
Dumbo: Faster Asynchronous BFT Protocols?

Bingyong Guo1,3,4,5, Zhenliang Lu2,5, Qiang Tang2,5, Jing Xu1,5, and Zhenfeng Zhang1,5

1Institute of Software, Chinese Academy of Sciences
{guobingyong, xujing, zfzhang}@tca.iscas.ac.cn

2Department of Computer Science, New Jersey Institute of Technology
{zl425, qiang}@njit.edu

3State Key Laboratory of Cryptology
4School of Computer Science and Technology, University of Chinese Academy of Sciences

5JDD-NJIT-ISCAS Joint Blockchain Lab

Abstract. HoneyBadgerBFT, proposed by Miller et al. [35] as the first practical asyn-
chronous atomic broadcast protocol, demonstrated impressive performance. The core of
HoneyBadgerBFT (HB-BFT) is to achieve batching consensus using asynchronous common
subset protocol (ACS) of Ben-Or et al., constituted with n reliable broadcast protocol (RBC)
to have each node propose its input, followed by n asynchronous binary agreement protocol
(ABA) to make a decision for each proposed value (n is the total number of nodes).

In this paper, we propose two new atomic broadcast protocols (called Dumbo1, Dumbo2)
both of which have asymptotically and practically better efficiency. In particular, the ACS
of Dumbo1 only runs a small κ (independent of n) instances of ABA, while that of Dumbo2
further reduces it to constant! At the core of our techniques are two major observations:
(1) reducing the number of ABA instances significantly improves efficiency; and (2) using
multi-valued validated Byzantine agreement (MVBA) which was considered sub-optimal for
ACS in [35] in a more careful way could actually lead to a much more efficient ACS.

We implement both Dumbo1, Dumbo2 and deploy them as well as HB-BFT on 100
Amazon EC2 t2.medium instances uniformly distributed throughout 10 different regions
across the globe, and run extensive experiments in the same environments. The experimental
results show that our protocols achieve multi-fold improvements over HoneyBadgerBFT on
both latency and throughput, especially when the system scale becomes moderately large.

Keywords: Atomic broadcast · Byzantine fault tolerance · Asynchronous.

1 Introduction

Byzantine fault tolerant (BFT) protocols enable a set of untrusted peers to reach consensus. As
one fundamental research area in distributed computing, the problem has been extensively studied
and many variants exist for different application scenarios. One main categorization of the BFT
protocols is based on the timing (or network) assumptions. A synchronous BFT protocol assumes
all values sent by honest peers will be delivered to the recipients within a certain period of time,
which is known to everyone (including the protocol designer). While a partially synchronous BFT
protocol relaxes this network requirement by allowing the time bound to be exist but unknown.
An asynchronous BFT protocol relies the least on the network assumption that it does not require
such a time bound to exist, just that all values will eventually be delivered.

The favored asynchronous BFT. In the earlier years, considering the deployment of BFT
protocols mostly in conventional in-house scenarios that the peers are well-connected, research
efforts of BFT focused on reducing (cryptographic) computations [5,41], or increasing the threshold
of malicious participants the protocol can tolerate [21], assuming a synchronous network. Nice works
on synchronous setting continue to emerge in recent years [11,1,33]. Efforts also exist relaxing
the network synchrony assumption. One notable example is the classic Practical Byzantine Fault
Tolerance (PBFT) protocol [18] that requires partial synchrony. However, removing the synchrony

? A preliminary version of this paper will appear at ACM CCS ’20. Authors are named alphabetically,
and the first two authors contributed equally.

assumption completely in practice becomes more and more desirable for both robustness and
efficiency reasons.

Recently, the success of cryptocurrencies and blockchain technology in general brings much
broader application scenarios to the BFT protocols, and also demonstrates the possibility of consen-
suses over wide-area network (WAN). The open Internet environment provides a more adversarial
setting that the network latency among the peers could be time-varying. However, the synchronous
(or partially synchronous) BFT can only perform in the relatively “private” network with well-
connected nodes that guarantees network delivery within certain time bound. Those protocols
would fail to make progress and get stagnated if the timing assumption does not hold. Indeed, it
was shown formally in recent work [35] that PBFT cannot make any progress in “intermittently
synchronous network”, where the adversary only chooses to delay messages at certain time points.
The “attack” could similarly be applied to a class of leader-based BFT protocols [4,10,20,19,42,5].

Another important reason that asynchronous protocols maybe favorable is due to efficiency,
particularly a property called responsiveness. A synchronous BFT protocol, when designed, is
parameterized by the assumed network latency, which is normally chosen to be large so that the
actual network latency is indeed smaller thus the synchrony assumption can be ensured. As a
consequence, the efficiency of most of the synchronous BFT protocols depends on the assumed
network latency. While “responsiveness” instead requires the performance is only related to the
actual network latency, thus it should not rely on any timing assumption and the protocol makes
progress as soon as messages are delivered.

Moreover, it is well-known that asynchronous protocols simplify the engineering efforts sub-
stantially when actually building the distribute system, as no time-out mechanism will be needed.
While building a system implementing a synchronous protocol, one should design all kinds of
ad-hoc, error-prone time-out mechanisms.

The first practical asynchronous BFT [35]. Even though it is preferable or even necessary in
many cases when deployed in real-world WAN, most of the previous researches on asynchronous
BFT are theoretical in nature until the first practical protocol HoneyBadgerBFT was proposed in
[35]. Previous asynchronous BFT protocols normally are inefficient, e.g., having a high (per mes-
sage) communication complexity (up to O(n2) or even O(n3) if there are n peers) [26,41,15,9,17,2].
The performance of these protocols will drop sharply when the system scales up. The elegant
work of HoneyBadgerBFT [35], on the other hand, made several critical observations to push
asynchronous BFT towards being practical.

The first observation is that an atomic broadcast protocol which is a continuous execution of
BFT protocols maintaining an ever-growing log, (or to put it another way, regular BFT protocols
can be considered as a one-shot instance of it), could be built very lightly from a weaker variant
called asynchronous common subset (ACS) together with a threshold encryption scheme. An ACS
protocol only requires peers to agree on a subset of all their inputs and was originally proposed for
different purposes [7].

𝑃"

…

𝑡𝑥%

𝑡𝑥&

𝑡𝑥"

𝑡𝑥'

𝑃%

𝑃'

𝑃&

𝑃"

…

𝑃%

𝑃'

𝑃&𝑅𝐵𝐶&

𝐴𝐵𝐴%

𝑃"

…

𝑃%

𝑃'

𝑃&𝐴𝐵𝐴&

𝐴𝐵𝐴'

𝐴𝐵𝐴"
𝑡𝑥"

𝑡𝑥' 0/1

0/1

0/1

0/1

…

𝑅𝐵𝐶'

…

𝑅𝐵𝐶"

𝑅𝐵𝐶%

Fig. 1. The structure of ACS in HoneyBadgerBFT [35]

More importantly, it was observed in [35] that the classic ACS protocol from Ben-Or et al. [9]
is much more promising for efficiency both asymptotically and practically (than another related
protocol called multi-valued validated Byzantine agreement (MVBA) [15], to be further explained
soon), when picking the underlying building blocks carefully. The ACS protocol from [9,35] was built

2

from two sub-protocols: reliable broadcast (RBC) and asynchronous binary agreement (ABA). The
structure is fairly simple: each node invokes an RBC to broadcast its input value, and participates
in n instances of the ABA protocol to agree on which subset of inputs to include, see Figure 1.

Experimental results show impressive performance of HoneyBadgerBFT. In a nice work BEAT
[22], the authors gave an extensive study about most suitable instantiations of the building blocks
for HB-BFT (while keeping the protocol structure intact) when considering diverse deployment
scenarios. 1 We take a different path and ask the following question:

Can we redesign the ACS protocol to improve both its asymptotic and practical efficiency?

1.1 Our contributions

We design two new ACS protocols, both of which improve the running time asymptotically and
practically. Our experimental results demonstrate a multi-fold improvements over HoneyBad-
gerBFT [35] when they are run back to back in the same environment on Amazon AWS. More
interestingly, our two main observations (1. the number of ABA instances should be reduced; 2.
MVBA would be more efficient if used carefully for ACS) that lead to our two protocols would be
of independent interests. Let us elaborate in more detail below.

Dumbo1: a faster asynchronous BFT. We first go over the structure of the ACS protocol
used in HB-BFT in slightly more details: first each peer broadcasts its input via an RBC instance;
whenever a peer receives value from peer Pi, it sets its input for the i-th ABA instance to be 1 and
starts the ABA protocol. Once an honest peer has got 1 from n− f ABA instances, it will input 0
to all the remaining ABA instances which have not input yet and move on.

Identifying the major bottleneck. Due to the famous FLP impossibility [23], an ABA must be a ran-
domized protocol. This brings in the following drawback: though the expected number of “rounds”
of each ABA protocol is constant, the expected number of rounds of running n concurrent ABA
sessions could be significant, i.e., at least O(log n) [8] More seriously, those ABA instances do not
really execute in a fully concurrent fashion: as (1) not all instances start at the same time, some of
the instances may start later as inputs of (the previous RBC) haven’t been delivered; (2) normal
node also has an efficiency degradation facing large scale concurrent execution (not enough CPU
cores etc). When n gets larger, and the network is unstable, there would likely be some ABA in-
stances that terminate very slowly. The slowest ABA instance determines the running time of the
ACS of HoneyBadgerBFT.

To see the practical impact of ABA protocols on the performance, we carry out experiments of
HB-BFT and do statistics about the average running time between RBC and ABA. As shown in
Figure 2, it is clear that for HB-BFT, the cost of ABA is dominating 2. The pattern becomes even
more significant when the scale of the system grows. This simple observation inspires us to reduce
the number of ABA instances needed in the ACS protocol.

Reducing # of ABA instances. We redesign the structure of ACS, and propose Dumbo1-ACS. Dif-
ferent with the HoneyBadgerBFT (and also the BEAT protocols), Dumbo1-ACS only needs to run
κ instead of all the n ABA instances, and achieves O(log κ) running time, where κ is a security
parameter independent of n. Other complexity metrics remain the same.

In a simplified view, the first phase remains unchanged: every node broadcasts its input through
an RBC instance. Then, imagine that if we have one honest node to take the role as the leader, then
it can first finish n− f RBC instances and then informs all other nodes to output the deliveries of
these RBC instances. To get such an honest node, we can select a small number κ of nodes as the
“leaders” such that at least one of them is honest with an overwhelming probability.

1 We remark here that most of the techniques of BEAT [22] can be directly applied to our protocols
as well, to choose more suitable instantiations of the underlying building blocks such as RBC, and
further optimize the performance. Our focus is to show asymptotic and practical improvements due to
protocol redesign, so we mainly compare a basic instantiation of our protocols with HoneyBadgerBFT
in experiments. See more comparison in section 1.2.

2 We ignored some “unnoticeable” time cost of local computations such as threshold encryp-
tion/decryption, picking an input from the buffer etc as they do not change the ratio much.

3

16.2 0.8

19.7 1.3

20.2 3.8

62.5 1.5

63.55 2.45

64.6 4.4

233.5 6.5

236 8.2

237.6 12.4

选择16/40/104规模，50000/100000/200000负载

0

50

100

150

200

250

16.2 19.7 20.2

62.5 63.55 64.6

233.5 236 237.6

0.8 1.3 3.8 1.5 2.45 4.4 6.5 8.2 12.4

time of ABA

time of RBC

Batch Size (txs)

Ti
m

e (
s)

n = 16

n = 32

n = 64

50000 100000 25000050000 100000 250000 50000 100000 250000

Fig. 2. Time costs of RBC and ABA in HoneyBadgerBFT, we get the running time of RBC by starting
a timer when protocol starts and ending the timer when nodes get the output of RBC, averaging among
multiple nodes and instances. The time of ABA is taking the maximum among all ABA instances a node
needs to run.

Further care is needed as now two honest nodes may receive different values from different
selected “leaders”. Next, we should enable honest nodes to decide which of the κ selected nodes
to believe. It actually becomes similar to HB-BFT that we can invoke ABA instances to confirm
whose nomination of subset to include. Once some ABA instances output 1, the corresponding
messages can be identified and output. Importantly, now the peers just need to agree on the κ
(which could be much smaller than n) nodes. See pictorial illustration in Fig. 3.

𝑃"

…

𝑡𝑥%

𝑡𝑥&

𝑡𝑥"

𝑡𝑥'

𝑃%

𝑃'

𝑃&

𝑃"

…

𝑃%

𝑃'

𝑃&𝑅𝐵𝐶&
𝐶𝐸

𝑡𝑥"

𝑡𝑥'𝑅𝐵𝐶'

𝑅𝐵𝐶"

𝑅𝐵𝐶%

𝑃"

𝑃%

𝑃'

𝑃&𝑆-

𝑆"

…

𝑃'

𝐴𝐵𝐴"

𝐴𝐵𝐴-

𝑆"

𝑆-

… … …

…

0/10/1

0/1 0/1

𝑅𝐵𝐶-

𝑅𝐵𝐶"

𝑃&

𝑃%

𝑃"

𝑃-/

𝑃"/
…

RBC-phase index-RBC

Fig. 3. The structure of Dumbo1-ACS

We would like to stress that the changes in the remaining parts are kept at minimal so that
the reduction of ABA instances also yields significant practical improvements. It looks like we have
a handful extra RBC instances than HB-BFT; however, we make the input of each peer in those
extra (index)-RBC instances to be a tiny index-set (Si instead of the actual data loads). An honest
player inputs 1 for the i-th ABA if he indeed receives all messages corresponding to Si. Moreover,
the added coin-tossing protocol to select κ nodes is just a sub-routine of ABA protocol. So those
added overhead would be unnoticeable compared to the cost of eliminated ABA instances.

To see why it works: when one honest node determines to output the values corresponding to
Si, it must be the case that the i-th ABA instance outputs a bit 1. The property of ABA ensures
that (1) all other honest nodes will also output 1 and (2) at least one honest node inputs 1 for
this ABA instance. The latter means at least one honest node indeed receives all the input values
{vj} corresponding to the index set Si. Thus following the security of RBC, all other honest nodes
will also receive those values eventually. While condition (1) ensures all honest nodes will actually
output the same subset of values.

Dumbo2: an even faster asynchronous BFT. Dumbo1 now runs only κ concurrent ABA
instances, we now ask a more ambitious question: can we push it all the way to constant?

4

Pushing # of ABA to minimum. HoneybadgerBFT requires n executions of ABA instances, due to
the fact that each ABA instance determines only for input from one peer. Dumbo1 can reduce it as
now the “committee” members are prepared with a vector of values. But still, Dumbo1 needs to
run κ instances: the procedure after the RBC phase is very similar to the structure of HB-BFT, that
picks a common subset containing the index-sets {Si} as elements. Since each node will invoke/enter
the i-th ABA instance once it receives Si from the i-th committee and all values corresponding to
the Si. This causes a challenge that different nodes may enter different ABA instances, there is
no “global coordinator” for those instances, thus the only viable way is to concurrently run all of
them.

In principle, we still “waste” κ − 1 ABA instances. This inspires us to find a way to correctly
identify only one input vector, thus leads us to re-examine the applicability of multi-value validated
Byzantine agreement (MVBA), which outputs one of the inputs of n peers as long as the input
satisfies some pre-defined predicate. MVBA was considered impractical for building ACS in [35].
The reason was that existing constructions suffer from a high communication complexity, i.e.,
the MVBA protocol in [15] has communication complexity O(n2|m| + λn2 + n3) in expectation
3, where |m| represents the size of MVBA’s input values. In many cases, |m| > λn log n, thus
the dominating term in the per message communication of its direct construction of ACS [15] is
O(n2|m|) = Ω(n3) (Although [15] did not explicitly mention ACS, their atomic broadcast already
contains the construction from MVBA to ACS, and the complexity remains even for the recently
improved MVBA [2]) and makes the MVBA protocol impractical for building ACS.

But the above claim holds only when MVBA is directly invoked with large size inputs. If we give
a closer look, we notice that if |m| is small, then the overall communication complexity of MVBA
(and also the corresponding ACS [15]) is no bigger or even substantially smaller than the ACS in
HoneyBadgerBFT ! 4 See Table 1 in Sec. 6. And MVBA has the benefit of a constant number of
ABA instances [15]. The key challenge is now reduced to how to invoke MVBA with small inputs to
construct an ACS which may still have large inputs. This reminds us the widely used conventional
wisdom of “Hybrid Encryption” in the setting of cryptography.

𝑃"

…
𝑡𝑥%

𝑡𝑥&

𝑡𝑥"

𝑡𝑥'

𝑃%

𝑃'

𝑃& 𝑅𝐵𝐶&

𝑡𝑥"

𝑡𝑥'
𝑅𝐵𝐶'

𝑅𝐵𝐶"

𝑅𝐵𝐶%

PRBC-phase

ABA …

MVBA
𝜎","

𝜎','

𝑊%

𝑊&

𝑊"

𝑊'

𝐶𝐵𝐶&

𝐶𝐵𝐶'

𝐶𝐵𝐶"

𝐶𝐵𝐶%
1

1

𝑃"

…

𝑃%

𝑃'

𝑃&

𝑃"

…

𝑃%

𝑃'

𝑃&

𝑃%

repeat

… … …

𝑃&

𝑃'

𝑃" 𝑃"

…

𝑃%

𝑃'

𝑃&
𝜋

Fig. 4. The structure of Dumbo2-ACS

The right way of applying MVBA. We present an even faster asynchronous BFT protocol via an
innovative use of MVBA, we call it Dumbo2. It achieves asymptotically optimal (constant) running
time, i.e., Dumbo2 only needs to run (expected) three consecutive instances of ABA, and other
complexities remain the same 5.

To work out the details of ACS requires further ideas. Since ACS outputs a subset of inputs,
we would first prepare each peer node with a vector of inputs via RBC type of protocols. More

3 In a very recent work, we finally brought down this communication complexity to O(n|m|+λn2) [29,30].
4 Similar phenomenon was also noticed in BEAT [22] that they chose a seemingly more expensive RBC

in BEAT1,2, but getting a more efficient protocol for small message.
5 There exist theoretical works [8] that can achieve constant expected running time for n concurrent

execution of ABA protocol, but at the cost of larger message and communication complexities; As pointed
out in [35], if we directly adopt their technique to construct ACS, the message and communication
complexities will be O(n4), which render the ACS infeasible for practice.

5

importantly, instead of feeding those message vectors into the MVBA protocol, we further prepare
each peer with a very short “indicator” (the Wi in Fig. 4) and use it as input to join the MVBA
protocol. The MVBA protocol will output one such “indicator” which would be used to inform each
honest peer to pick the corresponding RBC instances. The tricky part is, in an MVBA protocol,
honest peers may output the input (here the short “indicator”) from a malicious peer.

We resolve this by designing the “indicator” in a way that any of it serves as a warrant all honest
peers would receive the corresponding messages. We formulate a new primitive called provable
reliable broadcast (PRBC) which augments RBC and further outputs a succinct proof (even by
a malicious node) that at least one honest peer has received the input. This can be realized by
threshold signing on the RBC index. The ABA within MVBA only needs to be repeated (expected)
three times. See Figure 4 for pictorial illustration, where π is a random permutation.

To see why it works: the actual inputs Wi to MVBA includes a indices set and the corresponding
proofs. When one honest node outputs Wi, the proof in Wi is valid. This means the messages
corresponding to the indices in Wi were all received by enough peers which include at least one
honest peer. Then all other honest node will eventually receive those as well.

We remark that though Dumbo2 out-performs Dumbo1 in most of the cases, we choose to keep
Dumbo1 for clarity of the presentation: the idea of using each ABA to vote whether to output the
vector of each “committee” member in Dumbo1, instead of each input as in HB-BFT is simple
and intuitive. Such a possibility of more effective voting could be viewed as a stepping stone to
motivate the idea of voting to output only one guy’s vector, which eventually leads to Dumbo2’s
idea of using MVBA. Also, since MVBA is still fairly complicated, in some benign cases when f is
very small, Dumbo2 might not be better than Dumbo1.

time (s)2010 30 5040 60

RBC
ABA
CBC

HB-BFT

Dumbo2

Dumbo1

0

Fig. 5. Running time breakdown of Dumbo1/2 and HoneyBadgerBFT on one random node 6.

Implementation and experimental evaluations. Besides the asymptotic improvements (see
Table 1 in Sec. 6), we implement Dumbo1 and Dumbo2, and also test the performance of the our
schemes in the practical WAN environment. We deploy Dumbo1, Dumbo2 and HoneyBadgerBFT
on 100 Amazon EC2 t2.medium instances uniformly distributed from 10 different regions across
the globe. For a fair comparison, we use the same language and cryptography libraries as [35], and
carry out a variety of tests in the same environment. Results show that the efficiency of our schemes
indeed outperforms HB-BFT by multifolds, especially when the system is sufficiently large. For
example, when n = 100, Dumbo1 has a basic latency that is only 22% and Dumbo2 has only 5%

6 For Dumbo2 experiments, we intentionally run ABA more times to “simulate” potential adversarial
network scheduler (otherwise there could be only one ABA), while the experiments of HB-BFT, Dumbo1
are done without scheduler intervention (same as before [35]). We also note that in theory, in some very
rare cases, it may be possible that some RBC instance gets slow so that users have to wait after ABA
instances are finished. We do not observe the case that an RBC takes longer time than the slowest ABA
in the experiments. Further optimizations beyond reducing # of ABA instances for the asynchronous
atomic broadcast are interesting open problems.

6

of that of HB-BFT. Moreover, Dumbo1 has a peak throughput 3.5× and Dumbo2 has more than
9× of that of HB-BFT. See more details about more tests in Sec. 7.

To showcase the effectiveness of our observation to reduce the number of ABA instances, we
pick the result (the running time recorded of each sub protocol from a random node) from one
experiment where n = 32 with 105 transactions (250 bytes each) as input, see Fig. 5. In the figure,
for each protocol each line denotes the execution of a sub-protocol instance, e.g., the two bars in
the first line of HB-BFT correspond to the first instances RBC1 and ABA1 respectively, the second
line corresponds to the second instances RBC2/ABA2, and so on. The consistent broadcast (CBC)
protocol in Dumbo2 is a part of MVBA, which can be regarded as a simplified version of RBC (see
appendix for detailed definition).

1.2 Related work

The consensus problem was firstly introduced by Shostak, Pease and Lamport [28]. As a fundamen-
tal problem in distributed computing, it has received extensive attention such that many different
variants of the consensus problem have been studied, e.g., [27,39,18,25].

Classic research on asynchronous BFT focused more on understanding the theoretical lim-
its and feasibilities. The famous FLP-impossibility [23] shows that no deterministic consensus
protocol can be possible in asynchronous settings as soon as one node may crash. In contrast,
Ben-Or [7] and Rabin [40] showed how to circumvent the impossibility via randomization. Those
pioneering works inspire many other classic works along the line of asynchronous binary agree-
ment (ABA) [7,13] which consider input of each node to be just a bit. ABA protocols are known
to be an important component towards building a full-fledged BFT or atomic broadcast protocol
[15,26,41,35,22,2,24,36]. We observe (and verified in experiments) that running a large number of
ABA instances becomes the bottleneck for efficiency and we strive to minimize the use of it.

HoneyBadgerBFT [35] is the first practical asynchronous atomic broadcast protocol that comes
with two major observations: (1) a weaker problem of asynchronous common subset (ACS), origi-
nally proposed by Ben-Or et al. [9] can easily be converted to an atomic broadcast without much
overhead; (2) the ACS protocol constructed from reliable broadcast (RBC) and asynchronous binary
agreement (ABA) with careful instantiations over-performs the previous thought of constructing it
directly from a multi-valued Byzantine agreement (MVBA) [15].

A few recent practical improvements of HoneyBadgerBFT come from the nice works of BEAT
[22] and Aleph [24]. In particular, the BEAT carefully examine different use cases, and make sug-
gestions about the suitable component to choose to deploy in practice. In more detail, besides
BEAT3,4 are for BFT storage only, they presented BEAT0-2 to meet different goals. The compo-
nents in BEAT1 and BEAT2 are chosen in a delicate way that even though the communication
complexity seems to be larger for reasonably large messages, but if the message size is small, they
are actually faster, see Table 1 in Sec. 6. The Aleph is trying to improve latency obtain log n factor
improvement by proposing a different assumption on the transaction buffers, however, the ABA
still influence the latency such that the latency still needs O(log n). One interesting technique of
Aleph is to remove the trusted dealer assumption, which also may be used in our Dumbo protocols.

As we briefly mentioned earlier, our methods and BEAT are orthogonal and compatible: their
work kept the structure of the HoneyBadgerBFT intact, thus have the same round complexity, but
cherry-pick the best instantitaions of the underlying components; we focus on restructuring the
ACS protocol, but majority of components are the same. Their techniques from BEAT0-BEAT2
can all be applied to our protocols as well. So for experiments, we focus on comparisons with
HB-BFT. Combining all their techniques with ours would be interesting future work.

2 Models and Problem Statement

2.1 System model

We now describe our system model.

Setup. In particular, it involves a designated set of n nodes {Pi}i∈[n], we use [n] to denote the
integers {1, 2, . . . , n}. We consider the identities of these nodes to be public, e.g., certified by a

7

PKI. We denote by (PKi, SKi) the public/private key pair of nodes Pi. In addition to the already-
established identities, a trusted third-party also runs before the protocol to set up all involved
threshold cryptosystems.

Static corruptions. We assume that there are f faulty nodes (3f + 1 6 n), and consider these
faulty nodes are fully controlled by the adversary [35,15]. Such adversary model means that before
the start of the protocol, the adversary is allowed to choose f nodes to completely corrupt them,
then the adversary can gets all the faulty nodes’ initial internal states and also can let these nodes
arbitrarily misbehave during the execution of the protocol.

Asynchronous network. We consider the underlying communication network consisting of asyn-
chronous fully-meshed authenticated point-to-point (p2p) channels. In this model, between any two
nodes, there is an established authenticated p2p channel. However, the adversary can fully con-
trol the value delivered over all channels, i.e., the adversary can arbitrarily delay, but the values
send between honest nodes will eventually be delivered, which explicitly implies two facts: (i) the
adversary can arbitrarily reorder values and (ii) the network will not drop any values from honest
nodes.

2.2 Design goals

Atomic broadcast. Our end goal is to design an atomic broadcast protocol among n nodes under
the system model above. Formally, an atomic broadcast protocol satisfies the following properties
with an overwhelming probability:

• Agreement. If one honest node outputs a value v, then every honest node outputs v;
• Total order. If two honest nodes output sequences of value 〈v0, v1, . . . , vj〉 and 〈v′0, v′1, . . . , v′j′〉,

respectively, then vi = v′i for i 6 min(j, j′);
• Censorship resilience. If a value v is input to n− f honest nodes, then it is eventually output

by every honest node.

We require the three properties hold with an overwhelming probability. In short, we will adopt
the same model as HoneybadgerBFT [35], i.e., atomic broadcast among n nodes against f static
corruptions in an asynchronous network.

Atomic broadcast protocol proceeds in consecutive epochs, after each epoch, a new batch of
transactions is output and appended to the committed log (see Appendix 8.1).

Asynchronous common subset (ACS). One nice observation from HoneyBadgerBFT [35] is an
efficient and simple conversion to an atomic broadcast from a weaker variant called asynchronous
common subset (ACS) together with threshold encryption. An ACS essentially let each node output
a common subset of all the node inputs. Formally, it satisfies:

• Agreement. If an honest node outputs a set V , then every honest node outputs V ;
• Validity. If an honest node outputs a set V , then |V | > n− f and V contains the inputs of at

least n− 2f honest nodes;
• Totality. If n− f honest nodes have an input, then all honest nodes can produce an output.

Remark that there exists a simple conversion from ACS to atomic broadcast by adding threshold
encryption, we refer the details in Appendix 8.1 and [35].

Complexity measures. The practicality of BFT protocols depends heavily on their computa-
tional complexity. In this paper, we consider the following three metrics:

• Message complexity: the expected total number of messages that honest nodes generate during
the protocol;

• Communication complexity: the expected total bit-length of messages that honest nodes gen-
erate during the protocol;

• Time (round) complexity: the expected number of rounds of communication before the protocol
terminates.

Besides, note that we always consider n = 3f + 1 throughout this paper, hence, our BFT protocol
is also an optimal resilience which just considers how many nodes may be corrupted.

8

3 Preliminaries

We introduce definitions for some underlying building blocks.

Reliable broadcast (RBC) is a protocol running among a set of n nodes in which there is a node
called sender whose aim is to broadcast a value to all the other nodes. More formally, an RBC
protocol satisfies the following properties:

• Agreement. If any two honest nodes output v and v′ respectively, then v = v′;
• Totality. If an honest node outputs v, then all honest nodes output v;
• Validity. If the sender is honest and inputs v, then all honest nodes output v.

Consistent broadcast (CBC) is similar to RBC, but it does not provide Totality.

Asynchronous binary agreement (ABA) is a special asynchronous Byzantine agreement pro-
tocol among n nodes. In an ABA protocol, each node has a single-bit (0/1) input, and their goal
is to reach an agreement on the decided bit [37,16,14]. More formally, an ABA protocol has the
following guarantees:

• Agreement. If any honest node decides the bit b, then every honest node decide b;
• Termination. If all honest nodes receive input, then every honest node decides a bit;
• Validity. If any honest node decides b, then at least one honest node received b as input.

Remark: As many previous works [37,14,16,35], the termination property here for ABA only requires
all honest node to decide (in the sense of outputting a value for further applications, while not
halting the protocol). It is possible that they each decide a value, but some node still continues
waiting messages in the protocol [35]. As in [35], we use “output” and “decide” interchangeably on
a bit in ABA. Please see Appendix 8.2 for details of concrete constructions of RBC, CBC and ABA
7 protocols.

Multi-valued Byzantine agreement (MVBA): The MVBA [2,15] allows agreement on arbitrary
values instead of being restricted to binary values. The protocol has a global, polynomial-time
computable predicate Q known to all nodes, which is determined by the particular application.
The basic idea of the protocol is that each party proposes a (different) value that contains certain
validation information as input and outputs an value which satisfies the Q as the decision value.
The protocol ensures that the decision value was proposed by at least one party. Each honest node
only inputs a value to MVBA that satisfies Q.

More formally, an MVBA protocol satisfies the following properties except with negligible prob-
ability:

• Termination. If every honest node Pi inputs with an externally valid value vi, then every honest
node outputs a value;

• External-Validity. If an honest node outputs a value v, then Q(v) = True;
• Agreement. All honest nodes that terminate output the same value;
• Integrity. If all nodes are honest and if some nodes output v, then some nodes proposed v.

Threshold signature scheme: Let 0 6 t 6 n, A (t, n)-non interactive threshold signature scheme
is a tuple of algorithms which involves n nodes and up to t− 1 node can be corrupted, where each
node have a private function SigShare, and three public functions ShareVerify, Combine and Verify
(see Appendix 8.2 for formal definitions). The signature schema satisfies the following properties:

• Unforgeability: No polynomial-time adversary can forge a signature that can be verified cor-
rectly (by honest parties) of any message m without querying the signature algorithm;

• Robustness: When a message m is provided as the input of the signature algorithm, eventually
all honest parties can get a signature of m that can be correctly verified.

7 The original HoneyBadgerBFT [35] used an ABA protocol [37] which requires a strong common coin
that cannot be realized by the threshold coin scheme [16]. The revised version of HB-BFT added a fix
[34] of the ABA protocol (see also Alg. 7 without the “amendament”). In our experiments, we adopted
this revised ABA.

9

(1, κ, ε)-Committee election (CE): A CE protocol is executed among n nodes (identified from
1 through n). If at least f + 1 honest nodes participate, the protocol terminates with honest nodes
output a κ-sized committee set C such that at least one of C is honest nodes. In particular, a
protocol is said to be (1, κ, ε)-committee election, if it satisfies the following properties except with
negligible probability in cryptographic security parameter λ:

• Termination. If f + 1 honest nodes activate the protocol CE, all messages among honest nodes
arrive, then all honest nodes output C;

• Agreement. Any two honest nodes output the same set C;
• Validity. If any honest node outputs C, (i) |C| = κ, (ii) the probability of every node Pi ∈ C

is same, and (iii) C contains at least one honest node with at least probability 1− ε;
• Unpredictability. Before invocation by one honest node, the probability of the adversary to

predict the returned committee is at most 1/
(
n
κ

)
.

Remark that a (1, κ, ε)-CE can be constructed directly from a threshold coin-tossing (see Ap-
pendix 8.2), which can be readily derived from threshold signatures. At least one honest node is
elected in C with an overwhelming probability 1−ε−negl(λ), where negl(λ) is a negligible function
in cryptographic security parameter λ, and ε is exp(−Ω(κ)) (c.f. Lemma 1 for details).

4 Dumbo1: A Fast Asynchronous BFT protocol

In this section, we present our first ACS, which is called Dumbo1-ACS. Applying the same con-
version from ACS to atomic broadcast [35] (adding threshold encryption), we can obtain a new
atomic broadcast: Dumbo1. We will focus on the ACS protocol below.

4.1 Dumbo1-ACS

High level overview. The core of our design is to reduce the number of ABA instances needed
in an ACS execution. As briefly elaborated in the Introduction, the reason that HoneyBadgerBFT
(and also BEAT) needs n instances of ABA is due to the following reason: the peers need to agree
what to do for each peer’s input via one ABA instance. Observe that after the first RBC phase,
each peer is prepared with a subset of inputs.

Instead of investing an ABA for each input, we would let a small number κ of “aggregators”
to nominate which subset of inputs to output (based on what it has already received). In this
way, each ABA instance is now used to let the nodes to determine whether they agree on the i-th
nominated subset Si. We remark again that the nomination procedure is also using RBC, however,
the inputs are just indices-set Si instead of the actual data load. Also the nominator/committee
election is just one coin-tossing at best, thus the overhead is minimal compared to the saved ABA
instances.

Note that κ instances of ABA protocol are still needed, otherwise one honest node may decide
to follow Si while the other honest node may decide to follow Sj , as each of them indeed receives
the corresponding input values but ends up violating the agreement.

In slightly more detail, as illustrated in Figure 3 in Introduction, our Dumbo1-ACS includes
two phases of RBC, denoted as data-RBC and index-RBC respectively. The data-RBC instances are
executed by the nodes to broadcast their inputs. κ leaders will then be selected. The index-RBC
instances are only initiated by the selected members when they have received n − f values from
those data-RBC instances. Each index-RBC is used to broadcast the indexes indicating which n−f
values that a selected member has already received. In the last phase, an honest node will input 1
to the i-th ABA instance if it has already received Si (with size n − f) and all the corresponding
values in the data-RBC instances.

Committee election. The election of those committees/nominators is standard practice, i.e., ran-
domly choosing κ nodes to ensure the probability that one of them is honest with an overwhelming
probability in κ. Usually, the probability that none of κ random peers to be honest is at most
(1/3)κ (see Lemma 1). In practice, we could let system designer to choose κ = min{κ0, f + 1} in
a way that (1/3)κ0 ≤ ε0 for any small ε0 he likes.

10

Construction of Dumbo1-ACS. Now we describe the construction of our Dumbo1-ACS. The
detailed process of Dumbo1-ACS is shown in Algorithm 1. As illustrated in Figure 3 in Introduction,
our Dumbo1-ACS includes two phases of RBC, the first phase is to broadcast value, the second
phase is to broadcast indices.

The Dumbo1-ACS protocol composed of five logical phases, the detailed protocol proceeds as
follows:

• Value broadcast: (line 02). All nodes Pi input their value vi to RBCi protocol.
• Committee election: (line 03-03). All nodes participate CE protocols to select committee C,

and take the committee member’ identities into a set CMIS.
• Indices broadcast: (line 06-09). When the committee members have received n−f Value message

from distinct RBC instances, then they will broadcast these indexes of n − f Value messages
through RBC.

• ABA phase: (line 10-17). When one honest node has already received Index message (Sj) from
committee member Pj and all corresponding Value message from the RBC instances, then input
1 to the ABAj instance; if one honest node gets an output from any ABAj and j ∈ CMIS, then
input 0 to other ABA instance which no input has been provided to yet.

• Output phase: (line 18-25). When a node terminates in all κ instances of ABA, for any x ∈ CMIS,
if ABAx outputs 1, then the node waits Index message from RBCx and gets a set S, and further
waits Value message to get vj for all j ∈ S from RBCj and finally outputs {vj}j∈S .

Algorithm 1 The Dumbo1-ACS protocol (for party Pi) in consecutive epoch r

1: Let {RBCj}n refer to n instances of the reliable broadcast protocol, where Pj is the sender
of RBCj , and ABAj refer to the ABA instance corresponding committee member Pj . Initial:
Committee member identities set CMIS = ∅.

2: Input (Value, vi) to RBCi; B data-RBC
3: Invoke Committee Election protocol CE(r);
4: wait until Committee: {Pj1 , Pj2 , · · · , Pjκ} ← CE(r)
5: CMIS← {j1, j2, · · · , jκ};
6: if Pi ∈ Committee then
7: wait until receiving n − f Value messages {(Value, vi1), (Value, vi2), · · · , (Value, vin−f)}

from distinct RBC instance
8: let Si = {i1, i2, · · · , in−f};
9: input (Index, Si) to RBCi; B index-RBC

10: upon receiving Index message (Index, Sj) from committee member Pj and |Sj | = n− f do
11: if no input has been provided to ABAj then
12: wait until all (Value, vx)x∈Sj have received
13: input 1 to ABAj ;

14: upon receiving 1 from any ABAj and j ∈ CMIS do
15: for x: x ∈ {CMIS− j} do
16: if no input has been provided to ABAx then
17: input 0 to ABAx;

18: upon all κ ABA instances have completed do
19: for x: x ∈ CMIS do
20: if ABAx output 1 then
21: wait Index message: (Index, Sx) ← RBCx
22: S ← S ∪ Sx;

23: for j ∈ S do
24: wait Value message: (Value, vj)← RBCj

25: Output ∪j∈S vj .

11

4.2 Security analysis

Dumbo1 realizes an atomic broadcast via the combination of ACS and threshold encryption. To
prove the security of Dumbo1, we need to go in two steps: (1) a reduction from atomic broadcast
to ACS and threshold encryption; (2) to show our new constructed Dumbo1-ACS protocol indeed
satisfies the ACS properties.

The proof for Step 1 has been given in [35], for more details please refer to Appendix 8.1. Here
we focus mainly on the Step 2 and prove Dumbo1-ACS satisfies all properties of ACS.

Lemma 1. (Validity of CE.) If n = 3f + 1, κ 6 f and CE(id) returns a set C, then the set C
containing at least one honest nodes except with exp(−Ω(κ)) probability.

Proof. Due to the pseudo-randomness, hence, the total case is
(
n
κ

)
of random choose κ nodes, and

the total case is
(
f
κ

)
of the set C containing no honest nodes. Let p is the probability of the set C

containing no honest nodes. So, we have

p =

(
f
κ

)(
n
κ

) =
f !(n− κ)!

(f − κ)!n!
6 (

1

3
)κ = exp(−Ω(κ)).

Remark: If f is small, we can simply set κ = f + 1. Algorithm 4 satisfies the Termination,
Agreement and Unpredictability properties of CE follows from the properties of threshold coin-
tossing.

Theorem 1. With except exp(−Ω(κ)) probability, the Dumbo1-ACS protocol satisfies Agreement,
Validity, and Totality of ACS, assuming the underlying RBC, CE and ABA protocols are secure.

Proof. Agreement: To prove that Dumbo1-ACS satisfies the agreement property, we show that
when an honest node outputs V , then every honest node outputs V . Assume that an honest node
P has a output V = {vj}j∈S .

The indices S must be contained in some index sets. W.l.o.g, we assume S is included only one
index set Sk, (Index, Sk) was received in some RBC (denoted as RBCk), then the node must have
received 1 in the corresponding ABA instance (denoted as ABAk). Due to the agreement property
of ABA, all honest nodes will also receive 1 in ABAk. Hence, all honest nodes will wait an Index
message output from RBCk, due to totality and agreement of RBC, so all other honest nodes will
receive same Index message (Index, Sk).

On the other hand, due to the validity of ABA, at least one honest node P ′ inputs 1 to ABAk.
It implies that this honest node must have received Index message (Index, Sk) and these Value
messages {Value, vj}j∈Sk corresponding to the index set Sk. The totality and agreement of RBC
now can ensure that all other honest nodes including P will receive {Value, vj} for any j ∈ Sk.

Hence, every honest node outputs {vj}j∈Sk = {vj}j∈S = V .

Validity: To prove that Dumbo1-ACS satisfies the validity property, we show that |V | > n− f
and V contains the input of at least n− 2f honest nodes when an honest node outputs a set V .

If an honest node Pi outputs a set V = {vj}j∈S , W.l.o.g, we assume S is included only one
index set Sk, (Index, Sk) was received in index-RBCk. According to the Algorithm 1, we can know
ABAk return 1, due to the validity of ABA, at least one honest node (say P ′) inputs 1 to ABAk. It
implies that P ′ must have received Index message (Index, Sk) and all Value message {Value, vj}j∈Sk
corresponding the index set Sk, where |Sk| = n− f .

The totality and agreement of RBC now can ensure that all honest nodes including Pi will
receive {Value, vj}j∈Sk , where |Sk| = n− f . So, V = {vj}j∈Sk . Hence, we have |V | > n− f . Notice
that there are at most f byzantine nodes, there must be at least n− 2f inputs from honest nodes
in set V .

Totality: To prove that Dumbo1-ACS satisfies the totality property, we show that all honest
nodes produce an output if n− f honest nodes have an input.

Since n−f honest nodes have an input, according to the validity of RBC, hence, every committee
member can receive n−f Value messages from distinct RBC instance. So, every committee member

12

can activate the second phase RBC instance. Besides, according to the CE protocols, there exists
at least an honest node (say Pi) belongs to the committee.

Next, we will prove that at least one ABA instance returns 1.
Firstly, suppose all ABA instances output 0, in this case, line 14-17 will never execute, that is

to say, 0 will never input to any ABA instance by honest nodes. However, according to the validity
of ABA, at least one honest node inputs 0 to ABA, which induces contradiction.

Secondly, since the committee member Pi can activate the second phase RBCi instance, if all
honest nodes have not received 1 from any ABA all the times, in this case, all honest nodes can
receive valid Index message from Pi (the validity of RBC) and corresponding Value message from
RBC instances (the totality of RBC), next, all honest nodes input 1 to ABAi. Again according to
the validity of ABA, the ABAi will return 1 to all.

Hence, there exists at least one ABA (say ABAk) instance returning 1. Due to validity of ABA,
at least one honest node (say P ′) inputs 1 to ABAk. It implies that such an honest node must
have received Index message (Index, Sk) and all Value message {Value, vj}j∈Sk corresponding the
index set Sk. The totality and agreement of RBC now can ensure that all honest nodes will receive
{Value, vj}j∈Sk . Hence, all honest nodes can produce an output {vj}j∈Sk .

5 Dumbo2: A Faster Asynchronous BFT protocol

In this section, we present a further improved ACS protocol Dumbo2-ACS, which reduces the
number of ABA instances to constant, thus guarantees termination within a constant running
time. We show a new construction of ACS using RBC and MVBA. More interestingly, our new
method demonstrates an innovative use of MVBA can actually lead to more efficient ACS, which
was considered less promising than using RBC and ABA in [35].

5.1 Dumbo2-ACS

High level overview. As discussed above, Dumbo1 improves HB-BFT in the sense that reduces
the number of ABA instances to κ, but still they all need to be run. In order to minimize the usage
of ABA, we need to (1) prepare each peer with a vector of inputs from enough peer nodes; (2) find
a way to identify and output one of them. The former is easy that an RBC phase already achieves
it. The latter inspire us to re-examine the possibility of MVBA which outputs only one input (not
necessarily from an honest node, but satisfies some condition). As explained in Introduction (and
also Table 1 in Sec. 6), current MVBA constructions were considered impractical for ACS due to
its high communication complexity. However, if we examine all the terms in the communication
complexity, the dominating term changes when message size becomes small, MVBA could even
over-perform! More importantly, MVBA [15] only needs to run three consecutive ABA instances in
expectation.

Considering the conventional wisdom of hybrid encryption, the heavier public key encryption is
only used to hide a short session key, while the actual (potentially large) message will be encrypted
using symmetric key encryption using the session key. In analog to that, we similarly use indices
as input to invoke MVBA. Now we have one more challenge that MVBA may output one such
index-set from a dishonest node. To resolve this, we propose provable RBC that further outputs a
succinct proof s.t., whoever produces such a proof, it guarantees that all honest nodes will receive
the input value.

Provable reliable broadcast (PRBC). A natural way to obtain such a (succinct) proof is to
get acknowledgement from enough nodes, which can be realized via threshold signing on the RBC
identifier. The PRBC protocol with an identifier id, and a verify algorithm Verify is denoted PRBCid.
Formally, an PRBCid protocol satisfies the following properties except a negligible probability:

• Agreement. If one honest node outputs v, another honest node outputs v′, then v = v′;
• Totality. If any node outputs a pair (id, σ) and Verify(id, σ) = 1, then all honest nodes output

a value v and (id, σ);

13

• Validity. If the sender is honest and inputs v, then all honest nodes output v and valid string
(id, σ);

• Succinctness. The length (size) of valid string σ is independent with the length of value v.

A PRBC can be constructed from RBC and threshold signature, it is shown in Algorithm 2.
The PRBC protocol can be decomposed in three logical phases, the details are as follows:

• Value broadcast phase: (line 02-04). If the node is sender, then the node Ps inputs the value
vs to RBC protocol.

• Output value phase: (line 05-07). If honest nodes receive a value from sender, then the nodes
send a threshold share signature of id to all.

• Output signature phase: (line 08-13). If nodes received f + 1 valid threshold share signature of
id, they can combine these share signature into a threshold signature σ of id, then output the
σ.

Algorithm 2 The PRBCid protocol with epoch r (for party Pi, where the sender is Ps and
id = 〈r, s〉)
1: Let RBCid refer to the instance of the reliable broadcast protocol, where Ps is the sender of

RBCid; {DSs} = ∅.
2: if Pi = Ps then
3: upon receiving input value vs do
4: input {Value, vs} to RBCid;

5: upon receiving Value message {Value, v} from RBCid do
6: σis ← SigSharef+1 (ski, id);
7: multicast (Done, id, σis);

8: upon receiving a Done message (Done, id, σjs) from node Pj for the first time do
9: if ShareVerifyf+1(id, (j, σjs)) =1 then

10: DSs ← DSs ∪ {j, σjs};
11: upon |DSs| = f + 1 do
12: σs ← Combinef+1(id,DSs);
13: return (Finish, id, σs).

Construction of Dumbo2-ACS. Now we give the construction of our Dumbo2-ACS protocol,
the details of which are shown in Algorithm 3. We denoted MVBAr as MVBA protocol with iden-
tification r. As illustrated in Figure 4 in Introduction, the Dumbo2-ACS includes two part: PRBC
and MVBA.

We will use W = {(s1, σ1), (s2, σ2), · · · , (sn, σn)} as the input to MVBAr for each node. In
particular, si is put in W if the corresponding σi on si is received. The predicate Q of the MVBAr
will output 1 if at least n − f distinct i satisfy si 6=⊥ in W , and for each (si, σi) of W , it is a
valid output of PRBC, i.e., Verifyf+1(〈r, si〉 , σi) = 1 if si 6=⊥. The Dumbo2-ACS protocol can be
decomposed in three logical phases, the detailed protocol proceeds as follows:

• Value broadcast phase: (line 03-04). All nodes Pi input their value vi to PRBC protocol, and
wait for n− f distinct Finish messages.

• MVBA phase: (line 08-10). Upon receiving n−f distinct Finish messages, then invoke the MVBA
protocol and wait to get an output W from MVBA.

• Output phase: (line 11-13). All honest nodes wait Value message from PRBC according to the
W .

14

Algorithm 3 The Dumbo2-ACS protocol (for party Pi) in consecutive epoch r

1: Let {PRBC〈r,j〉}n refer to n instance of provable reliable broadcast protocol, where Pj is the
sender of PRBC〈r,j〉, and the Q be the following predicate:
Qr[{(s1, σ1), (s2, σ2), · · · , (sn, σn)}] ≡ (at least n − f distinct i satisfy si 6= ⊥ and
Verifyf+1(〈r, si〉 , σi) = 1).

2: Initial: W = {(s1, σ1), (s2, σ2), · · · , (sn, σn)}, where (sj , σj) ← (⊥,⊥) for all 1 6 j 6 n;
FS = 0.

3: upon receiving input value vi do
4: input {Value, vi} to PRBC〈r,i〉;

5: upon receiving a Finish message (Finish, 〈r, j〉 , σj) do
6: (sj , σj)← (j, σj);
7: FS = FS + 1;

8: upon FS = n− f do
9: propose W for the MVBAr;

10: wait the MVBAr to return W = {(s̄1, σ̄1), (s̄2, σ̄2)), · · · , (s̄n, σ̄n)}

11: Let S ⊂ [n] be the set of s̄j 6=⊥ for 1 6 j 6 n.
12: Wait until receive vj from PRBC〈r,j〉 for all j ∈ S.
13: Finally output ∪j∈Svj .

5.2 Security Analysis

Intuition: Similarly with the Dumbo1-ACS, when an honest node outputs a subset of values, it
implies that the node has received the corresponding index subsets. Due to the termination and
agreement of the MVBA, all honest nodes will receive the same index-set W .

Besides, the external-validity of MVBA ensures that the index-set W satisfies the predicate Q,
which means that the input message corresponding to each index will be received by all honest
nodes in the PRBC, and the size of subsets is at least n− f .

Like in Dumbo1, we also focus on the proof of Dumbo2-ACS. Note that the property of suc-
cinctness follows from proper choice of threshold signature scheme whose signature size is λ.

Lemma 2. The Algorithm 2 satisfies the Agreement, Validity and Totality properties of PRBC,
assuming the underlying RBC and threshold signature scheme are secure.

Proof. Agreement: If one honest node outputs v and another honest node outputs v′, according to
the agreement property of RBC, we have v = v′.

Totality: If any node outputs string (id, σ) and Verifyf+1 (id, σ) = 1, it implies that at least
one honest has received a value v from the sender Ps. If not, at most f share signatures on id will
be generated; hence, it’s impossible for any malicious node to outputs a valid threshold signature.
Otherwise, it will violate the unforgeability property of threshold signature scheme. Due to totality
property of RBC, all honest nodes eventually output v.

Validity: If the sender is honest and inputs v, from the validity property of RBC, all honest
nodes output v. Besides, according to the Algorithm 2, after receiving a value from the sender,
each honest node will multicast a share signature of id to all, so each honest node can receive at
least f + 1 valid share signatures. Hence, all honest nodes can output a valid string (id, σ). ut

Theorem 2. With except negligible probability, the Dumbo2-ACS protocol satisfies the Agreement,
Validity, and Totality properties of ACS, assuming the underlying PRBC and MVBA are secure.

Proof. Agreement: To prove that Dumbo2-ACS satisfies the agreement property, we need to prove
that when an honest node outputs V , then every honest node outputs V .

Assume an honest node Pi outputs V = {vj}j∈S . It implies that for any j ∈ S, s̄j 6= ⊥ in W ,
following external-validity of MVBA, we know there is a valid proof (threshold signature) σ̄j for
s̄j . Hence, according to the totality of PRBC, all honest nodes including Pi output vj . Besides, the

15

agreement of MVBA ensures all honest nodes have the same S. So every honest node also outputs
V = {vj}j∈S .

Validity: To prove that Dumbo2-ACS satisfies the validity property, we show that |V | > n− f
and V contains at least n− 2f inputs from honest nodes when an honest node outputs a set V .

If an honest node Pi outputs a set V = {vj}j∈S . Due to the predicate Q of MVBA, (1) for any
s̄i ∈ W , there is a corresponding valid threshold signature σ̄i if s̄i 6=⊥, (2) at least have n − f
distinct s̄i 6=⊥. Hence, according to the totality of PRBC, Pi outputs the data set V including n−f
values.

Note that there are at most f byzantine nodes, hence, there must be at least n − 2f values
from honest nodes’ input in set V .

Totality: To prove that Dumbo2-ACS satisfies the totality property, we show that all honest
nodes produce an output if n− f honest nodes have an input.

According to the validity of PRBC: if a sender i is honest, then all honest nodes receive vi and
(i, σi). Now that n − f honest nodes have an input, thus every honest node can receive at least
n − f distinct valid pairs (id, σid). Hence, every honest node can receive at least n − f distinct
Finish messages and define an externally valid value Wi as input to MVBA. Following agreement
and termination of MVBA, all honest nodes can get the same output W from MVBA.

Besides, the value W satisfies the predicate Q due to the external-validity property of MVBA.
Hence, for any s̄i 6= ⊥, there is a corresponding valid threshold signature σ̄i. Let S be the set of
s̄i 6= ⊥ for all 1 6 i 6 n. The totality of PRBC now can ensure that all honest nodes will receive
{vi}i∈S . ut

6 Efficiency Analysis

Now let us summarize the efficiency of the Dumbo protocols. Throughout the paper, we consider
|m| denotes the message size, λ is the security parameter for the cryptographic primitives and also
denotes the size of (threshold) signature.

Efficiency of Dumbo1. Firstly, let’s go through the process of the Dumbo1-ACS. According to the
process of Algorithm 1, the message exchange appears in four places. First, all parties participate
n concurrent RBC instances to broadcast input values to all, the second phase is all parties to
participate the committee election, then the third phase is all parties to participate κ concurrent
RBC instances to broadcast indexes message to all, the last phase is all parties to participate κ
concurrent ABA instances to agree on whose indices to adopt. We present the following observation
from [8]. Suppose X1, X2, . . . , Xn be independent random variables such that for every 1 6 i 6 n,
Pr[Xi > j] = qj (0 < q < 1). If Y = max{Xi}, then EXP [Y] = O(log n).

Hence, the expected time complexity of Dumbo1 is O(log κ) due to the κ ABA instances (and all
other concurrent RBC instances have constant rounds in total). Message complexity is still O(n3)
as the added components κ (κ is normally substantially smaller than n) more RBC instances cost
no more than O(κ · n2), while there are also some reductions due to smaller # of ABA instances.
Regarding communication complexity, the data-RBC instances generate O(n2|m|+ λn3 log n) bits
communication, while the added index-RBC instances generate only O(n2λ) bits communication,
(ignoring the reduced part due to ABA reduction). Hence, the communication complexity of
Dumbo1-ACS is still O(n2|m|+ λn3 log n) as before.

Efficiency of Dumbo2. Similarly, here we also go through the process of Dumbo2-ACS. From the
Algorithm 3, the message exchange appears in two places. First, all parties participate n concurrent
PRBC instances, the second phase an MVBA instance.

The expected time complexity of Dumbo2 is O(1) due to all concurrent PRBC instances have
constant rounds in total and the running time of MVBA is also constant. Message complexity still
keeps same with the HoenyBadgerBFT and isO(n3), due to it needs n PRBC instances (incurO(n3)
message) and the MVBA message complexity is O(n2). Since it needs n PRBC instances, hence, the
communication complexity of the Dumbo2 was dominated by concurrent n PRBC instances and up
to O(n2|m|+ λn3 log n). In fact, the MVBA phase only generates O(λn3) bit communication.

16

As shown in Table 1, the table summarizes the asymptotic performance of ACS of Dumbo with
ACS of several other atomic broadcast protocols in the asynchronous setting:

Table 1. Detailed performance metrics of ACS.

Complexity‡

Protocol Time Communication Message

HB-BFT/BEAT0 O(log n) O(n2|m|+ λn3 log n) O(n3)

BEAT1/BEAT2 O(log n) O(n3|m|+ λn3) O(n3)

Dumbo1 O(log κ) O(n2|m|+ λn3 log n) O(n3)

Dumbo2 O(1) O(n2|m|+ λn3 log n) O(n3)

‡ Time means expected running time (or communication rounds). One may notice that the com-
munication complexities here look different with that in [35]: here the communication and message
complexity both refer to the total complexity for the whole ACS with all terms, while in [35] they
calculated complexity per transaction, and ”ignored” the terms they considered small for large-size
input.

7 Experimental Evaluations

We implement Dumbo1, Dumbo2 (the full fledged atomic broadcast) and HoneyBadgerBFT, and
deploy them on Amazon AWS. Note that we used same parameters and environment as HB-BFT.
We carry out a serial of experiments in various settings with different system scales and input sizes.
The results demonstrate that we have significant improvements on both latency and throughput
over HBBFT, especially when n gets moderately large. Some example comparisons are given in
Table 2 collected from random nodes.

Table 2. Improvements of latency and throughput

Basic Latency (s) Throughput (tx/s)
System Scale HB-BFT [35] Dumbo1 Dumbo2 HB-BFT [35] Dumbo1 Dumbo2

n=32 70 19 ↓ 73% 7.5 ↓ 89% 8430 11313 ↑ 34% 15121 ↑ 79%
n=64 240 49 ↓ 80% 14 ↓ 94% 4453 12111 ↑ 172% 18692 ↑ 320%
n=100 491 90 ↓ 78% 24 ↓ 95% 1934 8814 ↑ 356% 17767 ↑ 819%

Implementation details. Our prototypes of Dumbo1 and Dumbo2 are implemented in Python,
part of which were developed from the implementation of HoneyBadgerBFT provided by [35,34].
Each node runs on a separate EC2 instance. At the beginning of the program, nodes establish
communication channels with each other through unauthenticated TCP sockets. All nodes behave
honestly by default. In the implementation of Dumbo1 and Dumbo2, the ABA instantiation was
the “corrected” version, see [34] and Alg. 7 below in the section 8.2 for details.

We implement Boldyreva’s pairing-based threshold signature scheme [12] on MNT224 curve for
threshold signature (also for random-number generation, coin-tossing and committee-election). For
threshold encryption, we adopt the threshold encryption scheme from Baek and Zheng [6] using
SS512 symmetric bilinear group. These threshold cryptography schemes were implemented with
Charm [3] Python wrappers for PBC library [31]. To implement Reed-Solomon codes, we use the
zfec library [43].

Evaluation. We deploy the protocols on Amazon EC2 services, run them on 100 Amazon EC2
t2.medium instances uniformly distributed from 10 different regions (Tokyo, Singapore, Mumbai,
Stockholm, Paris, Frankfurt, St. Paulo, California, Virginia and Central Canada) across the globe,

17

each with two virtual CPUs and 4GB memory. We carry out several groups of tests in different
system scale, varying the batch size B from 4 to 2× 106 transactions. We assume the size of each
transaction are 250 bytes8 and use the parameter n = 4f . Besides, we set the error parameter
ε = 10−8 to determine the size of committee, which is sufficiently small in practice to ensure
error-free operation within ten years even if suppose the time is 1 second for each epoch. Note
that we always try to make instances distributed geographically heterogeneous to simulate the
practical WAN environment. E.g., When 8 nodes are tested, they will be located in 8 different
areas. Significant delay and fluctuation therefore commonly exist in the communication channels.
It is natural that if more instances are located in the same area, the efficiency of the protocols
would be higher.

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼
▲ ▲ ▲ ▲ ▲

▲ ▲
▲

◼ Dumbo2
▲ Dumbo1
 HB-BFT

20 40 60 80 100
0

100

200

300

400

500

Number of Nodes

B
as
ic
L
at
en
cy

(s
)

(a) Basic latency of Dumbo1/2 and HoneyBadgerBFT

■
■ ■ ■

■

■

▲ ▲ ▲
▲

▲

■ ■

■ ■ ■
■

■

■

▲ ▲ ▲ ▲

▲

▲

▲

■ ■
■

■ ■

■
■

▲ ▲

▲
▲

▲

▲ Dumbo1(n=32)

■ Dumbo2(n=8)
▲ Dumbo1(n=8)

 HB-BFT(n=8)

■ Dumbo2(n=32)

 HB-BFT(n=32)

■ Dumbo2(n=64)
▲ Dumbo1(n=64)
 HB-BFT(n=64)

100 1000 104 105

5

10

50

100

Throughput (txs/s)

L
at
en
cy

(s
)

(b) Throughput vs. Latency

Fig. 6. Latency

Latency. Similar as HB-BFT, latency is defined as the average time interval between the time the
first node starts the protocol and when the (n − f)-th node gets the result. Latency is related to
the process of protocol, as well as influenced by the batch size of the input. We also consider basic
latency by letting each nodes propose only one transaction.

In Figure 6(a), we show the basic latency of the protocols with different system sizes n. It
increases when n increases. When n is very small, the basic latency of the three protocols is almost
the same. However, the latency of HB-BFT increases much faster than Dumbo1 and Dumbo2 when
n gets larger. For example, when n = 100, the basic latency of HB-BFT has been up to 500 seconds
while that of Dumbo1 is only about 80 seconds and Dumbo2 is only about 20 seconds. The reason
lies in that when n gets larger, the latency improvement from reducing number of ABA instances
becomes more and more significant.

Throughput. Throughput is defined as the number of transactions committed per second. We
use different batch sizes to test the protocols, and shows the relationship between throughput and
batch size in Figure 7.

As shown in Figure 7, the throughput of protocols get larger with the increase of batch size if
the bandwidth and computing resources are sufficient. Note that the throughput reaches its peak
at certain point and then may decrease if the batch size continues to grow, due to the limitation of
the bandwidth or computing resources, see the result when n = 8. More importantly, when n gets
larger, the advantage of Dumbo1/2 become more and more significant. For example, when batch
size is 2 × 106 and n = 100, Dumbo2 running for one minute and achieve throughput more than
17000 transactions/s, which is 9 times as much as that in HoneyBadgerBFT.

Trade-off of latency and throughput. Figure 6(b) shows the relationship between latency and
throughput in different settings (n = 8/32/64). For all protocols, latency grows with the increase

8 sufficient to contain an ECDSA signature, two public keys, and a typical Bitcoin transaction

18

■ ■
■

■

■

■

■
■

■

▲ ▲
▲

▲

▲

▲

▲
▲

▲

■ Dumbo2

▲ Dumbo1

 HB-BFT

n = 8

100 1000 104 105 106
0.0

0.5

1.0

1.5

2.0

Batch Size (txs)

T
hr
ou
gh
pu
t(
10
4 t
xs
/s
)

■ ■ ■ ■
■

■
■

■

■

■
■

■

■

▲ ▲ ▲ ▲
▲

▲
▲ ▲

▲

▲

▲ ▲
▲

■ Dumbo2
▲ Dumbo1
 HB-BFT

n = 32n

100 1000 104 105 106
0.0

0.5

1.0

1.5

2.0

Batch Size (txs)

T
hr
ou
gh
pu
t(
10
4 t
xs
/s
)

■ ■ ■ ■
■

■
■

■

■

■

■

■
■

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲

▲
▲

▲

▲

■ Dumbo2
▲ Dumbo1
 HB-BFT

n = 64n

100 1000 104 105 106
0.0

0.5

1.0

1.5

2.0

Batch Size (txs)

T
hr
ou
gh
pu
t(
10
4 t
xs
/s
)

■ ■ ■ ■ ■
■

■
■

■

■

■

■
■

■

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
▲

▲

▲ ▲

▲

▲

■ Dumbo2
▲ Dumbo1
 HB-BFT

n = 100n

100 1000 104 105 106
0.0

0.5

1.0

1.5

2.0

Batch Size (txs)

T
hr
ou
gh
pu
t(
10
4 t
xs
/s
)

Fig. 7. Throughput of Dumbo1/2 and HoneyBadgerBFT

of throughput, but the growth rate is obviously accelerating. Combined with our analysis of Fig. 7,
this reflects that bandwidth (and other resources) are gradually consumed with the increase of
system load. Another observation is when n is properly large, Dumbo1/2 can provide much higher
throughput at the same cost of latency, which means Dumbo1/2 have better scalability so that are
more applicable to larger systems.

8 Details of Subprotocols

8.1 From ACS to atomic broadcast

In HoneyBadgerBFT, nodes receive ”transactions” as input value and store them in their buffers.
The protocol proceeds in epochs. At the start of each epochs, nodes choose a certain number of txs
randomly from their buffer as their inputs to the atomic broadcast, and at the end of each epochs,
a final set of txs for this epoch will be chosen. The final agreements are the union of all received txs
decided by n ABA instance. So to improve efficiency, in HB-BFT, nodes randomly choose txs from
their buffers instead of sequentially to avoid duplication. A naive attempt of atomic broadcast is
sequentially invoking multiple ACS instances. the Censorship Resilience property is not satisfied.
That is because the adversary knowing the inputs of all RBC instances can prevent some tx from
being output controlling the network.

To avoid this, HoneyBadgerBFT adopted threshold encryption: all inputs are first encrypted
before provided to the ACS; the agreement will be decrypted only after it has been output by the
ACS. By this approach, the adversary has nothing to target. For the detailed description building
an atomic broadcast from ACS is as follows:

19

Given an ACS and the already-setup (f + 1, n) threshold encryption, atomic broadcast can
be trivially instantiated [35]. In specific, let each node Pi keep a buffer of values called bufi.
Also let TPE.Enc, TPKE.DecShare and TPKE.Dec represent the relevant algorithms of a threshold
encryption scheme, and let PK and SKi to denote the public key and the node Pi’s private key
of the above threshold encryption scheme (see [35] for the concrete definitions of the threshold
encryption scheme). The main part of the algorithm at each node Pi will proceed as follows (with
a consecutively increasing parameter r to denote the epoch number):

1. Random selection and encryption: let proposed be a random selection of bB/nc values from
the first B elements of buf, then encrypt x := TPKE.Enc (PK, proposed).

2. Agreement on ciphertexts: pass x as input to ACS; then receive {vj}j∈S from ACS, where S
is a subset of all nodes.

3. Decryption: for each j ∈ S: let ej := TPKE.DecShare(SKi, vj), then multicast DEC(r, j, i, ej),
then wait to receive at least f + 1 value of the form DEC(r, j, k, ej,k), decode yj := TPKE.Dec
(PK, {(k, ej,k)}f+1).

4. Output the block: let blockr := sort(
⋃
j∈S{yi}), where sort represents a pre-specified rules to

order values, then buf := buf − blockr.

Theorem 3. (Adapted from [35]) The above protocol is atomic broadcast (i.e., it satisfies totality,
agreement and censorship resilience except for negligible probability), conditioned on the underlying
ACS and threshold encryption satisfy their definitions respectively.

8.2 Instantiations of Building Blocks

Threshold signature scheme: Let 0 6 t 6 n, a (t, n)-non interactive threshold signature scheme
is a tuple of algorithms which involves n nodes and up to t−1 node can be corrupted. The threshold
signature scheme has the following algorithms:

• Key generation algorithm: SigSetup(1λ, n, t) → {mpk, PK, SK}. Give a security parameter λ
and generates a special public key mpk, a vector of public keys PK := (pk1, · · · , pkn), and a
vector of secret keys SK := (sk1, · · · , skn);

• Signing algorithm: SigSharet(ski,m) → σi. On input a message m and a secret key share ski,
this deterministic algorithm outputs a signature share σi;

• Share verification algorithm: ShareVerifyt(m, (i, σi)) → 0/1. Given a message m, a signature
share σi and an index i, this deterministic algorithm outputs 1 or 0 depending on whether σi
is a valid signature share generated by Pi or not. The correctness requirement needs that: for
∀ m and i ∈ [n], Pr[ShareVerifyt(m, (i,SigSharet(ski,m))) = 1] = 1;

• Combining algorithm: Combinet(m, {(i, σi)}i∈S)→ σ/⊥. Given a message m, and a list of pairs
{(i, σi)}i∈S , where S ⊂ [n] and |S| = t, this algorithm outputs either a signature σ for message
m, or ⊥ when {(i, σi)}i∈S contains ill-formed signature share (i, σi);

• Signature verification algorithm: Verifyt(m,σ) → 0/1. Given a message m and a signature σ,
this algorithms outputs 1 or 0 depending on whether σ is a valid signature for m or not. The cor-
rectness requires that: for ∀ m, S ⊂ [n] and |S| = t, Pr[Verifyt(m,Combinet(m, {(i, σi)}i∈S)) =
1 | ∀i ∈ S, ShareVerifyt(m, (i, σi)) = 1] = 1.

Threshold coin-tossing: We assume the trust third party (dealer) have an unpredictable pseudo-
random generator (PRG) G : R→ {1, · · · , n}s, that is know only to the dealer, which gets a string
r ∈ R and returns a set {S1, S2, · · · , Ss} size of s, where 1 6 Si 6 n.

At the beginning of the protocol, the dealer gives a private function CSharei to every node Pi,
and two public functions: CShareVerify and CToss. Informally, given f + 1 validated coin shares,
the function CToss returns a unique and pseudorandom set [2]. Formally, the following properties
are satisfied except with negligible probability:

• For all i : 1 6 i 6 n and for every string r, CShareVerify (r, i, σ) = true if and only if
σ = CSharei(r);
• If Pi is honest, then it is infeasible for the adversary to compute CSharei(r);

20

• For every string r, CToss(r,Σ) = G(r) iff |Σ| > f+1 and ∀σ ∈ Σ, ∃ a party Pi s.t. CShareVerify
(r, i, σ) = true.

(1, κ, ε)-Committee election (CE): Here we describe a committee election construction, the
details of this election procedure CE is illustrated in the following Algorithm 4, the threshold
coin-tossing scheme is the underlying Algorithm of CE.

Algorithm 4 Committee election (CE): for party Pi

1: Local variables initialization: Σ ← {}
2: upon CE(id) do
3: σi ← CSharei(id);
4: send (SHARE, id, σi) to all parties;
5: wait until |Σ| = f + 1
6: return CToss(id,Σ);

7: upon receiving (SHARE, id, Sj) from Pj for the first time do
8: if CShareVerify(id, j, σj)=true then
9: Σ ← Σ ∪ {σj};

Reliable broadcast algorithm (RBC) [35]: The detail of process of RBC shown in Algorithm 5.
We remark that in RBC, the erasure code and Merkle-tree are adopted to reduce the communication.
In this article, we adopt a (n − 2f, n)-erasure code scheme in all scenarios, which tolerates the
maximal adversary boundary and helps honest nodes recover the message efficient. Note that the
RBC message complexity is O(n2) and the communication complexity is O(n|m| + λn2 log n) in
expectation.

Algorithm 5 Reliable broadcast (RBC) for party Pi with sender Ps

1: if Pi = Psender and received input v then
2: let {sj}j∈[n] be the blocks of (n− 2f, n)-erasure coding applied to v;
3: let h be a Merkle tree root computed over {sj};
4: send VAL(h, bj , sj) := {VAL, h, bj , sj} to each party Pj , where bj is the jth Merkle tree

branch;

5: upon receiving VAL(h, bj , sj) from Psender do
6: multicast ECHO(h, bj , sj) := {ECHO, h, bj , sj};
7: upon receiving ECHO(h, bj , sj) from Pj do
8: check that bj is a valid Merkle branch for root h and leaf sj , otherwise discard;

9: upon receiving valid ECHO(h, ·, ·) message from n− f distinct parties do
10: interpolate s′j from any n− 2f leaves received;
11: recompute Merkle root h′ and if h′ 6= h then abort;
12: if READY(h) := {READY, h} has not yet been sent, multicast READY(h);

13: upon receiving f + 1 matching READY(h) messages do
14: if READY has not yet been sent, multicast READY(h)

15: upon receiving 2f + 1 matching READY(h) messages do
16: wait for n− 2f ECHO messages, then decode v.

Consistent broadcast (CBC) [15]: The CBC is a weaker version of RBC that has no totality.
The detail of process of CBC is illustrated in Algorithm 6. Note that the CBC message complexity
is O(n) and the communication complexity is O(n(|m|+ λ)) in expectation.

Algorithm 6 Consistent broadcast algorithm (CBC) for party Pi with sender Ps

21

1: if Pi = Ps and received input value v then
2: multicast message (SEND, v);
3: upon receiving (ECHO, σj) from Pj for the first time do
4: if ShareVerify2f+1(s, v, (j, σj)) = 1 then
5: DS = DS ∪ {j, σj};
6: upon |DS| = 2f + 1 do
7: σ ← Combine2f+1(s, v,DS);
8: multicast (Finish, v, σ);

9: upon receiving a SEND message (SEND, v) from Ps for the first time do
10: σi ← SigShare2f+1(ski, s, v);
11: send message (ECHO, σi) to Ps;

12: upon receiving a Finish message (Finish, v, σ) from Ps for the first time do
13: if Verify2f+1(s, v, σ) = 1 then
14: output v.

Asynchronous binary agreement (ABA) [11,37,32,35]: The detail of process of ABA is illus-
trated in Algorithm 7. Note that the running time of one ABA is O(1) in expectation, but that of
n concurrent ABA is O(log n) in expectation. Besides, the ABA message complexity is O(n2) and
the communication complexity is O(n2λ) in expectation. Two important remarks are in place:

Termination: deciding (outputting) v.s halting. As we mentioned briefly in section 3, the termina-
tion of ABA only requires all honest parties to decide/output a bit. The instantiation in Alg. 7
(without the amendment) indeed satisfies this (see more detailed analysis below). Admittedly, it
is possible that some honest party decides a bit in round r, but still waits for messages in round
r + 1 (while other honest nodes may exit already) in the ABA protocol. This may waste some
thread when the peer concurrently runs multiple threads after he decides. However, note that,
once an honest party decides a bit, actions (invoke or not) on other modules of the ACS protocol
is determined already, thus the safety of the ACS still holds.

As pointed out in the elegant work of [32,38,11], there could be a stronger termination condition
that all honest parties not only decide, but also exit/halt the ABA instance. Following [32,38,11],
we also give an amendment of Alg. 7, which satisfies the stronger termination condition. Since we
mainly examine the effectiveness of our ABA reduction techniques to see advantages over HB-BFT,
we use the same ABA instantiation (Alg. 7) in all those experiments (as revised HB-BFT [34]).
Exploring further optimizations within ABA and its practical impact would be interesting future
questions.

All honest nodes deciding in Alg.7. Algorithm 7 is the fixed ABA protocol as in [34]. In the original
HB-BFT [35] (without line 11 and line 12 in Alg. 7), it is possible for the adversary to trick some
nodes to never decide. Concretely, the adversary can reconstruct the coin value before delivering
certain messages, so that he can arrange the delivered messages to a party Pi and makes his
condition always fail in line 15, thus Pi will repeat forever without deciding anything.

Now an extra round of CONF message was added, it guarantees that among honest nodes whose
value Sr in round r contains only one bit after line 12, then they must be the same bit (honest
parties could also have {0, 1}). The bad case that some honest node has 1 and some honest node
has 0 after line 12 is taken place only when both CONFr[0] and CONFr[1] was multicasted for 2f+1
times in line 11. This means at least one honest user multicasted both CONFr[0] and CONFr[1],
which leads to a contradiction.

In this way, we can derive the following two key lemmas: (1) at least one honest node would
decide a bit; (2) if one honest node decides v in a round r, then all honest nodes would decide
the same value v in a later round r′ > r. To see lemma (1): in every two rounds, there must be
one honest user who has one bit as value in line 14 (if all of them have {0, 1}, then they all assign
the coin value as input for next round), thus he will have 1/2 probability to decide. To see lemma
(2): since one honest node decides a bit in round r, all other honest nodes either decide the same
bit, or have {0, 1} as Sr, which will become a same bit (the coin value) in next round; The above
analysis is similar to that in [11,37,32,38].

22

Algorithm 7 Asynchronous binary agreement (ABA) for party Pi :

1: Initialization: Upon receiving input binput, set est0 = binput, r = 0, e = 0, decided=false,
valuesr = ∅ for r = {0, 1, 2, . . . } and proceed in consecutive rounds number r for each consec-
utive epoch:

2: multicast Valr(estr) := {Val, r, estr} to all;
3: upon receiving Valr(υ) messages from f + 1 nodes do
4: if Valr(υ) has not been sent then
5: multicast Valr(υ);

6: upon receiving Valr(υ) messages from 2f + 1 nodes do
7: valuesr = valuesr ∪ {υ};
8: wait until valuesr 6= ∅
9: multicast AUXr[ω] := {AUX, r, ω}, where ω ∈ valuesr;

10: wait until at least n− f AUXr[x] messages have been received, such that valr ⊆ valuesr
where valr is the set of values x carried by these n− f messages;

11: multicast CONFr[valuesr] := {CONF, r, valuesr};
12: wait until at least n− f CONFr[S] messages have been received, such that Sr ⊆ valuesr

where Sr =
⋃
S of set S carried by these n− f messages;

13: s← coinr(); // see e.g., [35,16]
14: if Sr = {b} then
15: if b = s%2 then
16: if decided=false then

once decide(b), later modules of the ACS could be invoked
17: decide(b); B decide but not exit
18: decided = true;
19: else

if (i). decide(b) in round r; (ii). coinr′%2 = b in round r′ > r
20: halt; B exit

21: estr+1 ← b;
22: else
23: estr+1 ← s%2;

continue looping from line 2
24: r = r + 1; goto line 2;

Amendment

replace line 16-20 with line 25-26
25: if FINISH(b) := {FINISH, b} was not yet sent then
26: multicast FINISH(b);

include the following instructions before line 24
27: upon receiving f + 1 FINISH(v) from distinct nodes do
28: if FINISH(v) was not yet sent then
29: multicast FINISH(v);

30: upon receiving 2f + 1 FINISH(v) from distinct nodes do
31: decide(v) and halt. B decide and exit

23

9 Conclusions and Future Works

We propose two efficient asynchronous BFT protocols named Dumbo1 and Dumbo2, each of which
has an asymptotically and practically better construction of ACS. The experiments on 100 AWS
EC2 instances dispersed in 4 continents of the world show that our schemes outperform HoneyBad-
gerBFT, known as the first practical asynchronous BFT, by several times. For example Dumbo2
can even achieve throughput of tens of thousands in a system with hundreds of nodes, meanwhile
the delay is within one minute.

Our core technical contributions include two methods reducing the number of randomized ABA
instances. We remark that Dumbo2 deviates the design methodology of ACS as in [35] and turn
back to MVBA which was not considered optimal in building ACS. Our construction of Dumbo2
draws an analogy to the widely used conventional wisdom of hybrid encryption.

We remark that we haven’t done any optimization, all improvements are demonstrated in a
basic instantiation. There are multiple ways to further improve our protocols, e.g., applying the
techniques from BEAT to choose the best instantitions. More importantly, we may further reduce
the (message or communication) complexity and push the asynchronous atomic broadcast towards
optimal. We leave them as interesting open problems.

Acknowledgment

We thank anonymous reviewers for pointing out the problem in the ABA of [35] and in our previous
description, and various other valuable comments. We also thank Yuan Lu for fruitful discussions.
The authors are all supported in part by JD Digits via the JDD-NJIT-ISCAS Joint Blockchain
Lab. Qiang Tang is also supported in part by a Google Faculty Award; Zhenfeng Zhang is also
supported in part by the National Key R&D Program of China (No. 2017YFB0802500); and Jing
Xu is also supported by the National Natural Science Foundation of China under Grant 61572485.

References

1. Abraham, I., Devadas, S., Dolev, D., Nayak, K., Ren, L.: Synchronous byzantine agreement with ex-
pected o(1) rounds, expected o(n2) communication, and optimal resilience. In: International Conference
on Financial Cryptography and Data Security. pp. 320–334. Springer (2019)

2. Abraham, I., Malkhi, D., Spiegelman, A.: Asymptotically optimal validated asynchronous byzantine
agreement. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing. pp.
337–346 (2019)

3. Akinyele, J.A., Garman, C., Miers, I., Pagano, M.W., Rushanan, M., Green, M., Rubin, A.D.: Charm: a
framework for rapidly prototyping cryptosystems. Journal of Cryptographic Engineering 3(2), 111–128
(2013)

4. Amir, Y., Coan, B., Kirsch, J., Lane, J.: Prime: Byzantine replication under attack. IEEE Transactions
on Dependable and Secure Computing 8(4), 564–577 (2010)

5. Aublin, P.L., Mokhtar, S.B., Quéma, V.: Rbft: Redundant byzantine fault tolerance. In: 2013 IEEE
33rd International Conference on Distributed Computing Systems. pp. 297–306. IEEE (2013)

6. Baek, J., Zheng, Y.: Simple and efficient threshold cryptosystem from the gap diffie-hellman group. In:
GLOBECOM’03. IEEE Global Telecommunications Conference (IEEE Cat. No. 03CH37489). vol. 3,
pp. 1491–1495. IEEE (2003)

7. Ben-Or, M.: Another advantage of free choice (extended abstract): Completely asynchronous agree-
ment protocols. In: Proceedings of the second annual ACM symposium on Principles of distributed
computing. pp. 27–30. ACM (1983)

8. Ben-Or, M., El-Yaniv, R.: Resilient-optimal interactive consistency in constant time. Distributed Com-
puting 16(4), 249–262 (2003)

9. Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In:
Proceedings of the thirteenth annual ACM symposium on Principles of distributed computing. pp.
183–192. ACM (1994)

10. Bessani, A., Sousa, J., Alchieri, E.E.: State machine replication for the masses with bft-smart. In: 2014
44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. pp. 355–362.
IEEE (2014)

24

11. Blum, E., Katz, J., Loss, J.: Synchronous consensus with optimal asynchronous fallback guarantees.
In: Theory of Cryptography Conference. pp. 131–150. Springer (2019)

12. Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme. In: International Workshop on Public Key Cryptography. pp. 31–46.
Springer (2003)

13. Bracha, G.: An asynchronous [(n-1)/3]-resilient consensus protocol. In: Proceedings of the third annual
ACM symposium on Principles of distributed computing. pp. 154–162. ACM (1984)

14. Bracha, G.: Asynchronous byzantine agreement protocols. Information and Computation 75(2), 130–
143 (1987)

15. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous broadcast protocols.
In: Annual International Cryptology Conference. pp. 524–541. Springer (2001)

16. Cachin, C., Kursawe, K., Shoup, V.: Random oracles in constantinople: Practical asynchronous byzan-
tine agreement using cryptography. Journal of Cryptology 18(3), 219–246 (2005)

17. Cachin, C., Poritz, J.A.: Secure intrusion-tolerant replication on the internet. In: Proceedings Interna-
tional Conference on Dependable Systems and Networks. pp. 167–176. IEEE (2002)

18. Castro, M., Liskov, B., et al.: Practical byzantine fault tolerance. In: OSDI. vol. 99, pp. 173–186 (1999)
19. Clement, A., Wong, E.L., Alvisi, L., Dahlin, M., Marchetti, M.: Making byzantine fault tolerant systems

tolerate byzantine faults. In: NSDI. vol. 9, pp. 153–168 (2009)
20. Cristian, F., Aghili, H., Strong, R., Dolev, D.: Atomic broadcast: From simple message diffusion to

Byzantine agreement. International Business Machines Incorporated, Thomas J. Watson Research
Center (1986)

21. Dolev, D., Fischer, M.J., Fowler, R., Lynch, N.A., Strong, H.R.: An efficient algorithm for byzantine
agreement without authentication. Information and Control 52(3), 257–274 (1982)

22. Duan, S., Reiter, M.K., Zhang, H.: Beat: Asynchronous bft made practical. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. pp. 2028–2041. ACM (2018)

23. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty
process. Tech. rep., Massachusetts Inst of Tech Cambridge lab for Computer Science (1982)

24. Gagol, A., Leśniak, D., Straszak, D., Świetek, M.: Aleph: Efficient atomic broadcast in asynchronous
networks with byzantine nodes. In: Proceedings of the 1st ACM Conference on Advances in Financial
Technologies. pp. 214–228 (2019)

25. Garay, J.A., Kiayias, A.: Sok: A consensus taxonomy in the blockchain era. IACR Cryptology ePrint
Archive 2018, 754 (2018)

26. Kursawe, K., Shoup, V.: Optimistic asynchronous atomic broadcast. In: International Colloquium on
Automata, Languages, and Programming. pp. 204–215. Springer (2005)

27. Lamport, L.: The part-time parliament. ACM Transactions on Computer Systems (TOCS) 16(2),
133–169 (1998)

28. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 4(3), 382–401 (1982)

29. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-mvba: Optimal multi-valued validated asynchronous
byzantine agreement, revisited. In: PODC ’20: Proceedings of the 39th Symposium on Principles of
Distributed Computing. pp. 129–138. ACM (2020)

30. Lu, Y., Lu, Z., Tang, Q., Wang, G.: Dumbo-mvba: Optimal multi-valued validated asynchronous
byzantine agreement, revisited. https://eprint.iacr.org/2020/842 (2020), full version on eprint

31. Lynn, B.: On the implementation of pairing-based cryptosystems. Ph.D. thesis, Stanford University
Stanford, California (2007)

32. MacBrough, E.: Cobalt: Bft governance in open networks. arXiv preprint arXiv:1802.07240 (2018)
33. Malkhi, D., Nayak, K., Ren, L.: Flexible byzantine fault tolerance. arXiv preprint arXiv:1904.10067

(2019)
34. Miller, A.: Bug in aba protocol’s use of common coin 59. https://github.com/amiller/

HoneyBadgerBFT/issues/59 (2018), online Forum
35. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of bft protocols. In: Proceedings

of the 2016 ACM SIGSAC Conference on Computer and Communications Security. pp. 31–42. ACM
(2016)

36. Moniz, H., Neves, N.F., Correia, M., Verissimo, P.: Ritas: Services for randomized intrusion tolerance.
IEEE transactions on dependable and secure computing 8(1), 122–136 (2008)

37. Mostefaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous byzantine consensus with t <
n/3 and O(n2) messages. In: Proceedings of the 2014 ACM symposium on Principles of distributed
computing. pp. 2–9. ACM (2014)

38. Mostéfaoui, A., Moumen, H., Raynal, M.: Signature-free asynchronous binary byzantine consensus
with t¡ n/3, o (n2) messages, and o (1) expected time. Journal of the ACM (JACM) 62(4), 31 (2015)

25

https://eprint.iacr.org/2020/842
https://github.com/amiller/HoneyBadgerBFT/issues/59
https://github.com/amiller/HoneyBadgerBFT/issues/59

39. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm. In: 2014 {USENIX}
Annual Technical Conference ({USENIX} {ATC} 14). pp. 305–319 (2014)

40. Rabin, M.O.: Randomized byzantine generals. In: 24th Annual Symposium on Foundations of Com-
puter Science (sfcs 1983). pp. 403–409. IEEE (1983)

41. Ramasamy, H.V., Cachin, C.: Parsimonious asynchronous byzantine-fault-tolerant atomic broadcast.
In: International Conference On Principles Of Distributed Systems. pp. 88–102. Springer (2005)

42. Veronese, G.S., Correia, M., Bessani, A.N., Lung, L.C.: Spin one’s wheels? byzantine fault tolerance
with a spinning primary. In: 2009 28th IEEE International Symposium on Reliable Distributed Sys-
tems. pp. 135–144. IEEE (2009)

43. Wilcox-O’Hearn, Z.: Zfec 1.4. 0. Open source code distribution: http://pypi. python. org/pypi/zfec
(2008)

26

	Dumbo: Faster Asynchronous BFT Protocols

