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Abstract

We derive a closed-form optimal dynamic portfolio policy when trading is costly

and security returns are predictable by signals with different mean-reversion speeds.

The optimal strategy is characterized by two principles: 1) aim in front of the target

and 2) trade partially towards the current aim. Specifically, the optimal updated port-

folio is a linear combination of the existing portfolio and an “aim portfolio,” which

is a weighted average of the current Markowitz portfolio (the moving target) and the

expected Markowitz portfolios on all future dates (where the target is moving). Intu-

itively, predictors with slower mean reversion (alpha decay) get more weight in the aim

portfolio. We implement the optimal strategy for commodity futures and find superior

net returns relative to more naive benchmarks.
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†Gârleanu is at Haas School of Business, University of California, Berkeley, NBER, and CEPR; e-mail:

garleanu@haas.berkeley.edu. Pedersen (corresponding author) is at New York University, Copenhagen Busi-
ness School, FRIC, AQR Capital Management, NBER, and CEPR, 44 West Fourth Street, NY 10012-1126;
e-mail: lpederse@stern.nyu.edu, http://www.stern.nyu.edu/∼lpederse/.



Active investors and asset managers — such as hedge funds, mutual funds, and propri-

etary traders — try to predict security returns and trade to profit from their predictions.

Such dynamic trading often entails significant turnover and transaction costs. Hence, any

active investor must constantly weigh the expected benefit of trading against its costs and

risks. An investor often uses different return predictors, e.g., value and momentum pre-

dictors, and these have different prediction strengths and mean-reversion speeds, or, said

differently, different “alphas” and “alpha decays.” The alpha decay is important because it

determines how long time the investor can enjoy high expected returns and, therefore, affects

the trade-off between returns and transactions costs. For instance, while a momentum signal

may predict that the IBM stock return will be high over the next month, a value signal might

predict that Cisco will perform well over the next year.

This paper addresses how the optimal trading strategy depends on securities’ current

expected returns, the evolution of expected returns in the future, their risks and correlations,

and their transaction costs. We present a closed-form solution for the optimal dynamic

portfolio strategy, giving rise to two principles: 1) aim in front of the target and 2) trade

partially towards the current aim.

To see the intuition for these portfolio principles, note that the investor would like to

keep his portfolio close to the optimal portfolio in the absence of transaction costs, which

we call the “Markowitz portfolio” (or the tangency portfolio). The Markowitz portfolio is

a moving target since the return-predicting factors change over time. Due to transaction

costs, it is obviously not optimal to trade all the way to the target all the time. Hence,

transaction costs make it optimal to slow down the speed of trading and, interestingly, to

modify the aim, not trading directly towards the current Markowitz portfolio. Indeed, the

optimal strategy is to trade towards an “aim portfolio,” which is a weighted average of the

current Markowitz portfolio (the moving target) and the expected Markowitz portfolios on

all future dates (where the target is moving).

While new to finance, these portfolio principles have close analogues in other fields such as

the guidance of missiles towards moving targets, shooting, and sports. For example, related
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dynamic programming principles are used to guide missiles to an enemy airplane in so-called

“lead homing” systems. Similarly, hunters are reminded to “lead the duck” when aiming

their weapon.1 The most famous example from the sports world is perhaps the following

quote from the “great one”:

“A great hockey player skates to where the puck is going to be, not where it is.”

— Wayne Gretzky

Another way to state our portfolio principle is that the best new portfolio is a combination

of 1) the current portfolio (to reduce turnover), 2) the Markowitz portfolio (to partly get

the best current risk-return trade-off), and 3) the expected optimal portfolio in the future

(a dynamic effect).

Figure 1 illustrates this natural trading rule. The solid line illustrates the expected path

of the Markowitz portfolio, starting with large positions in both security 1 and security 2,

and gradually converging towards its long-term mean (e.g., the market portfolio). The aim

portfolio is a weighted-average of the current and future Markowitz portfolios so it lies in

the “convex hull” of the solid line or, equivalently, between the current Markowitz portfolio

and the expected aim portfolio next period. The optimal new position is achieved by trading

partially towards this aim portfolio.

In this example, curve in the solid lines means that the Markowitz position in security

1 decays more slowly as the predictor that currently “likes” security 1 is more persistent.

Therefore, the aim portfolio has a larger position in security 1, and, consequently, the optimal

trade buys more shares in security 1 than it would otherwise. We show that it is in fact a more

general principle that predictors with slower mean reversion (alpha decay) get more weight

in the aim portfolio. An investor facing transaction costs should trade more aggressively on

persistent signals than on fast mean-reverting signals: the benefits from the former accrue

over longer periods, and are therefore larger.

The key role played by each return predictor’s mean reversion is an important implication

of our model. It arises because transaction costs imply that the investor cannot easily change

1We thank Kerry Back for this analogy.
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his portfolio and, therefore, must consider his optimal portfolio both now and in the future.

In contrast, absent transaction costs, the investor can re-optimize at no cost and needs to

consider only the current investment opportunities (and possible hedging demands) without

regard to alpha decay.

Our specification of transaction costs is sufficiently rich to allow for both purely transitory

and persistent costs. Persistent transaction costs means that trading leads to a market

impact and this effect on prices persists for a while. Indeed, since we focus on market impact

costs, it may be more realistic to consider such persistent effects, especially over short time

periods. We show that, with persistent transaction costs, the optimal strategy remains to

trade partially towards an aim portfolio and to aim in front of the target, though the precise

trading strategy is different and more involved. Furthermore, we offer micro-foundations for

each type of transaction costs, rooted in the inventory costs of liquidity providers who take

the other side of the trades, and illustrate the continuous-time limits (in the appendix).

Finally, we illustrate our results empirically in the context of commodity futures markets.

We use returns over the past 5 days, 12 months, and 5 years to predict returns. The 5-day

signal is quickly mean reverting (fast alpha decay), the 12-month signal mean reverts more

slowly, whereas the 5-year signal is the most persistent. We calculate the optimal dynamic

trading strategy taking transaction costs into account and compare its performance to the

optimal portfolio ignoring transaction costs and to a class of strategies that perform static

(one-period) transaction-cost optimization. Our optimal portfolio performs the best net of

transaction costs among all the strategies that we consider. Its net Sharpe ratio is about

20% better than that of the best strategy among all the static strategies. Our strategy’s

superior performance is achieved by trading at an optimal speed and by trading towards a

aim portfolio that is optimally tilted towards the more persistent return predictors.

We also study the impulse-response of the security positions following a shock to return

predictors. While the no-transaction-cost position immediately jumps up and mean reverts

with the speed of the alpha decay, the optimal position increases more slowly to minimize

trading costs and, depending on the alpha decay speed, may eventually become larger than
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the no-transaction-cost position, as the optimal position is reduced more slowly.

The paper is organized as follows. Section 1 describes how our paper contributes to

the portfolio-selection literature that started with Markowitz (1952). We provide a closed-

form solution for a model with multiple correlated securities and multiple return predictors

with different mean-reversion speeds. The closed-form solution illustrates several intuitive

portfolio principles that are difficult to see in the models following Constantinides (1986),

where the solution requires complex numerical techniques even with a single security and

no return predictors (i.i.d. returns). Indeed, we uncover the role of alpha decay and the

intuitive aim-in-front-of-the-target and trade-towards-the-aim principles, and our empirical

analysis suggests that these principles are useful.

Section 2 lays out the model with temporary transaction costs and lays out the solu-

tion method. Section 3 shows the optimality of aiming in front of the target, and trading

partially towards the aim. Section 4 solves the model with persistent transaction costs.

Section 5 provides a number of theoretical applications while Section 6 applies our frame-

work empirically to trading commodity futures. Section 7 concludes. Appendix A contains

continuous-time versions of the temporary and persistent transaction cost models, Appendix

B develops micro foundations for these costs, Appendix C shows the connection between

discrete and continuous time, Appendix D derives equilibrium implications of the model,

showing that transaction costs can help explain high short-term alphas and return reversals.

All proofs are in Appendix E.

1 Related Literature

A large literature studies portfolio selection with return predictability in the absence of trad-

ing costs (see, e.g., Campbell and Viceira (2002) and references therein). Alpha decay plays

no role in this literature, and nor does it play a role in the literature on optimal portfo-

lio selection with trading costs but without return predictability following Constantinides

(1986).

This latter literature models transaction costs as proportional bid-ask spreads and relies
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on numerical solutions. Constantinides (1986) considers a single risky asset in a partial equi-

librium and studies trading-cost implications for the equity premium.2 Equilibrium models

with trading costs include Amihud and Mendelson (1986), Vayanos (1998), Vayanos and

Vila (1999), Lo, Mamaysky, and Wang (2004), Gârleanu (2009), and Acharya and Pedersen

(2005), who also consider time-varying trading costs. Liu (2004) determines the optimal

trading strategy for an investor with constant absolute risk aversion (CARA) and many

independent securities with both fixed and proportional costs (without predictability). The

assumptions of CARA and independence across securities imply that the optimal position

for each security is independent of the positions in the other securities.

Our trade-partially-towards-the-aim strategy is qualitatively different from the optimal

strategy with proportional or fixed transaction costs, which exhibits periods of no trading.

Our strategy mimics a trader who is continuously “floating” limit orders close to the mid-

quote — a strategy that is used in practice. The trading speed (the limit orders’ “fill rate”

in our analogy) depends on how large transaction costs the trader is willing to accept (i.e.,

on where the limit orders are placed).

In a third (and most related) strand of literature, using calibrated numerical solutions,

trading costs are combined with incomplete markets by Heaton and Lucas (1996), and with

predictability and time-varying investment opportunity by Balduzzi and Lynch (1999), Lynch

and Balduzzi (2000), Jang, Koo, Liu, and Loewenstein (2007), and Lynch and Tan (2008).

Grinold (2006) derives the optimal steady-state position with quadratic trading costs and a

single predictor of returns per security. Like Heaton and Lucas (1996) and Grinold (2006),

we also rely on quadratic trading costs.

A fourth strand of literature derives the optimal trade execution, treating the asset and

quantity to trade as given exogenously (see, e.g., Perold (1988), Bertsimas and Lo (1998),

Almgren and Chriss (2000), Obizhaeva and Wang (2006), and Engle and Ferstenberg (2007)).

2Davis and Norman (1990) provide a more formal analysis of Constantinides’ model. Also, Gârleanu
(2009) and Lagos and Rocheteau (2006) show how search frictions and payoff mean-reversion impact how
close one trades to the static portfolio. Our continuous-time model with bounded-variation trading shares
features with Longstaff (2001) and, in the context of predatory trading, by Brunnermeier and Pedersen
(2005) and Carlin, Lobo, and Viswanathan (2008). See also Oehmke (2009).
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Finally, quadratic programming techniques are also used in macroeconomics and other

fields, and, usually, the solution comes down to algebraic matrix Riccati equations (see,

e.g., Ljungqvist and Sargent (2004) and references therein). We solve our model explicitly,

including the Riccati equations.

2 Model and Solution

We consider an economy with S securities traded at each time t ∈ {0, 1, 2, ...}. The securities’

price changes between times t and t + 1 in excess of the risk-free return, pt+1 − (1 + rf )pt,

are collected in an S × 1 vector rt+1 given by

rt+1 = Bft + ut+1. (1)

Here, ft is a K × 1 vector of factors that predict returns,3 B is an S ×K matrix of factor

loadings, and ut+1 is the unpredictable zero-mean noise term with variance vart(ut+1) = Σ.

The return-predicting factor ft is known to the investor already at time t and it evolves

according to

∆ft+1 = −Φft + εt+1, (2)

where ∆ft+1 = ft+1 − ft is the change in the factors, Φ is a K × K matrix of mean-

reversion coefficients for the factors, and εt+1 is the shock affecting the predictors with

variance vart(εt+1) = Ω. We impose on Φ standard conditions sufficient to ensure that f is

stationary.

The interpretation of these assumptions is straightforward: the investor analyzes the se-

curities and his analysis results in forecasts of excess returns. The most direct interpretation

is that the investor regresses the return on security s on the factors f that could be past

returns over various horizons, valuation ratios, and other return-predicting variables, and

3The unconditional mean excess returns are also captured in the factors f . E.g., one can let the first
factor be a constant, f1

t = 1 for all t, such that the first column of B contains the vector of mean returns.
(In this case, the shocks to the first factor are zero, ε1

t = 0.)
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thus estimates each variable’s ability to predict returns as given by βsk (collected in the

matrix B). Alternatively, one can think of each factor as an analyst’s overall assessment of

the various securities (possibly based on a range of qualitative information) and B as the

strength of these assessments in predicting returns.

Trading is costly in this economy and the transaction cost (TC) associated with trading

∆xt = xt − xt−1 shares is given by

TC(∆xt) =
1

2
∆x>t Λ∆xt, (3)

where Λ is a symmetric positive-definite matrix measuring the level of trading costs.4 Trad-

ing costs of this form can be thought of as follows. Trading ∆xt shares moves the (average)

price by 1
2
Λ∆xt, and this results in a total trading cost of ∆xt times the price move, which

gives TC. Hence, Λ (actually, 1/2Λ, for convenience) is a multi-dimensional version of Kyle’s

lambda, which can also be justified by inventory considerations (e.g., Grossman and Miller

(1988) or Greenwood (2005) for the multi-asset case). While this transaction-cost specifi-

cation is chosen partly for tractability, the empirical literature generally finds transaction

costs to be convex (e.g., Engle, Ferstenberg, and Russell (2008), Lillo, Farmer, and Man-

tegna (2003)), with some researchers actually estimating quadratic trading costs (e.g., Breen,

Hodrick, and Korajczyk (2002)).

Most of our results hold with this general transaction cost function, but some of the

resulting expressions are simpler in the following special case.

Assumption A. Transaction costs are proportional to the amount of risk, Λ = λΣ.

This assumption means that the transaction cost matrix Λ is some scalar λ > 0 times the

variance-covariance matrix of returns, Σ, as is natural and, in fact, implied by the model of

Gârleanu, Pedersen, and Poteshman (2008) as well as the micro-foundation that we provide

4The assumption that Λ is symmetric is without loss of generality. To see this, suppose that TC(∆xt) =
1
2∆x>t Λ̄∆xt, where Λ̄ is not symmetric. Then, letting Λ be the symmetric part of Λ̄, i.e., Λ = (Λ̄ + Λ̄>)/2,
generates the same trading costs as Λ̄.
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in Appendix B. To understand this, suppose that a dealer takes the other side of the trade

∆xt, holds this position for a period of time and “lays it off” at the end of the period. Then

the dealer’s risk is ∆x>t Σ∆xt and the trading cost is the dealer’s compensation for risk,

depending on the dealer’s risk aversion reflected by λ.

The investor’s objective is to choose the dynamic trading strategy (x0, x1, ...) to maximize

the present value of all future expected excess returns, penalized for risks and trading costs:

max
x0,x1,...

E0

[∑
t

(1− ρ)t+1
(
x>t rt+1 −

γ

2
x>t Σxt

)
− (1− ρ)t

2
∆x>t Λ∆xt

]
, (4)

where ρ ∈ (0, 1) is a discount factor, and γ is the risk-aversion coefficient.5

We solve the model using dynamic programming. We start by introducing a value func-

tion V (xt−1, ft) measuring the value of entering period t with a portfolio of xt−1 securities

and observing return-predicting factors ft. The value function solves the Bellman equation:

V (xt−1, ft) = max
xt

{
−1

2
∆x>t Λ∆xt + (1− ρ)

(
x>t Et[rt+1]− γ

2
x>t Σxt + Et[V (xt, ft+1)]

)}
.

(5)

The model in its general form can be solved explicitly:

Proposition 1 The model has a unique solution and the value function is given by

V (xt, ft+1) = −1

2
x>t Axxxt + x>t Axfft+1 +

1

2
f>t+1Affft+1 + A0. (6)

The coefficient matrices Axx, Axf , Aff are stated explicitly in (E.9), (E.12), and (E.15),

and Axx is positive definite.6

5Said differently, the investor has mean-variance preferences over the change in his wealth Wt each time
period, net of the risk-free return: ∆Wt+1 − rfWt = x>t rt+1 − TCt+1.

6Note that Axx and Aff can always be chosen to be symmetric.

9



3 Results: Aim in Front of the Target

We next explore the properties of the optimal portfolio policy, which turns out to be intuitive

and relatively simple. The core idea is that the investor aims to achieve a certain position,

but trades only partially towards this “aim portfolio” due to transaction costs. The aim

portfolio itself combines the current optimal portfolio in the absence of transaction costs

and the expected future such portfolios. The formal results are stated in the following

propositions.

Proposition 2 (Trade Partially Towards the Aim) (i) The optimal portfolio is

xt = xt−1 + Λ−1Axx (aimt − xt−1) , (7)

which implies trading at a proportional rate given by the the matrix Λ−1Axx towards the “aim

portfolio,”

aimt = A−1
xxAxfft. (8)

(ii) Under Assumption A, the optimal trading rate is the scalar a/λ < 1, where

a =
−(γ(1− ρ) + λρ) +

√
(γ(1− ρ) + λρ)2 + 4γλ(1− ρ)2

2(1− ρ)
. (9)

The trading rate is decreasing in transaction costs λ and increasing in risk aversion γ.

This proposition provides a simple and appealing trading rule. The optimal portfolio is

a weighted average of the existing portfolio xt−1 and the aim portfolio:

xt =
(

1− a

λ

)
xt−1 +

a

λ
aimt. (10)

The weight of the aim portfolio — which we also call the “trading rate” — determines

how far the investor should rebalance towards the aim. Interestingly, the optimal portfolio

always rebalances by fixed fraction towards the aim (i.e., the trading rate is independent of

the current portfolio xt−1 or past portfolios). The optimal trading rate is naturally greater
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if transaction costs are smaller. Said differently, high transaction costs imply that one must

trade more slowly. Also, the trading rate is greater if risk aversion is larger, since a larger

risk aversion makes the risk of deviating from the aim more painful (and a larger absolute

risk aversion can also be viewed as an investor with less capital, for whom transaction costs

play a smaller role).

Next, we want to understand the aim portfolio. The aim portfolio in our dynamic setting

turns out to be closely related to the optimal portfolio in a static model without transaction

costs (Λ = 0), which we call the Markowitz portfolio. In agreement with the classical

findings of Markowitz (1952),

Markowitz t = (γΣ)−1Bft. (11)

Proposition 3 (Aim in Front of the Target) (i) The aim portfolio is the weighted av-

erage of the current Markowitz portfolio and the expected future aim portfolio. Under As-

sumption A, this can be written as follows, letting z = γ/(γ + a):

aimt = zMarkowitz t + (1− z)Et(aimt+1). (12)

(ii) The aim portfolio can also be expressed as the weighted average of the current Markowitz

portfolio and the expected Markowitz portfolios at all future times. Under Assumption A,

aimt =
∞∑
τ=t

z(1− z)τ−tEt (Markowitz τ ) . (13)

The weight z of the current Markowitz portfolio decreases with transaction costs λ and in-

creases in risk aversion γ.

We see that the aim portfolio is a weighted average of current and future expected

Markowitz portfolios. While without transaction costs, the investor would like to hold the

Markowitz portfolio to earn the highest possible risk-adjusted return, with transaction costs

the investor needs to economize on trading and thus trade partially towards the aim and,

as a result, he needs to adjust his aim in front of the target. Proposition 3 shows that the
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optimal aim portfolio is an exponential average of current and future Markowitz portfolio,

where the weight on the current (and near term) Markowitz portfolio is larger if transaction

costs are smaller.

A graphical illustration of optimal trading rule. The optimal trading policy is

illustrated in detail in Figure 2. Panel A of Figure 2 shows how the optimal first trade is

derived, Panel B how the expected second trade, and Panel C the entire path of expected

future trades. Let’s first understand Panel A. The solid curve is the expected path of future

Markowitz portfolios. Since expected returns mean revert, the expected Markowitz portfolio

converges to its long-term mean, illustrated at the origin of the figure. In this example,

asset 2 loads on a factor that decays the fastest, so the future Markowitz positions are

expected to have relatively larger positions in asset 1. As a result of the general alpha decay

and transaction costs, the current aim portfolio has smaller positions than the Markowitz

portfolio and, as a result of the differential alpha decay, the aim portfolio loads more on in

asset 1. The optimal new position is found by moving partially towards the aim portfolio.

Panel B shows that the expected next trade is towards the new aim, using the same logic

as before. Panel C traces out the entire paths of expected future positions. The optimal

strategy is to chase a moving target, adjusting the aim for alpha decay and trading patiently

by always edging partially towards the aim.7

To further understand the aim portfolio, we can characterize the effect of the future

expected Markowitz portfolios in terms of the different trading signals (or factors), ft, and

their mean reversion speeds. Indeed, a more persistent factor has a larger effect on future

Markowitz portfolios than a factors that quickly mean reverts. Indeed, the central relevance

of signal persistence in the presence of transaction costs is one of the distinguishing features

of our analysis.

Proposition 4 (Weight Signals Based on Alpha Decay) (i) Under Assumption A, the

aim portfolio is the Markowitz portfolio built as if the signals f were scaled down based on

7The parameters underlying these figures are f0 = (1, 1)>, B = I2×2, φ1 = 0.1, φ2 = 0.4, Σ = I2×2,
γ = 0.5, ρ = 0.05, Λ = 2Σ.
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their mean reversion Φ:

aimt = (γΣ)−1B

(
I +

a

γ
Φ

)−1

ft. (14)

(ii) If the matrix Φ is diagonal, Φ = diag(φ1, ..., φK), then the aim portfolio simplifies as the

Markowitz portfolio with each factor fkt scaled down based on its own alpha decay φk:

aimt = (γΣ)−1B

(
f 1
t

1 + φ1a/γ
, . . . ,

fKt
1 + φKa/γ

)>
. (15)

This proposition shows explicitly the close link between the optimal dynamic aim portfolio

in light of transaction costs and the classic Markowitz portfolio. The aim portfolio resembles

the Markowitz portfolio, but the factors are scaled down based on transaction costs (captured

by a), risk aversion (γ), and, importantly, the mean-reversion speed of the factors (Φ).

The aim portfolio is particularly simple under the rather standard assumption that the

dynamics of each factor fk depend only on its own level (not the level of the other factors),

that is, Φ = diag(φ1, ..., φK) is diagonal, so that Equation (2) simplifies to scalars:

∆fkt+1 = −φkfkt + εkt+1. (16)

The resulting aim portfolio is very similar to the Markowitz portfolio, (γΣ)−1Bft. Hence,

transaction costs imply first that one optimally only trades part of the way towards the

aim, and, second, that the aim down-weights each return-predicting factor more the higher

is its alpha decay φk. Down-weighting factors reduces the size of the position, and, more

importantly, changes the relative importance of the different factors. This feature is also

seen in Figure 2. The convex J-shape of the path of expected future Markowitz portfolios

indicates that the factors that predict a high return for asset 2 decay faster than those that

predict asset 1. To make this point in a different way, if the expected returns of the two

assets decayed equally fast, then the Markowitz portfolio would be expected to move linearly

towards its long-term mean. Since the aim portfolio downweights the faster decaying factors,

the investor trades less towards asset 2. To see this graphically, note that the aim lies below
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the line joining the Markowitz portfolio with the origin, thus downweighting asset 2 relative

to asset 1. Naturally, giving more weight to the more persistent factors means that the

investor trades towards a portfolio that not only has a high expected return now, but also

is expected to have a high expected return for a longer time in the future.

We end this section by considering what portfolio an investor ends up owning if he always

follows our optimal strategy:

Proposition 5 (Position Homing In) Suppose that the agent has followed the optimal

trading strategy from time −∞ until time t. Then the current portfolio is an exponentially

weighted average of past aim portfolios. Under Assumption A,

xt =
t∑

τ=−∞

a

λ

(
1− a

λ

)t−τ
aimτ (17)

We see that the optimal portfolio is an exponentially weighted average of current and past

aim portfolios. Clearly, the history of the past expected returns affects the current position

since the investor trades patiently to economize on transaction costs. The proposition fur-

ther implies that the investor can compute the exponentially weighted average of past aim

portfolios and always trade all the way to this portfolio (assuming that his initial portfolio

starts at the right place, otherwise the first trade will be suboptimal).

4 Persistent Transaction Costs

In some cases the impact of trading on prices may have a non-negligible persistent component.

If an investor trades weekly and the current prices are unaffected by his trades during the

previous week, then the temporary transaction cost model above is appropriate. However,

if the frequency of trading is larger than the resiliency of prices, then the investor will be

affected by persistent price impact costs.

To study this situation, we extend the model by letting the price be given by p̄t = pt+Dt

and the investor incur the cost associated with the persistent price distortion Dt in addition

to the temporary trading cost TC from before. Hence, the price p̄t is the sum of the price
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pt without the persistent effect of the investor’s own trading (as before) and the new term

Dt, which captures the accumulated price distortion due to the investor’s (previous) trades.

Trading an amount ∆xt pushes prices by C∆xt such that the price distortion becomes

Dt+C∆xt, where C is Kyle’s lambda for persistent price moves. Further, the price distortion

mean reverts at a speed (or “resiliency”) R. Hence, the price distortion next period (t + 1)

is:

Dt+1 = (I −R) (Dt + C∆xt) . (18)

The investor’s objective is as before, with a natural modification due to the price distor-

tion:

E0

[∑
t

(1− ρ)t+1
(
x>t
[
Bft −

(
R + rf

)
(Dt + C∆xt)

]
− γ

2
x>t Σxt

)
+ (1− ρ)t

(
−1

2
∆x>t Λ∆xt + x>t−1C∆xt +

1

2
∆x>t C∆xt

)]
. (19)

Let us explain the various new terms in this objective function. The first term is the position

xt times the expected excess return of the price p̄t = pt + Dt given inside the inner square

brackets. As before, the expected excess return of pt is Bft. The expected excess return due

to the post-trade price distortion is

Dt+1 − (1 + rf )(Dt + C∆xt) = −(R + rf ) (Dt + C∆xt) . (20)

The second term is the penalty for taking risk as before. The three terms on the second line

of (19) are discounted at (1 − ρ)t because these cash flows are incurred at time t, not time

t + 1. The first of these is the temporary transaction cost as before. The second reflects

the mark-to-market gain from the old position xt−1 from the price impact of the new trade,

C∆xt. The last term reflects that the traded shares ∆xt are assumed to be executed at the

average price distortion, Dt + 1
2
C∆xt. Hence, the traded shares ∆xt earn a mark-to-market

gain of 1
2
∆x>t C∆xt as the price moves up an additional 1

2
C∆xt.

15



The value function is now quadratic in the extended state variable (xt−1, yt) ≡ (xt−1, ft, Dt):

V (x, y) = −1

2
x>Axxx+ x>Axyy +

1

2
y>Ayyy + A0.

As before, there exists a unique solution to the Bellman equation and the following propo-

sition characterizes the optimal portfolio strategy.

Proposition 6 The optimal portfolio xt is

xt = xt−1 +M rate (aimt − xt−1) , (21)

which tracks an aim portfolio, aimt = Maimyt, that depends on the return-predicting factors

and the price distortion, yt = (ft, Dt). The coefficient matrices M rate and Maim are stated

in the appendix.

The optimal trading policy has a similar structure to before, but the persistent price impact

changes both the trading rate and the aim portfolio. The aim is now a weighted average of

current and expected future Markowitz portfolios, as well as the current price distortion.

Figure 3 graphically illustrates the optimal trading strategy with temporary and per-

sistent price impact. Panel A uses the parameters from Figures 1–2 with only temporary

transaction costs, Panel B has both temporary and persistent transaction costs, while Panel

C has purely persistent price impact. Specifically, suppose that the Kyle’s lambda for tempo-

rary price impact is Λ = wΛ̃ and Kyle’s lambda for persistent price impact is C = (1−w)Λ̃,

where we vary w to determine how much of the price impact is temporary vs. persistent and

where Λ̃ is a fixed matrix. Panel A has w = 1 (pure temporary costs), Panel B has w = 0.5

(both temporary and persistent costs), and Panel A has w = 0 (pure persistent costs).8

We see that the optimal portfolio policy with persistent transaction costs also tracks the

Markowitz portfolio while aiming in front of the target. In Proposition 9 in the Appendix

8The parameters from Figures 1–2 are given in Footnote 7 and the additional parameters are D0 = 0,
the resiliency R = 0.1, and the risk-free rate given by (1 + rf )(1 − ρ) = 1. As further interpretation of
Figure 3, note that temporary price impact corresponds to a persistent impact with complete resiliency,
R = 1. (This holds literally under the natural restriction that the risk-free is the inverse of the discount rate,
(1 + rf )(1−ρ) = 1.) Hence, Panel A has a price impact with complete resiliency, Panel C has a price impact
with slow resiliency, and Panel B has two kinds of price impact with, respectively, fast and slow resiliency.
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we show more generally that the optimal portfolio under persistent price impact depends on

the expected future Markowitz portfolios (i.e., aims in front of the target). This is similar

to the case of temporary price impact, but what is different with purely persistent price

impact is that the initial trade is larger and, even in continuous time, there can be jumps

in the portfolio. This is because, when the price impact is persistent, the trader incurs a

transaction cost based on the entire cumulative trade, and therefore is more willing to incur

it early in order to start collecting the benefits of a better portfolio. (The resilience still

makes it cheaper to postpone part of trade, however). Furthermore, the cost of buying a

position and selling it shortly thereafter is much smaller with persistent price impact.

5 Theoretical Applications

We next provide a few simple and useful examples of our model.

Example 1: Timing a single security

An simple case is when there is only one security. This occurs when an investor is timing his

long or short view of a particular security or market. In this case, Assumption A (Λ = λΣ)

is without loss of generality since all parameters are scalars, and we use the notation σ2 = Σ

and B = (β1, ..., βK). Assuming that Φ is diagonal, we can apply Proposition 4 directly to

get the optimal timing portfolio:

xt =
(

1− a

λ

)
xt−1 +

a

λ

1

γσ2

K∑
i=1

βi

1 + φia/γ
f it . (22)

Example 2: Relative-value trades based on security characteristics

It is natural to assume that the agent uses certain characteristics of each security to predict

its returns. Hence, each security has its own return-predicting factors (whereas, in the general

model above, all the factors could influence all the securities). For instance, one can imagine

that each security is associated with a value characteristic (e.g., its own book-to-market)
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and a momentum characteristic (its own past return). In this case, it is natural to let the

expected return for security s be given by

Et(r
s
t+1) =

∑
i

βif i,st , (23)

where f i,st is characteristic i for security s (e.g., IBM’s book-to-market) and βi be the pre-

dictive ability of characteristic i (i.e., how book-to-market translates into future expected

return, for any security), which is the same for all securities s. Further, we assume that

characteristic i has the same mean-reversion speed for each security, that is, for all s,

∆f i,st+1 = −φif i,st + εi,st+1. (24)

We collect the current values of characteristic i for all securities in a vector f it =
(
f i,1t , ..., f i,St

)>
,

e.g., the book-to-market of security 1, book-to-market of security 2, etc.

This setup based on security characteristics is a special case of our general model. To

map it into the general model, we stack all the various characteristic vectors on top of each

other into f :

ft =


f 1
t

...

f It

 . (25)

Further, we let IS×S be the S-by-S identity matrix and can express B using the kronecker

product:

B = β> ⊗ IS×S =


β1 0 0 βI 0 0

0
. . . 0 · · · 0

. . . 0

0 0 β1 0 0 βI

 . (26)

Thus, αt = Bft. Also, let Φ = diag(φ ⊗ 1S×1) = diag(φ1, ..., φ1, ..., φI , ..., φI). With these
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definitions, we apply Proposition 4 to get the optimal characteristic-based relative-value

trade as

xt =
(

1− a

λ

)
xt−1 +

a

λ
(γΣ)−1

I∑
i=1

1

1 + φia/γ
βif it . (27)

Example 3: Static model

When the investor completely discounts the future, i.e., ρ = 1, he only cares about the

current period and the problem is static. The investor simply solves

max
xt

x>t Et(rt)−
γ

2
x>t Σxt −

λ

2
∆x>t Σ∆xt (28)

with a solution:

xt =
λ

γ + λ
xt−1 +

γ

γ + λ
(γΣ)−1Et(rt+1) = xt−1 +

γ

γ + λ
(Markowitz t − xt−1) . (29)

This optimal static portfolio in light of transaction costs differs from our optimal dynamic

portfolio in two ways: (i) The weight on the current portfolio xt−1 is different, and (ii) the

aim portfolio is different since in the static case the aim portfolio is the Markowitz portfolio.

Problem (i) with the static portfolio, namely that it prescribes a suboptimal trading rate

because it does not account for the future benefits of the position can be fixed by changing

the transaction-cost parameter λ (or risk aversion γ or both).

However, problem (ii) cannot be fixed in this way. Interestingly, with multiple return-

predicting factors, no choice of risk aversion γ and trading cost λ recovers the dynamic

solution. This is because the static solution treats all factors the same, while the dynamic

solution gives more weight to factors with slower alpha decay. We show empirically in

Section 6 that even the best choice of γ and λ in a static model may perform significantly

worse than our dynamic solution. To recover the dynamic solution in a static setting, one

must change not just γ and λ, but additionally the expected returns Et(rt+1) = Bft by

changing B as described in Proposition 4.
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Example 4: Today’s first signal is tomorrow’s second signal

Suppose that the investor is timing a single market using each of the several past daily

returns to predict the next return. In other words, the first signal f 1
t is the daily return for

yesterday, the second signal f 2
t is the return the day before yesterday, and so on for K past

time periods. In this case, the trader already knows today what some of her signals will look

like in the future. Today’s yesterday is tomorrow’s day-before-yesterday:

f 1
t+1 = ε1

t+1

fkt+1 = fk−1
t for k > 1

Said differently, the matrix Φ has the form

I − Φ =


0 0

1 0
. . . . . .

0 1 0

 .

Suppose for simplicity that all signals are equally important for predicting returns B =

(β, ..., β) and use the notation σ2 = Σ. Then we can use Proposition 4 to get the optimal

trading strategy

xt =
(

1− a

λ

)
xt−1 +

a

λ

1

σ2
B (γ + aΦ)−1 ft

=
(

1− a

λ

)
xt−1 +

a

λ

β

γσ2

K∑
k=1

(
1−

(
a

γ + a

)K+1−k
)
fkt . (30)

Hence, the optimal portfolio gives the largest weight to the first signal (yesterday’s return),

the second largest to the second signal, and so on. This is intuitive, since the first signal will

continue to be important the longest, the second signal the second longest, and so on.
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6 Empirical Application: Dynamic Trading of Com-

modity Futures

In this section we illustrate our approach using data on commodity futures. We show how

dynamic optimizing can improve performance in an intuitive way, and how it changes the

way new information is used.

6.1 Data

We consider 15 different liquid commodity futures, which do not have tight restrictions on the

size of daily price moves (limit up/down). In particular, as seen in Table 1, we collect data on

Aluminum, Copper, Nickel, Zinc, Lead, and Tin from the London Metal Exchange (LME),

on Gas Oil from the Intercontinental Exchange (ICE), on WTI Crude, RBOB Unleaded

Gasoline, and Natural Gas from the New York Mercantile Exchange (NYMEX), on Gold

and Silver from the New York Commodities Exchange (COMEX), and on Coffee, Cocoa,

and Sugar from the New York Board of Trade (NYBOT). (This excludes futures on vari-

ous agriculture and livestock that have tight price limits.) We consider the sample period

01/01/1996 – 01/23/2009, for which we have data on all the commodities.9

For each commodity and each day, we collect the futures price measured in U.S. dollars

per contract. For instance, if the gold price is $1,000 per ounce, the price per contract is

$100,000, since each contract is for 100 ounces. Table 1 provides summary statistics on each

contract’s average price, the standard deviation of price changes, the contract multiplier

(e.g., 100 ounces per contract in the case of gold), and daily trading volume.

We use the most liquid futures contract of all maturities available. By always using data

on the most liquid futures, we are implicitly assuming that the trader’s position is always

held in these contracts. Hence, we are assuming that when the most liquid futures nears

maturity and the next contract becomes more liquid, the trader “rolls” into the next contract,

9Our return predictors use moving averages of price data lagged up to five years, which are available for
most commodities except some of the LME base metals. In the early sample when some futures do not have
a complete lagged price series, we use the average of the available data.
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i.e., replaces the position in the near contract with the same position in the far contract.

Given that rolling does not change a trader’s net exposure, it is reasonable to abstract from

the transaction costs associated with rolling. (Traders in the real world do in fact behave

like this. There is a separate roll market, which entails far smaller costs than independently

selling the “old” contract and buying the “new” one.) When we compute price changes, we

always compute the change in price of a given contract (not the difference between the new

contract and the old one), since this corresponds to an implementable return. Finally, we

collect data on the average daily trading volume per contract as seen in the last column of

Table 1. Specifically, we receive an estimate of the average daily volume of the most liquid

contract traded electronically and outright (i.e., not including calendar-spread trades) in

December 2010 from an asset manager based on underlying data from Reuters.

6.2 Predicting Returns and Other Parameter Estimates

We use the characteristic-based model described in Example 2 in Section 2, where each

commodity characteristic is its own past returns at various horizons. Hence, to predict

returns, we run a pooled panel regression:

rst+1 = 0.001 + 10.32 f 5D,s
t + 122.34 f 1Y,s

t − 205.59 f 5Y,s
t + ust+1 ,

(0.17) (2.22) (2.82) (−1.79)
(31)

where the left-hand side is the daily commodity price changes and the right-hand side con-

tains the return predictors: f 5D is the average past five days’ price changes, divided by

the past five days’ standard deviation of daily price changes, f 1Y is the past year’s average

daily price change divided by the past year’s standard deviation, and f 5Y is the analogous

quantity for a five-year window. Hence, the predictors are rolling Sharpe ratios over three

different horizons, and, to avoid dividing by a number close to zero, the standard deviations

are winsorized below the average tenth percentile of standard deviations. We estimate the

regression using feasible generalized least squares and report the t-statistics in brackets.

We see that price changes show continuation at short and medium frequencies and re-
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versal over long horizons.10 The goal is to see how an investor could optimally trade on

this information, taking transaction costs into account. Of course, these (in-sample) re-

gression results are only available now and a more realistic analysis would consider rolling

out-of-sample regressions. However, using the in-sample regression allows us to focus on

the economic insights underlying our novel portfolio optimization. Indeed, the in-sample

analysis allows us to focus on the benefits of giving more weight to signals with slower alpha

decay, without the added noise in the predictive power of the signals arising when using

out-of-sample return forecasts.)

The return predictors are chosen so that they have very different mean reversion:

∆f 5D,s
t+1 = −0.2519f 5D,s

t + ε5D,s
t+1

∆f 1Y,s
t+1 = −0.0034f 1Y,s

t + ε1Y,s
t+1 (32)

∆f 5Y,s
t+1 = −0.0010f 5Y,s

t + ε5Y,s
t+1 .

These mean reversion rates correspond to a 2.4-day half life for the 5-day signal, a 206-day

half life for the 1-year signal, and a 700-day half life for the 5-year signal.11

We estimate the variance-covariance matrix Σ using daily price changes over the full

sample, shrinking the correlations 50% towards zero. We set the absolute risk aversion

to γ = 10−9, which we can think of as corresponding to a relative risk aversion of 1 for

an agent with 1 billion dollars under management. We set the time discount rate to ρ =

1− exp(−0.02/260) corresponding to a 2 percent annualized rate.

Finally, to choose the transaction-cost matrix Λ, we make use of price-impact estimates

from the literature. In particular, we use the estimate from Engle, Ferstenberg, and Russell

(2008) that trades amounting to 1.59% of the daily volume in a stock have a price impact of

about 0.10%. (Breen, Hodrick, and Korajczyk (2002) provides a similar estimate.) Further,

10Erb and Harvey (2006) document 12-month momentum in commodity futures prices. Asness, Moskowitz,
and Pedersen (2008) confirm this finding and also document 5-year reversals. These results are robust and
hold both for price changes and returns. The 5-day momentum is less robust. For instance, for certain
specifications using percent returns, the 5-day coefficient switches sign to reversal. This robustness is not
important for our study due to our focus on optimal trading rather than out-of-sample return predictability.

11The half life is the time it is expected to take for half the signal to disappear. It is computed as
log(0.5)/ log(1− 0.2519) for the 5-day signal.
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Greenwood (2005) finds evidence that market impact in one security spills over to other

securities using the specification Λ = λΣ, where we recall that Σ is the variance-covariance

matrix. We calibrate Σ as the empirical variance-covariance matrix of price changes, where

the covariance are shrunk 50% towards zero for robustness.

We choose the scalar λ based on the Engle, Ferstenberg, and Russell (2008) estimate

by calibrating it for each commodity and then computing the mean and median across

commodities. Specifically, we collect data on the trading volume of each commodity contract

as seen in last column of Table 1 and then calibrate λ for each commodity as follows.

Consider, for instance, unleaded gasoline. Since gasoline has a turnover of 11,320 contracts

per day and a daily price-change volatility of $1,340, the transaction cost per contract when

one trades 1.59% of daily volume is 1.59%×11, 320× λGasoline/2× 1, 3402, which is 0.10% of

the average price per contract of $48,000 if λGasoline = 3× 10−7.

We calibrate the trading costs for the other commodities similarly, and obtain a me-

dian value of 5.0 × 10−7 and a mean of 8.4 × 10−7. There are significant differences across

commodities (e.g., the standard deviation is 1.0× 10−6), reflecting that these estimates are

based on turnover while the specification Λ = λΣ assumes that transaction costs depend on

variances. While our model is general enough to handle transaction costs that depend on

turnover (e.g., by using these calibrated λ’s in the diagonal of the Λ matrix), we also need

to estimate the spill-over effects (i.e., the off-diagonal elements). Since Greenwood (2005)

provides the only estimate of these transaction-cost spill-overs in the literature using the

assumption Λ = λΣ and since real-world transaction costs likely depend on variance as well

as turnover, we stick to this specification and calibrate λ as the median across the estimates

for each commodity. Naturally, other specifications of the transaction-cost matrix would give

slightly different results, but our main purpose is simply to illustrate the economic insights

that we have proved in general theoretically.

We also consider a more conservative transaction cost estimate of λ = 10 × 10−7. Al-

ternatively, this more conservative analysis can be interpreted as the trading strategy of a

larger investor (i.e., we could have equivalently reduced the absolute risk aversion γ).
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6.3 Dynamic Portfolio Selection with Trading Costs

We consider three different trading strategies: the optimal trading strategy given by Equa-

tion (27) (“optimal”), the optimal trading strategy in the absence of transaction costs

(“Markowitz”), and a number of trading strategies based on a static (i.e., one-period)

transaction-cost optimization as in Equation (29) (“static optimization”). The static port-

folio optimization results in trading partially towards the Markowitz portfolio (as opposed

to a aim that depends on signals’ alpha decays) and we consider ten different trading speeds

in seen in Table 2. Hence, under the static optimization, the updated portfolio is a weighted

average of the Markowitz portfolio (with weight denoted “weight on Markowitz”) and the

current portfolio.

Table 2 reports the performance of each strategy as measured by, respectively, its Gross

Sharpe Ratio and its Net Sharpe Ratio (i.e., its Sharpe ratio after accounting for transaction

costs). Panel A reports these numbers using our base-case transaction-cost estimate (dis-

cussed above), while Panel B uses our high transaction-cost estimate. We see that, naturally,

the highest SR before transaction costs is achieved by the Markowitz strategy. The optimal

and static portfolios have similar drops in gross SR due to their slower trading. After trans-

action costs, however, the optimal portfolio is the best, significantly better than the best

possible static strategy, and the Markowitz strategy incurs enormous trading costs.

It is interesting to consider the driver of the superior performance of the optimal dynamic

trading strategy relative to the best possible static strategy. The key to the out-performance

is that the dynamic strategy gives less weight to the 5-day signal because of its fast alpha

decay. The static strategy simply tries to control the overall trading speed, but this is not

sufficient: it either incurs large trading costs due to its “fleeting” target (because of the

significant reliance on the 5-day signal), or it trades so slowly it is difficult to capture the

return. The dynamic strategy overcomes this problem by trading somewhat fast, but trading

mainly according to the more persistent signals.

To illustrate the difference in the positions of the different strategies, Figure 4 shows

the positions over time of two of the commodity futures, namely Crude and Gold. We
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see that the optimal portfolio is a much smoother version of the Markowitz strategy, thus

reducing trading costs while at the same time capturing most of the excess return. Indeed,

the optimal position tends to be long when the Markowitz portfolio is long and short when

the Markowitz portfolio is short, and to be larger when the expected return is large, but

moderates the speed and magnitude of trades.

6.4 Response to New Information

It is instructive to trace the response to a shock to the return predictors, namely to εi,st

in Equation (32). Figure 5 shows the responses to shocks to each return-predicting factor,

namely the 5-day factor, the 1-year factor, and the 5-year factor.

The first panel shows that the Markowitz strategy immediately jumps up after a shock to

the 5-day factor and slowly mean reverts as the alpha decays. The optimal strategy trades

much more slowly and never accumulates nearly as large a position. Interestingly, since the

optimal position also trades more slowly out of the position as the alpha decays, the lines

cross as the optimal strategy eventually has a larger position than the Markowitz strategy.

The second panel shows the response to the 1-year factor. The Markowitz jumps up

and decays, whereas the optimal position increases more smoothly and catches up as the

Markowitz starts to decay. The third panel shows the same for the 5Y signal, except that

the effects are slower and with opposite sign, since 5-year returns predict future reversals.

7 Conclusion

This paper provides a highly tractable framework for studying optimal trading strategies

in the presence of several return predictors, risk and correlation considerations, as well as

transaction costs. We derive an explicit closed-form solution for the optimal trading policy,

which gives rise to several intuitive results. The optimal portfolio tracks an “aim portfolio,”

which is analogous to the optimal portfolio in the absence of trading costs in its tradeoff

between risk and return, but different since more persistent return predictors are weighted
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more heavily relative to return predictors with faster alpha decay. The optimal strategy is

not to trade all the way to the aim portfolio, since this entails too high transaction costs.

Instead, it is optimal to take a smoother and more conservative portfolio that moves in the

direction of the aim portfolio while limiting turnover.

Our framework constitutes a powerful tool to optimally combine various return predictors

taking into account their evolution over time, decay rate, and correlation, and trading off

their benefits against risks and transaction costs. Such dynamic trade-offs are at the heart

of the decisions of “arbitrageurs” that help make markets efficient as per the efficient market

hypothesis. Arbitrageurs’ ability to do so is limited, however, by transaction costs, and our

model provides a tractable and flexible framework for the study of the dynamic implications

of this limitation.

The model’s tractability makes it potentially useful for future research on return pre-

dictability and transaction costs. As one such application of the model, we illustrate in

Appendix D how transaction costs can lead to large alphas for short time periods in equi-

librium. Indeed, we model an equilibrium with several “noise traders” who trade in and

out of their positions with varying mean-reversion speeds and a rational arbitrageur — with

trading costs and using the methodology that we derive — who takes the other side of these

noise-trader positions to clear the market. We solve the equilibrium explicitly and show

how noise trading leads to return predictability and return reversals. Further, we show that

noise-trader demand that mean-reverts more quickly leads to larger return predictability

because a fast mean reversion is associated with high transaction costs for the arbitrageurs

and, consequently, they must be compensated in the form of larger return predictability.

This can help explain the short-term return reversals documented by Lehman (1990) and Lo

and MacKinlay (1990), and their relation to transaction costs documented by Nagel (2011).

We implement our optimal trading strategy for commodity futures. Naturally, the opti-

mal trading strategy in the absence of transaction costs has a larger Sharpe ratio gross of

fees than our trading policy. However, net of trading costs our strategy performs signifi-

cantly better, since it incurs far lower trading costs while still capturing much of the return
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predictability and diversification benefits. Further, the optimal dynamic strategy is signifi-

cantly better than the best static strategy — i.e., taking dynamics into account significantly

improves performance.

In conclusion, we provide a tractable solution to the dynamic trading strategy in a rel-

evant and general setting that we believe to have many interesting applications. The main

insights for portfolio selection can be summarized by the rules that one should aim in front

of the target and trade partially towards the current aim.
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A Continuous-Time Models

In this section we present continuous-time counterparts to the models with temporary and

persistent price impact costs, as well as the case where both types of price impact is present.

The continuous-time solutions are in fact even simpler than the discrete-time solutions.

Both with temporary and persistent costs, we derive the optimal dynamic portfolio policy

explicitly and show how it captures the notion of aiming in front of the target.

A.1 Purely Temporary Transaction Costs

The securities have fundamental prices p with dynamics

dpt =
(
rfpt +Bft

)
dt+ dut, (A.1)

where, as before, the random “noise” u is a martingale (e.g., a Brownian motion) with

instantaneous variance-covariance matrix vart(dut) = Σdt, and the predictable component

of the excess return is Bft with

dft = −Φftdt+ dεt. (A.2)

The vector f contains the factors that predict returns, B contains the factor loadings, Φ

is the matrix of mean-reversion coefficients, and the noise term ε is a martingale (e.g., a

Brownian motion) with instantaneous variance-covariance matrix vart(dεt) = Ωdt.

The agent chooses his trading intensity τt ∈ RS, which determines the rate of change12

of his position xt:

dxt = τtdt. (A.3)

12We only consider smooth portfolio policies here because discrete jumps in positions or quadratic variation
would be associated with infinite trading costs in this setting. E.g., if the agent trades n shares over a time

period of ∆t, then the cost is
∫∆t

0
TC( n

∆t
)dt = 1

2Λ n2

∆t
, which approaches infinity as ∆t approaches 0.
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The transitory cost per time unit of trading τt shares per time unit is

TC(τt) =
1

2
τ>t Λτt. (A.4)

The investor chooses his optimal trading strategy to maximize the present value of the

future stream of expected excess returns, penalized for risk and trading costs:

max
(τs)s≥t

Et

∫ ∞
t

e−ρ(s−t)
(
x>s Bfs −−

γ

2
x>s Σxs −

1

2
τ>s Λτs

)
ds. (A.5)

We conjecture a quadratic value function, just as in discrete time: V (x, f) = −1
2
x>Axxx+

x>Axff + 1
2
f>Afff + A0. The following proposition records the solution to the model; we

leave the proof for the more general statement (Proposition 8) in Section A.2.

Proposition 7 The optimal portfolio xt tracks a moving “aim portfolio” A−1
xxAxfft with a

tracking speed of Λ−1Axx. That is, the optimal trading intensity τt = dxt
dt

is

τt = Λ−1Axx
(
A−1
xxAxfft − xt

)
, (A.6)

where the positive definite matrix Axx and the matrix Axf are given by

Axx = −ρ
2

Λ + Λ
1
2

(
γΛ−

1
2 ΣΛ−

1
2 +

ρ2

4
I

) 1
2

Λ
1
2 (A.7)

vec(Axf ) =
(
ρI + Φ> ⊗ IK + IS ⊗ (AxxΛ

−1)
)−1

vec(B). (A.8)

Under Assumption A, the optimal trading intensity simplifies to

τt =
a

λ
(aimt − xt) , (A.9)

with

aimt = Σ−1B (γI + aΦ)−1 ft (A.10)

a =
1

2

(
−ρλ+

√
ρ2λ2 + 4γλ

)
. (A.11)
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In words, the optimal portfolio xt tracks aimt with speed a
λ

. The tracking speed decreases

with the trading cost λ and increases with the risk-aversion coefficient γ.

A.2 Temporary and Persistent Transaction Costs

We modify the set-up above by adding persistent transaction costs. Specifically, the agent

transacts at price p̄t = pt +Dt, where the distortion Dt evolves according to

dDt = −RDt dt+ Cdxt = −RDt dt+ Cτt dt. (A.12)

The agent’s objective now becomes

max
(τs)s≥t

Et

∫ ∞
t

e−ρ(s−t)
(
x>s (αs − (r +R)Ds + Cτs)−

γ

2
x>s Σxs −

1

2
τ>s Λτs

)
ds. (A.13)

We conjecture a quadratic value function, as before, in the state variable (xt, ft, Dt) ≡

(xt, yt) — specifically, we write V (x, y) = −1
2
x>Axxx+ x>Axyy + 1

2
y>Ayyy + A0.

Proposition 8 The optimal trading intensity has the form

τt = M̄ rate
(
M̄aimyt − xt

)
(A.14)

for appropriate matrices M̄ rate and M̄aim defined in the proof.

A.3 Purely Persistent Costs

The set-up is as above, but now we take Λ = 0. Under this assumption, it no longer follows

that xt has to be of the form dxt = τt dt for some τ . Indeed, with purely persistent price

impact costs, the optimal portfolio policy can have jumps and infinite quadratic variation

(i.e., “wiggle” like a Brownian motion). To derive an economically meaningful objective

for the agent, we proceed from the discrete-time model and consider the limit as the time

interval goes to zero.
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The discrete-time objective is given by

E0

[∑
t

e−ρ(t+∆t)
(
x>t
(
Bft∆t −

(
R + rf

)
(Dt + C∆xt) ∆t

)
− γ

2
x>t Σxt∆t

)
+

1

2
e−ρ(t+∆t)

(
2x>t−∆t

C∆xt + ∆x>t C∆xt
)
eρ∆t

]
, (A.15)

which in the limit, given the definition of D as a lcrl process, becomes

Et

∫ ∞
t

e−ρ(s−t)
(
x>s (αs − (r +R) (Ds− + C∆xs))−

γ

2
x>s Σxs

)
ds (A.16)

+Et

∫ ∞
t

e−ρ(s−t)x>s−Cdxs +
1

2
Et

∫ ∞
t

e−ρ(s−t)d [xs, Cxs] ,

where the price distortion evolves as

dDt = −RDt dt+ Cdxt. (A.17)

A helpful observation in this case is that making a large trade ∆x over an infinitesimal

time interval has an easily described impact on the value function. In fact, the ability to

liquidate one’s position instantaneously, and then take a new position, at no cost relative to

trading directly to the new position implies

V (x,D, f) = V (0, D − Cx, f)− 1

2
x>Cx. (A.18)

This intuitive conjecture is verified by constructing a solution to the associated HJB equation

that satisfies this condition.

Before stating the result for this version of the model, we introduce the following natural

counterpart to Assumption A:

Assumption B. The persistent price impact is proportional to the level of risk, C = cΣ,

where c is a scalar. The resiliency R is a scalar.
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Proposition 9 A value function exists of the quadratic form (E.67), where ADD and ADf

are given as solutions to (E.73) and (E.74), respectively. The optimal portfolio is given

by (E.71) with D0 = D− − Cx−:

x = J−1
[(
B − C>R>ADf

)
f −

(
(rf +R) + C>R>ADD

)
(D− − Cx−)

]
. (A.19)

Under Assumption B, the optimal portfolio is a linear combination of the current price dis-

tortion as represented by D0, the current Markowitz portfolio, and the exponentially weighted

average of future expected Markowitz portfolios,
∫∞

e−(ρ−bRc+R)tE[Markowitzt | f0] dt.

B Micro-Foundation for Transaction Costs

In this section we provide formal arguments for our modeling choices by presenting micro-

foundations for the types of costs we consider and for their dependence on the period length.

As a consequence, we also show that the discrete-time model, when specified in accordance

to the micro-foundations, tends to the continuous-time model as the period length goes to

zero.

B.1 Temporary Price Impact

To obtain a temporary price impact of trades endogenously, we consider an economy pop-

ulated by three types of investors: (i) the trader whose optimization problem we study in

the paper, referred throughout this section as “the trader,” (ii) “market makers,” who act

as intermediaries, and (iii) “end users,” on whom market makers eventually unload their

positions as described below.

The temporary price impact is due to the market makers’ inventories. We assume that

there are a mass-one continuum of market makers indexed by the set [0, h] and they arrive

for the first time at the market at a time equal to their index. The market operates only

at discrete times ∆t apart,13 and the market makers trade at the first trading opportunity.

13We make the simplifying assumption that h
∆t

is an integer.
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Once they trade — say, at time t — market makers must spend h units of time gaining access

to end users. At time t+h, therefore, they unload their inventories at a price pt+h described

below, and rejoin the market immediately thereafter. It follows that at each trading date in

the market there is always a mass ∆t

h
of competing market makers that clear the market.

The price p, the competitive price of end users, follows an exogenous process and corre-

sponds to the fundamental price in the body of the paper. Market makers take this price as

given and trade a quantity q to maximize a quadratic utility:

max
q

{
Êt
[
q(pt+h − erhp̂t)

]
− γM

2
V art

[
q(pt+h − erhp̂t)

]}
, (B.1)

where p̂t is the market price at time t and r is the (continuously-compounded) risk-free rate

over the horizon. Ê denotes expectations under the probability measure obtained from the

market makers’ beliefs using their (normalized) marginal utilities corresponding to q = 0 as

Radon-Nikodym derivative. Consequently,

Êt
[
pt+h

]
= erhpt,

so that the maximization problem becomes

max
q

{
q(pt − p̂t)− e−rh

γM

2
V art

[
qpt+h

]}
. (B.2)

The price p̂ is set so as to satisfy the market-clearing condition

0 = ∆xt + q
∆t

h
. (B.3)

Since p is exogenous and Gaussian with variance Vh h periods ahead that can be calculated

easily,14 the maximization problem yields

p̂t = pt + e−rhγMVh
∆xt
∆t

h. (B.4)

14The resulting value is Vh = Σh + BNhΩN>h B
>, where Nh =

∫ h

0

∫ h

u
e−Φ(t−u)dt du = Φ−1h −

Φ−2
(
I − e−Φh

)
if Φ is invertible. (Note that the first term, Σh, is of order h, while the second of order h2.)
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Consequently, if the trader trades an amount ∆xt, he trades at the unit price of pt and pays

an additional transaction cost of

e−rhγM∆x>t Vh
∆xt
∆t

h,

which has the quadratic form posited in the body of the paper.

Two cases suggest themselves naturally when considering the choice for the holding period

h as a function of ∆t. In the first case, a decreasing ∆t is thought of as an improvement in

the trading technology, attention, etc., of all market participants, and therefore h decreases

as ∆t does — in its simplest form, h = ∆t, which yields a transaction cost of the order ∆2
t .

Generally, as long as h→ 0 as ∆t → 0, the transaction costs also vanishes.

The second case is that of a constant h: the dealers need a fixed amount of time to lay

off a position regardless of the frequency with which our original traders access the market.

It follows, in this case, that the price impact does not vanish as ∆t becomes small: in the

continuous-time limit (∆t → 0), the per-unit-of-time transaction cost is proportional to

lim
∆t→0

∆x>t
∆t

Vhh
∆xt
∆t

= τ>Vhhτ, (B.5)

as assumed in Section A.1. One can therefore interpret ∆t in this case as the frequency

with which the researcher observes the world, which does not impact (to the first order)

equilibrium quantities — in particular, flow trades and costs.

B.2 Persistent Price Impact

A similar model, but with a different specification of the market makers, can be used to justify

a persistent price impact. Consider therefore the same model as in the previous section, but

suppose now that market makers do not hold their inventories for a deterministic number h

of time units, but rather manage to deplete them, through trade with end users at price p,

at a constant rate ψ. Thus, between two trading dates with the trader, a market maker’s
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inventory evolves according to

∆It+1 = −ψIt∆t + qt, (B.6)

where, in equilibrium,

qt = ∆xt.

The market makers continue to maximize a quadratic objective:

max
q

{
Êt

∑
s=t+n∆t

e−r(s−t)
(
ψI>s ps∆t − q>s p̂s −

γM

2
I>s V∆tIs

)}
, (B.7)

subject to (B.6) and expectations about q described below. Note that the market maker’s

objective depends (positively) on the expected cash flows ψI>s ps∆t − q>s p̂s due to future

trades with the end user and the trader and negatively on the risk of his inventory.

We assume that market makers cannot predict the trader’s order flow ∆x. More specifi-

cally, according to their probability distribution,

Ê [∆xt | Fs, s < t] = 0 (B.8)

Ê
[
(∆xt)

2 | Fs, s < t
]

= v. (B.9)

Moments of qs and Is follow immediately.

The first-order condition with respect to qt is

0 = Êt
∑

s=t+n∆t

e−r(s−t)
(
ψp>s − γMI>s

V∆t

∆t

)
∂Is
∂qt

∆t − p̂>t . (B.10)

Using the fact that ∂Is
∂qt

= (1− ψ∆t)
s−t, the first-order condition yields

p̂t = Êt
∑

s=t+n∆t

e−r(s−t)(1− ψ∆t)
s−t
(
ψps − γM

V∆t

∆t

Is

)
∆t. (B.11)
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Using the facts that Êt[e
−r(s−t)ps] = pt and Êt[Is] = (1− ψ∆t)

t−sIt, we obtain

p̂t = pt − κIIt (B.12)

for a constant matrix

κI =
∞∑
n=0

e−rn∆t(1− ψ∆t)
2n∆tγM

V∆t

∆t

∆t. (B.13)

The price p̂t is only the price at the end of trading date t — the price at which the last unit

of the qt shares is traded. We assume that, during the trading date, orders of infinitesimal

size come to market sequentially and the market makers’ expectation is that the remainder

of date-t order flow aggregates to zero — thus, the order flow is a martingale. It follows

that the price paid for the kth percentile of the order flow qt is pt − κI(It−1 + kqt). This

mechanism ensures that round-trip trades over very short intervals do not have transaction-

cost implications, just as in Section 4.

We note that, as ∆t → 0, (B.12) continues to hold with

κI =
γM

r
lim

∆t→0

V∆t

∆t

(B.14)

=
γM

r
Σ. (B.15)

This price specification is the same as in Section A.3, with

Dt = −κIIt (B.16)

dDt = −κIdIt

= −κI (−ψIt + τt) dt

= −κIψκ−1
I Dt dt− κIτt dt

= −RDt dt+ C>τt dt. (B.17)
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B.3 Temporary and Persistent Price Impact

The two types of price impact can obtain simultaneously in this model, provided that two

kinds of market makers coexist and interact in particular ways. Specifically, suppose that

one group of market makers transact with the trader. After a period of length h, these

market makers clear their inventories with a second group of market makers, who specialize

in locating end users and trading with them. As in Section B.2, these market makers deplete

their inventories only gradually (at a constant rate), giving rise to a persistent impact. The

trader must compensate both groups of market makers for the risk taken, resulting in the

two price-impact components.

C Connection between Discrete and Continuous Time

The continuous-time model, and therefore solution, are readily seen to be the limit of their

discrete-time analogues when parameters are chosen consistently, adjusted for the length of

the time interval between successive trading opportunities. There is one choice to be made

concerning the adjustment, namely that of Λ. The model in Section B.1, in particular,

suggests the following two natural possibilities:

Λ̂(∆t) = ∆t
−1Λ or λ̂(∆t) = ∆t

−2λ (C.1)

Λ̂(∆t) = ∆tΛ or λ̂(∆t) = λ. (C.1′)

The adjustments in Equations (C.1)–(C.1′) are as implied by (B.4), the relation that justifies

costs quadratic in ∆x. They differ with respect to the assumption made about the holding

period h: Equation (C.1) obtains with constant h, while Equation (C.1′) with h = ∆t.

These adjustments follow from Section B.1 directly in the case in which trading costs are

proportional to the variance Σ, which gives the dependence of λ̂ on ∆t. The dependence of

Λ̂ follows from Λ = λΣ in this case, and in general by analogy.

The other adjustments are immediate. For instance, Equations (C.2)–(C.3) simply state
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that the variance is proportional to time:

Σ̂(∆t) = Σ∆t (C.2)

Ω̂(∆t) = Ω∆t (C.3)

B̂(∆t) = B∆t (C.4)

Φ̂(∆t) = Φ∆t (C.5)

ρ̂(∆t) = ρ∆t (C.6)

γ̂(∆t) = γ (C.7)

R̂(∆t) = R∆t (C.8)

Ĉ(∆t) = C. (C.9)

r̂f (∆t) = rf∆t (C.10)

We are ready to state the result.

Proposition 10 (i) Consider the discrete-time model of Section 4 with parameters defined

to depend on the time interval ∆t as stated by (C.1) and (C.2)–(C.9). Then

lim
∆t→0

M rate(∆t)

∆t

= M̄ rate (C.11)

lim
∆t→0

Maim(∆t) = M̄aim, (C.12)

where M̄ rate and M̄ speed are the continuous-time matrix coefficients of Proposition 8.

Given that f is continuous almost everywhere on every path almost surely, (C.11) and

(C.12) imply that, fixing (xt, ft, Dt), lim∆t→0
xt+∆t−xt

∆t
→ τt a.s.

(ii) If (C.1′) holds instead of (C.1), then the solution approaches that of Section A.3,

summarized in Proposition 9.

Equation (C.12) states that, given the current conditions, the aim portfolio in discrete

time approaches the one in continuous time as the time period between trades becomes small.

Equation (C.11) concerns the tracking speed: the per-unit-of-time fraction of the distance to

the aim covered by a trade is the same, for small ∆t, as in continuous time. Consequently,
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the optimal solutions have the same dynamics, in the limit.

D Equilibrium Implications

In this section we study the restrictions placed on a security’s return properties by the market

equilibrium. More specifically, we consider a situation in which an investor facing transaction

costs absorbs a residual supply specified exogenously and analyze the relationship implied

between the characteristics of the supply dynamics and the excess return.

For simplicity, we consider a model set in continuous time, as detailed in Section A.1,

featuring one security in which L ≥ 1 groups of (exogenously given) noise traders hold

positions zlt (net of the aggregate supply) given by

dzlt = κ
(
f lt − zlt

)
dt (D.1)

df lt = −ψlf ltdt+ dW l
t . (D.2)

In addition, the Brownian motions W l satisfy vart(dW
l
t )/dt = Ωll. It follows that the aggre-

gate noise-trader holding, zt =
∑

l z
l
t, satisfies

dzt = κ

(
L∑
l=1

f lt − zt

)
dt. (D.3)

We conjecture that the investor’s inference problem is as studied in Section A.1, where f

given by f ≡ (f 1, ..., fL, z) is a linear return predictor and B is to be determined. We verify

the conjecture and find B as part of Proposition 11 below.

Given the definition of f , the mean-reversion matrix Φ is given by

Φ =


ψ1 0 · · · 0

0 ψ2 · · · 0
...

...
. . .

...

−κ −κ · · · κ

 . (D.4)
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Suppose that the only other investors in the economy are the investors considered in

Section A.1, facing transaction costs given by Λ = λσ2. In this simple context, an equilibrium

is defined as a price process and market-clearing asset holdings that are optimal for all agents

given the price process. Since the noise traders’ positions are optimal by assumption as

specified by (D.1)–(D.2), the restriction imposed by equilibrium is that the dynamics of the

price are such that, for all t,

xt = −zt (D.5)

dxt = −dzt. (D.6)

Using (A.9), these equilibrium conditions lead to

a

λ
σ−2B(aΦ + γI)−1 +

a

λ
eL+1 = −κ(1− 2eL+1), (D.7)

where eL+1 = (0, · · · , 0, 1) ∈ RL+1 and 1 = (1, · · · , 1) ∈ RL+1. It consequently follows that,

if the investor is to hold −zt = −fL+1
t at time t for all t, then the factor loadings must be

given by

B = σ2

[
−λ
a
κ(1− 2eL+1)− eL+1

]
(aΦ + γI). (D.8)

For l ≤ L, we calculate Bl further as

Bl = −σ2κ(λψl + λγa−1 + λκ− a)

= −λσ2κ(ψl + ρ+ κ), (D.9)

while

BL+1 = σ2(ρλκ+ λκ2 − γ). (D.10)

Using this, it is straightforward to see the following key equilibrium implications:

Proposition 11 The market is in equilibrium if and only if x0 = −z0 and the security’s
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expected excess return is given by

1

dt
Et[dpt − rfpt dt] =

L∑
l=1

λσ2κ(ψl + ρ+ κ)(−f lt) + σ2(ρλκ+ λκ2 − γ)zt. (D.11)

The coefficients λσ2κ(ψk +ρ+κ) are positive and increase in the mean-reversion parameters

ψk and κ and in the trading costs λσ2. In other words, noise trader selling (fkt < 0) increases

the alpha, and especially so if its mean reversion is faster and if the trading cost is larger.

Naturally, noise-trader selling increases the expected excess return (alpha), while noise-

trader buying lowers the alpha, since the arbitrageurs need to be compensated to take the

other side of the trade. Interestingly, the effect is larger when trading costs are larger and

for noise-trader shocks with faster mean reversion because such shocks are associated with

larger trading costs for the arbitrageurs.

E Proofs

Proof of Proposition 1. Assuming that the value function is of the posited form, we

calculate the expected future value function as

Et[V (xt, ft+1)] = −1

2
x>t Axxxt + x>t Axf (I − Φ)ft +

1

2
f>t (I − Φ)>Aff (I − Φ)ft

+
1

2
Et(ε

>
t+1Affεt+1) + A0. (E.1)

Let ρ̄ = 1 − ρ and Λ̄ = ρ̄−1Λ. The agent maximizes the quadratic objective −1
2
x>t Jtxt +

x>t jt + dt with

Jt = γΣ + Λ̄ + Axx

jt = (B + Axf (I − Φ))ft + Λ̄xt−1 (E.2)

dt = −1

2
x>t−1Λ̄xt−1 +

1

2
f>t (I − Φ)>Aff (I − Φ)ft +

1

2
Et(ε

>
t+1Affεt+1) + A0.
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The maximum value is attained by

xt = J−1
t jt, (E.3)

and it is equal to V (xt−1, ft) = 1
2
j>t J

−1
t jt + dt. Combining this fact with (6) we obtain an

equation that must hold for all xt−1 and ft, which implies the following restrictions on the

coefficient matrices:15

−ρ̄−1Axx = Λ̄(γΣ + Λ̄ + Axx)
−1Λ̄− Λ̄ (E.4)

ρ̄−1Axf = Λ̄(γΣ + Λ̄ + Axx)
−1(B + Axf (I − Φ)) (E.5)

ρ̄−1Aff = (B + Axf (I − Φ))>(γΣ + Λ̄ + Axx)
−1(B + Axf (I − Φ))

+(I − Φ)>Aff (I − Φ). (E.6)

The existence of a solution to this system of Riccati equations can be established using

standard results, e.g., as in Ljungqvist and Sargent (2004). In this case, however, we can

derive explicit expressions, as follows. We start by letting Z = Λ̄−
1
2AxxΛ̄

− 1
2 and M =

Λ̄−
1
2 ΣΛ̄−

1
2 and rewriting Equation (E.4) as

ρ̄−1Z = I − (γM + I + Z)−1 ,

which is a quadratic with an explicit solution. Since all solutions Z can be written as a limit

of polynomials of M , Z and M commute and the quadratic can be sequentially rewritten as

Z2 + Z(I + γM − ρ̄I) = ρ̄γM(
Z +

1

2
(γM + ρI)

)2

= ρ̄γM +
1

4
(γM + ρI)2,

15Remember that Axx and Aff can always be chosen symmetric.
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resulting in

Z =

(
ρ̄γM +

1

4
(ρI + γM)2

) 1
2

− 1

2
(ρI + γM) (E.7)

Axx = Λ̄
1
2

[(
ρ̄γM +

1

4
(ρI + γM)2

) 1
2

− 1

2
(ρI + γM)

]
Λ̄

1
2 , (E.8)

that is,

Axx =

(
ρ̄γΛ̄

1
2 ΣΛ̄

1
2 +

1

4
(ρ2Λ̄2 + 2ργΛ̄

1
2 ΣΛ̄

1
2 + γ2Λ̄

1
2 ΣΛ̄−1ΣΛ̄

1
2 )

) 1
2

− 1

2
(ρΛ̄ + γΣ). (E.9)

Note that the positive definite choice of solution Z is the only one that results in a positive

definite matrix Axx.

The other value-function coefficient determining optimal trading is Axf , which solves the

linear equation (E.5). To write the solution explicitly, we note first that, from (E.4),

Λ̄(γΣ + Λ̄ + Axx)
−1 = I − AxxΛ−1. (E.10)

Using the general rule that vec(XY Z) = (Z> ⊗ X) vec(Y ), we rewrite (E.5) in vectorized

form:

vec(Axf ) = ρ̄ vec((I − AxxΛ−1)B) (E.11)

+ρ̄((I − Φ)> ⊗ (I − AxxΛ−1)) vec(Axf ),

so that

vec(Axf ) = ρ̄
(
I − ρ̄(I − Φ)> ⊗ (I − AxxΛ−1)

)−1
vec((I − AxxΛ−1)B). (E.12)

Finally, Aff is calculated from the linear equation (E.6), which is of the form

ρ̄−1Aff = Q+ (I − Φ)>Aff (I − Φ) (E.13)
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with

Q = (B + Axf (I − Φ))>(γΣ + Λ̄ + Axx)
−1(B + Axf (I − Φ))

a positive-definite matrix.

The solution is easiest to write explicitly for diagonal Φ, in which case

Aff,ij =
ρ̄Qij

1− ρ̄(1− Φii)(1− Φjj)
. (E.14)

In general,

vec (Aff ) = ρ̄
(
I − ρ̄(I − Φ)> ⊗ (I − Φ)>

)−1
vec(Q). (E.15)

One way to see that Aff is positive definite is to iterate (E.13) starting with A0
ff = 0.

We conclude that the posited value function satisfies the Bellman equation.

Proof of Proposition 2. Differentiating the Bellman equation (5) with respect to xt−1

gives

−Axxxt−1 + Axfft = Λ(xt − xt−1),

which clearly implies (7) and (8).

In the case Λ = λΣ for some scalar λ > 0 and letting λ̄ = ρ̄−1λ, the solution to the

value-function coefficients is Axx = aΣ, where a solves a simplified version of (E.4):

−ρ̄−1a =
λ̄2

γ + λ̄+ a
− λ̄, (E.16)

or

a2 + (γ + λ̄ρ)a− λγ = 0, (E.17)
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with solution

a =

√
(γ + λ̄ρ)2 + 4γλ− (γ + λ̄ρ)

2
. (E.18)

It follows immediately that Λ−1Axx = a/λ.

Proof of Proposition 3. We show that

aimt = (γΣ + Axx)
−1 (γΣ×Markowitz t + Axx × Et(aimt+1)) (E.19)

by using (8), (E.5), and (E.4) successively to write

aimt = A−1
xxAxfft (E.20)

= A−1
xxΛ

(
γΣ + Λ̄ + Axx

)−1
(γΣ×Markowitz t + Axx × Et(aimt+1))

= (γΣ + Axx)
−1 (γΣ×Markowitz t + Axx × Et(aimt+1)) .

Equation (12) follows immediately as a special case.

For part (ii), we iterate (E.19) forward to obtain

aimt = (γΣ + Axx)
−1 ×

∞∑
τ=t

(
Axx (γΣ + Axx)

−1)(τ−t)
γΣ× Et(Markowitzτ ),

which specializes to (13).

Proof of Proposition 4. In the case Λ = λΣ, equation (E.5) is solved by

Axf = λB((γ + λ̄+ a)I − λ(I − Φ))−1

= λB((γ + λ̄ρ+ a)I + λΦ))−1 (E.21)

= B
(γ
a

+ Φ
)−1

, (E.22)
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and thus the aim portfolio is

aimt = (aΣ)−1B
(γ
a

+ Φ
)−1

ft, (E.23)

which is the same as (14). Equation (15) is immediate.

Proof of Proposition 5. Rewriting (7) as

xt =
(
I − Λ−1Axx

)
xt−1 + Λ−1Axx × aimt (E.24)

and iterating this relation backwards gives

xt =
t∑

τ=−∞

(
I − Λ−1Axx

)t−τ
Λ−1Axx × aimτ . (E.25)

Proof of Proposition 6. We start by defining

Π =

Φ 0

0 R

 , C̃ = (1−R)

0

C

 ,
B̃ =

[
B −(R + rf )

]
, (E.26)

Ω̃ =

Ω 0

0 0

 , ε̃t =

εt
0

 .
It is useful to keep in mind that yt = (f>t , D

>
t )> (a column vector). Given this definition,

it follows that

Et [yt+1] = (I − Π)yt + C̃(xt − xt−1). (E.27)

The conjectured value function is

V (xt−1, yt) = −1

2
x>t−1Axxxt−1 + x>t−1Axyyt +

1

2
y>t Ayyyt + A0, (E.28)
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so that

Et [V (xt, yt+1)] = −1

2
x>t Axxxt + x>t Axy

(
(I − Π)yt + C̃(xt − xt−1)

)
+ (E.29)

1

2

(
(I − Π)yt + C̃(xt − xt−1)

)>
Ayy

(
(I − Π)yt + C̃(xt − xt−1)

)
+

1

2
Et
[
ε̃>t+1Ayyε̃t+1

]
+ A0.

The trader consequently chooses xt to solve

max
x

{
x>B̃yt − x>(R + rf )C(x− xt−1)− γ

2
x>Σx

+
1

2
ρ̄−1

(
x>Cx− x>t−1Cxt−1 − (x− xt−1)>Λ(x− xt−1)

)
− 1

2
x>Axxx+ x>Axy

(
(I − Π)yt + C̃(x− xt−1)

)
(E.30)

+
1

2

(
(I − Π)yt + C̃(x− xt−1)

)>
Ayy

(
(I − Π)yt + C̃(x− xt−1)

)}
,

which is a quadratic of the form −1
2
x>Jx+ x>jt + dt, with

J = γΣ + Λ̄ +
(
2(R + rf )− ρ̄−1

)
C + Axx − 2AxyC̃ − C̃>AyyC̃ (E.31)

jt = B̃yt +
(
Λ̄ + (R + rf )C

)
xt−1 + Axy

(
(I − Π)yt − C̃xt−1

)
+ (E.32)

C̃Ayy

(
(I − Π)yt − C̃xt−1

)
≡ Sxxt−1 + Syyt (E.33)

dt = −1

2
xt−1Λ̄xt−1 −

1

2
ρ̄−1x>t−1Cxt−1 + (E.34)

1

2

(
(I − Π)yt − C̃xt−1

)>
Ayy

(
(I − Π)yt − C̃xt−1

)
.

Here,

Sx = Λ̄ + (R + rf )C − AxyC̃ − C̃>AyyC̃ (E.35)

Sy = B̃ + Axy(I − Π) + C̃>Ayy(I − Π). (E.36)
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The value of x attaining the maximum is given by

xt = J−1jt, (E.37)

and the maximal value is

1

2
jtJ
−1jt + dt = V (xt−1, yt)− A0 (E.38)

= −1

2
x>t−1Axxxt−1 + x>t−1Axyyt +

1

2
y>t Ayyyt. (E.39)

The unknown matrices have to satisfy a system of equations encoding the equality of all

coefficients in (E.39). Thus,

−ρ̄−1Axx = S>x J
−1Sx − Λ̄− ρ̄−1C + C̃>AyyC̃ (E.40)

ρ̄−1Axy = S>x J
−1Sy − C̃>Ayy(I − Π) (E.41)

ρ̄−1Ayy = S>y J
−1Sy + (I − Π)>Ayy(I − Π). (E.42)

For our purposes, the more interesting observation is that the optimal position xt is

rewritten as

xt = xt−1 +
(
I − J−1Sx

)︸ ︷︷ ︸
Mrate

((
I − J−1Sx

)−1 (
J−1Sy

)
yt︸ ︷︷ ︸

aimt =Maimyt

−xt−1

)
. (E.43)

Proof of Proposition 8. Using the notation (E.26), the HJB equation is

ρV = max
τ

{
x>
(
B̃y + Cτ

)
− γ

2
x>Σx− 1

2
τ>Λτ +

∂V

∂x
τ +

∂V

∂y

(
−Πy + C̃τ

)
+ e

}
= max

τ

{
x>B̃y − γ

2
x>Σx− 1

2
τ>Λτ + τ> (Qxx+Qyy)− ∂V

∂y
Πy + e

}
,
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where

e =
1

2
tr

(
Ω̃

∂2V

∂y∂y>

)
(E.44)

Qx = −Axx + C̃>A>xy + C>

Qy = Axy + C̃>Ayy. (E.45)

It follows immediately that

τt = −Λ−1Qx [aimt − xt] (E.46)

= Λ−1
(
Axx − C̃>A>xy − C>

)
[aimt − xt]

≡ M̄ rate [aimt − xt] ,

with

aimt = −
(
Q−1
x Qy

)
yt (E.47)

=
(
Axx − C̃>A>xy − C>

)−1 (
Axy + C̃>Ayy

)
yt

≡ M̄aimyt.

The coefficient matrices solve the system

−ρAxx = −γΣ +Q>x Λ−1Qx

= −γΣ +
(
Axx − AxyC̃ − C

)
Λ−1

(
Axx − C̃>A>xy − C>

)
ρAxy = Q>x Λ−1Qy + B̃ − AxyΠ (E.48)

= −
(
Axx − AxyC̃ − C

)
Λ−1

(
Axy + C̃>Ayy

)
+ B̃ − AxyΠ

ρAyy = Q>y Λ−1Qy − 2AyyΠ

=
(
A>xy + AyyC̃

)
Λ−1

(
Axy + C̃>Ayy

)
− 2AyyΠ.

We note that the equations above have to be solved simultaneously for Axx, Axy, and Ayy;

there is no closed-form solution in general. The complication is due to the fact that current
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trading affects the persistent price component D (that is, C 6= 0). The special case C = 0

(and D0 = 0) — i.e., purely transitory costs — does lead to closed-form solutions — which

are even slightly simpler than in discrete time — as follows.

Specializing (E.46) and (E.47) to this case, we obtain

τt = −Λ−1Axxxt + Λ−1Axfft,

while (E.48) becomes

−ρAxx = AxxΛ
−1Axx − γΣ (E.49)

ρAxf = −AxxΛ−1Axf − AxfΦ +B (E.50)

ρAff = A>xfΛ
−1Axf − 2AffΦ. (E.51)

Pre- and post-multiplying (E.49) by Λ−
1
2 , we obtain

−ρZ = Z2 +
ρ2

4
I − Y, (E.52)

that is,

(
Z +

ρ

2
I
)2

= y, (E.53)

where

Z = Λ−
1
2AxxΛ

− 1
2 (E.54)

Y = γΛ−
1
2 ΣΛ−

1
2 +

ρ2

4
I. (E.55)

This leads to

Z = −ρ
2
I + Y

1
2 ≥ 0, (E.56)
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implying that

Axx = −ρ
2

Λ + Λ
1
2

(
γΛ−

1
2 ΣΛ−

1
2 +

ρ2

4

) 1
2

Λ
1
2 . (E.57)

The solution forAxf follows from Equation (E.50), using the general rule that vec(XY Z) =

(Z> ⊗X) vec(Y ):

vec(Axf ) =
(
ρI + Φ> ⊗ IS + IK ⊗ (AxxΛ

−1)
)−1

vec(B).

Just as in discrete time, the form of the solution further simplifies under Assumption A.

Given Λ = λΣ, Axx = aΣ with

−ρa = a2 1

λ
− γ, (E.58)

with positive solution

a = −ρ
2
λ+

√
γλ+

ρ2

4
λ2. (E.59)

In this case, (E.50) yields

Axf = B
(
ρI +

a

λ
I + Φ

)−1

= B
(γ
a
I + Φ

)−1

,

where the last equality uses (E.58).

Then, we have

τt =
a

λ

[
Σ−1B (aΦ + γI)−1 ft − xt

]
. (E.60)

It is clear from (E.59) that a
λ

decreases in λ and increases in γ.
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Proof of Proposition 9. Let’s start with the complete problem:

V (xt, Dt, ft) = Et

∫ ∞
t

e−ρ(s−t)
(
x>s (αs − (r +R)Ds)−

γ

2
x>s Σxs

)
ds (E.61)

+Et

∫ ∞
t

e−ρ(s−t)x>s−Cdxs +
1

2
Et

∫ ∞
t

e−ρ(s−t)d [xs, Cxs] .

The HJB equation is

0 = sup
∆x,µ,σ

{
(x+ ∆x)>

(
α− (rf +R)(D + C∆x)

)
dt− γ

2
x>Σx dt+ x>Cµdt+

1

2
σ>Cσ dt

− ρV dt+ Vxµ dt+ VD(−R(D + C∆x) + Cµ)dt+ Vf (−Φf)dt

+
1

2
tr(Vxxσσ

>)dt+
1

2
tr(VDDCσσ

>C>)dt+ tr(VxDCσσ
>)dt

+ tr(VxfΩ
1
2σ>)dt+ tr(VDfΩ

1
2σ>C>)dt+

1

2
tr(VffΩ)dt

+ x>C∆x+
1

2
∆x>C∆x+ V (x+ ∆x,D + C∆x, f)− V (x,D, f)

}
.

(For clarity, we mention how this equation is derived heuristically: the change between t and

t + ∆t in the value function is due to a possible ‘jump’ trade ∆x at t and the continuous

trade given by a diffusion governed by µ and σ.)

Note that, under (A.18),

Vx = −VDC − x>C (E.62)

Vxx = C>VDDC − C (E.63)

VxD = −VDDC (E.64)

Vxf = −VDfC, (E.65)

and it follows that (i) the term in ∆x (last line) is identically zero; (ii) the term in µ dt

is identically zero; (iii) the term in Ω
1
2σ dt is identically zero; (iv) the term in σσ>dt is

identically zero. The remaining terms are of order dt and, with V̂ (D, f) = V (0, D, f), yield
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the HJB equation

0 = sup
x

{
− ρV̂ (D0, f) +

ρ

2
x>Cx + x>Bf − x>(rf +R)(D + C(x− x−))− γ

2
x>Σx

− V̂DR(D0 + Cx)− V̂fΦf + tr(V̂ffΩ)
}
, (E.66)

where x− = xt− and D− = Dt− are the state variables and D0 = D− − Cx− = D− + C(x−

x−)− Cx.

To provide slightly more clarity concerning (E.66), we note that the first two terms in

(E.66) equal the value function decay −ρV (x̂, D̂, f), while the remaining terms represent

the flow benefit from taking position x for the next infinitesimal time period: the expected

excess return, the risk cost, the distortion decay summed with the opportunity cost of funds

(the risk-free rate), from which the position x will suffer over dt, and the change over time

in V induced by the decay of D and of f , as well as the convexity adjustment for f . Note

that, in order for the problem to be well defined, it is necessary that ρ < 2(rf + R) + γΣ

— otherwise, the agent gains too much from pushing the prices up currently relative to the

perceive cost of the risk and the decay in the distortion.

We conjecture a quadratic form for the value function V̂ :

V̂ (D, f) =
1

2
D>ADDD +D>ADff + f>Afff + A0. (E.67)

Let16

J = γΣ + (2rf − ρ+R)C + C>R> (E.68)

j =
(
B − C>R>ADf

)
f −

(
C>R>ADD + rf +R

)
D0. (E.69)

16Note that we choose the symmetric version of J , which makes the solution ADD to (E.73) symmetric.
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It follows that

x = J−1
(
Bf − (rf +R)D0 − C>R>V >D

)
(E.70)

= J−1j (E.71)

and the HJB equation becomes

0 =
1

2
j>J−1j − VDRD0 − VfΦf − ρV +

1

2
tr (VffΩ) . (E.72)

The constant matrices ADD and ADf are computed in the usual way:

ρADD =
(
ADDRC + rf +R>

)
J−1

(
C>R>ADD + rf +R

)
− ADDR−R>ADD (E.73)

ρADf =
(
ADDRC + rf +R>

)
J−1

(
−B + CR>ADf

)
−R>ADf − ADfΦ. (E.74)

Suppose now that Assumption B holds. Then we have ADD = aDDΣ−1 and

ρaDD =
(
cRaDD + rf +R

)2 (
γ + (2R + 2rf − ρ)c

)−1 − 2aDDR, (E.75)

or

0 = a2
DDc

2R2 − aDD
(
(2R + ρ) (γ + (2rf + 2R− ρ)c)− 2cR(rf +R)

)
+ (rf +R)2,

with explicit solutions. The appropriate solution here is the lower one, which gives the

economically meaningful outcome for large γ, for instance.

Maintaining Assumption B, ADf can be written down easily:

ADf = − aDDRc+ rf +R

γ + c(2R + 2rf − ρ)
Σ−1B

(
ρ− aDDRc+ rf +R

γ + c(2R + 2rf − ρ)
Rc+R + Φ

)−1

. (E.76)

With

b =
aDDRc+ rf +R

γ + c(2R + 2rf − ρ)
,
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ADff becomes

ADff = −bΣ−1B (ρ− bRc+R + Φ)−1 f

= −bγ
∫ ∞

0

e−(ρ−bRc+R)tE[Markowitzt | f0 = f ] dt. (E.77)

Taken together, (E.69), (E.71), and (E.77) prove the last assertion of the proposition.

Proof of Proposition 10. (i) We work with the characterization of solutions provided in

the proof of Proposition 6. We show that, as ∆t → 0, Equations (E.40)–(E.42) tend to their

counterparts in (E.48), which implies that the solutions also do.

To keep the proof short, we prove the claim only for (E.40); the other two equations work

similarly. We first rewrite this equation as

−Axx = ρ̄S>x J
−1Sx − Λ̂(∆t)− C + ρ̄C̃>AyyC̃ (E.78)

= ρ̄(Sx − J)>J−1(Sx − J)− Λ̂(∆t)− ρ̄J + 2ρ̄Sx + ρ̄C̃>AyyC̃, (E.79)

and then rearrange it, using (E.31) and (E.35), as

−Axx (1− ρ̄) = ρ̄(Sx − J)>J−1(Sx − J)− ρ̄γΣ∆t. (E.80)

Dividing through by ∆t and ignoring terms in ∆t in Sx − J and J∆t, we obtain

−ρAxx = −γΣ +
(
Axx − AxyC̃ − C

)
Λ−1

(
Axx − C̃>A>xy − C>

)
, (E.81)

the same as in continuous time.

Having established that the value-function coefficients in discrete time have as limit their

counterparts in continuous time, we now note that, when letting ∆t go to 0, the rate term

M rate is given by

Λ−1
(
Axx − C − C̃A>xy

)
, (E.82)
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while the aim term Maim by

(
Axx − C>A>xy − C>

)−1
(
Axy + C̃>Ayy

)
. (E.83)

These expressions are the same as obtained in continuous time.

(ii) Let’s start with the case Λ = 0. Convergence follows by construction: the objec-

tive (A.16) is the limit of the discrete-time objective (19). (We omit the formal details.) The

result follows for general Λ because the cost portion due to Λ,

−1

2
E0

[∑
n

∆x>n∆t
Λ̂(∆t)∆xn∆t

]
= −1

2
E0

[∑
n

∆x>n∆t
Λ∆xn∆t∆t

]
, (E.84)

has limit

−1

2
E0

[∫
∆x>t Λ∆xt dt

]
, (E.85)

which equals zero for strategies x that jump on zero-measure sets, as is the case with the

optimal policy (A.19).

Proof of Proposition 11. Suppose that Et[dpt − rfpt dt] = Bft dt with B given by

(D.8) and apply the special case of Proposition 7 to conclude that, if xt = −fK+1
t , then

dxt = −dfK+1
t . The comparative-static results are immediate.

57



References

Acharya, V., and L. H. Pedersen, 2005, “Asset Pricing with Liquidity Risk,” Journal of

Financial Economics, 77, 375–410.

Almgren, R., and N. Chriss, 2000, “Optimal Execution of Portfolio Transactions,” Journal

of Risk, 3, 5–39.

Amihud, Y., and H. Mendelson, 1986, “Asset Pricing and the Bid-Ask Spread,” Journal of

Financial Economics, 17, 223–249.

Asness, C., T. Moskowitz, and L. H. Pedersen, 2008, “Value and Momentum Everywhere,”

Working paper AQR, NYU, and Chicago.

Balduzzi, P., and A. Lynch, 1999, “Transaction costs and predictability: some utility cost

calculations,” Journal of Financial Economics, 52(1), 47–78.

Bertsimas, D., and A. W. Lo, 1998, “Optimal Control of Execution Costs,” Journal of

Financial Markets, 1, 1–50.

Breen, W. J., L. S. Hodrick, and R. A. Korajczyk, 2002, “Predicting Equity Liquidity,”

Management Science, 48(4), 470–483.

Brunnermeier, M. K., and L. H. Pedersen, 2005, “Predatory Trading,” Journal of Finance,

60(4), 1825–1863.

Campbell, J. Y., and L. M. Viceira, 2002, Strategic Asset Allocation Portfolio Choice for

Long-Term Investors. Oxford University Press.

Carlin, B. I., M. Lobo, and S. Viswanathan, 2008, “Episodic Liquidity Crises: Cooperative

and Predatory Trading,” Journal of Finance, 62, 2235–2274.

Constantinides, G. M., 1986, “Capital Market Equilibrium with Transaction Costs,” Journal

of Political Economy, 94, 842–862.

58



Davis, M., and A. Norman, 1990, “Portfolio selection with transaction costs,” Mathematics

of Operations Research, 15, 676–713.

Engle, R., and R. Ferstenberg, 2007, “Execution Risk,” Journal of Portfolio Management,

33, 34–45.

Engle, R., R. Ferstenberg, and J. Russell, 2008, “Measuring and Modeling Execution Cost

and Risk,” Working paper, University of Chicago.

Erb, C., and C. R. Harvey, 2006, “The Strategic and Tactical Value of Commodity Futures,”

Financial Analysts Journal, 62, 69–97.
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Commodity Average Price 
Per Contract

Standard 
Deviation of 

Price Changes

Contract 
Multiplier

Daily Trading 
Volume 

(Contracts)

Aluminum 44,561 637 25 9,160
Cocoa 15,212 313 10 5,320
Coffee 38,600 1,119 37,500 5,640
Copper 80,131 2,023 25 12,300
Crude 40,490 1,103 1,000 151,160
Gasoil 34,963 852 100 37,260
Gold 43,146 621 100 98,700
Lead 23,381 748 25 2,520
Natgas 50,662 1,932 10,000 46,120
Nickel 76,530 2,525 6 1,940
Silver 36,291 893 5,000 43,780
Sugar 10,494 208 112,000 25,700
Tin 38,259 903 5 NaN
Unleaded 47,967 1,340 42,000 11,320
Zinc 36,513 964 25 6,200

Table 1: Summary Statistics. For each commodity used in our empirical study, the
first column reports the average price per contract in U.S. dollars over our sample period
01/01/1996–01/23/2009. For instance, since the average gold price is $431.46 per ounce, the
average price per contract is $43,146 since each contract is for 100 ounces. Each contract’s
multiplier (100 in the case of gold) is reported in the third column. The second column
reports the standard deviation of price changes. The fourth column reports the average
daily trading volume per contract, estimated as the average daily volume of the most liquid
contract traded electronically and outright (i.e., not including calendar-spread trades) in
December 2010.
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Gross SR Net SR Gross SR Net SR

Markowitz 0.83 -9.84 0.83 -10.11
Dynamic optimization 0.62 0.58 0.58 0.53
Static optimization

Weight on Markowitz = 10% 0.63 -0.41 0.63 -1.45
Weight on Markowitz = 9% 0.62 -0.24 0.62 -1.10
Weight on Markowitz = 8% 0.62 -0.08 0.62 -0.78
Weight on Markowitz = 7% 0.62 0.07 0.62 -0.49
Weight on Markowitz = 6% 0.62 0.20 0.62 -0.22
Weight on Markowitz = 5% 0.61 0.31 0.61 0.00
Weight on Markowitz = 4% 0.60 0.40 0.60 0.19
Weight on Markowitz = 3% 0.58 0.46 0.58 0.33
Weight on Markowitz = 2% 0.52 0.46 0.52 0.39
Weight on Markowitz = 1% 0.36 0.33 0.36 0.31

Panel A: 
Benchmark 

Transaction Costs

Panel B: 
High Transaction 

Costs

Table 2: Performance of Trading Strategies Before and After Transaction Costs.
This table shows the annualized Sharpe ratio gross and net of trading costs for the optimal
trading strategy in the absence of trading costs (“no TC”), our optimal dynamic strategy
(“optimal”), and a strategy that optimizes a static one-period problem with trading costs
(“static”). Panel A illustrates this for a low transaction cost parameter, while Panel B has
a high one.
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Panel A: Construction of Current Optimal Trade

Figure 1: Optimal Trading Strategy: Aim in Front of the Target. This figure shows
how the optimal trade moves the portfolio from the existing position xt−1 towards the aim
portfolio, trading only part of the way to the aim portfolio to limit transactions costs. The
aim portfolio is an average of the current Markowitz portfolio (the optimal portfolio in the
absence of transaction costs) and the expected future aim portfolio, which reflects how the
Markowitz portfolio is expected to mean-revert to its long-term level (the lower, left corner
of the figure).
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Panel A: Construction of Current Optimal Trade
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Panel B: Expected Next Optimal Trade
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Panel C: Expected Evolution of Portfolio

Figure 2: Aim in Front of the Target by Underweighting Fast-Decay Factors. This
figure shows how the optimal trade moves from the existing position xt−1 towards the aim,
which puts relatively more weight on assets loading on persistent factors. Relative to the
Markowitz portoflio, the weight in the aim of asset 2 is lower because asset 2 has a faster-
decaying alpha, as is apparent in the lower expected weight it receives in future Markowitz
portfolios.
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Panel C: Only Persistent Cost
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Panel B: Persistent and Transitory Cost
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Panel A: Only Transitory Cost

Figure 3: Aim in Front of the Target with Persistent Costs. This figure shows the
optimal trade when part of the transaction cost is persistent. In panel A, the entire cost is
transitory, as in Figures 1 and 2. In panel B, half of the cost is transitory, while the other
half is persistent, with a half life of 6.9 periods. In panel C, the entire cost is persistent.
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Figure 4: Positions in Crude and Gold Futures. This figure shows the positions in crude
and gold for the the optimal trading strategy in the absence of trading costs (“Markowitz”)
and our optimal dynamic strategy (“optimal”).
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Figure 5: Optimal Trading in Response to Shock to Return Predicting Signals.
This figure shows the response in the optimal position following a shock to a return predictor
as a function of the number of days since the shock. The top left panel does this for a shock
to the fast 5-day return predictor, the top right panel considers a shock to the 12-month
return predictor, and the bottom panel to the 5-year predictor. In each case, we consider
the response of the optimal trading strategy in the absence of trading costs (“Markowitz”)
and our optimal dynamic strategy (“optimal”) using high and low transactions costs.
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