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Abstract. We investigate the QoS-based classification of traffic streams for a 
multi-class link model with predetermined service levels. Specifically, we con-
sider a link model with fixed service levels or fixed class weights which may be 
represented by a finite number of MPLS Label-Switched-Paths (LSPs). Our 
target is to classify a set of traffic streams each with arbitrary local QoS-
demand into a small number of service levels while optimizing the residual-
allocated-resources as a result of the traffic classification. The residual-
allocated-resources will be measured by the service-quantization-overhead 
which is the summation of the differences between the required QoS and the of-
fered service level for all traffic streams. We formulate the classification as a 
Dynamic-Programming problem. We then present a group of polynomial-time-
algorithms to obtain the optimal classification for soft and hard QoS require-
ments. We also present the concept of "differentiation factor" and show the ef-
fect of this factor on minimizing the quantization-overhead. 

1 Introduction 

The proliferation of differentiated services has been one of the rising challenges to 
service providers in order to support cost-effective, large scale networks with diverse 
applications and services. On the other hands, differentiated services promote the idea 
of supporting limited service levels to provide QoS while maintaining the network 
scalability. This idea has wide range of acceptance by some applications. However, 
some emerging applications and services such as MPLS tunnels, Virtual Private 
Networks (VPNs), Overlay networks, and multicast-based QoS networks, may 
inherently restrict the aggregation of traffic streams in network nodes. Nonetheless, 
they still require different levels of guarantees at each network node in order to 
guarantee the end-to-end QoS. Therefore, the support of per-flow QoS in a network 
environment with finite set of service levels and traffic classes has been the subject of 
extensive research [1] [2]. 

To provide the required end-to-end QoS, many resource reservation mechanisms 
have been discussed in the literature and can be used to partition the end-to-end QoS 
into local QoS requirements on each network element (link) [4]. However, for a 
network framework that supports a limited set of service levels at each network link, 
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the local QoS required for each connection or flow will be quantized based on these 
service levels. Assigning service level which provides higher QoS than the required 
will lead to waste of network resources while, assigning service level with lower QoS 
than the required may not be accepted by the application or the service agreement with 
the network user. Therefore, an important network optimization problem is how to 
assign the network connections to the best service level that minimizes the total 
quantization overhead. Such an overhead is the quantization penalty that might have to 
be incurred by either the user or the service provider. Hence, addressing this problem 
will have a large significance especially for high speed links (e.g. optical links) that 
may potentially carry large number of connections.  

The problem of obtaining optimal quantized service levels for a set of connection 
requests has been investigated before in  [3],  [5], and  [6]. Rouskas et al. in  [3] defined a 
similar framework of assigning MPLS tunnels with specified data rates to a set of 
quantized service levels such that the performance penalty of wasted bandwidth is 
minimal. The authors in  [5], and  [6] discussed the problem in a different context where 
the set of requests are group of receivers on a multicast tree. The present study offers 
solutions to the generalized problem where connections have both rate and QoS 
requirements and presents polynomial time algorithms for fixed service levels or 
predetermined class weights link model for soft and hard QoS requirements. 

2 Model and Problem Formulation 

2.1 Model 

We assume a network element (link) that offers a set of service levels 
and has a link capacity C. Typically, the service levels are 

dependent on the link capacity according to the inherent model of the link and the 
characteristics of the incoming traffic streams. The l-th level corresponds to a 
connection with QoS of  given that the bandwidth requirement for this connection is 

.  We also have a set of N connections 

},...,,{ 21 LL xxxS =

lx
C≤ },...,,{ 21 Nrrr=ℜ . Each connection request 

is defined using both bandwidth demand  and one local QoS requirement  (e.g. 
average delay, dropping probability, jitter, etc.), 

id iQ
},{ iii Qdr ≡ . We assume that the 

connection requests are sorted based on the local QoS requirements in non-decreasing 
order, (i.e. NQQQQ ≤≤≤ .......321 ).  

We also define a utility function which measures the quantization penalty 
which is proportional to the difference between the achieved and offered QoS. Notice 
that if  is better than , this will result in a waste of allocated resources whereas if 

 is worse than  , this may have a disadvantage for the application generating the 

),( li xQU

lx iQ

lx iQ
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traffic stream. Therefore, we will consider the general case where  measures 
the penalty in both scenarios. The following are some common examples.  

),( li xQU

The absolute difference lili xQxQU −=),( ,  (1) 

The logarithmic difference function 
⎩
⎨
⎧ ≠−= therwise                   0

  )log(),( O
xQxQxQU lili

li  (2) 

2.2 Proportional Differentiation Model 

As part of the classification model, we consider a link which satisfies the 
proportional differentiation model (PDM) for traffic scheduling with fixed set of 
weights and finite number of traffic classes. Such a model has been adopted by several 
proposed mechanisms in different types of networks like  [7], and  [8]. The PDM 
dictates the following relationship for all pairs of service classes. 

( , )
( , )

i

j j

x t t
x t t

iτ ω
τ ω

+
=

+
 (3)

Where , and  are the service levels (e.g. average delay, dropping probability, 

etc.) achieved for two classes i and j in the time period
ix jx

τ , and iω and jω are the weights 

assigned to these classes. We consider connection requests with life time long enough 
for equation (3) to be valid. See  [10] for details about how to calculate the service 
levels. 

2.3 Optimization Problem 

The optimization problem, generally, is to classify N connection requests 
 to one of the L service levels },...,,{ 21 Nrrr=ℜ },...,,{ 21 LL xxxS =  while minimizing the 

quantization overhead. The classification process is shown in Figure 1. Formally, we 
need to find the set of L classified groups   such that  

 where 

*
Lπ },...,,{ ***

21 LGGG= )()( *
LL ππ ψψ ≤

Lπ∀ )( Lπψ  measures the quantization overhead and is defined as follows: 

∑ ∑
= ∈∀

=
L

l Gr
liL

li

xQUπ
1

),()(ψ  (4)

Each connection request has to be assigned to exactly one service level. The 
meaning of the objective function dictated by equation (4) is that by minimizing the 
quantization overhead as a result of the classification process, we guarantee that the 
connection request is assigned a QoS value which is as close as possible to the 
required. Hence, the service provider is guaranteed the best resource utilization with 
minimum or no violation to the QoS required by the application. 

We consider a subset of the possible classification policies where the connection 
requests are sorted based on the QoS requirements in a non-decreasing order, (i.e. 

). This is called ordered classification. NQQQQ ≤≤≤ .......321
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Ordered Classification - A group set ),..,( 1 LL GG=π is an ordered classification if 

and , , when ai Gr ∈∀ bj Gr ∈∀ ji QQ ≤ a bx x< . 
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Figure 1. QoS-based classification 

This is also shown in Figure 1 that the groups are based on the order of the values of 
  1 . The assumption of considering only the ordered classifications is valid if 

and only if the utility function fulfills the following property (see theorem 1 in  [5]). 
iQ ,...,i= N

Utility Property - Intuitively, the utility function is non-increasing in the interval 
 and it is non-decreasing in the interval],0[ li xQ ∈ [,[ ∞∈ li xQ . 

Indeed, the assumption of considering only the ordered classifications will limit the 
number of possible solutions for optimality. However, in  [10], we proved that Brute 
Force technique using ordered classification policy will lead to an exponential running 
time solution. 

Classify 

3 Optimal solution for fixed set of service levels and soft QoS 
requirements 

For a set of service levels },...,,{ 21 LL xxxS =  which may be based on the link’s total 
load, and a set of QoS requests , we form the system matrix  such 
that the elements of 

},...,,{ N21N QQQ=ϕ LNA ×

A ,  i=1,...,N, and j=1,..., L.  ),( jiij xQUa =
To minimize )( Lπψ  in a tractable model, we map the problem to the following 

dynamic program.  

∑
+=

+−=
i

kj
jlalkli

1
)1,(),( ψψ  

Where ( , )i lψ  is the local optimal quantization overhead for requests up to request 
i using l service levels. This local optimal value is calculated based on recursive 
enumeration using dynamic program FSL_OPT_CLASSIFY shown in Figure 2.  

Complexity of calculating  for i=1,...,N and j=1,...,L is . The summation of 
 for i=1,...,N and j=1,…,N may be pre-computed with a complexity of  

(similar pre-computation is explained in details in  [5]). The complexity of algorithm 

ija )(NLO

ija )( 2LNO
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Dynamic_Program’s main loop (line 1 to 7) is also . Therefore, the complexity 
of FSL_OPT_CLASSIFY is . 

)( 2LNO

)( 2LNO
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Figure 2. Optimal classification with fixed service levels 

timal Solution with Admission Control (Hard QoS) 

ill now, we assume that the incoming traffic streams can tolerate service levels 
er value of QoS than the QoS required by each stream. Although, this might 

able by some applications, an admission control mechanism might impose 
strictions on the minimum level of service achieved by the traffic streams. If 
 cannot provide the traffic streams with a level of service higher than a certain 
he admission control mechanism might reject the addition of new traffic 
. In order to capture this fact, we introduce a new variable called tolerance 

. This factor represents the maximum percentage of QoS drop tolerated by the 
tream. If δ =0, this means that the traffic stream cannot tolerate any service 
lso, each traffic stream might impose different tolerance factor based on the 
application generating its traffic. Therefore, we will assume the general case 
h traffic stream has a different tolerance factor (i.e. },,{ iiii Qdr δ≡ ). We then 

 guarantee that: 
0 ) ) ≥− jii xQ     LjNi ,...,1  ,...,1 ==  (5) 
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Which means that the achieved QoS must not be worse than the required QoS 
by more than a percentage of of the required QoS . 

jx

iQ iδ iQ

To incorporate this condition in the FSL_OPT_CLASSIFY algorithm we will exclude 
the assignments where condition (5) is not satisfied by setting ∞= ija  as shown in 
Figure 3. 
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Figure 3. Optimal classification for arbitrary δ  

L L

ss Weights Service Differentiation 

 on PDM model explained in section  2.2, we will first assume that the link 
 condition is not enforced or there is a light traffic load on the link. Obviously, 
nk is lightly loaded, the QoS achieved by the traffic streams may potentially 
the QoS requirements. In this case, we have some flexibility to assign the 
treams to the different service classes. To do that, we will follow the same 
ology explained in section  3. This time, we will use  such that ),( jiij QUa γω= jω  

eight assigned to service class j, j=1,..,L, and γ  is the service differentiation 
elected based on the distribution of the incoming QoS requests.  
y, we need to select the value of γ  such that  has the lowest value 
. However, this means that we need to try all possible values of 

)( *
L
πψ

γ  and get the 
 classification for each case, and select γ such that the value of is 
ed which has a very high complexity. Instead, in the following, we introduce 

uristic estimates for 

)( *
L
πψ

γ . Then, we will drive the optimal value of γ  that 
ees a minimum value for . First, we will present the following lemma. )( *

L
πψ

a 1 - If  is non-increasing in the interval [0, ),( jiQU γω jγω ] and non-
ing in the interval [ jγω ,∞ [, and ),/(),( γωγω jiijji QUCQU ∗= , where  is any 

t, then, in order to minimize the value of , 
ijC

)( *
L
πψ γ  must be selected in the range 

   )]max( , ) jij /ωQω LjN   .  i ,...,1,...,1 ==
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See the proof in  [11]. This lemma limits the scope of possible values for γ  between 
the minimum and maximum possible weighted QoS values. 

First Heuristic estimation for γ  - One natural selection for the value of γ  is the 
center of the sample data jiij Qd ω/= , or the statistical median( )  and 

. The intuition behind this selection is to try to lower the values of 
ijd Ni ,...,1=

Lj ,...,1= ),( jiQU γω  

by selecting γ  in the center of  to minimize the value of ). The complexity of 
calculating the median is  [9]. 

ijd ( *
L
πψ

)(NLO

Second Heuristic estimation for γ  - Another heuristic estimation for the value ofγ  

is to select it such that the total is minimized. The intuition here is if we 

minimize this total, then we may potentially lower the value of the sum on any subset 
of i, j. Although, we have infinite values of 

∑ ∑
= =

N

i

L

j
ija

1 1

γ  in this case to try, the following theorem 
limits the possible values of γ  given some conditions on the utility function. 

Theorem 1 - If  ),( jiQU γω  is a piecewise concave function, and 
 where  is constant, then ),/(),( γωγω jiijji QUCQU ∗= ijC γ  must take one of the values of  

  and  in order to minimize the summation for any 

subset of i, and j. 

jiij /ωQd = Ni ,...,1= Lj ,...,1= ∑ ∑
∈ ∈Ii Jj

ija

This theorem implies that to get the value of γ  that minimizes the summation 
, we only need to check N*L possible values of 

, given that 

∑∑
= =

=Ψ
N

i

L

j
ija

1 1

},...,1  ,...,1   ,{ LjNi/ωQd jiij ===∈γ ),( jiQU γω  is a piecewise concave 
function and the condition ),/(),( γωγω jiijji QUCQU ∗=  is satisfied. See the proof in  [11]. 
The piecewise concave function means that ),( jiQU γω  is non-increasing concave in the 
interval [0, jγω ] and non-decreasing concave in the interval [ jγω ,∞ [. Some examples 
for piecewise concave functions are defined by equations (1) and (2).  

 

Figure 4. The effect of γ  for 3 and one sQi ' jω  
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To illustrate the effect of the last theorem, Figure 4 shows the summation Ψ  for all 
possible values of γ  using  as defined by equation (2) for three incoming 
traffic streams and one class of service. It is clear from the figure, that the possible 
minimum values of  correspond to the values of 

),( jiQU γω

Ψ }  ,  ,{ 131211 /ωQ/ωQ/ωQ∈γ . 

Given the result of Theorem 2, we get the value of γ  that minimizes Ψ as shown by 
the algorithm min_sum_df in Figure 5. Complexity of this algorithm is  
assuming the summation on line 3 is . 

)( 22LNO

)(NLO

Theorem 1 also implies that to get the value of γ  that minimizes  we can 
substitute

)( *
L
πψ

γ  with one of the values  and get the optimal classification for each 

possible value of 
ijd

γ , and finally select the value of γ  that has the minimum . 

This is illustrated by algorithm min_opt_df in Figure 6. Notice that the optimal 
classification  may change by changing the value of 

)( *
L
πψ

*
L
π γ . However, Theorem 2 states 

that algorithm min_opt_df finds the optimal γ .  The proof is in  [11]. 

Theorem 2 - Algorithm min_opt_df finds the optimal *γ ∈ 

{ }, 1,...,   1,...,ij i jd Q /ω i N j= = = L  such that  )),((    )),(( ** γγψγγψ *
L

*
L ππ ≤ γ∀  if  U ),( jiQ γω  is 

a piecewise concave function, and ),(),( γγω jiijji /ωQUCQU  where C  is any constant. ij∗=

By replacing line 6 of algorithm min_sum_df with a call to the PSL_OPT_CLASSIFY 
algorithm, we get the value of γ  that minimizes  as shown in Figure 6.  )( *

L
πψ

 

Figure 5. Minimum Ψ  Differentiation factor 
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From section  4, the complexity of PSL_OPT_CLASSIFY is  . So, the complexity 
of this algorithm is . 

)( 2LNO

)( 23LNO

6 Class weights Service differentiation with limited link capacity 

The link capacity C will impose restrictions on the values of service differentiation 
used. Our assumption her is that relationship between the capacity and the service 
differentiation factor is known through statistical modeling (e.g. like the model 
described in section  2.2) or through numerical estimation. From this relationship, we 
can obtain the minimum value of γ , or minγ  (line 2 in Figure 7), which can be used to 
modify the algorithm min_opt_df to obtain the optimal classification for minγγ ≥∀ . The 
modified algorithm is shown in Figure 7. The complexity here is also . )( 23LNO

The algorithm uses the result of theorem 2 and selects a subset of possible values of 
    which are greater than ∈*γ ,{ jiij /ωQd =  ,...,1 Ni = },...,1 Lj = minγ where minγ  is 

imposed by the limited link capacity. 

 

( , ) = PSW_C_OPT_CLASSIFY({)( *
Lπψ *

Lπ ℜ }, { Lωω ,...,1 } , C) 
1. Assume Q jii ∀∀ , / jω  sorted in a non-decreasing order 

2. Initialize: set )},({min Cf ℜ=γ , set Ψmin ∞=  
3. For all ,...,LjNiQd jiij 1  ,...,1, / === ω  such that d  minγ≥ij

4.          =  ,γ ijd
5.            },...,1 ,{ j

, LjS L == ωγ
6.           ( , )=  PSL_OPT_CLASSIFY({Ψ Π ℜ },{ }) LS
7.          if < miΨ Ψn  
8.                γ = ,  ,   ,γ Ψ=)( *

Lπψ Π=*
Lπ

Figure 7. Predetermined class weights classification with limited link capacity  

7 Experimental Evaluation 

In this section we examine the normalized quantization overhead defined as: 

∑=
=

N

i
i

*
L

*
Ln Qππ

1
/)()( ψψ   

We measure this overhead in different scenarios using the algorithms explained 
before. We take the link’s dropping probability as an example for QoS. We assume, as 
example, the model explained in section  2.2 when it is relevant.  
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We present first the results for variable sized sets of connection requests. For each 
set, the dropping probability is distributed from  to . The class weights are 
selected sequentially from the set W = { } such that for L=2, we use 
only the first 2 weights, for L=3, we use the first 3 and so on. Figure 8 and Figure 9 
show the results using algorithm FSL_OPT_CLASSIFY for uniform distribution values of 
dropping probability when the link is fully loaded (i.e. link load 

110− 1010−

1021 10,...,10,10 −−−

≈ 1). Each point on 
the figures is taken from the average of 10 sets of dropping probability values each 
with size N as shown. For Figure 8, we notice that the increase in the normalized 
overhead is insignificant for different values of N and even by increasing the number 
of service levels. This in fact should be an indication that the class weights are not 
selected efficiently. This is depicted by Figure 9 where the class weights are selected 
from the set W = { }. We notice, in this case, that the change in overhead 
by increasing the service levels could reach 30% when the weights are selected 
properly and the minimum quantization overhead can become as low as 16% using 5 
service levels. However, even in this case, it is clear that the gain of decreasing the 
normalized overhead is not significant after L=5. In  [10], we showed that for clustered 
QoS distributions, the quantization overhead can be drastically reduced using proper 
class weights. 
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Figure 8. Variable sized sets for 
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Figure 9. Variable sized sets for 
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Figure 10. γ  estimation methods 
with uniform distribution 
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Figure 11. Effect of tolerance 
factor for different set size 
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Figure 10 and Figure 11 show the results for variable service levels based on fixed 
class weights and variable γ  as explained in section  5. Figure 10 shows the effect of 
different estimation methods of γ  on the normalized quantization overhead for 
uniformly distributed QoS values. We see that the estimation of γ  using the 
min_sum_df algorithm performs slightly better than the median in case of uniform 
distribution. The estimation using the min_opt_df performs consistently better than 
the 2 other methods. Figure 11 shows the tolerance effect for uniformly distributed 
QoS values using the PSW_C_OPT_CLASSIFY algorithm with 4 service levels 
when the link is almost fully loaded. Clearly, increasing the tolerance factor plays a 
significant role in decreasing the quantization overhead regardless of the number of 
traffic streams. However, increasing the tolerance factor is limited by the type of 
application generating the traffic streams. 

8 Conclusion and Future Work 

We have presented a group of algorithms for calculating the optimal classification 
for a set of traffic streams with diverse QoS requirements for a link model with a 
predetermined service levels or predetermined class weights. Our results show the 
effect of selecting the class weights based on the statistical distribution of the incoming 
connection requests. It was shown that by carefully selecting the class weights, the 
quantization overhead can be significantly reduced especially for number of service 
levels in the range [3, 5]. The results also show that the effect of increasing L 
diminishes as it rises more than 5. We also proposed three different methods for 
calculating the differentiation factor and discussed the effect of each method on the 
quantization overhead. 

We are currently extending our solutions to include the case of a link model with 
self adjustable service levels or class weights. In this case, we are supposed to allocate 
the service levels freely such that the partitioned groups minimize the quantization 
overhead. 
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