyl
then Y would be the space of all such matrices of the same dimension with the weak (Hilbert-
Schmidt) norm derived from the inner product

<u, v> = tr(uv*)
Of course, such data could be rearranged (‘stacked’) to form a column vector.

Now before proceeding to the analysis we have to consider what we might want to do with,
or learn from, this data. From the several possible generic goals listed in Section 1.1 we will
consider here only three:

— Dimensionality reduction
— Transform coding
— Signal estimation.

The first of these, often termed feature selection, consists of replacing y by its projection on
a subspace of Y. We thus represent the data by fewer parameters, often with the intent of
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submitting this reduced data to a pattern classifier. The basic issue is then to choose the optimal
subspace, having fixed its dimension and an error criterion. The latter will depend on the prior
information available concerning the data generating mechanism; for instance, this may be a
known, or estimated, probability distribution.

Now any projection on Y of rank d is unitarily equivalent in many ways to the projection of
CN onto C9 which simply drops the last N-d components. So, as we apply various unitary
transforms U to the data, U:Y—CN, the resulting first d components constitute the possible
d-dimensional data reductions. Although these will generally be suboptimal wrt any given error
criterion, some of them may be more efficiently computed than the optimal transform. This will
be the case if U has a fast algorithm, that is, one where the computational effort in obtaining Uy
is less than the expected O(N2) floating point operations (‘flops’). Such a U is generically called a
fast unitary transform (‘FUT); the FFT is the most famous example. The point here is that if the
error made in choosing the leading d components of Uy, where U is a FUT, does not greatly
exceed the minimum possible error, the computational savings may offset the slightly higher
error. Then, larger size data blocks at a higher sampling rate could be processed, resulting in an
increase in overall system performance.

Use of Fourier or otl'er unitary transforms as preprocessing for pattern classification dates
back to the 1969-71 time period; the sources [48, 49] may be consulted along with their many
references.

A similar situation occurs in transform coding, one of the principal methods of data
compression [1, 2]. This is a collection of techniques aimed at reducing the amount of signal
space necessary for a given signal, where the components of signal space are, generally, physical
space, time, and bandwidth. Data compression is widely employed in the fields of speech coding,
telemetry, television, facsimile, and data base access. In general, the problem is the efficient
transmission of the information contained in a multidimensional source signal, and the idea is to
eliminate the redundancy in the signal prior to encoding.

A schematic of transform coding is given in Figure 11I-1. The choice of the first transform is
driven by the requirements of preserving information while returning uncorrelated components.
This prewhitened data may then be individually quantized and encoded. After transmission
through the channel and subsequent decoding, a final transform is applied to restore, as far as
possible, the original signal.

The major goal in the transform coding technique of data compression is to be able to
employ fewer bits in quantization than would be the case if transforms were not first applied, or
if the data were treated separately rather than in blocks. If the number of available bits is fixed
then they should be allocated so as to minimize some measure of overall distortion. In fact, the
selection and efficient quantization of the transformed components for storage or transmission is
at least as important in terms of overall system performances as the choice of blocksize and
transform. However, in this report the latter is of primary interest. Let us just note here that
generally an optimal choice of bits per source symbol, given a certain channel capacity, depends
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Transform coding schematic.

on the variance of the components of the transformed data vector. If this variance fails to exceed
a threshold the component is dropped (that is, 0 bits are assigned); otherwise the number of bits
assigned depends on the variance and a distortion function.

The topic of signal estimation was already introducted in Section Il.1, where it was
concluded that for zero-mean signal and noise the optimal linear data processor is the Wiener
filter of Ecuation (I1.3). In greater detail, conserving the notation y = s + n of Equation (Il.1), we

note that if an estimate

s=L-y

(1LY
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of the signal s is formed by an arbitrary linear operator L acting on the data y, then the mean
squared error e is given by

e = Ells -51|2)
= tr(Cs3)
=tr(Cy - CgyL* - LC*, + LC LY
= tr(LC L) - 2re tr(LC*sy) + tr(Cy)
=<LCy, L>-2re<L,C>+<C, >,
where <A, B> = tr(AB*> is the Hilbert-Schmidt inner product on the space of operators on Y.

In this form the error e can readily be minimized wrt L; the optimal operator L is the Wiener
operator W as defined in Equations (I1.3). Further, the minimum error ey is given by

ew S tr (WC),W'l +C)-2retr (WC‘sy)
= tr (CgyCYC*y + Cg) - 2 te tr (CyyC,CICH)
=tr [C - C(C+ Cp)IC] (111.2)

where we have used Cgy = C; and Cy = C, + C, for uncorrelated signal s and noise n. We note
that these arguments could be generalized to an infinite dimensional setting provided that 7 is
interpreted as a second-order weak random variable

Since the signal-to-noise estimation problem is so fundamental, we make a brief excursion at
this point. Consider the case where s = A(x), that is, we have a linear inverse problem as
discussed following Equation (I1.4). If x belongs to a Hilbert space X so that A:X—Y, and
L:Y—X is any potential solution operator, then the mean squared error ¢; (averaged over the
noise distribution) can be expressed as

eL = ||lx - LAx||2 + tr(LC,L%) (I11.3)

a formula which remains valid in the infinite dimensioral case provided that L is restricted to be
a Hilbert-Schmidt operator. Now, the point is that if no prior information is available concerning
X, there is no way to choose a single operator L to make e uniformly small for every xeX. In
order to obtain a unique solution, therefore, some additional constraint must be imposed. A
classical restriction is to make the estimate X = L(y) unbiased, so that LA = Ix. Then it rcsults
that

L, = (A*C;! Ayl A* C;] (111.4)

gives the minimum mean squared error. This operator is sometimes known as the Gauss-Markov
estimator. Technical requirements for its existence are that C, be invertible (obviously!), and that
A have a trivial nullspace.

Now, as research on James-Stein and ridge estimators has shown [3, Chapter 11}, a
willingness to accept some bias can yield a smaller mean square error. Suppose then that we




drop the unbiased restriction and instead consider, as we have been doing before, a pr.or
distribution on x. Then the optimal (Wiener) estimator has the form

W= C,A* (AC,A* + C,y!
= (C;l + A*C Ay AxCl . (111.5)

The first formula above remains valid in the infinite dimensional case provided that the
covariance operater C, of the prior is nuclear (or, trace class); utherwise, we restrict to the finite
dimensional case and assume, for the second formula, that this covariance is positive definite,
hence invertible. We can note from this second formula that as prior knowledge of x becomes
more diffuse in the sense that ||C,||—<, the Wiener operator W converges to the Gauss-Marko»
operator L, defined by Equation (111.4).

These remarks aside, let us now return to the earlier case (dim Y<eo, A =) with Wiener
filter W = C((C, + C,,)'l and error ey given by Equation (II1.2). We note that in general this
operator has no particular structure, except in the important but special case where the noise 7 is
white, so that C, is a scalar matrix. In that case W is a positive (semi-) definite operator.
Another sufficient condition for W to be hermitian is that C; commute with C,,. Failing this, we
fall back on the theorem that the product of hermitian operators is hermitian if and only if it is
normal. From this we conclude that W is normal < ===> W is hermitian <===> C,Cs! is
hermitian, the last provided that the signal covariance is nonsingular. In any event, it is not
particularly easy to compute with W, and this difficulty leads to the concept of generalized
Wiener filtering.

As in the preceding cases of data reduction and coding we consider a preliminary
transformation of the data y by a unitary operator U:Y~CN. We then multiply this transformed
data by a matrix A and inverse transform. That is, in the notation of Equation (IIL.1), our
estimates have the form

S=L-y=U*AU-'y . (I1L6)

Any such transformation, for U # I, is called a generalized Wiener filter [4]. What is interesting
here is that if we work through the minimization of the error e[ = E(||s - § ||2) again, we find
that, for fixed U, the optimal choice of A is UWU*, where W is the original Wiener filter, and
that the minimum value of e[ is ey, as given in Equation (II1.2). Thus the minimum error turns
out to be independent of the choice of transform U. In particular, we are free to choose U so
that the optimal A has a simple form.

Since we must make some error no matter what we do, the real issue is how to coordinate
the choice of U with some suboptimal but simple form o” the matrix A. For example, a natural
first question is whether, for some U, the associated optimal A is diagonal. Since A = UWU*, an
equivalent question is whether cthe Wiener filter W is normal. As was observed earlier it certaiuly
is, provided that the noise covarian .e is scalar or, more generally, commutes with the signal
covariance. When W is normal by virtue of the noise n being white, any uni*ary operator that
diagonalizes it is at the same time one diagonalizing the signal covariance Cg; these are called
(discrete) Karhounen-Loeve transforms (DKLTs) of the signal.
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Let us now summarize the pros and cons of the use of the DKLT for signal estimation;
unfortunately, there are more of the latter. First, it need not always exist — we have to assume
commutativity of noise and signal covariance operators. Secondly, it changes with any change in
the signal statistics. Third, there is no reason to expect it to be a FUT, in general, so that as the
data blocksize increases we have an increasingly lengthy eigenvector computation to accomplish.
For these reasons the role of the DKLT in data processing is more that of a benchmark rather
than a viable numerical procedure.

This being said, we can now suggest the main concepts of suboptional Wiener filtering. We.
consider the generalized Wiener filters of Equation (II1.6), with U defined independently of the
signal statistics and A chosen to be ‘simple’. This last term is deliberately a little vague; we have
in mind that A should be diagonal or at least close to diagonal terms that are nonzero. Further,
U sheuld be an FUT so that the computational effort is reduced. The essential trade-off, then, is
between filter complexity and error, for different statistical signal environments.

With this extended motivation for the use of unitary transforms, particularly FUTs, for
several generic data processing purposes behind us, let us think a little about such operators from
a general point of view: what they do, or ought to do, to be useful, and how they can be
constructed. First of all, we recall that unitary transforms are, in effect, changes of basis. That is,
if U:Y—CN is unitary and we write

- -
oy

U(x) = ' ,

a
[N
then cach o; depends linearly on x, so that there is a vector u;eY with

a; = <xi, ui>
Since, by assumption,

IxlIZ= U 12= 3, |12, (111.7)
it easily follows that {up, ..., un} is an orthonormal basis (for short, a frame) in Y. So, the
effect of U is to pick out the coordinates of an element of Y wrt a particular frame. We will call
these coordinates the spectral coordinates of ./ wrt uy, ... ,uy.

Wher x is a data vector obeying some zero-mean probability law on Y, its spectral
coordinates wrt the frame {u;} are random variables on Y. In this case the numbers

yi=E(<x, w>» , i=l,...,N (II1.8)

constitute the power spectrum of x wrt the given frame. Although the relative size of *he v; will
vary from one frame to another, we have the identity

N
Y vizE(ixid (I11.9)

i1
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independently of frame. Note that the numbers y; can also be interpreted as the values

< C,u;, u; >, where C, is the covariance operator of the random variable x. If, in particular, the
frame )ui is chosen so as to diagonalize C,, then v; is just the spectrum of this operator, and
the number defined in Equation (II1.9) is seen to be tr(C,). This particular set <; is sometimes
called the normal power spectrum, and a corresponding frame u; of eigenvectors is a
Karhounen-Loeve basis for Y (relative to the law of x).

At this point we know that unitary transforms preserve the energy of observed data vectors
[this is the import of Equation (111.7), and also the total signal power [the value in
Equation (II1.9)]. This latter number is sometimes referred to also as the (statistical) bandwidth
of the data. We may also note, without proof, that unitary transforms preserve the relative, or
cross-entropy between a pair of random vectors in Y. That is, if X, y are random vectors in Y
with distributions p, q, respectively, whose cross-entropy H(p, q) as defined in Equation (1.6) is
finite, then

H(x, y) = H(p, q) = H(Ax, Ay)

where A is any unitary or, more generally, nonsingular linear operator on Y. So, in this precise
sense, unitary transforms preserve the information about one random vector contained in
another. This sort of result goes back to the early work of Shannon, Kolmogorov, Gelfand and
Yaglom in information theory [5]; see also the more recent and more detailed work of
Rosenblatt-Roth [6].

We are still left with the task of selecting a unitary transform to fit a particular data
processing task, or, equivalently, a suitable set of spectral coordinates. We have seen that we
can't distinguish between such transforms on the basis of power or information-theoretic criteria.
What we can expect, however, is to differentiate on the basis of the statistical behavior of the
individual spectral coordinates. Specifically, desirability of unitary transforms increases with their
ability to decorrelate these coordinates and to pack most of the signal power into a small number
of them. This latter phrase means roughly that for M much less than N the sum vy +...+ vy
should be near to the total signal power of Equation (IIL.9).

This last goal is an example of a data processing task, the performance of which can be
measured by a function F of the power spectrum coordinates, namely,

M
Fop,.om= X
=l

The goal is achieved by a unitary operator U for which F is maximized. Now it is fairly direct to
show that if {u} is a Karhounen-Loeve basis for Y and {v;} is any other frame, then its power
spectrum A = (A, ..., Ay) is related to the normal power spectrum y = (v, ..., YN) associated

with u; by

)\=Az
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where A is the orthostochastic matrix [|<u;, vj>|2]. By Birkhoff’s theorem, A is a convex
combination of permutation matrices:

A=Y o Py
and so

A= 3 o (Pyy)

That is, all possible power spectra of a given second order probability measure lie in the convex
hull of the permutations of the normal power spectrum. The import of this observation, which
goes back to J. Pearl [7], is that the merit function F is maximized by a DKLT of the data. Of
course, this nice theoretical result ignores computational realities.

A second example of such merit functions occurs when the processing goal is efficient
transform coding; for exainple, the spectral coordinates are to be transmitted through a binary
channel of some fixed capacity C bits/symbol. In terms of a given distortion function ¢,
decreasing and convex, and an assignment of B bits to the jth coordinate (the latter being
assumed independent here), the merit function F becomes

min {3 6 (B) v B;>0, 3, B = C|
From this it follows that F is, in fact, a certain linear function of (v, ..., vn) [8]

Another kind of merit function, not of the above form, is needed when trying to rank
unitary transforms by their ability to decorrelate the spectral coordinates of a probability measure
or, perhaps, a ‘small’ class of such. If, as usual, we deal with a covariance matrix C, and a
unitary transform U, the spectral coordinates obey a probability law whose covariance matrix is
A = UC,U*. Its diagonal entries <y;; are the components of the power spectrum. Hence an
appropriate figure-of-merit would be some measure of the magnitude of the off-diagonal entries
Vijp for instance

F(A) = TL‘ 3 vl (111.10)
%

This last data processing task, namely, to choose a unitary transform to approximate a
DKLT of a particular covariance (or class thereof), has led, over the past decade, to some
interesting work [9, 10] on asymptotic properties of various spectral representations, which we
summarize briefly here. The general idea, as in so much of statistical theory, is to study the
behavior of certain approximations to ‘truth’ as the sample size (blocklength, here) becomes
infinite.

Specifically, suppose given a sequence {UN:N=1,2,...} of N-dimensional unitary
transforms, and, for each N, a family Cy of positive-semidefinite N-dimensional matrices. Each
class Cy is intended to consist of possible covariances of observed data. Also, let Fy be a non-
negative function defined on the space of all N X N matrices such that Fy(A) =0 if A is diagonal.
Fy is intended to measure how far a matrix is from being diagonal; it could be defined, for
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instance, by Equation (II1.10). We can then agree to say that the transform sequence Ux
asymptotically decorrelates the family Cy if, for each sequence Cy , where Cy ¢ Cy,

lim Fy(UyCyUN =0 . (IIL11)
N —co

Thus, if Fy is defined by Equation (II1.10) (hereafter referred to as the ‘standard case’), then a
sufficient condition for (IIL.11) to hold is that each off-diagonal entry v;; of UNCNU*y satisfy
712 = o(1/N), as N—ce.

The underlying motivation for the foregoing abstract set-up is the desire to rapidly process
large blocks of data by first applying an FUT to the data vector and then treating the resulting
spectral coordinates independently for coding/compression purposes. Since the exact data
statistics are rarely known, we must expect the processing to be effective over a class Cy of
possible covariance matrices. The proiotypical example is that where the data is obtained as a
segment of a discrete weakly stationary process, so that Cy consists of Toeplitz matrices, and
{Un} is the sequence of N-dimensional DFTs. Then it is known [11] that if the process is
restricted to have square-summable covariance sequence, the DFT sequence will asymptotically
decorrelate all the corresponding (Toeglitz) covariance matrices.

In general, if C e Cyy and UNCUy* = D (a diagonal matrix) in the sense that Fy(UnCUn*)
is small, and we set C’'= U*\DUYy, then C’ is diagonal wrt the frame associated with Uy and
C’'= C, at least in the standard case, by unitary equivalence. So, asymptotical decorrelation of
the family {Cy} by the transform sequence {Uy} is equivalent to even better approximation of
the matrices in the Uy frame. When Uy is the N-dimensional DFT, the corresponding class of
diagonable matrices consists of circulants.

So far we have not mentioned the rate of convergence in Equation (IIL.11). At least in the
standard case this rate is interesting for two reasons. First, for a given family {Cy} of
covariances, convergence rates allow us to compare ti.= performance of different transform
sequences. This might permit us to decide, for instance, vhether certain data might best be
processed with Fourier, Walsh, Haar, cosine, or yet other transforms. Second, by assigning
numerical performance criteria for various data processing tasks, we might be able to bound or
estimate the performance degradation resulting from the use of these various fast but suboptimal
approximations to the DKLT.

As an illustration, suppose that Cy is the class of covariance matrices corresponding to first
order Markov processes. That is, C ¢ Cy means

C = [pl™], (I11.12)

for I <i,j< Nand 0<p<; p originates as the correlation coefficient between adjacent samples.
Here the spectrum and Karhounen-Loeve basis can be explicitly obtained [4]. Further, it can be
shown that, not only does the DFT sequence asymptotically decorrelate these covariances, but so
does the popular discrete cosine transform (DCT) [13], and in fact it is *better’ than the DFT in
this context. That is, while the rate of convergence in Equation (I1L.11) is the same for both
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transform sequences, the DCT error is strictly less than the DFT error, for every choice of P
[12]. A related remark here is that the DCT is now known to be derived from the limiting form
(as p—~1) of the Karhounen-Loeve basis for C in Equation (II1.12) [14].

At present, the DFT, the DCT, and several other kinds of unitary transforms have been
embedded into some generai theories. We have in mind here on the one hand the Gauss-Jacobi
transforms of Yemini and Pearl [10], which are based on the classical convergence of Gaussian
quadratures derived from orthogonal polynomials, and, on the other hand, the sinusoidal
transforms of Jain [15]. These latter are the eigenvector frames of a parameterized family of
b Jacobi-like matrices of the form

’ (1 - k| ~a — ksa ]
o | —_
J (kl' kz, k3) <
- | -a
k30 —_— -Q ! - kza

These sources should be consulted for pertinent details. We are now going to turn our attention
in a different direction, to a consideration of unitary transforms arising from . group-theoretic
setting.
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lI1.2 GROUP ALGEBRAS AND REPRESENTATIONS

-

Having attempted to motivate the use of unitary operators in various data processing
algorithms, we now specialize to the case where these operators are the group transforms of
various finite groups. In this section we will quickly review the relevant group theory background
and then look at the structure of group transforms in the next section.

Recall that we are dealing with data presented as random element of an N-dimensional
Hilbert space Y. In the previous section we pointed out the connection between unitary operators
on Y and frames in Y; in particular, a unitary map from Y onto CN gives the (spectral)
coordinate vector associated with a particular frame B in Y. This association effectively realizes Y
as the discrete sequence space 22(B). Now the key idea underlying the rest of this report is the
frame B may have some additional structure — for instance, it might be a group.

Here are two simple examples when N = 4. First of all, there are only two distinct
(nonisomorphic) groups of order 4: the cyclic group C4 and the Klein 4-group D,. Both are
abelian; indeed, any group of order p or p2, p a prime, is necessarily abelian. Assume that
Y = C4 and consider the frame B, = {ul, uy, Us, u4}, where

(] 1] 1] T ]

- 1 - w - w2 - wi
Uy = o W F v W= v W s

l w2 wd wb

3 6 9

|1 | W Rl | W

and w = exp(2mi/N) = i, here. Under the operation of componentwise multliplication, this frame is
easily seen to be a group isomorphic to C,4. Similarly, the frame By = vy, v5, v3, v4 defined by
[ 1] 1] [ 1] [ 1]
v = 1 Vs -1 L vys l s -1

| | -1 -1

Ll_ L—l_ _—l_ _l_

is again a group under componentwise multiplication, this time isomorphic to D.

Now, while these ‘group-frames’ may seem more or less natural, we can, in fact, realize any
group of order N as a frame in Y. Namely, let G be such a group and let its Haar measure mg
be normalized so that mg(G) = I; that is, mg(g) = I/N for each geG. Then the space L2(G) is
N-dimensional and hence congruent with Y. It contains the frame {\/_ﬁeg:geG} where ¢, is the
indicator function of { g} The image of this frame in Y under any congruence T is again a
frame, and it is claimed that this frame can be given a group structure under which it is
isomorphic to G. This claim easily follows from the facts that the space L2(G) is an algebra
under convolution as multiplication, and that the product egep = egup for g, heG. Then the group
structure on the frame {\/_Neg } is carried over to its image frame in Y so that T becomes an
isomorphism.
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The upshot of these observations is that it is possible to model the data as a random
element of rather specia! Hilbert spaces of the form L2%(G), where the order of G is the
blocklength of the data. As was noted back in Section 1.2, while Hilbert spaces of the same
dimension are abstractly equivalent, they individually possess widely different realizations as sets
of functions or operators. In the present case spaces L2(G) have a very rich structure, going far
beyond that permitted by the usual Hilbert space axioms. This structure can be revealed by
several different approaches: group representations, harmonic analysis, and Banach algebras, to
name three. These theories are, of course, very powerful and extensive, and serve to similarly
describe the structure of L2(G) for general compact topological groups G, and many others
additionally. In this section we will just review those structural aspects that seem relevant to data
processing applications.

First, as earlier noted, L%(G) is an algebra under convolution multiplication:

1
f*h@= 5 X fi @) M
heG
Thus, since G is finite, L2(G) is set-theoretically identical with the so-called ‘group algebra’ of G.
When G is not of finite order, that term is more commonly applied to the space L!(G). There is
also an involution f—f* defined by

f(g) = f(gT)

These operations are tied iogether with the inner product
— l rarmy
<f, > [ fifpdmy= N 2 f1(8) f(®)
G

by the formula
<f| * fz, f3> = <f2, f*l * f3> . 1113

Thus L(G) is at the same time a Banach algebra and a Hilbert space. Such spaces, with property
(111.13), are called H*-algebras; their structure has been described by Ambrose [16] and recounted
by Loomis [17]). The basic fact is that such a space is uniquely expressible as an orthogonal
direct sum of its minimal (closed) two-sided ideals, each of which is isomorphic to a full matrix
algebra.

Since we are ultimately interested in using the group (Fourier) transform, it is more natural
here to introduce (unitary) representations of G as the key technical tool for the study of L3(G).
The representation theory of finite groups, due originally to Frobenius, and developed by Schur,
Burnside, Weyl, and many others, is purely algebraic and is described in detail in many sources;
for instance, the books of Keown [18] and Serre [19]. It has also been generalized, largely intact,
to the case of compact groups, where analytic techniques predominate and harmonic analysis
(generalized Fourier series) is often the focus. This material, originating with the Peter-Weyl
theorem in 1927 (briefly outlined in Section 1.2) is availabie in, for example, the books of
Edwards [20] and Naimark-Stern [21], and in the Hewitt-Ross treatise [22).
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We now review (rapidly) just those aspects of representation theory necessary to reveal the
proper setting for the group (Fourier) transform ana the structure of the group algebra. In
general, a representation of a group G is a strongly continuous homomorphism T from G into
the group of invertible operators on some complex topological vector space V. Since our major
interest is in the case where G is finite, the continuity of T is trivial and without essential loss we
may take dim(V)<eo, If (.,.) is an arbitrarily assigned inner product on V, the formula

<u,v>= [ (T(g), T(g) dmg(g)
G

defines a new inner product on V in which the T(g) are unitary operators. So we may restrict
attention to unitary representations of G.

A representatior. T is irreducible if there is no nontrivial subspace of V that i1s invariant
under all the operators T(g), g¢G. An easy induction shows that every representation is
completely reducible, in the sense of being a direct sum of irreducible representations. Thus these
latter are the building blocks of the general theory, although finding a complete list of them for a
given group may be very difficult.

Some operator criteria for irreducibility of unitary representations are the following: since a
subspace of V is invariant under {T(g): geG} exactly when its orthogonal projection commutes
with each T(g), it follows that T is irreducible if and only if the commutant of T(g)} consists
only of scalar operators (Schur’s lemma). Similarly, one can show that the algebra span
{T(g):geG is the space L(V) of all operators on V exactly when T is irreducible (Burnside's
theorem).

Every irreducible representation of G is finite dimensional. (Proofs of this fundamental fact
for general compact groups are often based on the eigenstructure of a compact hermitian
operator, but it can be made to follow only from Schur’s lemma [23].) Of these, the simplest
examples occur when dim V = 1. In this case we effectively are looking at homomorphisms of G
into the circle group T and we have already referred to such mappings as characters. When G is
abelian it turns out that the characters form a group I' under natural operations and that G is
canonically isomorphic to the dual of I'; this is an instance of the Pontryagin duality theorem
which in fact remains valid for general lca groups. In this abelian case it is further true that all
irreducible representations are one-dimensional, hence characters of G. Finally, it can be verified
that the characters constitute a frame in the group algebra L%(G); hence G and T are of the same
order. The group I' is called the dual group of G and one of the tasks of the nonabelian theory
is to find a suitable subsuitute for it that continues to shed light on the structure of G and its
group algebra,

Two representations T:G—L(V) and S:G—L(W) are equivalen: 1f there is an isomorphism
A:V—W such that A'T(g) = S(g) A, ge¢G. By this notion, inessentially different representations are
collected together in equivalence classes. If, as we assume, V and W are finite dimensional
Hilbert spaces and S, T are equivalent unitary representations, then S and T are actually
unitarily equivalent; the proof utilizes the polar decomposition of the isomorphism A,
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One way to distinguish between equivalence classes of (unitary) representations is by an
extended notion of character. Namely, if T:G—L(V) is any representation of G, define its
character xt by

x1(g) = tfT(gh] . (111.14)
One easily checks that
xt(e) = dim(V), xt(g!) = x1(g) ) (11L.15)

for T unitary, and that characters of equivalent representations coincide. Conversely, by
decomposing a given representation into a direct sum of irreducible representations, one can
show that two representations with the same character are equivalent. Thus, a representation is
‘characterized’, up to equivalence, by its character.

By calculations based on Schur’s lemma one shows that the characters associated with
inequivalent irreducible representations form an orthonormal set in L2(G). Actually, the norm of
the character associated with any representation is always at least one, and equals one exactly in
the irreducible case.

Now as a replacement for the dual group, we define the unitary dual object I" to be the set
of equivalence classes of irreducible unitary representations of G. From the foregoing remarks we
could equally well take I" to be the set of associated characters — the ‘irreducible characters. By
the orthonormality property this set, denoted {x,. .., x,}, is part of a frame in L%G), so that
r < ord(G). In fact, more is known: if we denote by d; the dimension of the space of any
representation associated with x;, then we have the Burnside formula

ord(G)=dd+...+d2 . (111.16)

Also, each integer d; divides the order of G and also the index of the center of G in G. This last
remark is usetul provided that the center of G is nontrivial; this is the case for instance, if G is a
p-group, that is, ord(G) is a power of some prime p. The center then contains at least p elements.

Moving back now to the group algebra L%(G), its center consists of the so-called class
functions f defined by the condition

f(hgh'!) = f(g), g, heG.

These are just the functions on G that are constant on each of the conjugacy classes of G.
Examples are the characters of any representation of G. It turns out that the irreducible
characters of G span, and hence constitute a frame for, this space ‘f class functions. Hence the
cardinality r of G is also the number of conjugacy classes of G. The rxr matrix whose (1, )) entry
is the value of the ith irreducible character on the jth class of G 1s often called the character
table of G.

The orthonormality of the irreducible characters in L*(G) serves another purpose. It was
earlier noted that any representation T of G is a direct sum of irreducibles. Using the characters
of all these representations we can write an exphcit formula tor this, namely
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r
. T2 S <xpoxr >N (111.17)
=1

where each T, is a representative from an equivalence class in T

Before moving on to the structure of the group algebra we offer a few comments to draw
together some loose ends. We have noted that the characters of one-dimensional unitary
representions coincide with the characters introduced previously as homomorphisms of G into the
circle group. These latter may be called group characters and we know they form an abelian
group I'. When G is abelian I' determines G by duality. Otherwise, there are complications. The
commutator subgroup G’ of G is nontrivial. The abeiian quotient group G/G’ has the same dual
group as G. Hence the group characters only help us understand the commutative structure of G.
When G is nonabelian there is at least one irreducible (unitary) representation of G on a space of
dimension > 1. Further, there may be no nontrivial group characters at all; this would be the
case, for instance, if G has no nontrivial normal subgroups (G is then said to be simple). In any
event, when G is not abelian the dual object, also denoted I above, does not have a natural
group structure and does not generally determine G {22, p. 57]. A successful substitute for [' was
introduced by Tannaka in 1939 for general compact groups and later axiomaiized by Krein
(1949) and Kelley (1963). This is the space T spanned by the coordinate or representative
functions on G, that is, functions of the form f(g) = <T(g-!)u, v>, as T runs through the classes
in " (also called trigonometric polynomials). A certain set of linear functionals on T turns out
to admit a group structure under which it is compact and naturally isomorphic with G [22,

Sec. 30].

As a brief aside we remark that a very active topic of research in the period 1959-1974 was
the development of a general duality theory for noncompact and nonabelian locally compact
groups. Countributions to this area were made by W. Stinespring, P. Eymard, J. Ernest, K. Saito,
N. Tatsuuma, M. Takesaki, C. Akemann, and M. Walter, in rough ch-onological order. All this
work makes substantial use of the theory of operator algebras and related functional analysis,
and attempts to characterize a given locally compact group G in terms of a related space of
functions on G or operators on L*(G). Thus the thrust here is in a different direction from much
of the earlier work on locally compact groups which was concerned with decomposition of
specific unitary representations, generally of infinite dimension, of such a group.

The structure of the group algebra L}(G) is a consequence of properties of the set
X1s - -+ X, of irreducible characters of G. As elements of LX(G) these characters are hermitian
{X,* = x,) and obey the orthogonality relations
X * Xy~ ‘SU d.l X,

Hence the (two-sided) principal ideals J, generated by the x, are orthogonal subspaces of L3(G);
for this, the formula

<f, h> = ** h(e)

is helpful. The set {J,. e .Jr} of these ideals is exactly the set of minimal two-sided ideals in
L*(G) and we have the decomposition
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LAG)=J +...+ ], (11L.18)

with corresponding orthogonal projection P:L%(G)—J; given by

P(H=1*d; x, . (111.19)
This ideal can also be defined as consisting of all functions on G of the form
fa® = ufA- Tl . (111.20)

where A 1s an arbitrary operator on the space V, of the irreducible representation T. If eV is
a frame in V, then a frame for the ideal J, is {fmn(')g, where

fﬁxl])n(g) = \/a:<'ri(g-l) . er(1|1)‘7 e(nl)>. (111.21)

The correspondence f5—A defined by Equation (111.20) above sets up an isomorphism
between J, and the full operator algebra L(V,), i=1,...,r. An essentially inverse isomorphism
may be achieved by expanding feJ, in the frame elements fy,,("),

f= z c® § ,

mn mn

and making the d;xd, matrix [cf,")n] correspond to f. Under the first correspondence, the central
character x, in J; maps into the identity of L(V;), hence x; serves as the identity of J;.

All these results generalize more or less directly to the case where G is a separable compact
group. Expansion of an arbitrary feL%(G) in all the frame bases (I111.21) as T, runs through a
(countable) complete set of irreducible (finite dimensional) unitary representations of G yields the
group Fourier series for f. Such an expansion reduces to the classical Fourier expansion of a
periodic function when G is the circle group.

We'll close this section with a comment about the regular representation(s) of a group G. Its
decomposition into irreducible components contains the essence of harmonic analysis on groups,
and provides much motivation for the foregoing results. The right regular representation of G on
L%(G) is defined by

R(g,) f(g) = f(gg,)

There is also a left regular representation which is unitarily equivalent to R. These unitary
representations are natural extension of the translation group {Tg:geG} discussed in Section [L.3
for Ica groups G.

A subspace M of LXG) is invariant if R(g)M C M, geG, and a general goal of harmonic
analysis is to decompose L% G) into a direct sum of such subspaces. In this context, if we fix an
index 1, | < i<, and consider functions f5 as defined by Equation (111.20), we see that

R@) fa=frga - 8G .
so that the ideals J, in the decomposition (I11.19) are invariant.

In another approach to harmonic analysis one can begin with the representation R and
attempt to decompose it into a sum of irreducible representations of finite dimension. We know
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this is possible for groups of finite order, and in fact, it continues to be true for all compact
groups. But in general, a locally compact group need not have any nontrivial finite dimensional
unitary representations, irreducible or not (certain connected semisimple Lie groups, for example).
Actually, in our elementary situation it follows from Equation (II1.17) that every irreducible
representation occurs in the regular representation with a multiplicity equal to its dimension. This
too continues valid when G is compact. In the general locally compact case, whether or not a
particular irreducible unitary representation occurs in the regular representation depends on
further assumptions about the group. If, for example, there is a Plancherel measure on I', (as
there is when G is unimodular and type ), then points in its support are exactly those contained
in the regular representation.

When G is finite, as we are assuming in this chapter, there is a natural isomorphism between
the group algebra and the commutant of the regular representation. This is the map that assigns
to each feL2(G) the operator of convolution with f. Now the communtant of any finite
dimensional representation is a direct sum of full matrix algebras (Schur’s lemma again), so in
this fashion it is possible to derive anew the basic decomposition (111.18) of the group algebra.

II1.3 GROUP TRANSFORMS

The importance of Fourier methods in signal processing was briefly recalled and emphasized
in Section L.2, and the Fourier transforms were defined in Equation (1.1) and (1.2). At an
abstract level, which we will not stress, one can think of the Fourier transform together with an
accompanying Plancherel theorem as an explicit solution to the general problem of decomposing
the regular representation into irreducible components. The search for such a formula for various
noncompact and nonabelian groups has been a major theme of group representation theory.
However, reviewing this is not germane to the present discussion. We will continue to look at the
case of finite groups, where all such existence questions are trivial, and to view the Fourier
transforms as simply a particular kind of unitary transform with interesting properties and
structure, and possible relevance to discrete data processing.

We can ease into the definition of the Fourier transform through the idea of extending a
given group representation to the group algebra. Let G be a compact group and T:G—L(V) a
finite dimensional representation. For feL!(G) we define

T = { fg) T(g) dmg(e) - (111.22)
G

This extends T to ".e a continuous representation of the algebra LY(G) by operators on V:
NTON < Bt
T(f*h) = T(f) - T(h) . (111.23)

if B is a bound on {HT(g)ll:geG%. When V 1s a Hilbert space and the representation is unitary,
then

T(f*) = T(H)*
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and the extended T is a *-representation of the algebra LI(G). Since G is compact and of Haar
measure one, LX(G) C LI(G) via [|f]l; < ||fl|;. so that T 1s also a norm-decreasing
*-representation of L2(G). When G is finite, of order N, Equation (111.22) simply defines ‘™ by
linearity:

!
=3 S fig) Te) . (111.24)
2eG

Three brief comments about this construction are appropriate. First, it is reversible, so that
we in fact have a one to one correspendence between unitary representations of G and nontrivial
*-representations of L!(G). Second, the extended T has the same commutant as the group
representation; hence if one is irreducible, so is the other. Third, using the invariance of Haar
measure, one easily verifies that

T[R(gx)f] = TOT(R)* (111.25)

where R is the (right) regular representation of G. Hence from this formula and the earlier
Equation (II1.23) we see that these *-representations of L%(G) send convolution products and
tranlations into certain operator products. These are, of course, generalizations of familiar
valuable properties of Fourier transforms, which we next define.

From uow on we restrict attention to finite groups G, denoting ord(G) by N and the unitary
dual object of G by I'. We let T;:G—L(V;) be a rzpresentative of the ith class of I, with
dim(V;) = d;, i <i< r<N. Recall the r = N only for abelian groups. Each T, extends to L2(G) by
formula (111.24) and we let T be the product map

r
T=(Ty,..., T): LG~ IT L(vy) . (11L.26)
=1
It is a consequence of the structure theory for L*(G) recounted in the previous section that each

T, defines, by restriction, an isomorphism between J; in Equation (111.18) and L(V,). Indeed. T, is
surjective by Burnside's theorem, and injective by the formula

f*x, =tr [T(H- T,()*] (111.27)
recall from Equation (111.19) that the left side above is dl"f if feJ,. This last fact implies that
T(xp) = 4! 1,

where [, is the identity operator on V.. Now we can see that the inverse of T, on L(V ) 1s defined
by

T (Ay=d, £y, (111.28)
where {5 was defined by Equation (111.20). It suffices to check this for A = 1,80) 8,6G:
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= I; Ti(go) = Ti(go)
From Equation (111.28) in turn we see that
T (A,...,Ap)=f
where
P(f) = d; fa, ISis<r

This yields a complete analysis and synthesis of an arbitary function feL%(G):

r
fig)= 3, d; tlT(gh): Ty(N] (111.29)
1=1

The group (Fourier) transform is the mapping T defined by Equation (I11.24) and (111.26), with
inverse transform defined by Equaticn (I11.29) above. We will hereafter refer to T as simply the
group transform, denoted Fg(f), sometimes f = F(f), to emphasize its dependence on the
group G.

We conclude the first half of this section with several comments about this definition, along
with one more key property (the Plancherel theorem); then we'll look at some examples and
discuss the complexity issue.

First, because we are limited to finite groups, there are no convergence or integrability issues
and the inversion formula (111.29) is always valid. Second, the definitions of convolution,
representation and extended *-representation, character of a representation, and choice of Haar
measure on the group must all be carefully and consistently chosen to make the various
important properties of the group transform work out, especially those describing the transform
of convolutions (I111.23) and translations (111.25), and inversion (111.29). Other definitions appear
in the literature: our {*h may be another author’s h*f or (1, N) f*h, our character another's
conjugate character, etc. All of these are equally valid, as long as they are consistently followed.
We also might recognize that there is a certain nonuniqueness in our definition of the group
transform, in that it depends on a specific choice of representation T, from each class in [,
However, this nonuniqueness is really inessential as bath the dimensions d, and cha.acters y, are
well defined, and hence so are the projections P, defiied by Equation (111.19), etc.
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At this point we should recall that our major theme of this chapter is the use of unitary
transforms for data processing. We now want to see that the group transform as just defined is
indeed unitary. This involves checking that its range has a Hilbert space structure, and that

Iy = 1fll,  felXG) . (111.30)

We do this by noting that the range of Fg is, according to the-definition of T in (I11.26), just the
direct product of the operator algebras L(V;),i=1,...,r. Since each V, is finite dimensional,
each of these algebras is actually an H*-algebra under the Hilbert-Schmidt inner product

[<A, B> = tr(AB*)]. Hence the product space is also an H*-algebra under the inner product

<(Ai, ey Ar), (Bi’ ey Br)> = <Al’ Bl>

r
=1

We will denote this product space L2(I'), since it can be also thought of as the space of all
functions on I" whose value at the ith class is an operator on V,. If a measure p on the discrete
space I' is defined by assigning the value d; to the ith class, then ¢ = (A, ..., A;) ¢ L) has
the norm

lbll2

AL, A2 dp
I

r
S ditr (AAY) . (11L31)

What we claim is that FG:LZ(G)—' L%(I) is unitary in that the relation (111.30) holds when ||'t}|| is
defined by (II1.31). Specifically, we have the Plancherel theorem for the finite group G:

r
<f,h>= Y d, ur [T T(h)*] (111.32)

for all f, heL¥(G). (By contrast, the formula obtained from Equation (111.29) by setting g = ¢
(group identity) is often called Plancherel's formula. It relates feL(G) to its scalar (not
operator!)-valued Fourier transform, thus assigning to { the scalar function on G whose value at
the ith class is <f, x>, | <1< r. Of course, tus transform is one-to-one only when G 1s
abelian.)

In essence, this tormula s just a reflection ot the orthogonal decomposition (111.18). If, for
example, we make use of the frames {f‘"“’n} in J, defined by Equation (I11.21), then

r d,
SOS i<t >

12l mn=1l

"

11113

r
Y oA [ X I<TD e, el >

=] m.n
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= 3 4 u [T TOF
=1

by definition of trace. By polarization, this is equivalent to Equation (111.32). Alternatively, one
can simply expand the right hand side of Equation (111.32). and employ the formula

dix;*+...+d, x,=N-id , (111.33)

where ‘id’ is the identity element of the group algebra, that is, the indicator function of the group
identity, This latter formula arises again from the decomposition (II1.18) and the projection
! formula (111.19) since, for any feL%(G),

—_
i

r r
Z P(f) = Z f*d; x,
i=1 =1

r
£* (3 dixp)
i=1

It also arises directly from the inversion formula (111.29) by the substitution f = id.

This completes the background development in Fourier analysis for finite groups. We note
that all these formulas generalize rather directly to general compact groups. There, as in
Equation (111.31), a Plancherel measure exists and assigns finite mass d; to each class ng} in I,
The Plancherel theorem for Ica groups and for certain locally compact nonabelian groups is
discussed in References [11] and [13], respectively, for Chapter I. This theorem, and the
accompanying inversion formula all specify quantitatively the way in which the irreducible
representations of a group G permit a harmonic analysis of square-integrable functions on G.

Before moving on to the complexity of the group transform and its data processing
applications, we digress briefly to the topic of positive definite functions. We will just consider
these on finite groups; although much (but not all) of what we say extends to general locally
compact groups. By definition, a complex-valued function ¢ on the group G is posirive-definute if
for all subsets g),...,8, of G, the matrix

(6, &']
is positive remidefinite. In particular, it follows that
| 6(g) < dle) =0
sg')=ole .
for all ge". If 1:G—L(V) is a unitary representation of G on a Hilbert space V, and veV, then
ol =< U(g)v, v>

defines a pi sitive- iefinite function of G and, in fact, all such functions arise in this way.
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Positive-definite functions are of interest for data processing because they occur as
autocorrelation functions in one of two ways. Suppose first that f|, f, are functions on G.
Their cross-correlation function is defined by

p120= [ Ti(e) H(gx) dmg(e)

1 J—
=X S, fi(e) fAgx)
g2¢G

for xeG. It is easy to check that
prax) =5 *f(x) ,  xeG
and hence that in the case f; = f,,
pyy = * 1), (111.34)

the autocorrelation function of f|. As elements of the group algebra, functions of this latter form
are called hermitian squares, and are positive-definite by virtue of

Pl'l(X) = <R(x) fl' fl> ,
where R is the right regular representation of G.

If the functions f), f; are thought of as sample functions of a stochastic process on G, the
autocorrelation and cross-correlation functions are essential components of Wiener's generalized
harmonic analysis, although this term is usually applied when G is the group of real numbers
(and then the definition of p| ; must be modified to account for the infinite Haar measure of G).

For the second example we proceed as in Section 11.2 and consider a stochastic process
3xg:geGi which is weakly stationary in that there is a unitary representation U of G on Ly%(P)
with x; = U(g) * X, 8¢G. The function

p(8) = E(x, X,)
then satisfies
E(xy, Xp) = p(h-lg) (111.35)

and may again be called an autocorrelation function. However, to distinguish between these two
cases we will refer to it as the covarance funciion of the process. Clearly

p(g) = <xg, Xe> = <U(R) X,y Xe> , (111.36)

so that p 1s a positive-definite function on G. This key property of p is easily established because
of the right choice of definition and the nontrivial characterization of positive deiinite functions
x.entioned above Finiteness of G is not at all needed for these results.

One other important example of positive-definite functions is the character x, as defined by
Equation (I11.14), of a finite dimensio..al unitary representation T of G. The proof follows from
the above characterization, again, and the fact that the positive-definite functions form a convex
cone in the group algebra. This cone, denoted PD(G), is also closed under conjugation,
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involution, and products (that the product of positive-definite functions is again positive-definite
is a nice application of Schur’s result that the Hadamard product of positive semidefinite
matrices is again positive semidefinite).

To see some other characterizations of positive-definite functions, let S(G) ={ hermitian
squares } = %f:f= h**h, hel2 (G)}, and M(G), [resp., M{(G)] = gfeLZ(G):left (resp., right)
multiplication by f is a positive semidefinite operator;. Then it is not difficult to show that

PD(G) = IS(G) = My(G) = M{(G),
where !S(G) means the dual cone of S(G), that is, IS = {f:<s, f>=0, seS%.‘
Now for finite groups it can be showan that actually
1S(G) = S(G)

in other words, that S(G) is a self-dual cone in the group algebra L%(G). This is a consequence of
the structure theory for L%(G) reviewed in Section II1.Z together with the analogous fact for the
H*-algebra L(V), V a finite dimensional Hilbert space [24].

Finally, we define a posirive function to be one with a positive Fourier transform. That is,
we set

P(G) = § £eL G T2 0]

this means that each operator T(f) is a positive semidefinite on the ith-representation space when
T, runs through I'. To complete our circle of characterizations of PD(G), we claim that

P(G) = M;(G)
This can be seen in various ways. For example, the Plancherel theorem (111.32) implies that

r
<f*h, h>= 3 d; <T{(D Ti(h), T(h)>

=1
for each f, heL%(G). Keeping in mind that the fact mentioned above that the positive semidefinite
operators on a finite dimensional Hilbert space form a self-dual cone, it follows from feP(G) that

<f*h, h> = 0 for all heL*(G) and so feM,(G). Conversely, it is clear from basic properties of the
group transform that S(G) C P(G), and we already know, for finite groups G, that M ,(G) = S(G).

The relation P(G) = S(G) can be considered as an analogue of the classical Fejer-Riesz
theorem about non-negative trigonometric polynomials, this being essentially equivalent to the
corresponding relation P(Z) = S(Z) for the integer group Z. However, not much more generality
is possible; for example, P(G) # S(G) when G = Z@ Z [24].

For signal processing applications the most important of the above characterizations is
PD(G) = P(G), showing that with each positive-definite function, in particular, with each
autocorrelation and covariance function, is associated ‘something positive’. In the more familiar
case where G 1s abelian, this ‘something’ is just a function on the dual group ' with non-negative
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real values. Guided by the more general case of lca groups it is more useful to think of this
function as a measure on I'. This brings us into conformity with the viewpoint of Section [L.2
where, via Bochner's theorem for lca groups, the covariance function was viewed as the Fourier
transform of a positive measure on the dual group. That measure was termed the spectral
measure of the underlying stochastic process. It is the measure or its derivative, the spectral
density function, that is the object of estimation procedures in the field of spectrum estimation.
This is not an area that we are going to discuss except to note that prior to the more modern
high resolution methods, a sampie function was used to make estimates. Either the
autocorrelaticn function was first estimated and then Fourier transformed to yield a spectrum
estimate (Blackman-Tukey approach), or else a DFT was applied directly to the data and then a
muliiple of its squarcd magnitude served as the estimate (periodogram approach). There are
many issues here that must be resolved before convergence of such estimates can be guaranteed,
and techniques of time-domain windowing or frequency-domain smoothing play a key r~le ]
[25, 26].

The dual relation between an autocorrelation or covariance function and its group transform
is called the Wiener-Khinchine relation, as already noted following Equation (I1.2). When the
underlying group is not abelian the resulting transform is a (positive semidefinite) operator-valued
function on the dual object I'. Much of the rest of this report deals with tentative data
processing applications of this general setup.

We first note a purely mathematical formula involving positive definite functions, and then
give it a statistical interpretation. Let ¢ ¢ PD(G). Then ¢ defines a positive linear functional ¢
on L3(G) by virtue of PD(G) = !S(G). That is, we have

o(f) = <f, o>
and
0 < B(f**) = <f**f, o>
=<f, f*¢> =<, [ R> (111.37)

where the operator R on the space of the Fourier transforms f'\[as given in Cquation (111.26)] has
components d,Ti(¢) in each L(V)), | <i<r. When G is abelian, each d, = | and this formula
reduces to the familiar statement that convolution with a positive definite function transtorms
into the opera.or on L3(I') of multiplication by a positive function.

Now let a data vector be given, and considered as a random element in L2(G). We ask:
when does the group transform Fg decorrelate this data? In other words, we ask: when is the
covarniance operator of F(data) a diagonal operator? Experience with classical transforms already
warns us that this is a rather restrictive condition. For exawple, as is well known, the ordinary
DFT (to be ‘officially’ defined in the next section) decorrelates a data vector if and only if the
covariance matrix is a circulant. That result follows from the expression of a circulant as a
polynomual in the shift (mod N) operator on L2(CN).
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In the general case, let the data be a realization of the weakly stationary process {xg:geG§
with covariance function p as defined in Equation (111.35), and E(xg) =0, geG. Then the
covariance operator on L%(G) is (essentially) the operator of right convolution with p. That is. for
feL2(G) interpreted as a linear functional of the data,

var(f) = E(|<x,, £>|2)
= N2 <f, f*p> . (111.38)

Here, N = ord(G) as usual, and its appearance is due to the basic definition of convolution and
choice of Haar measure on G. Also note, notationally, that the inner products in Equation (111.38)
refer to L2(G) and not to a space of random variables, as in Equation (I1.1) or (111.36).

Equation (111.38) gives the statistical interpretation of Equation (111.37), and {rom the latter we
also see the form of the diagonal operator R which serves as the covariance operator of the
transformed data gxg: geG}. Namely, each component of R in the decomposition of

Equation (111.26) has the form d;T;(p), and each of these is a positive semidefinite operator on
L(V)), i=1,... 1. There is therefore an eigenvector frame e(;j=1,...,d; in each V;

for the operators T (p) and hence the operator R:A—~Ap is diagonal wrt the frame

{ej“) @ e, k=1, di iz ..l

Once again, in the more familiar abelian case, there is a particuiarly nice version of
Equation (111.38). Namely, in terms of the spectral measure u on I,

var(f) = [ |F]2du
r

What has just been shown is that the group transform Fg decorrelates any weakly stationary
data gxg:geG} in the sense that the covariance operator of %Fo(xg)} is a diagonal operator. This
argument can be run backwards: if the transformed data has a diagonai covariance, then the
original covariance C, is right convolution with a positive-definite function p by our general
theory. That is

<C., b>=<a%p, b>

for a, beL%(G). Expanding both sides, we have
<Cya, b> = E(<xg, a> <xy, b>)

= 3 Jagby E(xyxp)
g h

and

l —
<a*p,b>=—7 S doelg'hyag b,
g h

showing that
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l
- = -1
E(xg Xp) Nz p(ht g) |

and hence that gxg:geGs is weakly stationary.

Ancther way to phrase this conclusion is that the covariance operator of the data should be
a G-circulant, that is, diagonal in the frame-basis for L(G) defined by the group transform.
When G is abelian this amounts to saying that this operator should be diagonal in the character
basis for L%(G). This specializes to the classical case when G is cyclic and the group transform is
the ordinary DFT: the latter will decorrelate a random vector if and only if the covariance
matrix is a circulant.




II.4 TRANSFORM COMPLEXITY

Let’s summarize where we stand in this survey of the use of finite groups for discrete data
processing. In Section IIl.1 we discussed the general rationale of taking unitary transforms of a
data vecto.. Then we noted that such a vector could be realized as an element of the group
algebra o1 groups whose order coincided with the data blocklength. This permitted us to bring to
bear the general structure theory of discrete group algebras and, in particular, to define the
associated group transform as a unitary operator. It is this type of operator that will be our
focus for the remainder of this report; however, in keeping with its general level we will continue,
for the most part, to avoid great detail in specific examples. That is more properly deferred to a
more narrow and specialized study.

In earlier sections we have occasionally made reference to the notion of a ‘fast’ unitary
transform (FUT) without attempting a definition. The general subject of fast transforms has been
vigorously developed since 1965, when the Cooley-Tukey FFT algorithm appeared [27]; a fairly
current view of the state of the art is given in the book [28]. Here we will just recognize two
rather general approaches to the problem, which is, in essence, simply the efficient computation
of the matrix-vector product Ux, where x may be of rather large dimension (e.g., several hundred
or thousand). One is by a somewhat ad hoc collection of rules for manipulating the rows and
columns of a unitary matrix, so as to preserve its unitary nature, and for building new larger
unitary matrices from sets of smaller ones by recursive application of the Kronecker product
operation. This methodology is described by Fino and Algazi [47]. The second approach is
through the use of group theory (naturally restricted to group transforms!) and is sketched out
next.

So, our problem is the computational complexity of the group transform operation
f= Fg()

where feL2(G), and G is some group of order N. Let’s see what's involved if we just proceed
from the definitions by brute force. We'll first consider the relatively more simple case where G is
abelian and then have a quick look at the general case.

Recall that when G is abelian the dual group I', also of order N, consists of N
independent characters x|, ..., xy, which form a frame in L%(G). In this case the group
transform is the unitary map from L3(G) to LX(T) defined, according to Equation (111.24), by

f(xk>=7\‘; S g xde . k=lL...N . (111.39)
" ogeG

If we employ as a conventional measure of computational complexity the number of (complex)
multiplications and additions, we see that the complexity of directly computing f from
Equation (111.39) 1s N2 multiplications and N(N - 1) additions (approximately, one of the XS 18
identically one, and we ignore the I, N factor). So we may say that Fg 1s a ‘fast transform’ if
there 15 @ numerical procedure for carrying out the computations in Equauon (111.39) that
requires ‘significantly’ fewer than O(N2) multiplications and additions. This defimtion is
necessarily a little imprecise: some algorithms may be faster than others.
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Now the key point is that whether or not a given group has a faét transform and, if so, how
fast it is [relative to the O(N2) benchmark], depends on the subgroup structure of the group.
Suppose that G is both abelian and decomposable, that 1s,

G=GXG, (I11.40)
for a pair of subgroups G, and G,, of orders r and t, respectively. Then st = N and
F=r XTI (111.41)

where ‘=’ means ‘isomorphic to’. This isomorphism is accomplished by x — (¢, ¥),
x(8) = x[(g;, 82)] = &(g,) - ¥(gy), for pel'|, wel'y. Hence we can rewrite the sum in
Equation (II1.39) as

N = 3 fg) x(g)

geG
= 3 3 fle Gllee) wig)
32602 gléGl

and observe that the right hand side can be evaluated with a total of s - 1 +t - I complex
multiplications and additions.

If one of the subgroups G|, G, is itself decomposable, then the above process can be
repeated. We conclude that if the abelian group G of order N factors as

G=GX...XG,

with ord(G;) = N;, then Fg(f) can be computed in about

n
N3 (N -1

=1

complex multiplications and additions. in the important special case when all the groups G, are
isomorphic and of order p, the operations count above reduces to

(p-1) N log, N

This value is particularly familiar when p = 2, and motivates the practical interest in working with
data defined over groups whose order is a power of 2. In this context note that the optmization
problem

min {x|+...+x": Xp... % =N, x,?()}
is solved when all the x, = 0/N.

Before looking at some examples and cases where the group does not factor, we should first
note that quite analogous reasuning establishes a similar reduction in complexity for the group
transform over certain nonabelian groups. The basic assumption, once again, is the
decomposabuility of the given group. Thus, as before, assume that G 1s of order N and that
Equation (111.40) holds, with G, and G, of orders N; and N,. Let ;T,, Ce Tr; be a choice of
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irreducible representations from the classes of I'. A fast algorithm for F depends on the proper
generalization of Equation (I11.41). This is achieved through use of the tensor product notion via
the correspondence T~R® S, where R, S are irreducible representations of G|, G,. on Hilbert

spaces U, V, respectively. This means that if g = (g, g5) ¢ G, T(g) is that operator on U ® \'%

whose value at u@v is R(g|)u ® S(gy)v.

Now the ‘brute force’ complexity of F; can be obtained from the definition (I11.24) with
T=T,,..., T, successively, and Burnside’s formula (I11.16). We find a total of Nd;? - d, + |
multiplications and (N - l)d,2 additions for each i, | <i<r, and therefore a total of N2~ 3d, +r
multiplications, and N(N - 1) additions; hence, just as in the abelian case, O(N2) operations in all.
These counts are obtained by treating each T,(g) as a d; X d; matrix.

To get a fast algorithm for Fg we fix i, I<i<r, and write

NTih= X 3 [te. e Re)]®S@E) . (111.42)
82‘.02 g,eGl

in accord with the correspondence indicated above between irreducible representation of G and
those of G, and G,. The Hilbert spaces on which the operators R(g;) and S(g,) act are denoted
U, V, respectively, with dimensions d, and d,. We have X dzu =N and X dzv= N, where the
sums are extended over G| and G,; also d,d, = d;, the dimension of T;. Now we work through
the arithmetic in Equation (111.42), beginning with the inner sum. From the preceding paragraph
we note N,d,2 - d, multiplications and (N, - 1) - d,2 additions. Then to do the tensor product
requires a further Nod,2d,2 multiplications and (N, - 1)d,2d,2 additions (working with matrix
forms of the operators, where the tensor product goes over to a Kronecker product). Finally, we
have to repeat this for all possible choices of R, S as we move through I'; and I';. Doing so
over the ‘R’s first results in at most N,Nd,2 + N2 multiplications; then counting all the S terms
yields a final total of at most NyN Ny + N,N;2 = N(N; + N,) multiplications, to which we could
add r < N more because of the factor on the left side of Equation (111.42). Similarly we find a
total of N(N; + N, - 2) additions.

Thus the complexity of the group transform for general groups is about the same as for
abelian groups of the same order. So, if the group factors into 1 product of more than two
subgroups we can proceed just as before, down to the best result of O(N log, N) operations, if
the group permits that much factorization.

At tnis point the question of fast inverse transforms naturally arises. In the case of abelian
groups it is clear, by duality, that the inverse transform is of the same complexity as the direct
transform. That is, any factorization ot G results in an analogous factorization of the dual group
[, as indicated vy Equation (I11.41). The corresponding result for nonabelian groups is not so
obvious, as the inverse transform (111.29) 1s not of the same form as the direct transform.
Nevertheless, it has been shown [29] that the complexity, as we are measuring it, is the same for
the inverse transform in the nonabelian case too.

From now on we have to be more specific to deal further with fast transforms. In
considering a particular transform on some group G, we have to first see if G 1s decomposable in
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the sense that a factorization of the form (111.40) is possible and, if not, whether some other
procedure can be effective. All of this circle of questions pertains to the subgroups structure of

particular groups, and a successful resolution will require various additional assumptions about
G.

Let’s begin by stressing the role of cyclic groups. The cyclic group Cy of order N is
abstractly defined by a single generator a and relation a™ =e. It is realized in various concrete
ways as, for example,

(a) the subgroup of the circle group consisting of the Nth roots of unity;
(b) the quotient group Z/NZ, where Z is the integer group;
(c) the integers 0, 1,...,N -1 with addition mod N.

These are the most elementary examples of abelian groups, yet even thess may well not be
decomposable. Indeed, if p is a prime then C, is a simple group, and Cpn is indecomposable (but
not simple if n 2 2). Hence, Cy is decomposable if N = mn with (m,n) = I.

We note an initial connection between representations and cyclic groups, realized as in
part (a) above. Namely, let G be a group of order N and T a finite dimensional representation.
Then for any geG,

1=Te)=T(gN) = TN

showing that the spectrum of T(g) is contained in Cy. In particular, if G is abelian then all
characters on G assume values in Cy.

The cyclic groups are important in our subject primarilv because those of prime power order
are the building blocks of the general abelian group. In fact, the Fundamental Theorem for
Abelian Groups permits us to describe all abelian groups of a given order. We recall the two-part
statement, given an abelian group G of order N: first, if N=pf! ... pn is the prime
factorization of N, then G=G, x...x G, where G, is the subgroup of elements of order p;!,

t < o;; the order of 5; is p;"!, and this decomposition into subgroups of prime power order is
unique. These subgroups G, are called the Sylow subgroups of G. Second, each such ‘p-group’ is
isomorphic to a product of cyclic p-groups. In fact, if H is any abelian group of order p™, p a
prime, then there is a unique list of integers {m,, cooampg, withmp 2. .. 2m, 2 1, called the
type of H, such that

H=Cym; x...x Cym,

This theorem is actuaily a special case of *.e cyclic decomposition of a finitely generated module
over a principal 1deal domain, e.g., [30, Chapter XV], but, of course, it can be established more
directly, e.g., {30, Chapter i}.

This theorem permits us to factor any finite abelian group into indecomposable (cyclic)
factors and therefore to describe all abelian groups of a given order. For example, the following
table (111-1) displays the distinct abelian groups of certain low orders in factored form, and also
indicates the total number of {nonisomorphic) groups of that order.
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TABLE IlI-1
Abelian Groups of Low Order
Order Abelian Groups Total Groups

4 Cy4. (Co)2 2

6 Cs 2

8 Cg, C4 X Cy, (Cy)3 5

9 Cg. (C3)? 2
10 C1o 2
12 Cq2, Cg X Cs 5
16 Cqg. Cg X Cp, C4q X C4, C4 X (Cg)2, (Co)? 14
24 Cg4. C1 X Cp, Cg X (C)2 15
32 C3p. C1g X Cy, . .., (C9)® 51
64 Cg4. C32 X Cp, . . ., (C9)® 267()
96 C32 X Cg, ... (C9)® X Cq 230

With these preliminaries aside, let’s now return to the subject of fast group transforms. We
see that if the underlying group is abelian, the issue has been reduced to the case where the
group is cyclic of prime power order. We know that such groups are indecomposable;
nevertheless, they still have lots of subgroups. In general, if G is abelian, and m divides ord(G),
then G has a subgroup of order m. This ails, however, for the simplest nonabelian groups. Now
if G is cyclic and m divides ord(G) then there is exactly one (necessarily cyclic) subgroup H of G
of order m and, in fact, this statement is characteristic of cyclic groups [31]. We can describe H
explicitly in terms of any generator g of G: H = {e, h, ..., hm'l} where h = gk, and mk = ord(G).
Clearly, when G is cyclic of order p®, the only possible values for m = ord(H) are m = pt, t< n.

The following result now settles the specification of a fast algorithm for any group transform
over a finite abelian group. Let G be abelian of order N and H a subgroup of order m and
index s, so that ms = N. Then the complexity of the group transform on G is essentially
O[N(m + s)]. To see this, we partition G into its cosets by H:

G=HUgHU...Ug_H ,
and then write, for each x ¢ I',

Nf= I fg) x@
2eG
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S f(h) x(g)+ 3 f(gih) x(gih) + ...

heH heH
= 3 [f(h) + f(g,h) x(8) + . . . *+ f(ge1h) x(g.)Ix(h) . (111.43)
heH

From this expansion it is clear that the inner parenthesis involves (s - 1) multiplications and
additions. Then we see (m - 1) more multiplications to accommodate the factors x(h) (keeping in
mind that x(e) = 1), and finally (m - 1) further additions. Repeating this for all N characters in G
results in N(m + s - 2) multiplications and additions, as stated. Not surprisingly, this is the same
figure ac reported previously for decomposable groups. Naturally, this procedure can be repeated
if H has a proper subgroup.

The preceding algorithm is basically the Cooley-Tukey method [27], designed originally for
the ordinary DFT (about which more momentarily). Its extension to the abelian group context is
due to Cairns [32], a few years later. During the following decade there was extensive
development of fast algorithms for the DFT and other discrete transforms, based on number
theory and matrix representations. So the method we have displayed, while providing a cute
application of elementary group theory, and while of both historical and practical significance, is
not the last theoretical word in computational efficiency. We have in mind especially the work of
Winograd [33] and Nussbaumer/Quandalle [34], which is aimed at further reduction of the
number of multiplications required to compute the DFT. Chapter S of [28] is a good general
reference, while Reference [29] of Chapter 11 discusses the Winograd algorithm from an advanced
standpoint. In the author’s opinion, these fancier methods have not had a2 major impact in the
day-to-day practice of computing large DFTs.

Looking in the other (chronological) direction we can note that the Cooley-Tukey procedure
was not completely original or unprecedented. That their paper {27] had such an impact on
digital signal processing was a matter of fortunate timing, reflecting both increasing appreciation
of the uses of discrete Fourier and spectral analysis (physical chemistry, seismology, econometrics,
etc.), and also increasing computing power. The historical record of the classical FFT includes
the names of . Good (1958), G. Danielson-C. Lanczos (1942), C. Runge (1903}, and probably, it
is fair to say, Buys-Ballot (1847). Some of this historical perspective is given in [35].

Having now referred to the classical DFT several times, beginning in Section II.1 and most
recently just above, let us place this most prominent of discrete linear transforms into our group
context. This is quite easy and, appropriately, it is associated with the most prominent of abelian
groups: the cyclic group. Suprcse we start with an arbitrary finite cyclic group Cy with
generator a. Being abelian its irreducible unitary representations are all one-dimensional and
coincide with its group characters. These comprise the dual group: Cy = {x,, ..., XN}. Let

wx = expr-2mi/ N)
Then the formula

Xm@)=wk™ - k=0,1,..,N-1
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defines a character x, for each m=1,..., N, It is easy to see that these characters are distinct
from each other so that by the general theory we have all of them.

Now if f=(fy,. .., fy.|) is a function in L%(G), we apply the definition (111.24) of the group
transform to obtain

N-1

A l
fxm) =g 2 fx xm(@)
k=0

1
N 2 fkw§™ . om=L.N

The right hand side here is recognizable as the usual formula for the DFT (e.g., [28, Chapter 3]).
We have thus shown the ordinary DFT to be the group transform associated with a cyclic group
of appropriate order. The standard properties of the DFT, its inverse, and the FFT now follow
routinely from our more general group theoretic developments. Further, these developments also
imply that the group transform on any finite abelian group is just a multidimensional DFT.
Explicitly, given such a group G, we factor it as

G=Cy X...XCy,

where each N; is some prime power and each CNi has generator a,. The dual group I' then
factors similarly:

r=CyXx...xCy,

and each character on G is a product of characters on the associated cyclic groups. Hence the
group transform on G has the form

f0 = lixs -+ v X9

!
N T
k
| k|m| ksms )
= = fy exp|2mi +.o..+ '
N % k [ (N, N,
where the summation index k = (ky, ..., k), each k, runs from 0 to N, - I, and the indices

(my, ..., mg) inde=x the characters xel, with | <m, <N,

In a slightly different direction, let’s consider an integer N of the form N = pf, p a prime.
Let G be the corresponding group

G= (Cp)", (111.44)

the product of n copies of Cp. We'll call such a group a p-adic group; in particular, a dvadic
group when p = 2. Groups of this special structure are of frequent occurrence in appiied

73




mathematics. For example, they are exactly the possible additive groups of finite (Galois) fields,
and hence are involved in treatmerts of algebraic coding theory. However, we shall refrain from
such an excursion, and stick to signal theory here.

Suppose we realize Cp now as the set of integers ;0, lL,...,p- l}. We can map G in a
one-to-one manner onto the set Sy = {O, l,...,N-i}by the rule

n
x= 3 x p™i, (111.45)

i=1

where each x, This permits us to move back and forth between the group algebra L%G) and
vectors f=(fy, ..., fN.p) € CN considered as functions on Sn. Now, as before, any character in T’
can be factored into a product of n characters, each in C,. Hence each character xp, in I' defines
on Sy a function of the form

n
bm(X) .I=1| Xm, (X))

n
= w, 3 omx (111.46)

where the integers m; and x; are defined from m and x in Sy by the rule (I11L45).

We have thus defined a family {cbm:m =0,1,...,N- l} of functions on Sy, or,
equivalently, a subset of CN, which is seen to be a group-frame in CN. Such a frame may be
called a set of discrete Vilenkin-Chrestenson functions (cf. [36] and below). Two extreme cases
are of special interest: the case n = |, which is the DFT of prime order, and the case p = 2. This
latter case involves the dyadic group of order 27, Here W =Wy = -, and so @,(x) = =x1, for
every m and x. (Of course, !@(x)| =1 is true for all discrete V-C systems.) The frames By and
B, introduced at the beginning of Section I11.2 are the special cases of this construction when
N=4

The transform corresponding to the dyadic group case (p = 2) is usually referred to as the
Walsh-Hadmard transform (WHT) [28, Chapter 8]. In matrix terms it is defined by

A

f=Hn_| f y

where H | = % [umk): and

N
Uy = (<1) T
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with the integers m,, k,, i=1,.., 2", once more coming from the rule (111.44). Thus, for example.
1 1
Hl = y
1 -1

Hn = Hn-l ® Hl'

This completes our examples of specific group transforms over abelian groups. Readers may
consult the literature [1, 28, 36] for more details, many of which clearly follow, in unified
fashion, from our group theoretical approach. And, as we recall from the end of Section IIL.1,
there are many other unitary transforms which do not arise as group transforms.

and

Before leaving this topic we want to make a few final remarks. First, for any fixed N,
consider the set of abelian groups of order N, and the associated group algebras which we have
been using as sample spaces. Being N-dimensional these algebras are certainly equivalent as
Hilbert spaces. But, as a consequence of a result of Kellogg [37] about certain commutative
H*-algebras, they are actually isometrically *-isomorphic as H*-algebras. Therefore, the
associated group transforms, which preserve all this structure, are strongly equivalent as
representations of the algebras. Based on this observation, the structure theorem for finite abelian
groups, and the fast algoritl. 1s which ensue from this structure, there would seem to be little
basis for preferring one abelian group transform to another. Here is a specific instance of the
gene.al issue about data processing raised back in Section 1.2: why do we perform one operation
on data and not another?

The answer to this question must come from outside the mathematics; specifically, from the
nature of the underlying signal and from the goal of the processing. For instance, the goal may
be Wiener filtering or signal decorrelaticn. For filtering we refer to the next section. For
decorrelation the signal statistics and performance criterion must be specified. An example of the
latter might be

where r,2 is the quantity defined by Equation (111.10) and r,2 is the corresponding quantity for
the original untransformed covariance matrix. Such measures of transform efficiency can be
compared for varying group or other unitary transforms and data covariances. When the latter
are taken to be those associated with Markov-1 processes, for instance, it is found that the DFT
and WHT have similiar efficiencies for decorrelation (and also for signal coding), with a small
advantage to the WHT [1, Chapter 3].

There is also the matter of the nature of the underlying signal from which, viz sampling and
other preprocessing steps, we have obtained our N-dimensional data vector. Although it would
lead us too far afield to pursue this matter seriously, its importance requires us to at least
indicate the issues. It 1s tied up with the problem of asymptotics already discussed in
Section II1.1. Here we will, as usual, emphasize the group-theoretic aspects.

15




We presume that our data sample has arisen from observations on some stochastic process
indexed by an infinite group, such as the integers, the reals, etc. The covariance function of this
process naturally determines the covariance matrix of the data vector, and there is nothing new
to add to this aspect of the situation. Instead, what we want to think about is the nature of the
sample functions. As already noted in Section IL.3 there is little loss of generality in considering
these functions to belong to a (weighted) L2 space. There is then the question of an appropriate
orthonormal coordinate system (or frame, again). We expect there to be a relation between the
signal paths, a frame for the path space, and the finite frame which defines the unitary transform
applied to the data vector. In particular, as a group transform is associated with a group-frame,
we might ask about group-frames in the path space. This is really just the same issue as was
raised early in this chapter except that here it is being extended to an infinite dimensional
context. A complete theory will involve the suitability of the group-frame in signal space, which
is basically a matter of approximation theory, and the expression of the attached group as a limit
of finite groups — another kind of approximation. The suitability of a frame may also involve
the statistical behavior of its coordinates as this derives from the assumptions about the
underlying process.

As an example, suppose that this process is defined over a finite interval of the real line.
Extending it periodically, we can view it and its sample functions as defined on the circle group
T. Under its usual group structure T is compact abelian with dual group T isomorphic with the
integer group Z by the correspondence n—exp(int). Hence, expansion of functions in L%(T) is just
classical Fourier series. Realizing the cyclic group Cy as a subset of T, the DFT appears as a
sampled version of (ne usual Fourier expansion. This, of course, is well known. But T can be
approximated by other finite groups. For instance, we can let n—o in the definition (I111.44) of
p-adic groups, and obtain

Cp = GXCx...,
a compact abelian group in the product topology, with Haar measure equal to the product of the
d.screte Haar measures on each C,. By using base-p expansions we can define almost everywhere
on C;" a one-to-one transformation onto T which preserves Haar measure (recall that, on T,
Haar measure is just normalized Lebesgue measure). If this transformauon is employed to

transfer the characters in (C;’) over to T we obtain a frame in L3(T), the generalized Walsh
functions of Chrestenson [38], with the ordinary Walsh functions result:ng when p = 2.

More generally, we can take note of some work of Fine [39, I] who showed that in fact we
can transfer the (countable) dual group of any compact metrizable abelian group into L¥(T) so as
to be an orthonormal set there, which is either finite or complete (and hence a frame). An
analogous result remains valid for all spaces L2(P), P a probability measure on some measure
space, if we assume that the orthonormal set, rather than the underlying space, carries a group
structure [39,11].

The group C;" are examples of a special kind of topological group, called Vilenkin groups.
These are, by definition, abelian topological groups that are second countable, periodic (each
element belongs to a compact subgroup), and totally disconnected. Any compact Vilenkin group

76




is essentially the direct sum Cp1 X Cpa X, for certain primes py, pp, ... . Such groups can
be mapped ornto T much as above, and their dual groups thereby go over into frames for L~(T).
Because of the zero-dimensionality of a Vilenkin group, its dual group must be a torsion group:
this special structure of the corresponding group-frames in L2(T) distinguishes them from general
orthonormal systems there, and makes possible an elegant special theory of Vilenkin-Fourier
series.

We conclude this section with a few remarks about the complexity of the group transform
on a nondecomposable and nonabelian group. This is the only situation that has not been
discussed so far, and naturally it leads to some deeper issues in group theory than have appeared
to date. The passage from abelian to nonabelian groups should be viewed in the same spirit as,
for example, the passage from stationarity to nonstationarity (cf. comments early in Section 11.4).

Let G be a finite nonabelian group. If G is decomposable we can apply the analysis
following Equation (111.42) to get a reduction in the complexity of the group transform Fg. If
not, but there is a subgroup H, we can proceed in just the same way as was done in
Equation (I11.43) for abelian groups. If this is done it will be seen that the reduced operations
count is essentially O[N(m + s)] again (here N = ord(G), m = ord(H), s = [G:H], as before). The
problem now is that, unlike the abelian case where the indecomposable factors had the special
form of cyclic groups of prime power order, the subgroup structure of general indecomposable
aroups is much more varied and complex.

To obtain the maximum reduction in complexity we would ideally like to find a subgroup H
of maximal order in G, and then repeat this process in H, ctc. This may indeed be possible for a
particular G, but it is hard to generalize. There are two general ways to proceed: we can look at
groups defined by special constructions (e.g., generators and relaions, semidirect products), or by
special properties (e.g., nilpotent, solvable), where at least the existence of an adequate number of
subgroups may be guaranteed. In either approach our leitmotiv will be to only consider groups
that are, in a suitable sense, ‘close to abelian’.

At the outset it must be recognized that, again unlike the abelian case, if an integer m
divides ord(G), there may not be a subgroup of order m. The standard example is the
nonexistence of subgroups of order 6 in the alternating group A4, which is of order 12. So it
seems that we would like to restrict attention to groups G with the following property: if
ord(G) = mn with (m, n) = | then G has a subgroup of order m. We encounter some good fortune
here in that this property turns to be characteristic of a lorge and familiar class of groups, and
further, this class is closed under the operations of forming subgroups, products, and quotient
groups. The class in question is the class of all solvable groups. Such groups were historically
first considered in connection with the problem of studying roots of a polynomial over a field; in
this context and in a nutshell, a polynomial is solvable by radicals only if its Galois group is
solvable, the general polynomial equation of degree n has the symmetric group S, as Galois
group and, for n= 5, S, is not a solvable group.

There are various (equivalent) definitions of a solvable group. Perhaps the most familiar is
that the (simple) factors of a composition series should be as ‘simple’ as possible, that is, abelian

7




and hence cyclic of prime order This displays the sense in which solvable groups are close to
abelian. How large is this class of finite groups? On the one hand, by the famous Feit-Thompson
response (1963) to the classical Burnside conjecture, all groups of odd order are solvable. On the
other hand. there is a great wealth of nonabelian simple groups (18 infinite classes, beginning
with the alternating groups A, n= 5, and 26 additional ‘sporadic’ groups —- this is the
Classification Theorem [40]), and so there is a correspondingly laige number of nonsolvable
groups than can, in principle, be constructed, say by Schreier's approach to the extension
problem. Of course, most of these nonabelian simple groups have impractically large orders. Thus
the smallest orders occurring are 60, 168, 360, 2520, 7920, ... .

Specific examples of solvable groups of ecven order include those whose order = 2mpn,
w. re pis a prime and m, n = 0; in particular, groups of order 21,

A slightly more restrictive class of groups is especially convenient for optimally reducing the
group transform complexity, for a g.ven order. This is the class of nilpotent groups. Again,
various definitions are pssible. We give one motivated by subgroup structure. Suppose that G is
a group of order N with prime factorization N=p,*' ... p,*n. By Sylow’s theorems there is a
subgroup of order p;" for eachi=1,...,n, and for each such i, all subgroups of order pi“i are
conjugate and hence isomorphic. These subgroups are the Sylow subgroups of G. Further, each
Sylow subgroup contains a normal subgroup of all possible orders p;!, 1 St <a;. If, for each i,
there is a unique Sylow subgroup, then G is the direct product of 'hese subgroups, and
convessely. Such groups ai2 called nilpotent.

Additional details on the Sylow theorems, and nilpotent or solvable groups are avaiiable in
standard sources; for example, the baoks by Hall [41], Hungerford [42], MacLane-Birkhoff [43],
etc.

Fur applications, of course, we need some specific examples of nonabelian groups,
preferably, as we have just indicated, thuse being nilpotent or at least solvable. We indicate next
a few uuch examples. Among the most familiar examples of nonabelian groups are the symmetric
group S, and its (normal) subgroup A, the alternating group. We earlier noted that S, is cnly
solvable for n < 4. The groups S, are interesting because of Cayley’s classical result that any
group of order N is isomorphic to a subgroup of Sy (via the right regular representition), while
the A, are interesting as the ‘simplest’ examples of nonabelian simple groups (for n # 4).

Keepiag with our theme of only considering groups that are close-to-abelizn, we consider
next semidirect products of abelian groups. The simples. of these cases arises when the abelian
groups are cyclic; the semidirect product of two cyclic groups is called a meracyclic group. The
most familiar examples of this construction are the dihedral groups D, (the symmetry groups of
the regusar n-gons). Given the cyclic groups C,, C,, the group generated by two clements a, b,
satisfying the relations

al=bhm=z¢ , babl=ak

with k™ = | (mod n), can be shown [43, p. 462] to be a semidirect product o Cn and C,. The
group Dy 1s the special case wheve k= n - |, m =2, and so ord(Dy) = 2n. We tind that D, is the
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(abelian) Klein 4-group, already mentioned in Section 1I11.2, Dy is the nonabelian group of least
order, namely S, Dy is the so-called octic group, etc. It turns out that dihedral groups are just
those subgroups of an arbitrary group generated by a pair of distinct elements ot order 2
(involutions), and that all subgroups of D, are either cyclic or dihedral.

Since any extension of a solvable group by a solvable group is again solvable {43, p. 475], it
follows in particular that metacyclic groups and, more generally, semidirect products of abelian
groups are solvable.

The only other example of a nonabelian group of order < 10 is the quaternion group of
order 8. This is the first nonabelian case of another class, {Qn} of groups of order 4n called
dicyclic groups. Q, is defined abstractly as generated by a, b satisfying

alnzan p2ze | ab=bal

The quaternion group Q, derives its name from its interpretation as {ii. 1j, tk, tQ} with group
structure derived from the corresponding multiplication in the four-dimensional skew field of all
quaternions. Q, may also be obtained isomorphically as the matrix group generated by the
complex matrices

0 1 0 i
and
-1 0 i 0

(If we replaced i by | in the second matrix above, we would obtain Dy.)

Here we might make a quick comment intended to tie together some of this material with
the general Heisenberg group concept mentioned at the end of Section [1.4. Let p be a prime and
F the field of p elements. The groups whose elements are of wic form given in Equation (11.21),
with a, b, ceF, is of order p3. It turns out that there are only two distinct (nonisomorphic)
groups of this order for any such p, and this construction easily defines one of them. In the case
p = 2, this group is just Dy. Groups of this special nature are of interest in harmonic analysis
because they furnish the simplest examples of asymmetry of the norms of convolution operators
on the associated LP spaces, 2 < p < [50].

This completes our brief resume of relevant theory and examples of nonabelian groups. In
practice, to apply the group transform methodology to signal coding or feature extraction, or to
the group fi s of the next section, we have to have available a complete list of irreducible
unitary re-  sentations for the underlying group. That 1s, given the group G (abelian or not), we
must know a representation 1, for each class comprising I', | <1< r. Aid in this 2ndeavor is
provided by some facts p:esented in Section 111.2, namely that r = number of conjugacy ciasses of
G, and that the dimensions d; ot T, divide ord(G) and obey the constraint d;? + ... +d,2 = ord(G).
Then, ia order to take advantage of possible savings in computational effort, we should also have
available a composition series for G. Recall that this is a subnormal series (a descending sequence
{Hi§ of subgroups with G=H, D H D H.D ..., and each H; normal in H,_|) of maximal
length, and that ¢ny two such series are equivalent by the Jordan-Holder theorem. Then the
g"ou%p transform can be etficiently computed, as we have shown, by nesting down the subgroups
Vg
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IIL5 GROUP FILTERS

This last section is somewhat more speculative than the others in this chapter and is, in fact.
a major reason they were written. Our purpose is to define and briefly discuss group filters, and
to examine one of their possible roles in data processing, namely, that of suboptimal Wiener
filters. Unlike most of the foregoing material there is not a great deal of precedent for the use of
general group filters in this fashion; we can cite only the recent note by Tracktenberg [44] which
was, in turn, based on earlier joint work with Karpovsky [45]). That work was concerned with
various deterministic problems centered around the use of group filters to approximate more
generally defined systems, such as multivariate time-invariant linear systems defined over a finite
discrete time interval. Once a group G has been chosen, this problem reduces (o the
approximation of an operator on L%(G), derived from the impulse response matrix of the given
system, by group filters on G, in the Hilbert-Schmidt operator norm. Of course, the selection of
G is both basic and difficult.

The definition of group filters is motivated by the description of transform coding in
Section IIL.1, combined with the use cf group transforms. Namely, given a finite group G, and a
data vector feL%(G), we perform the following sequence of operations on f:

f—f= Fg(f) = Df = Fg'U(D) (111.47)
where D is a diagonal operator on the transform domain. That is, D is defined on L") by:
DA,....A)=(A; Dy,...,AD) , (111.48)

where each D; is an operator on the d;-dimensional space V; of the ith irreducible representation
T,, in the notation of Equation (I11.26). Thus the effect of the group filter is to selectively weight
the spectral components T(f), i=1,...,r, of the data. Extending the terminology of Pearl [7], a
group filter is a linear basis-restricted transformation whose unitary component is a group
transform.

Formally, then, a group filter is an operator on L4G) of the form
Fd D Fg

where Fg is the group transform and D has the form displayed in Equation (I11.48). An
operations count reveals that such operators are generally of lower computational complexity
than arbitrary operators on L2(G). Namely, if G is chosen so that F; has a fast algorithm in the
sense of Section II1.4, and N = ord(G), then D can be computed with d;2+ ..+d 2= N
muitiplications, and, hopefuily, the transform and iis inverse can be done with O(N log N)
multiplications each. Therefore, with reasonable choices of G. we can expect the multiplicative
complexity of a group filter on G to be N[I + O(log N)], compared with N2 for a general
operator.

From general properties of group transforms we see immediately that, alternatively, a group
filter is simply a right convolation operator on L2(G). Such an operator sends f into f * d, where
T(d) = D, iSi<r. (There is, of course, an equivalent tueory of group filters involving left
multiplication in Fquation (iI1 48) and left convolution operators).
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Having thus defined group filters in both the ‘time domain’ (convolution) and ‘frequency
domain’ (multiplication), we can now state their basic application; for a given problem of discrete
system simulation or of signal estimation, involving N-dimensional data, choose, for a specified
group G of order N, an optima! group filter on G. The term ‘optimal’ is deliberately a little
vague here, and an optimality criterion must be naturally be specified. Oftentimes, it is defined
by a quadratic functional on L{L%(G)]. Motivations for selecting group filters as approximating
devices include speed of computation, suitability for specific architectures (especially filters on
dyadic groups), and for specific signal statistics; see also [45].

Before getting into this topic in greater depth we want to offer just « few words of
additional perspective here. Convolution operators on the standard infinite Ica groups G, such as
the circle group or R, are familiar and powerful tools of analysis. Much of their effectiveness is
hased on the concept of an approximate identity. This is a sequence 36,,‘ in LY(G) with the
property that for every feL!(G),

= lim (40, = im 8,0

in the metric of LY(G). Such sequences can be constructed on any of the standard Ica groups by
taking a bounded sequence }6n£ in LI(G) with the properties that

f 8, dmG =1 ,
and

Li_rpm f 6, dmg=0 ,
G/v

for each neighborhood V of ¢. For example, any sequence of probability density functions whose
supports decrease to e would qualify, as would any sequence 8, on Rk defined by

8,(x) = nkeé(nx) . (I11-49)

for some fixed ¢eL!(R¥), fop(x)dx = I. Thus the Dirichlet and Fejer kernels are classical examples
of approximate identities in Fourier series; the corresponding convolution operators are the
partial Fourier series and Cesaro sum operators. In a different direction, the Gauss kernel

d(x) = (1/\/ 2m)exp(-x2/2) will serve in Equation (111.49); the corresponding convolution operators
for positive reai n solve the classical h at equation at time n. Another kind of convolution
operator, derived from the Poisson kernel, solves the classical Dirichlet boundzry value problem.
So convolution operators are involved in many branches of analysis such as partial differential
equations, potential theory, operator semigroups, Fourier analysis, etc. The point is that these
familiar operators and approximation techniques are not part of our subject here. When the
underlying group is finite, as is the case with discrete data processing, there is an identity for
convolution; approximate identities are not required. Convergence concepts are not an issue;
rather, it is the selection of high speed linear data processors for specific tasks, in a certain
statistical environment,

81




Let’s now look briefly at the nature of group filters, both individually and collectively, and
then move on to their applications as suboptimal Wiener filters, We’ll denote the set of all group
filters on a given group G by ®(G), and an element of ®(G) with kernel p by T,

T,)=f*p, feL¥G)

Each operator T‘D has its adjoint (Tp)* = Tp.. For both the operator norm IITle and the Hilbert-
Schmidt norm IITp||2, we have

lloll S Tl S NTplla < Mokt

and so both norms of the group filter T, are equal to the norm of p as an element of L%G). A
group filter T, is a normal operator whenever G is abelian or, more generally, whenever p is
normal: p = p* = p* » p,

The set ®(G) of all group filters on G is clearly a unital subalgebra of the entire operator
algebra on L%(G). Indeed, it is the commutant of the set of left convolution operators, and
converse! ;. (This relationship is, suitably interpreted, valid for general unimodular locally
compact groups; see [46], and Reference [5] of Chapter II).

Next we show that the group filter algebra ®(G) is N-dimensional, and exhibit a frame-basis
for it. First, from the definition of convolution,

T f®= 3, cp Rh) f(g) (I11.50)
heG

where R(*) is the right regular representation of G on L%(G), and c;, = p(h-1)/N. This, and the fact
that each R(h) is of the form Tp, where p = Neh_l, shows that ®(G) = span 3R(h): heGi. But, also

N, h=e
tr{R(h)] =

0O, otherwise
and, therefore, since

< R(g), R(h) > = ufR(g) R(h)*]
=ufR@gh')]

the operators 3N"/ 2 R(g): geGi constiture 4 trame in ®(G).

(Another way to obtain the structure of ®(G) is to simply note that the mapping p — T,is
ail antl-lsomorphxsm from L%G) onto ®(G). It is norm-preserving and maps the frame elemems
v Neg, geG, of L%(G) onto the elements N-!/2R(g-i) of &(G), so these must constitute a frame
there.)

It follows that the problem of system simulation, wnich reduces to the approximation of an
operator on L%G) by a group filter, is easily solved by an orthogonal projection of that operator
on (G). In particular, it might be tempting to select a group filter for Wiener fiitering by simply
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projecting the Wiener operator W of Equation (I1.3) onto ®(G). However, there is no reason to
believe that this projection will minimize the mean square error over all group fiiters.

To obtain the best group filter for Wiener filtering we have two distinct, but ultimately
equivalent, methods. In either case we are presented with a data vector y€L2(G), of the form

y=s+n

as per Equation (IL.1), with known covariance operators C, C, on L2(G). As usual, the signal s
and the noise n are assumed uncorrelated. In the first method, we let T be an operator on LXG).
Then, for fixed s,

e(s;T) = E(lIs - Tyll?)
= (s - Ts|[2 + tr(TC,, T*)

Next, averaging over the signal prior distribution, we obtain the mean square error for each
possible estimation operator T as

e(T) =tr(I - THC, (I - T)* + TC, T*]
=t T(Cg + C)T*] - 2r(TCy) + tr(Cy)
=T(C + C ), T> - <T, C> + ¢,
a quadratic functional of T.

Assuming the operator C, + C, to be invertible (and, therefore, positive definite), the
unconstrained minimum of e() over all T occurs at the Wiener filter W = Cy(Cs + C,)", -1, as noted
in Equation (I1.3). Its mean square error was given in Equation (II1.2). By contrast, the minimum
of () ovur the subspace ®(G) will be assumed at that group filter T, for which

T (Cs+ Cp) - C; L 9(G) . (IIL.51)

If we express T, as in Equation (II1.50), the optimality condition (II1.51) yields a system of linear
equations for the coefficients 3ch: heGi:

S agch=by . geG (111.52)
heG
where
bg =<C, R(g)>
and

agy = <Cy + C,, R(h-igh>

Thus, the matrix coefficients agh€ of this system have the Toeplitz-like form agy, = ¢(h-'g), where
@ is easily seen to be a positive-definite function on G; the matrix [ag,] is therefore positive
semidefinite. In fact, this matrix is positive definite, as long as the operator C + C, is invertible
«which we are assuming).
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Let T,, be the group filter whose coefficients in its expression (II1.50) are the uniaue solution
to the system (1I1.52). T, is then our suboptimal Wiener filter. The impulse response function w
is explicitly given by w(g-!) = Ncg, geG. What is the additional mean square error incurred by the
use of the filter T, in place of the Wiener operator W? The answer is that
e(Ty) = e(W)+<W-T,,C> ; (ITL.53)

that is, the additional error is essentially the component of the difference operator along the
sigral cyvariance operator.

Various games can now be played with the right hand side of the resulting estimate
0 < e(Ty) -e(W) < [|W-Tyll1lICll, (I11.54)

depending on what is assumed about the signal and noise statistics. For example, in terms of the
normal power spectrum 3>\|, . )\Ni of the signal s (equivalently, the spectrum of the covariance
operator ), we have the bound

Il = A3 +...+ AH2
S)\l +...+)\N = E(“S“z) ,
from Equation (IIL9). If the signal is Gaussian then we can derive a sharp expression for ||Cl|,

by diagonalizing C; and expanding s in the eigenvector frame zul, ces uUNte
S = Cup *... T CNUN s

sl = Jc)|2+...+epN2
sl = 3 lefdes2
i
E(IsllY = 3 E(cl? Edcl®d

i

N
S Ecil9+ 3 E(cl?) E(cyd
i=1 i

N
33 E(cl )2+ 3, E(c Ede)?)
i=1 i%%j

N N
2 3 E(c| 22+ 3 Ede| 2P

and, finally,

|
ICME = Af+. o+ 0% = = (E(lsi) - Eqlsi2?)
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The other term on the right side of Equation (II1.54) can be bounded by geometrical
arguments: let 3cg; be the coordinates of T,, in ®(G), and let dg = <W, R(g) >/ \/ﬁ, geG, be
the coordinates of the projection of W on ®(G). Then one can check that

IW =Ty i3= W+ Iwli3 -2 5 re(egdy)
geG

from two applications of the Pythagorean formula.

This completes our discussion of the first method for obtaining the optimum group filter T,
for Wiener filtering. We may refer to it as the ‘direct method,’ as it operates directly on the
sample space L2(G) and associated operators. However, it is unsatisfying in that no formula for
the filter T,, is obtained. We might indeed say that the solution is only indirectly presented via
the Equations (I11.52). A desire to remedy this difficulty, together with prior experience with
deconvolution problems, leads us to the second ‘indirect method.’ In this approach we attempt to
identify the optimum response function weL2(G) rather than tne operator T, and we do so by
posing the problem as

w = arg min E(|ly * o - sl|2)
peL%(G)
Letting now e(p) denote the expectation on the right hand side above, averaged over first the
noise and then the signal distributions, we have, after a Fourier transformation and some
algebra,

e(p) = E(lly - p - 5112
=tfp * (G+Cp-2Cp + C))]
a quadratic function of p ¢ L¥T). Its unconstrained minimum occurs at
w = Cy(Cq + Cﬁ)" , (I11.55)

a formula which is essentirlly given, without proof, in [44]. (In fact, we have chosen the notation
Cs, C, to agree, as much as possible, with that of [44]. We note that, for instance, C, is that
element of L%(T") whose ith value is the operator

N2 3 E[s@)stn)] Thlg)
gh
so that if P is the operator of right multiplication by A on L%(I), we have
E(IPE)I) = <C; A, A>
Hence the optimal w in Equation (I1L.55) is computed as a product in the H*-algetra L2(T").

Thus, the indirect method gives the explicit formula (/11.55) for the transform cf the optimal
response function w, in terms of the signal and noise covariance components. Since the major
point of using group filters as suboptimal Wiener filters is their reduced computational
complexity, obtained by group transforming the data vector, multiplying by w, and inverse
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transforming, this method is to be preferred to the direct method because it makes w immediately
available.

In analogy with Equation (II1.2) one can verify that the minimal mean square error is given
by

1]

2 d; tr{C; - G (Gy + C'ﬁ)‘ICg)(i)]

i=1

e(w)

r
3 di trffe) - 81 GO}

1=1

with € the identify in L2(TI"). Unfortunately, this does not seem as useful in assessing the increase
in error over the Wiener filter as is the expression of Equation (II11.53) and the subsequent
estimate (I11.54).
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IV. CONCLUSIONS AND OUTLOOK

We will now summarize the foregoing material and emphasize some key points; along the
way we will suggest a few promising directions of further research.

Chapter [ represents an attempt to offer some general mathematical perspective on a very
large and disparate field. It is deliberately presented at a low technical level, so as to be widely
accessible. There is also an attempt to be just a bit provocative by designating a few results as
being most fundamental from a mathematical viewpoint.

In a more serious vein we proposed a triangular array of mathematical areas as foundational
for signal processing, namely, prcbability/statistics, Hilbert spaces/operator theory, and group
representations/ harmonic analysis. The value and interplay of the first two areas is by now
familiar and well developed, and is not discussed herein in much detail. Let us just stress once
again that such analysis begins with Equation (II-4), which we feel it fair to designate as the
‘Fundamental Equation of Signal Processing’. According as the unknown signal x there is
deemed to be deterministic or random, and based on the nature of the constraints and other
prior information available concerning x, a variety of filters can be devised to optimize a
particular performance measure. The Wiener and Gauss-Markov filters of Section III.1 are
standard examples for recovering a random and a deterministic signal, respectively. In a different
direction, the method of projection on convex sets (POCS) has become popular over the last few
years. Here, all information about an unknown deterministic signal x (data + constraints) is
combined to locate x in the intersection of a family of convex sets, and iterations involving the
(generally nonlinear) projections on these sets are constructed to yield sequences which converge
at least weakly, to the unknown signal [1]. The inherent nonuniqueness of these methods may be
controlled by introducting a further cost functional [2].

The essential point here is that all these Hilbert space-centered methods have not been our
major concern. We have rather chosen to study the role of our third foundational area: the
group-related analysis. In doing so we eventually discerned three classes of application which
could be indexed by the kind of group involved. Thus:

Group Type Application

Finite Digital signal processing (transform
coding, pattern recognition, fast
suboptimal filters)

Infinite Ica Weakly stationary and harn:onizable
signal models, filters, sampling
Heisenberg Characterization of lca group

transform; connnection with
uncertainty principle and ambiguity
function
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The applications involving infinite groups were surveyed rather quickly in Sections I1.2-IL5.
Those involving the Ica groups seem to have reached a mature stage, with work remaining at a
fairly abstract level. It is worth emphasizing again that the group theoretic approach provides a
systematic and unified approach to a frequency domain theory for weakly stationary processes,
along with the associated invariant filters. By contrast, those applications involving the real
Heisenberg groups and its representations are of quite recent development, are at a higher level
of mathematical complexity, and are of somewhat more uncertain value. The connections with
radar theory seem particularly worthy of further research efforts.

Finally, half of this report nas been devoted to what appears to be the most promising area
of immediate applications to the practice of digital data processing. The essential idea is the
systematic use of those finite dimensional unitary transforms which can be realized as group
transforms of some finite group. We noted in Section IIL.4 that, as a consequence of Kellogg’s
theorem, only nonabelian group transforms can be expected to significantly improve on the
ordinary DFT in terms of error reduction in signal compression or filtering, although there may,
for some purposes, be computational advantages which devolve from the group transform on
some noncyclic abelian group (e.g., the Walsh-Hadamard transform on a dyadic group).

We can suggest some fairly natural research questions connected with this material and,
indeed, Chapter III should be viewed as the necessary background and motivation for these
questions, at the most elementary level. They all center around the association between a given
covariance matrix (representing the second-order signal statistics) and the optimal group, of
appropriate order, for a particular signal processing task. Having fixed such a task, such as
signal decorrelation or Wiener filtering with additive white noise at a specified SNR, it is
possible, in principle, to partition the cone of N X N positive semidefinite matrices into a finite
number of subsets indexed by the appropriate optimal group. The number of subsets in this
partition would equal 1 + the number of nonabelian groups of order N. The cone of matrices
might be further reduced by imposing a bound on their norm (= spectral radius) or by requiring
a constant diagonal (equal variances). For a fixed block length N, and signal processing task, this
is itself a kind of pattern classification problem with the groups being the ‘patterns’.

Sur e, in order to be specific, we consider the task of suboptimal Wiener filtering via
group filters, as in Section IILS. Starting with the formula for Wiener filter W in Equation (11.3),
and the error formulas (II1.2), (II1.53), we can readily derive the simple error relation

e(Ty) =<1-T,, C>,

for the optimal group filter T,,. This quantity can now be used as a performance measure to
select the corresponding optimal group for each given signal covariance C,. A few such studies
for various data lengths N should :eveal the potential of nonabelian groups and their associated
transforms and filters to replace conventional methods based on the use of cyclic groups and the
DFT.

The rather meagre evidence available to data, especially the computer experiment reported
by Trachtenberg (Reference [44] of Chapter III) for the case where the signal s is derived from a
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first order Markov process, suggests that filters over nonabelian groups can indeed lower the
mean square error of Wiener filtering by several percent over that determined by the DFT.

We might also emphasize here that group filters can serve to approximate any filter, not just
the Wiener filter W. We have already noted that most filters derived by optimizing some Hilbert
space performance criterion (Wiener, Gauss-Markov, maximum likelihood, projection filter, min-
max, pseudoinverse, etc.) tend to be computationally intensive. However, such filters usually have
finite dimensional domain, as the measurement operator A in Equation (I1.4) is of finite rank
when there is a finite number of observations, and so there is the general possibility of
suboptimal approximations to each of these by a group filter. In the course of such investigations
we might also expect to clarify the relative efficiencies of the direct and indirect methods of
Section IILS for actually obtaining group filters that optimize a particular performance measure.

In summary,we have presented an overview of existing and likely applications of Lroup
theory to various problems of signal processing and modeling. This effort is to be viewed as
another of long ongoing series of group theory applications to various scientific and technical
fields. The role of group theory in physics, chemistry, crystallography, etc., is, of course, one of
long and honorable standing, tracing back to the seminal work of Weyl and Wigner. More
recently we can sce the infiltration of groups into statistical research [3, 4, 5]; this is in addition
to the well-developed group role in time series models discussed in Chapter II above,

There is also a large body of material in the engineering literature that centers around the
use of finite (Galois) fields. For present purposes we want to point out two just areas that are
particularly related to the general theme of this report: number theoretic transforms and algebraic
coding theory, especially group codes. The former are essentially group transforms defined on
cyclic subgroups of the multiplicative group of a finite field, say (GF(q). Naturally the lengths of
such transforms are not arbitrary for a given integer q (necessarily a prime power), but are
restricted to the divisors of q - 1. Such transforms can be used, together with their associated
fast algorithms, to cyclically convolve integer sequences without round-off or overflcw problems,
and thus offer another approach to the fast FIR filtering and correlation of general real or
complex data, after temporary rescaling. The recent survey by Blahut {6] provides a nice
exposition of these ideas, and also discusses some issues of coding theory, such as the use of
number theoretic iransforms in a given field, finite or not, to define Reed-Solomon codes
(‘frequency domain coding).

The concept of group code was introduced by Slepian in 1956, and studied in a series of
papers, of which we just cite [7, 8]. Originally, only binary channels were considered, and so a
group code was defined as a subgroup of a dyadic group (in our terminclogy). With the
geometric view that elements of the dyadic group of order 27 correspond to vertices of the unit
cube in real n-space, one could associate with a group code a (finite) subgroup of the
n-dimensional orthugonal group which acts on the group code. The group :ode is an alphabet
for describing the input to and output from the channel. The basic problem is to optimally
encode data by means of the alphabet so as to minimize 4 mean square error criterion. This
error will, of course, depend cn the prior distribution over the data {this is often assumed to be
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uniform), and on the channel transition probabilities. Solutions to this problem (e.g., [9] and its
references) utilize the dual group and group transform. This circle of problems has bee.: extended
to more general group codes [subspaces of arbitrary finite fields GF(q)] and, more recently, to
the possible use of nonabelian group codes which, in some cases are already known to yield
better performance than abelian group codes. We see here a strong parallel with the situations
discussed in Section II1.5 above, where nonabelian group filters show promise of outperforming
the more conventional ones based on the DFT.

In conclusion, we have indicated many and varied applications of group theory and the
associated harmonic analysis, at various levels of mathematical sophistication, to assorted
engineering problems, primarily of a signal processing nature. We predict that group theory will
e*entually assume as fundamental a role here as, say, algebraic/differential geometry already has
.n the companion field of control theory.

Let us close by recalling the opinion of E. T. Bell, the well-known chronicler of
mathematical history:

“Wherever groups disclosed themselves
Or could be introduced,
Simplicity and harmony
Crystallized out of comparative chaos. - .

"
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