
 1 

Duality in Production 
 

W. Erwin Diewert.
1
                                                                                    February 5, 2018. 

Discussion Paper 18-02, 

Vancouver School of Economics, 

University of British Columbia, 

Vancouver, B.C., Canada, V6T 1L4. 

Email: erwin.diewert@ubc.ca 

 

Abstract 
 

The paper reviews the application of duality theory in production theory. Duality theory 

turns out to be a useful tool for two reasons: (i) it leads to relatively easy 
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1. Introduction 

 

Duality theory is a very useful tool for estimating production functions or more generally, 

for estimating production possibilities sets. It is also useful in allowing one to derive the 

theoretical properties that differentiable derived producer demand for input and supply of 

output functions must satisfy if the producer is maximizing profits or minimizing costs. 

This chapter will illustrate these advantages of duality theory in the producer context.  

 

Sections 2-6 below will focus on the case of one output, N input technologies. The 

multiple output and multiple input case will be considered in Sections 15-22.
2
 

 

The one output, many input cost function is defined in Section 2 and in Section 3, the 

conditions on the production function that allow the cost function to completely describe 

the underlying technology are listed: this establishes the Shephard (1953) Duality 

Theorem between cost and production functions. Section 4 explains Shephard’s Lemma; 

i.e., it shows why differentiating a cost function with respect to input prices generates the 

vector of cost minimizing input demand functions. If the cost function is twice 

continuously differentiable with respect to input prices, then Section 5 derives the 

properties that the system of cost minimizing input demand functions must satisfy. 

Section 6 looks at the duality between cost and production functions if production is 

subject to constant returns to scale; i.e., if the production function is homogeneous of 

degree one in inputs.  

 

Sections 7-11 look at specific functional forms for the cost function. The five functional 

forms that are studied are (i) the Constant Elasticity of Substitution (CES), (ii) the 

Generalized Leontief, (iii) the Translog, (iv) the Normalized Quadratic and (v) the Konüs 

Byushgens Fisher (KBF) functional forms. The last four functional forms are flexible 

functional forms; i.e., they can provide a second order approximation to an arbitrary twice 

continuously differentiable unit cost function at any arbitrary price point.
3
 A major 

problem with flexible functional forms is the curvature problem; i.e., an estimated 

flexible functional form for a unit cost function may violate the concavity in prices 

property that cost functions must satisfy. It turns out that the Normalized Quadratic and 

KBF functional forms are such that the correct curvature conditions can be imposed 

without destroying the flexibility of the functional form.
4
 

                                                 
2
 In Sections 2-21, it will be assumed that the producer takes prices as given constants in each period. 

Section 22 extends the analysis to the case of monopolistic behavior. 
3
 Diewert and Wales (1993; 89-92) discuss some additional flexible functional forms that are not discussed 

here. These alternative functional forms have various problems. 
4
 On a personal note, I did my thesis on flexible functional forms and, with the help of Daniel McFadden 

(my thesis advisor), I came up with the Generalized Leontief cost function as my first attempt at finding a 

“perfect” functional form that was flexible, parsimonious (i.e., had the minimal number of parameters to be 

estimated that would enable it to be flexible) and generated derived demand (or supply) functions that were 

either linear or close to linear in the unknown parameters in order to facilitate econometric estimation. I 

was a graduate student at Berkeley at the time (1964-1968) and I met frequently with Dale Jorgenson. He 

and his student at the time, Lawrence Lau, realized that instead of taking a quadratic form in the square 

roots of input prices, one could take a quadratic form in the logarithms of prices as a functional form for the 

logarithm of the cost function and the translog functional form was born. However, empirical applications 
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Section 12 introduces the concept of a semiflexible functional form. A major problem 

with the use of a flexible functional form is that it requires the estimation of roughly N
2
/2 

parameters if there are N inputs. The semiflexible concept reduces this large number of 

parameters in a sensible way.   

 

Section 13 shows how piece-wise linear functions of time can be used to model technical 

progress in a more general manner than just using linear time trends in the demand 

functions. Section 14 shows how a flexible functional form can be generalized to achieve 

the second order approximation property at two sample points if we are estimating 

production functions in the time series context.
5
 

 

Section 15 introduces Samuelson’s (1953) National Product Function or the variable 

profit function. This function conditions on a vector of fixed inputs and maximizes the 

value of outputs less variable inputs. The comparative statics properties of this function 

are developed in Section 16. Sections 17-19 look at three flexible functional forms for 

this function: (i) the translog, (ii) the Normalized Quadratic and (iii) the KBF variable 

profit functions. The systems of estimating equations that these functional forms generate 

are also exhibited.  

 

Sections 20-22 develop the properties of joint cost functions; i.e., these functions 

generalize the one output cost function to a cost function for multiple output producers. 

Section 21 looks at three flexible functional forms for this function: (i) the translog, (ii) 

the Normalized Quadratic and (iii) the KBF joint cost functions. The latter two functions 

have the property that the correct curvature conditions can be imposed on them without 

destroying their flexibility properties. Section 22 looks at applications of joint cost 

functions to: (i) problems associated with the measurement of the outputs of public sector 

producers in the System of National Accounts, (ii) the measurement of the efficiency of 

regulated utilities and (iii) the estimation of technology sets when producers have some 

monopoly power.    

 

Section 23 concludes with a listing of three problems that are not addressed in this 

chapter and require further research. 

 

                                                                                                                                                 
of these functional forms soon showed that these functional forms had a drawback: it was not possible to 

impose the correct concavity or convexity properties on these flexible functional forms without destroying 

the flexibility of the functional form. In the 1980s, Diewert and Wales came up with the normalized 

quadratic functional form which was flexible, parsimonious and had the property that the correct curvature 

conditions could be imposed without impairing the flexibility property. However, in order to preserve the 

parsimony property, one had to pick a more or less arbitrary alpha vector and imbed it into the functional 

form as we will see later in this chapter. But different choices of alpha could generate perhaps substantially 

different estimates for demand and supply elasticities. The last flexible functional form that we will discuss 

in this chapter, the KBF functional form, overcomes this difficulty and hence completes our quest for the 

“perfect” flexible functional form.    
5
 It should be noted that our analysis is geared to the time series context. Much of our analysis can be 

translated to the cross sectional context. 
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It may be useful to use this chapter as part of a course in microeconomic theory or in 

production theory. To facilitate this use, the author has added many straightforward 

problems that the instructor can assign to students. These problems are also an efficient 

way of extending the results presented in the main text. 

 

2. Cost Functions: The One Output Case 
 

The production function and the corresponding cost function play a central role in many 

economic applications. In the following section, we will show that under certain 

conditions, the cost function is a sufficient statistic for the corresponding production 

function; i.e., if we know the cost function of a producer, then this cost function can be 

used to generate the underlying production function. 

 

Let the producer’s production function f(x) denote the maximum amount of output that 

can be produced in a given time period, given that the producer has access to the 

nonnegative vector of inputs, x  [x1,…,xN]  0N.
6
 If the production function satisfies the 

minimal regularity condition of continuity from above,
7
 then given any positive output 

level y that the technology can produce and any strictly positive vector of input prices p  

[p1,…,pN] >> 0N, we can calculate the producer’s cost function C(y,p) as the solution 

value to the following constrained minimization problem: 

 

(1) C(y,p)  minx {p
T
x : f(x)  y ; x  0N}.  

 

It turns out that the cost function C will satisfy the following 7 properties, provided that 

the production function is continuous from above:
8
 

 

Theorem 1;  Diewert (1993; 107-114)
9
: Suppose f is continuous from above. Then C 

defined by (1) has the following properties: 

 

Property 1: C(y,p) is a nonnegative function. 

Property 2: C(y,p) is positively linearly homogeneous in p for each fixed y; i.e.,  

 

(2) C(y,p) = C(y,p) for all  > 0, p >> 0N and yRange f (i.e., y is an output level that  

      is producible by the production function f). 

 

Property 3: C(y,p) is nondecreasing in p for each fixed yRange f; i.e., 

 

                                                 
6
 Notation: x  0N means each component of the vector x is nonnegative, x > 0N means x  0N and x  0N 

and x >> 0N means each component of x is positive. p
T
x  n=1

N
 pnxn. Vectors are understood to be column 

vectors when it matters. 
7
 We require that f be continuous from above for the minimum to the cost minimization problem to exist; 

i.e., for every output level y that can be produced by the technology (so that yRange f), we require that the 

set of x’s that can produce at least output level y (this is the upper level set L(y)  {x : f(x)  y}) is a closed 

set in R
N
.  

8
 Note that this minimal regularity condition cannot be contradicted using a finite data set. 

9
 For the history of closely related results, see Diewert (1974a; 116-120). 
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(3) yRange f, 0N << p
1
 < p

2
 implies C(y,p

1
)  C(y,p

2
). 

  

Property 4: C(y,p) is a concave function of p for each fixed yRange f; i.e., 

 

(4) yRange f, p
1
 >> 0N; p

2
 >> 0N; 0 <  < 1 implies  

            C(y,p
1
+(1)p

2
)  C(y,p

1
) + (1)C(y,p

2
). 

 

Property 5: C(y,p) is a continuous function of p for each fixed yRange f. 

Property 6: C(y,p) is nondecreasing in y for fixed p; i.e., 

 

(5) p >> 0N, y
1
Range f, y

2
Range f, y

1
 < y

2
 implies C(y

1
,p)  C(y

2
,p). 

 

Property 7: For every p >> 0N, C(y,p) is continuous from below in y; i.e., 

 

(6) y
*
Range f , y

n
Range f for n = 1,2,…, y

n
  y

n+1
, lim n y

n
 = y

*
 implies  

            lim n C(y
n
,p) = C(y

*
,p). 

 

Proof of Property 1: Let yRange f and p >> 0N.  Then 

 

C(y,p)  minx {p
T
x : f(x)  y ; x  0N} 

           = p
T
x

*
                                               where x

*
  0N and f(x

*
)  y 

            0                                                     since p >> 0N and x
*
  0N. 

 

Proof of Property 2: Let yRange f, p >> 0N and  > 0.  Then 

 

C(y,p)  minx {p
T
x : f(x)  y ; x  0N} 

             =  minx {p
T
x : f(x)  y ; x  0N}    since  > 0 

             = C(y,p)                                         using the definition of C(y,p). 

 

Proof of Property 3: Let yRange f, 0N << p
1
 < p

2
.  Then 

 

C(y,p
2
)  minx {p

2T
x : f(x)  y ; x  0N} 

            = p
2T

x
*
                                              where f(x

*
)  y and x

*
  0N 

             p
1T

x
*
                                              since x

*
  0N and p

2
 > p

1 
 

             minx {p
1T

x : f(x)  y ; x  0N}       since x
*
 is feasible for this problem 

             C(y,p
1
).                                                       

 

Proof of Property 4: Let yRange f, p
1
 >> 0N; p

2
 >> 0N; 0 <  < 1.   Then  

  

C(y,p
1
+(1)p

2
)  minx {[p

1
+(1)p

2
]

T
x : f(x)  y ; x  0N} 

                             = [p
1 

+ (1)p
2
]

T
x

*
       where x

*
  0N and f(x

*
)  y 

                             = p
1T

x
*
 + (1)p

2T
x

*
   

                               minx {p
1T

x : f(x)  y ; x  0N} + (1)p
2T

x
*
  

                                       since x
*
 is feasible for the cost minimization problem that uses  

                                       the price vector p
1
 and using also  > 0 
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                             = C(y,p
1
) + (1)p

2T
x

*
    using the definition of C(y,p

1
) 

                               C(y,p
1
) + (1) minx {p

2T
x : f(x)  y ; x  0N} 

                                       since x
*
 is feasible for the cost minimization problem that uses  

                                       the price vector p
2
 and using also 1 > 0 

                              = C(y,p
1
) + (1)C(y,p

2
)     using the definition of C(y,p

2
). 

 

Figure 1 below illustrates why this concavity property holds. 

 

 
 

In Figure 1, the isocost line {x: p
1T

x = C(y,p
1
)} is tangent to the production possibilities 

set L(y)  {x: f(x)  y, x  0N} at the point x
1
 and the isocost line {x: p

2T
x = C(y,p

2
)} is 

tangent to the production possibilities set L(y) at the point x
2
. Note that the point x

**
 

belongs to both of these isocost lines. Thus x
**

 will belong to any weighted average of the 

two isocost lines. The  and 1 weighted average isocost line is the set {x: 

[p
1
+(1)p

2
]

T
x = C(y,p

1
) + (1)C(y,p

2
)} and this set is the dotted line through x

**
 in 

Figure 1. This dotted line lies below
10

 the parallel dotted line that is just tangent to L(y), 

which is the isocost line {x: [p
1
+(1)p

2
]

T
x = [p

1
+(1)p

2
]

T
x

*
 = C(y,p

1
+(1)p

2
)} 

and it is this fact that gives us the concavity inequality (4). 

 

Proof of Property 5: Since C(y,p) is a concave function of p defined over the open set of 

p’s,   {p: p >> 0N}, it follows that C(y,p) is also continuous in p over this domain of 

definition set for each fixed yRange f.
11

                                           

   

Proof of Property 6: Let p >> 0N, y
1
Range f, y

2
Range f, y

1
 < y

2
.  Then 

 

                                                 
10

 It can happen that the two dotted lines coincide. 
11

 See Fenchel (1953; 75) or Rockafellar (1970; 82). 

Figure 1: The Concavity in Prices Property of the Cost Function 

x2 

x1 

x
1 

x
2 

x
* 

C(y,p
1
)/p2

1 

C(y,p
2
)/p2

2
 

C(y,p

)/p2

 

[C(y,p
1
) + 

(1)C(y,p
2
)]/p2

 

L(y) 

Output level y isoquant  

x
** 
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C(y
2
,p)  minx {p

T
x : f(x)  y

2
 ; x  0N} 

              minx {p
T
x : f(x)  y

1
 ; x  0N} 

                  since if y
1
 < y

2
, the set {x : f(x)  y

2
} is a subset of the set {x : f(x)  y

1
} and 

                  the minimum of a linear function over a bigger set cannot increase 

              C(y
1
,p). 

 

Proof of Property 7: The proof is rather technical and may be found in Diewert (1993; 

113-114).                                                                                                                     Q.E.D. 

 

Problems 
 

1. In industrial organization,
12

 it once was fairly common to assume that a firm’s cost 

function had the following linear functional form: C(y,p)   + 
T
p + y where  and  

are scalar parameters and  is a vector of parameters to be estimated econometrically. 

What are sufficient conditions on these N+2 parameters for this cost function to satisfy 

properties 1 to 7 above? Is the resulting cost function very realistic? 

 

2. Suppose a producer’s production function, f(x), defined for xS where S  {x: x  0N} 

satisfies the following conditions: 

(i) f is continuous over S; 

(ii) f(x) > 0 if x >> 0N and 

(iii) f is positively linearly homogeneous over S; i.e., for every x  0N and  > 0, f(x) = 

f(x). 

Define the producer’s unit cost function c(p) for p >> 0N as follows: 

(iv) c(p)  C(1,p)  minx {p
T
x : f(x)  1 ; x  0N}; 

i.e., c(p) is the minimum cost of producing one unit of output if the producer faces the 

positive input price vector p. For y > 0 and p >> 0N, show that 

(v) C(y,p) = c(p)y. 

Note: A production  function f that satisfies property (iii) is said to exhibit constant 

returns to scale. The interpretation of (v) is that if a production function exhibits constant 

returns to scale, then total cost is equal to unit cost times the output level.
13

 

 

3. Shephard (1953; 4) defined a production function F to be homothetic if it could be 

written as 

(i) F(x) = g[f(x)] ; x  0N 

where f satisfies conditions (i)-(iii) in Problem 2 above and g(z), defined for all z  0, 

satisfies the following regularity conditions: 

(ii) g(z) is positive if z > 0; 

(iii) g is a continuous function of one variable and 

(iv) g is monotonically increasing; i.e., if 0  z
1
 < z

2
, then g(z

1
) < g(z

2
). 

Let C(y,p) be the cost function that corresponds to F(x). Show that under the above 

assumptions, for y > 0 and p >> 0N, we have 

(v) C(y,p) = g
1

(y)c(p) 

                                                 
12

 For example, see Walters (1961). 
13

 We will study the unit cost function in more detail in Section 6 below. 
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where c(p) is the unit cost function that corresponds to the linearly homogeneous f and 

g
1

 is the inverse function for g; i.e., g
1

[g(z)] = z for all z  0. Note that g
1

(y) is a 

monotonically increasing continuous function of one variable.  

 

3. The Duality Between Cost and Production Functions 

 

The material in the previous section shows how the cost function can be determined from 

a knowledge of the production function. We now ask whether a knowledge of the cost 

function is sufficient to determine the underlying production function. The answer to this 

question is yes, but with some qualifications. 

 

To see how we might use a given cost function (satisfying the 7 regularity conditions 

listed in the previous section) to determine the production function that generated it, pick 

an arbitrary feasible output level y > 0 and an arbitrary vector of positive prices, p
1
 >> 0N 

and use the given cost function C to define the following isocost surface: {x: p
1T

x = 

C(y,p
1
)}. This isocost surface must be tangent to the set of feasible input combinations x 

that can produce at least output level y, which is the upper level set, L(y)  {x: f(x)  y; x 

 0N}. It can be seen that this isocost surface and the set lying above it must contain the 

upper level set L(y); i.e., the following halfspace M(y,p
1
), contains L(y): 

 

(7) M(y,p
1
)  {x: p

1T
x  C(y,p

1
)}. 

 

Pick another positive vector of prices, p
2
 >> 0N and it can be seen, repeating the above 

argument, that the halfspace M(y,p
2
)  {x: p

2T
x  C(y,p

2
)} must also contain the upper 

level set L(y). Thus L(y) must belong to the intersection of the two halfspaces M(y,p
1
) 

and M(y,p
2
). Continuing to argue along these lines, it can be seen that L(y) must be 

contained in the following set, which is the intersection of all of the supporting halfspaces 

to L(y): 

 

(8) M(y)  
Np 0 M(y,p). 

 

Note that M(y) is defined using just the given cost function, C(y,p). Note also that since 

each of the sets in the intersection, M(y,p), is a convex set, then M(y) is also a convex set. 

Since L(y) is a subset of each M(y,p), it must be the case that L(y) is also a subset of 

M(y); i.e., we have 

 

(9) L(y)  M(y). 

 

Is it the case that L(y) is equal to M(y)? In general, the answer is no; M(y) forms an outer 

approximation to the true production possibilities set L(y). To see why this is, see Figure 

1 above. The boundary of the set M(y) partly coincides with the boundary of L(y) but it 

encloses a bigger set: the backward bending parts of the isoquant {x: f(x) = y} are 

replaced by the dashed lines that are parallel to the x1 axis and the x2 axis and the inward 

bending part of the true isoquant is replaced by the dashed line that is tangent to the two 

regions where the boundary of M(y) coincides with the boundary of L(y). However, if the 

producer is a price taker in input markets, then it can be seen that we will never observe 
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the producer’s nonconvex portions or backwards bending parts of the isoquant.
14

 Thus 

under the assumption of competitive behavior in input markets, there is no loss of 

generality in assuming that the producer’s production function is nondecreasing (this will 

eliminate the backward bending isoquants) or in assuming that the upper level sets of the 

production function are convex sets (this will eliminate the nonconvex portions of the 

upper level sets). A function has convex upper level sets if and only if it is 

quasiconcave.
15

 

 

Putting the above material together, we see that conditions on the production function 

f(x) that are necessary for the sets M(y) and L(y) to coincide are: 

 

(10) f(x) is defined for x  0N and is continuous from above
16

 over this domain of 

        definition set; 

(11) f is nondecreasing and 

(12) f is quasiconcave.         

  

Theorem 2: Shephard Duality Theorem:
17

 If f satisfies (10)-(12), then the cost function C 

defined by (1) satisfies the properties listed in Theorem 1 above and the upper level sets 

M(y) defined by (8) using only the cost function coincide with the upper level sets L(y) 

defined using the production function; i.e., under these regularity conditions, the 

production function and the cost function determine each other. 

 

We consider how an explicit formula for the production function in terms of the cost 

function can be obtained. Suppose we have a given cost function, C(y,p), and we are 

given a strictly positive input vector, x >> 0N, and we ask what is the maximum output 

that this x can produce. It can be seen that 

 

(13) f(x) = max y {y: xM(y)} 

              = max y {y: C(y,p)  p
T
x for every p >> 0N}  using definitions (7) and (8). 

              = max y {y: C(y,p)  1 for every p >> 0N such that p
T
x = 1} 

 

where the last equality follows using the fact that C(y,p) is linearly homogeneous in p as 

is the function p
T
x and hence we can normalize the prices so that p

T
x = 1. 

 

                                                 
14

 Hotelling (1935; 74) made this point many years ago. 
15

 f is a quasiconcave function defined over a convex subset S of R
N
 if f has the following property: x

1
S, 

x
2
S, 0 <  < 1 implies f(x

1
+(1)x

2
)  min {f(x

1
), f(x

2
)}; see Fenchel (1953; 117). 

16
 Since each of the sets M(y,p) in the intersection set M(y) defined by (8) are closed, it can be shown that 

M(y) is also a closed set. Hence if M(y) is to coincide with L(y), we need the upper level sets of f to be 

closed sets and this will hold if and only if f is continuous from above.  
17

 Shephard (1953) (1970) was the pioneer in establishing various duality theorems between cost and 

production functions. See also Samuelson (1953), Uzawa (1964), McFadden (1966) (1978), Diewert (1971) 

(1974a; 116-118) and Blackorby, Primont and Russell (1978) for various duality theorems under alternative 

regularity conditions. Our exposition follows that of Diewert (1993; 107-117). These duality theorems are 

global in nature; i.e., the production and cost functions satisfy their appropriate regularity conditions over 

their entire domains of definition. However, it is also possible to develop duality theorems that are local 

rather than global; see Blackorby and Diewert (1979). 
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We now consider the continuity properties of C(y,p) with respect to p. We have defined 

C(y,p) for all strictly positive price vectors p and since this domain of definition set is 

open, we know that C(y,p) is also continuous in p over this set, using the concavity in 

prices property of C. We would like to extend the domain of definition of C(y,p) from the 

strictly positive orthant of prices,   {p: p >> 0N}, to the nonnegative orthant, Clo   

{p: p  0N}, which is the closure of . It turns out that it is possible to do this if we make 

use of some theorems in convex analysis. 

 

Theorem 3: Continuity from above of a concave function using the Fenchel closure 

operation: Fenchel (1953; 78): Let f(x) be a concave function of N variables defined over 

the open convex subset S of R
N
. Then there exists a unique extension of f to Clo S, the 

closure of S, which is concave and continuous from above. 

 

Proof: Using one of Fenchel’s (1953; 57) characterizations of concavity, the hypograph 

of f, H  {(y,x): y  f(x); xS}, is a convex set in R
N+1

. Hence the closure of H, Clo H, is 

also a convex set. Hence the following function f
*
 defined over Clo S is also a concave 

function: 

 

(14) f
*
(x)  maxy {y: (y,x)Clo H};                                                            xClo S. 

                = f(x)                                                                                             for xS. 

 

Since Clo H is a closed set, it turns out that f
*
 is continuous from above.                Q.E.D. 

 

To see that the extension function f
*
 need not be continuous, consider the following 

example, where the domain of definition set is S  {(x1,x2); x2R
1
, x1  x2

2
} in R

2
: 

 

(15) f(x1,x2)   x2
2
/x1 if x2  0, x1  x2

2
; 

                      0            if x1 = 0 and x2 = 0. 

 

It is possible to show that f is concave and hence continuous over the interior of S; see 

problem 5 below. However, it can be shown that f is not continuous at (0,0). Let (x1,x2) 

approach (0,0) along the line x1 = x2 > 0.  Then 

 

(16)  lim 1x  0 f(x1,x2) =  lim 1x  0 [ x1
2
/x1] = lim 1x  0 [ x1] = 0. 

 

Now let (x1,x2) approach (0,0) along the parabolic path x2 > 0 and x1 = x2
2
.  Then 

 

(17) lim 2x  0; 
2

21 xx   f(x1,x2) =  lim 2x  0   x2
2
/x2

2
 = 1. 

 

Thus f is not continuous at (0,0). It can be verified that restricting f to Int S and then 

extending f to the closure of S (which is S) leads to the same f
*
 as is defined by (15).  

Thus the Fenchel closure operation does not always result in a continuous concave 

function. 
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Theorem 4 below states sufficient conditions for the Fenchel closure of a concave 

function defined over an open domain of definition set to be continuous over the closure 

of the original domain of definition. Fortunately, the hypotheses of this Theorem are 

weak enough to cover most economic applications. Before stating the Theorem, we need 

an additional definition. 

 

Definition:  A set S in R
N
 is a polyhedral set iff S is equal to the intersection of a finite 

number of halfspaces.    

 

Theorem 4: Continuity of a concave function using the Fenchel closure operation; Gale, 

Klee and Rockafellar (1968), Rockafellar (1970; 85): Let f be a concave function of N 

variables defined over an open convex polyhedral set S. Suppose f is bounded from 

below over every bounded subset of S. Then the Fenchel closure extension of f to the 

closure of S results in a continuous concave function defined over Clo S. 

 

The proof of this result is too involved to reproduce here but we can now apply this result. 

 

Applying Theorem 4, extend the domain of definition of C(y,p) from strictly positive 

price vectors p to nonnegative price vectors using the Fenchel closure operation and 

hence C(y,p) will be continuous and concave in p over the set {p: p  0N} for each y in 

the interval of feasible outputs.
18

    

 

Now return to the problem where we have a given cost function, C(y,p), we are given a 

strictly positive input vector, x >> 0N, and we ask what is the maximum output that this x 

can produce. Repeating the analysis in (13), we have 

 

(18) f(x) = maxy {y: xM(y)} 

               = maxy {y: C(y,p)  p
T
x for every p >> 0N}  using definitions (7) and (8). 

               = maxy {y: C(y,p)  1 for every p >> 0N such that p
T
x = 1} 

                              where we have used the linear homogeneity in prices property of C 

               = maxy {y: C(y,p)  1 for every p  0N such that p
T
x = 1}  

                              where we have extended the domain of definition of C(y,p) to 

                              nonnegative prices from positive prices and used the continuity 

                              of the extension function over the set of nonnegative prices 

               = maxy {y: G(y,x)  1} 

 

where the function G(y,x) is defined as follows: 

 

(19) G(y,x)  max p{C(y,p): p  0N and p
T
x = 1}. 

 

Note that the maximum in (19) will exist since C(y,p) is continuous in p and the feasible 

region for the maximization problem, {p: p  0N and p
T
x = 1}, is a closed and bounded 

                                                 
18

 If f(0N) = 0 and f(x) tends to plus infinity as the components of x tend to plus infinity, then the feasible y 

set will be y  0 and C(y,p) will be defined for all y  0 and p  0N. 
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set.
19

 Property 7 on the cost function C(y,p) will imply that the maximum in the last line 

of (18) will exist. Property 6 on the cost function will imply that for fixed x, G(y,x) is 

nondecreasing in y. Typically, G(y,x) will be continuous in y for a fixed x and so the 

maximum y that solves (18) will be the y
*
 that satisfies the following equation:

20
 

 

(20) G(y
*
,x) = 1. 

 

Thus (19) and (20) implicitly define the production function y
*
 = f(x) in terms of the cost 

function C.  

 

Problems 
 

4. Show that the f(x1,x2) defined by (15) above is a concave function over the interior of 

the domain of definition set S. You do not have to show that S is a convex set. 

 

5. In the case where the technology is subject to constant returns to scale, the cost 

function has the following form: C(y,p) = yc(p) where c(p) is a unit cost function. For x 

>> 0N, define the function g(x) as follows: 

(i) g(x)  maxp {c(p): p
T
x = 1; p  0N}. 

Show that in this constant returns to scale case, the function G(y,x) defined by (19) 

reduces to 

(ii) G(y,x) = yg(x). 

Show that in this constant returns to scale case, the production function that is dual to the 

cost function has the following explicit formula for x >> 0N: 

(iii) f(x) = 1/g(x). 

 

6. Let x  0 be input (a scalar number) and let y = f(x)  0 be the maximum output that 

could be produced by input x, where f is the production function. Suppose that f is 

defined as the following step function: 

 

(i) f(x)  0 for 0  x < 1; 

             1 for 1  x < 2; 

             2 for 2  x < 3; 

 

and so on.  Thus the technology cannot produce fractional units of output and it takes one 

full unit of input to produce each unit of output. It can be verified that this production 

function is continuous from above.   

(a) Calculate the cost function C(y,1) that corresponds to this production function; i.e., set 

the input price equal to one and try to determine the corresponding total cost function 

C(y,1). It will turn out that this cost function is continuous from below in y. 

(b) Graph both the production function y = f(x) and the cost function c(y)  C(y,1). 

 

                                                 
19

 Here is where we use the assumption that x >> 0N in order to obtain the boundedness of this set. 
20

 This method for constructing the production function from the cost function may be found in Diewert 

(1974a; 119). 
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7.  Suppose that a producer’s cost function is defined as follows for y  0, p1 > 0 and p2 > 

0: 

 

(i) C(y,p1,p2)  [b11p1 + 2b12(p1p2)
1/2

 + b22p2]y 

 

where the bij parameters are all positive.   

(a) Show that this cost function is concave in the input prices p1,p2.  Note: this is the two 

input case of the Generalized Leontief cost function defined by Diewert (1971). 

(b) Calculate an explicit functional form for the corresponding production function 

f(x1,x2) where we assume that x1 > 0 and x2 > 0. Hint: This part of the problem is not 

completely straightforward. You will obtain a quadratic equation but which root is the 

right one?  

 

4. The Derivative Property of the Cost Function 

 

Theorem 2, the Shephard Duality Theorem, is of mainly academic interest: if the 

production function f satisfies properties (10)-(12), then the corresponding cost function 

C defined by (1) satisfies the properties listed in Theorem 1 above and moreover 

completely determines the production function. However, it is the next property of the 

cost function that makes duality theory so useful in applied economics. 

 

Theorem 5: Shephard’s (1953; 11) Lemma: If the cost function C(y,p) satisfies the 

properties listed in Theorem 1 above and in addition is once differentiable with respect to  

the components of input prices at the point (y
*
,p

*
) where y

*
 is in the range of the 

production function f and p
*
 >> 0N, then     

 

(21) x
*
 = pC(y

*
,p

*
) 

 

where pC(y
*
,p

*
) is the vector of first order partial derivatives of cost with respect to 

input prices, [C(y
*
,p

*
)/p1,...,C(y

*
,p

*
)/pN]

T
, and x

*
 is any solution to the cost 

minimization problem  

 

(22) minx {p
*T

x: f(x)  y
*
}  C(y

*
,p

*
). 

 

Under these differentiability hypotheses, it turns out that the x
*
 solution to (22) is unique. 

 

Proof: Let x
*
 be any solution to the cost minimization problem (22). Since x

*
 is feasible 

for the cost minimization problem when the input price vector is changed to an arbitrary 

p >> 0N, it follows that 

 

(23) p
T
x

*
  C(y

*
,p)                                                                                 for every p >> 0N. 

 

Since x
*
 is a solution to the cost minimization problem (22) when p = p

*
, we must have 

 

(24) p
*T

x
*
 = C(y

*
,p

*
). 
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But (23) and (24) imply that the function of N variables, g(p)  p
T
x

*
  C(y

*
,p) is 

nonnegative for all p >> 0N with g(p
*
) = 0. Hence, g(p) attains a global minimum at p = 

p
*
 and since g(p) is differentiable with respect to the input prices p at this point, the 

following first order necessary conditions for a minimum must hold at this point: 

 

(25) p g(p
*
) = x

*
  pC(y

*
,p

*
) = 0N. 

 

Now note that (25) is equivalent to (21). If x
**

 is any other solution to the cost 

minimization problem (22), then repeat the above argument to show that  

 

(26) x
**

 = pC(y
*
,p

*
) 

              = x
*
                                                                     

 

where the second equality follows using (25). Hence x
**

 = x
*
 and the solution to (22) is 

unique.                                                                                                                         Q.E.D. 

 

The above result has the following implication: postulate a differentiable functional form 

for the cost function C(y,p) that satisfies the regularity conditions listed in Theorem 1 

above. Then differentiating C(y,p) with respect to the components of the input price 

vector p generates the firm’s system of cost minimizing input demand functions, x(y,p)  

pC(y,p). 

 

Shephard (1953) was the first person to establish the above result starting with just a cost 

function satisfying the appropriate regularity conditions.
21

 However, Hotelling (1932; 

594) stated a version of the result in the context of profit functions and Hicks (1946; 331) 

and Samuelson (1953; 15-16) established the result starting with a differentiable utility or 

production function. 

 

One application of the above result is its use as an aid in generating systems of cost 

minimizing input demand functions that are linear in the parameters that characterize the 

technology. For example, suppose that the cost function had the following Generalized 

Leontief functional form:
22

  

 

(27) C(y,p)  i=1
N
k=1

N
 bik pi

1/2 
pk

1/2
 y ;                                        bik = bki for 1  i < j  N 

 

where the N(N+1)/2 independent bik parameters are all nonnegative. With these 

nonnegativity restrictions, it can be verified that the C(y,p) defined by (27) satisfies 

properties 1 to 7 listed in Theorem 1.
23

 Applying Shephard’s Lemma shows that the 

system of cost minimizing input demand functions that correspond to this functional form 

are given by: 

                                                 
21

 This is why Diewert (1974a; 112) called the result Shephard’s Lemma. See also Fenchel (1953; 104). We 

have used the technique of proof used by McKenzie (1956-57). 
22

 See Diewert (1971). 
23

 Using problem 7 above, it can be seen that if the bik are nonnegative and y is positive, then the functions 

bik pi
1/2 

pk
1/2

 y are concave in the components of p.  Hence, since a sum of concave functions is concave, it 

can be seen that the C(y,p) defined by (27) is concave in the components of p. 
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(28) xi(y,p) = C(y,p)/pi = k=1
N
 bik (pk/pi)

1/2
 y ;                                              i = 1,2,…,N. 

 

Errors can be added to the system of equations (28) and the parameters bik can be 

estimated using linear regression techniques if we have time series or cross sectional data 

on output, inputs and input prices.
24

 If all of the bij equal zero for i  j, then the demand 

functions become: 

 

(29) xi(y,p) = C(y,p)/pi = bii y ;                                                                       i = 1,2,…,N. 

 

Note that input prices do not appear in the system of input demand functions defined by 

(29) so that input quantities do not respond to changes in the relative prices of inputs.  

The corresponding production function is known as the Leontief (1941) production 

function.
25

 Hence, it can be seen that the production function that corresponds to (28) is a 

generalization of this production function.  

 

We will consider additional functional forms for a cost function in subsequent sections. 

 

5. The Comparative Statics Properties of Input Demand Functions  

 

Before we develop the main result in this section, it will be useful to establish some 

results about the derivatives of a twice continuously differentiable linearly homogeneous 

function of N variables. We say that f(x), defined for x >> 0N is positively homogeneous 

of degree  iff f has the following property: 

 

(30) f(x) = 

f(x)                                                                         for all x >> 0N and  > 0. 

 

A special case of the above definition occurs when the number  in the above definition 

equals 1.  In this case, we say that f is (positively) linearly homogeneous
26

 iff 

 

(31) f(x) = f(x)                                                                           for all x >> 0N and  > 0. 

 

Theorem 6: Euler’s Theorems on Differentiable Homogeneous Functions: Let f(x) be a 

(positively) linearly homogeneous function of N variables, defined for x >> 0N. Part 1: If 

the first order partial derivatives of f exist, then the first order partial derivatives of f 

satisfy the following equation: 

                                                 
24

 Note that b12 will appear in the first input demand equation and in the second as well using the cross 

equation symmetry condition, b21 = b12. There are N(N1)/2 such cross equation symmetry conditions and 

we could test for their validity or impose them in order to save degrees of freedom. The nonnegativity 

restrictions that ensure global concavity of C(y,p) in p can be imposed if we replace each parameter bik by a 

squared parameter, (aik)
2
. However, the resulting system of estimating equations is no longer linear in the 

unknown parameters. 
25

 The Leontief production function can be defined as f(x1,…,xN)  mini {xi/bii : i = 1,…,N}. It is also 

known as the no substitution production function. Note that this production function is not differentiable 

even though its cost function is differentiable. 
26

 Usually in economics, we omit the adjective “positively” but it is understood that the  which appears in 

definitions (30) and (31) is restricted to be positive. 
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(32) f(x) = n=1
N
 xn f(x1,…,xN)/xn = x

T
f(x)                                             for all x >> 0N. 

 

Part 2: If the second order partial derivatives of f exist, then they satisfy the following 

equations: 

 

(33) k=1
N
 [

2
f(x1,…,xN)/xnxk]xk = 0                                 for all x >> 0N and n = 1,…,N. 

 

The N equations in (33) can be written using matrix notation in a much more compact 

form as follows: 

 

(34) 
2
f(x)x = 0N                                                                                            for all x >> 0N. 

 

Proof of Part 1: Let x >> 0N and  > 0. Differentiating both sides of (31) with respect to 

 leads to the following equation using the composite function chain rule: 

 

(35) f(x) = n=1
N
 [f(x1,…,xN)/(xn)][(xn)/] 

              = n=1
N
 [f(x1,…,xN)/(xn)]xn . 

 

Now evaluate (35) at  = 1 and we obtain (32). 

  

Proof of Part 2: Let x >> 0N and  > 0. For n = 1,…,N, differentiate both sides of (31) 

with respect to xn and we obtain the following N equations: 

 

(36) fn(x1,…,xN)(xn)/xn = fn(x1,…,xN)                                            for n = 1,…,N or 

                      fn(x1,…,xN) = fn(x1,…,xN)                                            for n = 1,…,N or 

                        fn(x1,…,xN) = fn(x1,…,xN)                                               for n = 1,…,N 

 

where the nth first order partial derivative function is defined as fn(x1,…,xN)  

f(x1,…,xN)/xn for n = 1,…,N.
27

 Now differentiate both sides of the last set of equations 

in (36) with respect to  and we obtain the following N equations: 

 

(37) 0 = k=1
N
 [fn(x1,…,xN)/xk][(xk)/]                                             for n = 1,…,N                     

           = k=1
N
 [fn(x1,…,xN)/xk]xk . 

 

Now evaluate (37) at  = 1 and we obtain the N equations (33).                                Q.E.D. 

 

The above results can be applied to the cost function, C(y,p). From Theorem 1, C(y,p) is 

linearly homogeneous in p. Hence by part 2 of Euler’s Theorem, if the second order 

partial derivatives of the cost function with respect to the components of the input price 

vector p exist, then these derivatives satisfy the following restrictions: 

 

                                                 
27

 Using definition (30) for the case where  = 0, it can be seen that the last set of equations in (36) shows 

that the first order partial derivative functions of a linearly homogenous function are homogeneous of 

degree 0.  
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(38) 
2

ppC(y,p)p = 0N. 

 

Theorem 7: Diewert (1993; 148-150): Suppose the cost function C(y,p) satisfies the 

properties listed in Theorem 1 and in addition is twice continuously differentiable with 

respect to the components of its input price vector at some point, (y,p). Then the system 

of cost minimizing input demand equations, x(y,p)  [x1(y,p),…,xN(y,p)]
T
, exists at this 

point and these input demand functions are once continuously differentiable. Form the N 

by N matrix of input demand derivatives with respect to input prices, B  [xi(y,p)/pj], 

which has ij element equal to xi(y,p)/pj. Then the matrix B has the following 

properties: 

 

(39) B = B
T
   so that xi(y,p)/pk = xk(y,p)/pi for all i  k;

28
 

(40) B is negative semidefinite
29

 and  

(41) Bp = 0N.
30

 

 

Proof: Shephard’s Lemma implies that the firm’s system of cost minimizing input 

demand equations, x(y,p)  [x1(y,p),…,xN(y,p)]
T
, exists and is equal to  

 

(42) x(y,p) = pC(y,p). 

 

Differentiating both sides of (42) with respect to the components of p gives us 

 

(43) B  [xi(y,p)/pk] = 
2

ppC(y,p). 

 

Now property (39) follows from Young’s Theorem in calculus. Property (40) follows 

from (43) and the fact that C(y,p) is concave in p and the fourth characterization of 

concavity. Finally, property (41) follows from the fact that the cost function is linearly 

homogeneous in p and hence (38) holds.                                                                    Q.E.D.   

 

Note that property (40) implies the following properties on the input demand functions: 

 

(44) xn(y,p)/pn  0                                                                                       for n = 1,…,N. 

 

Property (44) means that input demand curves cannot be upward sloping. 

 

If the cost function is also differentiable with respect to the output variable y, then we can 

deduce an additional property about the first order derivatives of the input demand 

                                                 
28

 These are the Hicks (1946; 311) and Samuelson (1947; 69) symmetry restrictions. Hotelling (1932; 549) 

obtained analogues to these symmetry conditions in the profit function context. 
29

 Hicks (1946; 311) and Samuelson (1947; 69) also obtained versions of this result by starting with the 

production (or utility) function f(x), assuming that the first order conditions for solving the cost 

minimization problem held and that the strong second order sufficient conditions for the primal cost 

minimization problem also held. Thus using duality theory, we obtain the same results under weaker 

regularity conditions.   
30

 Hicks (1946; 331) and Samuelson (1947; 69) also obtained this result using their primal technique. 
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functions. The linear homogeneity property of C(y,p) in p implies that the following 

equation holds for all  > 0: 

 

(45) C(y,p) = C(y,p)                                                                  for all  > 0 and p >> 0N. 

 

Partially differentiating both sides of (45) with respect to y leads to the following 

equation: 

 

(46) C(y,p)/y = C(y,p)/y                                                    for all  > 0 and p >> 0N. 

 

But (46) implies that the function C(y,p)/y is linearly homogeneous in p and hence part 

1 of Euler’s Theorem applied to this function gives us the following equation: 

 

(47) C(y,p)/y = n=1
N
 pn

2
C(y,p)/ypn = p

T


2
ypC(y,p). 

 

But using (42), it can be seen that (47) is equivalent to the following equation:
31

 

 

(48) C(y,p)/y = n=1
N
 pnxn(y,p)/y.  

  

Problems 
 

8. For i  k, the inputs i and k are said to be substitutes if xi(y,p)/pk = xk(y,p)/pi > 0, 

unrelated if xi(y,p)/pk = xk(y,p)/pi = 0
32

 and complements if xi(y,p)/pk = 

xk(y,p)/pi < 0. (a) If N = 2, show that the two inputs cannot be complements. (b) If N = 

2 and x1(y,p)/p1 = 0, then show that all of the remaining input demand price derivatives 

are equal to 0; i.e., show that x1(y,p)/p2 = x2(y,p)/p1 = x2(y,p)/p2 = 0. (c) If N = 3, 

show that at most one pair of inputs can be complements.
33

 

  

9. Let N  3 and suppose that x1(y,p)/p1 = 0.  Then show that x1(y,p)/pn = 0 as well 

for n = 2,3,…,N. Hint: You may need to use the definition of negative semidefiniteness in 

a strategic way. This problem shows that if the own input elasticity of demand for an 

input is 0, then that input is unrelated to all other inputs. 

 

10.  Recall the definition (27) of the Generalized Leontief cost function where the 

parameters bij were all assumed to be nonnegative. Show that under these nonnegativity 

restrictions, every input pair is either unrelated or substitutes. Hint: Simply calculate 


2
C(y,p)/pipk for i  k and look at the resulting formula. Comment: This result shows 

that if we impose the nonnegativity conditions bik  0 for i  j on this functional form in 

order to ensure that it is globally concave in prices, then we have a priori ruled out any 

form of complementarity between the inputs. This means if the number of inputs N is 

                                                 
31

 This method of deriving these restrictions is due to Diewert (1993; 150) but these restrictions were 

originally derived by Samuelson (1947; 66) using his primal cost minimization method. 
32

 Pollak (1969; 67) used the term “unrelated” in a similar context. 
33

 This result is due to Hicks (1946; 311-312): “It follows at once from Rule (5) that, while it is possible for 

all other goods consumed to be substitutes for x1, it is not possible for them all to be complementary with 

it.” 
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greater than 2, this nonnegativity restricted functional form cannot be a flexible functional 

form
34

 for a cost function; i.e., it cannot attain an arbitrary pattern of demand derivatives 

that are consistent with microeconomic theory, since the nonnegativity restrictions rule 

out any form of complementarity.  

 

11. Suppose that a producer’s three input production function has the following Cobb 

Douglas (1928) functional form: 

 

(a) f(x1,x2,x3)  321

321


xxx                      where 1 > 0, 2 > 0, 3 > 0 and  1 + 2 + 3 = 1. 

 

Let the positive input prices p1 > 0, p2 > 0, p3 > 0 and the positive output level y > 0 be 

given. (i) Calculate the producer’s cost function, C(y,p1,p2,p3) along with the three input 

demand functions, x1(y,p1,p2,p3), x2(y,p1,p2,p3) and x3(y,p1,p2,p3). Hint: Use the usual 

Lagrangian technique for solving constrained minimization problems. You do not need to 

check the second order conditions for the problem. The positive constant k  
321

321

     will appear in the cost function. 

 

(ii) Calculate the input one demand elasticity with respect to output 

[x1(y,p1,p2,p3)/y][y/x1(y,p1,p2,p3)] and the three input one demand elasticities with 

respect to input prices [x1(y,p1,p2,p3)/pn][pn/x1(y,p1,p2,p3)] for n = 1,2,3. 

 

(iii) Show that 1 < [x1(y,p1,p2,p3)/p1][p1/x1(y,p1,p2,p3)] < 0. 

(iv) Show that   0 < [x1(y,p1,p2,p3)/p2][p2/x1(y,p1,p2,p3)] < 1. 

(v)  Show that   0 < [x1(y,p1,p2,p3)/p3][p3/x1(y,p1,p2,p3)] < 1. 

 

(vi) Can any pair of inputs be complementary if the technology is a three input Cobb 

Douglas? 

 

Comment: The Cobb Douglas functional form is widely used in macroeconomics and in 

applied general equilibrium models. However, this problem shows that it is not 

satisfactory if N  3. Even in the N = 2 case where analogues to (iii) and (iv) above hold, 

it can be seen that this functional form is not consistent with technologies where the 

degree of substitution between inputs is very high or very low. 

 

12. Suppose that the second order partial derivatives with respect to input prices of the 

cost function C(y,p) exist so that the nth cost minimizing input demand function xn(y,p) = 

C(y,p)/pn > 0 exists for n = 1,…,N. Define the input n elasticity of demand with respect 

to input price k as follows: 

 

                                                 
34

 Diewert (1974a; 115) introduced the term “flexible functional form” to describe a functional form for a 

cost function (or production function) that could approximate an arbitrary cost function (consistent with 

microeconomic theory) to the second order around any given point. The Generalized Leontief cost function 

defined by (27) above is flexible for the class of cost functions that are dual to linearly homogeneous 

production functions if we do not impose any restrictions on the parameters bij; see Diewert (1971) or 

Section 8 below for a proof of this fact.  
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(a) enk(y,p)  [xn(y,p)/pk][pk/xn(y,p)]                                    for n = 1,..,N and k = 1,…,N. 

 

Show that for each n, k=1
N
 enk(y,p) = 0.                       

 

13. Let the producer’s cost function be C(y,p), which satisfies the regularity conditions in 

Theorem 1 and, in addition, is once differentiable with respect to the components of the 

input price vector p. Then the nth input demand function is xn(y,p)  C(y,p)/pn for n = 

1,…,N. Input n is defined to be normal at the point (y,p) if xn(y,p)/y = 
2
C(y,p)/pny 

> 0; i.e., if the cost minimizing demand for input n increases as the target output level y 

increases. On the other hand, input n is defined to be inferior at the point (y,p) if 

xn(y,p)/y = 
2
C(y,p)/pny < 0.  Prove that not all N inputs can be inferior at the point 

(y,p).  Hint: Make use of (48). 

 

14. If the production function f dual to the differentiable cost function C(y,p) exhibits 

constant returns to scale so that f(x) = f(x) for all x  0N and all  > 0, then show that 

for each n, the input n elasticity of demand with respect to the output level y is 1; i.e., 

show that for n = 1,…,N, [xn(y,p)/y][y/xn(y,p)] = 1. 

 

15. Let C(y,p) be a twice continuously differentiable cost function that satisfies the 

regularity conditions listed in Theorem 1 in section 2 above. By Shephard’s Lemma, the 

input demand functions are given by 

 

(i) xn(y,p) = C(y,p)/pn > 0;    n = 1,…,N. 

 

The Allen (1938; 504) Uzawa (1962) elasticity of substitution nk between inputs n and k 

is defined as follows: 

 

(ii) nk(y,p)  {C(y,p)
2
C(y,p)/pnpk}/{[C(y,p)/pn][C(y,p)/pk]}               1  n,k  N 

                    = {C(y,p)
2
C(y,p)/pnpk}/xn(y,p) xk(y,p)                                       using (i). 

 

Define   [nk(y,p)] as the N by N matrix of elasticities of substitution. 

(a) Show that  has the following properties: 

 

(iii)  = 
T
 ; 

(iv)  is negative semidefinite and 

(v) s = 0N 

 

where s  [s1,…,sN]
T
 is the vector of cost shares; i.e., sn  pn xn(y,p)/C(y,p) for n = 1,…,N. 

Now define the N by N matrix of cross price elasticities of demand E in a manner 

analogous to definition (ii) above: 

 

(vi) E  [e
nk

]                                                                                     n = 1,…,N ; k = 1,…,N 

          [(pk/xn)xn(y,p)/pk] 

         = [(pk/xn)
2
C(y,p)/pnpk]                                                       using (i) 

         = x̂
1


2
ppC(y,p) p̂ . 
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(b) Show that E =  ŝ  where ŝ  is an N by N diagonal matrix with the elements of the 

share vector s running down the main diagonal. 

 

6. The Duality Between Constant Returns to Scale Production Functions and their 

Unit Cost Functions 

 

In this section, we will add more structure to the production function: we will assume that 

f(x) is subject to constant returns to scale so that f(x) = f(x) for every nonnegative 

input vector x  0N and nonnegative scalar   0.  

 

In many areas of applied economics, constant returns to scale in production is assumed. 

Samuelson (1967) justified this assumption as an approximation to reality by using a 

plant replication argument. He assumed that there was a plant size that minimized 

average cost and showed if this optimal plant size output level was small relative to the 

size of the market, then by replicating optimal size plants, the industry production 

function would approximate a constant returns to scale production function.
35

 Thus in this 

section, we will assume constant returns to scale in production and see what additional 

properties the resulting cost function must satisfy.  

 

Before we develop a formal duality theorem, it is necessary to prove a useful  

mathematical result.   

 

Theorem 8: Berge (1963; 208): If f is a positive, linearly homogeneous and quasiconcave 

function defined over the positive orthant in R
N
, , then f is also concave over . 

 

Proof: Let x
1
 >> 0N, x

2
 >> 0N and 0 <  < 1. We need to show that: 

 

(49) f(x
1
 + (1)x

2
)  f(x

1
) + (1)f(x

2
). 

 

Without loss of generality, we can assume 0 < f(x
1
)  f(x

2
). Let  > 0 be the scalar that 

causes f(x
2
) to equal f(x

1
). Using the constant returns to scale property of f,  can be 

defined as follows: 

 

(50)   f(x
1
)/f(x

2
) > 0. 

 

Points on the line segment joining the point x
1
 to x

2
 can be represented by x

1
 + 

(1)x
2
 where 0    1. The quasiconcavity property of f implies that the following 

equality holds for all  such that 0    1: 

 

(51) f(x
1
)  f(x

1
 + (1)x

2
). 

 

Define  > 0 as the proportionality factor that deflates the point x
1
 + (1)x

2
 onto the 

line segment joining the point x
1
 to x

2
. Thus we have: 

                                                 
35

 Diewert (1981) elaborated on Samuelson’s results. 
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(52) [x
1
 + (1)x

2
] = x

1
 + (1)x

2
.  

 

Thus the unknown  and  must be the solution to the following two equations: 

 

(53)  =  ; (1) = (1).  

 

The solution to (52) is  = /(1+) and  = /(1+). It is straightforward to 

show that the solution satisfies  > 0 and 0    1. Now substitute (52) into (51) and we 

obtain the following inequality: 

 

(54) f(x
1
)  f(x

1
 + (1)x

2
) 

                 = f([x
1
 + (1)x

2
])                                       using (52) 

                 = f(x
1
 + (1)x

2
)                                          using the linear homogeneity of f 

                 = [/(1+)]f(x
1
 + (1)x

2
). 

 

Thus (54) implies: 

 

(55) f(x
1
 + (1)x

2
)  

1
(1+)f(x

1
) 

                                   = 
1

(1)f(x
1
) + f(x

1
) 

                                   = f(x
1
) + (1)f(x

2
)                       using definition (50).                    

                                                                                                                                    Q.E.D. 

 

The above result will prove to be useful in what follows. Recall that in Section 2 above, 

we initially assumed that the production function f(x) only satisfied continuity from above. 

We continue to make this very weak regularity assumption but we now assume that in 

addition, f satisfies the following linear homogeneity property: 

 

(56) f(x) = f(x) for all   0 and x  0N.  

 

We also assume that there exists an x
*
 > 0N such that y

*
  f(x

*
) > 0; i.e., there exists a 

nonnegative, nonzero input vector x
*
 which can produce a positive output. This 

assumption along with the constant returns to scale assumption (56) means that the 

technology can produce any positive output level. 

 

Let y > 0 and p >> 0N. We can define the total cost function that corresponds to our 

homogeneous production function using definition (1) again; i.e., define C(y,p) as 

follows: 

 

(57) C(y,p)  min x {p
T
x : f(x)  y ; x  0N} 

                   = min x {p
T
x : y

1
f(x)  1 ; x  0N} 

                   = min x {p
T
x : f(x/y)  1 ; x  0N}                                                using (56) 

                   = min x {yp
T
(x/y) : f(x/y)  1 ; x/y  0N} 

                   = y min z {p
T
z : f(z)  1 ; z  0N}                                                 letting z = x/y 

                   = y c(p) 
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where c(p) is the unit cost function that corresponds to f, defined as follows: 

 

(58) c(p)  min z {p
T
z : f(z)  1 ; z  0N}. 

 

We can use the input price properties of the total cost function C(y,p) that were implied 

by Theorem 1 in Section 2 in order to derive the properties of the unit cost function, c(p). 

Thus Theorem 1 tells us that c(p) is well defined as a minimum for p >> 0N and it is 

nonnegative, positively linearly homogeneous, nondecreasing and concave in p over the 

positive orthant. In fact, the continuity from above property of f along with the 

assumption that f is linearly homogeneous will imply that f(0N) = 0 and this in turn will 

imply that c(p) > 0 for p >> 0N. Since c(p) is concave over the positive orthant, we can 

also deduce that it is continuous over this domain of definition. The domain of definition 

of c(p) can be extended to the nonnegative orthant using the Fenchel closure operation as 

was done in Section 2. The resulting c(p) will be continuous over the nonnegative orthant. 

Thus there is no problem in going from the production function to its unit cost function. 

 

Can we use the unit cost function to recover the underlying production function? We can 

get an outer approximation to the true technology using the algebra in Section 2. Let x > 

0N be an arbitrary nonzero, nonnegative input vector. The maximum output y that is 

consistent with using the outer approximation technology and the input vector x must 

satisfy the inequalities yc(p)  p
T
x for every p > 0N. Thus we want the maximum y such 

that y  p
T
x/c(p) for every p > 0N. Now the functions p

T
x and c(p) are both linearly 

homogeneous so we can normalize one of these functions and minimize or maximize the 

remaining function to obtain y = f
*
(x), where f

*
(x) is the production function that 

corresponds to the outer approximation technology. If we set p
T
x = 1, then we want to 

minimize 1/c(p) subject to the constraint p
T
x = 1 and so in this case, f

*
(x) is defined as 

follows: 

 

(59) f
*
(x)  min p {1/c(p) : p

T
x = 1; p  0N} 

                = 1/max p {c(p) : p
T
x = 1; p  0N}. 

 

Note that the maximization problem in (59) is a concave programming problem. On the 

other hand, we could set c(p) = 1. In this case, f
*
(x) is (equivalently) defined as follows: 

 

(60) f
*
(x)  min p {p

T
x : c(p) = 1; p  0N} 

                = min p {p
T
x : c(p)  1; p  0N}. 

 

In order to recover the original production function, f(x) by using the formulae on the 

right hand sides of (59) or (60), we need to assume that f is nondecreasing and 

quasiconcave, as in Section 2. However, using Berge’s Theorem 8 above, it can be seen 

that when f is linearly homogeneous and quasiconcave (and positive) over the positive 

orthant, then f is also a concave function over the positive orthant. If in addition, f is 

continuous over the nonnegative orthant, then f will also be concave over the nonnegative 

orthant. Thus f and c satisfy exactly the same regularity conditions, with respect to x and 

p respectively if we assume that f is nondecreasing and quasiconcave. Moreover, the 
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underlying technology can be represented by using either the linearly homogeneous 

production function or its dual unit cost function. Samuelson (1953; 15) and Shephard 

(1953) were the first to obtain versions of this duality theorem for the homogeneous 

case.
36

 

 

In the following sections, we will exhibit various explicit functional forms for a linearly 

homogeneous f or its dual unit cost function.  

 

7. The Constant Elasticity of Substitution Production Function 

 

The Constant Elasticity of Substitution (CES) production function, f(x), is defined as 

follows: 

 

(61) f(x1,...,xN)  [n=1
N 
nxn

s
]
1/s

  

 

where the parameters n are positive and s is a parameter which satisfies s  0 and the 

inequality s  1. The two input case of this functional form was introduced into the 

economics literature by Arrow, Chenery, Minhas and Solow (1961; 230).
37

 The problems 

below show that the CES production function is a well behaved constant returns to scale 

production function which satisfies the regularity conditions that were developed in the 

previous section, provided that s  1.  

  

Problems 
 

16. Let s  0 and rewrite the f(x) defined by (61) as f(x) = fs(x) where fs(x)  [n=1
N 

n
*
xn

s
]
1/s

, n
*
  n/i=1

N
 i for n = 1,...,N and   [i=1

N
 i]

1/s
. Show that lim s0 

lnfs(x1,...,xN) = n=1
N
 n

*
lnxn. Thus the CES production function defined by (61) tends to 

a Cobb-Douglas production function as the parameter s tends to 0. Hint: Write 

lnfs(x1,...,xN) as g(s)/h(s) where g(s)  ln[n=1
N 
n

*
xn

s
] and h(s)  s. Let s tend to 0 and 

apply l’Hospital’s Rule. Note that g(0) = h(0) = 0. 

 

17. Let 
T
  [1,...,N] where n > 0 for n = 1,...,N. Define ̂  as the N by N diagonal 

matrix with the elements of the vector  running down the main diagonal. Show that the 

N by N matrix  ̂  + 
T
 is a negative semidefinite matrix. Hint: Show that the 

inequality z
T
[ ̂  + 

T
]z  0 for all vectors z is equivalent to the Cauchy-Schwarz 

inequality (x
T
y)

2
  (x

T
x)(y

T
y) with x  ̂ 1/2

1N ; y  ̂ 1/2
z where 1N is a vector of ones of 

dimension N and ̂ 1/2
 is a diagonal matrix with the positive square roots of the elements 

of  running down the main diagonal.  

 

                                                 
36

 See also Diewert (1974a; 110-112) for a duality theorem along the present lines. 
37

 These authors wrote the CES functional form defined by (61) as f(x) = [n=1
N 
n

*
xn

s
]
1/s

 where the n
*
 

now sum up to one and   [n=1
N 
n]

1/s
 is a positive efficiency parameter. They noted that the function of x 

that is defined by [n=1
N 
n

*
xn

s
]

1/s
 is mean of order s of the inputs, x1,...,xN and they referred to Hardy, 

Littlewood and Polya (1934; 13) for the mathematical properties of this class of means. 
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18. Show that the CES production function f(x) defined by (61) above is homogeneous of 

degree one in the components of x. 

 

19. Show that the CES production function f(x) defined by (61) above is a concave 

function of x if s  0 and s  1 and is a convex function of x if s  1. Hint: Calculate the 

matrix of second order partial derivatives of f, xx
2
f(x), for x >> 0N and show it is 

negative semidefinite if s  1 and positive semidefinite if s  1. Problem 17 will be useful.  

 

We now want to determine the cost minimizing system of input demand functions. We 

will first calculate the unit cost function that corresponds to the CES production function 

defined by (61). We assume that the producer faces the positive input prices p  [p1,...,pN] 

>> 0N. The unit cost minimization problem is the following one: 

 

(62) min x {n=1
N
 pnxn : [n=1

N 
nxn

s
]
1/s

 = 1; x  0N}. 

 

Ignoring the nonnegativity constraints, x  0N and assuming that s < 1 and s  0, the 

Lagrangian first order conditions for an interior solution for (62) are equivalent to the 

following conditions: 

 

(63) pn = nxn
s1

 ;                                                                                                n = 1,...,N; 

(64) 1  = n=1
N 
nxn

s
  

 

where the unknowns in (63) and (64) are x1,...,xN and the Lagrange multiplier . The 

solution to (63) and (64) turns out to be the following one (remember, s  0 and s  1):
38

 

 

(65) xn
*
(p)  pn

1/(s1)
n

1/(1s)
/[i=1

N
 i

1/(1s)
pn

s/(s1) 
]
1/s

 ;                                            n = 1,...,N. 

 

Once the unit output demand functions have been calculated, the unit cost function, c(p), 

can be calculated: 

 

(66) c(p)  n=1
N
 pnxn

*
(p)  

               = [n=1
N
 n

1/(1s)
pn

s/(s1) 
]

(s1)/s
                                                                  using (65) 

               = [n=1
N
 npn

r 
]

1/r
    

 

where the new parameters r and 1, ..., N are defined as follows:
39

 

 

(67) r  s/(s1) ; n  n
1/(1s)

 ; n = 1,...,N. 

 

When s takes on the values between 1 and , r = s/(s1) goes from  to 1.
40

 Thus the 

range of r and s is the same, but they travel in opposite directions. Hence the CES unit 

                                                 
38

 When s = 1, we have a linear production function. Usually, an interior solution to the cost minimization 

problem defined by (62) will not occur; i.e., in this case, we have a linear programming problem and the 

solution will normally be a corner solution.   
39

 Note that c(p)  [n=1
N
 npn

r 
]

1/r
 can be rewritten as 

*
[n=1

N
 n

*
pn

r 
]

1/r
 where n

*
  n/i=1

N
 i and 

*
  

[i=1
N
 i]

1/r
. Thus c(p) is equal to an efficiency parameter 

*
 times a mean of order r.   
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cost function c(p) defined by (66) will be a linearly homogeneous, concave and 

nondecreasing function, and have the same mathematical properties as the CES 

production function f(x) defined by (61).    

   

Once the CES unit cost function has been defined, the CES total cost function is defined 

as C(y,p)  yc(p) where c(p) is defined by (66). Using Shephard’s Lemma, the CES 

system of cost minimizing demand functions is the following one: 

 

(68) xn(y,p) = y npn
r1

[i=1
N
 i pi

r 
]

(1/r)1
 ;                                                            n = 1,...,N. 

                    = C(y,p) npn
r1

/i=1
N
 i pi

r
 .   

 

Problem  
 

20. Recall problem 15 above which defined the Allen Uzawa elasticity of substitution nk 

between inputs n and k. Show that if C(y,p) is the CES total cost function, then nk(y,p) = 

1  r for all input pairs n,k such that n  k. Thus every elasticity of substitution between 

any two distinct inputs is equal to the same constant.  

 

The above problem shows why the CES functional form is unsatisfactory if the number 

of inputs N exceeds two, since it is a priori unlikely that all elasticities of substitution 

between every pair of inputs would equal the same number. Thus in the following 

sections, we will look for functional forms for the production or cost function that allow 

for more flexible patterns of substitution between inputs. 

 

We conclude this section by listing some possible methods for estimating the elasticity of 

substitution if the underlying technology can be adequately described by the CES 

functional form.  

 

We will first look at estimating equations where input prices are exogenous variables and 

input quantities (and hence output) are endogenous variables. Take logarithms of both 

sides of the CES input demand functions defined by (68). Add error terms to each 

equation, say en
t
 for equation n in period t.

41
 Subtract the logarithm of the first input 

demand function from these N equations. Suppose that there are data on inputs, output, 

and input prices for t periods and the period t data are x
t
  [x1

t
,...,xN

t
], y

t
 and p

t
  

[p1
t
,...,pN

t
] for t = 1,...,T. We obtain the following estimating equations:

42
 

                                                                                                                                                 
40

 Note  that when s = 0, r will also equal 0. Rewrite the c(p) defined by the last line in (66) as c(p) = 
*
cr(p) 

where 
*
  [i=1

N
 i]

1/r
 and cr(p) [n=1

N
 n

*
pn

r 
]

1/r
.  Using the results of problem 16, it can be seen that the 

limiting case for cr(p) as r tends to 0 is the Cobb-Douglas unit cost function which has the logarithm equal 

to n=1
N
 n

*
lnpn where n

*
 = n/i=1

N
 i for n = 1,...,N. 

41
 The errors in our models can be due to measurement errors in the prices and quantities, the assumption of 

incorrect functional forms and errors in optimization. 
42

 Much of the literature on estimating CES unit cost functions deals with the application of this functional 

form in the consumer context when aggregating over similar products; e.g., see Broda and Weinstein 

(2010), Bernard, Redding and Schott (2010) and Gábór-Toth and Vermeulen (2017). Almost all of the 

estimating equations discussed in this section can be applied to the consumer context; i.e., replace the 

period t output level y
t
 by the period t utility level u

t
 and interpret x

t
 as a vector of cost minimizing 
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(69) ln[xn
t
/x1

t
] = lnn  ln1 + (r1)ln[pn

t
/p1

t
] + en

t
  e1

t
 ;                    n = 2,...,N; t = 1,...,T. 

 

The above equations are linear in the unknown parameters, the lnn and r1  . 

However, not all of the lnn can be identified. This may not matter if the focus is on the 

estimation of r (or on the elasticity of substitution, ). In order to identify all of the 

parameters, we can add a unit cost function equation to the system defined by (69) Thus 

define observed unit cost in period t as c
t
  (n=1

N
 pn

t
xn

t
)/y

t
 for t = 1,...,T. Add the 

following estimating equations to equations (69) where e0
t
 is the period t error term:

43
 

 

(70) lnc
t
 = (1/r)ln[n=1

N
 n pn

r 
] + e0

t
 ;                                                                   t = 1,...,T. 

 

Of course, the estimating equations in (70) are nonlinear in the unknown parameters so 

nonlinear regression techniques will have to be used. 

 

If the focus is on estimating the elasticity of substitution, equations (69) can be 

differenced again, this time with respect to time. Thus define the double differenced 

logarithmic input quantity and price variables, dxn
t
 and dpn

t
 as follows for n = 2,...,N; t = 

2,...,T:  

 

(71) dxn
t
  ln[xn

t
/x1

t
]  ln[xn

t1
/x1

t1
] = lnxn

t
  lnx1

t
  lnxn

t1
 + lnx1

t1
 ;  

(72) dpn
t
  ln[pn

t
/p1

t
]  ln[pn

t1
/p1

t1
] = lnpn

t
  lnp1

t
  lnpn

t1
 + lnp1

t1
 .  

 

The double differenced counterparts to equations (69) are now the following equations:
44

 

 

(73) dxn
t
 = (r1)dpn

t
 + en

t
  e1

t
  en

t1
 + e1

t1
 ;                                      n = 2,...,N; t = 2,...,T 

 

where r1 = . There are (N1)(T1) estimating equations in the system of equations 

defined by (73) and only one economic parameter to estimate, namely  = r1. Note 

that the only exogenous variables in equations (69), (70) and (73) are input prices. Thus 

to prevent biased estimates, it is important that these prices be measured with minimal 

measurement error.  

 

                                                                                                                                                 
consumer demands. Estimating equations which involve y

t
 cannot be used in the consumer context since 

the utility level u
t
 is not observable. 

43
 This equation cannot be estimated in the consumer context because unit cost c

t
 is not observable. 

44
 The double differencing methodology originated in Feenstra (1994; 163). Equations (73) can be 

converted into double differenced log input shares equal to a constant times double differenced log input 

prices plus error terms; see Broda and Weinstein (2006; 564) (2010; 714) and Gábór-Toth and Vermeulen 

(2017) and equations (75) below for these share equations. The present analysis follows the material in 

Diewert and Feenstra (2017; 14). Diewert and Feenstra (2017; 76-79) worked out the analogous estimating 

equations for a CES direct aggregator function where double differenced log shares were equal to double 

differenced log quantities plus error terms. A potential cost of the double differencing technique is that the 

variance of the error terms in the system of estimating equations (73) can be much larger than the variances 

in the system of equations defined by equations (69) or in a system that just used xn
t
 or lnxn

t
 as the 

dependent variable for input n in period t. However, the standard error for  when the very simple 

estimating system of equations defined by (76) used by Diewert and Feenstra was very small.     
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There is a problem with the systems of estimating equations defined by (69) and (73) and 

that is that these equations are dependent on the choice of the numeraire input, which in 

the above algebra is input 1. Looking at the estimating equations, it is evident that it is 

probably best to choose the numeraire commodity as one where the original error terms, 

the en
t
, have means close to 0 and small variances. In practice, it may be difficult to 

choose the “best” numeraire commodity.
45

  

 

There is a way to avoid asymmetry in the estimating equations and that is to shift from 

estimating systems of input demand functions to estimating systems of share equations. 

From equations (68), it can be seen that sn(y,p)  pnxn(y,p)/C(y,p) = npn
r
/i=1

N
 ipi

r
 for n 

= 1,...,N. Define the nth input share of cost in period t as sn
t
  pn

t
xn

t
/i=1

N
 pi

t
xi

t
 for n = 

1,...,N and t =1,...,T. Adding error terms to the above cost share equations leads to the 

following nonlinear system of estimating equations: 

 

(74) sn
t
 = [n(pn

t
)
r
/i=1

N
 i(pi

t
)
r
] + en

t
 ;                                                n = 1,...,N; t = 1,....,T.  

  

If we sum equations (74) over n for a fixed t, we find that n=1
N
 en

t
 = 0 for t = 1,...,T. 

Thus within each time period, the errors cannot be distributed independently. Thus to 

prevent exact collinearity, one of the N estimating equations must be dropped. 

Furthermore, it can be seen that not all of the n parameters can be identified. Thus we 

require a normalization on the n such as i=1
N
 i = 1 or 1 = 1. Alternatively, equations 

(70) can be added to the (N1)T independent estimating equations in (74) as additional 

estimating equations which will enable all of the n to be identified. 

 

An alternative stochastic specification can be obtained if we take logarithms of both sides 

of the equations sn
t
 = [n(pn

t
)
r
/i=1

N
 i(pi

t
)
r
] and add error terms en

t*
 to the resulting 

equations. Choose input 1 as a numeraire input and consider the following estimating 

equations: 

 

(75) ln(sn
t
/s1

t
) = lnn  ln1 + rln[pn

t
/p1

t
] + en

t*
  e1

t*
 ;                         n = 2,...,N; t = 1,...,T. 

 

If the focus is on estimating the elasticity of substitution,  = 1  r, then equations (75) 

can be differenced with respect to time and we obtain the following system of estimating 

equations: 

 

(76) dsn
t
 = rdpn

t
 + en

t*
  e1

t*
  en

t1*
 + e1

t1*
 ;                                       n = 2,...,N; t = 2,...,T 

 

                                                 
45

 Here is a possible strategy for choosing the numeraire input. Take logs of both sides of equations (68) 

and add the error term (with 0 mean) en
t
 to equation n for period t. Run a preliminary systems nonlinear 

regression in order to obtain estimates for the variance-covariance matrix  of the vector of errors, 

[e1
t
,...,eN

t
] which is assumed to be distributed independently over time. Use the estimated variance-

covariance matrix, 
*
 say, to solve the convex programming problem, min w {w

T


*
w : w

T
w = 1}. The w

*
 

solution to this problem will be a normalized eigenvector that corresponds to the smallest eigenvalue of 
*
. 

Make a further normalization of w
*
 so that the resulting vector, w

**
, satisfies the constraint w

**T
1N = 1. If 

*
 

is a diagonal matrix, this methodology will pick the numeraire input to be the input which has the smallest 

error variance.    
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where the double differenced log price dpn
t
 is defined by (72) and the double differenced 

log share dsn
t
 is defined as lnsn

t
  lns1

t
  lnsn

t1
 + lns1

t1
. Note that dpn

t
 appears as an 

exogenous variable on the right hand sides of equation n,t in (73) and (76). 

 

We conclude this section by considering the estimation of a system of CES inverse 

demand functions; i.e., we assume that prices are the endogenous variables and output 

and input quantities are the exogenous variables. Thus the input prices are regarded as the 

prices that rationalize the observed choice of inputs, assuming that the CES production 

function is the “true” production function.
46

 This may seem to be an odd thing to do but it 

can turn out that estimating the CES system of inverse demand functions can lead to a 

much better fitting model than estimating the CES system of direct input demand 

functions as was done above.
47

  

 

Let y > 0 and p >> 0N and the technology can be described by the CES production 

function defined by (61); i.e., f(x1,...,xN)  [n=1
N 
nxn

s
]
1/s

 where s < 1, s  0 and n > 0 for 

n = 1,...,N. Then the producer’s cost minimization problem is equivalent to the following 

constrained maximization problem: 

 

(77) min x {n=1
N
 pnxn : n=1

N 
nxn

s
 = y

s
; x  0N}. 

 

The first order necessary (and sufficient) conditions for solving (77) are equivalent to the 

following conditions: 

 

(78) pn = nxn
s1

 ;                                                                                                n = 1,...,N; 

(79) y
s
 = n=1

N 
nxn

s
. 

 

Multiply both sides of equation n in equations (78) by xn and sum the resulting equations. 

We obtain the following equation: 

 

(80) n=1
N
 pnxn = n=1

N
 nxn

s
 

                         = y
s
  

 

where the second equation follows using (79). Use the second equation in (80) to solve 

for  = n=1
N
 pnxn/y

s
 and substitute this equation back into equations (78). The resulting 

equations evaluated at the period t data are equations (81) below. As usual, the period t 

data are x
t
  [x1

t
,...,xN

t
], y

t
 and p

t
  [p1

t
,...,pN

t
] for t = 1,...,T. T We obtain the following 

equations: 

 

(81) pn
t
/(n=1

N
 pn

t
xn

t
) = n (xn

t
)
s1

/(y
t
)
s
 ;                                               n = 1,...,N; t = 1,...,T. 

 

                                                 
46

 This was the methodological approach taken by Arrow, Chenery, Minhas and Solow (1961) in their 

pioneering study on the estimation of CES functional forms. If the CES unit cost function model fits the 

observed data perfectly, then it will turn out that estimating the direct CES production function using a 

system of inverse demand functions will also fit the data perfectly.  
47

 This was the case in the empirical study of CES estimation undertaken by Diewert and Feenstra (2017). 
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Take logarithms of both sides of equations (81) and add the error term en
t
 to the resulting 

equations.
48

 We obtain the following system of estimating equations: 

 

(82) ln[pn
t
/(n=1

N
 pn

t
xn

t
)] = lnn + (s1)lnxn

t
  slny

t
 + en

t
 ;                 n = 1,...,N; t = 1,...,T.                  

 

 Choose input 1 as the numeraire input and form the differenced equations (83): 

 

(83) ln[pn
t
/p1

t
] = lnn  ln1 + (s1)ln[xn

t
/x1

t
] + en

t
  e1

t
 ;                 n = 2,3,...,N; t = 1,...,T. 

 

Not all of the parameters n can be identified using the (N1)T equations in (83). In order 

to identify all of the n, we could make y an endogenous variable that is explained by the 

exogenous xn, using the production function, y = [n=1
N 
nxn

s
]
1/s

. Thus we could add the 

following estimating equations (84) to equations (83): 

 

(84) lny
t
 = (1/s)ln[n=1

N 
n(xn

t
)
s
] + e0

t
 ;                                                                 t = 1,...,T.  

 

If the focus is on estimating the elasticity of substitution, then we can time difference 

equations (83) and obtain the following estimating equations: 

 

(85) dpn
t
 = (s1)dxn

t
 + en

t
  e1

t
  en

t1
 + e1

t1
 ;                                      n = 2,...,N; t = 2,...,T 

 

where the double log differenced variables dxn
t
 and dpn

t
 are defined by (71) and (72). 

Recall the r which appeared in the CES cost function. The elasticity of substitution that 

corresponds to r is  = 1r. The s which appears in equations (85) corresponds to r = 

s/(s1). Thus s1 = 
1

. Our previous system of estimating equations (73) for r can be 

written as dxn
t
 = (r1)dpn

t
 = dpn

t
, where we have omitted the error terms. Our new 

system of estimating equations for s, equations (85), can be written as dpn
t
 = (s1)dxn

t
 = 


1

dxn
t
 where we have again omitted the error terms. Thus if either CES model fits the 

data perfectly, then the other model will fit the data perfectly and the two estimates for  

will be identical. Note that the two systems of estimating equations both have 

(N1)(T1) degrees of freedom and only one (non-variance) parameter, , to estimate. 

 

It is useful to obtain a different system of estimating equations. Recall the first order 

condition equations (79) above. If we evaluate these equations using the period t data, we 

obtain the following equations which will hold if there are no errors in the CES cost 

minimization model: 

 

(86) (y
t
)
s
 = n=1

N 
n(xn

t
)
s 
;                                                                                       t = 1,...,T. 

 

Recall our earlier first order condition equations (81). Multiply equation n,t by xn
t
 and we 

obtain the following system of equations after adding error terms, en
t
: 

 

(87) sn
t
  pn

t
xn

t
/(i=1

N
 pi

t
xi

t
) + en

t
                                                          n = 1,...,N; t = 1,...,T 

            = n (xn
t
)
s
/(y

t
)
s
 + en

t
                                                                   using equations (81)                                         

                                                 
48

 These error terms are different from the error terms defined previously. 
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            = n (xn
t
)
s
/i=1

N 
i(xi

t
)
s
 + en

t
 ;                                                     using equations (86). 

 

If we sum equations (87) over n for a fixed t, we find that n=1
N
 en

t
 = 0 for t = 1,...,T. 

Thus within each time period, the errors cannot be distributed independently. To prevent 

exact collinearity, one of the N estimating equations must be dropped. Furthermore, it can 

be seen that not all of the n parameters can be identified. Thus we require a 

normalization on the n such as i=1
N
 i = 1 or 1 = 1. Alternatively, equations (84) can be 

added to the (N1)T independent estimating equations in (87) as additional estimating 

equations which will enable all of the n to be identified. 

 

Note that the dependent variables in equations (87) are exactly the same as the dependent 

variables in our earlier nonlinear system of share estimating equations, equations (74). In 

equations (87), input quantities xn
t
 are the explanatory variables whereas in equations 

(74), input prices pn
t
 were the explanatory variables. In actual empirical applications of 

the CES model, the fit in the two systems can differ enormously.
49

 This explains why we 

developed the algebra for the estimation of either system. 

 

An alternative stochastic specification can be obtained if we take logarithms of both sides 

of the equations sn
t
 = [n(pn

t
)
r
/i=1

N
 i(pi

t
)
r
] and add error terms en

t*
 to the resulting 

equations. Choose input 1 as a numeraire input and consider the following estimating 

equations: 

 

(88) ln(sn
t
/s1

t
) = lnn  ln1 + sln[xn

t
/x1

t
] + en

t*
  e1

t*
 ;                         n = 2,...,N; t = 1,...,T. 

 

If the focus is on estimating the elasticity of substitution,  = 1/(1  s), then equations 

(88) can be differenced with respect to time and we obtain the following system of 

estimating equations: 

 

(89) dsn
t
 = sdxn

t
 + en

t*
  e1

t*
  en

t1*
 + e1

t1*
 ;                                       n = 2,...,N; t = 2,...,T 

 

where the double differenced log input quantity dxn
t
 is defined by (73) and the double 

differenced log share dsn
t
 is defined as lnsn

t
  lns1

t
  lnsn

t1
 + lns1

t1
. Note that dxn

t
 

appears as an exogenous variable on the right hand sides of equation n,t in (85) and (89). 

 

8. Flexible Functional Forms for Cost Functions: The Generalized Leontief 

Functional Form 

 

From the previous section, it can be seen that the CES functional form is not suitable for 

economic applications where elasticities of substitution are allowed to be different 

between different pairs of inputs. This leads us to define formally the concept of a flexible 

functional form. We will define this concept first for a unit cost function c(p) and then for 

a general cost function C(y,p). 

   

                                                 
49

 See Diewert and Feenstra (2017). The system (87) fit their data much better than the corresponding 

system (74).  
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Let c
*
(p) be an arbitrary unit cost function that satisfies the appropriate regularity 

conditions on unit cost functions and in addition, is twice continuously differentiable 

around a point p
*
 >> 0N. Then we say that a unit cost function c(p) that is also twice 

continuously differentiable around the point p
*
 is flexible  if it has enough free parameters 

so that the following 1 + N + N
2
 equations can be satisfied:

50
 

 

(90)     c(p
*
) = c

*
(p

*
) ; 

(91)  c(p
*
) = c

*
(p

*
) ; 

(92) 
2
c(p

*
) = 

2
c

*
(p

*
). 

 

Thus c(p) is a flexible functional form if it has enough free parameters to provide a 

second order Taylor series approximation to an arbitrary unit cost function. 

 

At first glance, it looks like c(p) will have to have at least 1 + N + N
2
 independent 

parameters in order to be able to satisfy all of the equations (90)-(92). However, since 

both c and c
*
 are assumed to be twice continuously differentiable, Young’s Theorem in 

calculus implies that 
2
c(p

*
)/pipk = 

2
c(p

*
)/pkpi for all i  k (and of course, the same 

equations hold for the second order partial derivatives of c
*
(p) when evaluated at p = p

*
). 

Thus the N
2
 equations in (92) can be replaced with the following N(N+1)/2 equations: 

 

(93) 
2
c(p

*
)/pipk = 

2
c

*
(p

*
)/pipk ;                                                         for 1  i  k  N. 

 

Another property that both unit cost functions must have is homogeneity of degree one in 

the components of p. By part 1 of Euler’s Theorem on homogeneous functions, c and c
*
 

satisfy the following equations: 

 

(94) c(p
*
) = p

*T
c(p

*
)  and c

*
(p

*
) = p

*T
c

*
(p

*
). 

 

Thus if c and c
*
 satisfy equations (91), then using (94), we see that c and c

*
 automatically 

satisfy equation (90). By part 2 of Euler’s Theorem on homogeneous functions, c and c
*
 

satisfy the following equations: 

 

(95) 
2
c(p

*
)p

*
 = 0N  and  

2
c

*
(p

*
)p

*
 = 0N. 

 

This means that if we have 
2
c(p

*
)/pipk = 

2
c

*
(p

*
)/pipk for all i  k, then equations 

(95) will imply that 
2
c(p

*
)/pipi = 

2
c

*
(p

*
)/pipi as well, for i = 1,…,N. 

 

Summarizing the above material, if c(p) is linearly homogeneous, then in order for it to 

be flexible, c(p) needs to have only enough parameters so that the N equations in (91) can 

be satisfied and so that the following N(N1)/2 equations can be satisfied: 

 

(96) 
2
c(p

*
)/pjpk = 

2
c

*
(p

*
)/pipk  cik

*
 ;                                                for 1  i < k  N. 

    

                                                 
50

 Diewert (1971) introduced the concept of a flexible functional form. The actual term “flexible” was 

introduced in Diewert (1974a; 133). 
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Thus in order to be flexible, c(p) must have at least N + N(N1)/2 = N(N+1)/2 

independent parameters. 

 

Recall that the Generalized Leontief cost function was introduced in Section 4. The unit 

cost function that corresponds to this function form is defined as follows:
51

    

 

(97) c(p)  i=1
N
k=1

N
 bik pi

1/2
 pk

1/2
                           

 

where bik = bki for all i and k. Note that there are exactly N(N+1)/2 independent bik 

parameters in the c(p) defined by (97). For this functional form, the N equations in (91) 

become: 

 

(98) c(p
*
)/pn = k=1

N
 bnk (pk

*
/pn

*
)
1/2

 = c
*
(p

*
)/pn  cn

*
 ;                                  n = 1,…,N. 

 

The N(N1)/2 equations in (96) become: 

 

(99) (½)bik /(pi
*
pk

*
)
1/2

 = cik
*
 ;                                                                             1  i < k  N. 

 

However, it is easy to solve equations (99) for the bik: 

 

(100) bik = 2cik
*
(pi

*
pk

*
)
1/2

 ;                                                                                 1  i < k  N. 

 

Once the bik for i < k have been determined using (100), we set bki = bik for i < k and 

finally the bii are determined using the N equations in (98).  

  

The above material shows how we can find a flexible functional form for a unit cost 

function
52

. We now turn our attention to finding a flexible functional form for a general 

cost function C(y,p). Let C
*
(y,p) be an arbitrary cost function that satisfies the 

appropriate regularity conditions on cost functions listed in Theorem 1 above and in 

addition, is twice continuously differentiable around a point (y
*
,p

*
) where y

*
 > 0 and p

*
 

>> 0N. Then we say that a given cost function C(y,p) that is also twice continuously 

differentiable around the point (y
*
,p

*
) is flexible  if it has enough free parameters so that 

the following 1 + (N+1) + (N+1)
2
 equations can be satisfied: 

 

(101)       C(y
*
,p

*
) = C

*
(y

*
,p

*
) ;                             (1 equation) 

(102)   pC(y
*
,p

*
) = pC

*
(y

*
,p

*
) ;                         (N equations) 

(103) 
2

ppC(y
*
,p

*
) = 

2
ppC

*
(y

*
,p

*
) ;                      (N

2
 equations) 

(104)    yC(y
*
,p

*
) = yC

*
(y

*
,p

*
) ;                        (1 equation) 

(105) 
2

pyC(y
*
,p

*
) = 

2
pyC

*
(y

*
,p

*
) ;                      (N equations) 

(106) 
2

ypC(y
*
,p

*
) = 

2
ypC

*
(y

*
,p

*
) ;                      (N equations) 

(107) 
2

yyC(y
*
,p

*
) = 

2
yyC

*
(y

*
,p

*
) ;                      (1 equation). 

 

                                                 
51

 We no longer restrict the bij to be nonnegative. 
52

 This material can be adapted to the case where we want a flexible functional form for a linearly 

homogeneous utility or production function f(x): just replace p by x and c(p) by f(x). 
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Equations (101)-(107) are the counterparts to our earlier unit cost equations (90)-(92).  As 

was the case with unit cost functions, equation (102) is implied by the linear homogeneity 

in prices of the cost functions and Part 1 of Euler’s Theorem on homogeneous functions. 

Young’s Theorem on the symmetry of cross partial derivatives means that the lower 

triangle of equations in (103) is implied by the equalities in the upper triangle of both 

matrices of partial derivatives. Part 2 of Euler’s Theorem on homogeneous functions 

implies that if all the off diagonal elements in both matrices in (103) are equal, then so 

are the diagonal elements.  Hence, in order to satisfy all of the equations in (101)-(103), 

we need only satisfy the N equations in (102) and the N(N1)/2 equations in the upper 

triangle of the N
2
 equations in (103). Young’s Theorem implies that if equations (105) 

are satisfied, then so are equations (106). However, Euler’s Theorem on homogeneous 

functions implies that  

 

(108) C(u
*
,p

*
)/y = p

*T


2
pyC(y

*
,p

*
) = p

*T


2
pyC

*
(u

*
,p

*
) = C

*
(y

*
,p

*
)/y . 

 

Hence, if equations (105) are satisfied, then so is the single equation (104). Putting this 

all together, we see that in order for C to be flexible, we need enough free parameters in 

C so that the following equations can be satisfied: 

 

 Equations (102); N equations; 

 The upper triangle in equations (103); N(N1)/2 equations; 

 Equations (105); N equations; and 

 Equation (107); 1 equation. 

 

Hence, in order for C to be a flexible functional form, it will require a minimum of 2N + 

N(N1)/2 +1 = N(N+1)/2 + N +1  parameters. Thus a fully flexible cost function, C(y,p), 

will require N + 1 additional parameters compared to a flexible unit cost function, c(p). 

 

In the following Sections, we will define several flexible functional forms for unit cost 

functions c(p). Once we have a flexible functional form for a unit cost function c(p), then 

the algebra below shows how we can modify c(p) to obtain a flexible total cost function 

C(y,p).
53

 

 

Suppose the unit cost function is the Generalized Leontief unit cost function c(p) defined 

by (97) above. We now show how terms can be added to it in order to make it a fully 

flexible cost function. Thus define C(u,p) as follows: 

 

(109) C(y,p)  yc(p) + b
T
p + (1/2)a0

T
py

2
 

 

where b  [b1,…,bN] is an N dimensional vector of new parameters, a0 is a new parameter 

and   [1,…,N] > 0N is a vector of predetermined parameters.
54

 Using (109) as our 

                                                 
53

 The algebra for converting the translog unit cost function into the translog cost function is different. 
54

 We have defined the cost function C in this manner so that it has the minimal number of parameters 

required in order to be a flexible functional form. Thus it is a parsimonious flexible functional form. 
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candidate for a flexible (total) cost function C, equations (102), (103), (105) and (107) 

become: 

 

(110)   y
*
pc(p

*
) + b + (1/2)a0y

*2
  = pC

*
(y

*
,p

*
) ;                         

(111)                               y
*


2
ppc(p

*
) = 

2
ppC

*
(y

*
,p

*
) ;                       

(112)                       pc(p
*
) + a0y

*
  = 

2
pyC

*
(y

*
,p

*
) ;                      

(113)                                      a0
T
p

*
  = 

2
yyC

*
(y

*
,p

*
) . 

 

Use equations (111) in order to determine the bik for i  k.  Use (113) in order to 

determine the single parameter a0. Use equations (112) in order to determine the bii. 

Finally, use equations (110) in order to determine the parameters bn in the b vector. Thus 

the cost function C(u,p) defined by (109), which uses the Generalized Leontief unit cost 

function c(p) defined by (97) as a building block, is a parsimonious flexible functional 

form for a general cost function. 

 

In fact, it is not necessary to use the Generalized Leontief unit cost function in definition 

(109) in order to convert a flexible functional form for a unit cost function into a flexible 

functional form for a general cost function. Let c(p) be any flexible functional form for a 

unit cost function and define C(y,p) by (109). Use equation (113) to determine the 

parameter a0. Once a0 has been determined, equations (111) and (112) can be used to 

determine the parameters in the unit cost function c(p). Finally, equations (110) can be 

used to determine the parameters in the vector b. 

 

Differentiating (109) leads to the following system of estimating equations, where x(y,p) 

= pC(y,p) is the producer’s system of cost minimizing input demand functions: 

 

(114) x(y,p) = yc(p) + b + (1/2)a0y
2
. 

 

If the Generalized Leontief unit cost function is used as the c(p) in equations (114), then 

the N estimating equations will be linear in the unknown parameters. This will facilitate 

econometric estimation. The cross equation symmetry restrictions could be tested or 

imposed.    

 

In empirical applications, if we use the Generalized Leontief functional form when there 

are more than two inputs, a problem can occur: one or more of the estimated bik can turn 

out to be negative numbers (so that inputs i and k are complements). Under these 

conditions, the estimated cost function can fail to be concave at the observed data points 

and it will not be globally concave over all positive input prices. Global concavity can be 

imposed by replacing the off diagonal bik parameters by their squares
55

 but if this is done, 

then all pairs of inputs will be either substitutes or be unrelated. Global concavity can be 

imposed but at the cost of destroying the flexibility of the functional form.
56

 Thus the 

Generalized Leontief functional form is not a “perfect” flexible functional form. Finding 

                                                 
55

 The resulting estimating equations become nonlinear in the parameters when we square the bik. 

Typically, this does not create any problems: just use a nonlinear estimation method. 
56

 If there are more than 4 inputs and we allow for complementarity, then experience has shown that 

complementary input pairs show up almost always. 
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flexible functional forms where the restrictions implied by microeconomic theory can be 

imposed on the functional form without destroying its flexibility is a nontrivial task 

which we will address later in Sections 10 and 11 below. 

                              

9. The Translog Functional Form 

 

The translog unit cost function, c(p), is defined as follows:
57

 

 

(115) lnc(p)  0 + i=1
N
 i lnpi + (1/2) i=1

N
 k=1

N
 ik lnpi lnpk  

 

where the parameters i and ik satisfy the following restrictions: 

 

(116) ik = ki ;           1  i < k  N ;                                (N(N1)/2 symmetry restrictions) 

(117) i=1
N
 i = 1 ;                                                           (1 restriction) 

(118) k=1
N
 ik = 0 ;   i = 1,...,N                                        (N restrictions). 

 

Note that the symmetry restrictions (116) and the restrictions (118) imply the following 

restrictions: 

 

(119) i=1
N
 ik = 0 ;                                                                                                k = 1,...,N. 

 

There are 1+N i parameters and N
2
 ik parameters. However, the restrictions (116)-(119) 

mean that there are only N independent i parameters and N(N1)/2 independent ik 

parameters, which is the minimal number of parameters required for a unit cost function 

to be flexible.   

 

We show that the translog unit cost function c(p) defined by (115)-(118) is linearly 

homogeneous; i.e., we need to show that c(p) = c(p) for  > 0 and p >> 0N. Thus, we 

need to show that 

 

(120) lnc(p) = ln[c(p)] = ln + lnc(p) ;                                                  > 0 and p >> 0N. 

 

Using definition (115), we have 

 

(121) lnc(p1,..., pN) = 0 + i=1
N
 i lnpi + (1/2) i=1

N
 k=1

N
 ik lnpi lnpk 

           = 0 + i=1
N
 i[ln+lnpi] + (1/2) i=1

N
 k=1

N
 ik[ln+lnpi][ln+lnpk] 

           = 0 + i=1
N
 i[ln]+i=1

N
 i lnpi + (1/2) i=1

N
 k=1

N
 ik[ln+lnpi][ln+lnpk] 

           = 0 + 1 [ln]+i=1
N
 i lnpi + (1/2) i=1

N
 k=1

N
 ik[ln+lnpi][ln+lnpk] using (117) 

           = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 k=1

N
 ik[ln][ln]  

             + (1/2) i=1
N
 k=1

N
 ik[ln][lnpk]+ (1/2) i=1

N
 k=1

N
 ik[lnpi][ln] 

             + (1/2) i=1
N
 k=1

N
 ik[lnpi][lnpk] 

           = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 [k=1

N
 ik][ln][ln]  

             + (1/2) k=1
N
 [i=1

N
 ik][lnpk][ln] + (1/2) i=1

N
 [k=1

N
 ik][lnpi][ln] 

                                                 
57

 This functional form is due to Christensen, Jorgenson and Lau (1971) (1973) (1975). The material in this 

Section is due to these authors. 
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             + (1/2) i=1
N
 k=1

N
 ik[lnpi][lnpk] 

           = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 [0][ln][ln]  

             + (1/2) k=1
N
 [0][lnpk][ln] + (1/2) i=1

N
 [0][lnpi][ln] 

             + (1/2) i=1
N
 k=1

N
 ik[lnpi][lnpk]                                           using (118) and (119) 

           = ln + 0+i=1
N
 i lnpi + (1/2) i=1

N
 k=1

N
 ij[lnpi][lnpk] 

           = ln + lnc(p)                                                                           using definition (115) 

 

which establishes the linear homogeneity property (120). Thus the restrictions (116)-

(118) imply the linear homogeneity of the translog unit cost function. 

 

To establish the flexibility of the translog unit cost function c(p) defined by (115)-(118), 

we need only solve the following system of equations, which is equivalent to the 

N(N+1)/2 equations defined by (91) and (93): 

 

(122) lnc(p) = lnc
*
(p

*
) ;                                                 1 equation 

(123) lnc(p
*
)/lnpi = lnc

*
(p

*
)/lnpi ;                           i = 1,2,...,N1; N1 equations 

(124) 
2
lnc(p

*
)/lnpilnpk = 

2
lnc

*
(p

*
)/lnpilnpk ;       1  i < k  N ; N(N1)/2 equations. 

 

Upon differentiating the translog unit cost function defined by (115), we see that 

equations (123) are equivalent to the following equations: 

 

(125) i + k=1
N
 ik lnpj = lnc

*
(p

*
)/lnpi ;                     i = 1,2,...,N1. 

 

Differentiating the translog unit cost function again, we find that equations (124) are 

equivalent to the following equations: 

 

(126) ik = 
2
lnc

*
(p

*
)/lnpilnpk ;                                    1  i < j  N. 

 

Now use equations (126) to determine the ik for 1  i < k  N. Use the symmetry 

restrictions (116) to determine the ik for 1  k < i  N. Use equations (118) to determine 

the ii for i = 1,2,...,N. With the entire N by N matrix of the ij now determined, use 

equations (125) in order to determine the i for i = 1,2,...,N1. Now use equation (117) to 

determine N. Finally, use equation (112) to determine 0. 

 

We turn our attention to the problems involved in obtaining estimates for the unknown 

parameters i and ik, which occur in the definition of the translog unit cost function, c(p) 

defined by (115). The total cost function C(y,p) is defined in terms of the unit cost 

function c(p) as follows: 

 

(127) C(y,p)  yc(p). 

 

Taking logarithms on both sides of (127) yields, after some rearrangement: 

 

(128) ln[C(y,p)/y] = lnc(p)  

                              = 0 + i=1
N
 i lnpi + (1/2) i=1

N
 k=1

N
 ik lnpi lnpk  
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where we have replaced lnc(p) using (115). The corresponding system of cost minimizing 

input demand functions x(y,p) is obtained using Shephard’s Lemma: 

 

(129) x(y,p)  pC(y,p) = ypc(p). 

 

Suppose that we have data for a production unit on output in period t, y
t
, inputs x

t
  

[x1
t
,...,xN

t
] and input prices p

t
  [p1

t
,...,pN

t
] for t = 1,...,T. Thus the period t observed unit 

cost is: 

 

(130) c
t
  p

tT
x

t
/y

t
  i=1

N
 pi

t
xi

t
/y

t
 ;                                                                          t = 1,...,T.                                                      

 

Evaluate (128) at the period t data and add an error term, e0
t
. Using (130), (128) evaluated 

at the period t data becomes the following estimating equation: 

 

(131) lnc
t
 = 0 + i=1

N
 i lnpi

t
 + (1/2) i=1

N
 k=1

N
 ij lnpi

t
 lnpk

t
 + e0

t
 ;                  t = 1,...,T.  

 

Note that (131) is linear in the unknown parameters. 

 

In order to obtain additional estimating equations, we have to use the input demand 

functions, xi(y,p)  yc(p)/pi for i = 1,...,N; (see equations (129) above). The ith input 

share function, si(y,p), is defined as: 

 

(132) si(y,p)  pixi(y,p)/C(y,p)                                                                             i = 1,...,N 

                     = pi[yc(p)/pi]/C(y,p)                                                                    using (129) 

                     = pi[yc(p)/pi]/yc(p)                                                                      using (127) 

                     = pi[c(p)/pi]/c(p) 

                     = lnc(p)/lnpi                                                     

                     = i + k=1
N
 ik lnpk                                       

 

where the last equation follows upon differentiating the c(p) defined by (115). 

 

Now evaluate both sides of (132) at the period t data and add error terms ei
t
 to obtain the 

following system of estimating equations: 

 

(133) si
t
  pi

t
xi

t
/C

t
 = i + j=1

N
 ij lnpj

t
 + ei

t
 ;                                         i = 1,...,N; t = 1,...,T. 

 

Note that equations (133) are also linear in the unknown parameters.
58

 Obviously, the N 

estimating equations in (133) could be added to the single estimating equation (131) in 

order to obtain N+1 estimating equations with cross equation equality constraints on the 

parameters i and ij. However, since total cost in any period t, C
t
, equals the sum of the 

individual expenditures on the inputs, i=1
N
 pi

t
xi

t
, the observed input shares si

t
  pi

t
xi

t
/C

t
 

will satisfy the following constraint for each period t: 

 

                                                 
58

 Note also that the cross equation symmetry conditions, ik = ki, could be tested or imposed. 
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(134) i=1
N
 si

t
 = 1;                                                                                                   t =1,...,T. 

 

Thus the stochastic error terms ei
t
 in equations (133) cannot all be independent. Hence we 

must drop one estimating equation from (133). Thus equation (131) and any N1 of the N 

equations in (133) may be used as a system of estimating equations in order to determine 

the parameters of the translog unit cost function.
59

 

 

We now turn our attention to the problem of deriving a formula for the price elasticities 

of demand, xi(y,p)/pj, given that the unit cost function has the translog functional form 

defined by (115)-(118). Recall equations (132) above. For k  i, differentiate the ith 

equation in (132) with respect to the log of pk and we obtain the following equations for 

all k  i:  

 

(135) si(y,p)/lnpk = pi{[xi(y,p)/C(y,p)]/lnpk} = ik .                                        

 

Hence upon noting that si(y,p) = pixi(y,p)/C(y,p) and using (135), we have for k  i:      

 

(136) ik = pi [xi(y,p)/C(y,p)]/lnpk                                                                    

              = pipk[xi(y,p)/C(y,p)]/pk 

              = pipk{[1/C(y,p)][xi(y,p)/pk]  xi(y,p)[1/C(y,p)]
2
[C(y,p)/pk]} 

              = [pixi(y,p)/C(y,p)]{lnxi(y,p)/lnpk}  [pixi(y,p)/C(y,p)][pkxk(y,p)/C(y,p)] 

                                                                   using Shephard’s Lemma, xk(y,p) = C(y,p)/pk 

              = si(y,p){lnxi(y,p)/lnpk}  si(y,p)sk(y,p). 

 

Equations (136) can be rearranged to give us the following formula for the cross price 

elasticities of input demand for all i  k: 

 

(137) lnxi(y,p)/lnpk = [si(y,p)]
1
ik + sk(y,p). 

                                    

Now differentiate the ith equation in (135) with respect to the logarithm of pi and get the 

following equations: 

 

(138) ii = pi[pixi(y,p)/C(y,p)]/pi ;                                                                     i = 1,...,N; 

             = pi[xi(y,p)/C(y,p)] + [pi/C(y,p)][xi(y,p)/pi]  [pixi(y,p)/C(y,p)
2
][C(y,p)/pi]}  

             = pi{[xi(y,p)/C(y,p)] + [pi/C(y,p)][xi(y,p)/pi]  [pixi(y,p)/C(y,p)
2
][xi(y,p)]} 

                                                 
59

 In situations where N is large relative to the number of observations T, maximum likelihood estimation 

of equation (131) and N1 of the equations (133) can fail if a general variance covariance matrix is 

estimated for the error terms in these equations. The problem is that all of the unknown economic 

parameters are contained in equation (131) and as a result, the estimated squared residuals in this equation 

will tend to be small relative to the estimated squared residuals in equations (133), where each equation has 

only a few unknown economic parameters. Hence equation (131) can suffer from multicollinearity 

problems and the small apparent variance of the residuals in this equation can lead to the maximum 

likelihood estimation procedure giving too much weight to the unit cost function equation relative to the 

other equations. Under these conditions, the resulting elasticities may be erratic and they may not satisfy 

the appropriate curvature conditions. Note that the estimation of the Generalized Leontief unit cost function 

did not suffer from this problem of having every unknown parameter in a single equation.  
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                                                                   using Shephard’s Lemma, xi(y,p) = C(y,p)/pi 

             = pixi(y,p)/C(y,p) + [pixi(y,p)/C(y,p)][lnxi(y,p)/lnpi]  [pixi(y,p)/C(y,p)]
2
 

             = si(y,p) + si(y,p)[lnxi(y,p)/lnpi]  si(y,p)
2
. 

 

Equations (138) can be rearranged to give us the following formula for the own price 

elasticities of input demand: 

 

(139) lnxi(y,p)/lnpi = [si(y,p)]
1

 ii + si(y,p)  1 ;                                               i = 1,...,N. 

 

Thus given econometric estimates for the i and ij, which we denote by i
*
 and ij

*
, the 

estimated or fitted shares in period t, si
t*

 are defined using these estimates and equations 

(133) evaluated at the period t data:  

 

(140) si
t*

  i
*
 + j=1

N
 ij

*
 lnpj

t
 ;                                                            i = 1,...,N ; t = 1,...,T. 

 

Now use equations (137) evaluated at the period t data and econometric estimates to 

obtain the following formula for the period t cross elasticities of demand, Eik
t
: 

 

(141) Eik
t
  lnxi(y

t
,p

t
)/lnpk = [si

t*
]
1
ik

*
 + sk

t*
 ;                                   i  k ; t = 1,...,T. 

 

Similarly, use equations (139) evaluated at the period t data and econometric estimates to 

obtain the following formula for the period t own elasticities of demand, Eii
t
: 

 

(142) Eii
t
  lnxi(y

t
,p

t
)/lnpi = [si

t*
]
1
ii

*
 + si

t*
  1 ;                              i = 1,...,N ; t = 1,...,T. 

 

We can also obtain an estimated or fitted period t unit cost, c
t*

, by using our econometric 

estimates for the parameters and by exponentiating the right hand side of equation t in 

(130): 

 

(143) c
t*

  exp[0
*
 + i=1

N
 i

*
 lnpi

t
 + (1/2) i=1

N
 k=1

N
 ik

*
 lnpi

t
 lnpk

t
] ;                t = 1,...,T. 

 

Finally, our fitted period t shares si
t*

 defined by (50) and our fitted period t costs C
t*

 

defined by (53) can be used in order to obtain estimated or fitted period t input demands, 

xi
t*

, as follows: 

 

(144) xi
t*

  y
t
c

t*
si

t*
/pi

t
 ;                                                                         i = 1,...,N ; t = 1,...,T. 

 

Given the matrix of period t estimated input price elasticities of demand, [Eik
t
], we can 

readily calculate the matrix of period t estimated input price derivatives, px(y
t
,p

t
) = 


2

ppC(y
t
,p

t
) = y

t


2
ppc(p

t
). The estimate for element ik of 

2
ppC(y

t
,p

t
) is: 

 

(145) Cik
t*

  Eik
t
 xi

t*
/pk

t
 ;                                                                    i,k = 1,...,N ; t = 1,...,T 

 

where the estimated period t elasticities Eik
t
 are defined by (141) and (142) and the fitted 

period t input demands xi
t*

 are defined by (144). Once the estimated input price derivative 

matrices [Cik
t*

] have been calculated for period t, then we may check whether it is 
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negative semidefinite using determinantal conditions or by checking if all of the 

eigenvalues of each matrix are zero or negative for t = 1,...,T. Unfortunately, very 

frequently these negative semidefiniteness conditions will fail to be satisfied for both the 

translog and generalized Leontief functional forms. Thus the translog and Generalized 

Leontief functional forms both suffer from the same problem: in general, it is not possible 

to impose concavity on these functional forms without destroying their flexibility 

property. Hence, in the following two sections, we study functional forms where these 

curvature conditions can be imposed without destroying the flexibility of the functional 

form. 

 

10. The Normalized Quadratic Unit Cost Function. 
 

The normalized quadratic unit cost function c(p) is defined as follows for p >> 0N:
60

 

 

(146) c(p)  b
T
p + (1/2)p

T
Bp/

T
p 

 

where b
T
  [b1,...,bN] and 

T
  [1,...,N] are parameter vectors and B  [bik] is a matrix 

of parameters. The vector  and the matrix B satisfy the following restrictions: 

 

(147)  > 0N ; 

(148) B = B
T
 ; i.e., the matrix B is symmetric; 

(149) Bp
*
 = 0N for some p

*
 >> 0N. 

 

In most empirical applications, the vector of nonnegative but nonzero parameters  is 

fixed a priori. The two most frequent a priori choices for  are   1N, a vector of ones or 

  (1/T)t=1
T
 x

t
, the sample mean of the observed input vectors. The two most frequent 

choices for the reference price vector p
*
 are p

*
  1N or p

*
  p

t
 for some period t; i.e., in 

this second choice, we simply set p
*
 equal to the observed period t price vector. 

 

Assuming that  has been predetermined, there are N unknown parameters in the b vector 

and N(N1)/2 unknown parameters in the B matrix, taking into account the symmetry 

restrictions (148) and the N linear restrictions in (149). Note that the c(p) defined by 

(146) is linearly homogeneous in the components of the input price vector p. 

 

Another possible way of defining the normalized quadratic unit cost function is as 

follows: 

 

(150) c(p)  (1/2) p
T
Ap/

T
p 

 

where the parameter matrix A is symmetric; i.e., A = A
T
  [aik] and  > 0N as before. 

Assuming that the vector of parameters  has been predetermined, the c(p) defined by 

(150) has N(N+1)/2 unknown aik parameters. 
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 This functional form was introduced by Diewert and Wales (1987; 53) where it was called the Symmetric 

Generalized McFadden functional form. It is a generalization of a functional form due to McFadden (1978; 

279). Additional material on this functional form can be found in Diewert and Wales (1988) (1992) (1993).   
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Comparing (146) with (150), it can be seen that (150) has dropped the b vector but has 

also dropped the N linear constraints (149).  It can be shown that the model defined by 

(146) is a special case of the model defined by (150).  To show this, given (146), define 

the matrix A in terms of B, b and  as follows: 

 

(151) A  B + [b
T
 + b

T
]. 

 

Substituting (151) into (150), (150) becomes: 

 

(152) c(p) = (1/2)p
T
{B + [b

T
 + b

T
]}p/

T
p 

                 = (1/2)p
T
Bp/

T
p + (1/2) p

T
[b

T
 + b

T
]p/

T
p 

                 = (1/2)p
T
Bp/

T
p + (1/2){p

T
b

T
p + p

T
b

T
p}/

T
p 

                 = (1/2)p
T
Bp/

T
p + (1/2){2p

T
b

T
p}/

T
p 

                 = (1/2)p
T
Bp/

T
p + p

T
b 

 

which is the same functional form as (146). However, it is preferable to work with the 

model (146) rather than with the seemingly more general model (150) for three reasons: 

 

 The c(p) defined by (146) clearly contains the no substitution Leontief functional 

form as a special case (simply set B = 0NxN); 

 the estimating equations that correspond to (146) will contain constant terms and 

 it is easier to establish the flexibility property for (146) than for (150). 

 

The first and second order partial derivatives of the normalized quadratic unit cost 

function defined by (146) are given by: 

 

(153) pc(p) = b + (
T
p)

1
Bp  (1/2)(

T
p)

2
p

T
Bp ; 

(154) 
2

ppc(p) = (
T
p)

1
B  (

T
p)

2
Bp

T
  (

T
p)

2
p

T
B + (

T
p)

3
 p

T
Bp

T
. 

 

We now prove that the c(p) defined by (146)-(149) (with  predetermined) is a flexible 

functional form at the point p
*
.  Using the restrictions (149), Bp

*
 = 0N, we have p

*T
Bp

*
 = 

p
*T

0N = 0. Thus evaluating (153) and (154) at p = p
*
 yields the following equations: 

 

(155) pc(p
*
) = b ; 

(156) 
2

ppc(p
*
) = (

T
p

*
)
1

B. 

 

We need to satisfy equations (91) and (92) above to show that the c(p) defined by (146)-

(149) is flexible at p
*
. Using (155), we can satisfy equations (91) if we choose b as 

follows: 

 

(157) b  c
*
(p

*
). 

 

Using (156), we can satisfy equations (92) by choosing B as follows: 
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(158) B  (
T
p

*
)
1


2
c

*
(p

*
). 

 

Since 
2
c

*
(p

*
) is a symmetric matrix, B will also be a symmetric matrix and so the 

symmetry restrictions (148) will be satisfied for the B defined by (158). Moreover, since 

c
*
(p) is assumed to be a linearly homogeneous function, Euler’s Theorem implies that  

 

(159) 
2
c

*
(p

*
)p

*
 = 0N. 

 

Equations (158) and (159) imply that the B defined by (158) satisfies the linear 

restrictions (149). This completes the proof of the flexibility property for the normalized 

quadratic unit cost function. 

 

It is convenient to define the vector of normalized input prices, v
T
  [v1,...,vN] as follows: 

 

(160) v  (p
T
)

1
p. 

 

The system of input demand functions x(y,p) that corresponds to the normalized 

quadratic unit cost function c(p) defined by (146) can be obtained using Shephard’s 

Lemma in the usual way: 

 

(161) x(y,p) = yc(p). 

 

Using (161) and definition (146) evaluated at the period t data, we obtain the following 

system of estimating equations: 

 

(162) x
t
/y

t
 = b + Bv

t
  (1/2)v

tT
Bv

t
 + e

t
 ;                                                               t = 1,...,T 

 

where x
t
 is the observed period t input vector, y

t
 is the period t output, v

t
  p

t
/

T
p

t
 is the 

vector of period t normalized input prices and e
t
  [e1

t
,...,eN

t
]

T
 is a vector of stochastic 

error terms. Equations (162) can be used in order to statistically estimate the parameters 

in the b vector and the B matrix.  Note that equations (162) are linear in the unknown 

parameters. Note also that the symmetry restrictions (148) can be imposed when 

estimating the system of equations (162) or their validity can be tested. 

 

Once estimates for b and B have been obtained (denote these estimates by b
*
 and B

*
 

respectively), then equations (162) can be used in order to generate a period t vector of 

fitted input demands, x
t*

 say: 

 

(163) x
t*

  y
t
[b

*
 + B

*
v

t
  (1/2)v

tT
B

*
v

t
] ;                                        t = 1,...,T. 

 

Equations (154) and (161) may be used in order to calculate the matrix of period t 

estimated input price derivatives, px(y
t
,p

t
) = 

2
ppC(y

t
,p

t
). The estimated matrix of 

second order partial derivatives 
2

ppC(y
t
,p

t
) for t = 1,...,T is the following one: 

 

(164) [Cij
t*

]  y
t
[(

T
p

t
)
1

B
*
  (

T
p

t
)
2

B
*
p

t


T
  (

T
p

t
)
2
p

tT
B

*
 + (

T
p

t
)
3

 p
tT

B
*
p

t


T
] .    
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Equations (163) and (164) may be used in order to obtain estimates for the matrix of 

period t input demand price elasticities, [Eij
t
]: 

 

(165) Eij
t
  lnxi(y

t
,p

t
)/lnpj = pj

t
 Cij

t*
/xi

t*
 ;                                         i,j = 1,...,N ; t = 1,...,T 

 

where xi
t*

 is the ith component of the vector of fitted demands x
t*

 defined by (163). 

 

There is one important additional topic that we have to cover in our discussion of the 

normalized quadratic functional form: what conditions on b and B are necessary and 

sufficient to ensure that c(p) defined by (146)-(149) is concave in the components of the 

price vector p? 

 

The function c(p) will be concave in p if and only if 
2
c(p) is a negative semidefinite 

matrix for each p in the domain of definition of c. Evaluating (154) at p = p
*
 and using 

the restrictions (149) yields: 

 

(166) 
2
c(p

*
) = (

T
p

*
)
1

B. 

 

Since  > 0N and p
*
 >> 0N, 

T
p

*
 > 0. Thus in order for c(p) to be a concave function of p, 

the following necessary condition must be satisfied: 

 

(167) B is a negative semidefinite matrix. 

 

We now show that the necessary condition (167) is also sufficient to imply that c(p) is 

concave over the set of p such that p >> 0N. Unfortunately, the proof is somewhat 

involved.
61

 

 

Let p >> 0N. We assume that B is negative semidefinite and we want to show that 
2
c(p) 

is negative semidefinite or equivalently, that  
2
c(p) is positive semidefinite. Thus for 

any vector z, we want to show that  z
T


2
c(p)z  0.  Using (154), this inequality is 

equivalent to: 

 

(168)  (
T
p)

1 
z

T
Bz + (

T
p)

2
 z

T
Bp

T
z + (

T
p)

2
 z

T
p

T
Bz  (

T
p)

3
 p

T
Bpz

T


T
z  0          

or 

(169)  (
T
p)

1 
z

T
Bz  (

T
p)

3
 p

T
Bp(

T
z)

2
   2(

T
p)

2
 z

T
Bp

T
z                  using B = B

T
. 

 

Define A   B. Since B is symmetric and negative semidefinite by assumption, A is 

symmetric and positive semidefinite. Thus there exists an orthonormal matrix U such that  

 

(170) U
T
AU =  ;       

(171) U
T
U    = IN 

 

where IN is the N by N identity matrix and  is a diagonal matrix with the nonnegative 

eigenvalues of A, i, i = 1,...,N, running down the main diagonal. Now premultiply both 
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 The proof is due to Diewert and Wales (1987; 66). 
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sides of (170) by U and postmultiply both sides by U
T
.  Using (171), U

T
 = U

1
, and the 

transformed equation (170) becomes the following equation: 

 

(172) A = UU
T
 

              = U
1/2 


1/2 
U

T
 

              = U
1/2

 U
T
U 

1/2 
U

T
                                                                       since U

T
U = IN 

              = SS 

 

where 
1/2

 is the diagonal matrix that has the nonnegative square roots i
1/2

 of the 

eigenvalues of A running down the main diagonal and the symmetric square root of A 

matrix S is defined as 

 

(173) S  U
1/2

 U
T
. 

 

If we replace  B in (169) with A, the inequality that we want to establish becomes 

 

(174) 2(
T
p)

1
 z

T
Ap

T
z  z

T
Az + (

T
p)

2
 p

T
Ap(

T
z)

2
 

 

where we have also multiplied both sides of (169) by the positive number 
T
p in order to 

derive (174) from (169). 

 

Recall the Cauchy-Schwarz inequality for two vectors, x and y: 

 

(175) x
T
y  (x

T
x)

1/2
(y

T
y)

1/2
. 

 

Now we are ready to establish the inequality (174).  Using (172), we have: 

 

(176) (
T
p)

1
 z

T
Ap

T
z = (

T
p)

1
 z

T
SSp

T
z 

                                      (z
T
SS

T
z)

1/2
 ([

T
p]

2
[

T
z]

2
p

T
S

T
Sp)

1/2
 

                                                               using (175) with x
T
  z

T
S and y  (

T
p)

1
(

T
z) Sp  

                                     = (z
T
SSz)

1/2
([

T
p]

2
[

T
z]

2
p

T
SSp)

1/2
                  using S = S

T
 

                                     = (z
T
Az)

1/2
([

T
p]

2
[

T
z]

2
 p

T
Ap)

1/2
                    using (172), A = SS 

                                      (1/2)(z
T
Az) + (1/2)[

T
p]

2
[

T
z]

2
(p

T
Ap) 

 

where the last inequality follows using the nonnegativity of z
T
Az, p

T
Ap, the positivity of 


T
z and the Theorem of the Arithmetic and Geometric Mean.

62
 

 

The inequality (176) is equivalent to the desired inequality (174).  

 

Thus the normalized quadratic unit cost function defined by (146)-(149) will be concave 

over the set of positive prices if and only if the symmetric matrix B is negative 

semidefinite. Thus after econometric estimates of the elements of B have been obtained 

using the system of estimating equations (162), we need only check that the resulting 

estimated B
*
 matrix is negative semidefinite. 
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 This proof is due to Diewert and Wales (1987). 
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However, suppose that the estimated B
*
 matrix is not negative semidefinite. How can one 

reestimate the model, impose negative semidefiniteness on B, but without destroying the 

flexibility of the normalized quadratic functional form? 

 

The desired imposition of negative semidefiniteness can be accomplished using a 

technique due to Wiley, Schmidt and Bramble (1973): simply replace the matrix B by 

 

(177) B   AA
T
 

 

where A is an N by N lower triangular matrix; i.e., aij = 0 if i < j.
63

   

 

We also need to take into account the restrictions (149), Bp
*
 = 0N.  These restrictions on 

B can be imposed if we impose the following restrictions on A: 

 

(178) A
T
p

*
 = 0N. 

 

To show how this curvature imposition technique works, let p
*
 = 1N and consider the case 

N = 2.  In this case, we have: 

 

A  








2221

11 0

aa

a
 and A

T
 = 









22

2111

0 a

aa
. 

 

The restrictions (178) become: A
T
 12 = 







 

22

2111

a

aa
 = 









0

0
  

 

 

and hence we must have a21 =  a11 and a22 = 0.  Thus in this case,  

 

(179) B   AA
T
 =  









 0

0

11

11

a

a







 

00

1111 aa
 =  












2

11

2

11

2

11

2

11

aa

aa
 = a11

2
 













11

11
. 

 

Equations (179) show how the elements of the B matrix can be defined in terms of the 

single parameter, a11
2
. Note that with this reparameterization of the B matrix, it will be 

necessary to use nonlinear regression techniques rather than modifications of linear 

regression techniques. This turns out to be the cost of imposing the correct curvature 

conditions on the unit cost function. 

 

11. The Konüs Byushgens Fisher Unit Cost Function 
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 Since z
T
AA

T
z = (A

T
z)

T
(A

T
z) = y

T
y  0 for all vectors z, AA

T
 is positive semidefinite and hence  AA

T
 is 

negative semidefinite. Diewert and Wales (1987; 53) showed that any positive semidefinite matrix can be 

written as AA
T
 where A is lower triangular. Hence, it is not restrictive to reparameterize an arbitrary 

negative semidefinite matrix B as  AA
T
.  
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Define the KBF unit cost function, c(p), as follows:
64

 

 

(180) c(p)  (p
T
Bp)

1/2
  ; B = B

T
 

 

where B is an N by N symmetric matrix which has one positive eigenvalue (with a 

strictly positive eigenvector) and the remaining N1 eigenvalues are negative or zero.  

The vector of first order partial derivatives of this unit cost function, c(p), and the 

matrix of second order partials, 
2
c(p), are equal to the following expressions: 

 

(181)  c(p) = Bp/(p
T
Bp)

1/2
 ; 

(182) 
2
c(p) = (p

T
Bp)

1/2
{B  Bp(p

T
Bp)

1
p

T
B}. 

 

At this point, we need to determine the region of price space where the c(p) defined by 

(180) is a concave function. In general, the unit cost function defined by (180) will not be 

concave for all strictly positive price vectors p.
65

 In order for a unit cost function to 

provide a valid global representation of homothetic preferences, it must be a 

nondecreasing, linearly homogeneous and concave function over the positive orthant.  

However, in order for c to provide a valid local representation of preferences, we need 

only require that c(p) be positive, nondecreasing, linearly homogeneous and concave over 

a convex subset of prices, say S, where S has a nonempty interior.
66

 It is obvious that c(p) 

defined by (20) is linearly homogeneous. The nondecreasing property will hold over S if 

the gradient vector c(p) defined by (181) is strictly positive for pS and the concavity 

property will hold if 
2
c(p) defined by (182) is a negative semidefinite matrix for pS.  

We will show how the regularity region S can be determined shortly but first, we will 

indicate why the c(p) defined by (20) is a flexible functional form
67

 since this explanation 

will help us to define an appropriate region of regularity. 

 

Let p
*
 >> 0N be a strictly positive reference price vector and suppose that we are given an 

arbitrary unit cost function c
*
(p) that is twice continuously differentiable in a 

neighbourhood around p
*
.
68

 Let x
*
  c

*
(p) >> 0N be the strictly positive vector of first 

order partial derivatives of c
*
(p

*
) and let S

*
  

2
c

*
(p

*
) be the negative semidefinite 

symmetric matrix of second order partial derivatives of c
*
 evaluated at p

*
. Euler’s 
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 This is a special case of a functional form due to Denny (1974), which Diewert (1976; 131) called the 

quadratic mean of order r unit cost function. This functional form with r = 2 was introduced into the 

economics literature by Konüs and Byushgens (1926; 168) and its connection to the Fisher (1922) ideal 

price index was explained by these authors and Diewert (1976). See Problem 22 below. 
65

 The following analysis of the regularity conditions for the c(p) defined by (180) is due to Diewert and 

Hill (2010).  
66

 See Blackorby and Diewert (1979) for more details on local representations of preferences using duality 

theory. 
67

 Diewert (1976; 130) established the flexibility of c(p) defined by (180) as part of a more general result. 
68

 Of course, in addition, we assume that c
*
 satisfies the appropriate regularity conditions for a unit cost 

function. Using Euler’s Theorem on homogeneous functions, the fact that c
*
 is linearly homogeneous and 

differentiable at p
*
 means that the derivatives of c

*
 satisfy the following restrictions: c

*
(p

*
) = p

*T
c

*
(p

*
) and 


2
c

*
(p

*
)p

*
 = 0N. The unit cost function c defined by (180) satisfies analogous restrictions at p = p

*
. These 

restrictions simplify the proof of the flexibility of c at the point p
*
.    



 48 

Theorem on homogeneous functions implies that S
*
 satisfies the following matrix 

equation: 

 

(183) S
*
p

*
 = 0N.                  

 

In order to establish the flexibility of the KBF c defined by (180), we need only show that 

there are enough free parameters in the B matrix so that the following equations are 

satisfied: 

 

(184) c(p
*
) = x

*
 ; 

(185) 
2
c(p

*
) = S

*
. 

 

In order to prove the flexibility of c, it is convenient to reparameterize the B matrix.  

Thus we now set B equal to: 

 

(186) B = bb
T
 + A 

 

where b >> 0N is a positive vector and A is a negative semidefinite matrix which has rank 

equal to at most N1 and it satisfies the following restrictions: 

 

(187) Ap
*
 = 0N. 

 

Note that bb
T
 is a rank one positive semidefinite matrix with p

*T
bb

T
p

*
 = (b

T
p

*
)
2
 > 0 and A 

is a negative semidefinite matrix and satisfies p
*T

Ap
*
 = 0. Thus it can be seen that B is a 

matrix with one positive eigenvalue and the other eigenvalues are negative or zero. 

 

Substitute (181) into (184) in order to obtain the following equation: 

 

(188) x
*
 = Bp

*
/(p

*T
Bp

*
)
1/2

  

              = [bb
T
 + A]p

*
/(p

*T
[bb

T
 + A]p

*
)
1/2

                                                          using (186) 

              = bb
T
p

*
/(p

*T
bb

T
p

*
)
1/2

                                                                              using (187) 

              = b. 

 

Thus if we choose b equal to x
*
, equation (184) will be satisfied.  Now substitute (182) 

into (183) and obtain the following equation: 

 

(189) S
*
 = (p

*T
Bp

*
)
1/2

{B  Bp
*
(p

*T
Bp

*
)
1

p
*T

B} 

              = (p
*T

bb
T
p

*
)
1/2

{bb
T
 + A  bb

T
p

*
(p

*T
bb

T
p

*
)
1

p
*T

bb
T
}          using (186) and (187) 

              = (b
T
p

*
)
1

A                                                                            using b
T
p

*
 > 0. 

 

Thus if we choose A equal to (b
T
p

*
)S

*
, equation (185) will be satisfied and the flexibility 

of c defined by (180) is established.
69

 

 

                                                 
69

 We need to check that A is negative semidefinite (which it is since it is a positive multiple of the negative 

semidefinite substitution matrix S
*
) and that A satisfies the restrictions in (187), since we used these 

restrictions to derive (188) and the second line in (189). But A does satisfy (187) since A satisfies (183).  
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Now we are ready to define the region of regularity for c defined by (180).
70

 Consider the 

following set of prices: 

 

(190) S  {p : p >> 0N ; Bp >> 0N}. 

 

If pS, then it can be seen that c(p) = (p
T
Bp)

1/2
 > 0 and using (181), c(p) >> 0N. 

However, it is more difficult to establish the concavity of c(p) over the set S. We first 

consider the case where the matrix B has full rank so that it has one positive eigenvalue 

and N1 negative eigenvalues. Let pS and using equation (182), we see that 
2
c(p) will 

be negative semidefinite if and only if the matrix M defined as: 

 

(191) M  B  Bp(p
T
Bp)

1
p

T
B         

 

is negative semidefinite. Note that M is equal to the matrix B plus the rank 1 negative 

semidefinite matrix  Bp(p
T
Bp)

1
p

T
B. B has one positive eigenvalue and the remaining 

eigenvalues are 0 or negative. Since M is B plus a negative semidefinite matrix, the 

eigenvalues of M cannot be greater than the eigenvalues of B. Now consider two cases; 

the first case where B has one positive and N1 negative eigenvalues and the second case 

where B has N1 negative or zero eigenvalues in addition to its positive eigenvalue.  

Consider case 1, let pS and calculate Mp: 

 

(192) Mp = [B  Bp(p
T
Bp)

1
p

T
B]p = 0N. 

 

The above equation shows that p  0N is an eigenvector of M that corresponds to a 0 

eigenvalue. Now the addition of a negative semidefinite matrix to B can only make the 

N1 negative eigenvalues of B more negative (or leave them unchanged) so we conclude 

that the addition of the negative semidefinite matrix  Bp(p
T
Bp)

1
p

T
B to B has converted 

the positive eigenvalue of B into a zero eigenvalue and hence M is negative semidefinite. 

 

Case 2 follows using a perturbation argument.  

 

Thus we have shown that the KBF unit cost function c(p) defined by (180) is positive, 

increasing in the components of p and concave in p over the region of prices S defined by 

(190).   

 

It is useful to show if c(p)  (p
T
Bp)

1/2
 is defined by (180), then we can decompose the 

matrix B into bb
T
 + A where b >> 0N and A is a negative semidefinite matrix with Ap

*
 = 

0N for some p
*
 >> 0N. Recall that definition (180) specified that c(p)  (p

T
Bp)

1/2
 where B 

is an N by N symmetric matrix which has one positive eigenvalue (with a strictly positive 

eigenvector) and the remaining N1 eigenvalues are negative or zero. Let 1 > 0 and i  

0 for i = 2,3,...,N be the eigenvalues of B and let the column vectors u
i
 be the 

corresponding eigenvectors, which are orthonormal to each other; i.e., u
iT

u
i
 = 1 for i = 

1,...,N and u
iT

u
j
 = 0 for all i  j. Then it is well known that the matrix B has the following 

representation: 

                                                 
70

 The region of regularity can be extended to the closure of the set S. 
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(193) B = i=1
N
 i u

i
u

iT
 . 

 

Using the regularity conditions in definition (180), it can be seen that the first eigenvector 

u
1
 is strictly positive. Make the following definitions: 

 

(194) p
*
  u

1
 >> 0N ; b  (1)

1/2
u

1
 ; A  i=2

N
 i u

i
u

iT
 . 

 

It can be seen that A is a negative semidefinite matrix. Since u
1
 = p

*
 is orthogonal to 

u
2
,...,u

N
, Ap

*
 = 0N. Thus we have B = bb

T
 + A where b is a positive vector and A is 

negative semidefinite with Ap
*
 = 0N.  

 

The following problems show the connection of the KBF functional form with Irving 

Fisher’s (1922) ideal index number formula. 

 

Problems     
 

21. Suppose that a producer’s unit cost function is defined by (180). Assume cost 

minimizing behavior on the part of the producer for periods 1 and 2 so that using 

Shephard’s Lemma, we have: 

 

(i) x
t
 = c(p

t
)y

t
 ;                                                                                                          t = 1,2 

 

where p
t
, x

t
 and y

t
 are the period t input price and quantity vectors and y

t
 is the period t 

output level for t = 1,2. (a) Show that 

 

(ii) x
t
/p

tT
x

t
 = c(p

t
)/c(p

it
)  ;                                                                                          t = 1,2. 

 

(b) Show that we also have the following equations: 

 

(iii) x
t
/p

tT
x

t
 = Bp

t
/c(p

t
)  ;                                                                                              t = 1,2.  

 

22. Continuation of 21: The Fisher (1922) ideal input price index PF is defined as the 

following function of the observed input price and quantity vectors for periods 1 and 2: 

 

(i) PF(p
1
,p

2
,x

1
,x

2
)  [p

2T
x

1
 p

2T
x

2
/p

1T
x

1
 p

1T
x

2
]
1/2

. 

 

Assume that p
1
,p

2
,x

1
,x

2
 satisfy equations (i) in Problem 21 where the KBF unit cost 

function c(p) is defined by (180). Show that 

 

(ii) PF(p
1
,p

2
,x

1
,x

2
) = c(p

2
)/c(p

1
). 

 

Hint: Note that the inner products of p
2
 with x

1
/p

1T
x

1
 and p

1
 with x

2
/p

2T
x

2
 appear in the 

formula (i) above for PF(p
1
,p

2
,x

1
,x

2
). Apply part (b) of Problem 21.  
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Comment: The ratio of unit costs, c(p
2
)/c(p

1
), can be interpreted as a theoretical input 

price index, (due originally to Konüs (1924) in the consumer context). Equation (ii) 

above tells us that this theoretical input cost index can be calculated using just observed 

input price and quantity data for the two periods under consideration using the Fisher 

index provided that the producer is cost minimizing in the two periods and has the 

production function that is dual to the unit cost function defined by (180). Thus no 

econometric estimation is necessary in order to construct the ratio of unit costs.
71

      

 

We conclude this section by looking at the problems associated with estimating the 

unknown parameters in the symmetric B matrix, assuming that we have data on a 

production unit producing one output and using N inputs for T time periods. Using (181), 

Shephard’s Lemma and definition (180) evaluated at the period t data, we obtain the 

following system of estimating equations: 

 

(195) x
t
/y

t
 = Bp

t
/(p

tT
Bp

t
)
1/2

 + e
t
 ;                                                                             t = 1,...,T 

 

where x
t
 is the observed period t input vector, y

t
 is the period t output, p

t
 is the vector of 

period t input prices and e
t
  [e1

t
,...,eN

t
]

T
 is a vector of stochastic error terms with 0 means. 

Equations (195) can be used in order to statistically estimate the N(N+1)/2 independent 

bij parameters in the B matrix. However, the system of equations defined by (195) is 

nonlinear in the unknown parameters. Define period t unit cost by c
t
  p

tT
x

t
/y

t
. In theory, 

c
t
 should equal (p

tT
Bp

t
)
1/2

 plus an error term. Thus the system of estimating equations 

(195) can be replaced by the following system: 

 

(196) c
t
x

t
/y

t
 = Bp

t
 + e

t*
 ;                                                                                          t = 1,...,T 

 

where e
t*

  [e1
t*

,...,eN
t*

]
T
 is a new vector of stochastic error terms with 0 means. Note that 

the new system of estimating equations defined by (196) is linear in the unknown bij.
72

  

 

As was the case when estimating the normalized quadratic unit cost function, it will often 

turn out that the estimated B matrix will not satisfy the regularity conditions that are 

associated with definition (180). As we have seen above, B may be estimated as the 

equivalent expression equal to bb
T
 + A where b is a strictly positive vector and A is a 

symmetric negative semidefinite matrix with Ap
*
 = 0N for some strictly positive reference 

vector p
*
. Thus we need only set A =  CC

T
 where C is a lower triangular matrix with 

                                                 
71

 This result is much more important in the consumer context where we interpret f(x) as a utility function 

defined over consumption vectors x and c(p) is the dual unit expenditure function. Note that utility cannot 

be observed whereas output can be observed.  
72

 In the consumer context where output y
t
 is replaced by (unobservable) utility u

t
 and x

t
 is the period t 

consumption vector, rewrite (195) as x
t
 = u

t
Bp

t
/(p

tT
Bp

t
)

1/2
 where we have dropped the error terms. Total 

period t expenditure is p
tT

x
t
 = u

t
(p

tT
Bp

t
)

1/2
. Thus we obtain x

t
/p

tT
x

t
 = Bp

t
/p

tT
Bp

t
. Premultiply both sides of 

equation n by pn
t
 and we obtain the following system of estimating equations: pn

t
xn

t
/p

tT
x

t
  sn

t
 = pn

t
i=1

N 

bnipi
t
/p

tT
Bp

t
 + en

t
 for n = 1,...,N and t = 1,...,T. We need to impose a normalization on the elements of the B 

matrix such as b11 = 1 and since we have share equations, we need to drop one of these share equations in 

the nonlinear estimation procedure. For an example of this methodology in the consumer context, see 

Diewert and Feenstra (2017).  
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C
T
p

*
 = 0N and the correct curvature conditions will be imposed on the resulting functional 

form for the unit cost function defined as follows: 

 

(197) c(p)  (p
T
[bb

T
  CC

T
]p)

1/2
 = (p

T
[bb

T
  i=1

N1
 c

i
c

iT
]p)

1/2
    

  

where c
1T

  [c1
1
,c2

1
,...,cN

1
], c

2T
  [0,c2

2
,...,cN

2
], c

3T
  [0,0,c3

3
,...,cN

3
], ..., c

(N1)T
  

[0,...,0,cN1
N1

,cN
N1

] and c
nT

p
*
 = 0 for n = 1,2,...,N1. 

 

We have considered four flexible functional forms for a unit cost function: the 

Generalized Leontief, the translog, the normalized quadratic and the KBF functional 

forms. The last two functional forms have the advantage that concavity can be imposed 

on these functional forms without destroying the flexibility of the resulting functions. The 

normalized quadratic functional form has the disadvantage that it is usually necessary to 

choose the vector  
73

 whereas all of the parameters for the KBF functional form can be 

estimated endogenously.   

 

12. Semiflexible Functional Forms 
 

In models where the number of commodities N is large, it can be difficult to estimate all 

of the parameters for a flexible functional form. Thus when estimating the parameters for 

the normalized quadratic defined by (146) above, it was necessary to estimate the 

elements of the N by N symmetric matrix B and for the KBF functional form, it was 

necessary to estimate the elements of the N by N symmetric matrix A in (186). If we 

impose concavity on these functional forms, then in both of these cases, the B and A 

matrices are replaced by  CC
T
 where C is lower triangular and Cp

*
 = 0N for a reference 

positive price vector p
*
. An effective way to estimate the C matrix is to estimate it one 

column at a time. Thus consider our estimating equations (162) for the Normalized 

Quadratic unit cost function. Replace the B matrix in these equations by  CC
T
 where C 

is lower triangular and Cp
*
 = 0N and we obtain the following system of equations:   

 

(198) x
t
/y

t
 = b  CC

T
v

t
 + (1/2)v

tT
CC

T
v

t
 + e

t
 ;                                                      t = 1,...,T. 

 

In Stage 1, we set C = 0NN and use the resulting equations in (198) in order to estimate 

the vector of parameters b. In Stage 2, set CC
T
 = c

1
c

1T
 where c

1T
  [c1

1
,c2

1
,...,cN

1
] and 

c
1T

p
*
 = 0. Equations (198) now become a nonlinear regression model. For starting 

parameter values, use the b vector that was estimated in Stage 1 and set the vector c
1
 = 0N. 

In Stage 3, set CC
T
 = c

1
c

1T
 + c

2
c

2T
 where c

1T
  [c1

1
,c2

1
,...,cN

1
], c

2T
  [0,c2

2
,...,cN

2
]    and 

c
iT

p
*
 = 0 for i = 1,2. For starting parameter values, use the b and c

1
 vectors that were 

estimated in Stage 2 and set the vector c
2
 = 0N. This procedure of gradually adding 

nonzero columns of the lower triangular C matrix can be continued until the full number 

of N1 nonzero columns have been added, provided that the number of time series 

observations T is large enough compared to N, the number of commodities in the 

                                                 
73

 Thus different choices for the  vector could lead to different estimates for elasticities of demand. N1 

components of the  vector could be estimated along with the remaining parameters but then we would not 

have a parsimonious flexible functional form. 
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model.
74

  However, in models where T is small relative to N, the above procedure of 

adding nonzero columns to A will have to be stopped well before the maximum number 

of N1 nonzero columns has been added, due to the lack of degrees of freedom. Suppose 

that we stop the above procedure after K < N1 nonzero columns have been added. Then 

Diewert and Wales (1988; 330) called the resulting normalized quadratic functional form 

a flexible of degree K functional form or a semiflexible functional form. A flexible of 

degree K functional form for a cost function can approximate an arbitrary twice 

continuously differentiable functional form to the second order at some point, except the 

matrix of second order partial derivatives of the functional form with respect to prices is 

restricted to have maximum rank K instead of the maximum possible rank, N1.     

 

The cost of using a semiflexible functional form of degree K where K is less than N1 is 

that we will miss out on the part of CC
T
 that corresponds to the smallest eigenvalues of  

this matrix. In many situations, this cost will be very small; i.e., as we go through the 

various stages of estimating C by adding an extra nonzero column to C at each stage, we 

can monitor the increase in the final log likelihood (if we use maximum likelihood 

estimation) and when the increase in Stage k+1 over Stage k is “small”, we can stop 

adding extra columns, secure in the knowledge that we are not underestimating the size 

of CC
T
 by a large amount. 

 

This semiflexible technique has not been widely applied but it would seem to offer some 

big advantages in estimating substitution matrices in situations where there are a large 

number of commodities in the model.
75

   

            

13. The Use of Splines for Modeling Technical Progress. 

 

Recall the definitions for the Generalized Leontief, normalized quadratic and KBF unit 

cost functions c(p) given by (97), (146) and (180). If these functions are estimated in the 

time series context for a production unit for say T periods, then a problem will often 

occur: these functional forms make no allowance for technical progress that may have 

taken place over the sample time period. This problem can be solved if we add the 

function d
T
pt to the unit cost function c(p) where d

T
  [d1,...,dN] is an N dimensional 

vector of technical progress parameters and t is a scalar time variable which takes on the 

value t for time period t. Thus choose a flexible functional form for the unit cost function 

c(p) and add the function d
T
pt to it. Using our usual notation for a data set on inputs x

t
, 

input prices p
t
 and output levels y

t
 for period t, we obtain the following system of 

estimating equations using Shephard’s Lemma: 

 

(199) x
t
/y

t
 = c(p

t
) + dt + e

t
 ;                                                                                 t = 1,...,T 

 

                                                 
74

 In empirical applications, typically a final stage K < N1 will be reached where the addition of another 

column to the CC
T
 matrix leads to no increase in log likelihood and the last column c

K
 is a column of zeros.   

75
 Diewert and Lawrence in some unpublished work have successfully estimated semiflexible models for 

profit functions for 40 commodities. Neary (2004) used semiflexible functional forms for 11 commodity 

groups. 
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where e
t
 is a suitable error vector. If we choose c(p) to be the normalized quadratic unit 

cost function, then the resulting estimating equations (199) will be linear in the unknown 

parameters.
76

 

 

However, in many applications of this model, the results may not be satisfactory. The 

problem with the model defined by equations (199) is that the resulting measures of 

technical progress are too smooth; i.e., typically if one looks at the residuals generated by 

the model, substantial amounts of autocorrelation will be present in the estimating 

equations. This is an indication that rates of technical progress are not constant over the 

sample time period. Under these circumstances, it will be useful to replace the function 

simple linear function d
T
pt by the following piece-wise linear spline function, (p,t), 

defined as follows: 

 

(200) (p,t)  d
1T

pt if 1  t  t
1*

 ; 

                    d
1T

pt
1*

 + d
2T

p(tt
1*

)  if t
1*

  t  t
2*

 ; 

                    d
1T

pt
1*

 + d
2T

p(t
2*
t

1*
) + d

3T
p(tt

2*
)  if t

2*
  t  T        

 

where d
1
, d

2
 and d

3
 are N dimensional technical progress parameters and t

1*
 and t

2*
 > t

1*
 

are two time periods where the piece-wise linear function of time t, (p,t), changes from 

one set of rates of technical progress to another set.
77

 The estimating equations are now 

the following ones:
78

 

 

(201) x
t
/y

t
 = c(p

t
) + d

1
t + e

t
 ;                                           1    t  t

1*
; 

                 =  c(p
t
) + d

1
t
1*

 + d
2
(tt

1*
) + e

t
 ;                       t

1*
 < t  t

2*
;  

                 =  c(p
t
) + d

1
t
1*

 + d
2
(t

2*
t

1*
) + d

3
(tt

2*
)  + e

t
 ;  t

2*
 < t  T.     

 

If we chose c(p) to be the normalized quadratic unit cost function, then, assuming that it 

is not necessary to impose concavity, the above estimating equations will be linear in the 

unknown parameters. For an example of the use of the above spline methodology, see 

Fox (1998).
79

 

 

The above spline methodology for modeling technical progress can be modified to model 

nonconstant returns to scale technologies; see Fox and Grafton (2000). 

 

The above linear spline model has the disadvantage that rates of technical progress will 

typically jump in a discontinuous manner as we move from one linear spline segment to 

the following one. This problem can be remedied (at the cost of a more complicated set 

                                                 
76

 However, if we impose concavity on the normalized quadratic functional form, then the resulting 

estimating equations will be nonlinear in the unknown parameters. For a worked example of this 

methodology for modelling technical progress, see Diewert and Wales (1987).  
77

 The break points t
1*

 and t
2*

 can be chosen by running a preliminary regression of the form (199) and 

examining the regression residuals to see when these turning points occur. In our example, we have three 

time periods where the rates of technical progress are linear in time. If necessary, additional break points 

can be added at the cost of having to estimate additional parameter vectors d
i
. 

78
 If the unit cost function is translog, then the estimating equations will be somewhat different.  

79
 Fox used a more scientific method to pick the break points (cross validation).   
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of estimating equations) if the linear splines in time t are replaced with quadratic splines 

in t. For an example of the quadratic spline approach, see Diewert and Wales (1992).    

 

14. Allowing for Flexibility at Two Sample Points 

 

There can be a problem with our two flexible functional forms for unit cost functions 

where the correct curvature conditions can be imposed (the normalized quadratic and the 

KBF unit cost functions): the elasticities of input demand that these functions generate in 

the time series context can exhibit substantial trends.  

 

We need to derive a formula for the elasticity of demand for input n with respect to a 

change in the price of input k, say Enk(y,p) where y is output and p is an input price 

vector. Recall that the normalized quadratic unit cost function was defined by c(p)  b
T
p 

+ (1/2)p
T
Bp/

T
p where  is predetermined and B is a symmetric matrix which satisfies 

Bp
*
 = 0N.

80
 The vector of first order partial derivatives and the matrix of second order 

partial derivatives of this unit cost function are as follows: 

 

(202)  c(p) = b + Bv  (1/2) v
T
Bv ; 

(203) 
2
c(p) = (

T
p)

1
[ B  Bv

T
  v

T
B + v

T
Bv

T
] 

 

where v  p/
T
p

 
is a vector of normalized input prices. The system of input demand 

functions that is generated by this functional form is x(y,p)  yc(p) and the N by N 

matrix of input demand derivatives with respect to input prices is px(y,p)  y
2
c(p). 

Using (203), we see that the elasticity Enk(y,p)  [pk/xn]xn(y,p)/pk is equal to the 

following expression: 

 

(204) Enk(y,p) = [pk/
T
p][y/xn][bnk  Bnvk  Bkvn + v

T
Bvnk] ;              n, k = 1,...,N 

 

where bnk is the nk
th

 element of the matrix B, Bi denotes the ith row of the B matrix for i 

= 1,...,N and v  p/
T
p is the vector of normalized prices; i.e., the components of the 

input price vector p are divided by 
T
p. Note that when p = p

*
, the restrictions imply that 

v
*T

Bv
*
 = 0 and Biv

*
 = 0 for i = 1,...,N where v

*
  p

*
/

T
p

*
. Thus 

 

(205) Enk(y,p
*
) = [pk

*
/

T
p

*
][y/xn]bnk ;                                                                n, k = 1,...,N. 

 

The reference price vector p
*
 will usually be a representative input price vector for the 

sample under consideration. Thus the price elasticity of input demand when evaluated at 

these reference prices, Enk(y,p
*
), will be equal to the constant term bnk times the price 

ratio term pk
*
/

T
p

*
 times the quantity ratio term y/xn. The remaining 3 terms on the right 

hand side of (204) will be equal to zero when p = p
*
. Thus the first term will generally be 

the most significant term that defines Enk(y,p) for a general input price vector. If there are 

substantial divergent trends in either input prices p or input quantities x, it can be seen 

                                                 
80

 See equations (146)-(149) above. We also require that B be negative semidefinite, a property which can 

be imposed as was explained in Section 10 above. 
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that [pk/
T
p][y/xn]bnk will also have substantial trends and hence Enk(y

t
,p

t
) will, in general, 

also exhibit substantial trends under these conditions.  

 

What can be done to remedy this problem of trending elasticities? If the number of 

observations +1 is relatively large compared to the number of inputs N, then we can set 

the unit cost function equal to the following function of time t: 

 

(206) c(p,t)  (1
1

t)b
1T

p + 
1

tb
2T

p + (1/2)p
T
[(1

1
t)B

1
+ 

1
tB

2
]p/

T
p ;     t = 0,1,2,...,

 

 

where B
1
p

0
 = 0N and B

2
p

T
 = 0N.

81
 Thus the resulting unit cost function evaluated at period 

0 is c(p,0)  b
1T

p + (1/2)p
T
B

1
p/

T
p and evaluated at period T is c(p,T)  b

2T
p + 

(1/2)p
T
B

2
p/

T
p; i.e., the resulting unit cost function is flexible at two data points. If there 

are trends in input demand elasticities using this functional form, then these trends are 

implied by the data rather than by the choice of the functional form.
82

 Note that the unit 

cost function defined by (206) allows for biased technical change over the sample period; 

i.e., it allows for trends in the b  (1t)b
1
 + tb

2
 vector.

83
                          

  

It is possible to generalize the KBF unit cost function in a similar manner. Recall that this 

unit cost function was defined by (180): c(p)  (p
T
Bp)

1/2
 where B  bb

T
 + A and A is a 

negative semidefinite symmetric matrix which satisfies Ap
*
 = 0N. The vector of first 

order partial derivatives was defined by (181). Using this equation and Shephard’s 

Lemma, we have x(y,p) = yc(p) and so x/y = c(p). Thus using (181), we obtain the 

following equations: 

 

(207) x(y,p) = yc(p) = yBp/(p
T
Bp)

1/2
. 

 

When p = p
*
, using B  bb

T
 + A and Ap

*
 = 0N, it can be seen that 

 

(208) x
*
  x(y,p

*
) = yb. 

 

The matrix of input demand derivatives with respect to input prices is px(y,p) = y
2
c(p). 

The matrix of second order partial derivatives of the unit cost function was defined by 

(182). Thus we have: 

 

(209) px(y,p) = y
2
c(p) 

                         = y(p
T
Bp)

1/2
{B  Bp(p

T
Bp)

1
p

T
B}                           using (182) 

                         = yc(p)
1/2

{B  Bp(p
T
Bp)

1
p

T
B}                                since c(p)  (p

T
Bp)

1/2
 

                         = yc(p)
1/2

{B  y
2

x(y,p)x(y,p)
T
}                               using (207) 

                                                 
81

 We require that B
1
 and B

2
 be symmetric negative semidefinite matrices. If the estimated matrices fail to 

be negative semidefinite, then we can impose negative semidefiniteness by setting B
i
 =  C

i
C

iT
 for i = 1,2 

where each C
i
 is an arbitrary lower triangular matrix satisfying C

1T
p

0
 = 0N and C

2T
p

T
 = 0N.    

82 This technique of imposing price flexibility at two points is due to Diewert and Lawrence (2002). 
83

 If the residuals in the final model exhibit substantial autocorrelation, then it is possible to replace the b 

vector by a piece-wise linear function of time as was done in the previous section. This will allow for a 

more general pattern of technical change.  
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                         = yc(p)
1/2

{bb
T
 + A  y

2
x(y,p)x(y,p)

T
}                     using B = bb

T
 + A. 

 

Now evaluate (209) when p = p
*
. We find that: 

 

(210) px(y,p
*
) = yc(p

*
)
1/2

{A + bb
T
  y

2
x(y,p

*
)x(y,p

*
)

T
} 

                          = yc(p
*
)
1/2

{A + bb
T
  bb

T
}                                        using (208) 

                          = yc(p
*
)
1/2

A. 

 

Using (209), we see that the elasticity Enk(y,p)  [pk/xn]xn(y,p)/pk is equal to the 

following expression: 

 

(211) Enk(y,p) = [pk/c(p)][y/xn(y,p)][ank + bnbk  y
2

xn(y,p)xk(y,p)] ;           n, k = 1,...,N 

 

where ank is the nk
th

 element of the negative semidefinite matrix A (which satisfies Ap
*
 = 

0N), bn is the n
th

 element of the vector b and xn(y,p) is the n
th

 element of the cost 

minimizing input vector x(y,p) defined by (207). Using (210), we see that when p = p
*
, 

Enk(y,p
*
) = [pk/c(p

*
)][y/xn(y,p

*
)]ank so that the last two terms on the right hand side of 

(211) sum to zero when p = p
*
. Thus the first term associated with ank will generally be 

the most significant term that defines Enk(y,p) for a general input price vector. If there are 

substantial divergent trends in either input prices p or input quantities x, it can be seen 

that [pk/c(p
*
)][y/xn(y,p

*
)]ank will also have substantial trends and hence Enk(y

t
,p

t
) will, in 

general, also exhibit substantial trends under these conditions.  

 

Again, if the number of observations +1 is relatively large compared to the number of 

inputs N, then we can set the KBF unit cost function equal to the following function of 

time t: 

 

(212) c(p,t)  (p
T
[(1

1
t)b

1T
p + 

1
tb

2T
p + (1

1
t)A

1
+ 

1
tA

2
]p)

1/2
 ;             t = 0,1,2,...,  

 

where A
1
p

0
 = 0N and A

2
p

T
 = 0N.

84
 Thus the resulting unit cost function evaluated at 

period 0 is c(p,0)  (p
T
[b

1
b

1T 
+ A

1
]p)

1/2
  and evaluated at period T is c(p,T)  (p

T
[b

1
b

1T 
+ 

A
1
]p)

1/2
; i.e., the resulting unit cost function is flexible at two data points. As was the case 

for the normalized quadratic, if there are trends in input demand elasticities using this 

functional form, then these trends are implied by the data rather than by the choice of the 

functional form. Again, the unit cost function defined by (212) allows for biased 

technical change over the sample period; i.e., it allows for trends in the b  (1t)b
1
 + tb

2
 

vector.                         

 

We turn our attention to multiple input and multiple output technologies. 

 

15. National Product or Variable Profit Functions 
 

                                                 
84

 We require that A
1
 and A

2
 be symmetric negative semidefinite matrices. Again, if the estimated matrices 

fail to be negative semidefinite, then we can impose negative semidefiniteness by setting A
i
 =  C

i
C

iT
 for i 

= 1,2 where each C
i
 is an arbitrary lower triangular matrix satisfying C

1T
p

0
 = 0N and C

2T
p

T
 = 0N.  
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Up to now, we have only considered technologies that produce one output. In reality, 

production units (firms or industries) usually produce many outputs.
85

 Hence, in this 

section, we consider technologies that produce many outputs while using many inputs. 

 

Let S denote the technology set of a production unit. We decompose the inputs and 

outputs of the firm into two sets of commodities: variable and fixed. Let y  [y1,…,yM] 

denote a vector of variable net outputs (if ym > 0, then commodity m is an output while if 

ym < 0, then commodity m is an input) and let x  [x1,…,xN] denote a nonnegative vector 

of “fixed” inputs
86

. Thus the technology set S is a set of feasible variable net output and 

fixed input vectors, (y,x).   

 

Let p >> 0M be a strictly positive vector of variable net output prices that the firm faces 

during a production period. Then conditional on a given vector of fixed inputs x  0N, we 

assume that the firm attempts to solve the following conditional or variable profit 

maximization problem: 

 

(213) max y {p
T
y: (y,x)S}  (p,x). 

 

The optimized objective function, (p,x), has been called many names
87

, depending on 

the context. Alternative names for this function are the national product function 

Samuelson (1953; 10), the gross profit function Gorman (1968), the conditional profit 

function McFadden (1966) (1978), the variable profit function Diewert (1973), the GDP 

function Kohli (1978) (1991) and the value added function Diewert (1978). If there are no 

intermediate inputs or imports in the outputs, then (p,x) becomes the revenue function 

Diewert (1974b). Some regularity conditions on the technology set S are required in order 

to ensure that the maximum in (213) exists. A simple set of sufficient conditions are:
88

 (i) 

S is a closed set in R
M+N

 and (ii) for each x  0N, there exists a y such that (y,x)S and 

the set of such y vectors is bounded from above. We will call these conditions the 

minimal regularity conditions on S. 

 

Note that (p,x) is equal to the optimized objective function in (213) and is regarded as a 

function of the net output prices for variable commodities that the firm faces, p, as well as 

a function of the vector of fixed inputs, x, that the firm has at its disposal. Just as in 

section 2 above where we showed that the cost function C satisfied a number of 

regularity conditions without assuming much about the production function, we can now 

                                                 
85

 See Bernard, Redding and Schott (2010). In the sample of US firms considered by Hottman, Redding and 

Weinstein (2016; 1301), the mean number of products (measured by distinct barcodes) was 13 per firm and 

the maximum number was 388.  
86

 These “fixed’ inputs may only be fixed in the short run. Or we may simply decide to allow outputs and 

intermediate inputs to be variable and condition on an x vector of primary inputs. 
87

 The concept of this function is due to Samuelson (1953). 
88

 Let x  0N and p >> 0M.  Then by (ii), there exists yx such that (yx,x)S.  Define the closed and bounded 

set B(x,p)  {y: y  b(x)1M; p
T
y  p

T
yx} where b(x) > 0 is an upper bound on all possible net output vectors 

that can be produced by the technology if the vector of fixed inputs x is available to the producer.  It can be 

seen that the constraint (y,x)S in (213) can be replaced by the constraint (y,x)SB(x,p). Using (ii), 

SB(x,p) is a closed and bounded set so that the maximum in (213) will exist. 
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show that the profit function (p,x) satisfies some regularity conditions without assuming 

much about the technology set S. 

 

Theorem 9: McFadden (1966) (1978), Gorman (1968), Diewert (1973): Suppose the 

technology set S satisfies the minimal regularity conditions (i) and (ii) above. Then the 

variable profit function (p,x) defined by (213) has the following properties with respect 

to p for each x  0N: 

 

Property 1: (p,x)  is positively linearly homogeneous in p for each fixed x  0N; i.e.,  

 

(214) (p,x) = (p,x) for all  > 0, p >> 0M and x  0N. 

 

Property 2: (p,x) is a convex function of p for each x  0N; i.e., 

 

(215) x  0N, p
i
 >> 0M, i = 1,2; 0 <  < 1 implies  

          (p
1
+(1)p

2
,x)  (p

1
,x) + (1)(p

2
,x). 

 

Problem 
 

23. Prove Theorem 9. Hint: Properties 1 and 2 above for (p,x) are analogues to 

Properties 2 and 4 for the cost function C(y,p) in Theorem 1 above and can be proven in 

the same manner. 

 

We now ask whether a knowledge of the profit function (p,x)  is sufficient to determine 

the underlying technology set S. As was the case in section 3 above, the answer to this 

question is yes, but with some qualifications. 

 

To see how to use a given profit function (p,x) can be used to determine the technology 

set that generated it, pick an arbitrary vector of fixed inputs x  0N and an arbitrary vector 

of positive prices, p
1
 >> 0M. Now use the given profit function  to define the following 

isoprofit surface: {y: p
1T

y = (p
1
,x)}. This isoprofit surface must be tangent to the set of 

net output combinations y that are feasible, given that the vector of fixed inputs x is 

available to the firm, which is the conditional on x production possibilities set, S(x)  {x: 

(y,x)S}. It can be seen that this isoprofit surface and the set lying below it must contain 

the set S(x); i.e., the following halfspace M(x,p
1
), contains S(x): 

 

(216) M(x,p
1
)  {y: p

1T
y  (p

1
,x)}. 

 

Pick another positive vector of prices, p
2
 >> 0M and it can be seen, repeating the above 

argument, that the halfspace M(x,p
2
)  {y: p

2T
y  (p

2
,x)} must also contain the 

conditional on x production possibilities set S(x). Thus S(x) must belong to the 

intersection of the two halfspaces M(x,p
1
) and M(x,p

2
). Continuing to argue along these 

lines, it can be seen that S(x) must be contained in the following set, which is the 

intersection over all p >> 0M of all of the supporting halfspaces to S(x): 
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(217) M(x)  
Mp 0 M(x,p). 

 

Note that M(x) is defined using just the given profit function, (p,x). Note also that since 

each of the sets in the intersection, M(x,p), is a convex set, then M(x) is also a convex set. 

Since S(x) is a subset of each M(x,p), it must be the case that S(x) is also a subset of 

M(x); i.e., we have 

 

(218) S(x)  M(x). 

 

Is it the case that S(x) is equal to M(x)? In general, the answer is no; M(x) forms an outer 

approximation to the true conditional production possibilities set S(x). Suppose that that 

there are only two outputs and for a given input vector x, the output production 

possibilities set is the heart shaped region in Figure 2. The boundary of the set M(x) 

partly coincides with the boundary of S(x) but it encloses a bigger set: the backward 

bending parts of the true production frontier are replaced by the dashed lines that are 

parallel to the y1 axis and the y2 axis and the inward bending part of the true production 

frontier is replaced by the dashed line that is tangent to the two regions where the 

boundary of M(x) coincides with the boundary of S(x). However, if the producer is a 

price taker in the two output markets, then it can be seen that we will never observe the 

producer’s nonconvex or backward bending parts of the production frontier.   

 

 
 

What are conditions on the technology set S (and hence on the conditional technology 

sets S(x)) that will ensure that the outer approximation sets M(x), constructed using the 

variable profit function (p,x), will equal the true technology sets S(x)? It can be seen 

that the following two conditions on S (in addition to the minimal regularity conditions 

(i) and (ii)) are the required conditions: 

 

Figure 2: The Geometry of the Two Output Maximization Problem 

y2 

y1 

S(x) 

M(x) 
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(219) For every x  0N, the set S(x)  {x: (y,x)S} has the following free disposal 

property: y
1
S(x), y

2
  y

1
 implies y

2
S(x); 

   

(220) For every x  0N, the set S(x)  {y: (y,x)S} is convex.
89

  

 

Conditions (219) and (220) are the conditions on the technology set S that are 

counterparts to the two regularity conditions of nondecreasingness and quasiconcavity
90

 

that were made on the production function, f(x), in section 3 above in order to obtain a 

duality between cost and production functions. If the firm is behaving as a price taker in 

variable commodity markets, it can be seen that it is not restrictive from an empirical 

point of view to assume that S satisfies conditions (219) and (220), just as it was not 

restrictive to assume that the production function was nondecreasing and quasiconcave in 

the context of the producer’s (competitive) cost minimization problem studied earlier.    

 

The next result provides a counterpart to Shephard’s Lemma, Theorem 5 in section 4 

above. 

 

Theorem 10: Hotelling’s (1932; 594) Lemma:
91

 If the profit function (p,x)  satisfies the 

properties listed in Theorem 9 above and in addition is once differentiable with respect to  

the components of the variable commodity prices at the point (p
*
,x

*
) where x

*
  0N and p

*
 

>> 0M, then     

 

(221) y
*
 = p(p

*
,x

*
)   

 

where p(p
*
,x

*
)  is the vector of first order partial derivatives of variable profit with 

respect to variable commodity prices and y
*
 is any solution to the profit maximization 

problem  

 

(222) max y {p
*T

y: (y,x
*
)S}  (p

*
,x

*
). 

 

Under these differentiability hypotheses, it turns out that the y
*
 solution to (222) is unique. 

 

Proof: Let y
*
 be any solution to the profit maximization problem (222). Since y

*
 is 

feasible for the profit maximization problem when the variable commodity price vector is 

changed to an arbitrary p >> 0M, it follows that 

 

(223) p
T
y

*
  (p,x

*
)                                                                                   for every p >> 0M. 

 

Since y
*
 is a solution to the profit maximization problem (22) when p = p

*
, we must have 

 

                                                 
89

 If N = 1 so that there is only one fixed input, then given a producible net output vector yR
M

, we can 

define the (fixed) input requirements function that corresponds to the technology set S as g(y)  min x {x: 

(y,x)S}. In this case, condition (220) becomes the following condition: the input requirements function 

g(y) is quasiconvex in y. For additional material on this one fixed input model, see Diewert (1974b). 
90

 Recall conditions (11) and (12) in section 3. 
91

 See also Gorman (1968) and Diewert (1974a, 137). 
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(224) p
*T

y
*
 = (p

*
,x

*
). 

 

But (223) and (224) imply that the function of M variables, g(p)  p
T
y

*
  (p,x

*
) is 

nonpositive for all p >> 0M with g(p) = 0. Hence, g(p) attains a global maximum at p = p
*
 

and since g(p) is differentiable with respect to the variable commodity prices p at this 

point, the following first order necessary conditions for a maximum must hold at this 

point: 

 

(225) p g(p
*
) = y

*
  p(p

*
,x

*
) = 0M. 

 

Now note that (225) is equivalent to (221). If y
**

 is any other solution to the profit  

maximization problem (222), then repeat the above argument to show that y
**

 = 

p(p
*
,x

*
) which in turn is equal to y

*
.                                                                       Q.E.D. 

 

Hotelling’s Lemma may be used in order to derive systems of variable commodity output 

supply and input demand functions just as we used Shephard’s Lemma to generate 

systems of cost minimizing input demand functions; for examples of this use of 

Hotelling’s Lemma, see Diewert (1974a; 137-139) and Sections 17-19 below. 

 

If we are willing to make additional assumptions about the underlying firm production 

possibilities set S, then we can deduce that (p,x) satisfies some additional properties. 

One such additional property is the following one: S is subject to the free disposal of 

fixed inputs if it has the following property: 

 

(226) x
2
 > x

1
  0N and (y,x

1
)S implies (y,x

2
)S.    

 

The above property means if the vector of fixed inputs x
1
 is sufficient to produce the 

vector of variable inputs and outputs y and if we have at our disposal a bigger vector of 

fixed inputs x
2
, then y is still producible by the technology that is represented by the set S. 

 

Theorem 11:
92

 Suppose the technology set S satisfies the weak regularity conditions (i) 

and (ii) above. (a) If in addition, S has the following property:
93

 

 

(227) For every x  0N, (0M,x)S; 

 

then for every p >> 0M and x  0N, (p,x)  0; i.e., the variable profit function is 

nonnegative if (227) holds. 

(b) If S is a convex set, then for each p >> 0M, then (p,x) is a concave function of x over 

the set   {x: x  0N}. 

(c) If S is a cone so that the technology is subject to constant returns to scale, then (p,x) 

is (positively) homogeneous of degree one in the components of x. 

                                                 
92

 The results in this Theorem are essentially due to Samuelson (1953; 20), Gorman (1968), McFadden 

(1968) and Diewert (1973) (1974a; 136) but they are packaged in a somewhat different form in this 

chapter. 
93

 This property says that the technology can always produce no variable outputs and utilize no variable 

inputs given any vector of fixed inputs x. 
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(d) If S is subject to the free disposal of fixed inputs, property (226), then  

 

(228) p >> 0, x
2
 > x

1
  0N implies (p,x

2
)  (p,x

1
); 

 

i.e., (p,x) is nondecreasing in the components of x. 

 

Proof of (a): Let p >> 0M and x  0N.  Then 

 

(229) (p,x)  max y {p
T
y: (y,x)S} 

                     p
T
0M           since by (227), (0M,x)S and hence is feasible for the problem 

                    = 0. 

 

Proof of (b): Let p >> 0M, x
1
  0N, x

2
  0N and 0 <  < 1.  Then 

 

(230) (p,x
1
)  max y {p

T
y: (y,x

1
)S} 

                      = p
T
y

1
                                                                                    where (y

1
,x

1
)S; 

 

(231) (p,x
2
)  max y {p

T
y: (y,x

2
)S} 

                      = p
T
y

2
                                                                                    where (y

2
,x

2
)S. 

    

Since S is assumed to be a convex set, we have 

 

(232) (y
1
,x

1
) + (1)(y

2
,x

2
) = [y

1
 + (1)y

2
, x

1
 + (1)x

2
]S. 

 

Using the definition of , we have: 

 

(233) (p,x
1
 + (1)x

2
)  max y {p

T
y: (y,x

1
 + (1)x

2
)S}  

           p
T
[y

1
 + (1)y

2
]         since by (232), y

1
 + (1)y

2
 is feasible for the problem 

          = p
T
y

1
 + (1)p

T
y

2
  

          = (p,x
1
) + (1)(p,x

2
)                                                         using (230) and (231). 

 

Proof of (c): Let p >> 0M, x
*
  0N and  > 0.  Then 

 

(234) (p,x
*
)  max y {p

T
y: (y,x

*
)S}  

                      = p
T
y

*
                                                                                    where (y

*
,x

*
)S. 

 

Since S is a cone and since (y
*
,x

*
)S, then we have (y

*
,x

*
)S as well.  Hence, using a 

feasibility argument: 

 

(235) (p,x
*
)  max y {p

T
y: (y,x

*
)S}  

                          p
T
y

*
              since (y

*
,x

*
)S and hence is feasible for the problem 

                         = p
T
y

*
. 

 

Now suppose that the strict inequality in (235) held so that 
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(236) (p,x
*
)  max y {p

T
y: (y,x

*
)S}  

                        = p
T
y

**
                                                                              where (y

**
,x

*
)S  

                        > p
T
y*. 

 

Since S is a cone,  > 0, and (y
**

,x
*
)S, then we have (

1
y

**
,x

*
)S as well. Thus 


1

y** is feasible for the maximization problem (234) that defined (p,x
*
) and so 

 

(237) p
T
y

*
 = max y {p

T
y: (y,x

*
)S}                        using (234) 

                   p
T

1

y
**

                                              since 
1

y** is feasible for the problem 

                  = 
1

p
T
y

**
                                             

 

or since  > 0, (237) is equivalent to 

 

(238) p
T
y

*
  p

T
y

**
 > p

T
y

*
                                    using (236). 

 

But (238) implies that p
T
y

*
 > p

T
y

*
, which is impossible and hence our supposition is 

false and the desired result follows. 

 

Proof of (d): Let p >> 0M, x
2
 > x

1
  0N.  Using the definition of (p,x

1
), we have 

 

(239) (p,x
1
)  max y {p

T
y: (y,x

1
)S} 

                      = p
T
y

1
                                               where (y

1
,x

1
)S. 

 

Using the free disposal property (228) for S, since (y
1
,x

1
)S and x

2
 > x

1
, we have 

 

(240) (y
1
,x

2
)S.   

  

Using the definition of (p,x
2
), we have 

 

(241) (p,x
2
)  max y {p

T
y: (y,x

2
)S} 

                       p
T
y

1
                                                 since by (240), (y

1
,x

2
) is feasible 

                      = (p,x
1
)                                            using (239).                                 Q.E.D. 

 

If the technology set S satisfies the minimal regularity conditions (i) and (ii) plus all of 

the additional conditions that are listed in Theorem 11 above (we shall call such a 

technology set a regular technology set), then the associated variable profit function 

(p,x) will have all of the regularity conditions with respect to its fixed input vector x 

that a nonnegative, nondecreasing, concave and linearly homogeneous production 

function f(x) possesses with respect to its input vector x.                                  

 

Hotelling’s Lemma enabled us to interpret the vector of first order partial derivatives of 

the variable profit function with respect to the components of the variable commodity 

price vector p, p(p,x), as the producer’s vector of variable profit maximizing output 

supply (and the negative of variable input demand) functions, y(p,x), provided that the 

derivatives existed. If the first order partial derivatives of the variable profit function 
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(p,x) with respect to the components of the fixed input vector x exist, then this vector of 

derivatives, x(p,x),  can also be given an economic interpretation as a vector of shadow 

prices or imputed contributions to profit of adding marginal units of fixed inputs. The 

following result also shows that these derivatives can be interpreted as competitive input 

prices for the “fixed” factors if they are allowed to become variable. 

 

Theorem 12; Samuelson’s Lemma:
94

 Suppose the technology set S satisfies the minimal 

regularity assumptions (i) and (ii) above and in addition is a convex set. Suppose in 

addition that p
*
 >> 0M, x

*
  0N and that the vector of derivatives, x(p

*
,x

*
)  w

*
, exists. 

Then x
*
 is a solution to the following long run profit maximization problem that allows 

the “fixed” inputs x to be variable: 

 

(242) max x {(p
*
,x)  w

*T
x: x  0N}. 

 

Proof: Part (b) of Theorem 11 above implies that (p
*
,x) is a concave function of x over 

the set   {x: x  0N}. The function  w
*T

x is linear in x and hence is also a concave 

function of x over .  Hence f(x) defined for x  0N as 

 

(243) f(x)  (p
*
,x)  w

*T
x 

 

is also a concave function in x over the set . Since x
*
  0N, x

*
.  Hence using the fact 

that a differentiable concave function has a Taylor series approximation that provides an 

upper bound to the function around any point x
*
 where the function is differentiable, we 

have the following inequality: 

 

(244) f(x)  f(x
*
) + xf(x

*
)
T
(x  x

*
)                            for all x  0N 

                = (p
*
,x

*
)  w

*T
x

*
 + 0N

T
(x  x

*
)                  since xf(x

*
) = x(p

*
,x

*
)  w

*
 = 0N 

                = (p
*
,x

*
)  w

*T
x

*
. 

 

But (243) and (244) show that x
*
 solves the profit maximization problem (242).     Q.E.D.            

 

Corollary: If in addition to the above assumptions, (p,x) is differentiable with respect to 

the components of p at the point (p
*
,x

*
), so that y

*
  p(p

*
,x

*
) exists, then (y

*
,x

*
) solves 

the following long run profit maximization problem: 

 

(245) (p
*
,w

*
)  max y,x {p

*T
y  w

*T
x: (y,x)S}. 

 

Proof:  Using Hotelling’s Lemma, we know that y
*
 solves the following variable profit 

maximization problem: 

 

(246) (p
*
,x

*
)  max y {p

*T
y: (y,x

*
)S} = p

*T
y

*
. 

 

                                                 
94

 Samuelson’s National Product function, N(p,v), is the counterpart to our (p,x) where his v is a vector of 

primary inputs. Samuelson (1953; 10) derived the equations w = vN(p,v). Our proof follows that of 

Diewert (1974a; 140). 
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Now look at the long run profit maximization problem defined by (245): 

 

(247) (p
*
,w

*
)  max y,x{ p

*T
y  w

*T
x: (y,x)S} 

                         = max x{max y [p
*T

y: (y,x)S]  w
*T

x}       where we have rewritten the  

                                               maximization problem as a two stage maximization problem  

                         = max x [(p
*
,x)   w

*T
x]                              using the definition of (p

*
,x) 

                         = (p
*
,x

*
)   w

*T
x

*
                                        using Theorem 12. 

 

Hence with x = x
*
 being an x solution to (247), we must have 

 

(248) (p
*
,w

*
)  max y,x {p

*T
y  w

*T
x: (y,x)S} 

                         = max y{[p
*T

y: (y,x
*
)S]  w

*T
x

*
}                letting x = x

* 

                         = p
*T

y
*
  w

*T
x

*
                                               using (246).               Q.E.D. 

 

Hotelling’s Lemma and Samuelson’s Lemma can be used as a convenient method for 

obtaining econometric estimating equations for determining the parameters that 

characterize a producer’s technology set S. Assuming that S satisfies the minimal 

regularity conditions on S, we need only postulate a differentiable functional form for the 

producer’s variable profit function, (p,x), that is linearly homogeneous and convex in p. 

Suppose that we have collected data on the fixed input vectors used by the production 

unit in period t, x
t
, and the net supply vectors for variable commodities produced in 

period t, y
t
, for t = 1,…,T time periods as well as the corresponding variable commodity 

price vectors p
t
. Then the following MT equations can be used in order to estimate the 

unknown parameters in (p,x): 

 

(249) y
t
 = p(p

t
,x

t
) + u

t
 ;                                                                                      t = 1,…,T 

 

where u
t
 is a vector of errors. If in addition, S is a convex set and it can be assumed that 

the production unit is optimizing with respect to its vector of “fixed” inputs in each 

period, where it faces the “fixed” input price vector w
t
 in period t, then the following N 

equations can be added to (249) as additional estimating equations: 

 

(250) w
t
 = x(p

t
,x

t
) + v

t
 ;                                                                                      t = 1,…,T 

 

where v
t
 is a vector of errors.

95
 We will look at some specific functional forms for (p,x) 

and their econometric estimating equations in the final sections of this chapter.   

 

16. The Comparative Statics Properties of Net Supply and Fixed Input Demand 

Functions                  
 

                                                 
95

 If in addition, the technology set S is subject to constant returns to scale and the data reflect this fact by 

“adding up” (so that p
tT

y
t
 = w

tT
x

t
 for t = 1,…,T), then the error vectors u

t
 and v

t
 in (249) and (250) cannot 

be statistically independent. Hence, under these circumstances, one of the M+N equations in (249) and 

(250) must be dropped from the system of estimating equations.   
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From Theorem 11 above, we know that the firm’s variable profit function (p,x) is 

convex and linearly homogeneous in the components of the vector of variable commodity 

prices p for each fixed input vector x. Thus if (p,x) is twice continuously differentiable 

with respect to the components of p at some point (p,x), then using Hotelling’s Lemma, 

we can prove the following counterpart to Theorem 7 for the cost function. 

 

Theorem 13: Hotelling (1932; 597), Hicks (1946; 321), Samuelson (1953; 10), Diewert 

(1974a; 142-146): Suppose the variable profit function (p,x) is linearly homogeneous 

and convex in p and in addition is twice continuously differentiable with respect to the 

components of p at some point, (p,x). Then the system of variable profit maximizing net 

supply functions, y(p,x)  [y1(p,x),…,yM(p,x)]
T
, exists at this point and these net supply 

functions are once continuously differentiable. Form the M by M matrix of net supply 

derivatives with respect to variable commodity prices, B  [ym(p,x)/pk], which has mk 

element equal to ym(p,x)/pk. Then the matrix B has the following properties: 

 

(251) B = B
T
   so that ym(p,x)/pk = yk(p,x)/pm for all m  k;

96
 

(252) B is positive semidefinite and  

(253) Bp = 0M. 

 

Proof:  Hotelling’s Lemma implies that the firm’s system of variable profit maximizing 

net supply functions, y(p,x)  [y1(p,x),…,yM(p,x)]
T
, exists and is equal to  

 

(254) y(p,x) = p(p,x) . 

 

Differentiating both sides of (254) with respect to the components of p gives us 

 

(255) B  [ym(p,x)/pk] = 
2

pp(p,x). 

 

Property (251) follows from Young’s Theorem in calculus. Property (252) follows from 

(255) and the fact that (p,x) is convex and twice differentiable in p and hence the matrix 

of second order partial derivatives 
2

pp(p,x) must be positive semidefinite. Finally, 

property (253) follows from the fact that the profit function is linearly homogeneous in p 

and hence, using Part 2 of Euler’s Theorem on homogeneous functions, (253) holds.                                                                                                                  

Q.E.D.   

 

Note that property (252) implies the following properties on the net supply functions: 

 

(256) ym(p,x)/pm  0                                                                                for m = 1,…,M. 

 

Property (256) means that output supply curves cannot be downward sloping. However, 

if variable commodity m is an input, then ym(p,x) is negative. If we define the positive 

input demand function as  

 

(257) dm(p,x)   ym(p,x)  0, 

                                                 
96

 These are the Hotelling (1932; 549) and Hicks (1946; 321) symmetry restrictions on supply functions. 
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then the restriction (256) translates into dm(p,x)/pm  0, which means that variable 

input demand curves cannot be upward sloping. 

 

Obviously, if the technology set is a convex cone, then the firm’s competitive fixed input 

price functions (or inverse demand functions), w(p,x)  x(p,x), will satisfy properties 

analogous to the properties of cost minimizing input demand functions in Theorem 7. 

 

Theorem 14: Samuelson (1953; 10), Diewert (1974a; 144-146): Suppose that the 

production unit’s technology set S is regular. Define the variable profit function (p,x) by 

(213). Suppose that (p,x) is twice continuously differentiable with respect to the 

components of x at some point  (p,x) where p >> 0M and x  0N.  Then the system of input 

price functions, w(p,x)  [w1(p,x),…,wN(p,x)]
T
, exists at this point

97
 and these input price 

functions are once continuously differentiable. Form the N by N matrix of input price 

derivatives with respect to the “fixed” inputs, C  [wi(p,x)/xk], which has ik element 

equal to wi(p,x)/xk. Then the matrix C has the following properties: 

 

(258) C = C
T
   so that wi(p,x)/xk = wk(p,x)/xi for all i  k; 

(259) C is negative semidefinite and  

(260) Cx = 0N. 

 

Proof: Using Samuelson’s Lemma, the firm’s system of fixed input price functions, 

w(p,x)  [w1(p,x),…,wN(p,x)]
T
, exists and is equal to  

 

(261) w(p,x) = x(p,x). 

 

Differentiating both sides of (261) with respect to the components of x gives us 

 

(262) C  [wi(p,x)/xk] = 
2

xx(p,x). 

 

Now property (258) follows from Young’s Theorem in calculus. Property (259) follows 

from (262) and the fact that (p,x) is concave in x.
98

 Finally, property (260) follows from 

the fact that the profit function is linearly homogeneous in x
99

 and hence, using Part 2 of 

Euler’s Theorem on homogeneous functions, (260) holds                                          Q.E.D. 

 

Note that property (259) implies the following properties on the fixed input price 

functions: 

 

                                                 
97

 The assumption that S is regular implies that S has the free disposal property in fixed inputs property 

(226), which implies by part (d) of Theorem 11 that (p,x) is nondecreasing in x and this in turn implies 

that w(p,x)  x(p,x) is nonnegative.    
98

The assumption that S is regular implies that S is a convex set and this in turn implies that (p,x) is 

concave in x. Concavity in x plus our differentiability assumption implies that 
2

xx(p,x) is negative 

semidefinite.   
99

 The assumption that S is regular implies that S is a cone and this in turn implies that (p,x) is linearly 

homogeneous in x.  
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(263) wn(p,x)/xn  0 ;                                                                                       n = 1,…,N. 

 

Property (263) means that the inverse fixed input demand curves cannot be upward 

sloping. 

 

If the firm’s production possibilities set S is regular and if the corresponding variable 

profit function (p,x) is twice continuously differentiable with respect to all of its 

variables, then there will be additional restrictions on the derivatives of the variable net 

output supply functions y(p,x) = p(p,x) and on the derivatives of the fixed input price 

functions w(p,x) = x(p,x). Define the M by N matrix of derivatives of the net output 

supply functions y(p,x) with respect to the components of the vector of fixed inputs x as 

follows:     

 

(264) D  [ym(p,x)/xn] = 
2

px(p,x) ;                                           m = 1,…,M; n = 1,…,N, 

 

where the equalities in (264) follow by differentiating both sides of the Hotelling’s 

Lemma relations, y(p,x) = p(p,x), with respect to the components of x. Similarly, 

define the N by M matrix of derivatives of the fixed input price functions w(p,x) with 

respect to the components of the vector of variable commodity prices p as follows:     

 

(265) E  [wn(p,x)/pm] = 
2

xp(p,x) ;                                          n = 1,…,N; m = 1,…,M,                               

 

where the equalities in (265) follows by differentiating both sides of the Samuelson’s 

Lemma relations, w(p,x) = x(p,x), with respect to the components of p. 

 

Theorem 15: Samuelson (1953; 10), Diewert (1974a; 144-146): Suppose that the 

production unit’s technology set S is regular. Define the variable profit function (p,x) by 

(213). Suppose that (p,x) is twice continuously differentiable with respect to the 

components of x at some point  (p,x) where p >> 0M and x  0N and define the matrices of 

derivatives D and E by (264) and (265) respectively. Then these matrices have the 

following properties: 

 

(266) D = E
T
   so that ym(p,x)/xn = wn(p,x)/xm for m = 1,…,M and n = 1,…,N; 

(267) w(p,x) = Ep  0N; 

(268) y(p,x) = Dx. 

 

Proof: The symmetry restrictions (266) follow from definitions (264) and (265) and 

Young’s Theorem in calculus. 

 

Since (p,x) is linearly homogeneous in the components of p, we have 

 

(269) (p,x) = (p,x) for all  > 0. 

 

Partially differentiate both sides of (269) with respect to xn and we obtain: 
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(270) (p,x)/xn = (p,x)/xn for all  > 0 and n = 1,…,N. 

 

But (270) implies that the functions wn(p,x)  (p,x)/xn are homogeneous of degree 

one in p. Hence, we can apply Part 1 of Euler’s Theorem on homogeneous functions to 

these functions wn(p,x) and conclude that 

 

(271) wn(p,x) = m=1
M

 [wn(p,x)/pm]pm ;                                                           n = 1,…,N.                                              

    

But equations (271) are equivalent to the equations in (267). The inequality in (267) 

follows from w(p,x) = x(p,x)  0N, which in turn follows from the fact that regularity 

of S implies that (p,x) is nondecreasing in the components of x. 

                                                                                                                     

Since S is regular, part (c) of Theorem 11 implies that (p,x) is linearly homogeneous in 

x, so that    

                                                                    

(272) (p,x) = (p,x) for all  > 0. 

 

Partially differentiate both sides of (272) with respect to pm and we obtain: 

 

(273) (p,x)/pm = (p,x)/pm for all  > 0 and m = 1,…,M. 

 

But (273) implies that the functions ym(p,x)  (p,x)/pm are homogeneous of degree 

one in x. Hence, we can apply Part 1 of Euler’s Theorem on homogeneous functions to 

these functions ym(p,x) and conclude that 

 

(274) ym(p,x) = n=1
N
 [ym(p,x)/xn]xn ;                                                             m = 1,…,M.                                              

    

But equations (274) are equivalent to equations (268).                                               Q.E.D. 

 

Following up on the pioneering work of Samuelson (1953), Diewert and Woodland 

(1977; 383-390) developed additional comparative statics properties for a consolidated 

production sector consisting of a finite number of constant returns to scale production 

units. For additional applications of the National Product Function to the theory of 

international trade, see Kohli (1978) (1991), Dixit and Norman (1980), Woodland (1982) 

and Feenstra (2004).  

 

Problems 
 

24. Under the hypotheses of Theorem 15, show that y(p,x) and w(p,x) satisfy the 

following equation: 

 

(i) p
T
y(p,x) = x

T
w(p,x). 

 

25. Let S be a technology set that satisfies the minimal regularity assumptions and let 

(p,x) be the corresponding differentiable variable profit function defined by (213). 
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Variable commodities m and k (where m  k) are said to be substitutes if (i) below holds, 

unrelated if (ii) below holds and complements  if (iii) below holds: 

  

(i)   ym(p,x)/pk < 0 ; 

(ii)  ym(p,x)/pk = 0 ; 

(iii) ym(p,x)/pk > 0 . 

 

(a) If the number of variable commodities M = 2, then show that the two variable 

commodities cannot be complements. 

(b) If M = 2 and the two variable commodities are unrelated, then show that: 

 

(iv) y1(p,x)/p1 = y2(p,x)/p2 = 0.   

 

(c) If M = 3, then show that at most one pair of variable commodities can be 

complements.
100

   

 

26. Let S be a regular technology set and let (p,x) be the corresponding twice 

continuously differentiable variable profit function defined by (213). Variable 

commodities m and fixed input n are said to be normal if (i) below holds, unrelated if (ii) 

below holds and inferior  if (iii) below holds (we assume p >> 0M and x >> 0N): 

  

(i)   ym(p,x)/xn = wn(p,x)/pm > 0 ; 

(ii)  ym(p,x)/xn = wn(p,x)/pm = 0 ; 

(iii) ym(p,x)/xn = wn(p,x)/pm < 0 . 

 

(a) If wn(p,x) > 0, then there exists at least one variable commodity m such that 

commodity m and fixed input n are normal.   

(b) If wn(p,x)  0, then there exists at least one variable commodity m such that 

commodity m and fixed input n are either normal or unrelated. 

(c) If ym(p,x) > 0, then there exists at least one fixed input n such that commodity m and 

fixed input n are normal.       

(d) If ym(p,x) < 0, then there exists at least one fixed input n such that commodity m and 

fixed input n are inferior. 

 

In the following three sections, we will look at the properties of some specific functional 

forms for a variable profit function. We will assume that these profit functions are dual to 

a regular technology. 

 

17. The Translog Variable Profit Function 
 

Assume that the log of the variable profit function for a regular technology, ln(p,x), has 

the following translog functional form:
101

 

                                                 
100

 This type of argument (that substitutability tends to be more predominant than complementarity) is 

again due to Hicks (1946; 322-323) but we have not followed his terminology exactly. 
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(275) ln(p,x)  a0 + m=1
M

 amlnpm + (1/2) m=1
M
k=1

M
 amklnpm lnpk  

                + n=1
N
 bnlnxn + (1/2)n=1

N
i=1

N
 bnilnxn lnxi + m=1

M
n=1

N
 cmnlnpm lnxn ; 

                                                                                                                   

The coefficients must satisfy the following restrictions in order for (p,x) to be linearly 

homogeneous in the components of p as well as the components of x:
102

  

 

(276) m=1
M

 am = 1;  

(277) n=1
N
 bn = 1;  

(278) amk = akm for all k,m ; 

(279) bni = bin for all n,i ; 

(280) k=1
M

 amk = 0 for  m = 1,...,M; 

(281) i=1
N
 bni = 0 for n = 1,...,N; 

(282) n=1
N
 cmn = 0 for  m = 1,...,M; 

(283) m=1
M

 cmn = 0 for n = 1,..., N. 

 

If some of the variable outputs are actually inputs, then the domain of definition of p and 

x needs to be restricted to p and x such that (p,x) > 0, since we cannot take the logarithm 

of a non-positive number. The proof that the translog profit function defined by (275)-

(283) is linearly homogeneous in p follows our earlier proof that the translog unit cost 

function c(p) defined in section 9 was linearly homogeneous in p. The proof that (p,x) 

= (p,x) for all  > 0 follows in an analogous manner.  

 

Note that using Hotelling’s Lemma, we have ln(p,x)/lnpm = [pm/(p,x)](p,x)/pm = 

[pm/(p,x)]ym(p,x)  sm(p,x) where ym(p,x) is the profit maximizing conditional net 

supply function for net output m and sm(p,x) is the share of net output m in total variable 

profits. Thus differentiating the logarithm of (p,x) defined by (275) with respect to the 

logarithm of pm leads to the following system of net variable output share equations: 

 

(284) sm(p,x) = am + k=1
M

 amklnpk + n=1
N
 cmnlnxn ;                                          m = 1,...,M.    

 

Thus if we have data on the net outputs for period t, y
t
, the corresponding net output 

prices p
t
 >> 0M and fixed inputs used in period t, x

t
 >> 0N by a production unit for t = 

1,...,T, then we can form observed variable profits for period t, 
t
  p

tT
y

t
 > 0 and the 

period t net variable output shares sm
t
  pm

t
ym

t
/

t
 for m = 1,...,M and t = 1,...,T. A set of  

econometric estimating equations is the following very simple system of equations: 

 

                                                                                                                                                 
101

 This functional form was suggested by Diewert (1974a; 139) as a generalization of the translog 

functional form introduced by Christensen, Jorgenson and Lau (1971). Diewert (1974a; 139) indicated that 

this functional form was flexible for regular technologies. For applications of this functional form to 

international trade theory, see Kohli (1978) (1991). For applications to index number theory and the 

measurement of productivity, see Caves, Christensen and Diewert (1982a) (1982b), Diewert and Morrison 

(1986), Kohli (1990), Feenstra, Inklaar and Timmer (2015) and Inklaar and Diewert (2016).  
102

 There are additional restrictions on the parameters which are necessary to ensure that (p,x) is convex in 

p and concave in x.   
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(285) ln
t
 = a0 + m=1

M
 amlnpm

t
 + (1/2) m=1

M
k=1

M
 amklnpm

t
 lnpk

t
 + n=1

N
 bnlnxn

t
   

                   + (1/2)n=1
N
j=1

N
 bnjlnxn

t
 lnxj

t
 + m=1

M
n=1

N
 cmnlnpm

t
 lnxn

t
 + e0

t
;      t = 1,...,T; 

(286) sm
t
 = am + k=1

M
 amklnpk

t
 + n=1

N
 cmnlnxn

t
 + em

t
 ;                      m = 1,...,M; t = 1,...,T 

 

where the em
t
 are error terms with 0 means for m = 0,1,...,M and t = 1,...,T. Note that 

these equations are linear in the unknown parameters. The cross equation symmetry 

restrictions, amk = akm for 1  m < k  M could be imposed on the above equations or 

these conditions could be tested.
103

  

 

Suppose now that we have reason to believe that the producer is optimizing with respect 

to the vector of “fixed” inputs x. Using Samuelsons’s Lemma, we have ln(p,x)/lnxn = 

[xn/(p,x)](p,x)/xn = [xn/(p,x)]wn(p,x)  Sm(p,x) where wn(p,x) is the profit 

maximizing inverse demand function for “fixed” input n and Sn(p,x) is the share of 

“fixed” input n in total “fixed” input cost.
104

 Thus differentiating the logarithm of (p,x) 

defined by (275) with respect to the logarithm of xn leads to the following system of input 

cost share equations: 

 

(287) Sn(p,x) =  bn + j=1
N
 bnjlnxj + m=1

M
cmnlnpm ;                                             n = 1,...,N. 

 

Thus if we have data on “fixed” input prices for the T periods in addition to the already 

mentioned data, then we can form the observed cost shares for “fixed” input n in period t, 

Sn
t
  wn

t
xn

t
/

t
 for t = 1,...,T. Thus we can add the following set of estimating equations to 

the estimating equations defined by (285) and (286): 

 

(288) Sn
t
  bn + j=1

N
 bnjlnxj

t
 + m=1

M
cmnlnpm

t
 + un

t
 ;                           n = 1,...,N; t = 1,...,T 

 

where the un
t
 are error terms with 0 means.

105
                    

 

The simplicity of the estimating equations given by (285), (286) and (288) means that it 

is relatively easy to estimate the translog variable profit function. However, there are two 

disadvantages associated with the translog functional form:  

 

 Not all of the parameters of the translog (p,x) can be estimated unless equations 

(285) are included in the estimation procedure. But every parameter is included 

in each of these equations and this can lead to singularity problems if N + M is 

large and T is small;
106

 

                                                 
103

 Since the shares sm
t
 sum to 1 over m for each t, the equations (286) cannot have independent error terms 

and hence one of the M equations in (286) should be dropped when estimating the unknown parameters. 
104

 From Problem 24, we know that p
T
y(p,x) = x

T
w(p,x) = (p,x) since we have assumed that the 

underlying production possibilities set is regular. 
105

 Since the shares Sn
t
 sum to one over n for each t, one of the N estimating equations in (287) should be 

dropped. Typically, the cross equation parameter restrictions defined by (278)-(283) would be imposed but 

in principle, they could be tested.  
106

 This problem is perhaps not too serious; if equations (286) and (288) are estimated, then all of the 

parameters that appear in definition (275) can be identified except the parameter a0. This parameter could 
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 It is not possible to impose the convexity in p and concavity in x property for the 

translog functional form without destroying the flexibility of the functional form.  

 

Thus in the following two sections, we look at functional forms for a regular technology 

variable profit function where we can impose the correct concavity and convexity 

properties. 

 

Another problem with the translog (p,x) defined by (275) is that this functional form 

does not allow for technical progress. This problem can be readily remedied: simply add 

the following terms to the right hand side of definition (275): 0t + m=1
M

 m tlnpm + 

n=1
N
 n tlnxn  where t is a scalar time variable and the new parameters m and n satisfy 

the additional restrictions m=1
M

 m = 0 and n=1
N
 n = 0.

107
 These restrictions will 

ensure that the resulting translog (p,x) is linearly homogeneous in p and x separately.
108

   

 

18. The Normalized Quadratic Variable Profit Function 

 

At this point, it will be useful to list the equations that a twice continuously differentiable 

functional form for a variable profit function (p,x) that is dual to a regular technology 

must satisfy in order to be a flexible functional form at the point p
*
 >> 0M and x

*
 >> 0N. 

Let 
*
(p,x) be an arbitrary variable profit function that is dual to a regular technology set 

and suppose that 
*
(p,x) is twice continuously differentiable at (p

*
,x

*
). For (p,x) to be a 

flexible functional form, it must have enough free parameters so that it can provide a 

second order approximation to 
*
(p,x) at the point (p

*
,x

*
). Thus the candidate function  

must have enough parameters so that it can satisfy the following 1 + M + N + (M+N)
2
 

equations: 

 

(289)        (p
*
,x

*
) = 

*
(p

*
,x

*
);               1 equation; 

(290)    p(p
*
,x

*
) = p

*
(p

*
,x

*
);           M equations; 

(291)    x(p
*
,x

*
) = x

*
(p

*
,x

*
);           N equations;  

(292) 
2

pp(p
*
,x

*
) = 

2
pp

*
(p

*
,x

*
);         M

2
 equations; 

(293) 
2

xx(p
*
,x

*
) = 

2
xx

*
(p

*
,x

*
);         N

2
 equations; 

(294) 
2

px(p
*
,x

*
) = 

2
px

*
(p

*
,x

*
);         MN equations; 

(295) 
2

xp(p
*
,x

*
) = 

2
xp

*
(p

*
,x

*
);         NM equations. 

 

However, because (p,x) and 
*
(p,x) are both linearly homogeneous in p and x separately 

and both are assumed to be twice continuously differentiable at (p
*
,x

*
), not all of the 

equations in (289)-(295) are independent. Equation (289) is implied by the first part of 

Euler’s Theorem on homogeneous functions and equations (290) or (291). Thus equation 

                                                                                                                                                 
be estimated in a second stage where equations (285) are used to solve for a0 in terms of ln

t
 and the fitted 

values from the first stage for the right hand side of equations (285) omitting the term a0.    
107

 This extension of the translog function GDP function to allow for technical progress is due to Kohli 

(1978) in a model with 4 outputs and 2 inputs. Feenstra (2004; 423) noted these restrictions in the general 

M outputs and N inputs model.   
108

 More general specification of technical progress can be made using linear or quadratic splines in the 

time variable. 
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(289) can be dropped from the list of equations that (p,x) must satisfy since it will be 

satisfied if either (290) or (291) is satisfied. Since p
*T
p(p

*
,x

*
) = x

*T
x(p

*
,x

*
) and 

p
*T
p

*
(p

*
,x

*
) = x

*T
x (p

*
,x

*
), any one of the M + N equations in (290) and (291) can 

also be dropped. Young’s Theorem from calculus and the second part of Euler’s Theorem 

on homogeneous functions imply that if the M(M1)/2 equations in the upper triangle of 

equations (292) hold, then all M
2
 equations in (292) will hold. Similarly, if the N(N1)/2 

equations in the upper triangle of equations (293) hold, then all N
2
 equations in (293) will 

hold. Young’s Theorem implies that if the MN equations in (294) hold, then the NM 

equations in (295) will also hold. Recall equations (254), (261), (267) and (268) in 

Section 16. These equations imply that 
2

px(p
*
,x

*
)x

*
 = p(p

*
,x

*
) and p

*T


2
px(p

*
,x

*
) = 

x(p
*
,x

*
)

T
. The same equations will apply to the corresponding partial derivatives of 


*
(p

*
,x

*
). Thus we need only satisfy equations (294) for the (M1) by (N1) submatrix of  

the N M matrix 
2
px(p

*
,x

*
) that drops the last row and column of this matrix. Thus for 

(p,x) to be flexible at (p
*
,x

*
), we need to satisfy M + N  1 of the equations in (290) and 

(291), the M(M1)/2 equations in the upper triangle of equations (292), the N(N1)/2 in 

the upper triangle of equations (293) and the (M1)(N1) equations in (294) that drop the 

equations for one row and one column of the matrix equation involving M rows and N 

columns. Thus a flexible functional form for a regular variable profit function must have 

at least M + N  1 + M(M1)/2 + N(N1)/2 + (M1)(N1) independent parameters.             

 

Recall that the normalized quadratic unit cost function was defined by (146)-(149) in 

Section 10 above. We will adapt this functional form to our present context. Define the 

function r(p) for p > 0M as follows: 

 

(296) r(p)  b
T
p + (1/2)p

T
Bp/

T
p 

 

where  > 0M is a predetermined vector, b is a parameter vector and B is symmetric 

positive semidefinite parameter matrix that satisfies: 

 

(297) Bp
*
 = 0M. 

 

Use the normalized quadratic functional form to define the following function of f(x) for 

x > 0N: 

 

(298) f(x)  a
T
x + (1/2)x

T
Ax/

T
x  

 

where  > 0N is a predetermined vector, a is a parameter vector and A is symmetric 

negative semidefinite parameter matrix that satisfies: 

 

(299) Ax
*
 = 0N. 

 

Normalize  and  so that they satisfy the following restrictions: 

 

(300) 
T
x

*
 = 1 ; 

T
p

*
 = 1. 
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Use the f(x) and r(p) defined above in the following definition for the normalized 

quadratic variable profit function:
109

 

 

(301) (p,x)  r(p)f(x) + p
T
Cx 

 

where C is an M by N parameter matrix. Using the restrictions defined by (297), (299) 

and (300), the level and first and second order partial derivatives of the (p,x) defined by 

(300) evaluated at (p
*
,x

*
) are set equal to the corresponding level and derivatives of an 

exogenously given 
*
(p

*
,x

*
)   

 

(302)        
*
(p

*
,x

*
) = a

T
x

*
b

T
p

*
 + p

*T
Cx

*
 ; 

(303)    p
*
(p

*
,x

*
) = ba

T
x

*
 + Cx

*
 ; 

(304)    x
*
(p

*
,x

*
) = ab

T
p

*
 + C

T
p

*
 ;  

(305) 
2

pp
*
(p

*
,x

*
) = Ba

T
x

*
 ; 

(306) 
2

xx
*
(p

*
,x

*
) = Ab

T
p

*
 ; 

(307) 
2

px
*
(p

*
,x

*
) = ba

T
 + C. 

     

We show that there is an a, b, A, B and C solution to the above equations. Tentatively 

assume that: 

 

(308) a
T
x

*
 = 1; Cx

*
 =  0M and p

*T
C = 0N

T
. 

 

Substitute (308) into (303) and solve for b = p
*
(p

*
,x

*
). This implies that p

*T
b = 


*
(p

*
,x

*
). Substitute (308) into (304) and solve for a = x

*
(p

*
,x

*
)/b

T
p

*
 = 

x
*
(p

*
,x

*
)/

*
(p

*
,x

*
). Since x

*T
x

*
(p

*
,x

*
) = 

*
(p

*
,x

*
), it can be seen that a

T
x

*
 = 1. 

Substitute this equation into (305) and solve for B = 
2

pp
*
(p

*
,x

*
), a symmetric positive 

semidefinite matrix that satisfies Bp
*
 = 0M using the linear homogeneity of 

*
(p,x) in p. 

Using p
*T

b = 
*
(p

*
,x

*
), (306) implies that A = [

*
(p

*
,x

*
)]
1


2
xx

*
(p

*
,x

*
). Thus A is a 

negative semidefinite matrix that satisfies Ax
*
 = 0N. Finally, define C  

2
px

*
(p

*
,x

*
)  

ba
T
 = 

2
px

*
(p

*
,x

*
)  [

*
(p

*
,x

*
)]
1
p

*
(p

*
,x

*
)x

*
(p

*
,x

*
)

T
. Using 

2
px

*
(p

*
,x

*
)x

*
 = 

p
*
(p

*
,x

*
), p

*T
p

*
(p

*
,x

*
) = x

*
(p

*
,x

*
)

T
 and x

*T
x

*
(p

*
,x

*
) = 

*
(p

*
,x

*
) = p

*T
p

*
(p

*
,x

*
), 

it can be seen that Cx
*
 = 0M and p

*T
C = 0N

T
. Thus the normalized quadratic profit 

function defined by (301) is a flexible functional form. 

 

Given data on net outputs y
t
, “fixed” inputs x

t
 and their prices p

t
 and w

t
 for t = 1,...,T, 

econometric estimating equations for a production unit whose technology is 

(approximately) dual to the profit function (p,x) defined by (301) can be obtained by 

using Hotelling’s Lemma and Samuelson’s Lemma to generate the following nonlinear 

estimating equations for t = 1,...,T: 

 

(309) y
t
 = [b + (

T
p

t
)
1

Bp
t
  (½)(

T
p

t
)
2

p
tT

Bp
t
][a

T
x + (½)x

tT
Ax

t
/

T
x

t
] + Cx

t
 + u

t
 ;                 

                                                 
109

 An alternative functional form for a variable profit function that used the r(p) and f(x) defined by (296) 

and (298) as building blocks appeared in Diewert and Fox (2017). Note that net outputs y and fixed inputs 

x are separable if C = OMN, an M by N matrix of 0’s. See Blackorby, Primont and Russell (1978) on 

separability concepts. 
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(310) w
t
 = [a + (

T
x

t
)
1

Ax
t
  (½)(

T
x

t
)
2

x
tT

Ax
t
][b

T
p + (½)p

tT
Bp

t
/

T
p

t
] + C

T
p

t
 + v

t
  

 

where the error vectors u
t
 and v

t
 have zero means. The disadvantage of these estimating 

equations is that they are more complicated than the rather straightforward comparable 

translog estimating equations that were obtained in the previous section. However, this 

functional form has the advantage that the appropriate curvature conditions can be 

imposed; i.e., the matrices A and B that appear in the above equations can be replaced by 

A =  A
*
A

*T
 and B = B

*
B

*T
 where A

*
 and B

*
 are lower triangular matrices with A

*T
x

*
 = 

0N and B
*T

p
*
 = 0M.

110
 These substitutions will not destroy the flexibility of the resulting 

functional form. Semiflexible versions of the A and B matrices can also be estimated in 

order to conserve on the number of parameters in the model. Finally, technical progress 

can easily be accommodated in the above model: simply add the time trend vector a
*
t  to 

the a vector and add the time trend vector b
*
t  to the vector b in the estimating equations 

(308) and (309) for period t.
111

 

 

19. The KBF Variable Profit Function 

 

In Section 11 of this chapter, we studied the KBF unit cost function. This functional form  

can be used as a basic building block to obtain a flexible functional form for a variable 

profit function that is dual to a regular production possibilities set.
112

 Thus define the 

function r(p) for p > 0M as follows: 

 

(311) r(p)  [p
T
(bb

T
 + B)p]

1/2
  

 

where b is a parameter vector and B is symmetric positive semidefinite parameter matrix 

that satisfies: 

 

(312) Bp
*
 = 0M. 

 

We also use the KBF functional form to define the following function of f(x) for x > 0N: 

 

(313) f(x)  [x
T
(aa

T
 + A)x]

1/2
   

 

where a is a parameter vector and A is symmetric negative semidefinite parameter matrix 

that satisfies: 

 

(314) Ax
*
 = 0N. 

 

                                                 
110

 After making these substitutions for A and B, the resulting (p,x) will satisfy the convexity and 

concavity conditions at the point (p,x) provided that p > 0M, x > 0N, r(p) > 0 and f(x) > 0.  
111

 For identification, add the constraint a
*T

1N = 0. Of course, to achieve additional flexibility, linear or 

quadratic splines in time could be added to the a and b vectors; see Fox (1998) or Fox and Grafton (2000) 

for empirical examples using the normalized quadratic functional form and piece-wise linear splines to 

model technical progress.   
112

 The advantage of using this functional form over using the normalized quadratic as a basic building 

block is that when using the KBF functional form, we do not have to specify the exogenous vectors  and  

which appeared in the normalized quadratic functional form. 
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We use the f(x) and r(p) defined above in the following definition for the KBF variable 

profit function:
113

 

 

(315) (p,x)  r(p)f(x) + p
T
Cx 

 

where C is an M by N parameter matrix. Using the restrictions defined by (312) and 

(314), the level and first and second order partial derivatives of the (p,x) defined by 

(315) evaluated at (p
*
,x

*
) are set equal to the corresponding level and derivatives of an 

exogenously given 
*
(p

*
,x

*
)   

 

(316)        
*
(p

*
,x

*
) = a

T
x

*
b

T
p

*
 + p

*T
Cx

*
 ; 

(317)    p
*
(p

*
,x

*
) = ba

T
x

*
 + Cx

*
 ; 

(318)    x
*
(p

*
,x

*
) = ab

T
p

*
 + C

T
p

*
 ;  

(319) 
2

pp
*
(p

*
,x

*
) = Ba

T
x

*
/b

T
p

*
 ; 

(320) 
2

xx
*
(p

*
,x

*
) = Ab

T
p

*
/a

T
x

*
 ; 

(321) 
2

px
*
(p

*
,x

*
) = ba

T
 + C. 

 

It can be seen that these equations are identical to equations (302)-(307) in the previous 

section except that equations (319) and (320) are slightly different from the 

corresponding equations (305) and (306). It turns out that this difference does not affect 

the proof that there is an a, b, A, B and C solution to the above equations. Thus it is 

straightforward to establish that the KBF variable profit function is a flexible functional 

form. 

 

Given data on net outputs y
t
, “fixed” inputs x

t
 and their prices p

t
 and w

t
 for t = 1,...,T, 

econometric estimating equations for a production unit whose technology is 

(approximately) dual to the profit function (p,x) defined by (315) can be obtained by 

using Hotelling’s Lemma and Samuelson’s Lemma to generate the following nonlinear 

estimating equations for t = 1,...,T: 

 

(322) y
t
 = [bb

T
p

t
 + Bp

t
][p

tT
(bb

T
 + B)p

t
]
1/2

[x
tT

(aa
T
 + A)x

t
]
1/2

 + Cx
t
 + u

t
 ;                 

(323) w
t
 = [aa

T
x

t
 + Ax

t
][x

tT
(aa

T
 + A)x

t
]
1/2

[p
tT

(bb
T
 + B)p

t
]

1/2
 + C

T
p

t
 + v

t
  

 

where the error vectors u
t
 and v

t
 have zero means. Again, the disadvantage of these 

estimating equations is that they are a lot more complicated than the rather 

straightforward comparable translog estimating equations that were obtained for the 

translog functional form. However, as was the case with the normalized quadratic profit 

function, this functional form has the advantage that the appropriate curvature conditions 

can be imposed without destroying the flexibility of the functional form; i.e., the matrices 

A and B that appear in the above equations can be replaced by A =  A
*
A

*T
 and B = 

B
*
B

*T
 where A

*
 and B

*
 are lower triangular matrices with A

*T
x

*
 = 0N and B

*T
p

*
 = 0M.

114
 

As usual, semiflexible versions of the A and B matrices can also be estimated in order to 

                                                 
113

 Net outputs y will be separable from inputs x if C = OMN.  
114

 After making these substitutions for A and B, the resulting (p,x) will satisfy the convexity and 

concavity conditions provided at the point (p,x) provided that p > 0M, x > 0N, r(p) > 0 and f(x) > 0.    
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conserve on the number of parameters in the model. And again as usual, flexible forms of 

technical progress can easily be accommodated in the above model by adding the time 

trend vector a
*
t  to the a vector and add the time trend vector b

*
t  to the vector b in the 

estimating equations (322) and (323) for period t.
115

 

                         

The KBF functional form developed in this section is very similar to the normalized 

quadratic functional form that was developed in the previous section. However, the KBF 

functional form has the advantage that it is not necessary to specify an  and  vector a 

priori as was the case for the normalized quadratic profit function. The KBF functional 

form seems to be the most promising parsimonious functional form that has been 

developed up to the present. 

        

20. Joint Cost Functions 

 

Instead of maximizing profits with respect to variable inputs and outputs, in this section 

we minimize cost subject to producing a specified vector of outputs. Thus consider a 

production unit that produces the output vector y  0M using an input vector x  0N. The 

set of feasible output and input vectors (y,x) is a set S which satisfies the following 

minimal regularity condition:
116

 

 

(324) S is closed subset of M + N space such that for every output vector y  0M, there 

          exists an input vector x  0N  such that (y,x)S.   

 

Let w >> 0N be a strictly positive vector of input prices and let y  0M be an output vector. 

Define the producer’s joint cost function C(y,w) as follows: 

 

(325) C(y,w)  min x {w
T
x : (y,x)S}. 

 

The regularity conditions (324) on S and the assumption that w >> 0N imply that the 

minimum in (325) will exist. 

 

It is frequently useful to assume that S satisfies free disposability of inputs, property 

(326) below, and/or free disposability of outputs, property (327) below.  

 

(326) y  0M, 0N  x
1
 < x

2
 and (y,x

1
)S implies (y,x

2
)S. 

(327) 0M  y
1
 < y

2
 and (y

2
,x)S implies (y

1
,x)S.    

 

Problems 
 

27. Theorem 15: Suppose S satisfies conditions (324) and define C(y,w) by (325) for y  

0M and w >> 0N. Show that C(y,w) has the following properties:  

 

                                                 
115

 Again, in order to identify all of the parameters, add the constraint a
*T

1N = 0. To achieve additional 

flexibility, linear or quadratic splines in time could be added to the a and b vectors. 
116

 Note that in this section, y is a vector of outputs rather than a vector of net outputs as in previous 

sections. 
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(i) C(y,w) is a nonnegative function; i.e., C(y,w)   0 for y  0M and w >> 0N. 

    

(ii) C(y,w) is positively linearly homogeneous in p for each fixed y; i.e., C(y,w) = 

C(y,w) for all  > 0, w >> 0N and y  0M.   

 

(iii) C(y,w) is nondecreasing in w for each fixed y; i.e., C(y,w
1
)  C(y,w

2
) for y  0M and 

w
2
 > w

1
 >> 0N.  

  

(iv) C(y,w) is a concave function of w for each fixed y; i.e., C(y,w
1
+(1)w

2
)  

C(y,w
1
) + (1)C(y,w

2
) for y  0M, w

1
 >> 0N; w

2
 >> 0N and 0 <  < 1.     

 

(v) C(y,w) is a continuous function of w for each fixed y  0M. 

 

Hint: Adapt the proof of Theorem 1 in Section 2 above. 

 

28. Continuation of 27: Suppose S satisfies the free disposability of outputs property 

(327) in addition to the minimal regularity conditions (324). Show that C(y,w) is 

nondecreasing in y for fixed w; i.e., show that w >> 0N, 0M  y
1
 < y

2
 and (y

2
,x)S 

implies C(y
1
,w)  C(y

2
,w). Hint: Use a feasibility argument. 

 

Thus the joint cost function C(y,w) has much the same properties with respect to input 

prices as the single output cost function that was studied in Section 2 above. In particular, 

C(y,w) must be linearly homogeneous and concave in w for fixed y.  

 

Under what conditions can a knowledge of the joint cost function, C(y,w), be sufficient to 

determine the underlying technology set S? We now address this question. Suppose S 

satisfies the minimal regularity conditions (324). For each y  0M, define the set of inputs 

that can produce at least y, L(y), as follows: 

 

(328) L(y)  {x : (y,x)S}. 

 

If we are given the family of upper level sets, L(y) for every y  0M, then S can be 

recovered using S = {(y,x): y  0M and xL(y)}. Thus the above question can be reduced 

to the equivalent question: under what assumptions on L(y) can the joint cost function be 

used to determine L(y) for each y  0M? We can use the method explained in Section 3 

above to answer this question. 

 

Let y  0M and w >> 0N. Use the given joint cost function C(y,w) to define the following 

half space of inputs:  

 

(329) M(y,w)  {x: w
T
x  C(y,w)}. 

 

The above half space must contain the level set L(y). Thus L(y) must be contained in the 

following set, which is the intersection of all of the supporting halfspaces to L(y): 

 



 81 

(330) M(y)  
Nw 0 M(y,w). 

 

Since each of the sets in the intersection, M(y,w), is a convex set, then M(y) is also a 

convex set. Since L(y) is a subset of each M(y,w), it must be the case that L(y) is also a 

subset of M(y); i.e., we have L(y)  M(y). As was the case in Section 3, in order to 

ensure that M(y) = L(y), we need to add the following two conditions on the family of 

level sets L(y): 

 

(331) For each y  0M, L(y) satisfies free disposability of inputs; i.e., x
1
L(y), x

2
  x

1
 

          implies x
2
L(y). 

(332) For each y  0M, L(y) is a convex set.  

 

Condition (331) on the family of as input level sets L(y) is equivalent to condition (326) 

on the production possibilities set S. As in Section 3, assumptions (331) and (332) rule 

out backward bending and nonconvex input production possibilities sets L(y). 

 

As was the case in Section 3, if the producer is a price taker in input markets, then it is 

not necessary to assume properties (331) and (332) when estimating a joint cost function: 

a cost minimizing producer will never choose an input vector that belongs to a nonconvex 

or backward bending upper level set L(y). Thus an estimated joint cost function can be 

used to form the upper level sets M(y) and these sets can provide an adequate 

approximation to the true L(y) for most purposes.  

 

If the joint cost function C(y,w) satisfies the conditions listed in Theorem 15 and is 

differentiable with respect to input prices w, then we can show that Shephard’s Lemma 

still holds; i.e., the producer’s system of cost minimizing input demand functions is equal 

to x(y,w)  wC(y,w) for y  0M and w >> 0N.
117

 

 

If the production possibilities set S has additional properties, then we can deduce that the 

joint cost function C(y,w) has additional properties. Two familiar additional properties 

for S are the following ones: 

 

(333) S is a convex set; i.e., (y
1
,x

1
)S, (y

1
,x

1
)S and 0 <  < 1 implies (y

1 
+(1)y

2
, 

          x
1
 + (1)x

2
)S.    

(334) S is a cone; i.e., if (y,x)S and  > 0, then (y,x)S. 

 

The cone assumption (334) means that production is subject to constant returns to scale. 

The convexity assumption rules out technologies that are subject to increasing returns to 

scale. Some of the implications of these assumptions are listed in the following problems. 

 

Problems 
 

                                                 
117

 The proof of Theorem 5 in Section 4 can be adapted to prove this result. 
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29. Assume S satisfies (234) and the convexity assumption (333). (i) Show that L(y)  

{x : (y,x)S} is a convex set for each y  0M. (ii) Show that C(y,w) defined by (325) is a 

convex function of y for fixed w >> 0N. Hint: Look at the proof of part (b) of Theorem 11.  

 

30. Assume S satisfies (234) and the output free disposability assumption (327). Show 

that C(y,w) defined by (325) is a nondecreasing function of y for fixed w >> 0N. Hint: 

Use a feasibility argument. 

 

31. Assume S satisfies (234) and the cone assumption (334).  Show that C(y,w) defined 

by (325) is a linearly homogeneous function of y for fixed w >> 0N. Hint: Modify the 

proof of part (c) of Theorem 11.  

  

The above problems show that if S satisfies the output free disposal assumption (327) and 

the convexity and constant returns to scale assumptions (333) and (334), then the 

corresponding joint cost function C(y,w) will be a nondecreasing, linearly homogeneous 

and convex function of y for fixed w. 

 

Assume that C(y,w) is differentiable with respect to y and w. Shephard’s Lemma enables 

us to interpret the vector of first order partial derivatives of the joint cost function with 

respect to the input price vector w, wC(y,w), as the producer’s vector of input demand 

functions, x(y,w). The vector of first order partial derivatives of the joint cost function 

with respect to y, yC(y,w), is obviously the vector of marginal costs for each output. 

However, if S satisfies the convexity assumption (333), then p = yC(y,w) can be 

interpreted as the producer’s system of inverse supply functions; i.e., if the producer faced 

the output price vector p and the input price vector w, then an output vector y which 

satisfied the system of equations p = yC(y,w) and the x = wC(y,w) would be a solution 

to the following producer’s profit maximization problem: 

 

(335) max y,x {p
T
y  w

T
x : (y,x)S}. 

 

Theorem 16: Suppose the technology set S satisfies the minimal regularity assumptions 

(324) plus (326) (free disposability of inputs), (327) (free disposability of outputs) and 

(333) (convexity). Let y
*
  0M and w

*
 >> 0N. Suppose that C(y,w) is differentiable at 

(y
*
,w

*
). Define x

*
  wC(y

*
,w

*
) and p

*
  yC(y

*
,w

*
). Then (y

*
,x

*
) is a solution to the 

following profit maximization problem: 

 

(336) max y,x {p
*T

y  w
*T

x : (y,x)S}. 

 

Proof: The free disposability assumptions imply that p
*
  0M and x

*
  0N. The convexity 

assumption on S implies that C(y,w
*
) is a convex function of y. Thus the function f(y)  

C(y,w
*
)  p

*T
y is also a convex function of y for all y  0M. Note that f(y

*
) =  

yC(y
*
,w

*
)  p

*
 = 0M using the definition of p

*
. Since f(y) is a convex function and 

differentiable at y = y
*
, its first order Taylor series approximation around this point will 

lie below (or be coincident with) f(y). Thus we have for all y  0M: 
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(337) f(y)  f(y
*
) + f(y

*
)
T
(yy

*
) 

                 = f(y
*
) 

 

where the inequality follows since f(y
*
) = 0M. Thus f(y) attains a global minimum at y

*
. 

Using the definition of f, we see that y
*
 is a solution to the following minimization 

problem: 

 

(338) min y {C(y,w
*
)  p

*T
y ; y  0M} = C(y

*
,w

*
)  p

*T
y

*
 

                                                              = w
*T
wC(y

*
,w

*
)  p

*T
y

*
  

                                                              = w
*T

x
*
  p

*T
y

*
  

 

where the second equality follows from the linear homogeneity of C(y,w) in w and the 

third equality follows from the definition of x
*
  wC(y

*
,w

*
). 

 

It can be verified that solving the profit maximization problem defined by (335) is 

equivalent to solving the following (net) cost minimization problem: 

 

(339) min y,x {w
*T

x  p
*T

y : (y,x)S} = min y {[min x w
*T

x : (y,x)S]  p
*T

y} 

                                                             = min y {C(y,w
*
)  p

*T
y ; y  0M}          using (325) 

                                                             = w
*T

x
*
  p

*T
y

*
                                       using (338). 

                                                                                                                                     Q.E.D. 

 

The above result is a joint cost function counterpart to Samuelson’s Lemma, Theorem 12 

above. It says that if producers take prices as given on both input and output markets and 

the technology set is convex, then the producer’s system of inverse supply functions, 

p(y,x) is equal to yC(y,w), the producer’s system of marginal cost functions. 

 

If the production possibilities set S satisfies all of the regularity conditions on S that are 

listed in this section (free disposability of inputs and outputs, convexity and constant 

returns to scale), we say that S is a regular production possibilities set. 

 

Problems 
 

32. Suppose S satisfies the minimal regularity conditions (324). Define the corresponding 

joint cost function C(y,w) by (325). Suppose C(y,w) is twice continuously differentiable 

with respect to w at some point y > 0M and w >> 0N. Then the system of cost minimizing 

input demand functions is x(y,w) = wC(y,w) and and the N by N matrix of demand 

derivatives with respect to input prices, B  [xn(y,w)/wi] = 
2

wwC(y,w) exists. Show 

that the matrix B has the following properties:   

 

(i) B = B
T
; 

(ii) B is negative semidefinite and  

(iii) Bw = 0M. 

 

Hint: Adapt the proof of Theorem 13. 
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33. Suppose S is a regular production possibilities set and the corresponding C(y,w) is 

twice continuously differentiable at the point y >> 0M and w >> 0N. Then the system of 

inverse supply functions, p(y,w) = yC(y,w) and the M by M matrix of partial derivatives 

with respect to output quantities, A  [pm(y,w)/yk] = 
2

yyC(y,w) exist. Show that the 

matrix A has the following properties:   

  

(i) A = A
T
   so that pm(y,w)/yk = pk(y,w)/ym for all m  k; 

(ii) A is positive semidefinite and  

(iii) Ay = 0M. 

 

Hint: Adapt the proof of Theorem 14. 

 

34. Suppose S is a regular production possibilities set and the corresponding C(y,w) is 

twice continuously differentiable at the point y >> 0M and w >> 0N. Then the system of 

inverse supply functions is p(y,w) = yC(y,w)  and the M by N matrix of partial 

derivatives supply prices with respect to input prices, D  [pm(y,w)/wn] = 
2

ywC(y,w) 

exists. The system of cost minimizing input demand functions is x(y,w) = wC(y,w) and 

the N by M matrix of partial derivatives of input quantities with respect to output 

quantities, E  [xn(y,w)/ym] = 
2

wyC(y,w) exists.  Show that the matrices D and E have 

the following properties: 

 

(i) D = E
T
; 

(ii) p(y,w) = Dw  0M; 

(ii) x(y,w) = Ey  0N.  

 

Hint: Adapt the proof of Theorem 15. 

 

Shephard’s Lemma and Theorem 16 can be used as a convenient method for obtaining 

econometric estimating equations for determining the parameters that characterize a 

producer’s technology set S. Assuming that S satisfies the minimal regularity conditions 

on S, we need only postulate a differentiable functional form for the producer’s joint cost 

function, C(y,w), that is linearly homogeneous and concave in w. Suppose that we have 

collected data on the input vectors used by the unit in period t, x
t
, and the outputs 

produced in period t, y
t
, for t = 1,…,T time periods as well as the corresponding input 

price vectors w
t
. Then the following NT equations can be used in order to estimate the 

unknown parameters in C(y,w): 

 

(340) x
t
 = wC(y

t
,w

t
) + u

t
 ;                                                                                    t = 1,…,T 

 

where u
t
 is a vector of errors. If in addition, S is a convex set and the firm is maximizing 

profits facing the fixed output and input price vectors, p
t
 and w

t
, respectively in period t, 

then the following MT equations can be added to (340) as additional estimating 

equations: 

 

(341) p
t
 = yC(y

t
,w

t
) + v

t
 ;                                                                                     t = 1,…,T 
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where v
t
 is a vector of errors.

118
  

 

21. Flexible Functional Forms for Joint Cost Functions 

 

Specific functional forms for C(y,w) can be found by adapting the functional forms 

explained in Sections 17-19 above. Adapting the material in Section 17, we could assume 

the log of the joint cost function for a regular technology, lnC(y,w), has the following 

translog functional form:
119

 

 

(342) lnC(y,w)  a0 + m=1
M

 amlnym + (1/2) m=1
M
k=1

M
 amklnym lnyk  

                + n=1
N
 bnlnwn + (1/2)n=1

N
j=1

N
 bniwn lnwi + m=1

M
n=1

N
 cmnlnym lnwn . 

                                                                                                                   

The unknown coefficients in (342) must satisfy the restrictions (276)-(283) listed in 

Section 17 if S is a regular production possibilities set.  

 

Note that using Shephard’s Lemma, we have lnC(y,w)/lnwn = [wn/C(y,w)]C(y,w)/wn 

= [wn/C(y,w)]xn(y,w)  Sn(y,w) where xn(y,w) is the cost minimizing demand function 

for input and Sn(y,w) is the share of input n in total cost. Assuming that the producer 

minimizes cost and S is dual to the translog joint cost function defined by (342), then 

differentiating the logarithm of C(y,w) defined by (342) with respect to the logarithm of 

wn leads to the following system of input share equations: 

 

(343) Sn(y,w) =  bn + j=1
N
 bnjlnwj + m=1

M
cmnlnym ;                                            n = 1,...,N. 

  

Equations (342) and (343) can be used as estimating equations if the production unit is 

minimizing costs. Note that these equations are linear in the unknown parameters.
120

 

 

Suppose that in addition to the assumption that the production unit is minimizing costs, 

we assume that the technology set is regular and the producer is maximizing profits. 

Using Theorem 16, lnC(y,w)/lnym = [ym/C(y,w)]C(y,w)/ym = [ym/C(y,w)]pm(y,w)  

sm(p,x) where pm(y,w) is the profit maximizing inverse demand function for output m and 

sm(p,x) is the share of output m in total profit maximizing revenue. Assume that S is 

regular. Assuming that the producer maximizes profit and S is dual to the translog joint 

cost function C(y,w) defined by (342), then differentiating the logarithm of C(y,w) with 

respect to the logarithm of ym leads to the following system of revenue share equations: 

  

(344) sm(y,w) =  am + k=1
M

 amklnyk + n=1
N
cmnlnwn ;                                        m = 1,...,M. 

                                                 
118

 If in addition, the technology set S is subject to constant returns to scale and the data reflect this fact by 

satisfying p
tT

y
t
 = w

tT
x

t
 for t = 1,…,T, then the error vectors u

t
 and v

t
 in (340) and (341) cannot be 

statistically independent. Hence one of the M+N equations in (340) and (341) must be dropped from the 

system of estimating equations.   
119

 This functional form is due to Burgess (1974) who applied it to international trade theory. For 

applications of this functional form to index number theory, see Diewert and Morrison (1986) and Diewert 

and Fox (2010). 
120

 If we do not impose constant returns to scale and convexity on S, then the parameter restrictions (277) 

and (281)-(283) do not have to be imposed. These restrictions should be imposed if we assume constant 

returns to scale and convexity. 
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Equations (342)-(344) can be used as estimating equations if the production unit is 

maximizing profits and has a regular translog technology. 

 

The above functional form for the logarithm of joint cost does not allow for technical 

progress. To remedy this problem, simply add the following terms to the right hand side 

of definition (342): 0t + m=1
M

 tmlnym + n=1
N
 tnlnwn  where t is a scalar time variable 

and the new parameters m and n satisfy m=1
M

 m = 0 and n=1
N
 n = 0.

121
  

 

A problem with the translog joint cost function is that it is not possible to impose 

concavity in w (and convexity in y if the dual S satisfies convexity) over the region 

spanned by the sample input prices w
t
 (and the region spanned by the sample output 

vectors y
t
 if S is a convex set) without impairing the flexibility of the functional form. In 

order to impose these curvature conditions without destroying the flexibility property, we 

turn to the functional forms defined in Sections 18 and 19.  

 

Define the normalized quadratic joint cost function C(y,w)  for y > 0M  and w > 0N as 

follows: 

 

(345) C(y,w)  g(y)c(w) + y
T
Ew 

 

where g(y)  b
T
y + (1/2)y

T
By/

T
y,  > 0M is a predetermined vector that satisfies 

T
y

*
 = 

1, b > 0M is a parameter vector, B is symmetric positive semidefinite parameter matrix 

that satisfies By
*
 = 0M, c(w)  a

T
w + (1/2)w

T
Aw/

T
w,  > 0N is a predetermined vector 

that satisfies 
T
w

*
= 1, a is a parameter vector that satisfies a

T
w

*
 = 1, A is symmetric 

negative semidefinite parameter matrix that satisfies Aw
*
 = 0N and E is an M by N 

parameter matrix. 

 

Define the KBF joint cost function C(y,w) using (345) where E is again an M by N 

parameter matrix. However, redefine g(y) and c(w) as follows: g(y)  (y
T 

[bb
T
 + B]y)

1/2
, 

where b > 0M is a parameter vector, B is symmetric positive semidefinite parameter 

matrix that satisfies By
*
 = 0M, c(w)  (w

T
[aa

T
 + A]w)

1/2
, a is a parameter vector that 

satisfies a
T
w

*
 = 1 and A is symmetric negative semidefinite parameter matrix that 

satisfies Aw
*
 = 0N.    

 

For both of these joint cost functions, the vector of cost minimizing input demand 

functions x(y,w) can be obtained by calculating the vector of first order partial derivatives, 

wC(y,w). The concavity in input prices property for the joint cost function can be 

imposed by setting A =  A
*
A

*T
 with A

*
 lower triangular and A

*T
w

*
 = 0N. In the case 

where the underlying production possibilities set S is convex, the vector of profit 

maximizing output prices p(y,w) that is consistent with the production of the vector y of 

outputs can be obtained by calculating the vector of first order partial derivatives, 

                                                 
121

 Linear or quadratic spline functions in time can also be added to the estimating equations to better 

approximate variable rates of technical progress over time. 
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yC(y,w). The convexity property in output quantities for C(y,w) can be imposed by 

setting B = B
*
B

*T
 with B

*
 lower triangular and B

*T
y

*
 = 0M.

122
  

 

The normalized quadratic and KBF joint cost functions as defined above, do not allow for 

technical progress. This problem can be remedied by adding the term (m=1
M

 mymt)(n=1
N
 

nwnt) to the right hand side of definitions (345) where the m and n are technical 

progress parameters and t is a time trend.
123

 These additional technical progress terms 

may not capture the trends in technical progress in the time series context if the sample 

period is long. In this case, the terms m=1
M

 mymt and n=1
N
 nwnt can be replaced by 

piece-wise linear spline functions as was done in Section 13 above; see equations (200). 

 

22. Applications of Joint Cost Functions 

 

In this section, we discuss three areas of research where joint cost functions play 

important roles. 

 

Many government outputs are produced in a nonmarket context. The output quantities 

can usually be measured but typically, there are no market prices for the outputs that are 

produced by many government production units. However, government producers still 

have an incentive to minimize costs. If the public sector production unit is minimizing 

costs and the technology set can be approximated by a constant returns to scale 

production possibilities set S and econometric estimation of a differentiable dual joint 

cost function C(y,w) is possible (using just the input demand functions as estimating 

equations), then approximate output prices can be obtained as the vector of marginal 

costs, p  yC(y,w). If production is subject to constant returns to scale, then the 

resulting output price vector p will have the property that p
T
y = C(y,w) = w

T
x; i.e., the 

resulting value of outputs will equal the value of inputs.
124

 This result is useful in the 

national income accounting context where government statisticians have to find methods 

for valuing public sector outputs. Using marginal cost prices is also useful when 

economists want to measure the productivity performance of public sector production 

units.
125

 

 

A second application for the estimation of joint cost functions is in the context of the 

regulation of utilities that deliver electricity, water and communications services via 

networks. Regulators are interested in using marginal costs to aid them in setting utility 

prices. Utilities may be forced to sell their outputs at regulated prices that do not reflect 

marginal costs but regulated utility firms will still have an incentive to minimize costs. In 

                                                 
122

 After making these substitutions for A and B, the resulting C(y,w) will satisfy the convexity and 

concavity conditions provided at the point (y,w) provided that y > 0M, w > 0N, g(y) > 0 and c(w) > 0. The 

proof of the flexibility of the normalized quadratic and KBF joint cost functions in the case of a regular 

technology is entirely analogous to the corresponding proofs of normalized quadratic and KBF variable 

profit functions that were discussed in Sections 18 and 19.     
123

 In order to identify all of these technical progress parameters, we need to impose a normalization on 

them such as m=1
M

 m = 1. 
124

 In practice, the vector of marginal costs may have to be approximated by average costs of production, 

which in turn will usually require many accounting imputations.  
125

 See Diewert (2011) (2012) (2018) on this topic. 
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this case, joint cost functions can be estimated and the resulting estimates can be used to 

measure technical progress as well as the Total Factor Productivity of the regulated 

firms.
126

  

 

A third area where joint cost functions play an important role is in modeling monopolistic 

behavior. Typically producers take input prices as fixed and beyond their control. 

However, they may have some pricing power over their outputs. Recall (245) which 

defined a producer’s competitive profit maximization problem. A monopolistic 

counterpart to this problem is the following problem:   

 

(346) max y,x {m=1
M

 fm(ym)ym  w
T
x: (y,x)S} = max y {m=1

M
 fm(ym)ym  C(y,w)} 

 

where w >> 0N is a positive input price vector, y  (y1,...,yM)  0M is an output vector,  S 

is the producer’s production possibilities set, C(y,w) is the producer’s joint cost function 

defined by (325) and pm = fm(ym) is the (downward sloping) inverse demand function for 

output m that the producer faces for m = 1,...,M. If the inverse demand functions fm(ym) 

and the joint cost function C(y,w) are once differentiable when evaluated at the period t 

data, then under appropriate regularity conditions on the fm(ym) and S, the following 

equations will be satisfied by a profit maximizing monopolist using the observed period t 

data: 

 

(347) p
t
(1M  

t
) = yC(y

t
,w

t
) ;                                                                             t = 1,...,T; 

(348)               x
t
  = wC(y

t
,w

t
) ;                                                                            t = 1,...,T 

 

where 1M is an M dimensional vector of ones, 
t
  [1

t
,...,M

t
]

T
  0M is a period t markup 

vector where m
t
   [ym

t
/pm

t
][fm(ym

t
)/ym] is the markup of price over marginal cost for 

output m in period t, y
t
 and x

t
 are the observed quantity vectors for outputs and inputs in 

period t and p
t
 and w

t
 are the corresponding observed output and input price vectors for 

period t = 1,...,T. If the markups are constant over time, given a suitable functional form 

for the joint cost function C(y,w), equations (347) and (348) can be used as econometric 

estimating equations.
127

 Thus again, joint cost functions play a crucial role in this area of 

economics.
128

          

 

23. Problems that Require Additional Research 

 

We conclude this chapter with some comments on three problem areas that have not been 

addressed in the above sections. 

                                                 
126

 For examples of the use of joint cost functions in a regulatory context, see Denny, Fuss and Waverman 

(1981), Lawrence and Diewert (2006) and Diewert, Lawrence and Fallon (2009). 
127

 If the markups are not constant, then linear (or piece-wise linear) trends in the markups could be 

introduced into the model. See Diewert and Fox (2008) for an econometric application of this model and 

Diewert and Fox (2010) for an application of this model to index number theory.  
128

 If the monopolist provides some goods and services on a competitive basis (i.e., at marginal cost), then 

the markup for this commodity can be set equal to zero. Alternatively, this commodity could be removed 

from the y vector and be placed with the x inputs, except the quantity would be indexed with a negative 

sign in the input demand equations. The resulting input cost would become input cost less the revenue from 

the sales of goods and services provided at marginal cost. 
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The first problem area is the difficulty of distinguishing increasing returns to scale from 

technical progress if there is general growth of all inputs and outputs for the production 

unit that is under consideration. Multicollinearity problems usually arise in this situation: 

the two effects typically cannot be reliably determined using just time series data.  

 

The second problem area is the fact that many inputs cannot be varied in the short run 

and thus producers are not necessarily producing outputs and utilizing inputs on the 

frontiers of their production possibilities sets. For example, suppose a recession occurs in 

the economy so that demand for the outputs of production units declines. Producers can 

reduce the demand for their variable inputs but they are more or less stuck with their 

structure inputs and with other durable capital investments that are “bolted down”.
129

 

Thus producers end up being in the interior of their production possibilities sets.
130

 When 

a producer makes an irreversible investment, the total cost of the investment should not 

be charged to the period when the investment was made but this cost should be allocated 

over the useful life of the investment. But how exactly should this cost be allocated? This 

is the fundamental problem of accounting.
131

 Note that in addition to structure and 

network capital inputs, a successful R&D project is another example of a fixed cost input 

whose input cost must be allocated over time in some manner. If there is only a single 

sunk cost input (or we aggregate all sunk cost inputs into a single input), then it is 

possible to set up an intertemporal profit maximization problem that justifies the purchase 

of the fixed input. The price of this fixed asset at a particular point in time is the 

discounted net revenue generated by the project over its remaining useful life and if this 

information on discounted net revenues can be forecasted, then the initial cost of the asset 

can be amortized in a manner that is proportional to the forecasted net revenues by 

period.
132

  

 

The final problem area that has not been addressed in this survey of the applications of 

duality theory in production theory is the new goods problem and the problem of quality 

change. Modern economies are subject to tremendous product churn, and in addition, 

revolutionary new products are constantly being developed.
133

 Up to this point, we have 

assumed that the production unit is producing M outputs and N inputs and this set of 

outputs and inputs remains constant over time (if we are in the time series context) or it 

remains constant over different production units in the same industry (in the cross 

                                                 
129

 Some labour hoarding may also occur; i.e., the costs of firing and then rehiring workers after the 

recession is over may be higher than just keeping the workers employed. 
130

 This inefficiency problem will be addressed in other chapters in this Handbook using nonparametric 

production analysis or Data Envelopment Analysis; see Charnes and Cooper (1985). Most of the research 

in this area is applied to cross sectional or panel data. For an application of the nonparametric approach to 

production theory and the measurement of efficiency in the time series context, see Diewert and Fox 

(2018). 
131

 See Cairns (2013). 
132

 For examples of this methodology, see Diewert (2009), Diewert, Lawrence and Fallon (2009), Diewert 

and Huang (2011), Cairns (2013) and Diewert and Fox (2016). 
133

 See Broda and Weinstein (2006) (2010), Bernard, Redding and Schott (2010; 82) and Hottman, Redding 

and Weinstein (2016; 1300) for information on the number of products sold in the US (at least 1.6 million). 

The last three papers have information on the frequency of product entry and exit in the US (about 2% per 

month). 
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sectional context). If the underlying technology set S
t
 for a production unit does not 

change very much when new outputs appear and some old outputs disappear in period t, 

then the various econometric models proposed above could in theory deal with this 

problem if we allow for technical change. But if there are many such changes over many 

periods, obviously, we will not be able to estimate flexible functional forms due to the 

proliferation of parameters. Even if output changes are infrequent, the production of a 

new output and the discontinuance of an existing output could lead to a radical change in 

the use of inputs as the newer technology replaces the existing one and again, we will 

have a proliferation of parameters, a lack of degrees of freedom and our suggested 

econometric approaches will fail. Thus there is a need for further research to address 

these problems.          
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