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DYNAMIC PROGRAMMING AND OPTIMAL CONTROL FOR
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Abstract. This paper aims to present a state-of-the-art review of recent development within the areas
of dynamic programming and optimal control for vector-valued functions.
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1. INTRODUCTION: DYNAMIC PROGRAMMING AND OPTIMAL CONTROL

It is well known that optimization is a key tool in mathematical modeling of real phenomena. Dynamic
Programming (DP) and Optimal Control (OC) are concerned with optimization over time in which the evolution
of key variables is described by means of deterministic or stochastic dynamical systems, in both discrete or
continuous time.

The key idea in DP is that optimization over time can be analyzed through different stages using the optimality
principle that states that “from any point on an optimal trajectory the remaining trajectory is optimal for the
corresponding problem initiated at that point”. The DP approach was introduced by Bellman [7]. The Bellman’s
principle of optimality breaks a dynamic optimization problem into smaller sub-problems and the Bellman’s
equation defines the value of a decision problem at a certain point in terms of the payoff from some initial
choices and the value of the remaining decision problem that results from those initial choices.

In literature the DP approach has been used to solve OC models. In OC problems one has to determine a
control variable for a system that maximizes or minimizes a given objective function. The classical formulation,
introduced by Pontryagin et al. [38], includes a functional cost that is a function of state and control variables.
These variables are linked through a system of differential equations, and the optimal solution can be derived
by using the Pontryagin’s maximum principle or by solving the Bellman’s equation.

When the control variables can be expressed in terms of the state variables and then they can be dropped
from the problem formulation, an OC model boils down to a Calculus of Variations (CV) model. CV is a branch
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of mathematical analysis that uses variations and a CV model consists in finding the maxima or the minima of
functionals defined on a set of functions and taking values in the set of real numbers [19].

Recently, various researchers have solved DP and OC problems with multiple objectives and/or stochastic
parameters. Diverse applications to different domains such as biology, economics, ecology, finance and manage-
ment have been proposed (see, for instance [4,10,13,16,23,24,33,35,39,42]).

This paper represents an attempt to review the use of Multiple Objective Programming (MOP) in Dynamic
Programming and Optimal Control. It is organized as follows: Section 2 introduces the key concepts in MOP
in both deterministic and stochastic contexts. Section 3 presents the case of DP with a single objective. In this
section we define the DP process then we propose the equivalent mathematical formulation. Section 4 discusses
the DP problem with stochastic parameters. Section 5 addresses the DP problem with multiple objectives in
discrete and continuous time. Section 6 provides some examples of application that contain multiple objectives
solved through DP. In Section 7 we present multiple objective DP problems with random parameters. Finally,
in Sections 8 and 9 both the multiple objective calculus of variations and the multiple objective optimal control
models are discussed.

2. MULTIPLE OBJECTIVE PROGRAMMING AND MULTIPLE OBJECTIVE STOCHASTIC
PROGRAMMING

The MOP problem is usually proposed in the following form:

where the index k (k > 2) indicates the number of objective functions to optimize f; : R® — R, i = 1...k,
F(x) defines the objective vector, and x = (21, 3,...,2,)T is the decision variable vector. D represents the set
of the feasible solutions. The MOP solution corresponds to the (Pareto) set of all non-dominated solutions:

— 2’ € S'is a decision vector dominated by another z € S'if f;(z) > fi(2’) foralli =1,...,k and f;(z) > f;(2')
for at least one index j.

— 2’ € § is called efficient or Pareto optimal if there does not exist another x € S where f;(x) > fi(z’) for all
i=1,...,kand f;(z) > f;(z’) for at least one index j.

Several approaches are proposed in the literature to solve a MOP. Here we cite the most important ones:
e-constraint, weighted sum and goal programming.

The e-constraint method was introduced, among others, by Haimes et al. [26] to transform a MOP into a
single objective problem by minimizing a primary objective function and transforming the remaining objectives
into inequality constraints:

max fi(z)
s.t. f](.’t) Z(Ej Vj:].,,k,j%l (22)
rzeD
where ¢; is the maximum value of f;(z),j #1,l€1,... k.

The weighted sum method [22] consists in assigning a positive weight to each objective and then maximizing
the weighted sum of all objective functions:

k
max ;::1 i fi(x) (2.3)
st. xeD

where A\; > 0 for all i = 1,...,k are the weight coefficient of the ith objective and Zle A= 1.
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Goal programming (GP) was introduced by Charnes and Cooper [15]. In this method, the decision maker
identifies the goal of each objective and then tries to minimize the deviations from them. The model reads as:

k
min 35 47+
=1

i=
st. filz) =+ =% Vi=1,...,k (2.4)
77, >0 Vi=1,....,k
x €D

where ;" fy;" are the negative and positive deviations of the ith objective function from the corresponding goal
z;.

In specific cases, the MOP problems are including stochastic parameters. In general, the Multiple Objective
Stochastic Programming (MOSP) problem can be written as follows:

max f(waaj) = (fl(w,l'),fg(w7$), o fk:(w>$))
st. z€ )é(w) ={gj(w,z) <bj(w),j=1,...,m} (2.5)
MRS

Vw € Q, where D is the set of deterministic constraints and X (w) is the set of random constraints. The functions
fi(w,.), gj(w,.), and the right hand side of the random constraints b; depend on the realization of a random
observation w in a probability space (2, Z, p), where € is the sample space, E is a o-algebra of events of Q, and
P is the probability measure defined on =.

When the objective functions and the constraints are linear, the MOSP boils down to:

max C(w)x
s.t. Agw))a; < b(w) (2.6)
xeD

Yw € 2, where C' is a (m x n) random matrix, A is a (k x n) random matrix and b is a (k x 1) random vector.
To solve the MOSP problem, in [9] the authors proposed two transformations, the stochastic transformation
and the multiple objective transformation.

— Stochastic transformation consists in eliminating the randomness of the problem in order to generate an
equivalent deterministic problem. So, we deal first with the multiple objective dimension of the MOSP with
a chance constrained compromise programming approach [1,8] or a recourse approach [43]. Then in a second
stage, we solve the obtained single objective stochastic program with the suitable multiple objective method
as weighted sum or a goal programming methods.

— Multiple objective transformation aims to transform the multiple objective functions into a single objective
function and then use a stochastic programming method to come with a solution to the problem.

Before adopting one of the previous transformations, we need to eliminate the randomness from the con-
straints. For this, several transformations are proposed in the literature. The main way to transform random
constraints is to consider them as extra stochastic objectives [8,41] or to transform the stochastic constraints
with the chance constraint technique [8].

3. SINGLE OBJECTIVE DYNAMIC PROGRAMMING

Dynamic Programming (DP) usually refers to simplifying a decision by breaking it down into a sequence of
decision steps over time. According to Kall and Wallace [29] the most important concepts in this method are
time horizon (i.e. number of stages), state variables, decision variables, transition functions, return function,
accumulated return functions and optimal accumulated returns (i.e. best return achieved from the present state
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until the end of time horizon). DP proceeds as follows:

(1) Take one stage at a time. Start with the last stage.

(2) For each stage calculate the optimal accumulated return and find the optimal decision for all possible states.

(3) Move one step and calculate the returns (immediate returns and returns for all later periods) from that
stage until the end of the time horizon.

DP can be formulated as follows [29]:

max F(ro(z0,%0),...,7¢(2r, 27), Q(2141))
s.t. Zt+1 :Gt(zt,xt) tZO,,T (31)
At(Zt)Sl’tSBt(Zt) t=0,...,T
where t is the stage, t = 1,...,T, T is the time horizon, z; and x; are, respectively, the state variable and the

decision variable in the stage t. Q(z¢4+1) is the return function for the last stage t. Gi(z¢, ) is the transition
of the system from the state z; and the decision taken in the stage ¢ into the state z;41 in the next stage (i.e.
zi41 = Gi(zt,24)). 1¢(2¢, 2¢) is the immediate return if the system is in the state z; and the decision z; is taken.
F is the overall objective and x; is the set of feasible decisions in the stage t. To obtain the optimal accumulated
return f;(z¢), the following program must be solved recursively.

Find f§(20) (3.2)
and, recursively, calculate
ze) = max Zt, X
ft( t) A (20) <zt <Bt(zt) ft( ! t)
= * == T [
At(zt)gilb?)éBt(zt) @t(rt(zt7$t)7ft+1 (Zt+1)) ! ’ 70 (33)
with Zt+1 = Gt(ztazt) t:T,,O

fri1(zri1) = Q(2r41)
where fi(z¢, x¢) is the accumulate return function.
4. SINGLE OBJECTIVE STOCHASTIC DYNAMIC PROGRAMMING

Stochastic DP differs from the deterministic one in the state transition equation. When events in the future
are uncertain, the state does not evaluate deterministically. The procedure of the stochastic DP approach is as
follows [29]:

Find [ (20) (4.1)
recursively, calculate
ft (Zt) - At(zt)gﬁlt%Bt(zt) ft(Zt, :Et) _
= i E~ * t = 0 PPN ,T
Ao B8 g, o B Pt 20 80, fia () ’ (4.2)
with
Zt+1 :Gt(zt7xt7£t) t:077T

fri1(erin) = Q(er41)

where & is the random vector for stage t, (2, x¢, &) is the return function and z;41 = Gi(ze, @, &) is the
transition function.
To solve a stochastic DP, we can use a backward recursion or a forward recursion algorithm.

— Backward recursion: the aim of this algorithm is to provide a sequence of alternating states and decision
from an initial state to a final state.

— Forward recursion: it is an opposite procedure to the backward recursion. In this method, we start with a
final state and work backwards. This algorithm can be used to solve different problems and specially for the
problems in which the final state is unknowns. In this case it is the only feasible approach.
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5. MULTIPLE OBJECTIVE DYNAMIC PROGRAMMING (MODP)

Recently, the DP is developed to solve problems with multiple objective functions. In general, two properties
are considered in the objective function witch are, separability and monotonicity properties [7]. Those properties
can ease the solution of MODP.

— Separability:
F(mo,...,xN;ul,...,uN)
=Qn (N, un;qN-1(Z0, -, TN-1; UL, - -, UN-1))
G (Zoy ooy T ULy ey Uy) (5.1)
= Qn(mna Un; Qn—l(x07 sy Tp—1; UL, - - - ;un—1>)
(n: L...,N— 1)#]0 :qO(gjO)
where F, ();, q; are real scalar-valued functions. * = z1,...,zn is the set of state variables and u =
u1,...,un is the set of control variables.
— Monotonicity:

Qn(mna Unp; w) < Qn($n7 Un,; w/)

for every pair w, w' € E' with w < w'. (5-2)

MODP models can be generally divided into discrete or continuous.

5.1. MODP in discrete time

In this section we will present different MODP models in discrete time. In [2,3] the authors proposed to solve
the following formulation:

mlan(fkl(x1)7aka(mN)) k:172a7K; K22
st Gm(gmi(x1), ..., gmn(zN)) <0 m=1,...,M (5.3)
Ty € Xy, n=1,...,N
where X,,, n = 1,...,N is a subset of R'", and z,, is a t, dimensional vector. The objective functions F},
k = 1,...,K, the constraints G,,,m = 1,..., M, are functions of class C' on RN taking values in R and

fensGmn,k=1,..., K,m=1,...,M,n=1,...,N are real valued functions defined on X,,. To determine the
efficient set, the authors proposed the e-constraint approach for dealing with non-convex models. Their approach
consists in retaining one objective function as primary and transform the other £ — 1 objective functions as
constraints. Therefore, the proposed model becomes equivalent to the following P(e) formulation:

min Fy(fi1(z1), ..., fin(zn))
st Fe(fra(21), ..., fin(on)) < e

! ' 5.4
Gr(gmi1(1)y ..y gmn(zn)) <0, m=1,....M (5-4)
Ty € Xy, n=1...,N
where € = (e2,...,€x) is a kK — 1 dimensional vector. We note that, for each fixed €, at least one optimal

solution of the problem P(e) is an efficient solution of the defined problem. To generate the entire set of efficient
solutions, in [3] the authors decomposed the parametric space by using the constrained approach. Moreover, if
the proposed formulation is separable and the separation is monotone, the problem P(e) can be decomposed
into sub-problems by DP in the sense of [40]. In this case, real-valued functions B (e, s) are defined for each

n=1,...,N,e=(ea,...,€x), s = (s1,...,5m) as follows:
Bi(e,s) = min F'(f11(z1),..., fin(zn))
s.t.
FE(fi (@), - fonlan)) < s k=2 K (55)
G (gm1(z1)s - s Gmn(Tn)) < Smj m=1,...,M

1 € Xq,...,x, € X,
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The recursive relations:

B{‘.(eg,...,ez,s?,...,irjlif) :_1 1

min @Y (fin(@n), By e (e fin(@n)), 85 (555 G (20))])

s.t. (5.6)
Jin(zn) <€},  k=2,....K

gmn(xn)gszl, m=1,....M

forn=1,...,N with B =0,k =1,..., K and assuming the monotonicity of ¥, let 5"~ be defined by:

Shl (s, Gmn (@) = sup{€ € RV (&, Grmn(v,) < slh}, m=1,..., M.

The authors also proposed an algorithm for decomposing the parametric space into multiple objective nonlinear
programming problems which are solved using a DP approach.

In [30] a multiple objective optimal stopping problem is solved. The authors proposed to stop the selection
process of the Bilateral Optimal Selection Problem (BOSP) if either DM decides to stop. A utility function for
each DM, (p = 1, 2) is considered. This function takes into account the position of the opponent for the selected
offer. A game payoff of each DM is defined. The authors presented a dynamic formulation of the BOSP where
each DM’s utility is expressed as in the above payoff matrix. The optimality equation for DM, p = 1,2, at
stage i, 1 =1,...,n — 1, is the following:

max{EvP(i,1,ky), EvP(3)} if ky=1orky =1

c

Ev? (i, kp, ky) = {Evg(i) elsewhere (5.7)
where EvP(i, 1, k) is the maximum expected utility of DM, by following the optimal strategy when the ith offer,
with relative ranks k, and k, is examined, Ev? () is the expected utility of DM,, when postponing the decision
to the next stage and EvE(i, 1, k,) is the expected utility of DM, when stopping at stage ¢ and selecting the
current offer with relative ranks k, and k, . In [30] the authors developed the game formulation of the problem
through the backward recursive equations of each DM. Then, they studied the problem for a specific case of
the proposed utility and they showed how each DM should foresee his opponent’s individual decision. The
numerical investigation of the problem when varying the parameters of the proposed utility showed the rational
decisions that can be taken by each DM and their expected rewards before beginning the selection process.
Compared with the case of a single DM, the experimental results illustrate the great loss of expected utility
when considering two DMs.

In [44] the authors considered the following multiple objective optimal control problems subjected to nonlinear
control dynamics with unknown disturbance:

(P)  min f(X,U) = (F1(X,0), f2(X,U),.., fH(X, U))"

5.8
s.t. Ti41 = f(l't,uugt) ( )

where U = (ul',uT,...)T denotes the control set, X = (z,2T,...)T denotes the state set, the state =, € R",
the control u; € R™ and the bounded disturbance & € RP,t = 0,1,.... In the problem (P), there are M
performance indices with all the elements in the performance index vector f!(X,U) > 0, expressed by the
following form:

XU =y, i=1....M (5.9)
t=0
where yi = ®(zy,us) > 0,i = 2,..., M is the utility function. To solve the multiple objective optimal control

problem (P), the aim is to find an optimal control sequence U* = ((u$)T, (uf)?,...)T so as to make the vector
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valued performance index minimized which makes the system achieve optimality. The optimal state trajectory
is formulated as X* = ((z3)7, (z7)7,...)T. Let U* € EZ, where

EZ = {U|U is an optimal solution to (P)}

and let X* be the corresponding state trajectory for (P). Then for any ¢, the control sequence (uy, i, u; o,...)
of U* constitutes an optimal solution of the following problem:

(Pu(t)) H}iltn ye + f(XE0 Ui)

, (5.10)
stz = f(@e, ue, &)
where Yt = (ytl?th» LR y{n)Ta and Xt+1 = (mg;l) x$+27 B ')T and Ut+1 = (u?+17u?+27 . ')T7t = 0) 17 .- 00.
The problem (P (t)) can be stated as the following minimum problem:
min f(X,U) = (@(a;.0):,) = (42),., = (), (5.11)

In [44] the 2-norm of the vector-valued index is minimized. According to the assumption y; > 0, the above
model can be transformed into the following problem:

(Py) minV = (o) yo + (y1)Ton + ...

(5.12)
st. 1 = flae,ue, &), t=0,1,....
Define the utility function as:
M Mo
(weu) = W)yt 4+ @D Ty =D P w) =Y )Ty
i=1 i=1
So the performance index function can be expressed as:
SV=D U ). (5.13)
U =0
Note that z; € R™,u; € R™, & € RP.
In [31] the basic problem is defined as follows:
max F(x,u) (5.14)
subject to state variables = (zg, ..., zy) and control variables u = (uq, ..., ux) under restrictions of the type:
Tn-1 = gn(Tn,un),un € Up(z,), n=1,...,N (5.15)

and the initial condition x,, = a. Each feasible pair (x,u) of the problem is said to be a process. The F(x,u)
fulfills the properties of separability and monotonicity. Then, the problem can be decomposed into the following
multistage system of recurrence relations:

fn(zn) = max | Qn(Tn tn; fa-1(gn(zn,un))), n=2,....N

Up €Up (Tn

filz) = max  Qqi(z1,u1;q0(g1(21,u1))) (5.16)
w1 €U (x1)

where f,,(2,) is the Bellman function and the optimal return of the corresponding n—stage process by the initial

value x,,. Another problem is then proposed:

max F(u, x)
st. x=(zg,...,zy) and u = (uq,...,u,) satisfying (5.17)
Tn—1 = Gn(Tn,Upn),un € Up(z),n=1,...,N,z, = a.
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The range W of F is a subset of EX. This formulation aims to find the whole set W* of maximal (efficient)
values of W in the sense of Pareto optimality. In respect of all admissible n-stage process by the initial value
Zn. Instead of the properties of separability and monotony, in [31] assumed the following modified property.

Modified Separability:

F(zo,...,zn;u1, ..., un) = Qn(en, un; gv—1(Z0, -, TN-1;3 UL, - - -, UN-1))
Qn(x(lu ey Ty ULy e 7un) = Qn(ﬁrnaun;qnfl(x(b ey Tp—13UL, - - 7un71))
n=1,....,N—1,q = qo(zo) (5.18)

by real vector values functions F, Q;,q; as mappings in EL.
Modified Monotonicity:

Qn (T, Un; w) < Qu(Tp, un;w') for every pair w, w' € EX with w < w'. (5.19)
The system of recurrence set relations is:

fn(zn) = S )Qn(xnvun;fnfl(gn(l'n»un))) n=2,...,N

fi(z1) = max  Qi(x1,u1;q0(g1(1,u1)))- (5.20)

uy €Uy (x1)

5.2. MODP in continuous time

In [14] the authors proposed a schema by which a typical multiple objective capacity expansion problem can
be solved. In the capacity expansion problem, N projects available for construction in 7" time periods and two
objectives are considered. The problem formulation is considered of the following form:

min (fl(x7y)a fQ(‘ra y))

st. zeX,yeY (5.21)
where © = (11, .., %, .., TNT), Tiz 1S equal to 1 if project i is constructed in time period ¢ and 0 otherwise.
y=(y11,---,Yit,- - -, YNT), Yit is the utilization of project ¢ in period ¢. X is a feasible set of z and Y is a feasible

set of y. In [14] the authors proposed to convert, first, the problem into an e-constraint problem by taking the
first objective as the primary objective function.

P(e) : min fi(x,y)
st fa(z,y) <e (5.22)
re X,yeY.

Then, two steps are considered:

— solve the above problem for various values of e,
— obtain trade off and all relevant information from the first step, then interact with decision maker to choose
the final solution.

The authors suggested to carry out the first step. To do this, the objective that is turned as a constraint is
expressible as some function of similar indicators in each time period ¢.

fQ(xay):fQ(fQIMH;fga--.afg) (523)

where f1 is the corresponding index of f; in period ¢. Another assumption is then suggested:

fal@,y) = fo(fd o fh ) <e (5.24)
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Chankong et al. [14] assumed that they can find Fl(e), F%(e), ..., FT(e) such that (35) is equivalent to the
following set of inequalities:

th(x’y) SFt(€)7 t=1,...,T (525)
in the sens that if X; = {(z,9)|f2(7,y) < €} and Xo = {(z,y)|fi(x,y) < FT(e) t =1,...,T} then X; = X2.
Thus, P(€) can be transformed into:

Py(e) : min f1(,y)
st. fi(z,y) < Fi(e), t=1,...,T (5.26)
re X,yeY.

An equivalent DP problem is defined as follows:

n

FE O = min(Cir, + £ (1) + B 0 8 1) (5.27)

1yln

where Cj; is the capital and annual cost of constructing project ¢ in time period t. k,, is the set of n or fewer
constructed projects. h*»~1(t») is equal to the minimum present value of the variable costs satisfying the demand.
To find h(.), the following formulation should be solved:

Py(e€) : hFn=1t)0e( #) = min Y7 = t,,° > birYir

Yir J€kn—1(tn)0"

s.t. Z Yir > Q(t)
J€kn—1(tn)? (5.28)
0 < Yir < Qj

S5 (s b 1(n)9i)§FT(6)
j=1...,N, 7=t,,...,t.

The authors assumed that the function F'*(€) is a continuously differentiable function of € foreach t =1,...,T.
For some given €, let y° solve the following problem:

Ps(e) : mlnfl( 0 y)

St St y) < FUO) t=1,...,T (5.29)

with the following properties:

— 10 satisfies the regularity conditions for P;
— second-order sufficiency condition is satisfied at y°
dF"* (e )

— there are no degenerate constraints at y°. Let \{, = Z , the optimal Kuhn-Tucker multiplier. There-

t=1
fore, the trade offs between fi and fq, ¢ = 2,...,n with )\th > 0 are given by:

T dFt

“Aig = Z Al

6. SOLVING MOP THROUGH DYNAMIC PROGRAMMING

(5.30)

Some researchers used the DP to solve various practical applications of MOP. In [40] the authors illustrated a
MODP model with the independent operation of Shasta Reservoir in California. Three objectives are considered:
maximizing the cumulative dump energy generated above the level of firm energy, minimizing the cumulative
evaporation or loss of the resource and maximizing the firm energy. The problem was formulated as follows:

fj(5j7‘/}):maXQJ (qj)S]7V]7FE )+f] 1( j— 17V 1)
Sj—l _T (qj,S],V])
Vi1 ZTf(qjaSijj)
q; Z Qminj;Smin S S] S Smax

(6.1)



S360 F. BEN ABDELAZIZ ET AL.

where f;() is long-range returns (dump energy accumulated through stage j), E;() is short-range returns (stage
j dump energy), FE; is a firm energy required in time period j, S; is the volume of storage at stage j, V; is a
cumulative evaporation through stage j and g; is a release volume during stage j. MODP generates the entire
non inferior set of solutions (convex or otherwise) as well as the explicit trade-off between objectives at all
objective levels. MODP is therefore an applicable technique that can further assist the water resource planner.

Dabia et al. [17] proposed a time dependent DP approach to solve a multiple objective vehicle routing problem
in which two objectives are defined: minimize the tour’s execution time and maximize the total demand fulfilled.
The authors presented two time assumptions. The first one suggests that each customer i having an opening time
t! can only be visited before customers with later opening times and the second one, called FIFO assumption,
guarantees that, for every link, a later departure will not result in earlier arrival. Dabia et al. [17] formulated
an approximate DP based on the non-dominance principle and on an additional assumption. This assumption
means that fast increases in travel time are not allowed and it is defined as follows: for every real number
1 < a < 2 and every two customers ¢ and j, it holds that for every time ¢, tt;;(at) < att;;(t). tt;;(t) is the travel
time from customer ¢ to j when leaving at time ¢.

Jacquin et al. [28] used the DP to solve a scheduling problem called multiple objective unit commitment
problem (UCP). Two objectives are defined, which are, minimize the production cost and minimize the gas
emissions. In this work a generalization of DYNAMOP (DP based metaheuristic for optimization problems)
method is proposed.

7. MULTIPLE OBJECTIVE STOCHASTIC DYNAMIC PROGRAMMING

Various applications of MODP considered random parameters. These problems can be captured within the
framework of Multiple Objective Stochastic DP (MOSDP). The MOSDP is expressed in most of the cases by
a discrete time modelisation. In [46] the authors proposed a Dynamic Cell Formation Problem (DCFP). This
problem has a dynamic and stochastic nature. The dynamic aspect is due to varying product mix and product
demand volumes. The authors developed a bi-objective stochastic model for:

— Minimizing the total cost of machine procurement, machine relocation, inter-cell moves, overtime utilization,
working hiring/laying-off, and worker moves between cells.

T M
min 727 = Z Z (Hijy_Lt - 71'mK;Lt)
t=1 m=1

T C M

AN D c Jp | M M
t
P NALS DI ) DL e
t=1 p=1 P c=1 j=1|m=1 m=1
T M
+ Z Oct Z Tmt
t=1 m=1
T c T
+ Z(Wt‘"mt + W, ne) + Z Oec. Z Wi (7.1)
t=1 =1  t=1
where ¢ is an index for manufacturing cells (¢ = 1,...,C), m is an index for machine types (m =1,..., M),

p is an index for part types (p = 1,...,P), t is an index for time periods (¢t = 1,...,T), j is an index for
operations belonging to part type p (j = 1,...,J,). C is the maximum number of allowed cells, M, P, T
and J, correspond to the numbers of machine types, part types, periods and operations required for part
type p, respectively. D, is the demand for part type p in period t. ®, represents the inter-cell movement
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cost per unit of part type p batch. B, is the batch size of product type p. 7, is the selling cost of machine

type m. i, is purchasing cost of machine type m. !, is installing cost of machine type m. ~,, is removing

cost of machine type m. my is hiring cost in period ¢. n; is laying off cost in period t. OC} is worker cost

per unit of overtime. o, is cost of moving worker to cell c¢. X; mect takes 1, if operation j of part type p is

performed on machine m in cell ¢ in period t; 0, otherwise. N, , is the number of machine type m added to
cell ¢ in period t. N, is the number of machine type m removed from cell ¢ in period ¢. K, is the number
of machine type m purchased at the beginning of period ¢. K, is the number of machine type m sold at
the beginning of period t. W, is the number of workers hired in period t. W, is the number of workers laid
off in period ¢. W} is the number of workers added to cell ¢ in period ¢ and T, is overtime utilization on
machine m in period t.

— Maximizing labor utilization of the cellular manufacturing system.

max Zs = Z Z MHU,, (7.2)

c=1t=
where MHU; is the minimum worker utilization of cell ¢ in period t.

Zohrevand et al. [46] defined several constraints such as, time capacities of machines, limitations of overtime
and cell sizes, minimum worker utilization in the planning periods, numbers of assigned workers to cells and
numbers of workers in the periods. Some parameters are changing during different planning periods, including the
part demands, worker hiring/ laying off costs, and worker overtime costs. In addition to the defined parameters
and variables, some constraints ensure dynamic reconfiguration of part assignment, cells, and the total CMS.
The authors adopted two transformations approaches; the approach of Lai and Hwang [32] and the weighted sum
approach. The first approach tackled the fuzzy parameters and the second approach transformed the proposed
model into single-objective model. A hybrid tabu search - genetic algorithm is developed to obtain desired
solutions.

8. MULTIPLE OBJECTIVE CALCULUS OF VARIATIONS

In [5] the authors established weak, strong, and converse duality results for weakly efficient solutions in
vector or multiple objective variational problems. These results extend and improve recent papers. The authors
considered Kuhn-Tucker optimality conditions, weighting variational problems, and some classes of generalized
convex functions, recently introduced, which are extended in this work. The authors considered the following

model: ,
min/ flt,z, &)d (/ filt,z, z)d / fntacacdt> (8.1)
subject to
z(a) = a, z(b) = B, (8.2)
g(t,x,2) <0,a.e. tE]la,bl]. (8.3)

In [25] the authors proved necessary optimality conditions in the form of a generalized Euler equation for an
infinite dimensional dynamic maximization program posed as a vector problem of calculus of variations with
fixed end points. Under concavity of the integrand with respect to the space variables they showed that these
conditions are also sufficient. They also used these results to study a vector-valued extension of the Ramsey
economic growth model in Banach spaces with partial order given by a closed convex cone and provided several
concrete economic examples. They considered problems involving objective functionals taking the form:

= / f(t,z(t), 2 (t)) dt (8.4)

where f:[a,b] x X x X — Y is a continuous function, (X, |- ||x), Y = (|| - ||y) are Banach spaces, and P C Y
is a closed convex cone with nonempty interior.
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9. MULTIPLE OBJECTIVE OPTIMAL CONTROL

Several approaches are proposed in the literature to solve a Multiple Objective Optimal Control Problem
(MOOCP). Gambier and Jipp [20] classified these approaches as follows:

— Parameter-optimized PID controllers: this approach aims to find parameters for the digital PID controller
and to define the performance index for the time discrete case [27].

— Eigenvalue assignment as a MOP problem: the basic principle of this approach is to find a feedback matrix
K for an input matrix B € R"*! and a system matrix A € R™*" such that the eigenvalues of the closed loop
system matrix A* = (A — BK) lie in the position defined by the designer [11] [36].

— Multiple objective robust control: this approach is adapted to performance specifications while provides

closed -loop stability in the presence of disturbances [6].

Multiple objective predictive control: this approach compromises a family of controllers signed by the same

design philosophy and similar characteristics [12].

— Supervisory switching control: in this approach, the supervisor decides on the basis of available information
like states, input and output which of the available controllers should be activated . Then, he establishes
the corresponding reference signal. The final result is the switching function acquired from the switching
function and the corresponding reference signal [34].

— Multi-loop control systems with multiple controllers: in this approach the controllers are assumed to be
players of a non-zero sum cooperative game [21].

Logist et al. [37] established a computationally efficient frame for a robust MOOCP yielding robust Pareto
sets for dynamic(bio) chemical process. The authors proposed two approaches: deterministic secularization based
on multiple objective approaches and robust optimization techniques for dynamic systems based on Lyapunov
differential equations.

Zarei and Bahrmand [45] proposed a method for the solution of a MOOCP in linear distributed parameters
system governed by a wave equation. The authors defined a solution for the wave equation and then converted
the MOOCP into a MOP by the Laplace transform. Finally, they transformed the obtained MOP with the Zim-
merman’s fuzzy approach into a single objective problem. The resulting problem is solved with a metaheuristic
algorithm.

In [18] the authors presented optimality conditions for the sufficiency of the maximum principle for multiple
objective optimal control problems with nonsmooth data. It turns out that these conditions are the most general
as possible in the sense that problems in which the set of necessary conditions from the maximum principle are
also sufficient, necessarily obey them. The authors also presented a variation of such conditions under which
the set of optimal solutions of the multiple objective problem can be determined by resolving a related scalar
weighting problem. They deal with the following problem:

min g(x(S), #(T)) (9.1)
subject to

z(t) = f(t,z(t),ut)), ae.tel[S,T] (9.2)

(x(9),z(T)) € C, (9.3)

u(t) e U(t), a.e. tel[S,T]. (9.4)

where g = [g1,92,---,9%) : R* x R* — R* f:[S,T] x R®* x R™ — R", C is a closed subset of R" x R", U is a
multifunction mapping [S, 7] to nonempty subsets of R™, S and T are fixed.

10. CONCLUSION

This paper represents an attempt to present the state-of-the-art of the use of multiple objective optimization
techniques within the areas of dynamic programming and optimal control. The main concepts of optimiza-
tion with vector-valued functions have been introduced in classical dynamic programming and optimal control
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settings, including multiple objective dynamic problems in discrete and continuous time, stochastic dynamic
programming, multiple objective calculus of variations, and others. Several future avenues could be explored
with the aim of extending theoretical results including set-valued functions as well as of finding innovative
applications in the areas of economic growth, health management, sustainability, and other area in which the
analysis of time-dependent multiple criteria decision making problems play a crucial role.
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