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LECTURE 1

Dynamic Programming

1.1. Recursion

A recursion is a rule for computing a value using previously computed values, for example,
the rule

fk+1 = fk + fk−1 , (1.1)

computes the Fibonnaci sequence, given the initial values f0 = f1 = 1.

Example 1.1. A projectile with mass 1 shoots up against earth gravity g. The initial
velocity of the projectile is v0. What maximal altitude will it reach?
Solution. Let y(v) be the maximal altitude reachable with initial velocity v. After time ∆t,
the projectile advanced approximately v ∆t, and its velocity has decreased to approximately
v − g ∆t. Therefore the recursion

y(v) ≈ v δt + y(v − g ∆t) , (1.2)

gives

y(v)− y(v − g ∆t)

∆t
≈ v ,

∴ y′(v) =
v

g

∴ y(v) =
v2

2 g
, (1.3)

and the maximal altitude reached by the projectile is v2
0/2 g.

Example 1.2. Consider the partitioned matrix

A =

(
B c
r α

)
(1.4)

where B is nonsingular, c is a column, r is a row, and α is a scalar. Then A is nonsingular
iff

α− rB−1c 6= 0 , (1.5)

(verify!) in which case

A−1 =

(
B−1 + βB−1crB−1 −βB−1c

−βrB−1 β

)
, (1.6a)

where β =
1

α− rB−1c
. (1.6b)
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Can this result be used in a recursive computation of A−1? Try for example

A =




1 2 3
1 2 4
1 3 4


 , with inverse A−1 =




4 −1 −2
0 −1 1
−1 1 0


 .

Example 1.3. Consider the LP

max cTx

s.t. Ax = b

x ≥ 0

and denote its optimal value by V (A,b). Let the matrix A be partitioned as A = (A1, an),
where an is the last column, and similarly partition the vector c as cT = (cT

1 , cn). Is the
recursion

V (A,b) = max
xn≥0

{cnxn + V (A1,b− an xn)} (1.7)

valid? Is it useful for solving the problem?

1.2. Multi stage optimization problems and the optimality principle

Consider a process consisting of N sequential stages, and requiring some decision at each
stage. The information needed at the beginning of stage i is called its state, and denoted
by xi. The initial state x1 is assumed given. A decision ui is selected in stage i from the
feasible decision set Ui(xi), that in general depends on the state xi. This results in a reward
ri(xi, ui) and the next state becomes

xi+1 = Ti(xi, ui) , (1.8)

where Ti(·, ·) is called the state transformation (or dynamics) in stage i. The terminal
state xN+1 results in a reward S(xN+1), called the salvage value of xN+1. If the rewards
accumulate, the problem becomes

max





N∑
1=1

ri(xi, ui) + S(xN+1) :
xi+1 = Ti(xi, ui) , i = 1, N ,
ui ∈ Ui(xi) , i = 1, N ,
x1given .



 . (1.9)

This problem can be solved, in principle, as an optimization problem in the variables
u1, . . . , uN . However, this ignores the special, sequential, structure of the problem.

The Dynamic Programming (DP) solution is based on the following concept.

Definition 1.1. The optimal value function (OV function) at stage k, denoted Vk(·), is

Vk(x) := max





N∑

1=k

ri(xi, ui) + S(xN+1) :
xi+1 = Ti(xi, ui) , i ∈ k, N ,
ui ∈ Ui(xi) , i ∈ k, N ,
xk = x .



 . (1.10)

The optimal value of the original problem is V1(x1). An optimal policy is a sequence of
decisions {u1, . . . , uN} resulting in the value V1(x1).

Bellman’s Principle of Optimality (abbreviated PO) is often stated as follows:



1.2. MULTI STAGE OPTIMIZATION PROBLEMS AND THE OPTIMALITY PRINCIPLE 5

An optimal policy has the property that whatever the initial state and the
initial decisions are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision, [5, p. 15].

The PO can be used to recursively compute the OV functions

Vk(x) = max
u∈Uk(x)

{rk(x, u) + Vk+1(Tk(x, u), u)} , k ∈ 1, N , (1.11)

VN+1(x) = S(x) . (1.12)

The last equation is called the boundary condition (BC).

Example 1.4. It is required to partition a positive number x in N parts, x =
N∑

i=1

ui, such

that the sum of squares
N∑

i=1

u2
i is minimized.

For each k ∈ 1, N define the OV function

Vk(x) := min

{
k∑

i=1

u2
i :

k∑
i=1

ui = x

}
.

The recursion (1.11) here becomes

Vk(x) := min
u∈[0,x]

{
u2 + Vk−1(x− u)

}
,

with V1(x) = x2 as BC.
For k = 2 we get

V2(x) := min
u∈[0,x]

{
u2 + (x− u)2

}
=

x2

2
, with optimal u =

x

2
.

Claim: For genral N , the optimal value is VN(x) =
x2

N
, with optimal policy of equal ui =

x

N
.

Proof. (by induction)

VN(x) = min
u∈[0,x]

{
u2 + VN−1(x− u)

}

= min
u∈[0,x]

{
u2 +

(x− u)2

N − 1

}
, by the induction hypothesis ,

=
x2

N
, for u =

x

N
.

¤

The following example shows that the PO, as stated above, is incorrect. For details see
the book [29] by M. Sniedovich where the PO is given a rigorous treatment.
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Example 1.5. ([29, pp. 294–295]) Consider the graph in Figure 1.1. It is required to
find the shortest path from node 1 to node 7, the length of a path is defined as the length
of its longest arc. For example,

length{1, 2, 5, 7} = 4 .

If the nodes are viewed as states, then the path {1, 2, 4, 6, 7} is optimal w.r.t. s = 1. However,
the path {2, 4, 6, 7} is not optimal w.r.t. the node s = 2, as its length is greater than the
length of {2, 5, 7}.
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Figure 1.1. An illustration why the PO should be used carefully

1.3. Inverse Dynamic Programming

Consider a multi–stage decision process of § 1.2, where the state x is the project budget.
A reasonable question is to determine the minimal budget that will enable achieving a given
target v, i.e.

min {x : V1(x) ≥ v} ,

denoted I1(v) and called the optimal input for v. Similarly, at any stage we define the optimal
input as

Ik(v) :=

{
min {x : Vk(x) ≥ v} ,
∞ if the target v is unattainable ,

k = 1, 2, · · · , N . (1.13)

The terminal optimal input is defined as

IN+1(v) := S−1(v) (1.14)

assuming the salvage value function S(·) is monotonic.
A natural recursion for the optimal inputs is:

Ik(v) := min{x : ∃u ∈ Uk(x) � Tk(x, u) ≥ Ik+1(v−rk(x, u))} , k = N,N−1, · · · , 1 , (1.15)

with (1.14) as BC.
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Exercises.

Exercise 1.1. Use DP to maximize the entropy

max

{
−

N∑
i=1

pi log pi :
N∑

i=1

pi = 1

}
.

Exercise 1.2. Let Z+ denote the nonnegative integers. Use DP to write a recursion for
the knapsack problem

max

{
N∑

i=1

fi(xi) :
N∑

i=1

wi(xi) ≤ W, , xi ∈ Z+

}
,

where ci(·), wi(·) are given functions: Z+ → R and W > 0 is given. State any additional
properties of fi(·) and wi(·) that are needed in your analysis.

Exercise 1.3. ([7]) A cash amount of x cents can be represented by

x1 coins of 50 cents ,

x2 coins of 25 cents ,

x3 coins of 10 cents ,

x4 coins of 5 cents , and

x5 coins of 1 cent .

The representation is:
x = 50x1 + 25x2 + 10x3 + 5x4 + x5 .

(a) Use DP to find the representation with the minimal number of coins.
(b) Show that your solution agrees with the ”greedy” solution:

x1 =
⌊ x

50

⌋
, x2 =

⌊
x− 50x1

25

⌋
, etc.

where bαc is the greatest integer ≤ α.
(c) Suppose a new coin of 20 cents is introduced. Will the DP solution still agree with the
greedy solution?

Exercise 1.4. The energy required to compress a gas from pressure p1 to pressure pN+1

in N stages is proportional to(
p2

p1

)α

+

(
p3

p2

)α

+ · · ·+
(

pN+1

pN

)α

with α a positive constant. Show how to choose the intermediate pressures p2 , · · · , pN so as
to minimize the energy requirement.

Exercise 1.5. Consider the following variation of the game NIM, defined in terms of N
piles of matches containing x1, x2, · · · , xN matches. The rules are:
(i) two players make moves in alternating turns,
(ii) if matches remain, a move consists of removing any number of matches all from the same
pile,
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(iii) the last player to move loses.
For example, consider a game with initial piles {x1, x2, x3} = {1, 4, 7} where moves by players

I, II are denoted by
I→ and

II→ resp.,

{1, 4, 7} I→ {1, 4, 5} II→ {0, 4, 5} I→ {0, 4, 4} II→ {0, 3, 4} I→ {0, 3, 3}
II→ {0, 2, 3} I→ {0, 2, 2} II→ {0, 2, 1} I→ {0, 0, 1} II→ {0, 0, 0} , and II loses .

(a) Use DP to find an optimal move for an initial state {x1, x2, · · · , xN}.
(b) Find a simple rule to determine if an initial state is a winning position.
(c) Is {x1, x2, x3, x4} = {1, 3, 5, 7} a winning position?
Hint: Let V (x1, x2, · · · , xN) be the optimal value of having the piles {x1, x2, · · · , xN} when
it is your turn to play, with

V (x1, x2, · · · , xN) =

{
0, if {x1, x2, · · · , xN} is a losing position
1, otherwise.

Let yi be the number of matches removed from pile i. Then

V (x1, x2, · · · , xN) = 1− max
i=1,...,N

{
max

1≤yi≤xi

V (x1, x2, · · · , xi − ui, · · · , xN)

}

where

V (x1, x2, · · · , xN) = 0 if all xi = 0 except, say xj = 1

Exercise 1.6. We have a number of coins, all of the same weight except for one which
is of different weight, and a balance.
(a) Determine the weighing procedures which minimize the maximum time required to locate
the distinctive coin in the following cases:

• the coin is known to be heavier,
• it is not known whether the coin is heavier or lighter.

(b) Determine the weighing procedures which minimize the expected time required to locate
the coin.
(c) Consider the more general problem where there are two or more distinctive coins, under
various assumptions concerning the distinctive coins.

Exercise 1.7. A rocket consists of k stages carrying fuel and a nose cone carrying the
pay load. After the fuel carried in stage k is consumed, this stage drops off, leaving a k − 1
stage rocket. Let

W0 = weight of nose cone ,

wk = initial gross weight of stage k ,

Wk = Wk−1 + wk , initial gross weight of sub-rocket k ,

pk = initial propellant weight of stage k ,

vk = change in rocket velocity during burning of stage k .

Assume that the change in velocity vk is a known function of Wk and pk, so that .

vk = v(Wk, pk)
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from which
pk = p(Wk, vk)

Since Wk = Wk−1 + wk, and the weight of the kth stage is a known function, g(pk), of the
propellant carried in the stage, we have

wk = w(p(Wk−1 + wk, vk))

whence, solving for wk, we have
wk = w(Wk−1, vk)

(a) Use DP to design a k-stage rocket of minimum weight which will attain a final velocity
v.
(b) Describe an algorithm for finding the optimal number of stages k∗.
(c) Discuss the factors resulting in an increase of k∗ i.e. in more stages of smaller size.

Exercise 1.8. Suppose that we are given the information that a ball is in one of N
boxes, and the a priori probability, pk, that it is in the kth box.
(a) Show that the procedure which minimizes the expected time required to find the ball
consists of looking in the most likely box first.
(b) Consider the more general problem where the time consumed in examining the kth box
is tk, and where there is a probability qk that the examination of the kth box will yield
no information about its contents. When this happens, we continue the search with the
information already available. Let F (p1, p2, · · · , pN) be the expected time required to find
the ball under an optimal policy. Find the functional equation that F satisfies.
(c) Prove that if we wish to “obtain” the ball, the optimal policy consists of examining first
the box for which

pk(1− qk)

tk
is a maximum. On the other hand, if we merely wish to “locate” the box containing the ball
in the minimum expected time, the box for which this quantity is maximum is examined
first, or not at all.

Exercise 1.9. A company has m jobs that are numbered 1 through m. Job i requires ki

employees. The “natural” monthly wage of job i is wi dollars, with wi ≤ wi+1 for all i. The
jobs are to be grouped into n labor grades, each grade consisting of several consecutive jobs.
All employees in a given labor grade receive the highest of the natural wages of the jobs in
that grade. A fraction rj of the employees in each jobs quit in each month. Vacancies must
be filled by promoting from the next lower grade. For instance, a vacancy in the highest of n
labor grades causes n−1 promotions and a hire into the lowest labor grade. It costs t dollars
to train an employee to do any job. Write a functional equation whose solution determines
the number n of labor grades and the set of jobs in each labor grade that minimizes the sum
of the payroll and training costs.

Exercise 1.10. (The Jeep problem) Quoting from D. Gale, [18, p. 493],

· · · the problem concerns a jeep which is able to carry enough fuel to travel
a distance d, but is required to cross a desert whose distance is greater then
d (for example 2d). It is to do this by carrying fuel from its home base
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and establishing fuel depots at various points along its route so that it can
refuel as it moves further out. It is then required to cross the desert on the
minimum possible amount of fuel.

Without loss of generality, we can assume d = 1.
A desert of length 4/3 can be crossed using 2 units of fuel, as follows:
Trip 1: The jeep travels a distance of 1/3, deposits 1/3 unit of fuel and returns to base.
Trip 2: The jeep travels a distance of 1/3, refuels, and travels 1 unit of distance.

The inverse problem is to determine the maximal desert that can be crossed, given the
quantity of fuel is x. The answer is:

1 +
1

3
+

1

5
+ · · ·+ 1

2dxe − 3
+

x− dxe+ 1

2dxe − 1
.

References: [1], [9], [11], [15], [17], [18], [21], [25].



LECTURE 2

Dynamic Programming: Applications

2.1. Inventory Control

An inventory is a dynamic system described by three variables: state xt, decision u and
demand w, an exogeneous variable that may be deterministic or random (the interesting
case).

In the simplest case the state transformation is

xt+1 := xt + ut − wt , t = 0, 1, · · · (2.1)

where xt is the stock level at the beginning of day t, ut is the amount ordered from a supplier
that arrives at the beginning of day t, and wt is the demand during day t.

The initial stock x0 is given. Note that (2.1) allows for negative stocks.
The economic functions are:

• a holding cost A(x) for holding x units overnight (shortage cost if x < 0),
• an order cost B(u) of placing an order u, and
• revenue the R(w) from selling w units.

Let Vt(x) be the minimal cost of operations if day t begins with x units in stock. Then

Vt(x) := min
u
{A(x) + B(u)− ER(w) + EVt+1(x + u− w)} (2.2)

where E is expectation w.r.t. w. We assume the boundary condition

VN+1(x) = S(x) (2.3)

where S(·) is the cost of terminal stock.
Typical constraints on u are: u ≥ 0 and u ≤ C − x where C is a storage capacity.
The order cost is typically of the form

B(u) =

{
0 if u = 0
K + cu if u > 0

(2.4)

where K is a fixed cost.
It is convenient to use the normalized cost functions

V ∗(x) := V (x) + cx (2.5)

in which case (2.2) becomes

V ∗
t (x) := min

u
{A(x) + KH(u)− (ER(w)− cEw) + EV ∗

t+1(x + u− w)} (2.6)

where H(·) is the Heaviside function, H(u) = 1 if u > 0 and 0 otherwise.

11
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Theorem 2.1. Let A(x) and S(x) be convex with limit +∞ at x = ±∞, and let K = 0.
Then the optimal policy is

ut =

{
0 if xt > St ,

St − xt otherwise ,
(2.7)

for some St > 0 (the order to level on day t).

Proof. Let C be the class of convex functions with limit +∞ as the argument approaches
±∞. The function minimized in (2.6) is

θ(x + u) = EV ∗
t+1(x + u− w) (2.8)

If θ(x) ∈ C and has minimum at St then the rule (2.7) is optimal. The minimized function
is

min
u

θ(x + u) =

{
θ(St) if x ≤ St ,
θ(x) if x > St ,

(2.9)

that is constant for x ≤ St.
Writing (2.6) as Vt := LVt+1, it follows that Vt ∈ C if Vt+1 ∈ C. Since VN+1 ∈ C by (2.3),

it follows from Vt = LN−tVN+1 is in C ¤
The determination of the optimal St is from

V ∗
t (x) = A(x) + EV ∗

t+1(S − w) = A(x) + θ(S) , x ≤ S ,

and the optimal S minimizes EA(S − w).

Theorem 2.2. If A(x) and S(x) are convex with the limit +∞ at x = ±∞ and if K 6= 0
then the optimal order policy is

u =

{
0 if x > s ,

S − x otherwise ,
(2.10)

where S > s if K > 0.

Proof. The relevant optimality condition is (2.6). The expression to be minimized is

KH(u) + θ(x + u) =

{
θ(x) if u = 0 ,

K + θ(x + u) if u > 0 ,
(2.11)

and θ is (2.8). If θ ∈ C with minimum at S then the rule (2.10) is optimal for s the smaller
root of

θ(s) = K + θ(S) .

In general the functions V ∗ and θ are not convex. The proof resumes after Lemma 2.4
below. ¤

Definition 2.1. A scalar function φ(x) is K-convex if

φ(x + u) ≥ φ(x) + uφ′(x)−K , ∀u , (2.12)

where φ′ is the derivative from the right,

φ′(x) = lim
u↓0

φ(x + u)− φ(x)

u
.
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The class of K-convex functions with limit +∞ at x = ±∞ is denoted by CK . ¤
Immediate consequences of the definition:

(a) K-convexity implies L-convexity for L ≥ K
(b) 0-convexity is ordinary convexity
(c) if φ(x) is K-convex, so is φ(x− w)
(d) if φ1 and φ2 are K1 and K2 convex respectively then α1φ1 + α2φ2 is α1K1 + α2K2

convex for α1, α2 > 0
(e) if φ is K-convex so is Eφ(x− w)

The corresponding statements for CK are:

(a) CK increases with K
(b) C0 = C
(c) CK is closed under translations
(d) φi ∈ CKi

and αi ≥ 0 imply
∑

αiφi ∈ CK where K =
∑

αiKi

(e) CK is closed under averaging.

Lemma 2.1. Let K > 0 and suppose θ is left-continuous. If one orders for all x in some
interval, then one orders up to a common level.

Proof. Let x′ < x′′ be two points in the interval from where one orders up to S ′ and
S ′′ respectively. Then θ(S ′) ≤ θ(S ′′), and S ′ < x′′ (otherwise at x′′ one should order up
to S ′). Therefore S ′ belongs to the interval, and in (x′, S ′) one should order up to S ′ if at
all. For x near S ′ the inequality K + θ(S ′) < θ(x) is violated, and one does not order, a
contradiction. ¤

Lemma 2.2. Let θ(x) is left-continuous and K-convex, and let x1 < x2 < x3 < x4, where
it is optimal not to order in (x1, x2) and (x3, x4). Then it is not optimal to order in (x2, x3).

Proof. Follows from Lemma 2.1. ¤
Lemma 2.3. If θ(x) ∈ CK then an (s, S) policy is optimal.

Proof. By Lemma 2.2 the optimal policy is either{
order if x ≤ s ,

do not order otherwise ,

or {
do not order if x ≤ s ,

order otherwise ,

for some s. By Lemma 2.1 the first case orders up to some S > s, and in the second case
one orders up to ∞. ¤

Lemma 2.4. If θ(x) is K-convex then so is

ψ(x) = min
u≥0

{KH(u) + θ(x + u)} .

Lemma 2.4 says that Lφ is K-convex if φ is. In fact, Lφ ∈ CK if φ ∈ CK . Since V ∗
t = LN−tφ

it follows that V ∗
t is K-convex. Optimality of the (s, S)-policy follows from Lemma 2.3.





LECTURE 3

Calculus of Variations

3.1. Necessary Conditions

Consider the problem

min J(y) :=

∫ b

a

F (y(x), y′(x), x)dx (3.1)

subject to some conditions on y(x) at x = a and x = b. If y(x) is a local minimizer of (3.1)
then for any “nearby” function z(x)

J(z) ≥ J(y) . (3.2)

In particular, consider

z(x) := y(x) + δy(x) , (a test-function) , (3.3a)

with δy(x) = εη(x) , (a variation) , (3.3b)

where ε is a parameter with small modulus. The test-function z satisfies the same boundary
conditions as y, imposing certain conditions on η, see e.g. (3.11). The variations of the
derivatives of y are

δy′(x) = εη′(x) , δy′′(x) = εη′′(x) , . . . (3.4)

provided η is differentiable.
Notation and terminology: Let Y denote the class of functions:[a, b] → R admissible for the above
problem. The variation δy is strong if δy = εη → 0 as ε → 0, and weak if also δy′ = εη′ → 0.
We use the following norms,

‖y‖0 := sup{|y(x)| : a ≤ x ≤ b} , (3.5a)
‖y‖1 := sup{|y(x)|+ |y′(x)| : a ≤ x ≤ b} , (3.5b)

and associated neighborhoods of y ∈ Y,

U0(y, δ) := {z : ‖z − y‖0 ≤ δ} , (a strong neighborhood) , (3.6a)
U1(y, δ) := {z : ‖z − y‖1 ≤ δ} , (a weak neighborhood) . (3.6b)

Note that U1(y, δ) ⊂ U0(y, δ). The value J(y) is:
a strong local minimum if J(z) ≥ J(y) for all z ∈ Y⋂

U0(y, δ),
a weak local minimum if J(z) ≥ J(y) for all z ∈ Y⋂

U1(y, δ),
for some δ > 0.
Let J(y) be a weak local minimum. Then for all y + εη in a weak neighborhood of y,

J(y + εη) ≥ J(y) (3.7a)

i.e.

∫ b

a

F (y + εη, y′ + εη′, x)dx ≥
∫ b

a

F (y, y′, x)dx (3.7b)

15
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Expanding the LHS of (3.7b) in ε we get

J(y) + ε

[∫ b

a

(Fyη + Fy′η
′) dx

]
+ O(ε2) ≥ J(y) (3.8)

and as ε → 0 (since εη is in a weak neighborhood of 0, εη → 0 and εη′ → 0),
∫ b

a

(Fyη + Fy′η
′) dx = 0 . (3.9)

Integrating the second term by parts we get
∫ b

a

[
η(x)Fy − η(x)

d

dx
(Fy′)

]
dx + [η(x)Fy′ ]

b
a = 0 . (3.10)

The requirement that the test-function z of (3.3) satisfies the same boundary conditions as
y implies that

η(a) = η(b) = 0 , (3.11)

killing the last term in (3.10), leaving
∫ b

a

η(x)

[
Fy − d

dx
(Fy′)

]
dx = 0 (3.12)

which holds for all admissible η(x). It follows from Lemma 3.1 below that

Fy − d

dx
Fy′ ≡ 0 , a ≤ x ≤ b , (3.13)

the differential form of the Euler–Lagrange equation. This is a 2nd order differential
equation in y:

Fy − ∂2F

∂x∂y′
− ∂2F

∂y∂y′
y′ − ∂2F

∂y′2
y′′ = 0 . (3.14)

Lemma 3.1. If Φ is continuous in [a, b], and
∫ b

a

Φ(x) η(x) dx = 0 ,

for every continuous function η(x) that vanishes at a and b, then Φ(x) ≡ 0 in [a, b].

Proof. Suppose Φ(ξ) > 0 for some ξ ∈ (a, b). Then Φ(x) > 0 in some neighborhood of
ξ, say α ≤ x ≤ β. Let

η(x) :=

{
(x− α)2(x− β)2 for α ≤ x ≤ β ,

0 otherwise .

Then
∫ b

a
Φ(x) η(x) dx > 0. Therefore Φ cannot be positive in [a, b]. It similarly cannot be

negative. ¤
Exercises.

Exercise 3.1. Derive (3.9) by the condition that ∂J/∂ε must be zero at ε = 0.

Exercise 3.2. Does (3.13) follow from (3.12) by using η(x) := Fy − d
dx

Fy′ in (3.12)?
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3.2. The second variation and sufficient conditions

Maximizing the value of the functional (3.1), instead of minimizing it as in § 3.1, would
give exactly the same necessary condition, the Euler–Lagrange equation (3.13). To distin-
guish between minima and maxima we need a second variation,

Let

φ(ε) :=

∫ b

a

F (y + εη, y′ + εη′, x)dx (3.15)

where y is an extremal solution, and η is fixed. Then

φ′(0) =

∫ b

a

(Fyη(x) + Fy′η
′(x)) dx , compare with (3.9) , (3.16a)

φ′′(0) =

∫ b

a

(
Fyyη

2(x) + 2Fyy′η(x)η′(x) + Fy′y′η
′2(x)

)
dx (3.16b)

=

∫ b

a

(η(x), η′(x))

(
Fyy Fyy′

Fyy′ Fy′y′

)(
η(x)
η′(x)

)
dx (3.16c)

We call (3.16a) and (3.16b) the first and second variations of J(y), respectively.
Assuming the matrix in (3.16c) is positive definite, along the extremal y(x), for all

a ≤ x ≤ b, a sufficient condition for minimum is the Legendre condition

Fy′y′ > 0 , (3.17)

the reverse inequality sufficient for maximum.
The Legendre condition (3.17) means that F is convex as a function of y′ along the

extremal trajectory. Another aspect of convexity appears in the Weierstrass condition

F (y, Y ′, x)− F (y, y′, x) + (Y ′ − y′)Fy′ ≥ 0 , (3.18)

for all admissible functions Y ′ = Y ′(x, y). We recognize that (3.18) is the gradient inequality
for F , i.e. there is an implicit assumption that F is convex as a function of y′.

Both sufficient conditions (3.17) and (3.18) are strong, and difficult to check even if they
hold.

3.3. Calculus of Variations and DP

Consider the problem of minimizing the functional

J(y) :=

∫ b

a

F (x, y, y′)dx (3.19)

subject to the initial condition y(a) = c. Introduce the function

f(a, c) := min J(y) (3.20)

over all feasible y. Here (a, c) are parameters with −∞ < a < b and −∞ < c < ∞. Breaking
the integral ∫ b

a

=

∫ a+∆

a

+

∫ b

a+∆

(3.21)
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the Principle of Optimality gives

f(a, c) = min
y

[∫ a+∆

a

F (x, y, y′)dx + f(a + ∆, c(y)

]
(3.22)

the minimization is over all y defined on [a, a + ∆] such that y(a) = c, and c(y) = y(a + ∆).
If ∆ is small, the function y(x) can be approximated in [a, a+∆] by y(x) ≈ y(a)+y′(a)x =

c + y′(a)x. The choice of y in [a, a + ∆] is therefore equivalent to the choice of

v := y′(a) . (3.23)

Therefore ∫ a+∆

a

F (x, y, y′)dx = F (a, c, v)∆ + o(∆) , c(y) = c + v∆ + o(∆) . (3.24)

The optimality condition (3.22) then becomes

f(a, c) = min
v

[F (a, , c, v)∆ + f(a + ∆, c + v∆] + o(∆) , (3.25)

with limit, as ∆ → 0,

−∂f

∂a
= min

v

[
F (a, c, v) + v

∂f

∂c

]
, (3.26)

holding for all a < b. The initial condition here is f(b, c) = 0 for all c.
To derive the Euler–Lagrange equation, we rewrite (3.25), denoting the endpoint a by x

and the initial velocity v by y′,

f(x, y) = min
y′

[
F (x, y, y′)∆ + f(x, y) +

∂f

∂x
∆ +

∂f

∂y
y′∆ + · · ·

]
(3.27)

with limit, as ∆ → 0,

0 = min
y′

[
F (x, y, y′) +

∂f

∂x
+ y′

∂f

∂y

]
(3.28)

a rewrite of (3.26). This equation is equivalent to the two equations

Fy′ +
∂f

∂y
= 0 (3.29)

obtained by partial differentiation w.r.t. y′, and

F +
∂f

∂x
+ y′

∂f

∂y
= 0 (3.30)

which holds form all x, y, y′ satisfying (3.29). Differentiating (3.29) w.r.t. x, and (3.30) w.r.t.
y we get two equations

d

dx
Fy′ +

∂2f

∂x∂y
+

∂2f

∂y2
y′ = 0 , (3.31)

Fy + Fy′
∂y′

∂y
+

∂2f

∂x∂y
+

∂2f

∂y2
y′ +

∂f

∂y

∂y′

∂y
= 0 , (3.32)

which, together with (3.29) give the Euler-Lagrange equation

(3.13) d
dx

Fy′ − Fy = 0 .
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3.4. Special cases

The Euler–Lagrance equation is simplified in the following cases:
(a) The function F (x, y, y′) is independent of y′. Then (3.13) reduces to

∂F (x, y)

∂y
= 0

and y is implicitly defined (with no guarantee that the boundary conditions are satisfied;
these conditions cannot be arbitrary).
(b) F (x, y, y′) is independent of y. Then (3.13) gives

d

dx
Fy′ = 0 , or

∂F (x, y′)
∂y′

= C (constant)

which may be solved for y′,

y′(x) = f(x,C) , ∴ y(x) =

∫
f(x,C) dx

(c) The autonomous case where ∂F
∂x

= 0. Multiply (3.13) by y′ = dy
dx

y′
d

dx
Fy′ − y′ Fy = 0 .

d

dx

(
y′

∂F

∂y′

)
− y′′

∂F

∂y′
− y′

∂F

∂y
= 0 .

d

dx

(
y′

∂F

∂y′
− F (y, y′)

)
= 0 .

∴ y′
∂F

∂y′
− F (y, y′) is constant (3.33)

3.5. Extensions

The Euler–Lagrange equation is extended in three ways:
(a) Higher order derivatives. It is required a stationary value of

J(y) :=

∫ b

a

F

(
y,

dy

dx
, . . . ,

dny

dxn
, x

)
dx (3.34)

Using (3.3), the first variation of J is

δJ =

∫ b

a

(
η Fy +

dη

dx
Fy′ + · · ·+ dnη

dxn
Fy(n)

)
dx

Successive integration by parts (assuming that y, y′, · · · , y(n) are given at x = a and x = b)
gives ∫ b

a

(
Fy − d

dx
Fy′ +

d2

dx2
Fy′′ − · · ·+ (−1)n dn

dxn
Fy(n)

)
η(x) dx = 0

and by Lemma 3.1,

Fy − d

dx
Fy′ +

d2

dx2
Fy′′ − · · ·+ (−1)n dn

dxn
Fy(n) ≡ 0 , a ≤ x ≤ b . (3.35)
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(b) Several dependent variables. Here

J(y) :=

∫ b

a

F (y1, y2, · · · , yn, y′1, y
′
2, · · · , y′n, x) dx

and a similar analysis gives the necessary conditions

Fyi
− d

dx
Fy′i ≡ 0 , i ∈ 1, n (3.36)

(c) Several independent variables. Let y = y(x1, · · · , xn) and

J(y) =

∫ ∫

D

· · ·
∫

F

(
y,

∂y

∂x1

,
∂y

∂x2

, · · · ,
∂y

∂xn

, x1, x2, · · · , xn

)
dx1 dx2 · · · dxn

The first variation is

ε

∫ ∫

D

· · ·
∫ (

η
∂F

∂y
+

n∑

k=1

∂η

∂xk

Fk

)
dx1 dx2 · · · dxn

where Fk is the derivative of F w.r.t.
∂y

∂xk

. The analog of integration by parts is Green’s

Theorem. Let ∂D denote the boundary of D. Then

∫ ∫

D

· · ·
∫ (

n∑

k=1

∂η

∂xk

Fk

)
dx1 dx2 · · · dxn =

∫ ∫

∂D

· · ·
∫ n∑

k=1

(ηFk)nk · ds−

−
∫ ∫

D

· · ·
∫ n∑

k=1

η

(
∂Fk

∂xk

)
dx1 dx2 · · · dxn

where nk is unit normal to the surface ∂D. If y is given on ∂D then η = 0 there, and the
Euler–Lagrange equation becomes

Fy −
n∑

k=1

∂Fk

∂xk

= 0 . (3.37)

3.6. Hidden variational principles

Given a differential equation, is it the Euler–Lagrange equation of a variational problem?
We illustrate this for the 2nd order linear ODE

d

dx

(
a(x)

dy

dx

)
+ b(x)y + λc(x)y = 0 (3.38a)

y(x0) = y(x1) = 0 (3.38b)

The values of λ for which a solution exists are the eigenvalues of (3.38). Multiply (3.38a)
by the variation δy(x) and integrate

∫ x1

x0

dx

(
δy

d

dx

(
a(x)

dy

dx

)
+ b(x)yδy + λc(x)yδy

)
= 0
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Using y δy = 1
2
δ(y2) and integrating the first term by parts we get

∫ x1

x0

dx

(
−a(x)

dy

dx
(δy)′ +

b(x)

2
δy2 +

λc(x)

2
δy2

)
= 0

Using the same notation for the variation of (y′)2,

dy

dx
(δy)′ = y′(δy)′ = y′δy′ =

1

2
δy′2

and therefore ∫ x1

x0

δ
(
−a(x)y′2(x) + [b(x) + λc(x)] y2(x)

)
dx = 0

∴ λ δ

∫ x1

x0

c(x)y2(x) dx− δ

∫ x1

x0

(
a(x)y′2(x)− b(x)y2(x)

)
dx = 0

or δ(J1 − λJ2) = 0

where J1(y) =

∫ x1

x0

(
a(x)y′2(x)− b(x)y2(x)

)
dx

J2(y) =

∫ x1

x0

c(x)y2(x) dx

Therefore any solution of (3.38) is an extremal of the variational problem of finding the
stationary values of

λ =
J1

J2

=

x1∫
x0

(
a(x)y′2(x)− b(x)y2(x)

)
dx

x1∫
x0

c(x)y2(x) dx

(3.39)

Example 3.1. The eigenvalues of

y′′ + λy = 0 (3.40a)

y(0) = y(1) = 0 (3.40b)

are π2, 4π2, 9π2, · · · . Using (3.39) these eigenvalues are the stationary values of the ratio

λ =

1∫
0

y′2 dx

1∫
0

y2 dx

(3.41)

Exercises.

Exercise 3.3. Reverse the above argument, starting from the variational problem (3.39)
and deriving the Euler–Lagrange equation.
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Exercise 3.4. Use a trial solution of (3.40)

y0(x) = x(1− x)(1 + αx)

where α is a changing parameter. Compute RHS(3.41), and minimize w.r.t α to obtain an
extimate of the smallest eigenvalue λ = π2.

3.7. Integral constraints

Consider the problem of minimizing (3.19) subject to the additional constraint
∫ b

a

G(x, y, y′)dx = z , (3.42)

where z is given. We denote

f(x, y, z) := min
y

∫ b

a

F (x, y, y′)dx (3.43)

subject to (3.42). Such a problem is called isoperimetric, for historic reasons (see Exam-
ple 3.2). The analog of (3.25) is

f(x, y, z) = min
y′

[F (x, y, y′)∆ + f(x + ∆, y + y′∆, z −G(x, y, y′)∆] (3.44)

with limit

0 = min
y′

[
F (x, y, y′) +

∂f

∂x
+ y′

∂f

∂y
−G(x, y, y′)

∂f

∂z

]
. (3.45)

Therefore,

0 = Fy′ +
∂f

∂y
−Gy

∂f

∂z
, (3.46)

and

0 = F +
∂f

∂x
+ y′

∂f

∂y
−G

∂f

∂z
, (3.47)

holding for all x, y, z, y′ satisfying (3.46). Differentiating (3.46) w.r.t. x and (3.47) w.r.t. y,
and combining, we get

∂

∂y′

(
F − ∂f

∂z
G

)
− ∂

∂y

(
F − ∂f

∂z
G

)
= 0 (3.48)

Partial differentiation of (3.47) w.r.t. z yields

∂2f

∂x∂z
+ y′

∂2f

∂y∂z
−G

∂2f

∂z2
= 0 . (3.49)

∴ d

dx

(
∂f

∂z

)
= 0 , (3.50)

(3.51)

i.e. ∂f
∂z

is a constant, say λ, and (3.48) is the Euler-Lagrange equation for F − λG. The
parameter λ is the Lagrange multiplier of the constraint (3.42).
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Example 3.2. ([10, p. 22]) The Dido problem is to find the smooth plane curve of
perimeter L which encloses the maximum area. We show that this curve is a circle. Fix any
point P of the curve C, and use polar coordinates with origin at P , and θ = 0 along the
(half) tangent of C at P . The area enclosed by C is A =

∫ π

0
1
2
r2 dθ, and the perimeter is

L =
∫ π

0

((
dr
dθ

)2
+ r2

)1/2

dθ. Define F := A + λL, and maximize

F =

∫ π

0


1

2
r2 + λ

((
dr

dθ

)2

+ r2

)1/2

 dθ =

∫ π

0

[
1
2
r2 + λT

]
dθ

subject to r(0) = r(π) = 0. The Euler-Lagrange equation gives, using (3.33),

dr

dθ

λ dr/dθ

T
− λT − 1

2
r2 = constant

∴ λ(dr/dθ)2 − λT 2

T
− 1

2
r2 = constant

∴ λr2

T
+ 1

2
r2 = constant = 0 , since r = 0 is on C

∴ 2 λ +

((
dr

dθ

)2

+ r2

)1/2

= 0 . ∴
(

dr

dθ

)2

+ r2 = 4 λ2

∴ dθ

dr
=

1

(4 λ2 − r2)1/2
. ∴ θ = sin−1

(
− r

2λ

)

∴ r = −2 λ sin θ

a circle of radius −λ. The radius is determined from

L =

∫ π

0

((
dr

dθ

)2

+ r2

)1/2

dθ = −
∫ π

0

2λdθ = −2 π λ ,

therefore the radius is L/2 π.

Example 3.3. ([10, p. 23])

minimize

∫ 1

0

ẋ2 dt s.t.

∫ 1

0

x dt = 0 ,

∫ 1

0

xt dt = 1 and x(0) = x(1) = 0 .

Let F (x, ẋ, t) := ẋ2 + λx + µxt. The Euler–Lagrange equation is 2ẍ− λ− µt = 0

∴ x = 1
4
λt2 + 1

6
µt3 + At , since x(0) = 0

∴ 1
4
λ + 1

6
µ + A = 0 , since x(1) = 0

∴ 1
12

λ + 1
24

µ + 1
2
A = 0 , since

∫ 1

0

x dt = 0

∴ 1
16

λ + 1
30

µ + 1
3
A = 1 , since

∫ 1

0

xt dt = 1

three linear equations with solution λ = −µ = 360 , A = 30. Finally x = 90t2 − 60t3 + 30.
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Exercises.

Exercise 3.5. A flexible fence of length L is used to enclose an area bounded on one
side by a straight wall. Find the maximum area that can be enclosed.

Exercise 3.6. (The catenary equation) A flexible uniform cable of length 2a hangs
between the fixed points (0, 0) and (2b, 0), where b < a. Find the curve y = y(x) minimizing

∫ 2b

0

(1 + (y′)2)1/2 y dx (potential energy)

s.t.

∫ 2b

0

(1 + (y′)2)1/2 dx = 2a (given length)

Answer: y/k = cosh(b/k)− cosh{(x− b)/k} , where k is from a = k sinh b/k.

Exercise 3.7.

Minimize

∫ ∫

A

(
∂f

∂x

2

+
∂f

∂y

2)
dxdy , where A := {(x, y) : x2 + y2 ≤ 1}

s.t.
∫ ∫

A
f dxdy = B with f given on ∂A. Show that f satisfies the partial differential

equation
∂2f

∂x2
+

∂2f

∂y2
+ kf = 0

where k is a constant to be determined.

3.8. Natural boundary conditions

If y(a) is not specified then
∂f

∂y
|x=a= 0 (3.52)

for otherwise there is a better starting point. Then (3.29) gives

Fy′ |x=a= 0 , (3.53)

a natural boundary condition at the free endpoint x = a.
Another case is where even x = a is unspecified, and the y curve is only required to start

somewhere on a given curve y = g(x). Then the change in f as the initial point varies along
y = g(x) must be zero,

∂f

∂x
+ g′

∂f

∂y
= 0 (3.54)

and by (3.30),

F + y′
∂f

∂y
− g′

∂f

∂y
= 0 (3.55)

and finally, by (3.29),

F + (g′ − y′)Fy′ = 0 , (3.56)

the transversality condition at the free initial point.
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1 2 3 4

2

1
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t

x

Figure 3.1. At the corner, t = 2, the solution switches from x′ = 1 to x = 2

3.9. Corners

Consider the Calculus of Variations problem

opt

∫ T

o

F (t, x, x′) dt

s.t. x(0), x(T ) given

x piecewise smooth

An optimal x∗ satisfies the Euler-Lagrange equation

Fx =
d

dt
Fx′

in any subinterval of [0, T ] where x∗ is continuously differentiable. The discontinuity points
of d

dt
x∗ are called its corners.

The Weierstrass-Erdmann corner conditions: The functions Fx′ , F −x′Fx′ are contin-
uous in corners.

Example 3.4. Consider

min

∫ 3

0

(x− 2)2(x′ − 1)2dt

s.t. x(0) = 0, x(3) = 2

The lower bound, 0, is attained if

x = 2 or x′ = 1 , 0 ≤ t ≤ 3 .

This function has a corner at t = 2, but

Fx′ = 2(x− 2)2(x′ − 1) and F − x′Fx′ = (x− 2)2(x′ − 1)(x′ + 1)

are continuous at t = 2.





LECTURE 4

The Variational Principles of Mechanics

This lecture is based on [23] and [24]. Other useful refernces are [24], [20] and [32].

4.1. Mechanical Systems

A particle is a point mass, i.e. mass concentrated in a point. The position r, velocity
v and acceleration a of a particle in R3 are

r = r(t) =




x
y
z


 , v = ṙ =




ẋ
ẏ
ż


 , a = v̇ = r̈ .

The norm of the velocity vector v is called speed, and denoted by v = ‖v‖.
Consider a system of N particles in R3. Describing it requires 3N coordinates, less if

the N particles are not independent. The number of degrees of freedom of the system is the
minimal number of coordinates describing it. If the system has s degrees of freedom, let

q := (q1, q2, . . . , qs) denote its generalized coordinates,
q̇ := (q̇1, q̇2, . . . , q̇s) its generalized velocities.

The position & motion of the system are determined by the 2s numbers (q, q̇).

Example 4.1. A double pendulum in planar motion, see Fig. 4.1, has two degrees of
freedom. It is described in terms of the angles φ1 and φ2}. The generalized coordinates and

velocities can be taken as {φ1, φ2}, and {φ̇1, φ̇2} respectively.

4.2. Hamilton’s Principle of Least Action

A mechanical system is characterized by a function

L = L(q, q̇, t) = L(q1, . . . , qs, q̇1, . . . , q̇s, t) (4.1)

l

l

φ

φ

1

2

1

2

m

m

1

2

x

y

Figure 4.1. A double pendulum.

27
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Hamilton’s Principle, [23, pp. 111-114]: The motion of a mechanical system between any
two points (t1,q(t1)) and (t2,q(t2)) occurs in such a way that the definite integral

S :=

∫ t2

t1

L(q, q̇, t) dt (4.2)

becomes stationary for arbitrary feasible variations.
L is called the Lagrangian of the system, and S =

∫
Ldt its action.

4.3. The Euler-Lagrange Equation

Let s = 1, q = q(t) ∈ argmin S and consider a perturbed path q(t) + δq(t) where

δq(t1) = δq(t2) = 0 .

δS :=

∫ t2

t1

L(q + δq, q̇ + δq̇, t) dt−t2
t1 L(q, q̇, t) dt

=

∫ t2

t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt

=

[
∂L

∂q̇
δq

]t2

t1

+

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt , since δq̇ =

d

dt
δq

=

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq dt , since δq(t1) = δq(t2) = 0 .

Since δq is arbitrary, we conclude that δS = 0 iff

∂L

∂q
− d

dt

∂L

∂q̇
= 0 , (4.3)

the Euler-Lagrange equation (3.13), a necessary condition for minimal action.
The Euler–Lagrange equations for a system with s degrees of freedom are

∂L

∂qi

− d

dt

∂L

∂q̇i

= 0 , i ∈ 1, s . (4.4)

4.4. Nonuniqueness of the Lagrangian

Consider

L̂(q, q̇, t) := L(q, q̇, t) +
d

dt
f(q, t) , (4.5)

the last term does not depend on q̇. Then

Ŝ =

∫ t2

t1

L̂(q, q̇, t) dt = S + f(q(t2), t2)− f(q(t1), t1) .

∴ δŜ = 0 ⇐⇒ δS = 0 .

The Lagrangian L(q, q̇, t) is therefore defined up to derivative d
dt

f(q, t).
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4.5. The Galileo Relativity Principle

An inertial frame (of reference) is one in which time is homogeneous and space is
both homogeneous and isotropic. In such a system, a free particle at rest remains at rest.

Consider a particle moving freely in an inertial frame. Its Lagrangian must be indepen-
dent of t, r and the direction of v.

∴ L = L(‖v‖) = L(v2) .

∴ d

dt

(
∂L

∂v

)
= 0 , by the Euler–Lagrange equation .

∴ ∂L

∂v
= 0 ∴ v = constant .

Law of Inertia. In an inertial frame a free motion has a constant velocity.

Consider two frames, K and K̂, where K is inertial, and K̂ moves relative to K with
velocity v. The coordinates r and r̂ of a given point are related by

r = r̂ + v t

(time is absolute, i.e. t = t̂).

Galileo’s Principle. The laws of mechanics are the same in K and K̂.

4.6. The Lagrangian of a Free Particle

Let an inertial frame K move with an infitesimal velocity ε relative to another inertial

frame K̂. A free particle has velocities {v, v̂} and Lagrangians {L, L̂} in these two frames.

∴ v̂ = v + ε .

∴ L̂ = L(v̂2) = L
(
v2 + 2v · ε + ε2

)

≈ L(v2) +
∂L

∂(v2)
2v · ε

= L +
d

dt
f(r, t) , see (4.5) .

∴ ∂L

∂(v2)
2v · ε is linear in v .

∴ ∂L

∂(v2)
is independent of v .

∴ L = 1
2
mv2 , (4.6)

where m is the mass of the particle.

4.7. The Lagrangian of a System

Consider a system with several particles. If they do not interact, the Lagrangian of the
system is the sum of (4.6) terms,

L =
∑

1
2
mk v2

k . (4.7)
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If the particles interact with each other, but not with anything outside the system (in which
case the system is called closed), the Lagrangian is

L =
∑

1
2
mk v2

k − U(r1, r2, . . .) (4.8)

where rk is the position of the kth particle. Here
T :=

∑
1
2
mk v2

k the kinetic energy,
U := U(r1, r2, . . .) the potential energy.

If t is replaced by −t the Lagrangian does not change (time is isotropic).

4.8. Newton’s Equation

The equations of motion

d

dt

(
∂L

∂q̇k

)
=

∂L

∂qk

, k = 1, 2, . . .

can be written, using the generalized momentums,

pk :=
∂L

∂q̇k

(4.9)

as
dpk

dt
= −∂U

∂qk

, k = 1, 2, · · ·

In particular, the Lagrangian (4.8) gives

d

dt
(mkvk) = − ∂U

∂rk

, k = 1, 2, · · · (4.10)

If mk is constant, (4.10) becomes

mk
dvk

dt
= − ∂U

∂rk

(4.11)

4.9. Interacting Systems

Let A be a system interacting with another system B (A moves in a given external field
due to B), and let A+ B be closed.

Using generalized coordinates qA,qB,

LA+B = TA(qA, q̇A) + TB(qB, q̇B)− U(qA,qB) .

∴ LA = TA(qA, q̇A)− U(qA, qB(t)) .

The potential energy may depend on t.

Example 4.2. A single particle in an external field,

L = 1
2
mv2 − U(r, t) .

∴ mv̇ = −∂U

∂r
.

A uniform field is where U = −F · r where F is a constant force.



4.10. CONSERVATION OF ENERGY 31

Example 4.3. Consider the double pendulum of Fig. 4.1. For the first particle,

T1 = 1
2
m1 l21φ̇1

2

U1 = −m1g l1 cos φ1

For the second particle,

x2 = l1 sin φ1 + l2 sin φ2

y2 = l1 cos φ1 + l2 cos φ2

∴ T2 = 1
2
m2 (ẋ2

2 + ẏ2
2)

= 1
2
m2

(
l21φ̇1

2
+ l22φ̇2

2
+ 2l1l2 cos(φ1 − φ2)φ̇1φ̇2

)

∴ L = 1
2
(m1 + m2)l

2
1φ̇1

2
+ 1

2
m2l

2
2φ̇2

2
+ m2l1l2 cos(φ1 − φ2)φ̇1φ̇2 +

+(m1 + m2)gl1 cos φ1 + m2gl2 cos φ2 .

4.10. Conservation of Energy

The homogeneity of time means that the Lagrangian of a closed system does not depend
explicitly on time,

dL

dt
=

∑
i

∂L

∂qi

q̇i +
∑

i

∂L

∂q̇i

q̈i

with no term ∂L
∂t

. Using the Euler-Lagrange equations ∂L
∂qi

= d
dt

∂L
∂q̇i

we write

dL

dt
=

∑
i

q̇i
d

dt

∂L

∂q̇i

+
∑

i

∂L

∂q̇i

q̈i =
∑

i

d

dt

(
q̇i

∂L

∂q̇i

)

∴ d

dt

(∑
i

q̇i
∂L

∂q̇i

− L

)
= 0 .

Therefore

E :=
∑

i

q̇i
∂L

∂q̇i

− L (4.12)

remains constant during the motion of a closed system, see also (3.33).
If T (q, q̇) is a quadratic function of q̇, and L = T (q, q̇)− U(q), then (4.12) becomes

E =
∑

i

q̇i
∂L

∂q̇i

− L = 2T − L

= T + U (4.13)

the total energy.
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4.11. Conservation of Momentum

The homogeneity of space implies that the Lagrangian is unchanged under a translation
of the space,

r̂ = r + ε

∴ δL =
∑

i

∂L

∂ri

· δri = ε ·
∑

i

∂L

∂ri

= 0

Since ε is arbitrary,

δL = 0 ⇐⇒
∑

i

∂L

∂ri

= 0

∴
∑

i

d

dt

∂L

∂vi

= 0 , by Euler–Lagrange .

∴ d

dt

∑
i

∂L

∂vi

= 0 .

Therefore

P :=
∑

i

∂L

∂vi

(4.14)

remains constant during motion. For the Lagrangian (4.8),

P =
∑

i

mivi (4.15)

the momentum of the system.
Newton’s 3rd Law. From

∑
i

∂L
∂ri

= 0 we conclude
∑

i Fi = 0 where Fi = − ∂U
∂ri

, i.e. the
sum of forces on all particles in a closed system is zero.

4.12. Conservation of Angular Momentum

The isotropy of space implies that the Lagrangian is invariant under an infinitesimal
rotation δφ, see Fig. 4.2

δr = δφ× r ,

or ‖δr‖ = r sin θ‖δφ‖. Similarly,
δv = δφ× v .

Substituting these in

δL =
∑

i

(
∂L

∂ri

· δri +
∂L

∂vi

· δvi

)
= 0 ,

and using pi = ∂L
∂vi

, ṗi = ∂L
∂ri

we get
∑

i

(ṗi · δφ× ri + pi · δφ× vi) = 0

or

δφ ·
∑

i

(ri × ṗi + vi × pi) = δφ · d

dt

∑
i

ri × pi = 0 .
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θ

φδ δr

r

Figure 4.2. An infitesimal rotation.

Since δφ is arbitrary, we conclude

d

dt

∑
i

ri × pi = 0

or, the angular momentum

M =
∑

i

ri × pi (4.16)

is conserved in the motion of a closed system.

4.13. Mechanical Similarity

Let the potential energy be a homogeneous function of degree k, i.e.

U(αr1, αr2, . . . , αrn) = αk U(r1, r2, . . . , rn) (4.17)

for all α. Consider a change of units,

r̂i = αri ,

t̂ = βt .

∴ v̂i =
α

β
vi .

∴ T̂ =
α2

β2
T .

If
α2

β2
= αk , i.e. if β = α1−k/2 ,

then
L̂ = T̂ − Û = αk(T − U) = αk L

and the equations of motion are unchanged. If a path of length l is travelled in time t, then

the corresponding path of length l̂ is travelled in time t̂ where

t̂

t
=

(
l̂

l

)1−k/2

. (4.18)
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Example 4.4. [Coulomb Force] If k = −1 then (4.18) gives

t̂

t
=

(
l̂

l

)3/2

(4.19)

that is Kepler’s 3rd Law.

Example 4.5. For small oscilations and k = 2,

t̂

t
= 1

independet of amplitude.

4.14. Hamilton’s equations

Writing

dL =
∑

i

∂L

∂qi

dqi +
∑

i

∂L

∂q̇i

dq̇i

=
∑

i

ṗidqi +
∑

i

pidq̇i

=
∑

i

ṗidqi + d

(∑
i

piq̇i

)
−

∑
i

q̇idpi

∴ d
(∑

piq̇i − L
)

= −sumiṗidqi +
∑

i

q̇idpi

Defining the Hamiltonian ( Legendre transform of L),

H = H(p, q, t) :=
∑

i

piq̇i − L (4.20)

we have
dH = −

∑
i

ṗidqi +
∑

i

q̇idpi .

Comparing with

dH =
∑

i

∂H

∂qi

dqi +
∑

i

∂H

∂pi

dpi

we get the Hamilton equations

q̇i =
∂H

∂pi

(4.21)

ṗi = −∂H

∂qi

(4.22)

The total time derivative of H is
dH

dt
=

∂H

∂t
+

∑
i

∂H

∂qi

q̇i +
∑

i

∂H

∂pi

ṗi ,
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and by (4.21)–(4.22),
dH

dt
=

∂H

∂t
.

4.15. The Action as Function of Coordinates

The action S =
∫ t2

t1
Ldt has the Lagrangian as its time derivative, dS

dt
= L.

δS =

[
∂L

∂q̇
δq

]t2

t1

+

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt

=
∑

i

piδqi ∴ ∂S

∂qi

= pi

∴ L =
dS

dt
=

∂S

∂t
+

∑
i

∂S

∂qi

q̇i =
∂S

∂t
+

∑
i

piq̇i

∴ ∂S

∂t
= L−

∑
i

piq̇i = −H

∴ dS =
∑

i

pidqi −Hdt

Maupertuis’ Principle. The motion of a mechaincal system minimizes
∫ (∑

i

pidqi

)
dt

True, if energy is conserved.

4.16. The Hamilton–Jacoby equations

∂S

∂t
+ H = 0 (4.23)

or
∂S

∂t
+ H(q1, . . . , qs, p1, . . . , ps, t) = 0 (4.24)

Solution. If ∂H
∂t

= 0 then

∂S

∂t
+ H

(
q1, . . . , qs,

∂S

∂q1

, . . . ,
∂S

∂qs

)
= 0

with solution
S = −ht + V (q1, . . . , qs, α1, . . . , αs, h)

where h, α1, . . . , αs are arbitrary constants.

∴ H

(
q1, . . . , qs,

∂V

∂q1

, . . . ,
∂L

∂qs

)
= h .

Separation of variables. If

H = G(f1(q1, p1), f2(q2, p2), . . . , fs(qs, ps))
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then

G

(
f1

(
q1,

∂V

∂q1

)
, f2

(
q2,

∂V

∂q2

)
, . . . , fs

(
ps,

∂V

∂qs

))
= h

Let

αi = fi

(
qi,

∂V

∂qi

)
, i ∈ 1, s

∴ V =
s∑

i=1

∫
fi(qi, αi)dqi

∴ S = −G(α1, . . . , αs)t +
s∑

i=1

∫
fi(qi, αi)dqi



LECTURE 5

Optimal Control, Unconstrained Control

5.1. The problem

The simplest control problem

max

∫ T

0

f(t, x(t), u(t)) dt (5.1)

s.t. x′(t) = g(t, x(t), u(t)) (5.2)

x(0) fixed , (5.3)

where f, g ∈ C1[0, T ] , u ∈ CS[0, T ]. This is a generalization of Calculus of Variations.
Indeed,

max

∫ T

0

f(t, x(t), x′(t)) dt , x(0) given ,

can be written as (5.1) with x′ = u in (5.2).

5.2. Fixed Endpoint Problems: Necessary Conditions

Let the endpoint x(T ) be fixed (variable endpoints are studied in the next section). For
any x, u satisfying (5.2),(5.3) and any λ(t) ∈ C1[0, T ],

∫ T

0

f(t, x, u) dt =

∫ T

0

[f(t, x, u) + λ(g(t, x, u)− x′)] dt .

Integrating by parts,

−
∫ T

0

λ(t)x′(t) dt = −λ(T )x(T ) + λ(0)x(0) +

∫ T

0

x(t)λ′(t) dt

∴
∫ T

0

f(t, x, u)dt =

∫ T

0

[f(t, x, u) + λg(t, x, u) + xλ′] dt− λ(T )x(T ) + λ(0)x(0) .

Let

• u∗(t) be an optimal control,
• u∗(t) + εh(t) a comparison control, with parameter ε and h fixed,
• y(t, ε) the resulting state, y(t, 0) = x∗(t) and y(0, ε) = x(0) , y(T, ε) = x(T ) for all

ε.

37
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Define

J(ε) :=

∫ T

0

f(t, y(t, ε), u∗(t) + εh(t)) dt

∴ J(ε) =

∫ T

0

[f(t, y(t, ε), u∗(t) + εh(t)) + λ(t)g(t, y(t, ε), u∗(t) + εh(t)) + y(t, ε)λ′(t)] dt

−λ(T )y(T, ε) + λ(0)y(0, ε)

Since u∗ is the maximizing control, J(ε) has a local maximum at ε = 0. Therefore J ′(0) = 0.

J ′(0) =

∫ T

0

[(fx + λgx + λ′) yε + (fu + λgu) h] dt = 0 , (5.4)

where fx := ∂
∂x

f(t, x∗(t), u∗(t)), etc.
(5.4) holds for all y, h iff along (x∗, u∗),

λ′(t) = − [fx(t, x(t), u(t)) + λ(t)gx(t, x(t), u(t))] , (5.5)

fu(t, x(t), u(t)) + λ(t) gu(t, x(t), u(t)) = 0 . (5.6)

Define the Hamiltonian

H(t, x(t), u(t), λ(t)) := f(t, x, u) + λ g(t, x, u) . (5.7)

Then

x′ =
∂H

∂λ
⇐⇒ (5.3) ,

λ′ = −∂H

∂x
⇐⇒ (5.5) ,

∂H

∂u
= 0 ⇐⇒ (5.6) .

5.3. Terminal Conditions

Consider the problem (with x ∈ Rn , u ∈ Rm)

max

∫ T

0

f(t,x,u) dt + φ(T,x(T )) (5.8)

subject to

x′i(t) = gi(t,x,u) , i ∈ 1, n (5.9)

xi(0) = fixed , i ∈ 1, n (5.10)

xi(T ) = fixed , i ∈ 1, q (5.11)

xi(T ) = free , i ∈ q + 1, r (5.12)

xi(T ) ≥ 0 , i ∈ r + 1, s (5.13)

K(xs+1, . . . , xn, t) ≥ 0 at t = T (5.14)
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where 1 ≤ q ≤ r ≤ s ≤ n and K is continuously differentiable. Write

J =

∫ T

0

[f + λ · (g − x′)] dt + φ(T,x(T )) (5.15)

and integrate by parts to get

J =

∫ T

0

[f + λ · g + λ′ · x] dt + φ(T,x(T )) + λ(0) · x(0)− λ(T ) · x(T ) (5.16)

Let x∗,u∗ be optimal, and let x,u be nearby feasible trajectory satisfying (5.9)–(5.14) on
0 ≤ t ≤ T + δT . Let J∗, f ∗,g∗, φ∗ denote values along an (t,x∗,u∗), and J, f,g, φ values
along (t,x,u). Then

J − J∗ =

∫ T

0

[f − f ∗ + λ · (g − g∗) + λ′ · (x− x∗)] dt + φ− φ∗ (5.17)

−λ(T ) · [x(T )− x∗(T )] +

∫ T+δT

T

f(t,x,u) dt

The linear part is

δJ =

∫ T

0

[(fx + λgx + λ′) · h + (fu + λgu) · δu] dt (5.18)

+φx · δx1 + φT δT − λ(T ) · h(T ) + f(T )δT

where

h(t) = x(t)− x∗(t)

δu(t) = u(t)− u∗(t) (5.19)

δx1 = x(T + δT )− x∗(T )

Approximating h(T ) by

h(T ) = x(T )− x∗(T ) ≈ δx1 − x∗′(T )δT = δx1 − g∗(T )δT (5.20)

and substituting in (5.18) gives

δJ =

∫ T

0

[(fx + λgx + λ′) · h + (fu + λgu) · δu] dt (5.21)

+ [φx − λ(T )] · δx1 + (f + λ · g + φt) |t=T δT ≤ 0

If the multipliers λ satisfy

λ′ = − (fx + λgx) (5.22)

along (x∗,u∗) then δJ ≤ 0 for all feasible h, δu only if (5.6) holds and at t = T

[φx − λ(T )] · δx1 + (f + λ · g + φt) δT ≤ 0 (5.23)
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for all feasible δx , δT . This implies

λi(T ) =
∂φ

∂xi

, i ∈ q + 1, r (5.24)

λi(T ) ≥ ∂φ

∂xi

, i ∈ r + 1, s (5.25)

xi(T )

[
λi(T )− ∂φ

∂xi

]
= 0 , i ∈ r + 1, s (5.26)

λi(T ) =
∂φ

∂xi

+ p
∂K

∂xi

, i ∈ s + 1, n (5.27)

f + λ · g + φt + p
∂K

∂t
= 0 at T (5.28)

p ≥ 0 , pK = 0 at T . (5.29)

The last two facts follow from the Farkas Lemma.
If the endpoint x(T ) is free, then the terminal conditions reduce to

λ(T ) = 0 . (5.30)

Theorem 5.1. If u∗ is optimal then u∗(t) maximizes H(t, x∗(t), u(t), λ(t)) , 0 ≤ t ≤ T ,
where λ satisfies (5.5) and the appropriate terminal condition.

Example 5.1 (Calculus of Variations). Consider the problem

max

{∫ T

0

f(t, x(t), u(t)) dt : x′(t) = u(t) , x(0) given , x(T ) free

}
. (5.31)

and the Hamiltonian H(t, x, , , u, λ) = f(t, x, u) + λu .

λ′ = −∂H

∂x
= −fx (5.32)

λ(T ) = 0 (5.33)

∂H

∂u
= fu + λ = 0 . (5.34)

From (5.32) and (5.34) follows the Euler-Lagrange equation

fx =
d

dt
fu ,

and from (5.33) and (5.34) the transversality condition

fu(T ) = 0 . (5.35)
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Optimal Control, Constrained Control

6.1. The problem

The simplest such problem is

max

∫ T

0

f(t, x(t), u(t)) dt (6.1)

s.t. x′(t) = g(t, x(t), u(t)) , x(0) given , (6.2)

a ≤ u ≤ b (6.3)

6.2. Necessary Conditions

Let J be the value of (6.1), J∗ the optimal value, and let δJ be the linear part of J − J∗.

∴ δJ =

∫ T

o

[(fx + λgx + λ′) + (fu + λgu) δu] dt− λ(T )δx(T ) . (6.4)

If

λ′ = − (fx + λgx) , λ(T ) = 0 , (6.5)

then

δJ =

∫ T

0

(fu + λgu) δu dt

and the optimality condition is

δJ ≤ 0 for all feasible δu

meaning

δu ≥ 0 if u = a ,

δu ≤ 0 if u = b ,

δu unrestricted if a < u < b .

Therefore, for all t,

u(t) = a =⇒ fu + λgu ≤ 0 ,

a < u(t) < b =⇒ fu + λgu = 0 , (6.6)

u(t) = b =⇒ fu + λgu ≥ 0 .

41



42 6. OPTIMAL CONTROL, CONSTRAINED CONTROL

If (x∗, u∗) is optimal for (6.1)–(6.2) then there is a function λ such that (x∗, u∗, λ) satisfying
(6.2),(6.3),(6.5) and (6.6).

(6.2) ⇐⇒ x′ = Hλ ,

(6.5) ⇐⇒ λ′ = −Hx ,

for the Hamiltonian

H(t, x, u, λ) = f(t, x, u) + λ g(t, x, u) . (6.7)

Then (6.6) is the solution of the NLP

max H = f + λg

s.t. a ≤ u ≤ b

whose Lagrangian is

L := f(t, x, u) + λg(t, x, u) + w1(b− u) + w2(u− a)

giving the necessary conditions

∂L

∂u
= fu + λgu − w1 + w2 = 0 (6.8)

w1 ≥ 0 , w1(b− u) = 0 (6.9)

w2 ≥ 0 , w2(u− a) = 0 (6.10)

which are equivalent to (6.6). For example, if u∗(t) = b then

u∗ − a > 0 , w2 = 0 and fu + λgu = w1 ≥ 0 .

The control u is singular if its value does not change H, for example, the middle case in
(6.6). A singular control cannot be determined from H.

6.3. Application to Nonrenewable Resources

The model (Hotelling, 1931) is

max

∫ ∞

0

e−rtu(t)p(t) dt

s.t. ẋ = −u

x(0) given (positive)

x(t), u(t) ≥ 0

and 0 ≤ u(t) ≤ umax (finite) , ∀ t .

Let

H(t, x, u, λ) := e−rtpu− λu (6.11)

then

λ′ = −Hx = 0 =⇒ λ = constant .
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t

t

λ 1
e

rt
λ 2

e
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λ 3
e
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S

u

u
max

L L1 2

p

0

Figure 6.1. Maximum extraction in two intervals of lenghts L1 + L2 = L

Assuming the resource will be exhausted by some time T ,

H(T, x(T ), u(T ), λ(T )) =
[
e−rT p(T )− λ(T )

]
u(T ) = 0

∴ λ = e−rT p(T )

∴ u(t) =

{
0 if p(t) < λert = er(t−T )p(T )
umax if >

The duration L of the time extraction takes place (u = umax) is

Lumax = x(0) (6.12)

so λ is adjusted to satisfy (6.12). For example, consider the price function p(t) plotted in
Figure 6.1, and three exponential curves λie

rt , i = 1, 2, 3. The value λ1 is too high, allowing
for maximal extraction (p(t) > λ1e

rt) in a period too short (i.e. shorter than L). Similarly,
the value λ3 is too low. The value λ2 is just right, where the duration of p(t) > λ2e

rt is
L1 + L2 = L.
Special case: p(t) is exponential.

p(t) = p(0)est , s =





>
=
<



 r =⇒ extract





never
anytime
immediately

6.4. Corners

The optimality of discontinuous controls raises questions about the continuity of λ,H
at points where u is discontinuous. Recall the Weierstrass-Erdmann corner conditions of
§ 3.9: The functions Fx′ , F −x′Fx′ are continuous in corners. Returning to optimal control,
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consider

opt

∫ T

0

F (t, x, u) dt s.t. x′ = u

with H = F + λu

Hu = Fu + λ = 0

∴ λ = −Fx′

The Weierstrass-Erdmann corner conditions imply

λ = −Fx′ , H = F − x′Fx′

are continuous in corners of u.

6.5. Control Problems Linear in u

max

∫ T

0

[F (t, x) + uf(t, x)] dt (6.13)

s.t. x′ = G(t, x) + ug(t, x)

x(0) given, and u satisfies (6.3)

The Hamiltonian is
H := (F + λG) + u(f + λg) (6.14)

and the necessary conditions include

λ′ = −Hx (6.15)

u =





a
?
b

if f + λg





<
=
>



 0 . (6.16)

6.6. A Minimum Time Problem

The position of a moving particle is given by

x′′(t) = u , x(0) = x0 given , x′(0) = 0 .

The problem is to findnu bounded by

−1 ≤ u(t) ≤ 1

bringing the particle to rest (x′ = 0) at x = 0 in minimal time.
Solution (Pontryagin et al, 1962): Let x1 = x, x2 = x′. The problem is

min

∫ T

0

dt

s.t. x′1 = x2 , x1(0) = x0 , x1(T ) = 0

x′2 = u , x2(0) = 0 , x2(T ) = 0

u− 1 ≤ 0 , −u− 1 ≤ 0



6.6. A MINIMUM TIME PROBLEM 45

with Lagrangian

L = 1 + λ1x2 + λ2u + w1(u− 1)− w2(u + 1)

and necessary conditions

∂L

∂u
= λ2 + w1 − w2 = 0 , (6.17)

w1 ≥ 0 , w1(u− 1) = 0 ,

w2 ≥ 0 , w2(u + 1) = 0 ,

λ′1 = − ∂L

∂x1

= 0 , (6.18)

λ′2 = − ∂L

∂x2

= −λ1 , (6.19)

L(T ) = 0 , since T is free . (6.20)

Indeed, L(t) ≡ 0 , 0 ≤ t ≤ T .

(6.18) =⇒ λ1 = constant . ∴ (6.19) =⇒ λ2 = −λ1t + C .

If λ2 = 0 in some interval then λ1 = 0 and L(T ) = 1 + 0 + 0 contradicting (6.20).

∴ λ2 changes sign at most once .

• If λ2 > 0 then w2 > 0 and u = −1.
• If λ2 < 0 then w1 > 0 and u = 1.

Consider an interval where u = 1. Then

x′2 = u = 1

∴ x2 = t + C0

∴ x1 =
t2

2
+ C0t + C − 1

=
(x2 − C0)

2

2
+ C0(x2 − C0) + C1

=
x2

2

2
+ C2 , C2 = −C2

0

2
+ C1 .

Similarly, in an interval where u = −1,

x1 = −x2
2

2
+ C3

The optimal path must end on one of the parabolas

x1 =
x2

2

2
or x1 = −x2

2

2

passing through x1 = x2 = 0. The optimal path begins on a parabola passing through
(x0, 0), and ends up on the switching curve, see Figure 6.3.
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x

x

1

2

Figure 6.2. The parabolas x1 = ±x2
2

2
+ C and the switching curve.

x

x

1

2

x
0

Figure 6.3. The optimal trajectory starting at (x0, 0).

6.7. An Optimal Investment Problem

The model is

max
I

∫ ∞

0

e−rt [p(t)f(K(t))− c(t)I(t)] dt

s.t. K ′ = I − bK

K(0) = K0 given

I ≥ 0

where: K = capital assets, I = investment, f(K) = output, p(t) = unit price of output, and
c(t) = unit price of investment.

The current value Hamiltonian is

H := pf(K)− cI + m(I − bK)
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Necessary conditions include:

m(t) ≤ c(t), I(t) [c(t)−m(t)] = 0 , (6.21)

m′ = (r + b)m− pf ′(K) (6.22)

At any interval with I > 0, m = c and m′ = c′. Substituting in (6.22)

pf ′(K) = (r + b)c− c′ , while I > 0 , (6.23)

a static equation giving the optimal K, with

LHS(6.23) = marginal benefit of investment ,

RHS(6.23) = marginal cost of investment ,

Differentiating (6.23)
p′f ′(K) + pf ′′(K)K ′ = (r + b)c′ − c′′

and substituting K ′ = I − bK we get the singular solution I > 0.
Between investment periods we have I = 0. To see what this means collect m–terms in

(6.22) and integrate

e−(r+b)t m(t) =

∫ ∞

t

e−(r+b)sp(s)f ′(K(s)) ds

Also

e−(r+b)tc(t) = −
∫ ∞

t

d

ds

[
e−(r+b)sc(s)

]
ds

=

∫ ∞

t

e−(r+b)s [c(s)(r + b)− c′(s)] ds

The condition m(t) ≤ c(t) gives∫ ∞

t

e−(r+b)s [p(s)f ′(K(s))− (r + b)c(s) + c′(s)] ds ≤ 0

with equality if I > 0. Therefore at any interval [t1, t2] with I = 0 (I > 0 for (t1)− and (t2)+)
∫ t2

t

e−(r+b)s [pf ′ − (r + b)c + c′] ds ≤ 0

with equality at t = t1.

6.8. Fisheries Management

The model is

max

∫ ∞

0

e−rt (p(t)− c(x))u(t) dt

s.t. ẋ = F (x)− u (6.24)

x(0) = x0 given

x(t) ≥ 0

u(t) ≥ 0
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where: x(t) = stock at time t, F (x) = the growth function, u(t) = the harvest rate, p = unit
price, and c(x) = unit cost.

Substituting (6.24) in the objective

max

∫ ∞

0

e−rt (p− c(x))(F (x)− ẋ) dt

or max
∫∞
0

φ(t, x, ẋ) dt with E-L equation

∂φ

∂x
=

d

dt

∂φ

∂ẋ
where

∂φ

∂x
= e−rt {−c′(x) [F (x)− ẋ] + [p = c(x)] F ′(x)}

d

dt

∂φ

∂ẋ
=

d

dt

{−e−rt [p− c(x)]
}

= e−rt {r [p− c(x)] + c′(x)ẋ}
∴ F ′(x)− c′(x)F (x)

p− c(x)
= r (6.25)

Economic interpretation: Write (6.25) as

F ′(x) [p− c(x)]− c′(x)F (x) = r [p− c(x)]

or
d

dx
{[p− c(x)] F (x)} = r [p− c(x)] (6.26)

RHS = value, one instant later, of catching fish # x + 1

LHS = value, one instant later, of not catching fish # x + 1



LECTURE 7

Stochastic Dynamic Programming

This lecture is based on [28].

7.1. Finite Stage Models

A system has finitely many, say N , states, denoted i ∈ 1, N . There are finitely many,
say n, stages. The state i of the system is observed at the beginning of each stage, and a
decision a ∈ A is made, resulting in a reward R(i, a). The state of the system then changes,
from i to j ∈ 1, N , according to the transition probabilities Pij(a). Taken together, a
finite–stage sequential decision process is the quintuple {n,N,A, R, P}.

Let Vk(i) denote the maximum expected return, with state i and k stages to go. The
optimality principle then states

Vk(i) = max
a∈A

{
R(i, a) +

N∑
j=1

Pij(a) Vk−1(j)

}
, k = n, n− 1, · · · , 2 , (7.1a)

V1(i) = max
a∈A

R(i, a) , (7.1b)

a recursive computation of Vk in terms of Vk−1, with boundary condition (7.1b). An equiva-
lent boundary condition is V0(i) ≡ 0 for all i, with (7.1a) for k = n, n− 1, · · · , 1.

7.1.1. A Gambling Model. This section is based on [22]. A player is allowed to
gamble n times, in each he can bet any part of his current fortune. He either wins or loses
the amount of the bet with probabilities p or q = 1− p, respectively.

Let Vk(x) be the maximal expected return with present fortune x and k gambles to go.
Assuming the gambler bets a fraction α of his fortune,

Vk(x) = max
0≤α≤1

{p Vk−1(x + αx) + q Vk−1(x− αx)} , (7.2a)

V0(x) = log x , (7.2b)

49
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logarithmic utility used in (7.2b). If p ≤ 1/2 then it is optimal to bet zero (α = 0) and
Vn(x) = log x. Suppose p > 1/2. Then,

V1(x) = max
α
{p log(x + αx) + q log(x− αx)}

= max
α
{p log(1 + α) + q log(1− α)}+ log x

∴ α = q − p (7.3)

∴ V1(x) = C + log x

where C = log 2 + p log p + q log q (7.4)

Similarly, Vn(x) = nC + log x (7.5)

and the optimal policy is to bet the fraction (7.3) of the current fortune. See also Exercise 7.1.

7.1.2. A Stock–Option Model. The model considered here is a special case of [30].
Let Sk denote the price of a given stock on day k, and suppose

Sk+1 = Sk + Xk+1 = S0 +
k+1∑
i=1

Xi

where X1, X2, · · · are i.i.d. RV’s with distribution F and finite mean µF . You have an option
to buy one share at a fixed price c, and N days in which to exercise this option. If the option
is exercised (on a day) when the stock price is s, the profit is s− c.

Let Vn(s) denote the maximal expected profit if the current stock price is s and n days
remain in the life of the option. Then

Vn(s) = max

{
s− c ,

∫
Vn−1(s + x) dF (x)

}
, n ≥ 1 (7.6a)

V0(x) = max{s− c, 0} (7.6b)

Clearly Vn(s) is increasing in n for all s (having more time cannot hurt) and increasing in s
for all n (prove by induction).

Lemma 7.1. Vn(s)− s is decreasing in s.

Proof. Use induction on n. The claim is true for n = 0: V0(s) − s is decreasing in s.
Assume that Vn−1(s)− s is decreasing in s. Then

Vn(s)− s = max

{
−c,

∫
[Vn−1(s + x)− (s + x)] dF (x) + µF

}

is decreasing in s since Vn−1(s + x)− (s + x) is decreasing in s for all x. ¤
Theorem 7.1. There are numbers s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · such that if there are n

days to go and the present price is s, the option should be exercised iff s ≥ sn

Proof. If the price is s and n days remain, it is optimal to exercise the option if

Vn(s) ≤ s− c , by (7.6a)

Let
sn := min{s : Vn(s)− s = −c} ,
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with sn := ∞ if the above set is empty. By Lemma 7.1,

Vn(s)− s ≤ Vn(sn)− sn = −c , ∀ s ≥ sn

Therefore it is optimal to exercise the option if s ≥ sn. Since Vn(s) is increasing in n, it
follows that sn is increasing. ¤

Exercise 7.2 shows that it is never optimal to exercise the option if µF ≥ 0.

7.1.3. Modular Functions and Monotone Policies. This section is based on [31].
Let a function g(x, y) be maximized for fixed x, and define y(x) as the maximal value of y
where the maximum occurs,

max
y

g(x, y) = g(x, y(x))

When is y(x) increasing in x? It can be shown that a sufficient condition is

g(x1, y1) + g(x2, y2) ≥ g(x1, y2) + g(x2, y1) , ∀ x1 > x2 , y1 > y2 . (7.7)

A function g(x, y) satisfying (7.7) is called supermodular, and is called submodular if
the inequality is reversed.

Lemma 7.2. If ∂2g(x, y)/∂x∂y exists, then g is supermodular iff

∂2g(x, y)

∂x∂y
≥ 0 , (7.8)

and submodular iff ∂2g(x, y)/∂x∂y ≤ 0.

Proof. If ∂2g(x, y)/∂x∂y ≥ 0 then for x1 > x2 and y1 > y2,∫ y1

y2

∫ x1

x2

∂2g(x, y)

∂x∂y
dx dy ≥ 0 ,

∴
∫ y1

y2

[g(x1, y)− g(x2, y)] dy ≥ 0 ,

and (7.7) follows. Conversely, suppose (7.7) holds. Then for all x1 > x2 and y1 > y,

g(x1, y1)− g(x1, y)

y1 − y
≥ g(x2, y1)− g(x2, y)

y1 − y

and as y1 ↓ y,
∂

∂y
g(x1, y) ≥ ∂

∂y
g(x2, y)

implying (7.8). ¤
Example 7.1. An optimal allocation problem with penalty costs. There are I identical

jobs to be done consecutively in N stages, at most one job per stage with uncertainty
about completing it. If in any stage a budget y is allocated, the job will be completed with
probability P (y), an increasing function with P (0) = 0. If a job is not completed, the amount
allocated is lost. At the end of the Nth stage, if there are i unfinished jobs, a penalty C(i)
must be paid.

The problem is to determine the optimal allocation at each stage so as to minimize the
total expected cost.
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Take the state of the system to be the number i of unfinished jobs, and let Vn(i) be the
minimal expected cost in state i with n stages to go. Then

Vn(i) = min
y≥0

{y + P (y) Vn−1(i− 1) + [1− P (y)] Vn−1(i)} , (7.9a)

V0(i) = C(i) . (7.9b)

Clearly Vn(i) increases in i and decreases in n. Let yn(i) denote the minimizing y in (7.9a).
One may expect that

yn(i) increases in i and decreases in n . (7.10)

It follows that yn(i) increases in i if

∂2

∂i∂y
{y + P (y) Vn−1(i− 1) + [1− P (y)] Vn−1(i)} ≤ 0 ,

or P ′(y)
∂

∂i
[Vn−1(i− 1)− Vn−1(i)] ≤ 0 ,

where i is formally interpreted as continuous, so
∂

∂i
makes sense. Since P ′(y) ≥ 0, it follows

that

yn(i) increases in i if Vn−1(i− 1)− Vn−1(i) decreases in i . (7.11)

Similarly,

yn(i) decreases in n if Vn−1(i− 1)− Vn−1(i) increases in n . (7.12)

It can be shown that if C(i) is convex in i, then (7.11)–(7.12) hold.

7.1.4. Accepting the best offer. This section is based on [19]. Given n offers in
sequence, which one to accept? Assume:
(a) if any offer is accepted, the process stops,
(b) if an offer is rejected, it is lost forever,
(c) the relative rank of an offer, relative to previous offers, is known, and
(d) information about future offers is unavailable.

The objective is to maximize the probability of accepting the best offer, assuming that
all n! arrangements of offers are equally likely.

Let P (i) denote the probability that the ith offer is the best,

P (i) = Prob{offer is best of n| offer is best of i} =
1/n

1/i
=

i

n
,

and let H(i) denote the best outcome if offer i is rejected, i.e. the maximal probability of
accepting the best offer if the first i offers were rejected. Clearly H(i) is decreasing in i.

The maximal probability of accepting the best offer is

V (i) = max {P (i), H(i)} = max

{
i

n
,H(i)

}
, i = 1, · · · , n .
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It follows (since i/n is increasing and H(i) is decreasing) that for some j,

i

n
≤ H(i) , i ≤ j ,

i

n
> H(i) , i > j ,

and the optimal policy is: reject the first j offers, then accept the best offer.

Exercises.

Exercise 7.1. What happens in the gambling model in § 7.1.1 if the boundary condition
(7.2b) is replaced by V0(x) = x ?

Exercise 7.2. For the stock option problem of § 7.1.2 show: if µF ≥ 0 then sn = ∞ for
n ≥ 1.

7.2. Discounted Dynamic Programming

Consider the model in the beginning of § 7.1 with two changes:
(a) the number of states is countable, and
(b) the number of stages is countable,
and assume that rewards are bounded, i.e. there exists B > 0 such that

|R(i, a)| < B , ∀ i, a . (7.13)

A policy is a rule a = f(i, t), assigning an action a :=∈ A to a state i at time t. It is:
randomized if it chooses a with some probability Pa , a ∈ A, and stationary if not
randomized, and if the rule is a = f(i), i.e. depends only on the state.

If a stationary policy is used, then the sequence of states {Xn : n = 0, 1, 2, · · · } is a
Markov chain with transition parobabilities Pij = Pij(f(i)).

Let 0 < α < 1 be the discount factor. The expected discounted return Vπ(i) from a
policy π and initial state i is the conditional expectation

Vπ(i) = Eπ

{ ∞∑
n=0

αn R(Xn, an)|X0 = i

}
(7.14)

and as consequence of (7.13),

Vπ(i) <
B

1− α
, for all policies π . (7.15)

7.2.1. Optimal policies. The optimal value function is defined as

V (i) := sup
π

Vπ(i) , ∀ i .

A policy π∗ is optimal if

Vπ∗(i) = V (i) , ∀ i .
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Theorem 7.2. The optimal value function V satisfies

V (i) = max
a

{
R(i, a) + α

∑
j

Pij(a)V (j)

}
, ∀ i (7.16)

Proof. Let π be any policy, choosing action a at time 0 with probability Pa, a ∈ A .
Then

Vπ(i) =
∑
a∈A

Pa

[
R(i, a) +

∑
j

Pij(a) Wπ(j)

]

where Wπ(j) is the expected discounted return from time 1, under policy π. Since

Wπ(j) ≤ αV (j)

it follows that

Vπ(i) ≤
∑
a∈A

Pa

[
R(i, a) + α

∑
j

Pij(a) V (j)

}

≤
∑
a∈A

Pa max
a

[
R(i, a) +

∑
j

Pij(a) Wπ(j)

]

= max
a

{
R(i, a) + α

∑
j

Pij(a)V (j)

}
(7.17)

∴ V (i) ≤ max
a

{
R(i, a) + α

∑
j

Pij(a)V (j)

}
(7.18)

since π is arbitrary. To prove the reverse inequality, let a policy π begin with a decision a0

satisfying

R(i, a0) + α
∑

j

Pij(a0)V (j) = max
a

{
R(i, a) + α

∑
j

Pij(a)V (j)

}
(7.19)

and continue in such a way that Vπj
(j) ≥ V (j)− ε.

∴ Vπ(i) = R(i, a0) + α
∑

j

Pij(a0)Vπj
(j)

≥ R(i, a0) + α
∑

j

Pij(a0)V (j)− αε

∴ V (i) ≥ R(i, a0) + α
∑

j

Pij(a0)V (j)− αε

∴ V (i) ≥ max
a∈A

{
R(i, a) + α

∑
j

Pij(a)V (j)

}
− αε

and the proof is completed since ε is arbitrary. ¤
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We prove now that a stationary policy satisfying the optimality equation (7.16) is optimal.

Theorem 7.3. Let f be a stationary policy, such that a = f(i) is an action maximizing
RHS(7.16)

R(i, f(i)) + α
∑

j

Pij(f(i))V (j) = max
a∈A

{
R(i, a) + α

∑
j

Pij(a)V (j)

}
, ∀ i .

Then

Vf (i) = V (i) , ∀ i .

Proof. Using

V (i) = max
a∈A

{
R(i, a) + α

∑
j

Pij(a)V (j)

}

= R(i, f(i)) + α
∑

j

Pij(f(i))V (j) (7.20)

we interpret V as the expected return from a 2–stage process with policy f in stage 1, and
terminal reward V in stage 2. Repeating the argument

V (i) = E {n–stage return under f |X0 = i}+ αnE(V (Xn|X0 = i)

→ V (i) , by (7.15) .

¤

7.2.2. A fixed point argument. We recall the following

Theorem 7.4. (The Banach Fixed Point Theorem) Let T : X → X be defined on a
complete metric space {X, d}, and let 0 < α < 1 satisfy

d(T (x), T (y)) ≤ αd(x, y) , ∀ x, y ∈ X . (7.21)

Then T has a unique fixed point x∗, and the successive approximations xn+1 = T (xn)
converge uniformly to x∗ on any sphere d(x0, x∗) ≤ δ.

Proof. For (7.21) it follows that

d(xn+1, xn) = d(T (xn), T (xn−1)) ≤ αd(xn, xn−1)

∴ d(xn+1, xn) ≤ αnd(x1, x0)

∴ d(xm, xn) ≤
n−1∑
i=m

d(xi, xi+1) , for m < n ,

≤ αm(1 + α + α2 + · · ·+ αn−1−m)d(x1, x0) ,

≤ αm

1− α
d(x1, x0) , (7.22)

∴ d(xm, xn) → 0 as m,n →∞ .
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Since {X, d} is complete, the sequence {xn} converges, say to x∗ ∈ X. Then T (x∗) = x∗

since
d(xn+1, T (x∗)) = d(T (xn), T (x∗)) ≤ αd(xn, x∗) → 0 as n →∞

If x∗∗ is another fixed point of T then

d(x∗, x∗∗) = d(T (x∗), T (x∗∗) ≤ αd(x∗, x∗∗)

and x∗ = x∗∗ since α < 1. Since (7.22) is independent of n it follows that

d(xm, x∗) ≤ αm

1− α
d(x1, x0) , m = 1, 2, · · · (7.23)

¤
A mapping T satisfying (7.21) is called contraction, and Theorem 7.4 is also called the

contraction mapping principle.
Theorem 7.4 applies here as follows: Let U be the set of bounded functions on the state

space, endowed with the sup norm

‖u‖ = sup
i
|u(i)| (7.24)

For any stationary policy f let Tf be an operator mapping U into itself,

(Tfu)(i) := R(i, f(i)) + α
∑

j

Pij(f(i))u(j)

Then Tf satisfies for all i,

|(Tfu)(i)− (Tfv)(i)| < α sup
j
|u(j)− v(j)| , ∀ u, v ∈ U

and therefore,

sup
i
|(Tfu)(i)− (Tfv)(i)| < α sup

j
|u(j)− v(j)| , ∀ u, v ∈ U (7.25)

i.e. Tf is a contraction in the sup norm (since 0 < α < 1). It follows that

T n
f u → Vf as n →∞

It follows that the optimal value function V is the unique bounded solution of (7.16)

7.2.3. Successive approximations of the optimal value. For V0(i) be any bounded
function, i ∈ 1, N , and define

Vn(i) := max
a∈A

{R(i, a) + α
∑

j

Pij(a)Vn−1(j)} , n = 1, 2, · · · (7.26)

Then Vn converges to the optimal value V .

Proposition 7.1.
(a) If V0 ≡ 0 then

|V (i)− Vn(i)| ≤ αn+1 B

1− α
.

(b) For any bounded Vo, Vn(i) → V (i) uniformly in i.

Note: (a) is the analog of (7.23).
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7.2.4. Policy improvement. Let h be a policy that improves on a given stationary
policy g in the sense of (7.27) below. The following proposition shows the seinse in which h
is closer to an optimal policy than g.

Proposition 7.2. Let g be a stationary policy with expected value Vg and define a policy
h by

R(i, h(i)) + α
∑

j

Pij(h(i))Vg(i) = max
a
{R(i, a) + α

∑
j

Pij(a)Vg(j)} . (7.27)

Then

Vh(i) ≥ Vg(i) , ∀ i ,

and if Vh(i) = Vg(i) , ∀(i) , then Vg = Vh = V .

The policy improvement method starts with any policy g, and does (7.27) until no
improvement is possible. Finiteness follows if the state and action spaces are finite.

7.2.5. Solution by LP.

Proposition 7.3. If u is a bounded function on the state space such that

u(i) ≥ max
a
{R(i, a) + α

∑
j

Pij(a)u(j)} , ∀ i , (7.28)

then u(i) ≥ V (i) for all i.

Proof. Let the mapping T on be defined by

(Tu)(i) := max
a
{R(i, a) + α

∑
j

Pij(a)u(j)}

for bounded functions u. Then (7.28) means u ≥ Tu, and therefore u ≥ T nu for all u. ¤

It follows that the optimal value function V is the unique solution of the problem

min
∑
i

u(i)

s.t. u(i) ≥ max
a
{R(i, a) + α

∑
j

Pij(a)u(j)} , ∀ i ,

or equivalently

min
∑
i

u(i)

s.t. u(i) ≥ R(i, a) + α
∑
j

Pij(a)u(j) , ∀ i , ∀ a ∈ A .
(7.29)
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7.3. Negative DP

Assume countable state space and finite action space. “Negative” means here that the
rewards are negative, i.e. the objective is to minimize costs. Let a cost C(i, a) ≥ 0 result
from action a in state i, and for any policy π,

Vπ(i) = Eπ

[ ∞∑
n=0

C(Xn, an) : X0 = i

]

V (i) = inf
π

Vπ(i)

and call a policy π∗ optimal if
Vπ∗(i) = V (i) , ∀ i .

The optimality principle here is

V (i) = min
a
{C(i, a) +

∑
j

Pij(a)V (j)}

Theorem 7.5. Let f be a stationary policy defined by

C(i, f(i)) +
∑

j

Pij(f(i))V (j) = min
a
{C(i, a) +

∑
j

Pij(a)V (j)} , ∀ i .

Then f is optimal.

Proof. From the optimality principle it follows that

C(i, f(i)) +
∑

j

Pij(f(i))V (j) = V (i) , ∀ i . (7.30)

If V (j) is cost of stopping in state j, (7.30) expresses indifference between stopping and
continuing one more stage. Repeating the argument,

Ef

[
n−1∑
t=0

C(Xt, at) : X0 = i

]
+ Ef [V (Xn) : X0 = i] = V (i)

and, since costs are nonnegative,

Ef

[
n−1∑
t=0

C(Xt, at) : X0 = i

]
≤ V (i) ,

and in the limit, Vf (i) ≤ V (i), proving optimality. ¤
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