IEEE SDWG 2016

Duke Energy Production Experience with CVR Michael D Simms PE

DUKE ENERGY OHIO SMART GRID BUSINESS CASE REVIEW

Ohio Smart Grid Business Case Overview

- DMS-enabler of most operational benefits
- Volt/var Optimization-45% of benefits
- AMI-45% of benefits
- Reliability(Self healing, sectionalization, etc.)customer minutes saved
- Avoided O&M-Inspections, Shortened billing cycles, vehicle management, efficiency improvements, continuous voltage monitoring, outage detection

Ohio Volt/var Deployment Summary

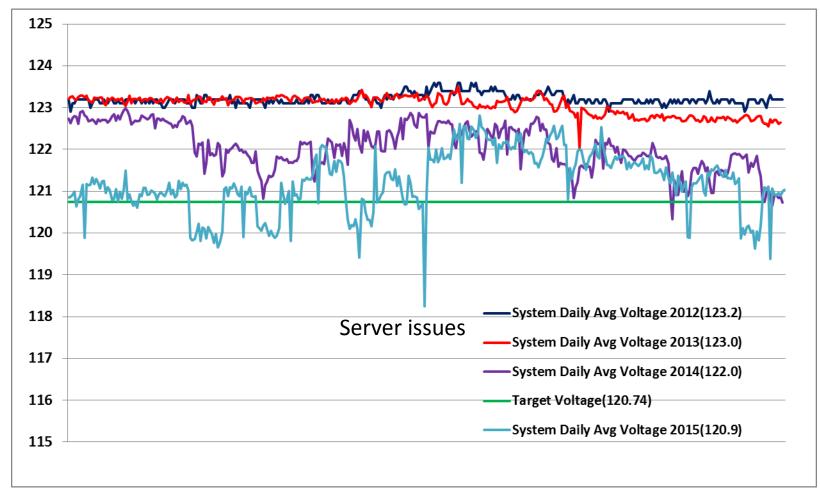
Voltage	LVM Circuits	Total Circuits	LVM Subs	Total Subs
34.5kv	58	62	21	22
12.47kv	476	556	148	153
4.16kv	0	161	0	72
totals	534	779	169	247

Volt/var Circuit Exceptions:

4kV circuits Sub Transmission Secondary Network Dedicated customer circuits

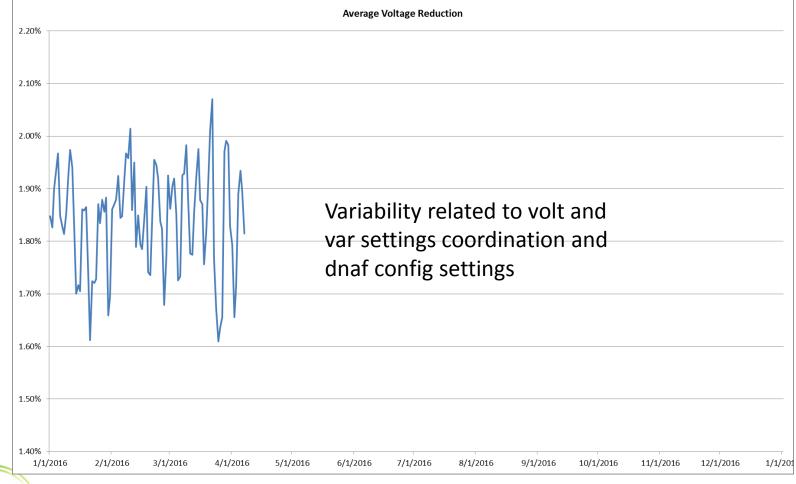
DMS/DA/Volt/var Business Case

- Ohio VVO Business Case Energy Reduction
 - No prior circuit conditioning work performed
 - Assumed there was a 1:1 correlation between demand reduction and energy reduction
 - Targeted 2% system volt reduction
 - Assumed 0.5-0.79 CVR factor range-Industry accepted values
 - System energy reduction 1-1.58% with 24/7/365 operation
 - Reduced Energy Purchases Ohio deregulated Generation

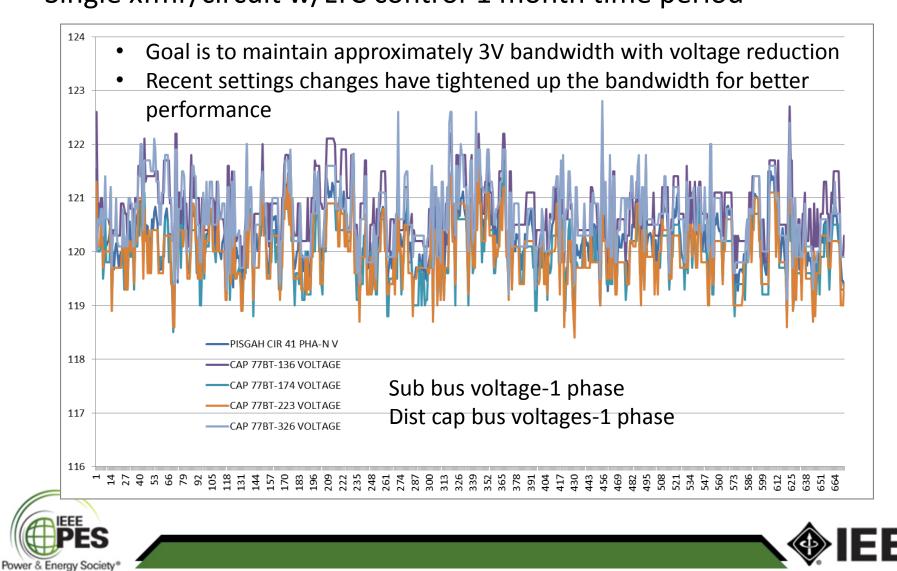


Volt/Var System Performance/Operational Enhancements

DEO-Volt/var Average System Voltage Reduction



2016 Volt/var Average % Voltage Reduction


2016 System Average System % Voltage Reduction

Volt/var Voltage Flatness-Circuit voltage profiles Single xfmr/circuit w/LTC control-1 month time period

Volt/var Performance Metrics-MWh Reduction

• Calculated Energy Reduction=

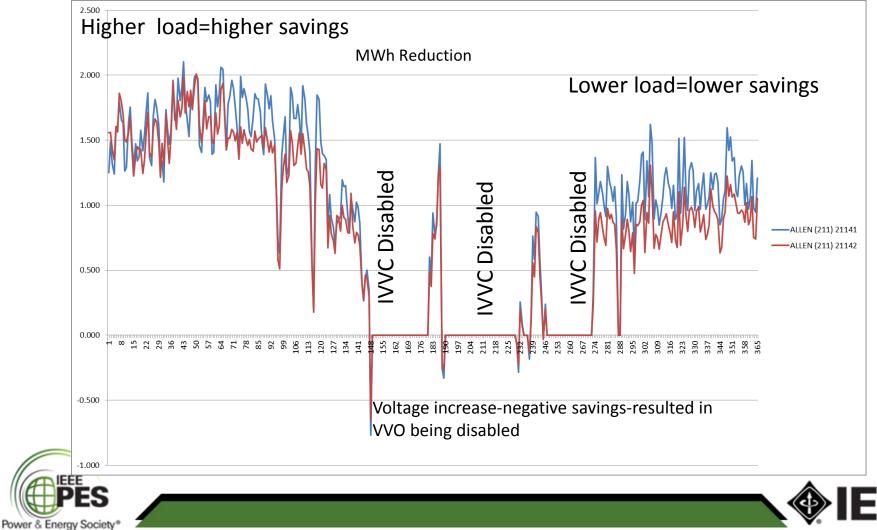
Measured Energy X Measured Voltage Reduction X CVR factor

• Assumed CVR factor 0.5 to 0.79

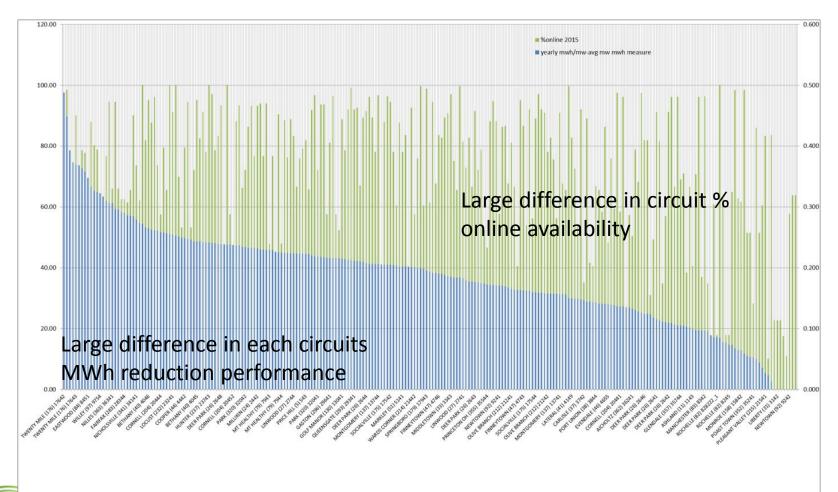
Power & Energy Soc

Avg System Voltage Baseline (2012)	123.2]
	Avg System	Avg Circuit Voltage	MWh under	MWh Reduction	CVR	Circuits under	
	Voltage(2014)	Reduction% with IVVC	IVVC Control	with IVVC	Factor	IVVC Control	
IVVC Operation as of 10/31/14	121.1	1.72%	4,411,976	37,943	0.5	365	
IVVC Operation as of 10/31/14	121.1	1.72%	4,411,976	59,949	0.79	365	_
	Avg System	Avg Circuit Voltage	MWh under	MWh Reduction	CVR	Circuits under	
	Voltage(2014)	Reduction% with IVVC	IVVC Control	with IVVC	Factor	IVVC Control	
IVVC Operation as of 12/31/14	121.1	1.71%	5,951,744	51,185	0.5	417	
IVVC Operation as of 12/31/14	121.1	1.71%	5,951,744	80,402	0.79	417	
	Avg System	Avg Circuit Voltage	MWh under	MWh Reduction	CVR	Circuits under	
	Voltage(2015)	Reduction% with IVVC	IVVC Control	with IVVC	Factor	IVVC Control	
IVVC Operation as of 4/16/15	120.7	2.03%	7,554,230	76,646	0.5	500	1
IVVC Operation as of 4/16/15	120.7	2.03%	7,554,230	121,101	0.79	500	1
Avg System Voltage Baseline (2012)	123.2						
	Avg System	Avg Circuit Voltage	MWh under	MWh Reduction	CVR	Circuits under	
	Voltage(2015)	Reduction% with IVVC	IVVC Control	with IVVC	Factor	IVVC Control	
IVVC Operation as of 6/29/15	120.8	1.95%	9,565,145	93,167	0.5	511	1
IVVC Operation as of 6/29/15	120.8	1.95%	9,565,145	147,204	0.79	511	
	Avg System	Avg Circuit Voltage	MWh under	MWh Reduction	CVR	Circuits under	
	Voltage(2015)	Reduction% with IVVC	IVVC Control	with IVVC	Factor	IVVC Control	
IVVC Operation as of 8/31/15	121.1	1.70%	12,701,685	108,253	0.5	511	
IVVC Operation as of 8/31/15	121.1	1.70%	12,701,685	171,040	0.79	511	
	Avg System	Avg Circuit Voltage	MWh under	MWh Reduction	CVR	Circuits under	
	Voltage(2015)	Reduction% with IVVC	IVVC Control	with IVVC	Factor	IVVC Control	1
IVVC Operation as of 12/31/15	120.95	1.83%	14,521,502	132,603	0.5	511	
IVVC Operation as of 12/31/15	120.95	1.83%	14,521,502	209,513	0.79	511	1

Deployment Completed


Software/Server Issues

Tuning Phase



Volt/var Circuit Performance variance-Circuit MWh Reduction

MWh Savings Variance- 2015 Period

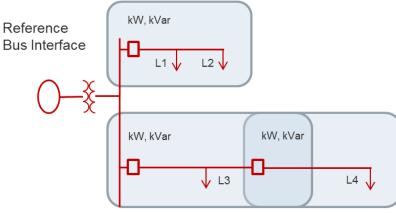
Volt/var Circuit online % & MWh savings Performance Variance % Online

Volt/Var - Day in the life of DNAF/VVO-Plan Overview

What does the system look like over the same day

- DPF runs 2254
- VVO Runs 2962
- VVO Accepted Periodic plans 1747
- VVO Accepted Backbone plans 97
- VVO Accepted Voltage Quality plans 1100
- VVO Circuits enabled 317
- VVO MWh reduction 334
- VVO Voltage reduction 1.93%

VOLT/VAR LOAD ALLOCATION AND POWER FLOW OVERVIEW AND MEASUREMENT ENHANCEMENTS



Volt/Var/DMS Load Allocation - Utilizing the Data Bus Load Allocation (BLA): Islands

BLA

- Scales loads to match real-time measurements
- Iterates with DPF in an outer loop
- Measurements are grouped according to location and used to form measurement islands
- Uses a priority order for processing measurements.

Volt/Var/DMS Load Allocation -Utilizing the Data

- A "measurement island" is a collection of components bounded by a common set of measurements with the purpose of allocating load.
- <u>With no distribution line data only one measurement island</u>
 <u>formed from sub data</u>
- Measurement island is bounded by a reference bus interface object, an upstream measurement island, a downstream measurement island, or feeder ends.
- All loads inside of a measurement island are scaled up or down based on the island's kW or kVA measurement.
- <u>The more measurement islands generally the better the load</u> <u>allocation and power flow</u>
- <u>This leads us to revised device sensing strategies to deliver more</u> <u>data</u>

Volt/Var/DMS Measurements Implemented Accuracy requirements not fully developed in Ohio prior to deployment-consider this the minimum requirements

- Substation/Circuit relays
 - Measurements-phase amps, watts, volts, vars
 - Estimated 1-5% accuracy
- Three phase caps
 - Measurements -single phase voltage only
 - Estimated 0.75% accuracy
- Line reclosers
 - Measurements- phase amps, watts, volts, vars
 - Variable accuracy-not quantified
- Line sensors(not used in load allocation or power flow)
 - Measurements- phase amps
 - Estimated 5-10% accuracy

Volt/Var Tested Device Accuracy

- Line post combination voltage and current sensors
 - Voltage and current accuracy as spec'd around 1% or less
 - Watt and var accuracy not quite as good
 - Installation geometry
 - Ice/Moisture impacts
- Line post voltage sensors
 - Accurate as spec'd around 1% or less
- Capacitor controls
 - Voltage and current accuracy as spec'd around 0.25%.
 - Watt and var accuracy dependent on sensor and device accuracy

Volt/Var Load Flow Improvement-Measurement Strategy

Three Phase Cap with Line post sensors & With Capacitor control

- High accuracy voltage and current sensing
- Avg of 3-5 cap locations per circuit could be leveraged for measurements
- Three Line post sensors for single phase voltage and current sensing
- Fault detection/magnitude
- Voltage, current, power data for operations
- DMS-DPF/BLA integration for improved power flow, load allocation and VVO operation

Volt/Var Load Flow Improvement-Side Benefits-Fault Data

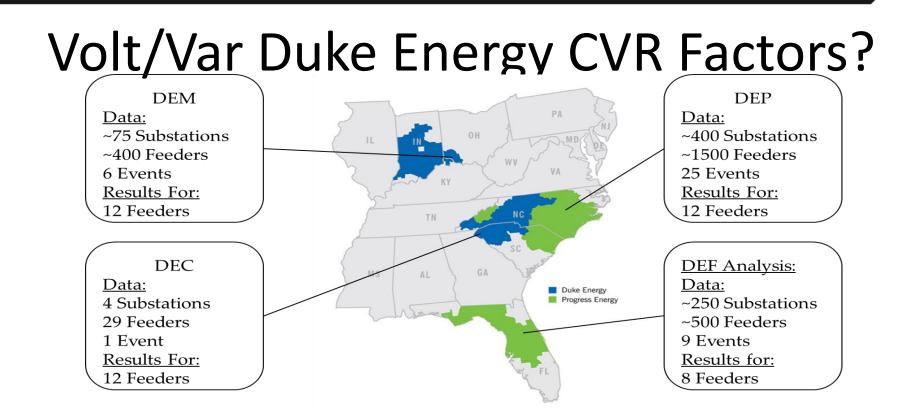
- Three Phase cap with Post Sensors/Capacitor Control Fault Detection Capability
 - Cap control records overcurrent value via DNP
 - Data from scada to PI
 - Compared event to SEL and Recloser fault data
 - Minimizes need for current only line sensors

	Time	Fault	W23-54(6283A)	RCL 21953(ABB OVR)	Montg 45 relay(SEL 351)	
6/29/2015	23:08:30	B-G	1471A	1493A	1533A	
6/30/2015	5:51:49	B-G	1453A	1451A	1496A	

VOLT/VAR OPTIMIZATION OPTIONS

Heuristic Volt/Var Option

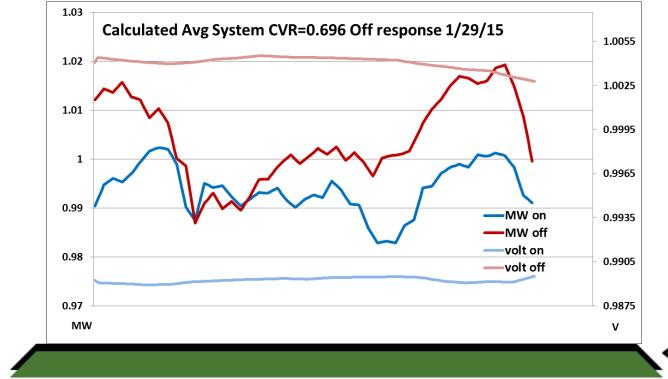
- In order to obtain high quality results, a good power flow model is required. The model must have an accurate impedance model and a solid load model.
- In some cases, obtaining an accurate power flow model capable of generating high quality VVO results is not a simple task.
- Heuristic-based VVO solution developed as alternate optimization method
- Measurement based optimization



VOLT/VAR MODELING AND CVR FACTORS

Area	Mean CVR
DEC	1.02
DEF	1.15
DEM	2.92
DEP	1.67

Volt/Var CVR Factors Published Industry Studies


- Georgia Power 0.3 to 2.0
- EPRI/Alabama Power 0.4 to 0.7
- EPRI SMUD 0.6
- NEEA DEI 0.6
- Hydro Quebec 1.0 summer-0.7 winter
- Navigant Avista 0.7 to 0.9
- PNNL 0.7

Volt/Var CVR Measurements Ohio

- Measured CVR
- A common rule of thumb in the industry is that 80-90 percent of CVR savings accrue to the customer and 10-20 percent to the utility.
- Inadvertent Off/On testing
- Load models affect power flow calculated values
- CVR Factors estimated for most areas around 0.7

VOLT/VAR SOFTWARE TESTING

Volt/Var Testing of New Software Versions

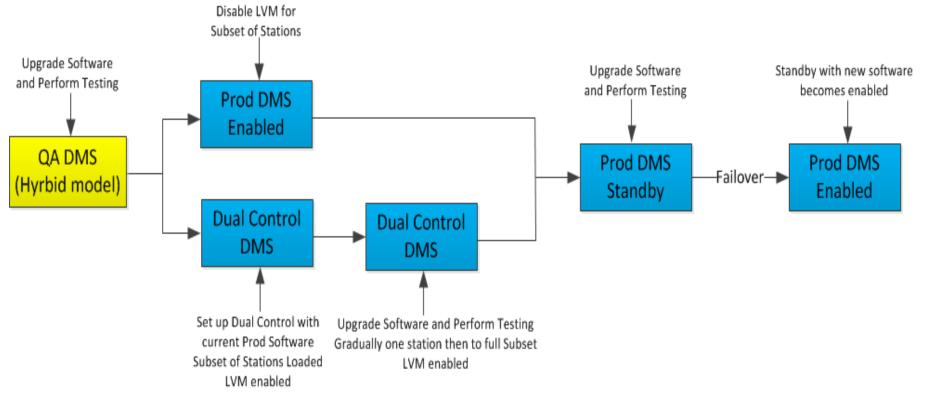
- Load new software on QA DMS server
- Hybrid model on QA DMS
- Most station's points are being fed from Production SCADA to QA SCADA
 - A few station's points are being simulated with DOTS
- Go through a round of Technical and Business Testing on QA
- Load new software on Production standby DMS server
- Failover DMS to Standby DMS server with new software
- There is a big risk with this method when you have 500
 VVO circuits enabled Upgrade Software and Perform Testing
 Upgrade Software and Perform Testing

QA DMS

Hyrbid model)

Prod DMS

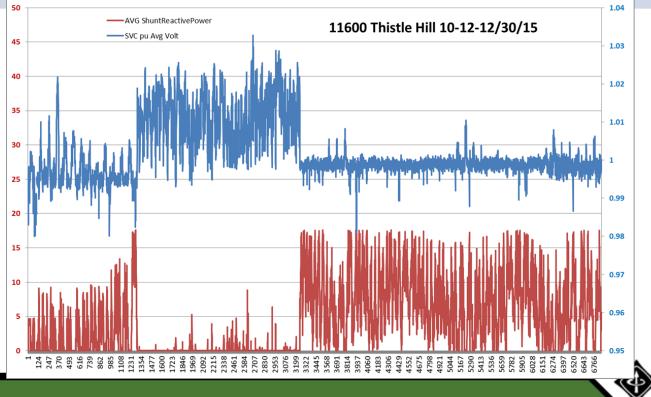
Standby


Prod DMS

Enabled

-Failover—►

Volt/Var Dual Production Control


Utilized for software update in 2016 Utilizing for system optimization tuning Utilizing for problem formulation testing, heuristic testing Utilizing for FME update testing

Volt/Var Secondary Regulation-SVC/IPR

Unit	Transformer rating	Installation details	Delta V	20kVAR boost
11600 Thistle Hill	25 kVA	170ft split wire from xfmr	0.49V/kVAR	9.8V
11649 Thistle Hill	50 kVA	Same pole as xfmr	0.13V/kVAR	2.6V
9386 Greenhedge	50 kVA	70ft split wire from xfmr	0.15V/kVAR	3V
9358 Greenhedge	25 kVA	Same pole as xfmr	0.14V/kVAR	2.8V
8740 Arcturus	50 k\/A	170ft solit wire from xfmr	0 29\//k\/AR	5.8\/
	SU AVG ShuntBoas	thus Devuer		1.04

Ε

