
Dynamic Load Balancing in CP2K

Pradeep Shivadasan

August 19, 2014

MSc in High Performance Computing
The University of Edinburgh
Year of Presentation: 2014

Abstract

CP2K is a widely used atomistic simulation package. Unlike other similar
packages, CP2K uses the Quickstep algorithm for molecular dynamics simulation.
Quickstep is an improvement over plane-wave implementation of DFT and uses
a dual-basis approach to store data in different representation − wave functions
are stored as sparse matrix and electronic density stored on distributed regular
grids. A frequent conversion between the different representation is needed to find
the ground state energy. A load balancing module is available in CP2K which
optimizes the mapping of tasks to processes during the conversion from matrix
to regular grids format. However, the module allocates O(P 2) memory, where
P is the number of MPI processes, and uses a serial algorithm to optimize load
on all processes. The high memory requirement and serial load balancing task
limits the scalability of the algorithm to high number of processors. This document
describes a solution to the high memory requirement problem and shows the issues
in parallelizing the serial load balancing task.

Contents
1 Introduction 1

2 Background 2
2.1 MPI . 2
2.2 Algorithm analysis framework . 4

2.2.1 Levels of parallelization . 4
2.2.2 Dependency Analysis . 6

2.3 Test data . 9

3 An overview of load balancing in CP2K 9
3.1 task data-structure initialization . 13
3.2 The list data-structure . 13
3.3 Load optimization . 14
3.4 Update task destination . 20

4 Issues with current implementation 20
4.1 High memory requirement . 20
4.2 Serial task . 22

5 Improvements 23
5.1 Resolving memory issues . 23

5.1.1 Computing global load . 24
5.1.2 Update local load list . 25
5.1.3 Parallel solution . 32
5.1.4 Checking program correctness 33
5.1.5 Performance measurement . 37

5.2 Resolving serialization issues . 38
5.2.1 Existing implementation . 38
5.2.2 Algorithm analysis . 41
5.2.3 Parallel Implementation . 43
5.2.4 Checking program correctness 48
5.2.5 Result comparison . 49
5.2.6 Performance measurement . 51

6 Retrospective 53
6.1 Project Goals and Objectives . 53
6.2 Major Milestone Achievement . 53
6.3 Risk Management . 54
6.4 Lessons Learnt . 54

7 Conclusions 56

A Project Plan 58

i

List of Figures
1 Conversion between representations. 1
2 MPI communication modes . 3
3 5 stage pipeline . 4
4 SIMD architecture . 5
5 Task parallelism . 6
6 Data Dependency Scenarios . 8
7 Mapping of tasks on grid . 11
8 Cost model accuracy . 12
9 Flowchart of the load balance optimization process. 12
10 Example layout of the 3 dimensional list array 14
11 Possible network arrangements . 15
12 Iterative load sharing . 17
13 Calculating global load - in serial . 18
14 Update list array . 21
15 High memory requirement warning in distribute_tasks routine 22
16 Out of memory warning in optimize_load_list routine 22
17 Memory needed vs number of processes 23
18 Computing global load - in parallel . 26
19 Data Dependency Analysis . 27
20 Data Dependency Graph . 28
21 Data Dependency Graph with self dependency on S1 removed 29
22 Data Dependency Analysis after loop transformation 31
23 Data Dependency Graph after loop transformation 31
24 Final parallel algorithm. 35
25 Sample assertion failure report produced by CPPrecondition function. . 36
26 Comparison of old vs new implementation 38
27 Flowchart for global load optimization process 39
28 Algorithm execution patterns . 43
29 Global load calculation - New method 45
30 Output of CP2K regression test utility 49
31 Performance comparison of the serial and the parallel load balancing

algorithm. 50
32 Speedup of parallel implementation 51
33 Parallel efficiency . 52
34 Profiler Output . 53
35 Risk impact matrix . 55
36 Project Gantt chart . 58

ii

List of Algorithms
1 Compute load list . 16
2 Optimize load list . 19
3 Computation of global load . 24
4 Parallel computation of global load . 25
5 Global load distribution . 26
5a Parallel inner-loop . 30
5b Parallel outer-loop . 32
6 Final implementation . 33
7 Compute flux limits . 40
7a Find optimum flux . 41
7b Update global load . 42
8 Parallel computation of global load . 44
9 Compute parallel flux limits . 46
9a Parallel load optimization . 47
9b Optimize global load . 48

iii

Acknowledgements

If I have seen further it is by standing
on the shoulders of giants

Newton, 1675

I would like to express my deepest gratitude to my supervisor, Iain Bethune (EPCC), for
his excellent guidance, patience, and encouragement in carrying out this project work.

iv

1 Introduction

CP2K [1] is an open-source tool for atomistic simulation available under the GNU
General Public License (GPL). It provides a broad range of models and simulation
methodologies for large and condensed phase systems. The software is written in For-
tran95 and parallelized for distributed memory architectures using MPI augmented with
OpenMP for shared memory architectures. It uses various libraries like dense linear
algebra packages (BLAS, LAPACK, ScaLAPACK); fast fourier transforms (FFTW);
specialized chemical libraries like electron repulsive integrals (libint) and exchange cor-
relation functionals (libxc) to decrease the complexity and enchance the efficiency and
robustness of the code.

CP2K is mainly used to explore properties of complex systems. The methods avail-
able in CP2K to explore the potential energy surface are Stationary Points- to optimize
atomic positions and cell vectors based on various algorithms like cubically scaling
methods, Hessian and linear scaling methods; Molecular Dynamics- DFT based molec-
ular dynamics simulation to simulate atoms and molecules in a system; Monte Carlo-
alternative to MD for sampling purposes; Ehrenfest dynamics- to study the time depen-
dent evolution of electric fields in a system and the response of the electronic structure
to perturbation; and Energy and force methods- to model materials using Classic Force
Fields and Electronics Structure Methods. See [2] for examples of outstanding science
performed with CP2K.

CP2K uses the Quickstep [3] algorithm, an efficient implementation of density function
theory (DFT) based molecular simulations method. It uses a dual-basis approach where
data is stored in two distinct representations - wave-functions stored in a sparse matrix
and electronic density stored on distributed regular grids. Sparse matrix storage uses
less memory and is faster to process while distributed regular grid helps in computing
Hartree potential efficiently. However, the disadvantage of this representation is that to
find the ground state energy of the system, the data needs to be converted between these
two representations in every iteration of the Self-Consistent field (SCF) loop.

Figure 1 shows the conversion between various representations. The conversion from
matrix to regular grids is called Collocation and the reverse conversion is called Inte-
gration.

Figure 1: Conversion between representations.

1

As mentioned earlier, the conversion between various representation is carried out in
every iteration of the SCF loop hence it needs to be very efficient. A number of perfor-
mance improvements, including matrix to regular grid conversion; FFT methods; load
balancing of tasks transferred from real-space to planewave representation, were made
to improve the performance of the Quickstep algorithm in dCSE [4] project.

The scope of this project is to improve the scalability of the existing load balancing
algorithm by reducing its memory requirements and parallelizing the algorithm.

The rest of the document describes the efforts to improve the existing load balancing
module. Section 2 provides an overview of the tools and technologies used to ana-
lyze and develop an improved solution for the problem. Section 3 describes the data-
structures and algorithms used to implement the load balancing module. Section 4 lists
the limitations of the existing implementation followed by a discussion of the new im-
proved solutions in Section 5. Section 6 summarizes the lessons learned during the
project development. Finally, Section 7 summarizes the work carried out during the
project.

2 Background

CP2K version 2.4.0 was used for the development of the solution. The solution was
developed on ARCHER [5] (Advanced Research Computing High End Resource), the
UK National Supercomputing Facility. The ARCHER facility is based around a Cray
XC30 supercomputer with 1.56 petaflops of theoretical peak performance. It consists
of 3,008 nodes with each node having two 12-core 2.7 GHz Ivy Bridge multicore pro-
cessors for a total of 72,192 cores. Each node contains 64 GB of DDR3 main memory,
giving 2.6 GB of main memory per core. The nodes are interconnected via an Aries
Network Interface Card. See [6] for full details of the system.

A brief overview of the tools and techniques used to develop the solution follows.

2.1 MPI

The Message Passing Interface (MPI) [7] is a message passing library used to program
parallel computers mostly distributed memory system. MPI is a SPMD (Single Program
Multiple Data) style of parallel programming where data is communicated between pro-
cesses using messages. MPI provides two modes of communication: a) Point-to-point;
and b) Collective . Point-to-point operation involves message passing between two
different processes. One performs a send operation and the other process performs a
matching receive operation. A collective communication involves all processes within
the system. Collective operations are used for synchronization, data-movement (broad-
cast, scatter/gather, all to all), and reduction operations (min, max, add, multiply, etc).
Figure 2 shows modes of MPI communication diagrammatically. Parallel algorithms in
CP2K are based on message passing using MPI.

2

0 1 2 3

(a) Point-to-point communication

1 2 3

0

(b) Collective communication

Figure 2: MPI communication modes. a) is a point-to-point communication between
two processes. b) is a collective communication where the final result is available on a
single process. Another form of collective communication is available where the result
is made available on all processes in the group.

3

2.2 Algorithm analysis framework

2.2.1 Levels of parallelization

A modern processor provides support for different levels of parallelism at instruction
level, data-level, and task level. The tools and techniques to exploit parallelism are
different at different levels. The next sections provide a brief overview of parallelism
support in a modern processor and techniques to exploit the available parallelism.

Instruction Level Parallelism or Pipeline Parallelism
A modern processor provides multiple ways to execute program instructions in paral-
lel to reduce the program execution-time. Instruction Level Parallelism [8] (ILP) or
Pipeline Parallelism is a technique where multiple independent instructions are exe-
cuted simultaneously in a pipelined manner. Modern processors contain multi-stage
pipelines where micro-instruction are executed in parallel. Figure 3 shows a 5 stage
pipeline where a new independent instruction can start execution every cycle (provided
the resources needed by the instruction are available). It is imperative that the proces-
sor pipeline is issued new instructions on every clock cycle for efficient utilization of
the processor. Independent instructions keep the pipeline busy and increase the pro-
cessor performance, while dependent instructions stall the pipeline and reduce the per-
formance. Optimizing compilers are good at exploiting ILP by finding independent
instructions and scheduling them efficiently to execute in parallel. Another method to
exploit ILP in software is loop unrolling which directly exposes independent operations
to the compiler.

Figure 3: A 5 stage pipeline where an instruction is executed in stages and a new in-
struction can start execution as soon as the resource used by the last instruction becomes
available. The stages shown in the diagram are Instruction Fetch (IF), Instruction De-
code (ID), Execute (EX), Memory (MEM), and Write Back (WB). Source [13].

Data-Parallelization or Vectorization
Modern hardware provides vector units to exploit data-level parallelism [9]. In data-
parallelization, a single instruction is used to perform the same operation on multiple

4

data points simultaneously. Vector units uses special instruction set called SIMD [10]
(Single Instruction Multiple Data) instructions. SIMD instructions include instructions
to perform arthimetic, data-movement, and bit-wise operations for both integer and
floating point values. Some examples of SIMD instructions from different vendors are
SSE, AVX from Intel; 3DNow! from AMD; AltiVec, SPE from IBM; MAX from HP;
and NEON from ARM.

The vector instructions perform better than a SISD (Single Instruction Single Data)
instruction due to the fact that only a single instruction is decoded and executed for
multiple data points. The data access pattern also exhibits a strong locality of refer-
ence. The data is accessed from consequent memory locations. This predictable pattern
helps the hardware to prefetch data before the instruction requires it. Many optimiz-
ing compilers are capable of producing automatic vectorized code. These compilers
checks for data dependencies between instructions and vectorize parts of code that are
independent. Figure 4 shows a SIMD instruction working on multiple data points.

Figure 4: A SIMD architecture with multiple Processing Units (PU) processing multiple
data points using a single instruction. Source [14].

Task Parallelism
Task parallelism [11] is used to execute independent tasks in parallel. Independent task
could be a print job working in the background and windows updating in the foreground.
Independent task could also be iterations of a loop executing in parallel. Independent
task could be executed on the same machine or on distributed machines. Tasks are cre-
ated by Threads or Processes, abstractions provided by the operating system. They are
optimally scheduled by the operating system to utilize the available resources. Hard-
ware support for tasks are provided by multiple or multi-core processors. Operating

5

systems uses the concept of time-slicing where a single CPU is multiplexed between
multiple Threads and Processes.

In performance programming, tasks are mostly iterations of loop running in parallel or
program running on distributed systems. On a shared memory machine, OpenMP [12]
is mostly used to parallelize iterations of a loop. Other commonly used threading li-
braries are pthreads, Win32 threads, Boost etc. On a distributed cluster environment,
the two typical approaches to communication between cluster nodes have been PVM,
the Parallel Virtual Machine and MPI, the Message Passing Interface. However, MPI
has now emerged as the de facto standard for message passing on a distributed environ-
ment.

Compared to SIMD instruction, a thread or a process executes a MIMD (Multiple In-
struction Multiple Data) type of instruction. Figure 5 shows a MIMD instruction work-
ing on multiple instructions and multiple data points.

Figure 5: A MIMD architecture (Task parallel) with multiple Processing Units (PU)
processing multiple data points using multiple instructions. Source [15].

2.2.2 Dependency Analysis

As shown in the Section 2.2.1, modern processors executes programs faster by execut-
ing instructions in parallel. Instructions can only be executed in parallel if there are no
execution-order dependency between statements/instructions. Dependent instructions
inhibit parallelism and may introduce bubbles in the processor pipelines or serialize
loop iterations. Dependency analysis techniques are available to check for dependen-
cies between instructions and loops. The next sections discuss techniques available to
check for data dependencies and loop dependencies in a program.

6

Data Dependence Analysis
Understanding data dependencies is fundamental in implementing parallel algorithms.
Data Dependence Analysis [17] determines whether or not it is safe to re-order or par-
allelize statements. Bernstein’s conditions [18] describe when the instructions are inde-
pendent and can be executed in parallel.

O(i) ∩ I(j) = ∅ (1)
I(i) ∩O(j) = ∅ (2)
O(i) ∩O(j) = ∅ (3)

Where:
O(i): is the set of (output) locations altered by instruction i
I(i): is the set of (input) locations read by instruction i
∅ : is an empty set.

A potential data-dependency exists between instruction i and a subsequent instruction j
when at least one of the conditions fails.

A flow dependency (statement using results produced by its preceding statements) is
introduced by the violation of the first condition. An anti-dependency is represented by
the second condition, where the statement j produces a variable needed by statement i.
The third condition represents an output dependency: When two statements write to the
same location, the result comes from the logically last executed statement.

Figure 6 demonstrate several kinds of dependencies. In Figure 6(a), statement S2 cannot
be executed before (or even in parallel with) statement S1, because statement S2 uses a
result from statement S1. It violates condition 1, and thus introduces a flow dependency.
Similarly, Figure 6(b) and Figure 6(c) violates condition 2 and condition 3 respectively.

Table 1 shows the notations used in this document to describe data dependencies be-
tween statements.

Flow dependence δ
Anti-dependence δ̄

Output dependence δ◦

Table 1: Data Dependency Notations

7

S1 : X =

S2 : = X

(a) Flow or true dependency

S1 : = X

S2 : X =

(b) Anti dependency

S1 : X =

S2 : X =

(c) Output dependency

Figure 6: Data Dependency Scenarios. a) shows X cannot be read in statement 2 until
X is written to in statement 1. b) shows X cannot be written to in statement 2 until
statement 1 has read the value in X. c) shows X cannot be written to in statement 2 until
X is written to in statement 1.

Loop Dependency Analysis
A numerical application spends majority of its time executing instructions inside a loop.
Hence, loops are potential candidates for parallelization. A well-designed loop can pro-
duce operations that can all be performed in parallel. However, a single misplaced
dependency in the loop can force it all to be run in serial. A Loop Dependency Analy-
sis [17] is the task of determining whether statements within a loop body form a depen-
dence, with respect to array access and modification. If the analysis can determine that
no data dependencies exist between the different iterations of a loop then the iterations
can be executed in parallel. The types of dependencies in loops are:

1. Loop-independent dependence.

2. Loop-carried dependence.

Loop-independent dependence occurs between accesses in the same loop iteration, whereas
loop-carried dependence occurs between accesses across different loop iterations. List-
ing 1 shows example of loop dependencies.

DO I = 1 , N
S1 : A(I) = A(I−1) + 1
S2 : B(I) = A(I)

ENDDO

Listing 1: Loop Dependency Example

8

In the given example, there is loop-carried dependence from statement S1i to statement
S1i+1. That is, the instruction that uses A(i-1) can only access the element after the
previous one computes it. Every iteration depends on the result of its previous iteration.
Clearly, this is not a problem if the loop is executed serially, but a parallel execution may
produce a wrong result. Similarly, there is a loop-independent dependency between
statements S1i and S2i. The statement S2i depends on the output of statement S1i

hence the statements cannot be re-ordered or executed in parallel.

Another concept that is important in loop analysis is the Data Dependency Direction
Vector. As the name suggests, direction vectors return the direction of the dependency:
forward, backward or equal. In forward dependency the value is computed in iteration
i and used in iteration i+k. In backward dependency the vale is computed in iteration
i and used in iteration i-k. This is only possible in nested loops. Finally, in equal
dependency the value is computed in iteration i and used in iteration i. These techniques
will be examined in greater detail in the coming sections.

Table 2 shows the notations used in this document to show direction of loop dependency.

Forward <
Backward >

Equal =

Table 2: Data dependency direction notations

2.3 Test data

The two test inputs used to check the performance and correctness of the modified
algorithms are H2O-32 and W216. H2O-32 is a small benchmark which performs 10
MD steps on a system of 32 water molecules in a 9.85 Angstrom cubic cell. This small
benchmark is used to quickly check the performance and correctness of the modified
algorithms.

W216 is a large system of 216 molecules in a non-periodic 34 Angstrom cell. The
atoms in the system are clustered in the center of the simulation cell. Because of large
molecules some systems will have fewer tasks than others. This creates a load imbal-
ance and is a good test case for testing the load balancing algorithm.

3 An overview of load balancing in CP2K

As discussed in the introduction section, CP2K uses Quickstep algorithm for molecular
simulations. This algorithm uses dual basis approach and represents data in two differ-
ent formats: sparse matrix and regular grid. The data needs to be converted between

9

these two representations in every iteration of the SCF loop. Figure 1 shows the con-
version between different representations. During the conversion, the gaussian basis
function stored in the sparse matrix form is distributed to the real-space grid (shown
as the collocation step in Figure 1). The gaussian basis function is stored as a task list
in the source process. Once distributed, the task may be executed by other process in
the system. The function of the load balancing module is to optimize the choice of the
destination process to balance the load of task across all processes in the system.

The load balance is achieved by migrating tasks between the least loaded neighboring
processes. The key information to migrate tasks between processes are the default desti-
nation process of a task, its alternative destinations, and the cost of the task. The default
destination of a task is the process where it will be executed. The alternate destinations
are the processes where the task may be migrated for load balancing. Figure 7 shows
the mapping of task destination and its alternate destinations on the real-space grid.

The task is represented by the task data-structure in CP2K. Listing 2 shows the fields
of this data-structure.

t a s k (1 , i) # d e f a u l t d e s t i n a t i o n
t a s k (2 , i) # s o u r c e
t a s k (3 , i) # compressed type (ia tom , ja tom , . . .)
t a s k (4 , i) # (0 : r e p l i c a t e d , 1 : d i s t r i b u t e d l o c a l , 2 :

d i s t r i b u t e d g e n e r a l i s e d)
t a s k (5 , i) # c o s t
t a s k (6 , i) # a l t e r n a t e d e s t i n a t i o n s , 0 i f none

a v a i l a b l e

Listing 2: Fields of the task data-structure. The alternate destinations field also contains
the process ID of the default destination process.

As shown in Listing 2, the default destination is stored in task(1,i) field, the al-
ternate destinations are stored in task(6,i) field, and the cost of the task is stored
in task(5,i) field. The destination and the alternate destinations of the task are
computed in the rs_find_node routine. The cost of a task is computed as

((lmax+ v1) ∗ (cmax+ v2)3 ∗ v3 ∗ fraction+ v4 + v5 ∗ lmax7)/1000

Where:
cmax: measure of the radius in grid points of the gaussian
lmax: angular momentum quantum orbital for the particular gaussian

fraction: factor to split cost between processes for the generalized task type
vi: constant to account for other costs

Figure 8 shows accuracy of prediction of the cost model.

Figure 9 shows the flowchart summarizing the steps to optimize load balance between
all processes. Every process maintains a list of tasks that it is responsible to execute,
along with a list of alternate destinations where the task can be migrated for load balanc-
ing. The idea of load balancing is to shift tasks to their least loaded alternate destination

10

Process 0

Dest.
Local Grid

Halo

GRID

Process 1

Alternate dest.

Local Grid

Halo

GRID

Figure 7: Mapping of tasks on grid. Tasks are shown as red circles. A tasks default
process is the one where it falls within the local grid. Alternate destinations are the
process where the entire task falls within the halo region.

and even out load among all processes. The load of a process is calculated by summing
the cost of the tasks that is assigned to it. Once the load on each process is calculated,
the optimum load of all processes is found by iteratively shifting the load between the
destination and alternate destination processes. Finally, the task is re-assigned to its
least loaded possible destination.

The load balancing module is implemented in the task_list_methods.f90 file.
load_balance_distributed is the driver routine that implements the load bal-
ancing process. The driver routines calls create_destination_list to allocate
memory for the list data-structure (discussed in Section 3.2), compute_load_list
to add task load to the list data-structure (discussed in Section 3.2) and update task
destination after load optimization (discussed in Section 3.4), and optimize_load_list
to optimize the global load of all processes (discussed in Section 3.3).

11

Figure 8: Cost model accuracy. Source [16].

The next sections show details of the implementation begining with the key data-structures
used in the implementation.

Start

Compute destination, alternate destinations, and cost of tasks

Calculate load on processes

Optimize load

Reassign tasks to the least loaded process in their destination list

Stop

Figure 9: Flowchart of the load balance optimization process.

12

3.1 task data-structure initialization

As discussed in the previous section, the task data-structure contains the key infor-
mation to migrate tasks between processes to optimize the load on every process. The
task’s default destination and alternate destinations are found on the real space grid. The
real space grid is decomposed into chunks (Grid) handled by different MPI processes.
The default destination of the task is the process which have sections of the grid, in-
cluding halos, that fully contain the grid-points required to process the current gaussian
(task). Then the 6 neighbour nodes (+/- x,y,z) are checked to see if they fit the bounds
of the task. If so these processes are set as the alternate destinations of the task. See
Figure 7 for a 2D view of the task mapping process. See [4] for a detailed discussion of
the grid layout.

The information stored in the task data-structure is re-organized and stored as a map of
task destination, alternate destinations and its cost. This new re-organized information
is stored in a data-structure called list. The next section describes the list data-
structure in detail.

3.2 The list data-structure

As discussed in the previous section, the list data-structure stores the re-organized
information of the task data-structure. From now onwards, the default task destination
will be referred to as the source process and the alternate task destinations will be re-
ferred to as the destination process. The term cost and load will be used interchangeably
to refer to the load of the process.

The list data-structure is a 3 dimensional array. Figure 10 shows the layout of this
data-structure. The Rank (process ID is referred to as Rank in MPI) of the destinations
are stored in the first dimension of the array and the cost of the tasks that can be shifted
to these destinations are stored in the second dimension. The third dimension is used
to index the array for all processes in the system. For example, in an 8 process system,
the statement dest = list(1,2,3) returns the rank of the 2nd destination of the
3rd source. Similarly, the statement load=list(2,2,3) returns the cost of task of
the same example process. The total load of the source process is the sum of the cost of
the task transferable to its destination process.

list initialization
The list array is created in the routine create_destination_list. The size
of the first and second dimension of the array is determined by the number of desti-
nations a process has: 3 for 1D decomposition, 5 for 2D decomposition, and 7 for 3D
decomposition. The different possible decompositions are shown in Figure 11. The size
of the third dimension is determined by the number of processes in the system.

After the array is created, the create_destination_list routine initializes the

13

Process N

Process 2

Alternate destinations

Cost

Process 1

Figure 10: Example layout of the 3 dimensional list array with the alternate task desti-
nations of the process stored in the first dimension of the array and the corresponding
task cost stored in the second dimension. The index of the third dimension (shown in
the vertical direction) is used as the source process identifier.

first dimension of the list data-structure with the Ranks of the task destination pro-
cesses. The destination process information is found in the rs_descs data-structure.
The destination processes are the neighboring process of the source process under con-
sideration. Since the information stored in rs_descs is global and same in all pro-
cesses, the first dimension values are same in all processes. A detailed discussion of
rs_descs data-structure is beyond the scope of this document.

The second dimension of the list is initialized with the cost of the tasks. The cost of
the task stored in the task data-structure is added to its destination process cost in the
list data-structure. The initialization is done in the compute_load_list routine.
The routine handles two cases: initialize list array with cost of the task, and reassign
task to optimum process after load optimization.

The pseudo-code for computing process load is shown in Algorithm 1. The algorithm
groups all tasks into blocks that handles the computation of same atom pairs and thus
depend on the same matrix block. A list of destination for every task in the block is
created and for each task in the block, its alternative destinations are checked in the list.
If alternative destinations are found in the list, the task is assigned to the least loaded
destination in the list. Otherwise, the task is assigned to its default destination. This
completes the initialization of the list data-structure. Next, using this information,
the global load of all process is computed and optimized for load balancing.

3.3 Load optimization

CP2K uses an iterative algorithm for load optimization. The load of processes are
optimized and tasks are migrated to their possible destinations to balance the work load
across processes. Figure 12 shows the load balancing process diagrammatically. The
diagram shows two processes, Process A and Process B as load sharing processes. The
process begins by Process A sharing its work load with Process B, Process B in-turn

14

b a c

(a) 1D arrangement

b a c

d

e

(b) 2D arrangement

b a c

d

e

f

g

(c) 3D arrangement

Figure 11: Possible network arrangements. a) shows 1D arrangement where load can
be shared between processes arranged in x dimension only. b) shows 2D arrangement
where load can be shared between processes arranged in x and y dimensions. c) shows
3D arrangement where load can be shared between processes arranged in x, y, and z
dimensions.

15

Algorithm 1 Compute load list
Begin

for all blocks in tasks do . task blocks with same atom pairs
for all i in blocks do

destsi ← taski.dest
end for
for all i in blocks do

for all d in taski.alt_dests do
if d ∈ ANY (dests) then

alt_opts← d
end if

end for
if alt_opts 6= ∅ then

rank ← LEAST_LOADED(alt_opts)
else

rank ← taski.dest
end if
li← list_index(list, rank)
if create_list then . Case 1: init list

list(2, li, taski.dest) = list(2, li, taski.dest) + taski.cost
else . Case 2: update task dest

if list(1, li, taski.dest) 6= taski.dest then
if list(2, li, taski.dest) ≥ taski.cost then

list(2, li, taski.dest) = list(2, li, taski.dest)− taski.cost
taski.dest← rank

end if
end if

end if
end for

end for
End

16

A

B

Figure 12: Iterative load sharing

shares its work load with its neighbors. The neighbors of Process B shares their work
load with their neighbors and so on. This process is iteratively executed optimizing the
load across the system. Once optimized, the tasks are migrated from overloaded process
to the least loaded process.

The pseudo-code for load optimization is shown in Algorithm 2. The process is imple-
mented in the optimize_global_list routine. The algorithm has three parts:
calculate global load, optimize global load, and update local load (the list data-
structure). Each part is explained next.

Calculating global load
All process store their task information locally in the list data-structure. These frag-
mented local load information is accumulated on a single process (Rank 0) and pro-
cessed to create the global load information. The global load information shows the
total load on each process globally.

Algorithm 2 shows the pseudo-code to compute global load of each process. The
local load information from all process is gathered on Rank 0. A temporary array,
load_per_source1, sufficient enough to store information from all processes is
allocated to gather this information. The global load on each process is calculated
by summing the local load gathered in the last step. The global load is stored in the
list_global array.

Figure 13 shows the steps to calculate global load diagrammatically. In the diagram,
load of Process P0 and Process P1 is gathered on Process P0 and stored in the temporary
array load_per_source. The values in the temporary array are added together to
find the global load of each process.

1The load_per_source array is declared as a 1D array in the implementation. Here the array is shown
as a 2D array for ease of explaination.

17

B1 B2 B3 P1 B′1 B′2 B′3 P1

A1 A2 A3 P0

P0

A′1 A′2 A′3 P0

P1

(a) Local load information in the list data-structure. Alternate destinations not shown.

A1 A2 A3 B1 B2 B3 A′1 A′2 A′3 B′1 B′2 B′3

P0

X1 X2 X3 Y1 Y2 Y3

+ + + + + +

(b) Load gathered from all processes to Rank 0. Process wise load added to compute global load

Figure 13: Calculating global load - in serial. a) shows load information stored in the
list data-structure (alternate neighbors fields excluded from the diagram). b) shows load
information gathered on Rank 0 and global load computed serially on Rank 0.

18

Algorithm 2 Optimize load list
Begin

MPI_GATHER(list.load, load_per_source, . . .) . Gather Local loads
if RANK = 0 then

for all i in nProc do
for all j in nProc do

load_allj ← load_allj + load_per_sourcei,j . Calculate global load
end for

end for
list_global.dest← list.dest
list_global.load← load_all
BALANCE_GLOBAL_LIST(list_global) . Optimize global load
for all i in nProc do

for all j in nProc do
tmp← MIN(list_globalj.load, load_per_sourcei,j)
load_per_sourcei,j ← tmp
list_globalj.load← list_globalj.load− tmp

end for
end for

end if
MPI_SCATTER(load_per_source, list.load, . . .) . Update local load

End

Optimizing global load
The load optimization algorithm is implemented in the balance_global_list
routine. This algorithm works on the list_global data-structure described previ-
ously. It finds the optimum flux (amount of work load) that could be shifted between the
source and the destination process. The calculated optimum flux is used to normalize
the load stored in the list_global data-structure.

Similar to the list data-structure, the list_global array stores values in pairs
of alternate destinations and task load. However, the load information stored in the
list_global array is that of the global load of all processes in the system. This
values also sets a limit on the amount of load that could be shifted between the pairs
of process. The limit is called the flux limits. Another concept used in the load bal-
ancing module is that of a flux connections. The pair of the source and the destination
process in the list_global array forms a flux connections. The load optimization
algorithm balances the load on processes by optimizing the load between the pairs in the
flux connections. See Section 5.2.1 for a detailed discussion on the load optimization
process.

Updating local load list
The optimized global list, computed in the last step, is used to update the local load
stored in the list array. The new local load is computed by the Rank 0 process and

19

scattered to their respective processes. Processes gather this information and update
their list array with the new load information. The pseudo-code for the algorithm is
shown in Algorithm 2. The algorithm reassigns local load array (load_per_source)
with the minimum of existing values or the newly computed load. The updated load is
scattered to the respective processes which updates the load values in their list ar-
ray. The steps to update the local load information is shown diagrammatically in Figure
14. The diagram shows the updated local load information calculated in Rank 0 and
scattered to their respective processes.

3.4 Update task destination

Finally, the updated list is used to reassign tasks to its optimum destinations. The
pseudo-code for the task reassignment is shown in Case 2 of Algorithm 1. The list
data-structure contains optimized load from the last step. The algorithm searches for
the least loaded process in the task’s alternate destination list. If the destination process
can accommodate load of the task, the task is assigned to the process otherwise the task
remains with its default process.

This concludes the discussion on existing implementation of the load optimization pro-
cess. The next section discusses issues with the current implementation followed by
solutions to the identified issues.

4 Issues with current implementation

4.1 High memory requirement

The first major issue with the current implementation is the amount of memory required
to implement the load balancing module. The most expensive data-structure in terms
of memory requirement is the temporary array load_per_process. Memory for
this data-structure is allocated in the optimize_load_list routine. The variable
is used to gather local load information from all processes in the system. The load in-
formation is retrieved from the list data-structure. list uses O(P) memory to store
load information of all task in a process. In order to store this information centrally,
load_per_process allocates O(P 2) amount of memory. The amount of memory
needed is calculated as

sizeofint ∗max_dest ∗ ncpu2

Where:
sizeofint: is the word size on the executing machine
max_dest: is maximum alternate destinations for a task

ncpu : is the number of processes in the system.

20

X1 X2 X3 Y1 Y2 Y3

P0

A1 A2 A3 B1 B2 B3 A′1 A′2 A′3 B′1 B′2 B′3

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

(a) Updating load_per_source_array

A1 A2 A3 B1 B2 B3 A′1 A′2 A′3 B′1 B′2 B′3

P0 P1

A1 A2 A3 B1 B2 B3 A′1 A′2 A′3 B′1 B′2 B′3
(b) Scatter updated load_per_source_array to respective processes

B1 B2 B3 P1 B′1 B′2 B′3 P1

A1 A2 A3 P0

P0

A′1 A′2 A′3 P0

P1

(c) Update list data-structure with updated load information

Figure 14: Updating list array. a) shows distribution (using minimum (∧) operation) of
optimized list_global to load_per_source array. b) shows the updated load_per_source
scattered to the respective processes. c) shows the list data-structure updated with the
new load information.

21

The usage of this variable is shown in Algorithm 2. Figure 15 and 16 shows warnings
in the source code related to high memory usage.

Figure 15: High memory requirement warning in distribute_tasks routine

Figure 16: Out of memory warning in optimize_load_list routine

Figure 17 shows the memory requirement for load_per_source array versus num-
ber of processes. The memory requirement increases quadratically with increase in
the number of processors. The high memory requirement limits the algorithm scala-
bility beyond a certain number of processes. For example, on ARCHER, the amount
of memory available per node is 64GB. The number of processors per node is 24, this
gives 2.6GB of available memory per processor. The Operating system does not sup-
port Virtual Memory hence 2.6GB is the hard limit. This limits the algorithm to scale
beyond 10,112 processes on ARCHER.2 The load balancing function can be turned on
or off through the SKIP_LOAD_BALANCE_DISTRIBUTED switch provided in the
input file. By default, the load balancing function is turned off. The function is also
turned off for programs running on more than 1024 processes. Figure 15 shows the
code snippet checking this flag to run the load balancing routine.

4.2 Serial task

The second major issue with the current implementation is the serial processing of the
balance_global_list routine. As discussed in Section 3.3, this routine opti-
mizes the load of the system by iteratively shifting load between processes. The time
complexity of the algorithm is O(N2) as nproc*nproc load shift operations are per-
formed by this algorithm. These operations are computed iteratively and could take

2In practice CP2K is not scalable beyond 10,000 processes due to memory requirements of other
modules.

22

0 2,000 4,000 6,000 8,000 10,000
0

0.5

1

1.5

2

2.5

Processes

M
em

or
y
N
ee
d
ed

(G
B

)

Figure 17: Memory needed vs number of processes

many steps to converge making this a time consuming task. This is a good candidate
task for parallelization. However, in the current implementation, the task is executed
only by the Rank 0 process effectively making this a serial task. This limits the scal-
ability of the algorithm because no matter how many processors are used only Rank 0
process executes the task.

The efforts to remove the issues identified in this section are described next.

5 Improvements

The two major issues with the current implementation identified in Section 4 are

1. High memory requirement

2. Serial processing of load optimization task

This section describes the solutions to the above identified issues. Section 5.1 describes
the solution to resolve memory issues and Section 5.2 describes the solution to paral-
lelize the serial load optimization task.

5.1 Resolving memory issues

The optimize_load_list routine is the most memory consuming routine in the
load balancing module. This routine is used to optimize the global load of all processes.
As described in Section 4, the routine allocates O(P 2) memory to gather local load
data from all processes in the system. The gathered data is stored in the variable called
load_per_source. This variable is used to compute two pieces of information:

23

a) global load of all processes in the system; and b) distribution of optimized load to
source processes .

The computed global load is sent to the balance_global_list routine which op-
timizes the global load values. The optimized global load is distributed to the list
array through the load_per_source variable. A detailed discussion of this process
is given in Section 3.3.

The need for this large array arises because the global load and optimum load values are
computed sequentially on a single process (Rank 0). To compute this values the load
information stored in other processes are required on Rank 0. The situation can be im-
proved if the information can be calculated locally by all processes without transferring
and storing large amount of system-wide global information.

Section 5.1.1 and Section 5.1.2 describes the attempt to compute the above mentioned
information locally by all processes thus eliminating the need for the large memory for
load balancing.

5.1.1 Computing global load

As mentioned in Section 5.1, the global load of all process is required to balance the
work load between processes. The pseudo-code of existing implementation to compute
the global load is shown in Algorithm 3. Algorithm 3 is a snippet from Algorithm 2.
In order to compute the global load, the local loads from other processes are gathered
on Rank 0 using the MPI collective routine MPI_GATHER. See Section 2.1 for in-
formation on MPI collective routines. The gathered values are stored in the large array
load_per_source. The values in the array are added together to compute the global
load on all processes. See Section 3.3 for details on computation of global load.

Algorithm 3 Computation of global load
Begin

MPI_GATHER(list.load, load_per_source, . . .) . Gather on RANK 0
if RANK = 0 then

for all i in nProcess do
for all j in nProcess do

load_allj ← load_allj + load_per_sourcei,j
end for

end for
. . .

end if
. . .

End

In order to eliminate the use of the large array, the computation needs to be done col-
lectively by all process and the final result needs to be communicated back to Rank 0.

24

The MPI collective operation MPI_REDUCE can be used to compute the global load
collectively by all processes. This operation applies a global reduction operation on
data from all processes in the system and places the result on a single process. The
reduction operation is a polymorphic function that can be used to parallelize computa-
tion of associative operations like min, max, sum, product, bit-wise operation etc. See
Section 2.1 for information on MPI collective operations.

Algorithm 4 shows the parallel implementation of the global load computation using
the MPI_REDUCE collective routine. Compared to the existing solution, the new im-
plementation computes the value collectively by all processes without the overhead of
the large temporary array load_per_source. This eliminates the large array needed
to store the global information required in serial computation.

Algorithm 4 Parallel computation of global load
Begin

MPI_REDUCE(list.load, load_all,MPI_SUM, . . .) . Result on RANK 0
. . .

End

Figure 18 shows the process diagrammatically where process P0 and P1 collectively
add the load of each process stored in the list data-structure and stores the result in
process P0.

5.1.2 Update local load list

As described in Section 5.1, the second usage of the large array is to distribute the
optimized global load information to source processes. Source process uses this in-
formation to update the list array and migrate their tasks to the optimum process.
Algorithm 5 is a snippet from Algorithm 2 showing the distribution of global load.
The list_global array contains the optimized global load values computed by the
balance_global_list routine. The optimized values are distributed to the list
data-structure through the load_per_source array. See Section 3.3 for a discus-
sion on the global load optimization process. Similar to the computation of the global
load values, this is also a sequential process and requires the large temporary array
load_per_source for computation.

Similar to the solution presented in the previous section, the temporary array can be
eliminated by computing the optimum local load values locally on every process. Un-
like the previous solution, there are no ready made routines available to parallelize the
algorithm. Hence, the algorithm needs to be analyzed and parallelized manually.

Before parallelizing a serial algorithm, the algorithm needs to be analyzed for fitness of
parallel execution. An algorithm can only be parallelized without any overhead if there
are no dependencies between potential parallel tasks. Dependency analysis methods
like the data dependency analysis and loop-dependency analysis are used to analyze the

25

B1 B2 B3 P1 B′1 B′2 B′3 P1

A1 A2 A3 P0

P0

A′1 A′2 A′3 P0

P1

(a) Load information in the list data-structure. Alternate destination information not shown.

A1 A2 A3 B1 B2 B3

P0

A′1 A′2 A′3 B′1 B′2 B′3

P1

A1 + A′1 A2 + A′2 A3 + A′3 B1 +B′1 B2 +B′2 B3 +B′3

P0

+ + + + + +

(b) Collective computation of global load values

Figure 18: Computing global load - in parallel. a) shows the load values in the list
data-structure used to compute the global load. b) shows the collective computation of
global load values using MPI_REDUCE operation. The result is available in P0 only.

Algorithm 5 Global load distribution
Begin

if RANK = 0 then . compute sequentially on RANK 0
. . .
for all i in nProc do

for all j in nProc do
temp← MIN(list_globalj.load, load_per_sourcei,j)
load_per_sourcei,j ← temp
list_globalj.load← list_globalj.load− temp

end for
end for
. . .

end if
MPI_SCATTER(load_per_source, list.load, . . .) . scatter from RANK 0

End

26

temp = MIN(list_global1, load_per_source1,1) temp = MIN(list_global1, load_per_source2,1)

load_per_source1,1 = temp load_per_source2,1 = temp

list_global1 = list_global1 − temp list_global1 = list_global1 − temp

temp = MIN(list_global2, load_per_source1,2) temp = MIN(list_global2, load_per_source2,2)

load_per_source1,2 = temp load_per_source2,2 = temp

list_global2 = list_global2 − temp list_global2 = list_global2 − temp

12 5

4

3

67
j

i

1: δ ==; 2: δ ==; 3: δ◦ <<; 4: δ̄ ==; 5: δ̄ ==; 6: δ <=; 7: δ◦ <=

Figure 19: Data Dependency Analysis of Algorithm 5. Dependency #3 inhibits inner-
loop parallelism and dependency #3,6,7 inhibits outer-loop parallelism.

candidate parallel tasks for dependencies and opportunities for parallelization. Section
2.2 gives a background information on various dependency analysis methods.

The next section shows the analysis of Algorithm 5 using the framework described in
Section 2.2. The information gathered during the analysis of the algorithm is used to
safely convert the serial implementation to a parallel implementation.

Algorithm Analysis
The following section uses the dependency analysis framework described in Section 2.2.
Figure 19 shows the dependency analysis of Algorithm 5. To understand the depen-
dencies between loop iterations, the loop is unrolled twice in both dimensions. The
outermost loop index i is shown as increasing from left to right and the innermost in-
dex j is shown as increasing from top to bottom. For each iteration the scalar variable
temp is assigned a minimum of list_global or load_per_source. Then, ar-
ray load_per_source is assigned the value of temp which is then subtracted from
list_global. Dependencies between statements and iterations are shown using ar-
rows in the figure. The type and direction of dependencies are annotated using the
notation shown in Table 1 and 2. Figure 20 shows the dependency graph of the loop
under investigation.

The graph shows dependency from statement S1→ S2, from S1→ S3 and from S3→
S1. There is also a self dependency on statement S1 andS3. The type of data depen-
dency from S1 → S2 is flow dependence and anti-dependence. The value of temp is
assigned to load_per_source in S2 which is computed in S1, hence there is a flow
dependence between statement S1 and S2. Similarly, the array load_per_source
is read in statement S1 and written to in S2, hence there is also a anti-dependence de-
pendency between statement S1 and S2. The data dependence direction (=,=) shows
that both the dependencies occur in the same iteration of the loop hence the loop depen-

27

S1

δ◦ <<

S2

δ̄ ==,δ ==

S3

δ̄ ==,δ ==

δ◦ <=

δ <=

Figure 20: Data Dependency Graph of Algorithm 5.

dency is of type loop-independent. Clearly, the statements could be executed simulta-
neously in different iterations of the loop.

The type of data dependency from S1 → S3 is anti-dependence. The value of array
list_global is read in statement S1 and written to in statement S3. Similar to the
previous dependency, the data dependence direction (=,=) shows a loop-independent
equal dependence and hence the statements could be executed simultaneously in differ-
ent iterations of the loop.

The type of data dependence from S3→ S1 is flow dependence. The data dependence
direction (<,=) shows a forward dependence in the outer loop level i. There is a loop-
carried dependence from iteration i to iteration i+k. The value of list_global is
calculated in iteration i and used in iteration i+k. The loop-carried dependency pro-
hibits the outer loop to run in parallel.

The type of self loop dependency in S3 is output dependence. Similar to the previous
dependency, the type of data dependence direction (<,=) is loop-carried forward depen-
dence in the outer loop level. The variable list_global is assigned a value in all
iterations of the loop and hence the statement cannot be run in parallel.

The type of self loop dependency in S1 is output dependence and the type of data de-
pendency direction (<,<) is loop-carried forward dependency. The variable temp is
assigned value in all iterations of the loop. However, as temp is a temporary scalar
variable, the dependence can be removed by making it an auto or thread private vari-
able. An auto variable is a variable which is allocated and deallocated in the program’s
stack memory when the program flow enters and leaves the variable’s context. Vari-
ables passed as function arguments, declared as local variables inside a function are
classified as auto variables. Variables on the stack however are local to threads, because
each thread has its own stack residing in a different memory location. Sometimes it is

28

S1

S2

δ̄ ==,δ ==

S3

δ̄ ==,δ ==

δ◦ <=

δ <=

Figure 21: Data Dependency Graph with self dependency on S1 removed

desirable that two threads referring to the same variable are actually referring to differ-
ent memory locations, thereby making the variable thread-private, a canonical example
being the OpenMP private clause creating the loop index variable private to the thread.

The next section describes the methods to remove the dependencies identified during
the analysis of the algorithm to help parallelize the algorithm.

Loop transformation
In this section, the loop transformation process is illustrated using OpenMP. The trans-
formed loop is parallelized using MPI in the final implementation of the algorithm.

As discussed in the previous section, the inner-loop could be parallelized by making the
temporary variable temp an auto or thread private variable. Algorithm 5a shows the
pseudo-code parallelizing the inner-loop of of Algorithm 5 using the OpenMP directive.
The variable temp is made thread private using the openMP private clause. Figure 21
shows the new dependency graph after the modification.

However, parallelization of the inner-loop is not sufficient to parallelize the algorithm
for a distributed environment. The inner-loop effectively updates elements of per pro-
cess data (list values stored in load_per_source) in parallel but for a distributed
parallel algorithm per process data, not elements, needs to be updated in parallel. For
example, the inner-loop updates the elements of array of process 0 in parallel then
elements of process 1 and so on. In order for this algorithm to run efficiently in a
distributed environment, both process 0 and process 1 needs to process their arrays in
parallel. This could only be done through parallelization of the outer-loop. But the
dependency constraints identified in the previous section prevents the outer-loop from
running in parallel.

The outer-loop can be parallelized by transforming the loop into a suitable form that
can be parallelized without breaking the dependency constraints. Some of the methods
that can transform a loop into a more suitable form required by the algorithm are loop

29

Algorithm 5a Parallel inner-loop
Begin

. . .
if RANK = 0 then

for all i in nProc do
#pragma omp parallel for private(temp) . C notation
for all j in nProc do

temp← MIN(list_globalj.load, load_per_sourcei,j)
load_per_sourcei,j ← temp
list_globalj.load← list_globalj.load− temp

end for
end for
. . .

end if
. . .

End

unrolling, loop fission, loop fusion, and loop interchange. Loop unrolling limits the
loop overhead by increasing the number of instructions executed per iteration. Loop
fusion also limits the loop overhead by combining multiple loops into a single loop.
Loop fission is used to split loop into multiple loops to expose more parallelism. Loop
interchange exchanges the order of two iteration variables used by a nested loop. The
variable used in the inner loop switches to the outer loop, and vice versa. It is often
done to improve the memory access pattern of a multidimensional array. However, here
it can be used to remove the loop carried dependency and parallelize the outer-loop.
Figure 22 shows the data dependency analysis of the loop after application of the loop
interchange transformation. Figure 23 shows the data dependency graph of the newly
transformed loop.

It can be seen from the dependency graph shown in Figure 23 that the loop-carried
dependency in the outermost loop no longer exists. Also, Figure 22 shows that the
data dependencies are preserved and array elements are accessed and updated in correct
order. Algorithm 5b shows pseudo-code for the parallel implementation of global load
computation using OpenMP.

Though the array access pattern is not suitable for a shared memory machine, the algo-
rithm can be made to run efficiently on a distributed memory machines. Section 5.1.3
discuss the implementation of the parallel algorithm for a distributed environment using
MPI. In the MPI implementation the list array is transposed to get the same effect of
loop transformation in a distributed environment.

30

temp = MIN(list_global1, load_per_source1,1) temp = MIN(list_global2, load_per_source1,2)

load_per_source1,1 = temp load_per_source1,2 = temp

list_global1 = list_global1 − temp list_global2 = list_global2 − temp

temp = MIN(list_global1, load_per_source2,1) temp = MIN(list_global2, load_per_source2,2)

load_per_source2,1 = temp load_per_source2,2 = temp

list_global1 = list_global1 − temp list_global2 = list_global2 − temp

12 5

4

3

6
i

j

1: δ ==; 2: δ ==; 3: δ◦ =<; 4: δ̄ ==; 5: δ̄ ==; 6: δ =<

Figure 22: Data Dependency Analysis after loop transformation. Note the loop index
variables are swapped. The temp variable is private hence no dependency on temp
variable on the outer-loop. Compared to Figure 19, the outer-loop dependencies no
longer exists.

S1

δ◦ =<

S2

δ̄ ==,δ ==

S3

δ̄ ==,δ ==

δ =<

Figure 23: Data Dependency Graph after loop transformation. The first dimension of
the data direction vectors shows an equals dependency - the dependency is in the inner
loop, the outer loop can now be parallelized safely.

31

Algorithm 5b Parallel outer-loop
Begin

. . .
if RANK = 0 then

#pragma omp parallel for private(temp) . C notation
for all j in nProc do

for all i in nProc do
temp← MIN(global_loadi, load_per_sourcei,j)
load_per_sourcei,j ← temp
global_loadi ← global_loadi − temp

end for
end for
. . .

end if
. . .

End

5.1.3 Parallel solution

The section began with the goal to eliminate the large array list_per_source and
in the process transformed various parts of Algorithm 2 from serial implementation to
parallel implementation. The motivation of the parallel implementation was to process
the data locally on every process avoiding the need for the large temporary array. This
section puts together all the parallel algorithms developed in the previous sections and
develops the final parallel solution for Algorithm 2 using MPI.

Figure 24 shows the steps of the new parallel algorithm diagrammatically. The below
list walks through the steps shown in diagram.

1. The local load of each process stored in the list data-structure is collectively
added together to compute the global load of each process. Having eliminated
the need for the list_per_source array, the collectively computed values
are stored in the list_global array. The process is shown diagrammatically
in Figure 24(a). Algorithm 4 is used to compute this global sum in parallel. See
Section 5.1.1 for a detailed discussion on parallel computation of global load.

2. The local load from all process is transposed to gather load information of indi-
vidual process in one place. For example, load of process 0 stored in the list
array in all processes is gathered on process 0. Similarly, load of process 1 is
gathered in process 1 and so on. This process is shown diagrammatically in Fig-
ure 24(b).

3. The global load is optimized for load balancing by the balance_global_list
routine. See Section 5.2.1 for a detailed discussion of the existing implementa-
tion (serial) of the global load optimization process. A parallel implementation
of the algorithm is developed in Section 5.2.3

32

4. The optimized global list is divided into chunks and scattered to other processes to
update the load values locally in parallel. The process is shown diagrammatically
in Figure 24(c).

5. The local load list is optimized using the global list chunk from step 4. The
process is shown diagrammatically in Figure 24(d).

6. The optimized values are restored to their original process by transposing the
array again. The process is shown diagrammatically in Figure 24(e).

Algorithm 6 shows the final implementation of parallel algorithm in MPI. The next
section discusses the correctness of the new algorithm.

Algorithm 6 Final implementation
Begin

MPI_REDUCE(list.load, list_global.load,MPI_SUM, . . .) . on RANK 0
MPI_ALLTOALL(list.load, load_t, . . .) . Transpose list
if RANK = 0 then

list_global.dest← list.dest
BALANCE_GLOBAL_LIST(list_global) . Still serial

end if
MPI_SCATTER(list_global.load, list_local) . from RANK 0
for all i in nProcess do

new_load← MIN(list_locali, load_ti)
load_ti ← new_load
list_locali ← list_locali − new_load

end for
MPI_ALLTOALL(list_t, list.load, . . .) . Restore list

End

5.1.4 Checking program correctness

A good way to check program correctness is to run the modifications against a set of unit
tests. Unfortunately, no automated unit tests were available for this module in CP2K.
However, the software provides a function to assert run-time state of the program using
the CPPrecondition routine. The routine takes a predicate as its argument and
evaluates the condition during run-time. If the predicate evaluates to false, the program
aborts and prints useful diagnostic information like the program call stack, name of the
routine where the assertion failed, name of the source file containing the failed function,
line number in the source file where the assertion failed, and the process Rank where
the assertion failed. Figure 25 shows output of an assertion failure in process 0 in
optimize_load_list routine at line 1066 in task_list_methods file.

In order to check for the program correctness, output from both the existing serial im-
plementation and the newly developed parallel implementation were compared using

33

A1 A2 A3 B1 B2 B3

P0

A′1 A′2 A′3 B′1 B′2 B′3

P1

X1 X2 X3 Y1 Y2 Y3

+ + + + + +

(a) Step 1: Compute global load collectively

A1 A2 A3 B1 B2 B3

P0

A′1 A′2 A′3 B′1 B′2 B′3

P1

A1 A2 A3 A′1 A′2 A′3 B1 B2 B3 B′1 B′2 B′3
(b) Step 2: Transpose load in the list array to collect data of corresponding processes in one location

X1 X2 X3 Y1 Y2 Y3

P0 P1

X1 X2 X3 Y1 Y2 Y3

(c) Step 4: Scatter optimized global load
34

X1 X2 X3 Y1 Y2 Y3

P0 P1

A1 A2 A3 A′1 A′2 A′3 B1 B2 B3 B′1 B′2 B′3

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

(d) Step 5: Optimize the local load locally

A1 A2 A3 A′1 A′2 A′3

P0

B1 B2 B3 B′1 B′2 B′3

P1

A1 A2 A3 B1 B2 B3 A′1 A′2 A′3 B′1 B′2 B′3
(e) Step 6: Restore transposed load back to orignal process

Figure 24: Final parallel algorithm. a) shows the collective computation of global load.
MPI_REDUCE operation is used in the final implementation. b) shows collection of
load of corresponding process on one location. MPI_ALLTOALL is used for this op-
eration. The third step - optimizing global load is not shown here. c) shows optimized
global load values scattered to other processes. MPI_SCATTER is used for this opera-
tion. d) shows the optimization of local load locally in parallel. e) shows the optimized
local load values restored back to its original process.

35

Figure 25: Sample assertion failure report produced by CPPrecondition function.

the CPPrecondition routine. Listing 3 shows the code snippet comparing the out-
put of the global load calculation using both the collective operation and the existing
serial operation. Listing 4 shows the code snippet comparing the output of parallel and
serial local load normalization process.

l o a d _ g l o b a l _ s u m = l o a d _ a l l
CALL mp_sum (load_g loba l_ sum , 0 , group) ! P a r a l l e l

summation

IF (my_pos ==0) THEN
l o a d _ a l l =0

DO i c p u =1 , ncpu ! S e r i a l summation
l o a d _ a l l = l o a d _ a l l + &

l o a d _ p e r _ s o u r c e (maxdes t ∗ncpu ∗ (i cpu −1) + &
1 : maxdes t ∗ncpu∗ i c p u)

ENDDO
! ∗∗ A s s e r t o l d and new v a l u e s are match ing ∗∗ !
DO i c p u =1 , ncpu∗maxdes t

C P P r e c o n d i t i o n (&
l o a d _ g l o b a l _ s u m (i c p u) == l o a d _ a l l (i c p u) , &
c p _ f a i l u r e _ l e v e l , r o u t i n e P , &
e r r o r , f a i l u r e)

ENDDO

Listing 3: Testing correctness of parallel global load computation. Output of both the
serial and parallel implementation is compared using the CPPrecondition function.

36

i =1
! t a s k per fo rmed by a l l p r o c e s s i n p a r a l l e l
DO i c p u =1 , ncpu

DO i d e s t =1 , maxdes t
i tmp =MIN(l o a d _ l o c a l _ s u m (i d e s t) , l o a d _ t (i))
l o a d _ t (i) = i tmp
l o a d _ l o c a l _ s u m (i d e s t) = l o a d _ l o c a l _ s u m (i d e s t)−i tmp
i = i +1

ENDDO
ENDDO

! l o a d _ t i s o u t p u t o f p a r a l l e l t a s k
CALL m p _ a l l t o a l l (l o a d _ t , l o a d _ t t , maxdest , g roup)
! l o a d _ p e r _ s o u r c e i s o u t p u t o f s e r i a l t a s k
CALL m p _ s c a t t e r (l o a d _ p e r _ s o u r c e , l o a d _ a l l , 0 , group)

! ∗∗ A s s e r t o l d and new v a l u e s are match ing ∗∗ !
DO i c p u =1 , ncpu∗maxdes t

C P P r e c o n d i t i o n (l o a d _ t t (i c p u) == l o a d _ a l l (i c p u) ,
c p _ f a i l u r e _ l e v e l , r o u t i n e P , e r r o r , f a i l u r e)

ENDDO

Listing 4: Testing global load distribution (Serial calculation not shown).

The modifications passed all tests confirming that the new parallel implementation re-
sult confirms to that of the existing serial implementation.

5.1.5 Performance measurement

Figure 26 compares the execution timings of the new and the old implementation of the
optimize_load_list routine . The timings are collected using the CP2K in-built
profiler.

The W216 test input was used to generate the timings. It can be observed from the
graph that as the number of processes increases the performance of the algorithm also
increases. It can be noted that for 1024 processes the algorithm achieved a 4.75X
speedup. The reason being the overhead to allocate heap memory is eliminated and
the computation to calculate the global load, and optimization of the local load are col-
lectively done by all processes. In the new implementation process time is utilized in
computation rather than waiting for synchronization with Rank 0.

This completes the discussion of solution to the high memory requirement issue. The
next section begins the discussion of solution to the second problem: serial task.

37

0 200 400 600 800 1,000

0

200

400

600

800

1,000

processes

tim
e

[m
s]

old
new

Figure 26: Comparison of old vs new implementation

5.2 Resolving serialization issues

The previous section dealt with the problem of high memory requirement for optimiz-
ing the load balance. This section shows the solution to the second problem: the se-
rial load optimization task. The load optimization task is implemented in the routine
balance_global_list. This is a serial routine taking O(N2) time to balance load
on N processes. The serial algorithm also limits the scalability of the algorithm to more
than one process.

This routine uses information of alternate task destinations and global load of all process
to optimize the work load. Both the information is stored in the list_global data-
structure. The calculation of global load is discussed in Section 5.1.1.

This section begin with an overview of the existing serial implementation and discusses
various steps of the algorithm in detail. Next, a parallel implementation of the algorithm
is shown along with the performance comparison of the serial and parallel implementa-
tion.

5.2.1 Existing implementation

Figure 27 shows the flowchart of the existing implementation. The algorithm begins by
calculating the flux connections and flux limits. Flux connections are pairs of source and
destination processes that can share their work load. Flux limits set the maximum load
that could be transferred between the pairs of processes in flux connections. Once the
flux limits and flux connections are computed, the actual optimization process begins.
The process iteratively calculates the optimum flux (the load that the source can offload
to the destination process) that could be transferred between the processes in the flux
connections. The global load stored in the list_global is then updated with the

38

optimum flux calculated in the previous step. This optimized list_global is used
to update each process’ list data-structure with the new optimum load values. The
steps in the flowchart are elaborated next.

Start

Compute flux connections and limits

Find optimum flux

Converged?

Update global list

Stop

yes

no

Figure 27: Flowchart for global load optimization process

Computation of flux connections and limits
This step reorganizes the data stored in the list_global array and arranges them
in pairs of source and destination processes with their flux limits. The pairs of pro-
cesses are stored in the flux_connections array and their flux limits are stored in
the flux_limits array. Algorithm 7 shows the pseudo-code for computing the flux
connections and flux limits. The next step uses these data-structures to iterate over the
source-destination pairs and calculate the optimum flux that should be shifted for load
balancing.

flux_connections is a two dimensional array. Its values are calculated from
the source and destination information stored in the list_global array. For every
source process, its Rank is stored in the first dimension of the flux_connections
array and its destinations Rank are stored in the second dimension. The source-destination
combination is stored only for those pairs where the destination Rank is higher than that
of the source. The reason for such an arrangement is to avoid multiple execution of the
load balancing task by both the source and the destination process. For example, if two
processes agree to share their load then both the processes are eligible to run the load

39

Algorithm 7 Compute flux limits
Begin

for all src in procs do
for all dest in list_global.dest do

if dest > src then
flux_limits.src← list_globalsrc,dest.load
flux_connections.src← src
flux_connections.dest← dest

else
for all connection in flux_connections do

if connection.dest = src AND connection.src = dest then
flux_limits.dest← −list_globalsrc,dest.load
exit

end if
end for

end if
end for

end for
End

sharing task. But that would duplicate the task execution. By putting the constraint
that only the process with the lowest rank of the two processes can run the task, the
duplication is eliminated.

The flux_limits is also a two dimensional array that stores the maximum limit of
the load that can be shifted between the source and destination pairs. The flux limit for
the source to destination is stored in the second dimension of the array and the flux limit
for destination to source is stored in the first dimension. For ease of computation the
values in the first dimension are stored as negative values. During load optimization,
the source and the destination can only transfer load up-to the minimum of these two
limits.

Find optimum flux
Optimum flux is the optimum load value that can be shifted from the source to its alter-
nate destination process. It is calculated for the pairs stored in the flux_connections
array. Algorithm 7a shows the pseudo-code for calculating optimum flux values.

The algorithm begins by calculating the amount of load that can be shifted between
the pairs in the flux_connections array. The amount of load that can be shifted
between the pairs is calculated as the minimum of the average of the difference in the
global load of the source and destination process and their flux limits. For example, the
amount of load that can be shift from process P0 to P1 can be calculated as (loadP0 −
loadP1)/2 where load is the global load of the processes. The minimum of the three
values (computed load shift, source flux limit, destination flux limit) is the optimum

40

load that can be shifted from the source to its destination. The calculated values are
stored in the optimum_flux array which is used in the next step to optimize the
global load in list_global.

Algorithm 7a Find optimum flux
Begin

. . .
for all connection in flux_connections do

load_shift ← (load(flux_connections.src) −
load(flux_connections.dest))/2

load_shift← MAX(flux_limits.dest− shiftedsrc,dest, load_shift)
load_shift← MIN(flux_limits.src− shiftedsrc,dest, load_shift)
load(flux_connections.src)← load(flux_connections.src)−load_shift
load(flux_connections.dest) ← load(flux_connections.dest) +

load_shift
shiftedsrc,dest ← shiftedsrc,dest + load_shift

end for
. . .

End

Update global load
Algorithm 7b shows the pseudo-code to update the global load in the list_global
array using the optimum flux values calculated in the last step. The src and dest
variables in the pseudo-code refers to the source process and its destination processes
stored in the list_global array. As discussed earlier, process with low Rank in
the source destination pair is considered the source and other the destination. The al-
gorithm adjusts this relationship and begins the optimization process. If the optimum
flux between the pair is higher than the already assigned load to the destination pro-
cess, the difference in value is added to the source process and the destination process
load is set the optimum flux value. Otherwise, the destination process is considered to
be overloaded and nothing is offloaded to the destination process. The load previously
assigned to the destination is recalled and added to the load of source process.

The output of this process, the optimized list_global, is used to optimize the list
data-structure. The algorithm to update the list data-structure is discussed in Sec-
tion 5.1.2.

5.2.2 Algorithm analysis

Algorithm 7a is analyzed in this section to identify the scope of parallelization. The
Dependency analysis framework described in Section 2.2 cannot be used to analyze
this algorithm because the load array, which is both read and written inside the loop,
is indexed using a non loop control variable. However, an eyeball analysis shows that

41

Algorithm 7b Update global load
Begin

for all dest in src.alt_dest do
if dest.rank < src.rank then

src← dest
dest← src

end if
if optimum_flux > 0 then

src.load← src.load+ dest.load− optimum_flux
dest.load← optimum_flux

else
src.load← src.load+ dest.load
dest.load← 0

end if
end for

End

there may be a dependency on the load array in different iterations of the loop. For
example, in every iteration of the loop a source process computes an optimum flux
value using the load of its destination processes. However, the destination process itself
may become a source process in some other iteration and update its load with new
flux values. If this loop is executed in parallel without synchronization there will be a
race condition on the load variable. The result will be incorrect and non-deterministic
producing a hard to find bug. This imposes a dependency between the source and the
destination processes calculating optimum load. Both the processes cannot be executed
in parallel without interlocking.

The order of loop execution is also important. In the loop, optimum load values are
calculated for all process sequentially. For example, values for process 1 is calculated
first, then for process 2 and so on. A parallel execution will produce non-deterministic
output.

Figure 28(a) shows the process dependency diagrammatically. The diagram shows the
load optimization process between the pair of processes stored as flux connections.
The example in Figure 28(a) shows the load balancing process between three processes
P1, P2, and P3. The diagram shows that the optimum flux is calculated in lock-step
between all the processes. The example shows P1 (source) calculating the optimum flux
between itself and its destination process P2 followed by P2 (now source) calculating
the optimum flux with its destination P3 in lock-step. In every step, the load of the
source and the destination process is updated with new values and the next step uses the
new value for computing optimum flux. This process repeats till convergence. It can be
seen from the example that there is an execution-order dependency between the source
and destination processes. For example, Process P2 cannot initiate its task until Process
P1 has completed its. Process P2 begins its task with the updated value calculated by
its source process (P1).

42

Time
P1 P2 P1 P2 P3

P2 P3

a) Serial execution b) Parallel execution

Figure 28: Algorithm execution patterns. a) shows the serial execution pattern preserv-
ing dependencies and taking more execution time compared to the parallel execution
pattern. b) shows the parallel execution pattern taking less time without preserving the
dependencies

As described above, the dependencies between the source and the destination processes
inhibits parallelization of the algorithm. In other words, the algorithm cannot be par-
allelized without breaking the dependencies between the source and the destination
processes. The next section describes an attempt to parallelize the algorithm without
preserving the dependencies.

5.2.3 Parallel Implementation

Figure 28 compares the serial and parallel implementation of the load balancing algo-
rithm. Figure 28(a) shows the serial implementation and Figure 28(b) shows the parallel
implementation. Figure 28(b) shows that the load optimization task is executed in par-
allel and completes faster than the serial tasks. However, due to the dependencies be-
tween the processes some form of synchronization is required to prevent race-conditions
between competing processes. A race-condition occurs when two parallel tasks updates
the same memory location simultaneously. The value stored in the memory will be that
of the task that last writes to the memory. Depending on the order of execution, the
value may vary between different executions of the task producing incorrect results.
The synchronization overhead may add additional delays in the program execution and
may increase the program execution time.

The serial routine balance_global_list is parallelized using MPI point-to-point
operations. See Section 2.1 for a brief discussion on MPI communication types. The
implementation uses MPI_ISEND to send messages to other processes and MPI_IREC
to receive messages from other processes. These functions executes asynchronously
with the computation effectively overlapping computation and communication. The
MPI_WAIT family of routines are used to synchronize the completion of asynchronous
operations. A variation of this function MPI_WAITALL is used to synchronize com-
pletion of multiple asynchronous operations. The parallel routine uses MPI_WAITALL
to synchronize various send and receive operations.

43

The new parallel implementation is called balance_global_list_distributed.
Various functions of the new implementation is described next.

Calculate global load revisited
Section 5.1.1 described a parallel implementation to calculate global load. In that im-
plementation the global load was collectively computed and the result was made avail-
able on Rank 0. The reason being the global load optimization was done serially on
Rank 0. However, to parallelize the global load optimization process the global load
needs to be made available on all processes. Like the previous implementation, reduc-
tion operations can be used to calculate the global load collectively. MPI provides three
types of reduction operation: MPI_REDUCE - where the result of the operation is made
available on a single process; MPI_ALLREDUCE - where the result is made available
on all processes; and MPI_REDUCE_SCATTER - where operation is executed on ele-
ments of vector type and the result vector is split and distributed across processes. The
MPI_REDUCE_SCATTER collective routine fits the task as results are made available
on all processes. Algorithm 8 shows the pseudo-code for the new way of computing
global load.

Algorithm 8 Parallel computation of global load
Begin

. . .
MPI_REDUCE_SCATTER(list.load, load_all,MPI_SUM, . . .) . Result

on all processes
. . .

End

Figure 29 shows the process diagrammatically. The diagram shows the global load of
respective process calculated collectively and result made available on all processes.

Calculate flux limits
With the new parallel implementation, the load balancing is done by all processes in
parallel. Also, the use of the list_global array is eliminated and the global load
information is no more accessible to the load balancing algorithm. The algorithm needs
the flux limits of both the source and the destination processes. The flux limits of
the destination processes are accessed by the source using the MPI message passing
routines. Algorithm 9 shows the pseudo-code to transfer flux limits between the source
and the destination process. As described in Section 5.2.1, the source gets the flux limits
only from the processes with Ranks higher than its own. The flux limits are used in the
calculation of optimum flux shown next.

Find optimum flux
Algorithm 9a shows the pseudo-code for the parallel implementation of Algorithm 7a.

44

B1 B2 B3 P1 B′1 B′2 B′3 P1

A1 A2 A3 P0

P0

A′1 A′2 A′3 P0

P1

(a) Load information in the list data-structure. Alternate destination information not shown.

A1 A2 A3 B1 B2 B3

P0

A′1 A′2 A′3 B′1 B′2 B′3

P1

A1 + A′1 A2 + A′2 A3 + A′3 B1 +B′1 B2 +B′2 B3 +B′3

+ + + + + +

(b) Collective computation of global load using MPI_REDUCE_SCATTER operation

Figure 29: Global load calculation - New method. a) shows the values of load in the
list array of all processes. b) shows the collective computation of the global load values
and available of the result vector on all processes.

45

Algorithm 9 Compute parallel flux limits
Begin

for all alt_dest in listdest do
if alt_dest > src then

MPI_IRECV(limit, . . . , alt_dest, . . .)
end if
if alt_dest < src then

MPI_ISEND(listload,dest, . . . , alt_dest, . . .)
end if
if Sending then

MPI_WAITALL(. . .)
end if
if Receiving then

MPI_WAITALL(. . .)
end if
if Receiving then

flux_limitsdest ← limit
end if

end for
End

The routine calculates the load shift values called optimum flux which are used to op-
timize the global load of all processes. An optimum flux is calculated between the
source and destination pairs of processes stored in the flux_connections array.
The source calculates the optimum flux and sends it to the destination processes to
update their load.

The optimum flux values are calculated iteratively by shifting the load between the
source and the destination processes and recording the amount of load shifted in each
iteration. The amount of shift calculated is the minimum of the average of the difference
in the load of both the source and the destination process and their flux limits. For every
iteration, the load on both source and destination are updated and exchanged between
the source and the destination process. The data is exchanged using the MPI_ISEND
and MPI_IRECEIVE routines. It can be noted that access to the load variable is syn-
chronized by the send/receive operation. The race condition identified in Section 5.2.2
is eliminated by this synchronization. The algorithm iterates for Max_iter times,
which is set to 100, or till the maximum amount of load shift calculated in the iteration
is less then the tolerance which is set to to 0.1% of the average load of entire system.

Optimize global load
The optimum flux calculated in the previous section is used to update the global load.
Algorithm 9b shows the parallel implementation of the Algorithm 7b. As discussed ear-
lier, the source process (process having Rank less than its destination process) calculates
the optimum flux and updates the load on both process. In parallel implementation, the

46

Algorithm 9a Parallel load optimization
Begin

for m← 1 to 100 do . iterate max 100 times
for all alt_dest in listdest do

if alt_dest > src then
MPI_IRECV(loaddest, . . . , alt_dest, . . .)

end if
if alt_dest < src then

MPI_ISEND(loadsrc, . . . , alt_dest, . . .)
end if
if Sending then

MPI_WAITALL(. . .)
end if
if Receiving then

MPI_WAITALL(. . .)
end if
if alt_dest > src then

load_shift← (loadsrc − loaddest)/2
load_shift← MAX(flux_limitsdest − shiftedsrc,dest, load_shift)
load_shift← MIN(flux_limitssrc − shiftedsrc,dest, load_shift)
max_shift← MAX(max_shift, load_shift)
loadsrc ← loadsrc − load_shift
shiftedsrc,dest ← shiftedsrc,dest + load_shift
MPI_ISEND(load_shift, . . . , alt_dest, . . .)

end if
if alt_dest < src then

MPI_IRECV(load_shift, . . . , alt_dest, . . .)
end if
if Sending then

MPI_WAITALL(. . .)
end if
if Receiving then

MPI_WAITALL(. . .)
end if
if alt_dest < src then

loadsrc ← loadsrc − load_shift
end if

end for
MPI_ALLREDUCE(max_shift,MPI_MAX, . . .)
if max_shift < tolerance then

exit
end if

end for
End

47

calculated optimum flux needs to be communicated with the source and the destination
process. The source process updates its global load using the optimum flux calculated
by both the source and the destination process.

Algorithm 9b Optimize global load
Begin

. . .
for all dest in src.alt_dest do

if dest.rank < src.rank then
. Append to optimum flux

MPI_IRECV(. . . , optimum_flux, . . . , alt_dest, . . .)
end if
if dest.rank > src.rank then

MPI_ISEND(optimum_flux, . . . , alt_dest, . . .)
end if

end for
for all dest in src.alt_dest do

if dest.rank < src.rank then
src← dest
dest← src

end if
if optimum_flux > 0 then . optimum flux between src and dest pair

src.load← src.load+ dest.load− optimum_flux
dest.load← optimum_flux

else
src.load← src.load+ dest.load
dest.load← 0

end if
end for
. . .

End

5.2.4 Checking program correctness

As discussed in Section 5.2.2 the serial loop is parallelized without respecting the de-
pendency constraints. As a result, the result of parallel execution is non-deterministic
and does not match with that of the serial execution. Table 3 shows the variations in out-
put of serial and parallel execution. The output is generated using the aforementioned
H2O-32 input file using 8 process and the values are shown from the first step of the
simulation. The first column shows the values of optimum_flux computed in serial
and the second column shows the values computed in parallel. The Delta column shows
the difference in the output between serial and parallel computation. To further check
the effect of the variations in the result, the program was tested using the regression test
suite that comes with CP2K.

48

Serial
implementation

Parallel
implementation

Delta

4167.3203125 4189.83644104 22.51612854
15590.33984375 15579.08177948 11.25806427
21992.16015625 21983.2381896973 8.9219665527

18329 18329 0
-16150 -16150 0

10868.34375 10796.181640625 72.162109375
11489.671875 11469.896484375 19.775390625

-16640 -16640 0

Table 3: Values of optimum_flux variable using serial and parallel execution.

CP2K comes with over 2400 test inputs regression test suite that ensure that all parts of
the code are working correctly. The final parallel implementation was tested using this
utility on ARCHER. Figure 30 shows the output of the regression tests. 2372 regression
tests passed out of 2400 tests, 5 failed and 19 were reported as wrong. However, the
tests of unmodified code also failed in same places which confirms that the failures are
not related to the modifications done in this project. The main reason for the failed
tests are due to some issues with the Intel Math Kernel Library implementation and the
wrong results reported are due to precision errors (at 10−14 decimal digit) in calculation
which is within the acceptable limits.

Figure 30: Output of CP2K regression test utility

5.2.5 Result comparison

As discussed in Section 3, the goal of the load balancer is to optimize the choice of the
task destination in the collocation step. So a better test would be to check for the per-
formance of the serial and the parallel load balancing algorithm in the collocation step.
Figure 31 compares the result of load balance on the collocation and integration steps
using the serial and parallel load balancing algorithms.Figure 31(a) shows the compari-
son of integration step and Figure 31(b) shows the comparison of collocation step. The
execution timings of calculate_rho_elec and integrate_v_rspace rou-
tines are used for comparison. The output was generated using the W216 test input file.
Figure 31 confirms that both serial and parallel algorithms produces similar results.

49

0 200 400 600 800 1,000
0

200

400

600

Processes

tim
e

[s
]

Serial
Parallel

(a) Integration step comparison

0 200 400 600 800 1,000
0

200

400

600

Processes

tim
e

[s
]

Serial
Parallel

(b) Collocation step comparison

Figure 31: Performance comparison of the serial and the parallel load balancing algo-
rithm.

50

5.2.6 Performance measurement

The metrics used to evaluate performance of the parallel implementation are the Speedup
ratio and Parallel Efficiency. Speedup gives the relative performance improvement of
the serial task when executed in parallel and Parallel Efficiency shows the scalability of
the algorithm. Speedup is given as

Sp =
Ts
Tp

Where:
p: is the number of processors
Ts: is the execution time of the sequential algorithm
Tp: is the execution time of the parallel algorithm with p processors

The Parallel Efficiency is

E =
S

P

Where:
S: is the Speedup
P : is the number of processors

An algorithm is said to be scalable if the parallel efficiency is an increasing function of
N/P , the problem size per node.

0 200 400 600 800 1,000

0.5

1

1.5

2

Processes

Sp
ee

du
p

Figure 32: Speedup of parallel implementation

Algorithms showing linear Speedup are considered good as the algorithm scales well
with increase in the number of processes. Figure 32 shows Speedup of the parallel load
optimization routine implemented in the balance_global_load_distributed
routine. It can be observed that the maximum Speedup achieved by the algorithm is
2.5X and with increase in the number of processes the Speedup further dropped down.

51

The performance penalty in parallel implementation is due to the overhead of com-
munication and synchronization between the source and the destination processes. In
the serial implementation, the algorithm executes seamlessly without any interruption
while in the parallel implementation there is an explicit synchronization between pro-
cesses after the end of every iteration. After every iteration, processes block in wait
state to send and receive updated load values. The algorithm also uses a collectively
reduction operation to calculate the maximum load shifted in the iteration. The amount
of data sent between processes per transaction is also very low (4 bytes). As a result the
start-up cost (latency) dominates the communication cost and the achieved bandwidth is
also very low. Also, the communicated data is used only in a single arithmetic operation
which implies a very high communication overhead for a single operation.

0 200 400 600 800 1,000

0

1

2

3

·10−2

Processes

Pa
ra

lle
le

ffi
ci

en
cy

Figure 33: Parallel efficiency

Figure 33 shows the Parallel Efficiency of the new algorithm. An algorithm that scales
linearly has a parallel efficiency 1. It can be observed that the new algorithm is not
scalable and the efficiency drops as more number of processors are added.

In order to find the bottleneck, the code was instrumented with CrayPAT (Cray Perfor-
mance Analysis Tool) region. The resulting output is shown in Figure 34. It can be
noted that 53% of the total execution time is spent in the blocked state (synchronizing
collective reduction operation). As described earlier, the synchronization happens in
the MPI_ALLREDUCE collective which is used to calculate the maximum load shifted
by all processes in an iteration. The value is used to check for convergence to terminate
loop. A possible solution (to reduce the synchronization wait time) would be to reduce
the number of calls to MPI_ALLREDUCE. The convergence could be checked on ev-
ery other iteration or after some fixed number of iterations. However, the modifications
were not carried out in this project and the option is kept open for future improvements.

The next expensive operation after MPI_ALLREDUCE is MPI_WAITALL used to syn-
chronize the completion of the asynchronous send and receive operations. 16% of the

52

execution time is spent waiting for completion of the asynchronous operation. More-
over, the collective routine call is highly imbalanced at 37%. The implementation also
incurred a 38% overhead for parallelizing the algorithm using MPI. Clearly, due to the
overheads of parallel implementation and high communication over computation ratio
the parallel implementation did not performed well.

Figure 34: Output of CrayPAT Profiler. The output is generated for H2O-32 input file
using 64 processes.

6 Retrospective

6.1 Project Goals and Objectives

The scope of this project was to:

1. Resolve high memory requirement of the load balancing module

2. Parallelize the load optimization algorithm

The project has successfully achieved the set objectives.

6.2 Major Milestone Achievement

Appendix A shows the project Gantt chart prepared during the project preparation stage.
The project was started earlier than planned. Planned tasks were also completed before

53

the estimated duration. Overall the project completed before the estimated finish date.
Table 4 shows major milestone information.

Milestone Planned
completion
date

Revised
completion
date

Actual
completion
date

Design Review 07/07/2014 07/02/2014 06/21/2014
Implementation
Review

07/19/2014 07/14/2014 06/27/2014

Report Review 08/11/2014 08/06/2014 08/04/2014

Table 4: Major milestone achievement

6.3 Risk Management

Figure 35 shows the Risk Impact Matrix for the key risks identified in the project
preparation stage. The highly probable and high impact risk "Insufficient domain back-
ground" never materialized due to execution of proper risk mitigation strategies devel-
oped in the project preparation stage. Strategy of getting timely help from the project
supervisor helped to keep the project on track without any major issues. Similarly, the
medium probability risk "Insufficient experience in programming language used" was
mitigated by referring to Fortran class notes and online tutorials. The low probability
risk "Code loss due to hardware failure" also never materialized. However, the risk
mitigation strategy of using a distributed version control software (GIT was used) was
already in place.

Some of the risks that materialized during the project execution stage were "Supervi-
sor unavailability" and "ARCHER unavailable". Both the risks were identified as low
priority risks. The project supervisor was unavailable for two weeks during the project
execution but the impact on the project was negligible as most of the coding work was
already completed. Had he not been available during the initial phase of the project the
impact on project schedule would have been profound. Similarly, ARCHER was not
available on a weekend due to insufficient time budget. This occurred during collection
of program run-time data. However, the impact of the risk on the project schedule was
negligible as the task was rescheduled and another non-dependent task was scheduled
instead.

Refer Appendix A for the Risk Register developed during the project preparation stage.

6.4 Lessons Learnt

Table 5 list out few activities which could have been carried out differently for smooth
execution of the project. One item that stands out in particular is the approach taken

54

Figure 35: Risk impact matrix

to understand the existing code. The taken approach was to understand the solution
by working through the code. A better approach would have been a top-down approach
where the entire algorithm and flow of information was understood before working with
the code. This would have further reduced the development time.

Lesson No Lesson Description Suggested Future
Action

1 Cultural difference -
No communications on
weekends and holidays

Have communication
policy in place

2 Resource Constraint -
low priority job queue
on ARCHER

Give high priority
queue for time
consuming tasks like
regression testing,
code profiling, etc.

3 Understand the
problem top-down
instead of bottom-up

Start with high level
overview of the
existing solution and
then move into code
details.

Table 5: Could do better

Table 6 list out few activities which helped in smooth execution of the project. Project

55

meetings were effective in monitoring and mitigating project risks like "Insufficient
domain background" through constant discussions and feedbacks. Project preparation
stage helped in understanding the project in greater detail before the start of the execu-
tion stage.

Lesson No Lesson Description Suggested Future
Action

1 Weekly meetings Increase duration -
settling time needs to
be accomodated

2 Project Preparation Increase meeting
frequency - project
initiation phase needs
new information to be
explored through
discussions

3 Use of version control
tool to manage code
changes

Use proper change
descriptions (in log
file) for ease of
restoration and merge
task

Table 6: Worked well

7 Conclusions

The project set out to reduce the memory footprint of the load balancing module and
parallelize the load balancing algorithm.

The module used large memory to gather global load information for optimizing the
load on all processes. The high memory requirement limited the scalability of the al-
gorithm as the memory requirement increased quadratically with the number of pro-
cesses. This resulted in turning the load balancing module off on high number of pro-
cesses where the load balancing would be critical for efficient use of all computing
resources. The algorithms were modified to calculate the global information locally
and collectively thus eliminating the need for the large memory. As a side effect of the
modification, the performance of the algorithm also improved due to parallelization of
operations computing global information.

The next improvement in the list was to parallelize the algorithm optimizing the load
on all processes. The analysis of the algorithm showed an execution order dependency
in computation of optimum load values. It was shown that non-deterministic order of
parallel process execution will result in variation of output generated using the parallel
and serial implementation. The algorithm was parallelized and as proved during the

56

analysis the output of parallel and serial execution were different. However, the vari-
ation was not very significant and was also shown to be giving same load balancing
effect on test input.

The performance measurement of the parallel implementation showed very poor per-
formance due to high number of communication of small size message (4 Bytes) and
low computation. Moreover, there was also synchronization overhead in every iteration
that further degraded the performance.

Finally, both the goals were achieved but due to the poor performance of the parallel
implementation of the load balancing algorithm it is recommended to use the serial
implementation till a better solution is not found.

57

A Project Plan

Figure 36: Project Gantt chart

58

Risk Register

Sr. No Risk Response Probability Impact
1. Unclear re-

quirement
Properly doc-
ument the
requirement
and get ap-
proved by the
Supervisor

V. LOW HIGH

2. High level of
technical com-
plexity

Get help from
supervisor

HIGH HIGH

3. Unrealistic
time estima-
tion

Get project
plan approved
by the Super-
visor

LOW HIGH

4. Poor project
planning

Get the plan
approved by
the Supervisor

LOW HIGH

5. Developing
the wrong
software
function

Get design re-
viewed by the
Supervisor

V. LOW V. HIGH

6. CP2K coding
standard not
followed

Get code re-
viewed by Su-
pervisor

V. LOW V. LOW

7. Supervisor un-
available

Communicate
using emails,
phone, Skype
etc.

LOW V. HIGH

8. Student un-
familiar with
problem
domain

Get help from
Supervisor

V. HIGH V. HIGH

9. Student not
experienced in
programming
language used

Refer to For-
tran class ma-
terials and lab
exercises

LOW MEDIUM

10. Student ab-
sent from the
project due to
illness

Get exten-
sion from
University

LOW V. HIGH

59

References

[1] CP2K website, http://www.cp2k.org

[2] CP2K science showcase, http://cp2k.org/science

[3] J. VandeVondele, M. Krack, F. Mohamed, M.Parrinello, T. Chassaing and J. Hut-
ter. Quickstep: fast and accurate density functional calculations using a mixed
Gaussian and plane waves approach Comp. Phys. Comm. 167, 103 (2005)

[4] I. Bethune. Improving the performance of CP2K on HECToR, A dCSE Project,
http://www.hector.ac.uk/cse/distributedcse/reports/cp2k/cp2k_final_report.pdf

[5] ARCHER website, http://www.archer.ac.uk

[6] ARCHER hardware, http://archer.ac.uk/about-archer/hardware/

[7] MPI website, http://www.mpi-forum.org/

[8] Patterson, David A. and Hennessy, John L., Computer Architecture: A Quantita-
tive Approach, Morgan Kaufmann Publishers Inc., 1990

[9] Blelloch, Guy E, Vector Models for Data-Parallel Computing, MIT Press, 1990

[10] David A. Patterson and John L. Hennessey, Computer Organization and Design:
the Hardware/Software Interface, Morgan Kaufmann Publishers Inc., 1998

[11] Quinn Michael J, Parallel Programming in C with MPI and OpenMP, McGraw-
Hill Inc., 2004

[12] OpenMP website, http://openmp.org/wp/

[13] Parallel Computing, http://en.wikipedia.org/wiki/Parallel_computing

[14] SIMD architecture, http://en.wikipedia.org/wiki/SIMD

[15] Task parallelism,
wiki.expertiza.ncsu.edu/index.php/CSC/ECE_506_Spring_2010/
ch_2_aj/Data_Parallel_Programming

[16] Joost VandeVondele, CP2K: parallel algorithms,
http://www.cscs.ch/uploads/media/CP2K_parallel.pdf

[17] Kennedy, Ken; Allen, Randy, Optimizing Compilers for Modern Architectures:
A Dependence-based Approach, Morgan Kaufmann, 2001.

[18] Paul Feautrier, Encyclopedia of Parallel Computing, Springer, 2011

60

