Dynamic Logic and Latches II:

Practical Implementation Methods and Circuits Examples used on the ALPHA 21164

Paul Gronowski
William Bowhill

Digital Semiconductor
Digital Equipment Corporation Hudson, MA

Outline

\square introduction to ALPHA 21164
\square Latching
\square Clocking

- Distribution
- Analysis
\square Dynamic Logic
- Single-rail
- Dual-rail
- Circuit Examples.

Introduction to ALPHA 21164

\square Second generation design

\square Quad-issue, in-order execution
$\square 14$ gates per cycle including latches

Transistor Count
Die Size
Power Supply
WC Power Dissipation
Target Cycle Time

$\frac{0.5 \mu \mathrm{~m} \text { process }}{9.3 \text { Million }}$
$16.5 \mathrm{~mm} \times 18.1 \mathrm{~mm}$
3.3V external 3.3V internal 50W @ 300 MHz 300 MHz

$\frac{0.35 \mu \mathrm{~m} \text { process }}{9.66 \text { Million }}$
$14.4 \mathrm{~mm} \times 14.5 \mathrm{~mm}$
3.3V external 2.0V internal 25W @ 433 MHz 433 MHz

Latching - Overview

\square Level-sensitive design
 \square Dynamic latches

- Faster
- Less area
- Required to function at $1 / 10$ th speed
\square General purpose library
- Fully characterized
- Emphasis on speed

Latching - Latch Implementation

Minimum one gate between any two latching points required

Latching - Embedding Logic

Latching costs only 2 pass gates per cycle

Latching - Circuit Implementation

	CLK-HI Version	CLK-LO Version
21064 Latches:		
21164 Latches:		

Latching - Comparison

	Area	Speed	Race	$\begin{aligned} & \text { Clock } \\ & \text { Load } \\ & \hline \end{aligned}$
	1.25	1.2	$\begin{aligned} & \text { - CLK edge } \\ & \text { rate } \end{aligned}$	4
	1.25	1.2	- CLK edge rate - CLK buffer delay	1.0
	1.0	1.3	$\underset{\text { rate }}{- \text { CLKed }}$	0.5
	1.0	1.0	- CLK edge rate - CLK buffe delay	1.0

Dynamic Logic and Latches -Part II

Latching - Verification Issues

\square Race verification

- Race speed analysis (SPICE)
- Custom race tool specific to design methodology
- Latch size checks
- Minimum/maximum clock edge rate
- Clock buffer not shared
- At least one gate delay between latches
- Latch driven by clock or deskewed
\square Functional verification (for static latches)
. DC noise margin analysis (SPICE)
. DC writeability analysis (SPICE)
\square Full dynamic logic verification

Clocking - Overview

\square Single-wire, two phase clocking scheme
\square Single global clock grid

- Limited use of conditional clocks
\square Clock statistics ($0.5 \mu \mathrm{~m}$ design)
. Clock load $=3.75 \mathrm{nF}$
. Size of final clock inverter $=58 \mathrm{~cm}$
- Edge rate $=0.5$ ns
. Clocking consumes 40% of chip power
. Decoupling capacitance near clocks $=35 \mathrm{nF}$
. di/dt $=50 \mathrm{~A}$

Clocking - Analysis

\square Clock generation. and driver network evaluated using SPICE

- VSS and VDD supply noise
- Device variations across the chip

GRC delay of global clock interconnect evaluated using extracted R and C data

- Global clock skew can limit speed
- Local clock skew can create race-through problems

Clocking - Skew Sensitive Circuit

Clocking - Local Clock Skew

Dynamic Logic - Overview

Dynamic logic requires significantly more electrical verification than static logic.

- Capacitive coupling and charge sharing
. Subthreshold leakage
. Charge injection
-Minority carrier collection
-Latch-up
- Alpha particle immunity
. VDD/VSS noise and resistance

Dynamic Logic - Circuit Diagram

Dynamic Logic - General Rules

\square Dynamic logic can only be driven by complementary gates
\square Complementary gates must be close to dynamic structure
. Global nodes received by gates with standard β ratio (noise margin)

- Local nodes can be received by gates with a skewed β ratio (for speed)
\square Precharge controlled by clock
. Delayed precharge not typically used
- Domino or ripple precharge not typically used

Dynamic Logic - Coupling

\square Coupling is difficult to analyze precisely

- What capacitance should be used?
- When do "aggressor" signals change?
- What is the rise/fall time of "aggressor" signals?

Dynamic Logic - Coupling Circuit Diagram

Note: High-up coupling on stored "1" nodes and Low-down coupling on stored "0" nodes can be a problem as well.

Dynamic Logic - Coupling Solutions

(1) Set limits on maximum allowable coupling and input and output beta ratio ranges to ensure acceptable noise margin.
(2) Account for canceling coupling events - be careful!
(3) Shield and/or isolate dynamic nodes where possible.
(4) Increase overall "good" (fixed) capacitance to reduce the impact of "bad" coupling capacitance.
© In datapaths, examine bus ordering (see below).
. "Twist" lines (as shown at right) to take advantage of power rails

- Route dynamic lines between mutually exclusive or complementary lines

Dynamic Logic - Coupling Example

Dynamic Logic - Charge Share

Charge sharing can occur when internal nodes (node X) are not adequately precharged.

$V_{d y n}=\frac{V_{d d} * C_{d y n}}{C_{d y n}+C_{c s}}$

Dynamic Logic - Charge Share

Solutions:

Minimize diffusion capacitance on charge share node
(2) Precharge " X " with nmos device

+ less area for precharge
+ faster
- buffered clock required
(3) Precharge " X " with pmos device

Dynamic Logic - Subthreshold Leakage

\square Subthreshold leakage may be a problem for dynamic nodes where $\Sigma \mathrm{W}_{\text {eff }} / \mathrm{C}_{\text {node }}$ is large.
\square Determine leakage time:

- $\mathrm{t}_{\text {leak }}=\mathrm{C}_{\text {node }} * \mathrm{~V}_{\text {node }} / \mathrm{i}_{\text {leak }}$
\square Circuit solutions:
- Increase channel length
. Add weak "leakers"

Dynamic Logic - Charge Injection

\square Latch-up

- Minority carrier charge injection/collection

Dynamic Logic - Charge Injection

Dynamic Logic - Dual-rail Design

Advantages

(1) Fast - use sense amp to detect small voltage swing on output or skew the beta ratio of output complementary gates.
(2) Complex logic functions can
be easily generated as true and complement of all signals available.
(3) Since both outputs (OR_L and OR_H) start low after precharge, can sense when logic is complete by detecting 01 or 10.

Dynamic Logic - Dual-rail Design

Design Issues

(1) Power dissipation. One side of the logic is always evaluated.
(2) Area. Requires roughly twice the area of single-rail design.
(3) Coupling may be an issue, especially in datapath structures

- Twisted bit lines
- Bus ordering
- Encode Lines (HP PA8000 Floating Point Unit - see references)

Inputs	Dual-rail inputs				Encoded inputs				
A	B	A H A A B H B L	AB3	AB2	AB1	AB 0			
0	0	0	1	0	1	0	0	0	1
0	1	0	1	1	0	0	0	1	0
1	0	1	0	0	1	0	1	0	0
1	1	1	0	1	0	1	0	0	0

Circuit Example \#1-E-Box Bypass

E-box Bypass - Circuit Diagram

(Distributed Dynamic Bypass MUX)

Circuit Example \#2 -
E-Box Shifter
Block Diagram

Dynamic Logic and Latches - Part II

References

"A Dual-Execution Pipelined Floating-Point CMOS Processor"
John Kowaieski, et al., 1995 IEEE ISSCC Digest of Technical Papers
"A 433 MHz 64b Ctuad-Issue CMOS RISC Microprocessor"
Paul Gronowski, et al., 1995 IEEE ISSCC Digest of Technical Papers
"A Dual Floating Point Coprocessor with an FMAC Architecture"
Craig Heikes and Glenn Colon-Bonet, 1995 IEEE ISSCC Digest of Technical Papers
"Dynamic Logic: Clocked and Asynchronous" Tutorial
Ted Williams, 1995 IEEE ISSCC Digest of Technical Papers and Tutorial hand-out
"A 300 MHz 54 b Quad-issue CMOS RISC Microprocessor
Bradley Benschneider, et al., IEEE Journal of SolidState Circuits, Nov. 1995, Vol. 30., No. 11
"A 300 MHz 64 b Quad-issue CMOS RISC Microprocessor"
William Bowhiii, et al., 1995 IEEE ISSCC Digest of Technical Papers
"Design and Verification Strategies for Ensuring Long-Term Reliability of a 300 MHz Microprocessor" Ronald Preston, et al., ESSCIRC '95 Proceedings
"Superscalar instruction Execution in the 21154 Alpha Microprocessor"
John Edmondson, et al., IEEE Micro, Vol. 15, No. 2, April 1995
"Circuit implementation of a $300-\mathrm{MHz}$ 64-bit Second-generation CMOS Alpha CPU
William Bowhiii, et al., Digital Technical Journal, Voi. 7., No. 1, 1995
"internal Organization of the Alpha 21154, a $300-\mathrm{MHz}$ 64-bit Quad-issue CMOS RISC Microprocessor" John Edmondson, et al., Digitai Technical Journal, Vol. 7., No. I,I995

More References

"Impact of Clock Slope on True Single Phase Clocked (TSPC) CMOS Circuits"
Patrik Larsson and Christer Svensson, IEEE Journal of Solid-State Circuits, June 1994, Vol. 29, No. 6
"Noise in Digital Dynamic CMOS Circuits"
Patrik Larsson and Christer Svensson, IEEE Journal of Solid-State Circuits, June 1994, Vol. 29, No. 6
"A Comparison of CMOS Circuit Techniques: Differential Cascade Voltage Switch Logic Versus
Conventional Logic"
Kan M. Chu and David L. Pulfrey, IEEE Journal of Solid-State Circuits, Aug. 1987, Vol. SC-22, No. 4 "Design Procedures for Differential Cascade Voltage Switch Circuits"

Kan M. Chu and David L. Pulfrey, IEEE Journal of Solid-State Circuits, Dec. 1986, Vol. SC-21, No. 6 "Clocking Schemes for High-Speed Digital Systems"

Stephen H. Unger, Chung-Jen Tan, IEEE Transactions on Computers, Oct. 1986, Vol. C-35, No. 10
"Custom and Semi-Custom Design Techniques"
Lawrence G. Heller, et al., 1984 IEEE ISSCC Digest of Technical Papers
"NORA: A Racefree Dynamic CMOS Technique for Pipelined Logic Structures"
Nelson F. Goncalves and Hugo J. De Man, IEEE Journal of Solid-State Circuits, June 1983, Vol. SC-18, No. 3
"High-Speed Compact Circuits with CMOS"
R. H. Krambeck, et al., IEEE Journal of Solid-State Circuits, June 1982, Vol. SC-1 7, No. 3

