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Finite Element
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Abstract—In this paper a free vibration analysis of composite laminate is presented. Vibration is the most influencing parameter of life &
performance of particular machine element or engineering structures, and invariably, damping is used to reduce that. Various types of
damping mechanisms have been developed over time to control the undesired vibration of structures. Different composite laminates with
symmetric and anti-symmetric laminates are solved in this paper. Finite element method is used by implementing in MATLAB using a four
node quadrilateral element. Then, a set of results are presented to show the applicability of the present problem to various types of boundary
conditions under free vibration conditions.

Index Terms—Composite Plate; Vibration Analysis; Finite Element Methods; Isotropic Plate; Boundary condition, shape function.
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1  INTRODUCTION
lates are of wide use in engineering industry like ships, con-
tainers,  etc.  In  Aeronautics  require  complete  enclosure  of
plates without use of additional covering, for which com-

posite plates have been, used which consequently saves the ma-
terial and labor [1]. Plates are of wide use in engineering indus-
try. Many structures such as ships and containers require com-
plete enclosure of plates without use of additional covering
which consequently saves the material and labor. The analysis
of plates first started in the 1800s. Euler [2] was responsible for
solving free vibrations of a flat plate using a mathematical ap-
proach for the first time. Then it was the German physicist
Chladni [3] who discovered the various modes of free vibra-
tions. Then later on the theory of elasticity was formulated. Na-
vier [4] can be considered as the originator of the modern theory
of elasticity. Navier’s numerous scientific activities included the
solution of various plate problems. He was also responsible for
deriving the exact differential equation for rectangular plates
with flexural resistance. For the solution to certain boundary
value problems Navier introduced exact methods which trans-
formed differential equations to algebraic equations. Poisson in
1829 [5] extended the use of governing plate equation to lateral
vibration of circular plates. Later, the theory of elasticity was
extended as there were many researchers working on the plate
and the extended plate theory was formulated. Kirchhoff [6] is
considered as the one who formulated the extended plate the-
ory. In the late 1900s, the theory of finite elements was evolved
which is the basis for all the analysis on complex structures
Ungbhakorn and Singhatanadgid [7] investigated the buckling
problem of rectangular laminated composite plates with vari-
ous edge supports by using an extended Kantorovich method

is employed. Setoodeh, Karami [8] investigated a three-dimen-
sional elasticity approach to develop a general free vibration
and buckling analysis of composite plates with elastic re-
strained edges. Luura and Gutierrez [9] studied the vibration of
rectangular plates by a non-homogenous elastic foundation us-
ing the Rayleigh-Ritz method. Ashour [10] investigated the vi-
bration analysis of variable thickness plates in one direction
with edges elastically restrained against both rotation and
translation using the finite strip transition matrix technique.
Crisfield [11] derived a four-node quadrilateral element using
discrete Kirchhoff constraints and a nine-node interpolator-y
pattern for both transverse and rotational displacements. Kalita
et al. [12] [13] [14] [15] [16] [17] has extensively studied the prob-
lem on vibration of plates. Patil et al. [18] has solved the prob-
lem for various boundary conditions. Grossi, Nallim [19] inves-
tigated the free vibration of anisotropic plates of different geo-
metrical shapes and generally restrained boundaries. LU, et al
[20] presented the exact analysis for free vibration of long-span
continuous rectangular plates based on the classical Kirchhoff
plate theory, using state space approach associated with joint
coupling matrices. Chopra [21] studied the free vibration of
stepped plates by analytical method.

2 MATHEMATICAL FORMULATION
2.1 Problem statement
Consider a three-dimensional body subjected to surface and
body forces and temperature field. In addition, displacements
are specified on some surface area. For given geometry of the
body, applied loads, displacement boundary conditions, tem-
perature field and material stress-strain law, it is necessary to
determine the displacement field for the body. The correspond-
ing strains and stresses are also of interest.
The displacements along coordinate axes x, y and z are defined
by the displacement vector {u}
{u} = {u n w }
Six different strain components can be placed in the strain vec-
tor {e}
{e} = {ex ey ez gxy gyz gzx }

P
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For small strains the relationship between strains and displace-
ments is
{e} = [D]{u}
where

[D] =
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Six different stress components are formed the stress vector:
{s} = {sx sy sz txy tyz tzx}
which are related to strains for elastic body by the Hook's law:
{s} = [E]{ee} = [E]({e} - {et})
where

[E] =
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Here [E] is the elasticity matrix; {ee} is the elastic part of strains;
{et} is the thermal part of strains; l and m are elastic Lame con-
stants which can be expressed through the elasticity modulus E
and Poisson's ratio n :
l = nE/((1 + n)(1 - 2n)), m = E/(2(1 + n))
The purpose of finite element solution of elastic problem is to
find such displacement field, which provides minimum to the
functional of total potential energy:

P =
V
ò 1/2 {ee}T{s}dV -

V
ò {u}T{pV}dV -

S
ò {u}T{pS}dS,

where {pV}  =  {pVx pVy pVz}  is  the  vector  of  body  force  and
{pS} = {pSx pSy pSz} is the vector of surface force.
Prescribed displacements are specified on the part of body sur-
face where surface forces are absent. Displacement boundary
conditions are not present in the functional (3.7). Because of
these, displacement boundary conditions should be imple-
mented after assembly of finite element equations.

2.2 Finite element equations
Let us consider some abstract three-dimensional finite element
having the vector of nodal displacements {q}:
{q}= {u1 n1 w1 u2 n2 w2 ...}

Displacements at some point inside a finite element {u} can be
determined with the use of nodal displacements {q} and shape
functions Ni:
{u} = [N]{q]
where

[N] =
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Strains can also be determined through displacements at nodal
points:
{e} = [B]{q}
where
[B] = [D][N] = [ B1 B2 ... ],

[Bi] =

¶ ¶
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Now using above eqns., we are able to express the total poten-
tial energy through nodal displacements:

P =
V
ò 1/2([B]{q}-{et})T[E]([B]{q}-{et})dV -

V
ò  ([N]{q})T{pV}dV

-
S
ò ([N]{q})T{pS}dS

Nodal displacements {q} which corresponds to the minimum of
the functional P are determined by the conditions:
{dP/dq} = 0
Differentiation of above in respect to nodal displacements {q}
produces the following equilibrium equations for a finite ele-
ment:

V
ò [B]T[E][B]dV{q} -

V
ò [B]T[E]{et}dV -

V
ò [N]T{pV}dV-

S
ò [N]T{pS}dS = 0

which is usually presented in the following form:
[k]{q} = {f}, {f} = {p} + {h}
where

[k] =
V
ò [B]T[E][B]dV

{p} =
V
ò [N]T{pV}dV-

S
ò [N]T{pS}dS

{h} =
V
ò [B]T[E]{et}dV

Here [k] is the element stiffness matrix; {f} is the load vector; {p}
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is the vector of actual forces and {h} is the thermal vector which
represents fictitious forces for modeling thermal expansion.

2.3 Assembly of the global equation system
The aim of assembly is to form the global system of equations
[K]{Q} = {F}
using element equations
[ki]{qi} = {fi}
Here [ki], [qi] and [fi] are the stiffness matrix, the displacement vec-
tor and the load vector of the ith finite element; [K], {Q} and {F} are
global stiffness matrix, displacement vector and load vector.
In order to derive an assembly algorithm, let us present the total
potential energy for the body as a sum of element potential ener-
gies:
P = åpi = å1/2{qi}T[ki]{qi} - å1/2{qi}T[{fi}+ åE0i

where E0i is the fraction of potential energy related to free thermal
expansion:

E0i =
V
ò 1/2 {et}T[E] {et}dV

Let us introduce the following vectors and a matrix where element
vectors and matrices are simply placed:
{Qd} = {{q1}{q2} ... }, {Fd} = {{f1}{f2} ... }

[Kd] =
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It is evident that it is easy to find matrix [A] such that
{Qd} = [A]{Q}, {Fd} = [A]{F}
The total potential energy for the body can be rewritten in the fol-
lowing form:
P = 1/2{Qd}T[Kd]{Qd} - {Qd}T{Fd}  + åE0i = 1/2{Q}T[A]T[Kd][A]{Q} -
{Q}T[A]T{Fd} + åE0i

Using the condition of minimum of the total potential energy
{dP/dQ} = 0
we arrive at the following global equation system:
[A]T[Kd][A]{Q} - [A]T{Fd} = 0
The last equation shows that algorithms of assembly the global
stiffness matrix and the global load vector are:
[K] = [A]T[Kd][A], {F} = [A]T{Fd}
Here [A] is the matrix corresponding local and global enumeration.
Fraction of nonzero (unit) entries in the matrix [A] is very small.
Because of this the matrix [A] is never used explicitly in actual com-
puter codes.
In present work, the numerical computations have been performed
by using MATLAB 7.5.0 (R2007b) in DELL PRECISION T3500.

3  RESULTS

3.1 Symmetric laminates
In Table 2 natural frequencies of four-layer symmetric laminate is
shown. Different ratio of width (a) & thickness (h) of the plate is
taken. The layup of the laminate considered in the study is shown

in Fig. 1. The material properties in the study are detailed in Table
1.

TABLE 1. Material properties of each laminate.
Longitu-

dinal
Modulus

E1

Trans-
verse

Modu-
lus E2

Shear
Modu-
lus G12

Shear
Modu-
lus G23

Pois-
son’s
Ratio

v12

Pois-
son’s
Ratio

v23

(in GPa)
108 10.3 7.13 4.03 0.28 0.28

TABLE 2. Natural frequencies (rad/s) obtained by theoretical
prediction for different thickness.

Mode No.
a/h

2 5 10 20 50

1 940.2 836.92 649.29 410.72 181.02

2 1380.6 1233.2 976.77 626.78 278.32

3 1573.3 1452 1241.8 899.12 436.5

4 1884.1 1732.5 1463.2 991.74 456.24

5 1948.1 1776.1 1464.2 1041.7 502.2

6 2289.2 2163.4 1843.2 1319.9 639.11

TABLE 3. Natural frequencies (rad/s) obtained by theoretical

Fig. 1. Layup of the symmetric laminate.

Fig. 2. Layup of the anti-symmetric laminate.

Fig. 5. Variation of natural frequency with different aspect
ratios at a/h=50.
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prediction for different aspect ratio at a/h=5.

Mode No.
b/a

0.25 0.5 1 2 4 10

1 2522 1337.5 836.92 699.29 677.97 674.98

2 2796.4 1792.3 1233.2 792.13 691.47 676.17

3 3234.7 2383.9 1452 963.8 721.44 678.45

4 3775.7 2423.3 1732.5 1194.6 772.62 682.22

5 4381.1 2692.7 1776.1 1371.5 846.05 687.95

6 4850.8 3109.9 2163.4 1433.6 939.66 696.15

TABLE 4. Natural frequencies (rad/s) obtained by theoretical
prediction for aspect ratio at a/h=50.

Mode No.
b/a

0.25 0.5 1 2 4 10

1 1131.4 351.99 181.02 159.3 156.72 156.32

2 1228.1 547 278.32 171.91 158.57 156.55

3 1440 833.62 436.5 200.48 162.3 156.94

4 1781.7 888.94 456.24 249.43 168.7 157.52

5 2237.8 964.02 502.2 319.39 178.67 158.31

6 2754.6 1226.2 639.11 408.96 193.01 159.37

TABLE 5. Natural frequencies (rad/s) obtained by theoretical

prediction for different thickness.

Mode No.
a/h

2 5 10 20 50

1 924.78 828.94 636.71 393.14 170.55
2 1455.3 1328.8 1102.1 750.51 346.07
3 1455.3 1328.8 1102.1 750.55 346.09
4 1850.1 1706.6 1443.2 1010.8 476.52
5 2087.4 1961.8 1701.8 1256.3 623.56
6 2088.5 1967 1710.5 1262.3 625.58

TABLE 6. Natural frequencies (rad/s) obtained by theoretical
prediction for different aspect ratio at a/h=5.

Mode No.
b/a

0.25 0.5 1 2 4 10

1 2754.6 1483.6 924.78 722.49 666.84 654.58
2 2981.3 1864.8 1455.3 900.41 711.07 659.46
3 3332.7 2389.2 1455.3 1161.2 789.19 668.98
4 3772.4 2734.6 1850.1 1334.3 894.96 684.12
5 4273.4 2966.4 2087.4 1447.2 1020.1 705.33
6 4815.1 2970.8 2088.5 1454.8 1157.7 732.55

TABLE 7. Natural frequencies (rad/s) obtained by theoretical
prediction for different aspect ratio at a/h=50.

Mode No.
b/a

0.25 0.5 1 2 4 10

1 1549.8 466.73 170.55 121.66 116.33 115.61
2 1596.8 570 346.07 148.55 119.66 115.94
3 1704 786.59 346.09 206.41 127.09 116.54
4 1894.1 1108.8 476.52 295.37 140.55 117.48
5 2176.6 1164.4 623.56 317.48 161.51 118.87
6 2546.5 1231 625.58 335.37 190.56 120.81

Fig. 3. Variation of frequency with different thickness.

Fig. 4. Variation of natural frequency with different aspect
ratios at a/h=5.
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3.2 Anti-Symmetric laminates
In Table 5 natural frequencies of four-layer anti-symmetric lami-
nate is shown. Different ratio of width (a) & thickness (h) of the
plate is taken. The layup in Fig. 2. The material properties in the
study are detailed in Table 1.

4 CONCLUSION
The variations of the first six natural frequencies with respect to
thickness-length ratio and aspect ratio are presented under
clamped condition. The present analysis is useful for the design

of composites plates for dynamic response. FSDT gives very ac-
curate results for thin plates as well as thick plates. CPT is
known to produce accurate results only for thin plates. Hence
the developed program is cable of taking into account any
thickness. Based on the current study the following conclusions
can be drawn. The natural frequency decreases with increase in
thickness ratio. Frequency is found to be increasing with in-
crease aspect ratio. The developed mathematical formulation is
excellent in handling the both symmetric and anti-symmetric
composite laminate problems. The wide variety of problems
tackled further highlights the versatility of the developed for-
mulation.
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