health & environmental sciences • failure analysis & prevention

Dust Explosions

Timothy Myers 9 Strathmore Road Natick, MA 01760 tmyers@exponent.com (508) 652-8572 December 7, 2016

A leading engineering & scientific consulting firm dedicated to helping our clients solve their technical problems.

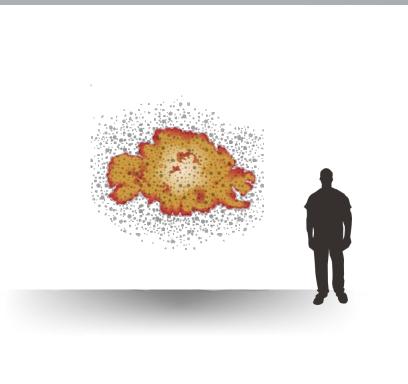
Outline

E^xponent^{*}

- Combustible Dust Background
- Hazard Identification
- Dust Hazard Analysis
- Hazard Mitigation

Combustible Dust Background

Combustible Dusts - Effect of Particle Size

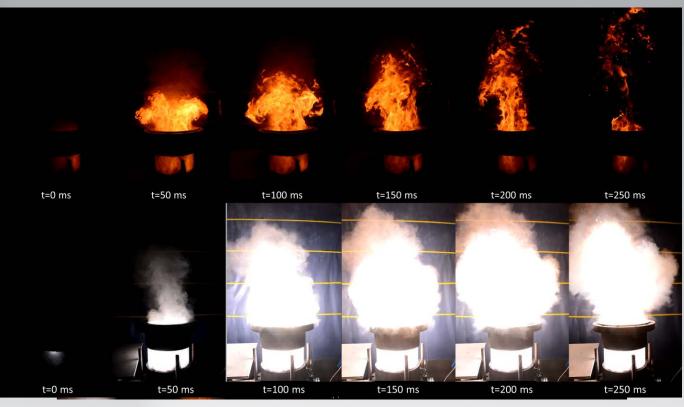

Source: After Eckhoff, "Dust Explosions in the Process Industries" (2003).

Elements of a Flash Fire

- Combustible dust
 - Small particle size
 - Oxidizable

onent

- Oxidizer (e.g. air)
- Ignition source
- Dispersion of dust

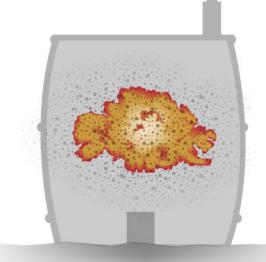


Organic and Metal Dust Flash Fires

Organic Dust

Exponent

Metal Dust


Elements of a Dust Explosion

Combustible dust

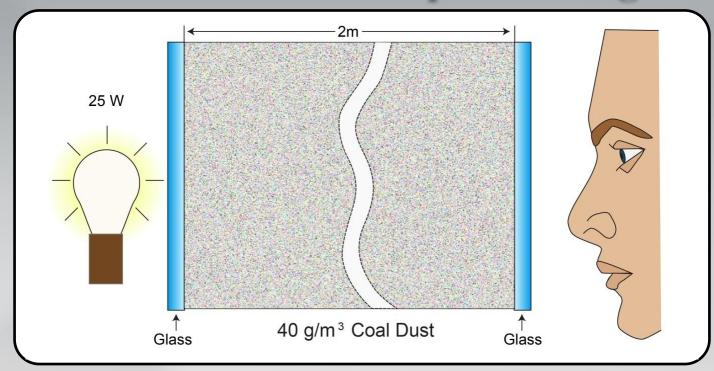
- Small particle size
- Oxidizable

^Rnonent

- Oxidizer (e.g. air)
- Ignition source
- Dispersion of dust
- Confinement

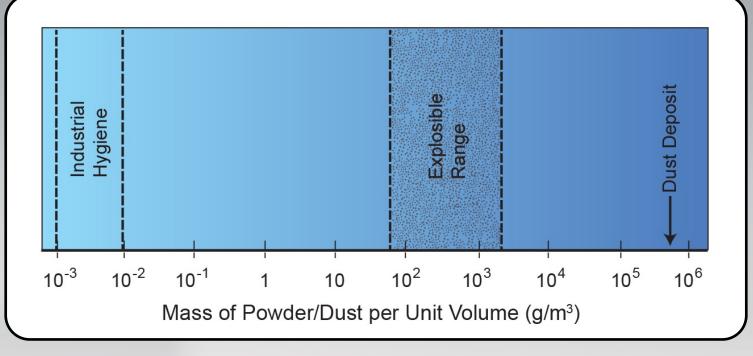
Flash Fire vs. Explosion

E^xponent


Demonstration – FM Global

E^xponent

Dust Concentration for Explosion Regime


Exponent

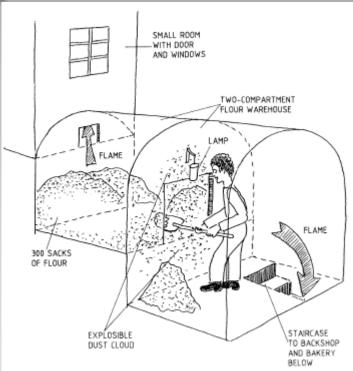
Source: After Eckhoff, Dust Explosions in the Process Industries (2003).

Dust Concentration Regimes

E^xponent*

Source: After Eckhoff, Dust Explosions in the Process Industries (2003).

History of Dust Explosions and Current Emphasis



First Reported Dust Explosion

- Mr. Giacomelli's Bakery
- Turin, Italy

E^xponent^{*}

- December 14, 1785
- 2 injuries
- Blew out windows and window frames
- Reported cause: grain flour dust ignited by lamp

Source: Eckhoff, Dust Explosions in the Process Industries (2003).

Recent U.S. Combustible Dust Incidents

E^xponent*

Year	Facility	State	Dust	Fatalities
1999	Gray Iron Casting Foundry	MA	Phenolic Resin	3
2002	Rubber Recycling Facility	MS	Scrap Tire Grindings	5
2003	Rubber Drug Delivery Products	NC	Polyethylene Dust	6
2003	Fiberglass Insulation Plant	KY	Phenolic Resin	7
2003	Automotive Wheel Foundry	IN	Aluminum Dust	1
2008	Sugar Refinery	GA	Sugar	14
2011	Metal Powder Manufacturer	TN	Iron Dust	5?

Combustible Dust National Emphasis Program

- Effective October 18, 2007
 - Reissued March 11, 2008
- Outreach

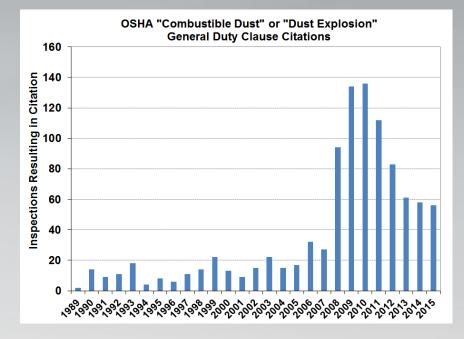
oment

- Targeted inspections
- NEP and other documents have listed OSHA regulations and NFPA Standards believed to apply to dust explosions

DIRECTIVE NUMBER: CPL 03-00-008 EFFECTIVE DATE: 3/11/08
SUBJECT: Combustible Dust National Emphasis Program (Reissued)

ABSTRACT

Purpose: This instruction contains policies and procedures for inspecting workplaces that create or handle combustible dusts. In some circumstances these dusts may cause a deflagration, other fires, or an explosion. These dusts include, but are not limited to:


- Metal dust such as aluminum and magnesium.
- Wood dust
- Coal and other carbon dusts.
- Plastic dust and additives
- Biosolids
- Other organic dust such as sugar, flour, paper, soap, and dried blood.
- Certain textile materials

OSHA Combustible Dust NEP Results

Appendix A NFPA Publications Relevant to Combustible Dust Hazard Controls

F^xponent

NFPA	Title	Current
Number		Edition
61	Standard for the Prevention of Fires and Dust Explosions in Agricultural	2008
	and Food Processing Facilities	
68	Guide for Venting of Deflagrations	2007
69	Standard on Explosion Prevention Systems	2008
70	National Electrical Code	2008
77	Recommended Practice on Static Electricity	2007
85	Boiler and Combustion Systems Hazards Code	2007
86	Standard for Ovens and Furnaces	2007
91	Standard for Exhaust Systems for Air Conveying of Vapors, Gases,	2004
	Mists, and Noncombustible Particulate Solids	
484	Standard for Combustible Metals	2006
499	Recommended Practice for the Classification of Combustible Dusts and	2008
	of Hazardous (Classified) Locations for Electrical Installations in	
	Chemical Process Areas	
654	Standard for the Prevention of Fire and Dust Explosions from the	2006
	Manufacturing, Processing, and Handling of Combustible Particulate	
	Solids	
655	Standard for Prevention of Sulfur Fires and Explosions	2007
664	Standard for the Prevention of Fires and Explosions in Wood Processing and Woodworking Facilities	2007

Hazard Identification – Test Methods

Testing Required by Standards – NFPA 652

K≁nonent*

"5.1 Responsibility. The owner/operator of a facility with potentially combustible dusts shall be responsible for determining whether the materials are combustible or explosible, and, if so, for characterizing their properties as required to support the DHA."

Testing Required by Standards – NFPA 652

"5.2" Screening for Combustibility or Explosibility.

t-bonent

5.2.1 The determination of combustibility or explosibility shall be permitted to be based upon either of the following:

(1) Historical facility data or published data that are deemed to be **representative** of current materials and process conditions

(2) Analysis of **representative** samples in accordance with the requirements of 5.4.1 and 5.4.3"

Trough Test – Is the Sample Combustible as a Dust Layer?

• Flame held to one end of powder train

oneni

- Material "combustible" if flame propagates past heated zone
- In practice only some samples that are "explosible" are also "combustible"

Go/No-Go Test – Is the Sample Explosible as a Dust Cloud

- Explosion pressure measured in closed volume
- 2.5-kJ to 10-kJ chemical igniters typically used
- Material explosible if the pressure ratio (PR) is greater than 2

$$PR = \frac{P_{ex} - \Delta P_{igniter}}{P_{ignition}}$$

Additional Common Test Methods

Exponent

ASTM Method	Title	Results
E1226	Standard Test Method for Pressure and Rate of Pressure Rise for Combustible Dusts	P _{max} , K _{St}
E1515	Standard Test Method for Minimum Explosible Concentration of Combustible Dusts	MEC
E2019	Standard Test Method for Minimum Ignition Energy of a Dust Cloud in Air	MIE
E1491	Standard Test Method for Minimum Autoignition Temperature of Dust Clouds	MAIT
E2931	Standard Test Method for Limiting Oxygen (Oxidant) Concentration of Combustible Dust Clouds	LOC

Dust Hazard Analysis

Dust Hazard Analysis (DHA)

- NFPA 652 requires retroactive DHA for existing facilities within 3-year time period of the effective date of standard
 - Some commodity specific standards using 5-year time period
 - Next edition of 652 may extend time period
- Chapter 7 Provides details on DHA Methodology
 - Material Evaluation

Proonent*

- Process Systems
- Building or Building Compartments
- NFPA 652 App. B, NFPA 651 App. F include an example DHAs

Chapter 7 Dust Hazards Analysis (DHA)

7.1* General Requirements.

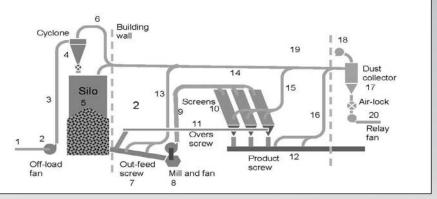
7.1.1 Responsibility. The owner/operator of a facility where materials that have been determined to be combustible or explosible in accordance with Chapter 5 are present in an enclosure shall be responsible to ensure a DHA is completed in accordance with the requirements of this chapter.

7.1.2* The requirements of Chapter 7 shall apply retroactively in accordance with 7.1.2.1 through 7.1.2.3.

7.1.2.1 For existing processes and facility compartments that are undergoing material modification, the owner/operator shall complete DHAs as part of the project.

7.1.2.2* For existing processes and facility compartments that are not undergoing material modification, the owner/ operator shall schedule and complete DHAs of existing processes and facility compartments within a 3-year period from the effective date of the standard. The owner/operator shall demonstrate reasonable progress in each of the 3 years.

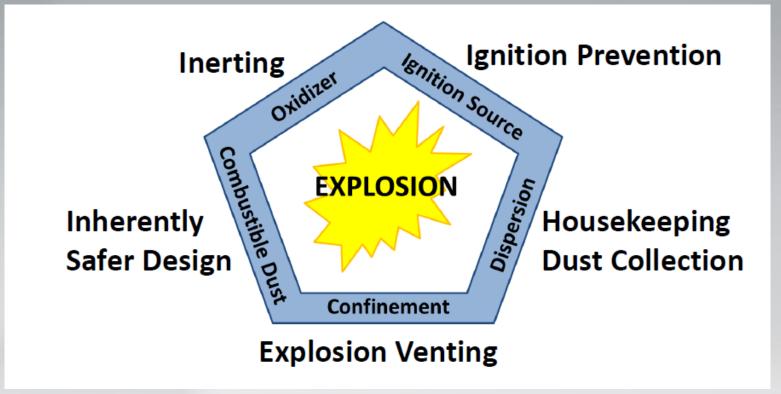
7.1.2.3 For the purposes of applying the provisions of 7.1.2, material modification shall include modifications or maintenance and repair activities that exceed 25 percent of the original cost.


Dust Hazard Analysis (DHA)

 Multiple methodologies can be used

E^xponent^{*}

- Checklist, What-if, FMEA, HazOp, etc.
- Not intended to require PSM for all dusts


Source: NFPA 652

Mitigation Strategies

Eliminating Sides of the Pentagon

Exponent

NFPA Standards

E^xponent

- OSHA citations and many building codes reference NFPA Standards.
- NFPA Standards include both prescriptive requirements and performance-based equivalent options
- Mitigation options need to be determined on a process by process basis. Standards require formal dust hazard analysis.

www.nfpa.org/??? i.e., www.nfpa.org/652

NFPA Standards for the Prevention of Dust Fires and Explosions

- NFPA 61 Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities
- NFPA 120 Standard for Fire Prevention and Control in Coal Mines
- NFPA 484 Standard for Combustible Metals

onent

- NFPA 652 Standard on Fundamentals of Combustible Dust
- NFPA 654 Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids
- NFPA 655 Standard for the Prevention of Sulfur Fires and Explosions
- NFPA 664 Standard of Fires and Explosions in Wood Processing and Woodworking Facilities

Related NFPA Standards and Practices

- NFPA 68 Standard on Explosion Protection by Deflagration Venting
- NFPA 69 Standard on Explosion Prevention Systems
- NFPA 70 National Electric Code

onent

- NFPA 499 Recommended Practice for the Classification of Combustible Dusts and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas
- NFPA 505 Fire Safety Standard for Powered Industrial Trucks Including Type Designations, Areas of Use, Conversions, Maintenance, and Operations

Other US Standards and Practices

• FM Global Data Sheets

E^xponent^{*}

- 7-17 Explosion Protection Systems
- 7-73 Dust Collectors and Collection System
- 7-76 Prevention And Mitigation Of Combustible Dust Explosions And Fire
- Industry Specific Standards
- Building and Fire Codes

NFPA 652 Standard on the Fundamentals of Combustible Dust

 New Standard - effective date September 7, 2015

E^xponent

- Intended to cover fundamental topics that apply to all types of dusts
- Applies in addition to commodity specific standards

Chapter	1 Administration	652-	6	Chapter	7 Dust Haza
1.1	Scope	652-	6	7.1	General Req
1.2	Purpose	652 -	6	7.2	Criteria
1.3	Application			7.3	Methodology
1.4	Conflicts	652 -	6		
1.5	Retroactivity	652 -	6	Chapter	8 Hazard M
1.6	Equivalency	652-	9		Prevention
1.7	Units and Formulas			8.1	Inherently Sci
				8.2	Building Des
Chapter	2 Referenced Publications	652 -	9	8.3	Equipment I
2.1	General	652 -	9	8.4	Housekeepir
2.2	NFPA Publications	652 -	9	8.5	Ignition Sou
2.3	Other Publications	652 -	9	8.6	Personal Pro
2.4	References for Extracts in Mandatory			8.7	Pyrophoric I
	Sections	652 - 1	0	8.8	Dust Control
				8.9	Explosion Pr
	3 Definitions			8.10	Fire Protection
3.1	General				
3.2	NFPA Official Definitions			Chapter	9 Managem
3.3	General Definitions	652 - 1	0	9.1	Retroactivity
-				9.2	General
	4 General Requirements			9.3	Operating Pr
4.1	General			9.4	Inspection, T
4.2	Objectives	652-1	2	9.5	Training and
Chapter	5 Hazard Identification	659 1	9	9.6	Contractors
5.1	Responsibility			9.7	Emergency F
5.2	Screening for Combustibility or	052-1	2	9.8	Incident Inv
5.2	Explosibility	659 1	9	9.9	Managemen
5.3	Self-Heating and Reactivity Hazards.	054-	-	9.10	Documentati
5.5	(Reserved)	659-1	2	9.11	Managemen
5.4	Combustibility and Explosibility Tests			9.12	Employee Pa
5.5	Sampling				inipio/ee ra
5.5	Sampling	034-	5	Annex A	Explanator
Chapter	6 Performance-Based Design Option	652-1	3		
6.1	General Requirements			Annex B	Dust Hazar
6.2	Risk Component and Acceptability				
6.3	Performance Criteria			Annex C	Accumulate
6.4	Design Scenarios			Assess D	To Common dia
6.5	Evaluation of Proposed Design			Annex D	Informatio
6.6	Retained Prescriptive Requirements			Index	
0.0	Retained Frescriptive Requirements	052=)		moex	

hapter	7 Dust Hazards Analysis (DHA)	652 - 15
7.1	General Requirements	652 - 15
7.2	Criteria	652 - 16
7.3	Methodology	652 - 16
Chapter		
	Prevention	652 - 16
8.1	Inherently Safe Designs. (Reserved)	652 - 16
8.2	Building Design	652 - 16
8.3	Equipment Design	652 - 17
8.4	Housekeeping	652 - 19
8.5	Ignition Source Control	652 - 20
8.6	Personal Protective Equipment	652–22
8.7	Pyrophoric Dusts. (Reserved)	652 - 23
8.8	Dust Control	652 - 23
8.9	Explosion Prevention/Protection	652 - 23
8.10	Fire Protection	652–23
Chapter		652 - 24
9.1	Retroactivity	652 - 24
9.2	General	652 - 24
9.3	Operating Procedures and Practices	652 - 24
9.4	Inspection, Testing, and Maintenance	652 - 24
9.5	Training and Hazard Awareness	652 - 25
9.6	Contractors	652 - 25
9.7	Emergency Planning and Response	652 - 25
9.8	Incident Investigation	652 - 25
9.9	Management of Change	652 - 25
9.10	Documentation Retention	652 - 25
9.11	Management Systems Review	652 - 25
9.12	Employee Participation	652 - 25
Annex A	Explanatory Material	652–26
Annex B	Dust Hazards Analysis - Example	652-59
annex B	Dust Hazards Analysis — Example	032-39
Annex C	Accumulated Fugitive Dust	652 - 65
Annex D	Informational References	652-65
		652-68

Relationship to Commodity Specific Standards 1.4 Conflicts.

 Can follow commodity specific standard where it also covers requirement in 652

+≁ponent

- Requirements in 652 that are prohibited by commodity specific standard are prohibited
- Where a commodity specific standard does not address requirement, must follow 652

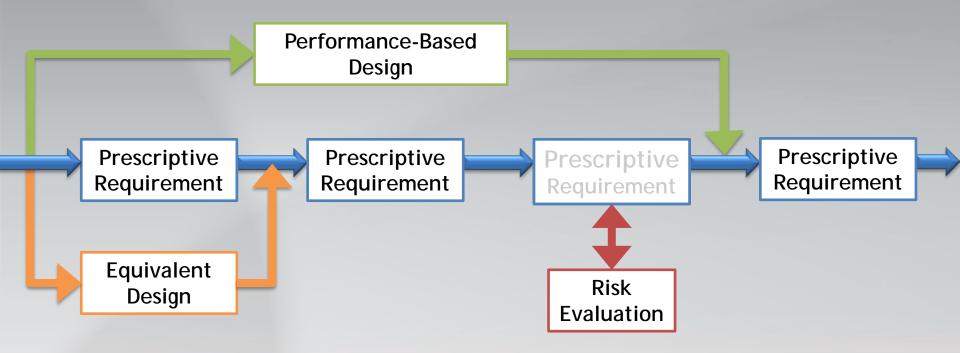
1.4.1* For the purposes of this standard, the industry- or commodity-specific NFPA standards shall include the following:

- (1) NFPA 61, Standard for the Prevention of Fires and Dust Explosions in Agricultural and Food Processing Facilities
- (2) NFPA 484, Standard for Combustible Metals
- (3) NFPA 654, Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids
- (4) NFPA 655, Standard for Prevention of Sulfure Fires and Explosions
- (5) NFPA 664, Standard for the Prevention of Fires and Explosions in Wood Processing and Woodworking Facilities

1.4.2 Where a requirement in an industry- or commodity-specific NFPA standard differs from the requirement specified in this standard, the requirement in the industry- or commodity-specific NFPA standard shall be permitted to be used.

1.4.3 Where an industry- or commodity-specific NFPA standard specifically prohibits a requirement specified in this standard, the prohibition in the industry- or commodity-specific NFPA standard shall be applied.

1.4.4 Where an industry- or commodity-specific NFPA standard neither prohibits nor provides a requirement, the requirement in this standard shall be applied.


1.4.5 Where a conflict between a general requirement of this standard and a specific requirement of this standard exists, the specific requirement shall apply.

Alternate Protection Strategies

Alternate Protection Strategies

Exponent

Performance-Based Design

Design Objectives

- Life Safety

E^xponent^{*}

- Structural Integrity
- -Mission Continuity
- -Fire Spread and Explosion

Performance Criteria

- Prevent Ignition
- Limit Flame Propagation
- Minimize Enclosure Damage

Thresholds

- Surfaces < MIT
- Sparks < MIE
- Overpressures < P_{es}

Prescriptive Protection Methods

Areas of Guidance in NFPA Standards

- Dust Hazard Analysis
- Building construction
- Building explosion venting
- Equipment explosion protection
- Equipment isolation
- Bulk storage

onent

- Material transfer systems
- Size reduction operations
- Segregation, separation, or detachment of hazard areas

- Particle size separation
- Mixers and blenders
- Dryers
- Dust collection equipment
- Fire protection
- Housekeeping
- Management of change
- Control of ignition sources
- Employee training, inspection, and maintenance

Minimizing Dust Accumulations

- Dust accumulations can allow small event to become catastrophic
- Minimize escape of dust from equipment
 - Operate equipment at negative pressure
 - Maintain equipment seals

E²ponent^{*}

- Use dust collection systems in dust generation areas
- Frequent housekeeping to remove dust accumulations before they reach hazardous levels
- Do not neglect elevated surfaces or other difficult to reach areas

Combustible Dust Accumulation Thresholds

E^xponent

Standard	Combustible Dust Accumulation Threshold
NFPA 484 (Metal)	Color of underlying surfaces not discernible
NFPA 654 (General)	1/32" over 5% or 1000 ft ²
NFPA 664 (Wood)	1/8″
NFPA 499 (Electrical Classification Class II Division 1)	1/8″
NFPA 499 (Electrical Classification Class II Division 2)	Color of underlying surfaces not discernible

Dust Layer Accumulation Threshold Evaluation Methods in NFPA 654

6.1.1.3* Dust flash fire or dust explosion hazard areas shall additionally be determined in accordance with any one of the following four methods:

- (1) Layer depth criterion method in 6.1.3
- (2) Mass method A in 6.1.4

ponent

- (3) Mass method B in 6.1.5
- (4) Risk evaluation method in 6.1.6

Housekeeping

onent

- Establish regular cleaning frequencies to maintain dust accumulations below hazard thresholds
 - Consider quantifying material cleaned
- Using cleaning methods that minimize generation of clouds
 - Vacuuming with vacuums approved for combustible dust and classified area
 - Gentle sweeping
- Vigorous sweeping, blow down or steam should only be used after vacuuming and
 - Elimination of ignition sources
 - Use low supply pressure (<15 psig)

Ignition Source Control

- Sparks (friction, electrical, static electricity)
 - Proper grounding, bonding
- Hot surfaces
- Hot work

E^xponent^{*}

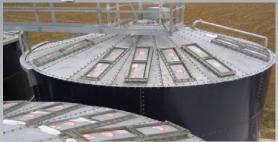
- Open flames
- Heating systems
- Slipping belts
- Bearings
- Electrical Equipment (NFPA 499, 70)

Electrical Classification – NFPA 499

- Areas with combustible dust may be classified as Class II (dust) Division 1 or 2 by OSHA and NFPA 499 and 70
 - Classified electrical equipment should be used (NFPA 70 – NEC)

E^xponent^{*}

- Classified industrial trucks (fork lifts) should be used (NFPA 505)
- Good housekeeping, prevention of dust releases and partitions, can reduce extent of classified areas


Unclassified Areas – NFPA 499 Chapter 6

¹²monent

Electrical Classification	Ignitable Dust Presence
Class II, Division 1 or Zone 20/21	Dust clouds during normal conditions or > 1/8" accumulation
Class II, Division 2 or Zone 22	Dust clouds during abnormal conditions or color of underlying surfaces not discernible
Unclassified	No visual dust clouds Color of underlying surfaces discernible

- The term *normal* does not necessarily mean the situation that prevails when everything is working properly.
- The term *abnormal* is used here in a limited sense and does not include a major catastrophe.

Explosion Protection

7.1.4 Explosion Protection for Equipment.

7.1.4.1 The design of explosion protection for equipment shall incorporate one or more of the following methods of protection:

- (1) Oxidant concentration reduction in accordance with NFPA 69, Standard on Explosion Prevention Systems
 - (a) Where oxygen monitoring is used, it shall be installed in accordance with ISA 84.00.01, Functional Safety: Application of Safety Instrumented Systems for the Process Industry Sector.
 - (b)*Where the chemical properties of the material being conveyed require a minimum concentration of oxygen to control pyrophoricity, that level of concentration shall be maintained.
- (2)*Deflagration venting in accordance with NFPA 68, Standard on Explosion Protection by Deflagration Venting
- (3) Deflagration pressure containment in accordance with NFPA 69, *Standard on Explosion Prevention Systems*
- (4) Deflagration suppression systems in accordance with NFPA 69, *Standard on Explosion Prevention Systems*
- (5)*Dilution with a noncombustible dust to render the mixture noncombustible (See 7.1.4.2.)
- (6)*Deflagration venting through a listed dust retention and flame-arresting device

No Protection

Exponent

Source: Rembe

Deflagration (Explosion) Vents

 NFPA 68 provides equations for determining required explosion vent areas

t≁ponent*

- Vent reduces maximum overpressure
- Typically lower cost than explosion suppression systems
- Must vent to restricted outdoor area
- Flame Arresting and Particulate Retention (Flameless) vents can be used indoors

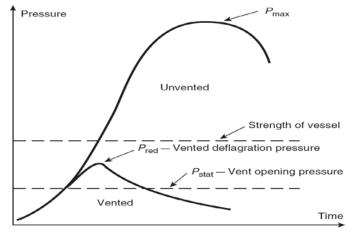


FIGURE B.4.1 Pressure–Time Graph of a Vented Deflagration.

Undersized Vent

Exponent

Source: Rembe

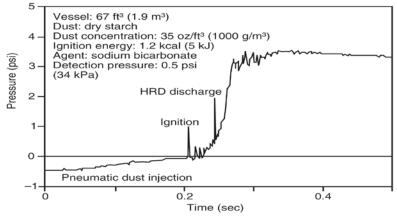
Explosion Venting

Exponent

with REMBE® Q-Rohr®

Source: Rembe

Deflagration Suppression – NFPA 69

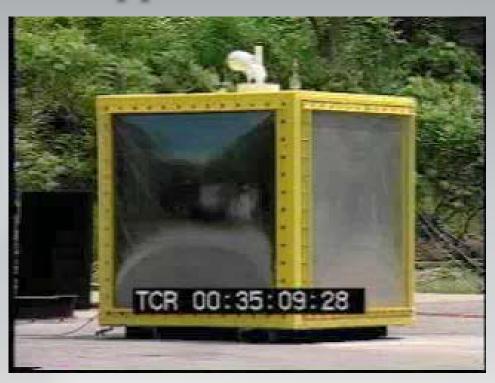

Detection of explosion

- Pressure rise
- Spark/flame detection

Suppression

^{Ex}ponent^{*}

- Fast injection of chemical suppressants
- Can typically minimize explosion overpressure to a few psi
- Often used when explosion venting is not feasible
- Typically more expensive than venting Source: Plot from NFPA 654-2006

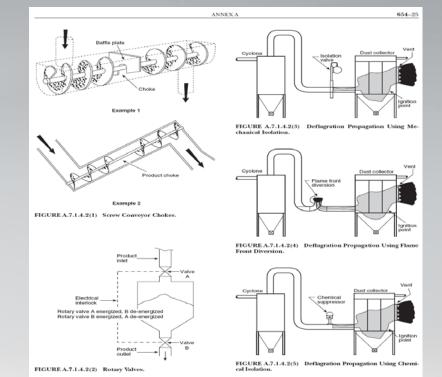


Note: Pressures are gauge pressures.

FIGURE B.5.1(b) Pressure Versus Time in a Suppressed Deflagration.

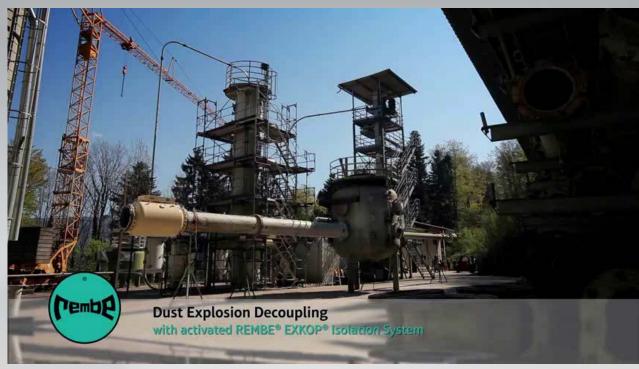
Deflagration Suppression – Slow Motion

Exponent


Source: Fike Corporation

Equipment Isolation – NFPA 654

- Prevent propagation of fire or deflagration between connected equipment
- Mechanical chokes
- Rotary valves


ment

- Fast acting valves
- Flame front diverters
- Chemical suppressors

Explosion Isolation

Exponent

Source: Rembe

Summary

t≁ponent*

- Catastrophic dust explosions have placed an increased emphasis on the prevention and mitigation of dust explosions.
- Standards and guidelines provide guidance for the prevention and mitigation of dust fires and explosions.
- NFPA guidelines for preventing and mitigating explosions focus on:
 - Hazard Identification
 - Dust Hazard Analysis
 - Mitigation Methods
 - Housekeeping and dust collection
 - Removal of ignition sources
 - Explosion protection of equipment
 - Maintenance and training

health & environmental sciences • failure analysis & prevention

Dust Explosions

Timothy Myers 9 Strathmore Road Natick, MA 01760 tmyers@exponent.com (508) 652-8572 December 7, 2016

A leading engineering & scientific consulting firm dedicated to helping our clients solve their technical problems.