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Abstract

Often, in the real world, entities have two or more representations in databases. Duplicate records do
not share a common key and/or they contain errors that make duplicate matching a dif�cult task. Errors
are introduced as the result of transcription errors, incomplete information, lack of standard formats
or any combination of these factors. In this article, we present a thorough analysis of the literature on
duplicate record detection. We cover similarity metrics that are commonly used to detect similar �eld
entries, and we present an extensive set of duplicate detection algorithms that can detect approximately
duplicate records in a database. We also cover multiple techniques for improving the ef�ciency and
scalability of approximate duplicate detection algorithms. We conclude with a coverage of existing
tools and with a brief discussion of the big open problems in the area.

Index Terms

duplicate detection, data cleaning, data integration, record linkage, data deduplication, instance
identi�cation, database hardening, name matching, identity uncertainty, entity resolution, fuzzy duplicate
detection, entity matching

I. INTRODUCTION

Databases play an important role in today's IT based economy. Many industries and systems
depend on the accuracy of databases to carry out operations. Therefore, the quality of the
information (or the lack thereof) stored in the databases, can have signi�cant cost implications
to a system that relies on information to function and conduct business. In an error-free system
with perfectly clean data, the construction of a comprehensive view of the data consists of
linking �in relational terms, joining� two or more tables on their key �elds. Unfortunately, data
often lack a unique, global identi�er that would permit such an operation. Furthermore, the data
are neither carefully controlled for quality nor de�ned in a consistent way across different data
sources. Thus, data quality is often compromised by many factors, including data entry errors
(e.g., Microsft instead of Microsoft), missing integrity constraints (e.g., allowing entries such as
EmployeeAge=567), and multiple conventions for recording information (e.g., 44 W. 4th St. vs.
44 West Fourth Street). To make things worse, in independently managed databases not only
the values, but the structure, semantics and underlying assumptions about the data may differ as
well.
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Often, while integrating data from different sources to implement a data warehouse, organiza-
tions become aware of potential systematic differences or con�icts. Such problems fall under the
umbrella-term data heterogeneity [14]. Data cleaning [77], or data scrubbing [96], refer to the
process of resolving such identi�cation problems in the data. We distinguish between two types
of data heterogeneity: structural and lexical. Structural heterogeneity occurs when the �elds of
the tuples in the database are structured differently in different databases. For example, in one
database, the customer address might be recorded in one �eld named, say, addr, while in another
database the same information might be stored in multiple �elds such as street, city, state, and
zipcode. Lexical heterogeneity occurs when the tuples have identically structured �elds across
databases, but the data use different representations to refer to the same real-world object (e.g.,
StreetAddress=44 W. 4th St. vs. StreetAddress=44 West Fourth Street).

In this paper, we focus on the problem of lexical heterogeneity and survey various techniques
which have been developed for addressing this problem. We focus on the case where the input
is a set of structured and properly segmented records, i.e., we focus mainly on cases of database
records. Hence, we do not cover solutions for the various other problems, such that of mirror
detection, in which the goal is to detect similar or identical web pages (e.g., see [13], [18]). Also,
we do not cover solutions for problems such as anaphora resolution [56], in which the problem
is to locate different mentions of the same entity in free text (e.g., that the phrase �President of
the U.S.� refers to the same entity as �George W. Bush�). We should note that the algorithms
developed for mirror detection or for anaphora resolution are often applicable for the task of
duplicate detection. Techniques for mirror detection have been used for detection of duplicate
database records (see, for example, Section V-A.4) and techniques for anaphora resolution are
commonly used as an integral part of deduplication in relations that are extracted from free text
using information extraction systems [52].

The problem that we study has been known for more than �ve decades as the record linkage
or the record matching problem [31], [61]�[64], [88] in the statistics community. The goal of
record matching is to identify records in the same or different databases that refer to the same
real-world entity, even if the records are not identical. In slightly ironic fashion, the same problem
has multiple names across research communities. In the database community, the problem
is described as merge-purge [39], data deduplication [78], and instance identi�cation [94];
in the AI community, the same problem is described as database hardening [21] and name
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matching [9]. The names coreference resolution, identity uncertainty, and duplicate detection are
also commonly used to refer to the same task. We will use the term duplicate record detection
in this paper.

The remaining part of this paper is organized as follows: In Section II, we brie�y discuss
the necessary steps in the data cleaning process, before the duplicate record detection phase.
Then, Section III describes techniques used to match individual �elds, and Section IV presents
techniques for matching records that contain multiple �elds. Section V describes methods for
improving the ef�ciency of the duplicate record detection process and Section VI presents a few
commercial, off-the-shelf tools used in industry for duplicate record detection and for evaluating
the initial quality of the data and of the matched records. Finally, Section VII concludes the
paper and discusses interesting directions for future research.

II. DATA PREPARATION

Duplicate record detection is the process of identifying different or multiple records that refer
to one unique real-world entity or object. Typically, the process of duplicate detection is preceded
by a data preparation stage, during which data entries are stored in a uniform manner in the
database, resolving (at least partially) the structural heterogeneity problem. The data preparation
stage includes a parsing, a data transformation, and a standardization step. The approaches
that deal with data preparation are also described under the using the term ETL (Extraction,
Transformation, Loading) [43]. These steps improve the quality of the in-�ow data and make
the data comparable and more usable. While data preparation is not the focus of this survey, for
completeness we describe brie�y the tasks performed in that stage. A comprehensive collection
of papers related to various data transformation approaches can be found in [74].

Parsing is the �rst critical component in the data preparation stage. Parsing locates, identi�es
and isolates individual data elements in the source �les. Parsing makes it easier to correct,
standardize, and match data because it allows the comparison of individual components, rather
than of long complex strings of data. For example, the appropriate parsing of name and address
components into consistent packets of information is a crucial part in the data cleaning process.
Multiple parsing methods have been proposed recently in the literature (e.g., [1], [11], [53], [71],
[84]) and the area continues to be an active �eld of research.

Data transformation refers to simple conversions that can be applied to the data in order for
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them to conform to the data types of their corresponding domains. In other words, this type of
conversion focuses on manipulating one �eld at a time, without taking into account the values
in related �elds. The most common form of a simple transformation is the conversion of a data
element from one data type to another. Such a data type conversion is usually required when
a legacy or parent application stored data in a data type that makes sense within the context
of the original application, but not in a newly developed or subsequent system. Renaming of
a �eld from one name to another is considered data transformation as well. Encoded values in
operational systems and in external data is another problem that is addressed at this stage. These
values should be converted to their decoded equivalents, so records from different sources can
be compared in a uniform manner. Range checking is yet another kind of data transformation
which involves examining data in a �eld to ensure that it falls within the expected range, usually
a numeric or date range. Lastly, dependency checking is slightly more involved since it requires
comparing the value in a particular �eld to the values in another �eld, to ensure a minimal level
of consistency in the data.

Data standardization refers to the process of standardizing the information represented in
certain �elds to a speci�c content format. This is used for information that can be stored in
many different ways in various data sources and must be converted to a uniform representation
before the duplicate detection process starts. Without standardization, many duplicate entries
could erroneously be designated as non-duplicates, based on the fact that common identifying
information cannot be compared. One of the most common standardization applications involves
address information. There is no one standardized way to capture addresses so the same address
can be represented in many different ways. Address standardization locates (using various parsing
techniques) components such as house numbers, street names, post of�ce boxes, apartment
numbers and rural routes, which are then recorded in the database using a standardized format
(e.g., 44 West Fourth Street is stored as 44 W4th St.). Date and time formatting and name and
title formatting pose other standardization dif�culties in a database. Typically, when operational
applications are designed and constructed, there is very little uniform handling of date and time
formats across applications. Because most operational environments have many different formats
for representing dates and times, there is a need to transform dates and times into a standardized
format. Name standardization identi�es components such as �rst names, last names, title and
middle initials and records everything using some standardized convention. Data standardization
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is a rather inexpensive step that can lead to fast identi�cation of duplicates. For example, if
the only difference between two records is the differently recorded address (44 West Fourth
Street vs. 44 W4th St.), then the data standardization step would make the two records identical,
alleviating the need for more expensive approximate matching approaches, that we describe in
the later sections.

After the data preparation phase, the data are typically stored in tables, having comparable
�elds. The next step is to identify which �elds should be compared. For example, it would not
be meaningful to compare the contents of the �eld LastName with the �eld Address. Perkowitz
et al. [67] presented a supervised technique for understanding the �semantics� of the �elds that
are returned by web databases. The idea was that similar values (e.g. last names) tend to appear
in similar �elds. Hence, by observing value overlap across �elds, it is possible to parse the
results into �elds and discover correspondences across �elds at the same time. Dasu et al. [25]
signi�cantly extend this concept and extract a �signature� from each �eld in the database; this
signature summarizes the content of each column in the database. Then, the signatures are used
to identify �elds with similar values, �elds whose contents are subsets of other �elds and so on.

Even after parsing, data standardization, and identi�cation of similar �elds, it is not trivial to
match duplicate records. Misspellings and different conventions for recording the same informa-
tion still result in different, multiple representations of a unique object in the database. In the
next section, we describe techniques for measuring the similarity of individual �elds, and later,
in Section IV we describe techniques for measuring the similarity of entire records.

III. FIELD MATCHING TECHNIQUES

One of the most common sources of mismatches in database entries is the typographical
variations of string data. Therefore, duplicate detection typically relies on string comparison
techniques to deal with typographical variations. Multiple methods have been developed for this
task, and each method works well for particular types of errors. While errors might appear in
numeric �elds as well, the related research is still in its infancy.

In this section, we describe techniques that have been applied for matching �elds with string
data, in the duplicate record detection context. We also review brie�y some common approaches
for dealing with errors in numeric data.
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A. Character-based similarity metrics

The character-based similarity metrics are designed to handle well typographical errors. In
this section, we cover the following similarity metrics:

• Edit distance,
• Af�ne gap distance,
• Smith-Waterman distance,
• Jaro distance metric, and
• Q-gram distance.

Edit distance: The edit distance between two strings σ1 and σ2 is the minimum number of
edit operations of single characters needed to transform the string σ1 into σ2. There are three
types of edit operations:

• Insert a character into the string,
• Delete a character from the string, and
• Replace one character with a different character.

In the simplest form, each edit operation has cost 1. This version of edit distance is also
referred to as Levenshtein distance [49]. The basic dynamic programming algorithm [59] for
computing the edit distance between two strings takes O(|σ1| · |σ2|) time for two strings of
length |σ1| and |σ2|, respectively. Landau and Vishkin [48] presented an algorithm for detecting
in O(max{|σ1|, |σ2|}·k) whether two strings have edit distance less than k. (Notice that if ||σ1|−
|σ2|| > k then by de�nition the two strings do not match within distance k, so O(max{|σ1|, |σ2|}·
k) ∼ O(|σ1| · k) ∼ O(|σ2| · k), for the non-trivial case where ||σ1| − |σ2|| ≤ k.) Needleman
and Wunsch [60] modi�ed the original edit distance model, and allowed for different costs
for different edit distance operations. (For example, the cost of replacing O with 0 might be
smaller than the cost of replacing f with q.) Ristad and Yiannilos [73] presented a method for
automatically determining such costs from a set of equivalent words that are written in different
ways. The edit distance metrics work well for catching typographical errors, but they are typically
ineffective for other types of mismatches.

Af�ne gap distance: The edit distance metric described above does not work well when
matching strings that have been truncated, or shortened (e.g., �John R. Smith� vs. �Jonathan
Richard Smith�). The af�ne gap distance metric [95] offers a solution to this problem by
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Fig. 1. The Pinheiro and Sun similarity metric alignment for the strings σ1 = ABcDeFgH σ2 = AxByDzF .

introducing two extra edit operations: open gap and extend gap. The cost of extending the
gap is usually smaller than the cost of opening a gap, and this results in smaller cost penalties
for gap mismatches than the equivalent cost under the edit distance metric. The algorithm for
computing the af�ne gap distance requires O(a · |σ1| · |σ2|) time, when the maximum length of a
gap a ¿ min{|σ1|, |σ2|}. In the general case, the algorithm runs in approximately O(a2·|σ1|·|σ2|)
steps. Bilenko et al. [9], in a spirit similar to what Ristad and Yiannilos [73] proposed for edit
distance, describe how to train an edit distance model with af�ne gaps.

Smith-Waterman distance: Smith and Waterman [81] described an extension of edit distance
and af�ne gap distance, in which mismatches at the beginning and the end of strings have lower
costs than mismatches in the middle. This metric allows for better local alignment of the strings
(i.e., substring matching). Therefore, the strings �Prof. John R. Smith, University of Calgary�
and �John R. Smith, Prof.� can match within short distance using the Smith-Waterman distance,
since the pre�xes and suf�xes are ignored. The distance between two strings can be computed
using a dynamic programming technique, based on the Needleman and Wunsch algorithm [60].
The Smith and Waterman algorithm requires O(|σ1| · |σ2|) time and space for two strings of
length |σ1| and |σ2|; many improvements have been proposed (e.g., the BLAST algorithm [4]),
mainly in the context of computational biology applications. Pinheiro and Sun [70] proposed a
similar similarity measure, which tries to �nd the best character alignment for the two compared
strings σ1 and σ2, so that the number of character mismatches is minimized. For example, the
strings σ1 = ABcDeFgH and σ2 = AxByDzFH can be aligned as shown in Figure 1.

Jaro distance metric: Jaro [40] introduced a string comparison algorithm that was mainly used
for comparison of last and �rst names. The basic algorithm for computing the Jaro metric for
two strings σ1 and σ2 includes the following steps:

1) Compute the string lengths |σ1| and |σ2|,
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2) Find the �common characters� c in the two strings; common are all the characters σ1[j]

and σ2[j] for which σ1[i] = σ2[j] and |i− j| ≤ 1
2
min{|σ1|, |σ2|}.

3) Find the number of transpositions t; the number of transpositions is computed as follows:
We compare the ith common character in σ1 with the ith common character in σ2. Each
non-matching character is a transposition.

The Jaro comparison value is:

Jaro(σ1, σ2) =
1

3

(
c

|σ1| +
c

|σ2| +
c− t/2

c

)
. (1)

From the description of the Jaro algorithm, we can see that the Jaro algorithm requires O(|σ1|·
|σ2|) time for two strings of length |σ1| and |σ2|, mainly due to the Step 2 that computes the
�common characters� in the two strings. Winkler and Thibaudeau [101] modi�ed the Jaro metric
to give higher weight to pre�x matches, since pre�x matches are generally more important for
surname matching.

Q-grams: The q-grams are short character substrings1 of length q of the database strings [89],
[90]. The intuition behind the use of q-grams as a foundation for approximate string matching is
that when two strings σ1 and σ2 are similar they share a large number of q-grams in common.
Given a string σ, its q-grams are obtained by �sliding� a window of length q over the characters
of σ. Since q-grams at the beginning and the end of the string can have fewer than q characters
from σ, the strings are conceptually extended by �padding� the beginning and the end of the
string with q − 1 occurrences of a special padding character, not in the original alphabet. With
the appropriate use of hash-based indexes, the average time required for computing the q-gram
overlap between two strings σ1 and σ2 is O(max{|σ1|, |σ2|}). Letter q-grams, including trigrams,
bigrams, and/or unigrams, have been used in a variety of ways in text recognition and spelling
correction [47]. One natural extension of q-grams are the positional q-grams [83], which also
record the position of the q-gram in the string. Gravano et al. [34], [35] showed how to use
positional q-grams to locate ef�ciently similar strings within a relational database.

1The q-grams in our context are de�ned on the character level. In speech processing and in computational linguistics,
researchers often use the term n-gram, to refer to sequences of n words.
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B. Token-based similarity metrics

Character-based similarity metrics work well for typographical errors. However, it is often
the case that typographical conventions lead to rearrangement of words (e.g., �John Smith� vs.
�Smith, John�). In such cases, character-level metrics fail to capture the similarity of the entities.
Token-based metrics try to compensate for this problem.

Atomic strings: Monge and Elkan [57] proposed a basic algorithm for matching text �elds
based on atomic strings. An atomic string is a sequence of alphanumeric characters delimited
by punctuation characters. Two atomic strings match if they are equal, or if one is the pre�x of
the other. Based on this algorithm, the similarity of two �elds is the number of their matching
atomic strings divided by their average number of atomic strings.

WHIRL: Cohen [22] described a system named WHIRL that adopts from the information
retrieval the cosine similarity combined with the tf.idf weighting scheme to compute the similarity
of two �elds. Cohen separates each string σ into words and each word w is assigned a weight

vσ(w) = log(tf w + 1) · log(idfw)

where tf w is the number of times that w appears in the �eld and idfw is |D|
nw

, where nw is the
number of records in the database D that contain w. The tf.idf weight for a word w in a �eld is
high if w appears a large number of times in the �eld (large tf w) and w is a suf�ciently �rare�
term in the database (large idfw). For example, for a collection of company names, relatively
infrequent terms such as �AT&T� or �IBM� will have higher idf weights than more frequent
terms such as �Inc.� The cosine similarity of σ1 and σ2 is de�ned as

sim(σ1, σ2) =

∑|D|
j=1 vσ1(j) · vσ2(j)

||vσ1||2 · ||vσ2||2
The cosine similarity metric works well for a large variety of entries, and is insensitive to the

location of words, thus allowing natural word moves and swaps (e.g., �John Smith� is equivalent
to �Smith, John�). Also, introduction of frequent words affects only minimally the similarity of
the two strings due to the low idf weight of the frequent words. For example, �John Smith�
and � Mr. John Smith� would have similarity close to one. Unfortunately, this similarity metric
does not capture word spelling errors, especially if they are pervasive and affect many of the
words in the strings. For example, the strings �Compter Science Department� and �Deprtment
of Computer Scence� will have zero similarity under this metric. Bilenko et al. [9] suggest the
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SoftTF-IDF metric to solve this problem. In the SoftTF.IDF metric, pairs of tokens that are
�similar�2 (and not necessarily identical) are also considered in the computation of the cosine
similarity. However, the product of the weights for non-identical token pairs is multiplied by the
the similarity of the token pair, which is less than one.

Q-grams with tf.idf: Gravano et al. [36] extended the WHIRL system to handle spelling errors
by using q-grams, instead of words, as tokens. In this setting, a spelling error minimally affects
the set of common q-grams of two strings, so the two strings �Gteway Communications� and
�Comunications Gateway� have high similarity under this metric, despite the block move and
the spelling errors in both words. This metric handles the insertion and deletion of words nicely.
The string �Gateway Communications� matches with high similarity the string �Communications
Gateway International� since the q-grams of the word �International� appear often in the relation
and have low weight.

C. Phonetic similarity metrics

Character-level and token-based similarity metrics focus on the string-based representation of
the database records. However, strings may be phonetically similar even if they are not similar
in a character or token level. For example the word Kageonne is phonetically similar to Cajun
despite the fact that the string representations are very different. The phonetic similarity metrics
are trying to address such issues and match such strings.

Soundex: Soundex, invented by Russell [75], [76], is the most common phonetic coding
scheme. Soundex is based on the assignment of identical code digits to phonetically similar
groups of consonants and is used mainly to match surnames. The rules of Soundex coding are
as follows:

1) Keep the �rst letter of the surname as the pre�x letter and ignore completely all occurrences
of W and H in other positions;

2) Assign the following codes to the remaining letters:

• B,F, P, V → 1

• C,G, J,K, Q, S, X, Z → 2

• D, T → 3

2The token similarity is measured using a metric that works well for short strings, such as edit distance and Jaro.
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• L → 4

• M, N → 5

• R → 6

3) A, E, I, O, U and Y are not coded but serve as separators (see below);
4) Consolidate sequences of identical codes by keeping only the �rst occurrence of the code;
5) Drop the separators;
6) Keep the letter pre�x and the three �rst codes, padding with zeros if there are fewer than

three codes.

Newcombe [61] reports that the Soundex code remains largely unchanged, exposing about
two-thirds of the spelling variations observed in linked pairs of vital records, and that it sets
aside only a small part of the total discriminating power of the full alphabetic surname. The code
is designed primarily for Caucasian surnames, but works well for names of many different origins
(such as those appearing on the records of the U.S. Immigration and Naturalization Service).
However, when the names are of predominantly East Asian origin, this code is less satisfactory,
because much of the discriminating power of these names resides in the vowel sounds, which
the code ignores.

New York State Identi�cation and Intelligence System (NYSIIS): The NYSIIS system, proposed
by Taft [85], differs from Soundex in that it retains information about the position of vowels
in the encoded word by converting most vowels to the letter A. Furthermore, NYSIIS does not
use numbers to replace letters; instead it replaces consonants with other, phonetically similar
letters, thus returning a purely alpha code (no numeric component). Usually the NYSIIS code
for a surname is based on a maximum of nine letters of the full alphabetical name, and the
NYSIIS code itself is then limited to six characters. Tafts [85] compared Soundex with NYSIIS,
using a name database of New York State, and concluded that NYSIIS is 98.72% accurate, while
Soundex is 95.99% accurate for locating surnames. The NYSIIS encoding system is still used
today from the New York State Division of Criminal Justice Services.

Oxford Name Compression Algorithm (ONCA): ONCA [33] is a two-stage technique, designed
to overcome most of the unsatisfactory features of pure Soundex-ing, retaining in parallel the
convenient four-character �xed-length format. In the �rst step, ONCA uses a British version
of the NYSIIS method of compression. Then, in the second step, the transformed and partially
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compressed name is Soundex-ed in the usual way. This two-stage technique has been used
successfully for grouping similar names together.

Metaphone and Double Metaphone: Philips [68] suggested the Metaphone algorithm as a
better alternative to Soundex. Philips suggested using 16 consonant sounds that can describe a
large number of sounds used in many English and non-English words. Double Metaphone [69] is
a better version of Metaphone, improving some encoding choices made in the initial Metaphone
and allowing multiple encodings for names that have various possible pronunciations. For such
cases, all possible encodings are tested when trying to retrieve similar names. The introduction
of multiple phonetic encodings greatly enhances the matching performance, with rather small
overhead. Philips suggested that, at most, 10% of American surnames have multiple encodings.

D. Numeric Similarity Metrics

While multiple methods exist for detecting similarities of string-based data, the methods for
capturing similarities in numeric data are rather primitive. Typically, the numbers are treated
as strings (and compared using the metrics described above) or simple range queries, which
locate numbers with similar values. Koudas et al. [46] suggest, as direction for future research,
consideration of the distribution and type of the numeric data, or extending the notion of cosine
similarity for numeric data [2] to work well for duplicate detection purposes.

E. Concluding Remarks

The large number of �eld comparison metrics re�ects the large number of errors or transfor-
mations that may occur in real-life data. Unfortunately, there are very few studies that compare
the effectiveness of the various distance metrics presented here. Yancey [103] shows that the
Jaro-Winkler metric works well for name matching tasks for data coming from U.S. census. A
notable comparison effort is the work of Bilenko et al. [9], who compare the effectiveness of
character-based and token-based similarity metrics. They show that the Monge-Elkan metric has
the highest average performance across data sets and across character-based distance metrics.
They also show that the SoftTF.IDF metric works better than any other metric. However, Bilenko
et al. emphasize that no single metric is suitable for all data sets. Even metrics that demonstrate
robust and high performance for some data sets can perform poorly on others. Hence, they
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advocate more �exible metrics that can accommodate multiple similarity comparisons (e.g., [9],
[87]). In the next section we review such approaches.

IV. DETECTING DUPLICATE RECORDS

In the previous section we described methods that can be used to match individual �elds of
a record. In most real-life situations, however, the records consist of multiple �elds, making the
duplicate detection problem much more complicated. In this section, we review methods that are
used for matching records with multiple �elds. The presented methods can be broadly divided
into two categories:

• Approaches that rely on training data to �learn� how to match the records. This category
includes (some) probabilistic approaches and supervised machine learning techniques.

• Approaches that rely on domain knowledge or on generic distance metrics to match records.
This category includes approaches that use declarative languages for matching, and ap-
proaches that devise distance metrics appropriate for the duplicate detection task.

The rest of this section is organized as follows: initially, in Section IV-A we describe the
notation. In Section IV-B we present probabilistic approaches for solving the duplicate detection
problem. In Section IV-C we list approaches that use supervised machine learning techniques and
in Section IV-D we describe variations based on active learning methods. Section IV-E describes
distance-based methods and Section IV-F describes declarative techniques for duplicate detec-
tion. Finally, Section IV-G covers unsupervised machine learning techniques, and Section IV-H
provides some concluding remarks.

A. Notation

We use A and B to denote the tables that we want to match, and we assume, without loss
of generality, that A and B have n comparable �elds. In the duplicate detection problem, each
tuple pair 〈α, β〉, (α ∈ A, β ∈ B), is assigned to one of the two classes M and U . The class M

contains the record pairs that represent the same entity (�match�) and the class U contains the
record pairs that represent two different entities (�non-match�).

We represent each tuple pair 〈α, β〉 as a random vector x = [x1, . . . , xn]T with n components
that correspond to the n comparable �elds of A and B. Each xi shows the level of agreement
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of the ith �eld for the records α and β. Many approaches use binary values for the xi's and set
xi = 1 if �eld i agrees and let xi = 0 if �eld i disagrees.

B. Probabilistic Matching Models

Newcombe et al. [64] were the �rst to recognize duplicate detection as a Bayesian inference
problem. Then, Fellegi and Sunter [31] formalized the intuition of Newcombe et al. and intro-
duced the notation that we use, which is also commonly used in duplicate detection literature.
The comparison vector x is the input to a decision rule that assigns x to U or to M . The
main assumption is that x is a random vector whose density function is different for each of
the two classes. Then, if the density function for each class is known, the duplicate detection
problem becomes a Bayesian inference problem. In the following sections, we will discuss
various techniques that have been developed for addressing this (general) decision problem.

1) The Bayes Decision Rule for Minimum Error: Let x be a comparison vector, randomly
drawn from the comparison space that corresponds to the record pair 〈α, β〉. The goal is to
determine whether 〈α, β〉 ∈ M or 〈α, β〉 ∈ U . A decision rule, based simply on probabilities,
can be written as follows:

〈α, β〉 ∈




M if p(M |x) ≥ p(U |x)

U otherwise
(2)

This decision rule indicates that if the probability of the match class M , given the comparison
vector x, is larger than the probability of the non-match class U , then x is classi�ed to M , and
vice versa. By using the Bayes theorem, the previous decision rule may be expressed as:

〈α, β〉 ∈




M if l(x) = p(x|M)
p(x|U ) ≥ p(U)

p(M)

U otherwise
(3)

The ratio
l(x) =

p(x|M)

p(x|U)
(4)

is called the likelihood ratio. The ratio p(U)
p(M)

denotes the threshold value of the likelihood ratio
for the decision. We refer to the decision rule in Equation 3 as the Bayes test for minimum
error. It can be easily shown [38] that the Bayes test results in the smallest probability of error,
and it is in that respect an optimal classi�er. Of course this holds only when the distributions
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of p(x|M), p(x|U) and the priors p(U) and p(M) are known; this unfortunately is very rarely
the case.

One common approach, usually called Naive Bayes, to compute the distributions of p(x|M)

and p(x|U) is to make a conditional independence assumption, and postulate that the probabilities
p(xi|M) and p(xj|M) are independent if i 6= j. (Similarly, for p(xi|U) and p(xj|U).) In that
case, we have

p(x|M) =
n∏

i=i

p(xi|M)

p(x|U) =
n∏

i=i

p(xi|U)

The values of p(xi|M) and p(xi|U) can be computed using a training set of pre-labeled record
pairs. However, the probabilistic model can also be used without using training data. Jaro [41]
used a binary model for the values of xi (i.e., if the �eld i �matches� xi = 1, else xi = 0) and
suggested using an expectation maximization (EM) algorithm [26] to compute the probabilities
p(xi = 1|M). The probabilities p(xi = 1|U) can be estimated by taking random pairs of records
(which are with high probability in U ).

When the conditional independence is not a reasonable assumption, then Winkler [97] sug-
gested using the general expectation maximization algorithm to estimate p(x|M), p(x|U). In [99],
Winkler claims that the general, unsupervised EM algorithm works well under �ve conditions:

1) the data contain a relatively large percentage of matches (more than 5%),
2) the matching pairs are �well-separated� from the other classes,
3) the rate of typographical errors is low,
4) there are suf�ciently many redundant identi�ers to overcome errors in other �elds of the

record, and
5) the estimates computed under the conditional independence assumption result in good

classi�cation performance.

Winkler [99] shows how to relax the assumptions above (including the conditional indepen-
dence assumption) and still get good matching results. Winkler shows that a semi-supervised
model, which combines labeled and unlabeled data (similar to Nigam et al. [65]), performs better
than purely unsupervised approaches. When no training data is available, unsupervised EM works
well, even when a limited number of interactions is allowed between the variables. Interestingly,
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the results under the independence assumption are not considerably worse compared to the case
in which the EM model allows variable interactions.

Du Bois [28] pointed out the importance of the fact that many times �elds have missing
(null) values and proposed a different method to correct mismatches that occur due to missing
values. Du Bois suggested using a new comparison vector x∗ with dimension 2n instead of the
n-dimensional comparison vector x, such that

x∗ = (x1, x2, . . . , xn, x1y1, x2y2, . . . , xnyn) (5)

where

yi =





1 if the i-th �eld on both records is present,
0 otherwise.

(6)

Using this representation, mismatches that occur due to missing data are typically discounted,
resulting in improved duplicate detection performance. Du Bois proposed using an independence
model to learn the distributions of p(xiyi|M) and p(xiyi|U) by using a set of pre-labeled training
record pairs.

2) The Bayes Decision Rule for Minimum Cost: Often, in practice, the minimization of the
probability of error is not the best criterion for creating decision rules, as the misclassi�cations
of M and U samples may have different consequences. Therefore, it is appropriate to assign a
cost cij to each situation, which is the cost of deciding that x belongs to the class i when x

actually belongs to the class j. Then, the expected costs rM(x) and rU(x) of deciding that x

belongs to the class M and U , respectively, are:

rM(x) = cMM · p(M |x) + cMU · p(U |x)

rU(x) = cUM · p(M |x) + cUU · p(U |x)

In that case, the decision rule for assigning x to M becomes:

〈α, β〉 ∈




M if rM(x) < rU(x)

U otherwise
(7)

It can be easily proved [29] that the minimum cost decision rule for the problem can be stated
as:

〈α, β〉 ∈




M if l(x) > (cMU−cUU )·p(U)
(cUM−cMM )·p(M)

U otherwise
(8)
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Comparing the minimum error and minimum cost decision rule, we notice that the two decision
rules become the same for the special setting of the cost functions to cUM − cMM = cMU − cUU .
In this case, the cost functions are termed symmetrical. For a symmetrical cost function, the cost
becomes the probability of error and the Bayes test for minimum cost speci�cally addresses and
minimizes this error.

3) Decision with a Reject Region: Using the Bayes Decision rule when the distribution
parameters are known leads to optimal results. However, even in an ideal scenario, when the
likelihood ratio l(x) is close to the threshold, the error (or cost) of any decision is high [29].
Based on this well-known and general idea in decision theory, Fellegi and Sunter [31], suggested
adding an extra �reject� class in addition to the classes M and U . The reject class contained
record pairs for which it is not possible to make any de�nite inference, and a �clerical review�
is necessary. These pairs are examined manually by experts to decide whether they are true
matches or not. By setting thresholds for the conditional error on M and U , we can de�ne the
reject region and the reject probability, which measure the probability of directing a record pair
to an expert for review.

Tepping [88] was the �rst to suggest a solution methodology focusing on the costs of the
decision. He presented a graphical approach for estimating the likelihood thresholds. Verykios
et al. [93] developed a formal framework for the cost-based approach taken by Tepping which
shows how to compute the thresholds for the three decision areas when the costs and the priors
P (M) and P (U) are known.

The �reject region� approach can be easily extended to a larger number of decision areas [92].
The main problem with such a generalization is appropriately ordering the thresholds which
determine the regions in a way that no region disappears.

C. Supervised and Semi-Supervised Learning

The probabilistic model uses a Bayesian approach to classify record pairs into two classes,
M and U . This model was widely used for duplicate detection tasks, usually as an application
of the Fellegi-Sunter model. While the Fellegi-Sunter approach dominated the �eld for more
than two decades, the development of new classi�cation techniques in the machine learning
and statistics communities prompted the development of new deduplication techniques. The
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supervised learning systems rely on the existence of training data in the form of record pairs,
pre-labeled as matching or not.

One set of supervised learning techniques treat each record pair 〈α, β〉 independently, similarly
to the probabilistic techniques of Section IV-B. Cochinwala et al. [19] used the well-known
CART algorithm [12], which generates classi�cation and regression trees, a linear discriminant
algorithm [38], which generates linear combination of the parameters for separating the data
according to their classes, and a �vector quantization� approach, which is a generalization of
nearest neighbor algorithms. The experiments which were conducted indicate that CART has
the smallest error percentage. Bilenko et al. [9] use SVMlight [42] to learn how to merge the
matching results for the individual �elds of the records. Bilenko et al. showed that the SVM
approach usually outperforms simpler approaches, such as treating the whole record as one large
�eld. A typical post-processing step for these techniques (including the probabilistic techniques
of Section IV-B) is to construct a graph for all the records in the database, linking together the
matching records. Then, using the transitivity assumption, all the records that belong to the same
connected component are considered identical [58].

The transitivity assumption can sometimes result in inconsistent decisions. For example, 〈α, β〉
and 〈α, γ〉 can be considered matches, but 〈β, γ〉 not. Partitioning such �inconsistent� graphs with
the goal of minimizing inconsistencies is an NP-complete problem [6]. Bansal et al. [6] propose
a polynomial approximation algorithm that can partition such a graph, identifying automatically
the clusters and the number of clusters in the dataset. Cohen and Richman [23] proposed a
supervised approach in which the system learns from training data how to cluster together
records that refer to the same real-world entry. The main contribution of this approach is the
adaptive distance function which is learned from a given set of training examples. McCallum
and Wellner [55] learn the clustering method using training data; their technique is equivalent
to a graph partitioning technique that tries to �nd the min-cut and the appropriate number of
clusters for the given data set, similarly to the work of Bansal et al. [6].

The supervised clustering techniques described above have records as nodes for the graph.
Singla and Domingos [80] observed that by using attribute values as nodes, it is possible
to propagate information across nodes and improve duplicate record detection. For example,
if the records 〈Google,MountainView ,CA〉 and 〈GoogleInc.,MountainView ,California〉 are
deemed equal, then CA and California are also equal, and this information can be useful
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for other record comparisons. The underlying assumption is that the only differences are due
to different representations of the same entity (e.g., �Google� and �Google Inc.�) and that
there is no erroneous information in the attribute values (e.g., by mistake someone entering
Bismarck ,ND as the location of Google headquarters). Pasula et al. [66] propose a semi-
supervised probabilistic relational model that can handle a generic set of transformations. While
the model can handle a large number of duplicate detection problems, the use of exact inference
results in a computationally intractable model. Pasula et al. propose to use a Markov Chain
Monte Carlo (MCMC) sampling algorithm to avoid the intractability issue. However, it is unclear
whether techniques that rely on graph-based probabilistic inference can scale well for data sets
with hundreds of thousands of records.

D. Active-Learning-Based Techniques

One of the problems with the supervised learning techniques is the requirement for a large
number of training examples. While it is easy to create a large number of training pairs that are
either clearly non-duplicates or clearly duplicates, it is very dif�cult to generate ambiguous cases
that would help create a highly accurate classi�er. Based on this observation, some duplicate
detection systems used active learning techniques [24] to automatically locate such ambiguous
pairs. Unlike an �ordinary� learner that is trained using a static training set, an �active� learner
actively picks subsets of instances from unlabeled data, which, when labeled, will provide the
highest information gain to the learner.

Sarawagi and Bhamidipaty [78] designed ALIAS, a learning based duplicate detection system,
that uses the idea of a �reject region� (see Section IV-B.3) to signi�cantly reduce the size of
the training set. The main idea behind ALIAS is that most duplicate and non-duplicate pairs
are clearly distinct. For such pairs, the system can automatically categorize them in U and M

without the need of manual labeling. ALIAS requires humans to label pairs only for cases where
the uncertainty is high. This is similar to the �reject region� in the Fellegi and Sunter model,
which marked ambiguous cases as cases for clerical review.

ALIAS starts with small subsets of pairs of records designed for training, which have been
characterized as either matched or unique. This initial set of labeled data forms the training data
for a preliminary classi�er. In the sequel, the initial classi�er is used for predicting the status of
unlabeled pairs of records. The initial classi�er will make clear determinations on some unlabeled
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instances but lack determination on most. The goal is to seek out from the unlabeled data pool
those instances which, when labeled, will improve the accuracy of the classi�er at the fastest
possible rate. Pairs whose status is dif�cult to determine serve to strengthen the integrity of the
learner. Conversely, instances in which the learner can easily predict the status of the pairs do not
have much effect on the learner. Using this technique, ALIAS can quickly learn the peculiarities
of a data set and rapidly detect duplicates using only a small number of training data.

Tejada et al. [86], [87] used a similar strategy and employed decision trees to teach rules
for matching records with multiple �elds. Their method suggested that by creating multiple
classi�ers, trained using slightly different data or parameters, it is possible to detect ambiguous
cases and then ask the user for feedback. The key innovation in this work is the creation of
several redundant functions and the concurrent exploitation of their con�icting actions in order
to discover new kinds of inconsistencies among duplicates in the data set.

E. Distance-Based Techniques

Even active learning techniques require some training data or some human effort to create the
matching models. In the absence of such training data or ability to get human input, supervised
and active learning techniques are not appropriate. One way of avoiding the need for training
data is to de�ne a distance metric for records, which does not need tuning through training data.
Using the distance metric and an appropriate matching threshold, it is possible to match similar
records, without the need for training.

One approach is to treat a record as a long �eld, and use one of the distance metrics described
in Section III to determine which records are similar. Monge and Elkan [57], [58] proposed a
string matching algorithm for detecting highly similar database records. The basic idea was to
apply a general purpose �eld matching algorithm, especially one that is able to account for gaps in
the strings, to play the role of the duplicate detection algorithm. Similarly, Cohen [20] suggested
to use the tf.idf weighting scheme (see Section III-B), together with the cosine similarity metric
to measure the similarity of records. Koudas et al. [46] presented some practical solutions to
problems encountered during the deployment of such a string-based duplicate detection system
at AT&T.

Distance-based approaches that con�ate each record in one big �eld may ignore important
information that can be used for duplicate detection. A simple approach is to measure the distance
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between individual �elds, using the appropriate distance metric for each �eld, and then compute
the weighted distance [27] between the records. In this case, the problem is the computation
of the weights, and the overall setting becomes very similar to the probabilistic setting that we
discussed in Section IV-B. An alternative approach, proposed by Guha et al. [37] is to create a
distance metric that is based on ranked list merging. The basic idea is that if we compare only
one �eld from the record, the matching algorithm can easily �nd the best matches and rank
them according to their similarity, putting the best matches �rst. By applying the same principle
for all the �elds, we can get, for each record, n ranked lists of records, one for each �eld.
Then, the goal is to create a rank of records that has the minimum aggregate rank distance when
compared to all the n lists. Guha et al. map the problem into the minimum cost perfect matching
problem, and develop then ef�cient solutions for identifying the top-k matching records. The �rst
solution is based on the Hungarian Algorithm [3], a graph-theoretic algorithm that solves the
minimum cost perfect matching problem. Guha et al. also present the Successive Shortest Paths
algorithm that works well for smaller values of k and is based on the idea that it is not required
to examine all potential matches to identify the top-k matches. Both of the proposed algorithms
are implemented in T-SQL and are directly deployable over existing relational databases.

The distance-based techniques described so far, treat each record as a �at entity, ignoring
the fact that data is often stored in relational databases, in multiple tables. Ananthakrishna
et al. [5] describe a similarity metric that uses not only the textual similarity, but the �co-
occurrence� similarity of two entries in a database. For example, the entries in the state column
�CA� and �California� have small textual similarity; however, the city entries �San Francisco,�
�Los Angeles,� �San Diego� and so on, often have foreign keys that point both to �CA�
and �California.� Therefore, it is possible to infer that �CA� and �California� are equivalent.
Ananthakrishna et al. show that by using �foreign key co-occurrence� information, they can
substantially improve the quality of duplicate detection in databases that use multiple tables to
store the entries of a record. This approach is conceptually similar to the work of Perkowitz et
al. [67] and of Dasu et al. [25], which examine the contents of �elds to locate the matching
�elds across two tables (see Section II).

Finally, one of the problems of the distance-based techniques is the need to de�ne the
appropriate value for the matching threshold. In the presence of training data, it is possible to �nd
the appropriate threshold value. However, this would nullify the major advantage of distance-
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based techniques, which is the ability to operate without training data. Recently, Chaudhuri et
al. [16] proposed a new framework for distance-based duplicate detection, observing that the
distance thresholds for detecting real duplicate entries is different from each database tuple. To
detect the appropriate threshold, Chaudhuri et al. observed that entries that correspond to the
same real-world object but have different representation in the database, tend to (1) have small
distances from each other (compact set property), and to (2) have only a small number of other
neighbors within a small distance (sparse neighborhood property). Furthermore, Chaudhuri et
al. propose an ef�cient algorithm for computing the required threshold for each object in the
database, and show that the quality of the results outperforms approaches that rely on a single,
global threshold.

F. Rule-based Approaches

A special case of distance-based approaches is the use of rules to de�ne whether two records
are the same or not. Rule-based approaches can be considered as distance-based techniques,
where the distance of two records is either 0 or 1. Wang and Madnick [94] proposed a rule-
based approach for the duplicate detection problem. For cases in which there is no global key,
Wang and Madnick suggest the use of rules developed by experts to derive a set of attributes
that collectively serve as a �key� for each record. For example, an expert might de�ne rules
such as

IF age< 22 THEN status = undergraduate

ELSE status = graduate

IF distanceFromHome > 10 THEN transportation = car

ELSE transportation = bicycle

By using such rules, Wang and Madnick hoped to generate unique keys that can cluster
multiple records that represent the same real-world entity. Lim et al. [50] also used a rule-
based approach, but with the extra restriction that the result of the rules must always be correct.
Therefore, the rules should not be heuristically-de�ned but should re�ect absolute truths and
serve as functional dependencies.

Hernández and Stolfo [39] further developed this idea and derived an equational theory that
dictates the logic of domain equivalence. This equational theory speci�es an inference about the
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similarity of the records. For example, if two persons have similar name spellings, and these
persons have the same address, we may infer that they are the same person. Specifying such an
inference in the equational theory requires declarative rule language. For example, the following
is a rule that exempli�es one axiom of the equational theory developed for an employee database:

FORALL (r1,r2) in EMPLOYEE

IF r1.name is similar to r2.name AND

r1.address = r2.address

THEN r1 matches r2

Note that �similar to� is measured by one of the string comparison techniques (Section III),
and �matches� means to declare that those two records are matched and therefore represent the
same person.

AJAX [32] is a prototype system that provides a declarative language for specifying data
cleaning programs, consisting of SQL statements enhanced with a set of primitive operations
to express various cleaning transformations. AJAX provides a framework wherein the logic of
a data cleaning program is modeled as a directed graph of data transformations starting from
some input source data. Four types of data transformations are provided to the user of the
system. The mapping transformation standardizes data, the matching transformation �nds pairs
of records that probably refer to the same real object, the clustering transformation groups
together matching pairs with a high similarity value, and �nally, the merging transformation
collapses each individual cluster into a tuple of the resulting data source.

It is noteworthy that such rule-based approaches, which require a human expert to devise
meticulously crafted matching rules, typically result in systems with high accuracy. However,
the required tuning requires extremely high manual effort from the human experts, and this effort
makes the deployment of such systems dif�cult in practice. Currently, the typical approach is to
use a system that generates matching rules from training data (see Sections IV-C and IV-D) and
then manually tune the automatically generated rules.

G. Unsupervised Learning

As we mentioned earlier, the comparison space consists of comparison vectors which contain
information about the differences between �elds in a pair of records. Unless some information
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exists about which comparison vectors correspond to which category (match, non-match, or
possible-match), the labeling of the comparison vectors in the training data set should be done
manually. One way to avoid manual labeling of the comparison vectors is to use clustering
algorithms, and group together similar comparison vectors. The idea behind most unsupervised
learning approaches for duplicate detection is that similar comparison vectors correspond to the
same class.

The idea of unsupervised learning for duplicate detection has its roots in the probabilistic model
proposed by Fellegi and Sunter (see Section IV-B). As we discussed in Section IV-B, when there
are no training data to compute the probability estimates, it is possible to use variations of the
Expectation Maximization algorithm to identify appropriate clusters in the data.

Verykios et al. [91] propose the use of a bootstrapping technique based on clustering to learn
matching models. The basic idea, also known as co-training [10], is to use very few labeled
data, and then use unsupervised learning techniques to label appropriately the data with unknown
labels. Initially, Verykios et al. treat each entry of the comparison vector (which corresponds to
the result of a �eld comparison) as a continuous, real variable. Then, they partition the comparison
space into clusters by using the AutoClass [17] clustering tool. The basic premise is that each
cluster contains comparison vectors with similar characteristics. Therefore all the record pairs
in the cluster belong to the same class (matches, non-matches, or possible-matches). Thus, by
knowing the real class of only a few vectors in each cluster, it is possible to infer the class of
all vectors in the cluster, and therefore mark the corresponding record pairs as matches or not.
Elfeky et al. [30] implemented this idea in TAILOR, a toolbox for detecting duplicate entries
in data sets. Verykios et al. show that the classi�ers generated using the new, larger training set
have high accuracy, and require only a minimal number of pre-labeled record pairs.

Ravikumar and Cohen [72] follow a similar approach and propose a hierarchical, graphical
model for learning to match record pairs. The foundation of this approach is to model each
�eld of the comparison vector as a latent binary variable which shows whether the two �elds
match or not. The latent variable then de�nes two probability distributions for the values of the
corresponding �observed� comparison variable. Ravikumar and Cohen show that it is easier to
learn the parameters of a hierarchical model than to attempt to directly model the distributions
of the real-valued comparison vectors. Bhattacharya and Getoor [8] propose to use the Latent
Dirichlet Allocation generative model to perform duplicate detection. In this model, the latent
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variable is a unique identi�er for each entity in the database.

H. Concluding Remarks

There are multiple techniques for duplicate record detection. We can divide the techniques into
two broad categories: ad-hoc techniques that work quickly on existing relational databases, and
more �principled� techniques that are based on probabilistic inference models. While probabilistic
methods outperform ad-hoc techniques in terms of accuracy, the ad-hoc techniques work much
faster and can scale to databases with hundreds of thousands of records. Probabilistic inference
techniques are practical today only for data sets that are one or two orders of magnitude smaller
than the data sets handled by ad-hoc techniques. A promising direction for future research is
to devise techniques that can substantially improve the ef�ciency of approaches that rely on
machine learning and probabilistic inference.

A question that is unlikely to be resolved soon is the question of which of the presented
methods should be used for a given duplicate detection task. Unfortunately, there is no clear
answer to this question. The duplicate record detection task is highly data-dependent and it is
unclear if we will ever see a technique dominating all others across all data sets. The problem
of choosing the best method for duplicate data detection is very similar to the problem of model
selection and performance prediction for data mining: we expect that progress in that front will
also bene�t the task of selecting the best method for duplicate detection.

V. IMPROVING THE EFFICIENCY OF DUPLICATE DETECTION

So far, in our discussion of methods for detecting whether two records refer to the same real-
world object, we have focused mainly on the quality of the comparison techniques and not on
the ef�ciency of the duplicate detection process. Now, we turn to the central issue of improving
the speed of duplicate detection.

An elementary technique for discovering matching entries in tables A and B is to execute a
�nested-loop� comparison, i.e., to compare every record of table A with every record in table B.
Unfortunately, such strategy requires a total of |A| · |B| comparisons, a cost that is prohibitively
expensive even for the moderately-sized tables. In Section V-A we describe techniques that
substantially reduce the number of required comparisons.
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Another factor that can lead to increased computation expense is the cost required for a single
comparison. It is not uncommon for a record to contain tens of �elds. Therefore, each record
comparison requires multiple �eld comparisons and each �eld comparison can be expensive. For
example, computing the edit distance between two long strings σ1 and σ2, respectively, has a
cost of O(|σ1| · |σ2|); just checking if they are within a prespeci�ed edit distance threshold k

can reduce the complexity to O(max{|σ1|, |σ2|} · k) (see Section III-A). We examine some of
the methods that can be used to reduce the cost of record comparison in Section V-B.

A. Reducing the Number of Record Comparisons

1) Blocking: One �traditional� method for identifying identical records in a database table is
to scan the table and compute the value of a hash function for each record. The value of the
hash function de�nes the �bucket� to which this record is assigned. By de�nition, two records
that are identical will be assigned to the same bucket. Therefore, in order to locate duplicates, it
is enough to compare only the records that fall into the same bucket for matches. The hashing
technique cannot be used directly for approximate duplicates, since there is no guarantee that the
hash value of two similar records will be the same. However, there is an interesting counterpart
of this method, named blocking.

As discussed above with relation to utilizing the hash function, blocking typically refers to
the procedure of subdividing �les into a set of mutually exclusive subsets (blocks) under the
assumption that no matches occur across different blocks. A common approach to achieving
these blocks is to use a function such as Soundex, NYSIIS, or Metaphone (see Section III-C)
on highly discriminating �elds (e.g., last name) and compare only records that have similar, but
not necessarily identical, �elds.

Although blocking can increase substantially the speed of the comparison process, it can also
lead to an increased number of false mismatches due to the failure of comparing records that
do not agree on the blocking �eld. It can also lead to an increased number of missed matches
due to errors in the blocking step that placed entries in the wrong buckets, thereby preventing
them from being compared to actual matching entries. One alternative is to execute the duplicate
detection algorithm in multiple runs, each time using a different �eld for blocking. This approach
can reduce substantially the probability of false mismatches, with a relatively small increase in
the running time.
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2) Sorted Neighborhood Approach: Hernández and Stolfo [39] describe the so-called sorted
neighborhood approach. The method consists of the following three steps:

• Create key: A key for each record in the list is computed by extracting relevant �elds or
portions of �elds.

• Sort data: The records in the database are sorted by using the key found in the �rst step.
A sorting key is de�ned to be a sequence of attributes, or a sequence of sub-strings within
the attributes, chosen from the record in an ad hoc manner. Attributes that appear �rst in
the key have a higher priority than those that appear subsequently.

• Merge: A �xed size window is moved through the sequential list of records in order to
limit the comparisons for matching records to those records in the window. If the size of
the window is w records then every new record that enters that window is compared with
the previous w−1 records to �nd �matching� records. The �rst record in the window slides
out of it.

The sorted neighborhood approach relies on the assumption that duplicate records will be close
in the sorted list, and therefore will be compared during the merge step. The effectiveness of
the sorted neighborhood approach is highly dependent upon the comparison key that is selected
to sort the records. In general, no single key will be suf�cient to sort the records in such a way
that all the matching records can be detected. If the error in a record occurs in the particular
�eld or portion of the �eld that is the most important part of the sorting key, there is a very
small possibility that the record will end up close to a matching record after sorting.

To increase the number of similar records merged, Hernández and Stolfo implemented a
strategy for executing several independent runs of the sorted-neighborhood method (presented
above) by using a different sorting key and a relatively small window each time. This strategy
is called the multi-pass approach. This method is similar in spirit to the multiple-run blocking
approach described above. Each independent run produces a set of pairs of records that can be
merged. The �nal results, including the transitive closure of the records matched in different
passes, is subsequently computed.

3) Clustering and Canopies: Monge and Elkan [58] try to improve the performance of a
basic �nested-loop� record comparison, by assuming that duplicate detection is transitive. This
means that if α is deemed duplicate of β and β is deemed duplicate of γ then α and γ are also
duplicates. Under the assumption of transitivity, the problem of matching records in a database
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can be described in terms of determining the connected components of an undirected graph.
At any time, the connected components of the graph correspond to the transitive closure of
the �record matches� relationships discovered so far. Monge and Elkan [58] use a union-�nd
structure to ef�ciently compute the connected components of the graph. During the Union step,
duplicate records are �merged� into a cluster and only a �representative� of the cluster is kept for
subsequent comparisons. This reduces the total number of record comparisons, without reducing
substantially the accuracy of the duplicate detection process. The concept behind this approach,
is that if a record α is not similar to a record β already in the cluster, then it will not match the
other members of the cluster either.

McCallum et al. [54] propose the use of canopies for speeding up the duplicate detection
process. The basic idea is to use a cheap comparison metric to group records into overlapping
clusters called canopies. (This is in contrast to blocking that requires hard, non-overlapping
partitions.) After the �rst step, the records are then compared pairwise, using a more expensive
similarity metric that leads to better qualitative results. The assumption behind this method is that
there is an inexpensive similarity function that can be used as a �quick-and-dirty� approximation
for another, more expensive function. For example, if two strings have length difference larger
than 3, then their edit distance cannot be smaller than 3. In that case, the length comparison serves
as a cheap (canopy) function for the more expensive edit distance. Cohen and Richman [23]
propose the tf.idf similarity metric as a canopy distance, and then use multiple (expensive)
similarity metrics to infer whether two records are duplicates. Gravano et al. [35] propose using
the string lengths and the number of common q-grams of two strings as canopies (�lters according
to [35]) for the edit distance metric, which is expensive to compute in a relational database.
The advantage of this technique is that the canopy functions can be evaluated ef�ciently using
vanilla SQL statements. In a similar fashion, Chaudhuri et al. [15] propose using an indexable
canopy function for easily identifying similar tuples in a database. Baxter et al. [7] perform
an experimental comparison of canopy-based approaches with traditional blocking and show
that the �exible nature of canopies can signi�cantly improve the quality and speed of duplicate
detection.

4) Set Joins: Another direction towards ef�ciently implementing data cleaning operations is
to speed-up the execution of set operations: large number of similarity metrics, discussed in
Section III, use set operations as part of the overall computation. Running set operations on all
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pair combinations is a computationally expensive operation and is typically unnecessary. For
data cleaning applications, the interesting pairs are only those in which the similarity value is
high. Many techniques use this property and suggest algorithms for fast computation of set-based
operations on a set of records.

Cohen [20] proposed using a set of in-memory inverted indexes together with an A∗ search
algorithm to locate the top-k most similar pairs, according to the cosine similarity metric. Soffer
et al. [82], mainly in the context of information retrieval, suggest pruning the inverted index,
removing terms with low weights since they do not contribute much to the computation of
the tf.idf cosine similarity. Gravano et al. [36] present an SQL-based approach that is anal-
ogous to the approach of Soffer et al. [82], and allows fast computation of cosine similarity
within an RDBMS. Mamoulis [51] presents techniques for ef�ciently processing a set join in
a database, focusing on the containment and non-zero-overlap operators. Mamoulis shows that
inverted indexes are typically superior to approaches based on signature �les, con�rming earlier
comparison studies [104]. Sarawagi and Kirpal [79] extend the set joins approach to a large
number of similarity predicates that use set joins. The Probe-Cluster approach of Sarawagi
and Kirpal works well in environments with limited main memory, and can be used to compute
ef�ciently a large number of similarity predicates, in contrast to previous approaches which were
tuned for a smaller number of similarity predicates (e.g., set containment, or cosine similarity).
Furthermore, Probe-Cluster returns exact values for the similarity metrics, in contrast to previous
approaches which used approximation techniques.

B. Improving the Ef�ciency of Record Comparison

So far, we have examined techniques that reduce the number of required record comparisons
without compromising the quality of the duplicate detection process. Another way of improving
the ef�ciency of duplicate detection is to improve the ef�ciency of a single record comparison.
Next, we review some of these techniques.

When comparing two records, after having computed the differences of only a small portion
of the �elds of two records, it may be obvious that the pair does match, irrespective of the results
of further comparison. Therefore, it is paramount to determine the �eld comparison for a pair
of records as soon as possible to avoid wasting additional, valuable time. The �eld comparisons
should be terminated when even complete agreement of all the remaining �elds cannot reverse
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the unfavorable evidence for the matching of the records [62]. To make the early termination
work, the global likelihood ratio for the full agreement of each of the identi�ers should be
calculated. At any given point in the comparison sequence, the maximum collective favorable
evidence, which could be accumulated from that point forward, will indicate what improvement
in the overall likelihood ratio might conceivably result if the comparisons were continued.

Verykios et al. [91] propose a set of techniques for reducing the complexity of record compari-
son. The �rst step is to apply a feature subset selection algorithm for reducing the dimensionality
of the input set. By using a feature selection algorithm (e.g., [44]) as a preprocessing step the
record comparison process uses only a small subset of the record �elds, which speeds up the
comparison process. Additionally, the induced model can be generated in a reduced amount of
time and is usually characterized by higher predictive accuracy. Verykios et al. [91] also suggest
using a pruning technique on the derived decision trees that are used to classify record pairs as
matches or mismatches. Pruning produces models (trees) of smaller size not only avoid over-
�tting and have a higher accuracy, but also allow for faster execution of the matching algorithm.

VI. DUPLICATE DETECTION TOOLS

Over the past several years, a range of tools for cleaning data has appeared on the market
and research groups have made available to the public software packages that can be used for
duplicate record detection. In this section, we review such packages, focusing on tools that have
open architecture and allow the users to understand the underlying mechanics of the matching
mechanisms.

The Febrl system3 (Freely Extensible Biomedical Record Linkage) is an open-source data
cleaning toolkit, and it has two main components: The �rst component deals with data stan-
dardization and the second performs the actual duplicate detection. The data standardization
relies mainly on hidden-Markov models (HMMs); therefore, Febrl typically requires training to
correctly parse the database entries. For duplicate detection, Febrl implements a variety of string
similarity metrics, such as Jaro, edit distance, and q-gram distance (see Section III). Finally,
Febrl supports phonetic encoding (Soundex, NYSIIS, and Double Metaphone) to detect similar
names. Since phonetic similarity is sensitive to errors in the �rst letter of a name, Febrl also

3http://sourceforge.net/projects/febrl
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computes phonetic similarity using the reversed version of the name string, sidestepping the
��rst-letter� sensitivity problem.

TAILOR [30] is a �exible record matching toolbox, which allows the users to apply different
duplicate detection methods on the data sets. The �exibility of using multiple models is useful
when the users do not know which duplicate detection model will perform most effectively
on their particular data. TAILOR follows a layered design, separating comparison functions
from the duplicate detection logic. Furthermore, the execution strategies, which improve the
ef�ciency are implemented in a separate layer, making the system more extensible than systems
that rely on monolithic designs. Finally, TAILOR reports statistics, such as estimated accuracy
and completeness, which can help the users understand better the quality of the a given duplicate
detection execution over a new data set.

WHIRL4 is a duplicate record detection system available for free for academic and research
use. WHIRL uses the tf.idf token-based similarity metric to identify similar strings within two
lists. The Flamingo Project5 is a similar tools that provides a simple string matching tool that
takes as input two string lists and returns the strings pairs that are within a prespeci�ed edit
distance threshold. WizSame by WizSoft is also a product that allows the discovery of duplicate
records in a database. The matching algorithm is very similar to SoftTF.IDF (see Section III-B):
two records match if they contain a signi�cant fraction of identical or similar words, where
similar are the words that are within edit distance one.

BigMatch [102] is the duplicate detection program used by the U.S. Census Bureau. It relies
on blocking strategies to identify potential matches between the records of two relations, and
scales well for very large data sets. The only requirement is that one of the two relations should
�t in memory, and it is possible to �t in memory even relations with 100 million records. The
main goal of BigMatch is not to perform sophisticated duplicate detection, but rather to generate
a set of candidate pairs that should be then processed by more sophisticated duplicate detection
algorithms.

Finally, we should note that currently many database vendors (Oracle, IBM, Microsoft) do not
provide suf�cient tools for duplicate record detection. Most of the efforts until now has focused

4http://www.cs.cmu.edu/�wcohen/whirl/
5http://www.ics.uci.edu/�flamingo/
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on creating easy-to-use ETL tools, that can standardize database records and �x minor errors,
mainly in the context of address data. Another typical function of the tools that are provided
today is the ability to use reference tables and standardize the representation of entities that are
well-known to have multiple representations. (For example, �TKDE� is also frequently written
as �IEEE TKDE� or as �Transactions on Knowledge and Data Engineering.�) A recent, positive
step is the existence of multiple data cleaning operators within Microsoft SQL Server Integration
Services, which is part of Microsoft SQL Server 2005. For example, SQL server now includes
the ability to perform �fuzzy matches� and implements �error-tolerable indexes� that allow fast
execution of such approximate lookups. The adopted similarity metric is similar to SoftTF.IDF,
described in Section III-B. Ideally, the other major database vendors would also follow suit and
add similar capabilities and extend the current ETL packages.

VII. FUTURE DIRECTIONS AND CONCLUSIONS

In this survey, we have presented a comprehensive survey of the existing techniques used
for detecting non-identical duplicate entries in database records. The interested reader may also
want to read a complementary survey by Winkler [100] and the Special Issue of the IEEE Data
Engineering Bulletin on Data Quality [45].

As database systems are becoming more and more commonplace, data cleaning is going to be
the cornerstone for correcting errors in systems which are accumulating vast amounts of errors
on a daily basis. Despite the breadth and depth of the presented techniques, we believe that there
is still room for substantial improvements in the current state-of-the-art.

First of all, it is currently unclear which metrics and techniques are the current state-of-the-
art. The lack of standardized, large scale benchmarking data sets can be a big obstacle for
the further development of the �eld, as it is almost impossible to convincingly compare new
techniques with existing ones. A repository of benchmark data sources with known and diverse
characteristics should be made available to developers so they may evaluate their methods during
the development process. Along with benchmark and evaluation data, various systems need
some form of training data to produce the initial matching model. Although small data sets are
available, we are not aware of large-scale, validated data sets that could be used as benchmarks.
Winkler [98] highlights techniques on how to derive data sets that are properly anonymized and
are still useful for duplicate record detection purposes.
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Currently, there are two main approaches for duplicate record detection. Research in databases
emphasizes relatively simple and fast duplicate detection techniques, that can be applied to
databases with millions of records. Such techniques typically do not rely on the existence of
training data, and emphasize ef�ciency over effectiveness. On the other hand, research in machine
learning and statistics aims to develop more sophisticated matching techniques that rely on
probabilistic models. An interesting direction for future research is to develop techniques that
combine the best of both worlds.

Most of the duplicate detection systems available today offer various algorithmic approaches
for speeding up the duplicate detection process. The changing nature of the duplicate detection
process also requires adaptive methods that detect different patterns for duplicate detection and
automatically adapt themselves over time. For example, a background process could monitor
the current data, incoming data and any data sources that need to be merged or matched, and
decide, based on the observed errors, whether a revision of the duplicate detection process is
necessary or not. Another related aspect of this challenge is to develop methods that permit the
user to derive the proportions of errors expected in data cleaning projects.

Finally, large amounts of structured information is now derived from unstructured text and
from the web. This information is typically imprecise and noisy; duplicate record detection
techniques are crucial for improving the quality of the extracted data. The increasing popularity
of information extraction techniques is going to make this issue more prevalent in the future,
highlighting the need to develop robust and scalable solutions. This only adds to the sentiment
that more research is needed in the area of duplicate record detection and in the area of data
cleaning and information quality in general.
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