UG-0020

SOLVER USER'S GUIDE

VERSION 2.2

DYNAMIC RESPONSE ANALYSIS
 OF

SINGLE DEGREE OF FREEDOM SYSTEMS

by
T. Joseph Holland

Naval Civil Engineering Laboratory
Port Hueneme, California 93043-5003

August 1989

Approved for public rclease; distribution unlimited.
922 in 120

CONTENTS

Page

OBJECTIVE 1
SCOPE 1
BACKGROUND 1
CAPABILITIES 1
THEORY 2
Resistance-Deflection Curves 2
Incremental Newmark-Beta Method 3
Load-Time Histories 6
USER'S MANUAL 7
EXECUTION INSTRUCTIONS 13
Installation 13
Standard Execution 13
Input and Output Redirection 13
Batch File Execution 14
CONCLUSIONS 14
REFERENCE 14
APPENDIXES
A - Initial Conditions Evaluations A-1
B - Yield Point Tests B-1
C - Damping Tests C-1
D - Hardening Tests D-1
E - Load-Mass Factor Tests E-1

OBJECTIVE

The objective of this study is to present the theory and the application of the Newmark-beta method for solving single-degree-of-freedom (SDOF) dynamic problems.

SCOPE

The SOLVER program applies the Newmark-beta method for solving SDOF systems. The SDOF system can be described in terms of a nonlinear stiffness with separate descriptions for the initial response and rebound. Mass and viscous damping can be included as constants or given a nonlinear description. The loading can be arbitrary and include multiple peaks and negative phases.

BACKGROUND

In civil engineering studies, many problems can be reduced to simplified analyses. Specifically, the dynamic behavior of individual members and certain combinations of these members can be treated as SDOF systems. An example of a SDOF system is shown in Figure 1. SDOF systems are a quick and economical way to evaluate a dynamic system and, therefore, are useful for parametric studies. In these problems, the response of interest is primarily the fundamental mode and can be described in terms of some gross behavior (e.g., centerline deflection). Further assumptions include simplified loadings and linear elastic structural response.

Much has been published on the response of linear elastic SDOF systems to triangular, step, and sinusoidal loadings ranging from impulsive to static (Ref 1). In blast design many problems can be described in terms of SDOF systems, but their loadings are complex (e.g., multiple pulses, positive and negative phases, and bilinear). Also, the structural response is generally well within the plastic regime which is not modeled properly with linear elasticity. Therefore, blast design may require a more general SDOF solution which will reduce or eliminate some of these assumptions.

CAPABILITIES

The SOLVER program calculates the dynamic response of a user prescribed SDOF system and loading. The SDOF system is defined by the user as a piecewise linear resistance-deflection curve. An example of a piecewise linear resistance-deflection curve is shown in Figure 2. Within this piecewise linear curve the mass and damping can be specified. This
allows for mass and damping to vary as a function of the resistancedeflection curve. The loading is also defined as a piecewise linear load-time history. Both the resistance-deflection curve and the loading can be defined in a positive and negative sense. The SDOF system will respond to a positive loading using the positive resistance-deflection curve. Multiple loadings can be prescribed. One requirement in the user definitions is that the units (e.g., length, force, time) remain consistent throughout the input (including defaults). The units and examples of consistent units are shown in Table 1.

The solution used in elastic-plastic solutions is the Newmark-beta method. The user can define the time step and Newmark's beta and gamma or use the defaults. A beta of 0.25 and gamma of 0.5 are the defaults, and produce the constant-average-acceleration method which is unconditionally stable. A beta of $1 / 6$ and a gamma of 0.5 produce the linear acceleration method which is conditionally stable. SÓLVER allows initial deflection, velocities, and accelerations to be defined.

The time step defaults to one fiftieth of the natural period. This value is satisfactory for elastic calculations, but is normally too large for plasticity. The accuracy of the solution is dependent upon the time step chosen, therefore, it's prudent to test several time steps.

The SOLVER program provides a means of analyzing structures using general SDOF techniques. The theory is described in the next section, followed by the user's manual and execution instructions. Example problems and comparisons to other numerical solutions are given in Appendixes A through E.

THEORY

Resistance-Deflection Curves

The SDOF system is defined by the user as a piecewise linear resis-tance-deflection curve with each point being considered a yield point (resistance, yield deflection). The stiffness is calculated as the slope of the linear segment (Figure 2). Each point can be input in terms of any combination of two: stiffness, resistance, and yield deflection (except in the case where stiffness is set to zero, a yield deflection must be input). The resistance-deflection curves can be prescribed for both the positive and negative resistance regions, with the restriction that the first segment of each region has a positive stiffness.

When rebounding, the initial stiffness is used until zero resistance is reached. Then the opposite region resistance-deflection curve is shifted over and used as shown in Figure 3. This is tantamount to isotropic hardening.

Upon reloading, the program "remembers" the last deflection (at unloading) and uses the initial stiffness to return to the "saved" deflection. Once it reaches this deflection the stiffness appropriate for that segment of the resistance-deflection curve is used (i.e., it doesn't follow the originally prescribed curve).

The last point (i.e., largest yield deflection) prescribed on either resistance-deflection curve is defined as the ultimate. If this deflection is reached during the solution, the program stops. If the analyst is unsure as to the maximum deflection expected and wants a complete solution, the last deflection should be made arbitrarily large.

Incremental Newnark-Beta Method

For dynamic solutions, SOLVER uses the Newmark equations:

$$
\begin{align*}
& \dot{u}_{t+\Delta t}=\dot{u}_{t}+\left[(1-\gamma) \ddot{u}_{t}+\gamma \ddot{u}_{t+\Delta t}\right] \Delta t \tag{1}\\
& u_{t+\Delta t}=u_{t}+\dot{u}_{t} \Delta t+\left[\left(\frac{1}{2}-\beta\right) \ddot{u}_{t}+\beta \ddot{u}_{t+\Delta t}\right] \Delta t^{2} \tag{2}
\end{align*}
$$

$$
\text { where: } \begin{aligned}
\ddot{u}_{t+\Delta t} & =\text { acceleration at time } t+\Delta t \\
\ddot{u}_{t} & =\text { acceleration at time } t \\
\dot{u}_{t+\Delta t} & =\text { velocity at time } t+\Delta t \\
\dot{u}_{t} & =\text { velocity at time } t \\
u_{t+\Delta t} & =\text { deflection at time } t+\Delta t \\
u_{t} & =\text { deflection at time } t \\
B & =\text { Newmark's beta } \\
\gamma & =\text { Newmark's alpha } \\
\Delta t & =\text { time increment }
\end{aligned}
$$

Equation 2 is solved for the acceleration at time $t+\Delta t$ in terms of the unknown deflection:

$$
\begin{equation*}
\ddot{u}_{t+\Delta t}=\frac{1}{\beta \Delta t^{2}}\left(u_{t+\Delta t}-u_{t}\right)-\frac{1}{\beta \Delta t} \dot{u}_{t}-\left(\frac{1}{2 \beta}-1\right) \ddot{u}_{t} \tag{3}
\end{equation*}
$$

Equation 3 is inserted into Equation 1 resulting in an expression for velocity at time $t+\Delta t$ in terms of the unknown deflection:

$$
\begin{align*}
\dot{u}_{t+\Delta t}= & \frac{\gamma}{\beta \Delta t}\left(u_{t+\Delta t}-u_{t}\right)+\left(1-\frac{\gamma}{\beta}\right) \dot{u}_{t} \tag{4}\\
& +\left(1-\frac{\gamma}{2 \beta}\right) \Delta t \ddot{u}_{t}
\end{align*}
$$

The equation of motion defined for time $t+\Delta t$ is:

$$
\begin{equation*}
M_{n} \ddot{u}_{t+\Delta t}+C_{n} \dot{u}_{t+\Delta t}+K_{n} u_{t+\Delta t}=P_{t+\Delta t} \tag{5}
\end{equation*}
$$

where: $M_{n}=$ mass at segment n of the resistance-deflection curve
$C_{n}=\underset{\text { viscous damping coefficient }}{\text { restance-deflection curve }}$
$K_{n}=$ stiffness at segment n of the resistance-deflection curve $P_{t+\Delta t}=$ external load at time $t+\Delta t$

Equations 3 and 4 are inserted into the equation of motion resulting in an expression in terms of the unknown displacement:

$$
\begin{align*}
& M_{n}\left[\frac{1}{\beta \Delta t^{2}}\left(u_{t+\Delta t}-u_{t}\right)-\frac{1}{\beta \Delta t} \dot{u}_{t}-\left(\frac{1}{2 \beta}-1\right) \ddot{u}_{t}\right] \tag{6}\\
& +C_{n}\left[\frac{\gamma}{\beta \Delta t}\left(u_{t+\Delta t}-u_{t}\right)+\left(1-\frac{\gamma}{\beta}\right) \dot{u}_{t}+\left(1-\frac{\gamma}{2 \beta}\right) \Delta t \ddot{u}_{t}\right] \\
& +K_{n}\left(u_{t+\Delta t}\right)=P_{t+\Delta t}
\end{align*}
$$

The term $K_{\eta} u_{t}$ is subtracted from both sides, thus allowing the system to be solved in terms of a incremental displacement. This equation is rearranged with all the unknowns on the left hand side:

$$
\begin{equation*}
K_{e f f}\left(u_{t+\Delta t}-u_{t}\right)=P_{e f f} \tag{7}
\end{equation*}
$$

$$
\text { where: } \begin{aligned}
K_{e f f} & =\text { effective stiffness } \\
& =a_{o} M_{n}+a_{1} C_{n}+K_{n} \\
P_{e f f} & =\text { effective load } \\
& =P_{t+\Delta t}+M_{n}\left(a_{2} \dot{u}_{t}+a_{3} \ddot{u}_{t}\right)+C_{n}\left(a_{4} \dot{u}_{t}+a_{5} \ddot{u}_{t}\right)-K_{n} u_{t} \\
a_{0} & =\frac{1}{\beta \Delta t^{2}} \\
a_{1} & =\frac{\gamma}{\beta \Delta t} \\
a_{2} & =\frac{1}{\beta \Delta t}
\end{aligned}
$$

$$
\begin{aligned}
& a_{3}=\left(\frac{1}{2 \beta}-1\right) \\
& a_{4}=\left(\frac{\gamma}{\beta}-1\right) \\
& a_{5}=\frac{\Delta t}{2}\left(\frac{\gamma}{\beta}-2\right)
\end{aligned}
$$

The incremental deflection is solved by:

$$
\begin{equation*}
\Delta u=u_{t+\Delta t}-u_{t}=\frac{P_{e f f}}{K_{e f f}} \tag{8}
\end{equation*}
$$

where: $\Delta u=$ deflection increment
The total deflection is an accumulation of the incremental deflections:

$$
\begin{equation*}
u_{t+\Delta t}=u_{t}+\Delta u \tag{9}
\end{equation*}
$$

The acceleration is calculated using Equation 3. This acceleration is used in Equation 4 to calculate the velocity. To avoid any drift (since the Newmark equations are only approximations) the acceleration is then recalculated using the equation of motion:

$$
\begin{equation*}
\ddot{u}_{t+\Delta t}=\frac{1}{M_{n}}\left(P_{t+\Delta t}-C_{n} \dot{u}_{t+\Delta t}-K_{n} u_{t+\Delta t}\right) \tag{10}
\end{equation*}
$$

In order to handle multiple segments on the resistance-deflection curve, the points where the stiffness changes are defined by a yield deflection. When this deflection is exceeded, the calculation is stopped and the acceleration, velocity, and deflection are set back to the previous increment. The increment of the deflection required to bring the system to the yield point is defined:

$$
\begin{equation*}
\Delta u_{n}=\Delta u-\left(u_{t+\Delta t}-u_{y i e l d}\right) \tag{11}
\end{equation*}
$$

where: $\quad \Delta u_{n}=$ deflection increment attributed to $n{ }^{\text {th }}$ stiffness

$$
u_{y i e l d}=\text { yield deflection }
$$

The time step required to bring the system to yield is approximated as the fraction of the original time step and is defined as:

$$
\begin{equation*}
\Delta t_{n} \cong \frac{\Delta u_{n}}{\Delta u}(\Delta t) \tag{12}
\end{equation*}
$$

where: $\Delta t_{n}={ }_{n}{ }_{n}$ time $_{\text {stiffness }}$ step required to reach the yield deflection using the
The equation of motion ${ }_{h}$ is solved using this new time step and properties associated with the $n^{\text {th }}$ segment of the resistance-deflection curve. This results in a deflection that is close to the yield but not exact. The system stiffness is then updated to the $n+1$ segment and the remaining portion of the time step is calculated:

$$
\begin{equation*}
\Delta t_{n+1}=\Delta t-\Delta t_{n} \tag{13}
\end{equation*}
$$

where: $\Delta t_{n+1}=$ remaining portion of the time step
The second time step is used for solving the equation of motion with the new portion of the updated resistance-deflection curve. The time step is then reset to the original step size until another yield deflection is reached. A flow chart showing how this solution scheme works is shown in Figure 4. Examples of how this compares with other techniques are given in Appendix B.

It is important to note that the approximation of the time step around a yield point is not exact. This could result in some drift from the true theoretical resistance-deflection curve, especially for multiple stiffnesses. The drift, however, can be reduced by choosing a smaller time step.

Load-Time Histories

The load-time histories are given by the user as piecewise linear curve. Up to 10 load cases can be defined for each structure with a maximum of 20 points for each load-time history. The program linearly interpolates between points for each time step. It is recommended that the times of the load points be multiples of the time step to avoid any clipping. An example of clipping is shown in Figure 5.

The load-time history must be defined at time of zero. If the load at time of zero is anything but 0.0 the problem becomes an initial value problem with the initial acceleration defined as:

$$
\begin{equation*}
A_{i}=\frac{P_{0}}{M_{e q}} \tag{14}
\end{equation*}
$$

where: $A_{1}=$ initial acceleration

$$
\begin{aligned}
P_{\mathrm{o}} & =\text { load at time } 0.0 \\
M_{\mathrm{eq}} & =\text { equivalent mass }
\end{aligned}
$$

If the solution goes beyond the last point defined in the load-time history the program assumes a zero load.

USER'S GUIDE

Line 1. Heading (2A5, 7A10)

Note	Column	Variable	Entry
(1)	$1-5$	HEADNG (1)	Keyword for program execution
			-EQ. SOLV, program proceeds .EQ. STOP, program stops
	$6-.80$	HEADNG (2)	Problem description

Notes:
(1) The program can read and execute multiple data sets and therefore requires a keyword to start and stop. An example of the data file is shown in Figure 6.

Line 2. Analysis Control Line ($2 \mathrm{I} 5,5 \mathrm{~F} 10.0, \mathrm{I} 5$)

Note	Column	Variable	Entry
(1)	1-j	MEIHOD	Solution procedure .EQ.0, defaults to 1 .EQ.1, Newmark-beta method (EL-PL)
(2)	6-10	LODCAS	Number of load cases .EQ. 0 , defaults to 1 .GT. 10, not admissible
(3)	11-20	DTIME	Time Step .EQ.0.0, $1 / 50$ of natural period
(4)	21-30	TLIMIT	Time Limit for Solution .EQ.0.0, calculates to maximum only
(5)	$31-40$	GAMMA	Newmark's gamma .EQ.0.0, defaults to 0.5
(5)	41-50	BETA	Newmark's beta .EQ.0.0, defaults to 0.25

(6)

```
Print Control
    .EQ.0, defaults to 1
    .EQ.1, print every step
    .EQ.-1, print significant
    changes
```

.EQ.N, print every Nth step

Notes:
(1) The Newmark-beta method can be used for plastic and elastic-plastic analyses.
(2) A number of independent loading conditions can be prescribed for the same SDOF system. A maximum of 10 load cases can be prescribed.
(3) The default is useful only for elastic analyses and not recommended for elastic-plastic analyses. The default chosen is $1 / 50$ of the natural period and is calculated using the initial, positive mass and stiffness. The calculation for the default time step is given as: $\operatorname{TSTEP}=(\operatorname{PI} / 25.0) *(\operatorname{EQMASS}(1) * S M A S S / S T I F F(1))^{1 / 2}$. For elasticplastic analysis, it is recommended to make several analyses, halving the time step until the response doesn't change significantly.
(4) A time 1 imit of 0 will stop the program once the first maximum is calculated (and the solution starts to rebound). It is recommended for rebound solutions to first calculate the maximum and then choose a time limit as some multiple of it. Solutions for complex loadings (e.g., multiple peaks) will require an estimate based upon the loading.
(5) The default values for the Newmark parameters are for the unconditionally stable constant-average-acceleration scheme. The linear acceleration scheme is obtained by choosing $B E T A=0.1667$ and GAMMA $=0.5$.
(6) The default prints every step. For long calculations or when the time step is small, output could get large. It is recommended that for these calculations, the option for significant changes is chosen (i.e., NPRINT = -1).

Line 3. Initial Conditions (3F10.0)

Note	Column	Variable	Entry
(1)	$1-10$	DEFLTN	Initial deflection
	$11-20$	VELOCT	Initial velocity
	$21-30$	ACCELR	Initial acceleration

Notes:
(1) Values can be input as an initial value problem (e.g., instantaneous shock impulse can be modeled using an initial velocity). Input for deflection, velocity, and acceleration results in a restart problem. If the initial deflection exceeds any number of yield points, the program looks for the associated portion of the resistance-deflection curve (i.e., it will skip portions of the curve).

Line 4. Stiffness Control Line (2I5, 2F10.0)

Note
(1)

1-5
NSTIF1

6-10
(2)

11-20

21-30
(3)

NSTIF2

SMASS

DAMPNG

Entry
Number of points defining the positive resistancedeflection curve. Points must be defined in the positive-positive quadrant (Figure 2).
.EQ. 0 defaults to 1
Number of points defining the negative (rebound) resistance-deflection curve. Points must be defined in the negativenegative quadrant (Figure 2).

Total structural mass .LE. 0.0 not admissible

Percent of critical damping expressed as a fraction. Must be less than 1.0

Notes:

(1) The number of points describing the positive region and the negative region is required (see Figure 2). The origin of the resistance-deflection curve is defined as point ($0.0,0.0$). The convention is a positive loading uses the positive resistancedeflection curve. If no rebound is to be calculated then the
rebound region does not need to be defined (e.g., for a positive load with no rebound, the negative region does not need to be input).
(2) The total structure mass must be input and can be modified in the piecewise portions of the resistance-deflection curve.
(3) The percent critical damping is input as a fraction (i.e., $1.0=$ $100 \%, 0.5=50 \%$, etc). Critical damping is calculated as $D=2.0^{*}$ (STIFF(1)*EQMASS (1)*SMASS)

Line 5. Initial Resistance-Deflection Points (5 , 5F10.0)
Read NSTIF1 data lines here.

Note	Column	Variable	Entry
(1)	1-5	MODE (N)	Mode for point definition .EQ. 0 , defaults to 1 .EQ.1, stiffness and resistance given .EQ.2, deflection and resistance given .EQ. 3, stiffness and deflection given
	6-15	$\operatorname{STIFF}(\mathrm{N})$	Stiffness STIFF(1).LE.0.0, not admissible
	16-25	RESIST(N)	Resistance EQ.0.0, not admissible
	26-35	DEFYLD(N)	Yield Deflection
(2)	36-45	EQMASS (N)	Fraction of mass (SMASS) J.E.O.0, not admissible
(3)	46-55	DAMP (N)	Fraction of damping (DAMPNG)

Notes:
(1) Each point defines a linear segment (from the last point). NSTIF1 points are read here. The points are defined by any combination of two: stiffness, resistance, or deflection. MODE defines the combination the progran will read. If the stiffness is set to zero (except the first), a deflection must be input (MODE must equal 3).
(2) This fraction will be multiplied by the total mass (i.e., SMASS, line 4) to determine the effective mass acting for this portion of
the resistance-deflection curve. Therefore, an input of $1.0=100 \%$ of SMASS, $0.5=50 \%$ of SMASS, etc. The natural period is calculated using the initial effective mass (i.e., EQMASS(1)*SMASS).
(3) This fraction is multiplied by the total damping (i.e., DAMPNG, line 4) to determine the effective damping acting for this portion of the resistance-deflection curve. Therefore, an input of $1.0=$ 100% of DAMPNG, $0.5=50 \%$ of DAMPNG, etc.

Line 6. Rebound Resistance-Deflection Points (I5,5F10.0)
Read NST1F2 data lines here.

Note
Column
Variable
(1)

1 -
MODE(N)

6-15
STIFF(N)

16-25
RESIST(N)

26-35
DEFLYD(N)
36-45
EQMASS (N)

46-55
DAMP(N)

Entry

Mode for point definition .EQ. 0 , defaults to 1 .EQ.1, stiffness and resistance given .EQ.2, deflection and resistance given .EQ.3, stiffness and deflection given

Stiffness
STIFF(1).LE.0.0, not admissible

Resistance .EQ.0.0, not admissible

Yield Deflection
Fraction of mass (SMASS) .LE.0.0, not admissible

Fraction of damping (DAMPNG)

Notes:
(1) See Line 5 notes.

Line 7.0. Load Sets

Read LODCAS sets of data lines here.

Line 7.1. Load Control Lines (2I5)

Note	Column	Variable	Entry
(1)	1-5	NUMLOD	Number of load case LE.O, not admissible .GT. LODCAS, not admissible
(2)	6-10	NUMLPT(NUMLOD)	Number of load points LE. 0 , default to 2 GT. 20, not admissible

Line 7.2. Load Points
Read NUMLPT(NUMLOD)/4 data 1 ines here. (8 F 10.0)
Note

Column	Variable	Entry
$1-10$	$\operatorname{BTIME}(1,1)$	First load time must equal 0.0
$11-20$	$\operatorname{BLOAD}(1,1)$	First load value
\cdot	\cdot	\cdot
\cdot	\cdot	
$61-70$	$\operatorname{BTIME}(1,4)$	Fourth load time
$71-80$	$\operatorname{BLOAD}(1,4)$	Fourth load value

Notes:
(1) Up to 10 load cases can be input. A load case consists of one control line (i.e., Line 7.1) and one to five load data lines (i.e., Line 7.2) depending on the number of points input. Four points (i.e., load time, load value) are input on each line, therefore, if five points are required, two of Line 7.2's are read.
(2) A maximum of 20 load points can be defined.
(3) Load points are defined in terms of load and time and are linearly interpolated between points. If the load at time 0.0 is anything but 0.0 , the problem becomes an initial value problem with the initial acceleration calculated as: ACCOLD $=\operatorname{BLOAD}(1,1) /(E Q M A S S$ (1)*SMASS). If the last point load time is less than the solution time, the program assumes a zero load for all points beyond the prescribed load.

EXECUTION INSTRUCTIONS

The program is designed to run on a minimum hardware platform of an IBM PC compatible personal computer having at least 512 K memory and a math coprocessor. There are a number of ways to execute the program.

Installation

The SOLVER program is provided on a single diskette. The diskette contains:

SOLVER.EXE The executable program
EX1.DAT Example problem 1
EX2.DAT Example problem 2
RUNSOLV.BAT The batch execute file

These files should be copied to the hard disk or to another floppy disk before the program is used. The standard DOS COPY Command can be used:

COPY A:*.* C: For the hard disk
COPY A:*.* B: For the floppy disk
The program is now ready to run using one of the methods described below.

Standard Execution

The standard way of executing the program involves preparing an input file and running the program with the print output going to a file. The program assumes the input data are contained in the file SOLVER.DAT. The data can be prepared using any line or screen editor program, such as the DOS EDLIN editor. The user should prepare the input file using any descriptive file name then copying the file to SOLVER.DAT by using the standard DOS COPY Command. The program will write the output to SOLVER.OUT. The output file can be printed using the standard DOS PRINT Command.

The program is executed by typing SOLVER.

Input and Output Redirection

The user can use the DOS SET Command to redirect the input and/or the output. The default input and output names can be changed by:

```
SET SOLVER.DAT = your input file name
SET SOLVER.OUT = your output file name
```

then the program can be executed using your file names. CAUTION! The DOS redirection mechanism is active for as long as the computer is on. The SET Command stays set until the connection is broken through a system reboot or in the following manner:

SET SOLVER.DAT =
SET SOLVER.OUT =

Batch File Execution

The program can be run with the provided batch file (RUNSOLV.BAT) which takes care of the file manipulation. The user creates a data file as described before except that the file is stored using any descriptive file name and the extension. DAT. The batch file automatically changes the name to SOLVER.DAT, executes the program, and then changes the output SOLVER.OUT to the descriptive file name with the extension . OUT. The batch file is executed by the command:

RUNSOLV (descriptive file name without the extension .DAT)

CONCLUSIONS

The SOLVER program is a numerical tool that allows engineers to perform parametric studies on general SDOF systems and loadings. The engineer can vary the stiffness, mass, damping, and loading and then determine the effects on the response of the system. Examples of parametric studies are given in Appendixes A through E.

REFERENCE

1. John M. Biggs. Introduction to Structural Dynamics. New York, NY, McGraw-Hill Book Co., 1964.
2. ADINA User's Manua1, ADINA Engineering, Report AE 84-1, December 1984.
Table 1. Consistent Units for SOLVER Input Terms

				$\underset{\sim}{i}$	$\stackrel{O}{9}$	
		$\stackrel{(a)}{a} \cdot \boldsymbol{H}$	$\begin{aligned} & \text { n } \\ & \text { ¿̨ } \end{aligned}$	$\underset{\sim}{\mathcal{F}}$	$\underset{\theta}{\text { 合 }}$	$\begin{aligned} & \text { n } \\ & \text { en } \\ & \text { - } \end{aligned}$
		$\underset{\sim}{x+4}$	$\xlongequal{\cong}$	$\underset{\sim}{\underset{\sim}{\leftrightarrows}}$	\cong	$\xrightarrow{\text { ® }}$
			$\begin{aligned} & \text { O} \\ & \text { U } \\ & \text { H } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \underset{+}{\text { a }} \\ & \underset{+\infty}{d} \\ & \underset{\sim}{む} \end{aligned}$	$\begin{aligned} & \text { ※. } \\ & \stackrel{H}{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & \underbrace{4} \end{aligned}$
$\underset{\text { E }}{\underset{\sim}{\text { E }}}$						

Figure 1. Single degree of freedom system.

Figure 2. Prescribed resistance-deflection curves for both positive and negative regions.

Figure 3. Resistance-deflection curves showing shift upon rehound.

Figure 4. Newmark-beta solution method with plasticity and rehourd.

Figure 5. Example of load clipping due to linear interpolation.
SOLVER INPUT

Figure 6. Input dala form.

Appendix A

INITIAL CONDITIONS EVALUATION

An evaluation was made to determine the implementation of the initial conditions. A baseline run was made to calculate the maximum deflection to the resistance-deflection curve shown in Figure A-1 and a loading shown in Figure A-2. The input file is shown in Figure A-3. A sample of the output is shown in Figure A-4.

Three calculations were made using initial conditions cbtained at various points in the baseline run. The first run was started at a point when the baseline run was still elastic. Its input file is shown in Figure A-5 and some of the results are shown in Figure A-6. The second run was started when the baseline run had just gone plastic. Its input file is shown in Figure $A-7$ and some of the results are shown in Figure A-8. The third run was started well after the baseline run had gone plastic. Its input file is shown in Figure A-9 and some of the results are shown in Figure A-10. The results show how SOLVER compares the initial deflection to the resistance-deflection curve and chooses the proper stiffness.

A summary of the tests on the initial conditions is given in Table A-1. Plots of the deflections, velocities, and accelerations are shown in Figure A-11. The results of these tests indicate that the initial conditions were properly implemented and can be used to restart a calculation up to the first rebound. Restarts made with initial conditions that represent a point during rebound or reload of the baseline solution will provide results to these initial conditions but will not properly replicate the baseline solution.

Table A-1. Results for Initial Condition Tests

Time (ms)	Initial Conditions			Maximums	
	Deflection (in)	Velocity (in/ms)	Accelergtion (in/ms)	Σ Time (ms)	Deflection (in)
0	0	0	0	30.3	12.106
0.75	0.180	0.4444	0.4357	30.3	12.107
1.10	0.359	0.5683	0.2816	30.3	12.091
2.00	0.947	0.6942	-0.0020	30.3	12.095

Figure A-1. Resistance-deflection curve.

Figure A-2. Load curve.

$$
A-2
$$

SOLV NATHAN HALE CYLINDER, NCEL LOAD 10.05

2		15	5074.0								
1		1664.0		522.7			1.0	1.0			
3		0.0				100.0	1.0	1.0			
1		1664.0		-522.7			1.0	1.0			
1		4									
	0.0		3710.0		2.04	448.7	126.8		0.0	1000.0	0.0

Figure A-3. Input file for baseline run.

***** MAXIMUM DEFLECTION REACHED

Figure A-4. Selected results from baseline run.

```
SOLV NATHAN HALE CYLINDER, NCEL LOAD, RESTART IN ELASTIC REGION
    \(\begin{array}{rrrr}1 & 1 & 0.05 & \\ 0.180 & 0.4444 & 0.4357 \\ 2 & 1 & 5074.0 & \end{array}\)
    \(1 \begin{array}{lllll}1664.0 & 522.7 & 1.0 & 1.0\end{array}\)
    \(\begin{array}{lllll}3 & 0.0 & 100.0 & 1.0 & 1.0\end{array}\)
    \(\begin{array}{lllll}1 & 1664.0 & -522.7 & 1.0 & 1.0\end{array}\)
    \(\begin{array}{lrrrrrr}1 & 3 & & & & & \\ & 0.0 & 2511.0 & 1.29 & 448.7 & 126.05 & 0.0\end{array}\)
STOP
```

Figure A-5. Input file for elastic restart run.

	$\begin{aligned} & \star \\ & \text { STEP SOLUTION } \\ & \text { TIME } \end{aligned}$		STIF	DEFLECTION	VELOCITY	ACC	RESISTANCE	LOAD
ELAS	0	0.0000	1	0.180	0.4444	0.4357	299.52	2511.00
	1	0.0500	1	0.203	0.4656	0.4126	337.38	2431.07
	2	0.1000	1	0.227	0.4857	0.3891	376.95	2351.13
	3	0.1500	1	0.251	0.5045	0.3652	418.14	2271.20
	4	0.2000	1	0.277	0.5222	0.3410	460.85	2191.26
	5	0.2500	1	0.303	0.5386	0.3166	504.98	2111.33
*CHG	6	0.2695	2	0.314	0.5447	0.3070	522.55	2080.16
	6	0.3000	2	0.331	0.5539	0.2974	522.55	2031.40
	7	0.3500	2	0.359	0.5684	0.2816	522.55	1951.46
	8	0.4000	2	0.388	0.5821	0.2659	522.55	1871.53
	9	0.4500	2	0.417	0.5950	0.2501	522.55	1791.59
	10	0.5000	2	0.447	0.6071	0.2344	522.55	1711.66
	11	0.5500	2	0.478	0.6184	0.2186	522.55	1631.72
	12	0.6000	2	0.509	0.6289	0.2028	522.55	1551.79
	13	0.6500	2	0.541	0.6387	0.1871	522.55	1471.86
	14	0.7000	2	0.573	0.6476	0.1713	522.55	1391.92
	15	0.7500	2	0.605	0.6558	0.1556	522.55	1311.99
	16	0.8000	2	0.638	0.6632	0.1398	522.55	1232.05
	17	0.8500	2	0.672	0.6698	0.1241	522.55	1152.12
	18	0.9000	2	0.705	0.6756	0.1083	522.55	1072.19
	19	0.9500	2	0.739	0.6806	0.0926	522.55	992.25
	20	1.0000	2	0.773	0.6849	0.0768	522.55	912.32
	21	1.0500	2	0.808	0.6883	0.0611	522.55	832.38
	22	1.1000	2	0.842	0.6910	0.0453	522.55	752.45
	23	1.1500	2	0.877	0.6928	0.0296	522.55	672.52
	24	1.2000	2	0.911	0.6939	0.0138	522.55	592.58
	25	1.2500	2	0.946	0.6942	-0.0020	522.55	512.65
	26	1.3000	2	0.981	0.6938	-0.0146	522.55	448.66
	27	1.3500	2	1.015	0.6931	-0.0146	522.55	448.48
	28	1.4000	2	1.050	0.6924	-0.0146	522.55	448.30
	29	1.4500	2	1.085	0.6916	-0.0147	522.55	448.12
	30	1.5000	2	1.119	0.6909	-0.0147	522.55	447.94
	31	1.5500	2	1.154	0.6901	-0.0147	522.55	447.76
	32	1.6000	2	1.188	0.6894	-0.0148	522.55	447.59
	33	1.6500	2	1.223	0.6887	-0.0148	522.55	447.41
	34	1.7000	2	1.257	0.6879	-0.0148	522.55	447.23
	35	1.7500	2	1.292	0.6872	-0.0149	522.55	447.05

***** MAXIMUM DEFLECTION REACHED
NUMBER OF STEPS TO MAXIMUM............... 591
TIME AT MAXIMUM.............................. . 29.5500
MAXIMUM DEFLECTION......................... 12.107

Figure A-6. Selected results for elastic restart run.

SOLV NATHAN HALE CYLINDER, NCEL LOAD, RESTART IN PLASTIC REGION

1	1	0.05	
0.359	0.5683	0.2816	
2	1	5074.0	

STOP

Figure A-7. Input file for plastic restart run.

***** MAXIMUM DEFLECTION REACHED
NUMBER OF STEPS TO MAXIMUM................ 584
TIME AT MAXIMUM... 29.2000
MAXIMUM DEFLECTION. 12.091

Figure A-8. Selected results from plastic restart run.

SOLV NATHAN HALE CYLINDER, NCEL LOAD, RESTART IN PLASTIC REGION, NEG ACC
 STOP

Figure A-9. Input file for negative acceleration, plastic restart run.

[^0]Figure A-10. Selected results from negative acceleration, plastic restart run.

A-11

Appendix B

YIELD POINT TESTS

The Newmark-beta solution scheme in SOLVER uses a simple fractioning technique at the yield points. This technique is tested against another technique that breaks up the time step into smaller, equal increments around yield points. Both of these techniques are then compared to the nonlinear truss element in the finite element program, ADINA (Ref 2). The resistance-deflection curve for SOLVER is shown in Figure B-1, the load in Figure B-2, and the input file in Figure B-3. The results, given in Table B-1, indicate that the functioning technique is adequate. The only limitation on this technique is that the time step should be sufficiently small so that:

- The time step fraction is accurate
- A time step doesn't exceed 2 yield points

Reducing the time step is the most effecient way to evaluate the accuracy of your solutions.

Table B-1. Yield Test Results

Technique	Time at Maximum (ms)	Maximum Displacement (in)	Solution Time (sec)
ADINA\%	6.8	0.538	-
Fractional	6.8	0.537	0.11
10 steps at yield	6.8	0.536	0.13
100 steps at yield	6.8	0.537	0.17

*ADINA used BFGS equilibrium iterations and reformed the stiffness each step.

Figure B-1. Resistance-deflection curve 1 or vield point tests.

Figure B-2. Joad surve for yield point tests.

```
SOLV YIELD POINT TES'I, FRACTIONAL TIME STEPS
0.1
-1
```


Figure B-3. Input file for yield point tests.

Appendix C

DAMPING TESTS

An evaluation was made to determine whether damping was properly implemented in SOLVER. Two calculations were made on the same problem using 0 and 5% damping. These were compared to the nonlinear truss element in the finite element program ADINA (Ref 2). The resistancedeflection curve is shown in Figure $C-1$, the load in Figure $C-2$, and the input files in Figure $\mathrm{C}-3$ and $\mathrm{C}-4$. The results are given in Table $\mathrm{C}-1$ and shown in Figure C-5. The SOLVER solution with 0% damping shows a slight amount of drift which is a result of the fractioning technique used at the yield points. The 5% damping solutions are, however, very close.

Table C-1. Results for Damping Tests

Damping	SOLVER		ADINA*	
	Time of Maximum (ms)	Maximum Deflection (in)	Mime at Maximum (ms)	Maximum Deflection (in)
	26.0	5.89	26.0	5.68
5%	11.25	1.41	11.5	1.38

*ADINA used BFGS equilibrium iterations and reformed the stiffness every time step.

Figure C-1. Resistance-deflection curve for damping tests.

Figure C-2. Joad curve for damping tests.

```
SOLVE P-133 WALL B
    111.05
    30.
    \(\begin{array}{llllll}2 & 1 & 2770.2 & & \\ 1 & 11885.5 & 206.8 & 100 . & 1.0 & 1 . \\ 3 & 11885.5 & -206.8 & & 1.0 & 1 . \\ 1 & 4 & & & & 1.0\end{array}\)
    STOP
                \(0 . \quad 774.1 \quad 3.70 \quad 181.0 \quad 96.0\)
```

Figure C-3. Input file, 0% damping for damping tests.

Figure $\boldsymbol{r}-4$. Input file, 5% damping for damping tests.
DAMPING TESTS

Appendix D

HARDENING TESTS

An evaluation was made of the hardening implementation in SOLVER. This involves a load that places the solution in the plastic range, unloads, and then reloads and continues into the plastic range. The resistance-deflection is shown in Figure $D-1$, the double pulse load in Figure D-2, and the input file in Figure D-3. SOLVER was compared to the nonlinear truss in the finite element program ADINA (Ref 2). The results for selected times are given in Table D-1. A plot of the deflection is shown in Figure D-4. The plot shows a slight separation in the solutions toward the third cycle.

Table D-1. Results for Hardening Tests

Time (sec)	Displacement		Error	Resistance		Error
	$\begin{aligned} & \text { ADINA* } \\ & \text { (in) } \end{aligned}$	$\begin{aligned} & \text { SOLVER } \\ & \text { (in) } \end{aligned}$		ADINA* (psi)	$\begin{gathered} \text { SOLVER } \\ \text { (psi) } \end{gathered}$	
5.00	0.559	0.559	0	162	161	< 1%
10.00	0.742	0.742	0	160	160	0
15.00	0.597	0.597	0	-25	-25	0
20.00	1.25	1.25	0	249	249	0
25.00	1.12	1.12	0	7	7	0
30.00	1.19	1.18	- 1%	96	92	4\%
35.00	1.18	1.17	< 1%	87	89	2\%

*ADINA used BFGS for equilibrium iterations and reformed stiffness every step.

Figure D-1. Resistance-deflection curve for harding tests.

Figure D-2. Load curve for hardening tests.

Figure D-3. Input file for hardening tests.

2

$$
10
$$

Appendix E

Load-Mass Factor Tests

An evaluation was made in the use of the load-mass factors in elastic-plastic calculations. The resistance-deflection curve and the loadings shown in Figures $\mathrm{E}-1$ and $\mathrm{E}-2$ were made for a range of loadings. The first uses an average load-mass factor that was calculated assuming a ductility of 4.0. The second uses the appropriate load-mass factor for the portion of the resistance-deflection curve.

The SOLVER results are compared with the ADINA (Ref 2) finite element program's nonlinear truss using the BFGS equilibrium iterations, reforming the stiffness and restarts for changing the mass. Both results are shown in Table E-1. The maximum times and displacements for each test of load-mass factors compare favorably between the programs. Both results, however, show a significant reduction in maximum displacement when the appropriate load-mass factors are employed. This reduction appears to be greater as the load becomes more impulsive.

This evaluation demonstrates the proper implementation of the loadm : ss fictors and the advantages of employing the appropriate factors in the ralculations.
Table E-1. Load-Mass Factor Test Results

$\frac{B}{r_{u}}$	$\frac{t_{d}}{T_{n}}$	$\begin{gathered} B \\ (1 b) \end{gathered}$	$\underset{(\mathrm{sec})}{t_{d}}$	SOLVER				\% Error	ADIMA				\% Error
				Average K ${ }_{\text {LM }}$		Exact K_{LM}			Average K_{LM}		Exact K ${ }_{\text {LI }}$		
				$\underset{(\mathrm{sec})}{t_{m}}$	$\begin{gathered} x_{m} \\ (\text { in }) \end{gathered}$	$\stackrel{t_{m}}{(\sec)}$	$\underset{\left(\mathrm{in}_{\mathrm{m}}\right)}{\mathrm{m}_{\mathrm{m}}}$		$\stackrel{t_{n}}{(\sec)}$	$x_{(\mathrm{in})}^{x_{m}}$	$t_{(\mathrm{sec})}^{t_{n}}$	$\underset{(\mathrm{in})}{\mathrm{x}_{\mathrm{m}}}$	
1.00	4.40	520,000	0.2000	0.0535	5.845	0.0500	4.863	20.2	0.0537	5.932	0.0500	4.931	20.3
1.25	1.40	650,000	0.0630	0.0415	5.803	0.0390	4.796	21.0	0.0410	5.795	0.0387	4.790	21.0
1.67	0.73	866,666	0.0330	0.0335	5.919	0.0315	4.836	22.4	0.0331	5.904	0.0313	4.828	22.3
2.5	0.41	1,300,000	0.0183	0.0275	5.875	0.0225	4.639	26.6	0.0274	5.851	0.0251	4.629	26.4
5.0	0.18	2,600,000	0.0083	0.0245	5.890	0.0210	4.280	37.6	0.0239	5.825	0.0206	4.235	37.5
10.0	0.09	5,200,000	0.0040	0.0226	5.785	0.0188	4.044	43.1	0.0224	5.736	0.0186	4.011	43.0

Figure E-1. Resistance-deflection curve.

Load - Time Curve

Figure E-2. Load-mass factor problem definition

SOLVER: THEORY AND USER'S GUIDE

FEEDBACK REPORT

The Naval Civil Engineering Laboratory is fully dedicated to supporting GEMS users. A primary requirement for this task is to establish a priority listing of user requirements. It would be of great value to the development of new software if you, the user, would complete the feedback questions below. Since each individual user may have specific requirements, please reproduce this page as many times as necessary.

Please circle the number that best applies in questions 1 through 4, complete the other questions, fold at tic marks, and mail to NCEL with franked label on reverse side or to address at bottom of page.

1. Was the software beneficial (productive)?
$\begin{array}{lllllllllllll}\text { No benefit } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { Very beneficial }\end{array}$
2. Was it easy to use (user friendly)?
$\begin{array}{lllllllllllll}\text { Difficult } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { Very easy }\end{array}$
3. Does this software make decisions more reliable?
$\begin{array}{lllllllllllll}\text { No } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { Yes }\end{array}$
4. Does it better document the design?
$\begin{array}{lllllllllllll}\text { No } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { Yes }\end{array}$
5. Did it save time?

Yes__ No__ Estimated percent saved \qquad
6. What would make future software more user friendly?
7. What further support would you like to have on the GEMS system?
8. What other comments or remarks would yon like to add?

Activity
Telephone

```
Mail address is:
    NAVFAC GEMS Support Group
    Naval Civil Engineering Laboratory
    Code L54
    Port Hueneme, CA 93043-5003
```


(7ST) dnoxj zxoddns SWA9 כvanvn леэ!џ๐ би!риешшоэ

ILVIS OGIIN 3H1 NI वヨา|*W =1 A 4 SSS3J3N IOVISOd ON

[^0]: ***** MAXIMUM DEFLECTION REACHED NUMBER OF STEPS TO MAXIMUM. 566 TIME AT MAXIMUM. MAXIMUM DEFLECTION.

