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Abstract A version of the Dynamical Systems Gradient Method for solving ill-posed non-
linear monotone operator equations is studied in this paper. A discrepancy principle is pro-
posed and justified. A numerical experiment was carried out with the new stopping rule.
Numerical experiments show that the proposed stopping rule is efficient. Equations with
monotone operators are of interest in many applications.
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1 Introduction

In this paper we study a version of the Dynamical Systems Method (DSM) (see [10]) for
solving the equation

F(u) = f, (1)

where F is a nonlinear, twice Fréchet differentiable, monotone operator in a real Hilbert
space H , and (1) is assumed solvable, possibly nonuniquely. Monotonicity means that

〈F(u) − F(v),u − v〉 ≥ 0, ∀u,v ∈ H. (2)

Equations with monotone operators are important in many applications and were studied
extensively, see, for example, [5, 7, 21, 24], and references therein. One encounters many
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technical and physical problems with such operators in the cases where dissipation of en-
ergy occurs. For example, in [9] and [8], Chap. 3, pp. 156–189, a wide class of nonlinear
dissipative systems is studied, and the basic equations of such systems can be reduced to (1)
with monotone operators. Numerous examples of equations with monotone operators can be
found in [5] and references mentioned above. In [19] and [20] it is proved that any solvable
linear operator equation with a closed, densely defined operator in a Hilbert space H can
be reduced to an equation with a monotone operator and solved by a convergent iterative
process.

In this paper, apparently for the first time, the convergence of the Dynamical Systems
Gradient method is proved under natural assumptions and convergence of a corresponding
iterative method is established. No special assumptions of smallness of the nonlinearity or
other special properties of the nonlinearity are imposed. No source-type assumptions are
used. Consequently, our result is quite general and widely applicable. It is well known, that
without extra assumptions, usually, source-type assumption about the right-hand side, or
some assumption concerning the smoothness of the solution, one cannot get a specific rate
of convergence even for linear ill-posed equations (see, for example, [10], where one can
find a proof of this statement). On the other hand, such assumptions are often difficult to
verify and often they do not hold. By this reason we do not make such assumptions.

The result of this paper is useful both because of its many possible applications and
because of its general nature. Our novel technique consists of an application of some new
inequalities. Our main results are formulated in Theorems 17 and 19, and also in several
lemmas, for example, in Lemmas 3, 4, 8, 9, 11, 12. Lemmas 3, 4, 11, 12 may be useful in
many other problems.

In [23] a stationary equation F(u) = f with a nonlinear monotone operator F was stud-
ied. The assumptions A1–A3 on p. 197 in [23] are more restrictive than ours, and the Rule
R2 on p.199, formula (4.1) in [23] for the choice of the regularization parameter is quite
different from our rule and is more difficult to use computationally: one has to solve a non-
linear equation (equation (4.1) in [23]) in order to find the regularization parameter. To use
this equation one has to invert an ill-conditioned linear operator A + αI for small values
of α. Assumption A1 in [23] is not verifiable practically, because the solution x† is not
known. Assumption A3 in [23] requires F to be constant in a ball Br(x

†) if F ′(x†) = 0. Our
method does not require these assumptions, and, in contrast to equation (4.1) in [23], it does
not require inversion of ill-conditioned linear operators and solving nonlinear equations for
finding the regularization parameter. The stopping time is chosen numerically in our method
without extra computational effort by a discrepancy-type principle formulated and justified
in Theorem 17, in Sect. 3. We give a convergent iterative process for stable solution of (1.1)
and a stopping rule for this process.

In [23] the “source-type assumption” is made, that is, it is assumed that the right-hand
side of the equation F(u) = f belongs to the range of a suitable operator. This usually allows
one to get some convergence rate. In our paper, as was already mentioned above, such an
assumption is not used because, on the one hand, numerically it is difficult to verify such an
assumption, and, on the other hand, such an assumption may be not satisfied in many cases,
even in linear ill-posed problems, for example, in the case when the solution does not have
extra smoothness.

We assume the nonlinearity to be twice locally Fréchet differentiable. This assumption, as
we mention below, does not restrict the global growth of the nonlinearity. In many practical
and theoretical problems the nonlinearities are smooth and given analytically. In these cases
one can calculate F ′ analytically. This is the case in the example, considered in Sect. 4.
This example is a simple model problem for non-linear Wiener-type filtering (see [18]).
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If one drops the nonlinear cubic term in the equation Bu + u3 = f of this example, then
the resulting equation Bu = f does not have integrable solutions, in general, even for very
smooth f , for example, for f ∈ C∞([0,1]), as shown in [18]. It is, therefore, of special
interest to solve this equation numerically.

It is known (see, e.g., [10]), that the set N := {u : F(u) = f } is closed and convex if
F is monotone and continuous. A closed and convex set in a Hilbert space has a unique
minimal-norm element. This element in N we denote by y, F(y) = f . We assume that

sup
‖u−u0‖≤R

‖F (j)(u)‖ ≤ Mj(R), 0 ≤ j ≤ 2, (3)

where u0 ∈ H is an element of H , R > 0 is arbitrary, and f = F(y) is not known but fδ ,
the noisy data, are known, and ‖fδ − f ‖ ≤ δ. Assumption (3) simplifies our arguments and
does not restrict the global growth of the nonlinearity. In [12] this assumption is weakened
to hemicontinuity in the problems related to the existence of the global solutions of the equa-
tions, generated by the DSM. In many applications the nonlinearity F is given analytically,
and then one can calculate F ′(u) analytically.

If F ′(u) is not boundedly invertible then solving (1) for u given noisy data fδ is often (but
not always) an ill-posed problem. When F is a linear bounded operator many methods for
stable solving of (1) were proposed (see [2, 4–10] and references therein). However, when
F is nonlinear then the theory is less complete.

DSM consists of finding a nonlinear map �(t,u) such that the Cauchy problem

u̇ = �(t,u), u(0) = u0,

has a unique solution for all t ≥ 0, there exists limt→∞ u(t) := u(∞), and F(u(∞)) = f ,

∃! u(t) ∀t ≥ 0; ∃u(∞); F(u(∞)) = f. (4)

Various choices of � were proposed in [10] for (4) to hold. Each such choice yields a version
of the DSM.

The DSM for solving equation (1) was extensively studied in [10–17]. In [10], the fol-
lowing version of the DSM was investigated for monotone operators F :

u̇δ = −(F ′(uδ) + a(t)I )−1(F (uδ) + a(t)uδ − fδ), uδ(0) = u0. (5)

Here I denotes the identity operator in H . The convergence of this method was justified
with some a priori choice of stopping rule.

In [22] a continuous gradient method for solving (1) was studied. A stopping rule of
discrepancy type was introduced and justified under the assumption that F satisfies the fol-
lowing condition:

‖F(x̃) − F(x) − F ′(x)(x̃ − x)‖ = η‖F(x) − F(x̃)‖, η < 1, (6)

for all x, x̃ in some ball B(x0,R) ⊂ H . This very restrictive assumption is not satisfied even
for monotone operators. Indeed, if F ′(x) = 0 for some x ∈ B(x0) then (6) implies F(x) = f

for all x ∈ B(x0,R), provided that B(x0,R) contains a solution of (1).
In this paper we consider a gradient-type version of the DSM for solving (1):

u̇δ = −(F ′(uδ)
∗ + a(t)I )(F (uδ) + a(t)uδ − fδ), uδ(0) = u0, (7)
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where F is a monotone operator and A∗ denotes the adjoint to a linear operator A. If F is
monotone then F ′(·) := A ≥ 0. If a bounded linear operator A is defined on all of the com-
plex Hilbert space H and A ≥ 0, i.e., 〈Au,u〉 ≥ 0, ∀u ∈ H , then A = A∗, so A is selfadjoint.
In a real Hilbert space H a bounded linear operator defined on all of H and satisfying the
inequality 〈Au,u〉 ≥ 0, ∀u ∈ H is not necessary selfadjoint. Example:

H = R
2, A =

(
2 1
0 2

)
,

〈Au,u〉 = 2u2
1 + u1u2 + u2

2 ≥ 0, but A∗ =
(

2 0
1 2

)
�= A.

The convergence of the method (7) for any initial value u0 is proved for a stopping rule
based on a discrepancy principle. This a posteriori choice of stopping time tδ is justified
provided that a(t) is suitably chosen.

The advantage of method (7), a modified version of the gradient method, over the Gauss-
Newton method and the version (5) of the DSM is the following: no inversion of matrices is
needed in (7). Although the convergence rate of the DSM (7) maybe slower than that of the
DSM (5), the DSM (7) might be faster than the DSM (5) for large-scale systems due to its
lower computation cost at each iteration.

In this paper we investigate a stopping rule based on a discrepancy principle (DP) for the
DSM (7). The main results of this paper are Theorem 17 and Theorem 19 in which a DP is
formulated, the existence of a stopping time tδ is proved, and the convergence of the DSM
with the proposed DP is justified under some natural assumptions.

2 Auxiliary Results

The inner product in H is denoted 〈u,v〉. Let us consider the following equation

F(Vδ) + aVδ − fδ = 0, a > 0, (8)

where a = const . It is known (see, e.g., [10, 25]) that equation (8) with monotone continuous
operator F has a unique solution for any fδ ∈ H .

Let us recall the following result from [10]:

Lemma 1 Assume that (1) is solvable, y is its minimal-norm solution, assumption (2) holds,
and F is continuous. Then

lim
a→0

‖Va − y‖ = 0,

where Va solves (8) with δ = 0.

Of course, under our assumption (3), F is continuous.

Lemma 2 If (2) holds and F is continuous, then ‖Vδ‖ = O( 1
a
) as a → ∞, and

lim
a→∞‖F(Vδ) − fδ‖ = ‖F(0) − fδ‖. (9)
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Proof Rewrite (8) as

F(Vδ) − F(0) + aVδ + F(0) − fδ = 0.

Multiply this equation by Vδ , use inequality 〈F(Vδ) − F(0),Vδ − 0〉 ≥ 0 and get:

a‖Vδ‖2 ≤ ‖fδ − F(0)‖‖Vδ‖.
Therefore, ‖Vδ‖ = O( 1

a
). This and the continuity of F imply (9). �

Let a = a(t) be a strictly monotonically decaying continuous positive function on [0,∞),
0 < a(t) ↘ 0, and assume a ∈ C1[0,∞). These assumptions hold throughout the paper and
often are not repeated. Then the solution Vδ of (8) is a function of t , Vδ = Vδ(t). From the
triangle inequality one gets:

‖F(Vδ(0)) − fδ‖ ≥ ‖F(0) − fδ‖ − ‖F(Vδ(0)) − F(0)‖.
From Lemma 2 it follows that for large a(0) one has:

‖F(Vδ(0)) − F(0)‖ ≤ M1‖Vδ(0)‖ = O

(
1

a(0)

)
.

Therefore, if ‖F(0) − fδ‖ > Cδ, then ‖F(Vδ(0)) − fδ‖ ≥ (C − ε)δ, where ε > 0 is suffi-
ciently small and a(0) > 0 is sufficiently large.

Below the words decreasing and increasing mean strictly decreasing and strictly increas-
ing.

Lemma 3 Assume ‖F(0) − fδ‖ > 0. Let 0 < a(t) ↘ 0, and F be monotone. Denote

ψ(t) := ‖Vδ(t)‖, φ(t) := a(t)ψ(t) = ‖F(Vδ(t)) − fδ‖,
where Vδ(t) solves (8) with a = a(t). Then φ(t) is decreasing, and ψ(t) is increasing.

Proof Since ‖F(0) − fδ‖ > 0, one has ψ(t) �= 0, ∀t ≥ 0. Indeed, if ψ(t)|t=τ = 0, then
Vδ(τ ) = 0, and (8) implies ‖F(0) − fδ‖ = 0, which is a contradiction. Note that φ(t) =
a(t)‖Vδ(t)‖. One has

0 ≤ 〈F(Vδ(t1)) − F(Vδ(t2)),Vδ(t1) − Vδ(t2)〉
= 〈−a(t1)Vδ(t1) + a(t2)Vδ(t2),Vδ(t1) − Vδ(t2)〉
= (a(t1) + a(t2))〈Vδ(t1),Vδ(t2)〉 − a(t1)‖Vδ(t1)‖2 − a(t2)‖Vδ(t2)‖2. (10)

Thus,

0 ≤ (a(t1) + a(t2))‖Vδ(t1)‖‖Vδ(t2)‖ − a(t1)‖Vδ(t1)‖2 − a(t2)‖Vδ(t2)‖2

= (a(t1)‖Vδ(t1)‖ − a(t2)‖Vδ(t2)‖)(‖Vδ(t2)‖ − ‖Vδ(t1)‖)
= (φ(t1) − φ(t2))(ψ(t2) − ψ(t1)). (11)

If ψ(t2) > ψ(t1) then (11) implies φ(t1) ≥ φ(t2), so

a(t1)ψ(t1) ≥ a(t2)ψ(t2) > a(t2)ψ(t1).
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Thus, if ψ(t2) > ψ(t1) then a(t2) < a(t1) and, therefore, t2 > t1, because a(t) is strictly
decreasing.

Similarly, if ψ(t2) < ψ(t1) then φ(t1) ≤ φ(t2). This implies a(t2) > a(t1), so t2 < t1.
Suppose ψ(t1) = ψ(t2), i.e., ‖Vδ(t1)‖ = ‖Vδ(t2)‖. From (10), one has

‖Vδ(t1)‖2 ≤ 〈Vδ(t1),Vδ(t2)〉 ≤ ‖Vδ(t1)‖‖Vδ(t2)‖ = ‖Vδ(t1)‖2.

This implies Vδ(t1) = Vδ(t2), and then equation (8) implies a(t1) = a(t2). Hence, t1 = t2,
because a(t) is strictly decreasing.

Therefore φ(t) is decreasing and ψ(t) is increasing. �

Lemma 4 Suppose that ‖F(0) − fδ‖ > Cδ, C > 1, and a(0) is sufficiently large. Then,
there exists a unique t1 > 0 such that ‖F(Vδ(t1)) − fδ‖ = Cδ.

Proof The uniqueness of t1 follows from Lemma 3 because ‖F(Vδ(t)) − fδ‖ = φ(t), and φ

is decreasing. We have F(y) = f , and

0 = 〈F(Vδ) + aVδ − fδ,F (Vδ) − fδ〉
= ‖F(Vδ) − fδ‖2 + a〈Vδ − y,F (Vδ) − fδ〉 + a〈y,F (Vδ) − fδ〉
= ‖F(Vδ) − fδ‖2 + a〈Vδ − y,F (Vδ) − F(y)〉 + a〈Vδ − y,f − fδ〉 + a〈y,F (Vδ) − fδ〉
≥ ‖F(Vδ) − fδ‖2 + a〈Vδ − y,f − fδ〉 + a〈y,F (Vδ) − fδ〉.

Here the inequality 〈Vδ − y,F (Vδ) − F(y)〉 ≥ 0 was used. Therefore

‖F(Vδ) − fδ‖2 ≤ −a〈Vδ − y,f − fδ〉 − a〈y,F (Vδ) − fδ〉
≤ a‖Vδ − y‖‖f − fδ‖ + a‖y‖‖F(Vδ) − fδ‖
≤ aδ‖Vδ − y‖ + a‖y‖‖F(Vδ) − fδ‖. (12)

On the other hand, we have

0 = 〈F(Vδ) − F(y) + aVδ + f − fδ,Vδ − y〉
= 〈F(Vδ) − F(y),Vδ − y〉 + a‖Vδ − y‖2 + a〈y,Vδ − y〉 + 〈f − fδ,Vδ − y〉
≥ a‖Vδ − y‖2 + a〈y,Vδ − y〉 + 〈f − fδ,Vδ − y〉.

where the inequality 〈Vδ − y,F (Vδ) − F(y)〉 ≥ 0 was used. Therefore,

a‖Vδ − y‖2 ≤ a‖y‖‖Vδ − y‖ + δ‖Vδ − y‖.
This implies

a‖Vδ − y‖ ≤ a‖y‖ + δ. (13)

From (12) and (13), and an elementary inequality ab ≤ εa2 + b2

4ε
, ∀ε > 0, one gets:

‖F(Vδ) − fδ‖2 ≤ δ2 + a‖y‖δ + a‖y‖‖F(Vδ) − fδ‖

≤ δ2 + a‖y‖δ + ε‖F(Vδ) − fδ‖2 + 1

4ε
a2‖y‖2, (14)
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where ε > 0 is fixed, independent of t , and can be chosen arbitrary small. Let t → ∞ and
a = a(t) ↘ 0. Then (14) implies

limt→∞(1 − ε)‖F(Vδ) − fδ‖2 ≤ δ2.

This, the continuity of F , the continuity of Vδ(t) on [0,∞), and the assumption ‖F(0) −
fδ‖ > Cδ imply that equation ‖F(Vδ(t)) − fδ‖ = Cδ must have a solution t1 > 0. The
uniqueness of this solution has already established. �

Remark 5 From the proof of Lemma 4 one obtains the following claim:
If tn ↗ ∞ then there exists a unique n1 > 0 such that

‖F(Vn1+1) − fδ‖ ≤ Cδ < ‖F(Vn1) − fδ‖, Vn := Vδ(tn).

Remark 6 From Lemmas 2 and 3 one concludes that

an‖Vn‖ = ‖F(Vn) − fδ‖ ≤ ‖F(0) − fδ‖, an := a(tn), ∀n ≥ 0.

Remark 7 Let V := Vδ(t)|δ=0, so

F(V ) + a(t)V − f = 0.

Let y be the minimal-norm solution to (1). We claim that

‖Vδ − V ‖ ≤ δ

a
. (15)

Indeed, from (8) one gets

F(Vδ) − F(V ) + a(Vδ − V ) = f − fδ.

Multiply this equality with (Vδ − V ) and use the monotonicity of F to get

a‖Vδ − V ‖2 ≤ δ‖Vδ − V ‖.
This implies (15). Similarly, multiplying the equation

F(V ) + aV − F(y) = 0,

by V − y one derives the inequality:

‖V ‖ ≤ ‖y‖. (16)

Similar arguments one can find in [10].
From (15) and (16), one gets the following estimate:

‖Vδ‖ ≤ ‖V ‖ + δ

a
≤ ‖y‖ + δ

a
. (17)

Lemma 8 Suppose a(t) = d

(c+t)b
, ϕ(t) = ∫ t

0
a2(s)

2 ds where b ∈ (0, 1
4 ], d and c are positive

constants. Then

d2

2

(
1 − 2b

cθd2

)∫ t

0

eϕ(s)

(s + c)3b
ds <

eϕ(t)

(c + t)b
, ∀t > 0, θ = 1 − 2b > 0. (18)
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Proof We have

ϕ(t) =
∫ t

0

d2

2(c + s)2b
ds = d2

2(1 − 2b)

(
(c + t)1−2b − c1−2b

)
= p(c + t)θ − C3, (19)

where θ := 1 − 2b, p := d2

2θ
, C3 := pcθ . One has

d

dt

ep(c+t)θ

(c + t)b
= pθep(c+t)θ

(c + t)b+1−θ
− bep(c+t)θ

(c + t)b+1

= ep(c+t)θ

(c + t)b

(
d2

2(c + t)2b
− b

c + t

)

≥ ep(c+t)θ

(c + t)b

d2

2(c + t)2b

(
1 − 2b

cθd2

)
.

Therefore,

d2

2

(
1 − 2b

cθd2

)∫ t

0

ep(c+s)θ

(s + c)3b
ds ≤

∫ t

0

d

ds

ep(c+s)θ

(c + s)b
ds

≤ ep(c+t)θ

(c + t)b
− epcθ

cb
≤ ep(c+t)θ

(c + t)b
.

Multiplying this inequality by e−C3 and using (19), one obtains (18). Lemma 8 is proved. �

Lemma 9 Let a(t) = d

(c+t)b
and ϕ(t) := ∫ t

0
a2(s)

2 ds where d, c > 0, b ∈ (0, 1
4 ] and c1−2bd2 ≥

6b. One has

e−ϕ(t)

∫ t

0
eϕ(s)|ȧ(s)|‖Vδ(s)‖ds ≤ 1

2
a(t)‖Vδ(t)‖, t ≥ 0. (20)

Proof From Lemma 8, one has

1

2

(
1 − 2b

cθd2

)∫ t

0
eϕ(s) d3

(s + c)3b
ds < eϕ(t) d

(c + t)b
, ∀c, b ≥ 0, θ = 1 − 2b > 0. (21)

Since c1−2bd2 ≥ 6b or 6b

cθ c2
1

≤ 1, one has

1 − 2b

cθd2
≥ 4b

cθd2
≥ 4b

(c + s)1−2bd2
, s ≥ 0.

This implies

a3(s)

2

(
1 − 2b

cθd2

)
= d3

2(c + s)3b

(
1 − 2b

cθd2

)
≥ 4db

2(c + s)b+1
= 2|ȧ(s)|, s ≥ 0. (22)

Multiplying (21) by ‖Vδ(t)‖, using inequality (22) and the fact that ‖Vδ(t)‖ is increasing,
then for all t ≥ 0 one gets

eϕ(t)a(t)‖Vδ(t)‖ >

∫ t

0
eϕ(s)‖Vδ(t)‖a3(s)

2

(
1 − 2b

cθd2

)
ds ≥ 2

∫ t

0
eϕ(s)|ȧ(s)|‖Vδ(s)‖ds.
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This implies inequality (20). Lemma 9 is proved. �

Let us recall the following lemma, which is basic in our proofs.

Lemma 10 ([10], p. 97) Let α(t), β(t), γ (t) be continuous nonnegative functions on
[t0,∞), t0 ≥ 0 is a fixed number. If there exists a function

μ ∈ C1[t0,∞), μ > 0, lim
t→∞μ(t) = ∞,

such that

0 ≤ α(t) ≤ μ

2

[
γ − μ̇(t)

μ(t)

]
, μ̇ := dμ

dt
, (23)

β(t) ≤ 1

2μ

[
γ − μ̇(t)

μ(t)

]
, (24)

μ(0)g(0) < 1, (25)

and g(t) ≥ 0 satisfies the inequality

ġ(t) ≤ −γ (t)g(t) + α(t)g2(t) + β(t), t ≥ t0, (26)

then g(t) exists on [t0,∞) and

0 ≤ g(t) <
1

μ(t)
→ 0, as t → ∞. (27)

If inequalities (23)–(25) hold on an interval [t0, T ), then g(t) exists on this interval and
inequality (27) holds on [t0, T ).

Lemma 11 Suppose M1, c0, and c1 are positive constants and 0 �= y ∈ H . Then there exist
λ > 0 and a function a(t) ∈ C1[0,∞), 0 < a(t) ↘ 0, such that

|ȧ(t)| ≤ a3(t)

4
,

and the following conditions hold

M1

‖y‖ ≤ λ, (28)

c0(M1 + a(t)) ≤ λ

2a2(t)

[
a2(t) − 2|ȧ(t)|

a(t)

]
, (29)

c1
|ȧ(t)|
a(t)

≤ a2(t)

2λ

[
a2(t) − 2|ȧ(t)|

a(t)

]
, (30)

λ

a2(0)
g(0) < 1. (31)

Proof Take

a(t) = d

(c + t)b
, 0 < b ≤ 1

4
, 4b ≤ c1−2bd2, c ≥ 1. (32)
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Note that |ȧ| = −ȧ. We have

|ȧ|
a3

= b

d2(c + t)1−2b
≤ b

d2c1−2b
≤ 1

4
.

Hence,

a2(t)

2
≤ a2(t) − 2|ȧ(t)|

a(t)
. (33)

Thus, inequality (29) is satisfied if

c0(M1 + a(0)) ≤ λ

4
. (34)

Take

λ ≥ max

(
8c0M1,

M1

‖y‖
)

. (35)

Then (28) is satisfied and

c0M1 ≤ λ

8
. (36)

For any given g(0), choose a(0) sufficiently large so that

λ

a2(0)
g(0) < 1.

Then inequality (31) is satisfied.
Choose κ ≥ 1 such that

κ > max

(√
4λc1b

d4
,

8c0a(0)

λ
,1

)
. (37)

Define

ν(t) := κa(t) λκ := κ2λ. (38)

Using inequalities (36), (37) and (38), one gets

c0(M1 + ν(0)) ≤ λ

8
+ c0ν(0) ≤ λκ

8
+ λκ

8
= λκ

4
.

Thus, (34) holds for a(t) = ν(t), λ = λκ . Consequently, (29) holds for a(t) = ν(t), λ = λκ

since (33) holds as well under this transformation, i.e.,

ν2(t)

2
≤ ν2(t) − 2|ν̇(t)|

ν(t)
. (39)

Using the inequalities (37) and c ≥ 1 and the definition (38), one obtains

4λκc1
|ν̇(t)|
ν5(t)

= 4λc1
b

κ2d4(c + t)1−4b
≤ 4λc1

b

κ2d4
≤ 1.
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This implies

c1
|ν̇|
ν(t)

≤ ν4(t)

4λκ

≤ ν2(t)

2λκ

[
ν2 − 2|ν̇|

ν

]
.

Thus, one can replace the function a(t) by ν(t) = κa(t) and λ by λκ = κ2λ in the inequalities
(28)–(31). �

Lemma 12 Suppose M1, c0, c1 and α̃ are positive constants and 0 �= y ∈ H . Then there
exist λ > 0 and a sequence 0 < (an)

∞
n=0 ↘ 0 such that the following conditions hold

an

an+1
≤ 2, (40)

‖fδ − F(0)‖ ≤ a3
0

λ
, (41)

M1

λ
≤ ‖y‖, (42)

c0(M1 + a0)

λ
≤ 1

2
, (43)

a2
n

λ
− α̃a4

n

2λ
+ an − an+1

an+1
c1 ≤ a2

n+1

λ
. (44)

Proof Let us show that if a0 > 0 is sufficiently large, then the following sequence

an = a0

(1 + n)b
, b = 1

4
, (45)

satisfies conditions (41)–(44) if

λ ≥ max

(
M1

‖y‖ ,4c0M1

)
. (46)

Condition (40) is satisfied by the sequence (45). Inequality (42) is satisfied since (46) holds.
Choose a(0) so that

a0 ≥ 3
√‖fδ − F(0)‖λ, (47)

then (41) is satisfied.
Assume that (an)

∞
n=0 and λ satisfy (40), (41) and (42). Choose κ ≥ 1 such that

κ ≥ max

(
4c0a0

λ
,

√
4

α̃a2
02

√
2
,

√
λc1

α̃a4
0

)
. (48)

It follows from (48) that

4

κ2a2
02

√
2

≤ α̃,
λc1

κ2a4
0

≤ α̃. (49)

Define

(bn)
∞
n=0 := (κan)

∞
n=0, λκ := κ2λ. (50)
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Using inequalities (46), (48) and the definitions (50), one gets

c0(M1 + b0)

λκ

≤ 1

4
+ c0a0

κλ
≤ 1

4
+ 1

4
= 1

2
.

Thus, inequality (43) holds for a0 replaced by b0 = κa0 and λ replaced by λκ = κ2λ, where
κ satisfies (48).

For all n ≥ 0 one has

a2
n − a2

n+1

a4
n

= a4
n − a4

n+1

a4
n(a

2
n + a2

n+1)
≤ a4

n − a4
n+1

2a2
n+1a

4
n

=
a4

0
n+1 − a4

0
n+2

2
a2

0√
n+2

a4
0

n+1

= 1

a2
02

√
n + 2

≤ 1

a2
02

√
2
. (51)

Since an is decreasing, one has

an − an+1

a4
nan+1

= a4
n − a4

n+1

a4
nan+1(an + an+1)(a2

n + a2
n+1)

≤ a4
n − a4

n+1

4a4
na

4
n+1

=
a4

0
n+1 − a4

0
n+2

4
a4

0
n+2

a4
0

n+1

≤ 1

4a4
0

, ∀n ≥ 0. (52)

Using inequalities (51) and (49), one gets

4(a2
n − a2

n+1)

κ2a4
n

≤ 4

κ2a2
02

√
2

≤ α̃. (53)

Similarly, using inequalities (52) and (49), one gets

4λ(an − an+1)c1

κ2a4
nan+1

≤ λc1

κ2a4
0

≤ α̃. (54)

Inequalities (53) and (54) imply

b2
n − b2

n+1

λκ

+ bn − bn+1

bn+1
c1 = a2

n − a2
n+1

λ
+ an − an+1

an+1
c1

= κ2a4
n

4λ

4(a2
n − a2

n+1)

κ2a4
n

+ κ2a4
n

4λ

4λ(an − an+1)c1

κ2a4
nan+1

≤ κ2a4
n

4λ
α̃ + κ2a4

n

4λ
α̃ = κ2a4

nα̃

2λ
= α̃b4

n

2λκ

.

Thus, inequality (44) holds for an replaced by bn = κan and λ replaced by λκ = κ2λ, where κ

satisfies (48). Inequalities (40)–(42) hold as well under this transformation. Thus, the choices
an = bn and λ := κ max(

M1
‖y‖ ,4c0M1), where κ satisfies (48), satisfy all the conditions of

Lemma 12. �

Remark 13 The constant c0 and c1 used in Lemma 11 and 12 will be used in Theorems 17
and 19. These constants are defined in (67). The constant α̃, used in Lemma 12, is the one
from Theorem 19. This constant is defined in (94).
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Remark 14 Using similar arguments one can show that the sequence an = d

(c+n)b
, where

c ≥ 1, 0 < b ≤ 1
4 , satisfy all conditions of Lemma 4 provided that d is sufficiently large and

λ is chosen so that inequality (46) holds.

Remark 15 In the proof of Lemma 12 and 11 the numbers a0 and λ can be chosen so that
a2

0
λ

is uniformly bounded as δ → 0 regardless of the rate of growth of the constant M1 = M1(R)

from formula (3) when R → ∞, i.e., regardless of the strength of the nonlinearity F(u).
To satisfy (46) one can choose λ = M1

(
1

‖y‖ + 4c0

)
. To satisfy (47) one can choose

a0 = 3
√

λ(‖f − F(0)‖ + ‖f ‖) ≥ 3
√

λ‖fδ − F(0)‖,
where we have assumed without loss of generality that 0 < ‖fδ − f ‖ < ‖f ‖. With this

choice of a0 and λ, the ratio
a2

0
λ

is bounded uniformly with respect to δ ∈ (0,1) and does
not depend on R. The dependence of a0 on δ is seen from (47) since fδ depends on δ. In
practice one has ‖fδ − f ‖ < ‖f ‖. Consequently,

3
√‖fδ − F(0)‖λ ≤ 3

√
(‖f − F(0)‖ + ‖f ‖)λ.

Thus, we can practically choose a(0) independent of δ from the following inequality

a0 ≥ 3
√

λ(‖f − F(0)‖ + ‖f ‖).

Indeed, with the above choice one has
a2

0
λ

≤ c(1 + 3
√

λ−1) ≤ c, where c > 0 is a constant
independent of δ, and one can assume that λ ≥ 1 without loss of generality.

This Remark is used in the proof of the main result in Sect. 3. Specifically, it is used to
prove that an iterative process (93) generates a sequence which stays in the ball B(u0,R) for
all n ≤ n0 + 1, where the number n0 is defined by formula (104) (see below), and R > 0 is
sufficiently large. An upper bound on R is given in the proof of Theorem 19, below formula
(117).

Remark 16 One can choose u0 ∈ H such that

g0 := ‖u0 − V0‖ ≤ ‖F(0) − fδ‖
a0

. (55)

Indeed, if, for example, u0 = 0, then by Remark 6 one gets

g0 = ‖V0‖ = a0‖V0‖
a0

≤ ‖F(0) − fδ‖
a0

.

If (41) and (55) hold then g0 ≤ a2
0
λ

.

3 Main Results

3.1 Dynamical Systems Gradient Method

Assume:

0 < a(t) ↘ 0, lim
t→∞

ȧ(t)

a(t)
= 0,

|ȧ(t)|
a3(t)

≤ 1

4
. (56)
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Denote

A := F ′(uδ(t)), Aa := A + aI, a = a(t),

where I is the identity operator, and uδ(t) solves the following Cauchy problem:

u̇δ = −A∗
a(t)[F(uδ) + a(t)uδ − fδ], uδ(0) = u0. (57)

Theorem 17 Assume that F : H → H is a monotone operator, twice Fréchet differentiable,
supu∈B(u0,R) ‖F (j)(u)‖ ≤ Mj(R), 0 ≤ j ≤ 2, B(u0,R) := {u : ‖u − u0‖ ≤ R}, u0 is an ele-
ment of H , satisfying inequality (88) (see below). Let a(t) satisfy conditions of Lemma 11.
For example, one can choose a(t) = d

(c+t)b
, where b ∈ (0, 1

4 ], c ≥ 1, and d > 0 are constants,
and d is sufficiently large. Assume that equation F(u) = f has a solution in B(u0,R), pos-
sibly nonunique, and y is the minimal-norm solution to this equation. Let f be unknown
but fδ be given, ‖fδ − f ‖ ≤ δ. Then the solution uδ(t) to problem (57) exists on an interval
[0, Tδ], limδ→0 Tδ = ∞, and there exists tδ , tδ ∈ (0, Tδ), not necessarily unique, such that

‖F(uδ(tδ)) − fδ‖ = C1δ
ζ , lim

δ→0
tδ = ∞, (58)

where C1 > 1 and 0 < ζ ≤ 1 are constants. If ζ ∈ (0,1) and tδ satisfies (58), then

lim
δ→0

‖uδ(tδ) − y‖ = 0. (59)

Remark 18 One can easily choose u0 satisfying inequality (88). Note that inequality (88)
is a sufficient condition for (91) to hold. In our proof inequality (91) is used at t = tδ . The
stopping time tδ is often sufficiently large for the quantity e−ϕ(tδ )h0 to be small. In this case
inequality (91) with t = tδ is satisfied for a wide range of u0. The parameter ζ is not fixed
in (58). While we could fix it, for example, by setting ζ = 0.9, it is an interesting open
problem to propose an optimal in some sense criterion for choosing ζ .

Proof of Theorem 17 Denote

C := C1 + 1

2
. (60)

Let

w := uδ − Vδ, g(t) := ‖w‖.
One has

ẇ = −V̇δ − A∗
a(t)

[
F(uδ) − F(Vδ) + a(t)w

]
. (61)

We use Taylor’s formula and get:

F(uδ) − F(Vδ) + aw = Aaw + K, ‖K‖ ≤ M2

2
‖w‖2, (62)

where K := F(uδ)−F(Vδ)−Aw, and M2 is the constant from the estimate (3). Multiplying
(61) by w and using (62) one gets

gġ ≤ −a2g2 + M2(M1 + a)

2
g3 + ‖V̇δ‖g, (63)
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where the estimates: 〈A∗
aAaw,w〉 ≥ a2g2 and ‖Aa‖ ≤ M1 + a were used. Note that the

inequality 〈A∗
aAaw,w〉 ≥ a2g2 is true if A ≥ 0. Since F is monotone and differentiable (see

(3)), one has A := F ′(uδ) ≥ 0.
Let t0 > 0 be such that

δ

a(t0)
= 1

C − 1
‖y‖, C > 1. (64)

This t0 exists and is unique since a(t) > 0 monotonically decays to 0 as t → ∞. By
Lemma 4, there exists t1 such that

‖F(Vδ(t1)) − fδ‖ = Cδ, F (Vδ(t1)) + a(t1)Vδ(t1) − fδ = 0. (65)

We claim that t1 ∈ [0, t0].
Indeed, from (8) and (17) one gets

Cδ = a(t1)‖Vδ(t1)‖ ≤ a(t1)

(
‖y‖ + δ

a(t1)

)
= a(t1)‖y‖ + δ, C > 1,

so

δ ≤ a(t1)‖y‖
C − 1

.

Thus,

δ

a(t1)
≤ ‖y‖

C − 1
= δ

a(t0)
.

Since a(t) ↘ 0, the above inequality implies t1 ≤ t0. Differentiating both sides of (8) with
respect to t , one obtains

Aa(t)V̇δ = −ȧVδ.

This implies

‖V̇δ‖ ≤ |ȧ|‖A−1
a(t)Vδ‖ ≤ |ȧ|

a
‖Vδ‖ ≤ |ȧ|

a

(
‖y‖ + δ

a

)
≤ |ȧ|

a
‖y‖

(
1 + 1

C − 1

)
, ∀t ≤ t0.

(66)
Since g ≥ 0, inequalities (63) and (66) imply

ġ ≤ −a2(t)g(t) + c0(M1 + a(t))g2 + |ȧ(t)|
a(t)

c1, c0 = M2

2
, c1 = ‖y‖

(
1 + 1

C − 1

)
. (67)

Inequality (67) is of the type (26) with

γ (t) = a2(t), α(t) = c0(M1 + a(t)), β(t) = c1
|ȧ(t)|
a(t)

.

Let us check assumptions (23)–(25). Take

μ(t) = λ

a2(t)
, λ = const.

By Lemma 11 there exist λ and a(t) such that conditions (23)–(25) hold. Thus, Lemma 10
yields

g(t) <
a2(t)

λ
, ∀t ≤ t0. (68)
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Therefore,

‖F(uδ(t)) − fδ‖ ≤ ‖F(uδ(t)) − F(Vδ(t))‖ + ‖F(Vδ(t)) − fδ‖
≤ M1g(t) + ‖F(Vδ(t)) − fδ‖

≤ M1a
2(t)

λ
+ ‖F(Vδ(t)) − fδ‖, ∀t ≤ t0. (69)

It follows from Lemma 3 that ‖F(Vδ(t)) − fδ‖ is decreasing. Since t1 ≤ t0, one gets

‖F(Vδ(t0)) − fδ‖ ≤ ‖F(Vδ(t1)) − fδ‖ = Cδ. (70)

This, inequality (69), the inequality M1
λ

≤ ‖y‖ (see (35)), the relation (64), and the definition
C1 = 2C − 1 (see (60)) imply

‖F(uδ(t0)) − fδ‖ ≤ M1a
2(t0)

λ
+ Cδ

≤ M1δ(C − 1)

λ‖y‖ + Cδ ≤ (2C − 1)δ = C1δ. (71)

We have used the inequality

a2(t0) ≤ a(t0) = δ(C − 1)

‖y‖
which is true if δ is sufficiently small, or, equivalently, if t0 is sufficiently large. Thus, if

‖F(uδ(0)) − fδ‖ ≥ C1δ
ζ , 0 < ζ ≤ 1,

then there exists tδ ∈ (0, t0) such that

‖F(uδ(tδ)) − fδ‖ = C1δ
ζ (72)

for any given ζ ∈ (0,1], and any fixed C1 > 1.
Let us prove (59). If this is done, then Theorem 17 is proved.
First, we prove that limδ→0

δ
a(tδ )

= 0.

From (69) with t = tδ , and from (17), one gets

C1δ
ζ ≤ M1

a2(tδ)

λ
+ a(tδ)‖Vδ(tδ)‖

≤ M1
a2(tδ)

λ
+ ‖y‖a(tδ) + δ.

Thus, for sufficiently small δ, one gets

C̃δζ ≤ a(tδ)

(
M1a(0)

λ
+ ‖y‖

)
, C̃ > 0,

where C̃ < C1 is a constant. Therefore,

lim
δ→0

δ

a(tδ)
≤ lim

δ→0

δ1−ζ

C̃

(
M1a(0)

λ
+ ‖y‖

)
= 0, 0 < ζ < 1. (73)
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Secondly, we prove that

lim
δ→0

tδ = ∞. (74)

Using (57), one obtains:

d

dt
(F (uδ) + auδ − fδ) = Aau̇δ + ȧuδ = −AaA

∗
a(F (uδ) + auδ − fδ) + ȧuδ.

This and (8) imply:

d

dt
[F(uδ) − F(Vδ) + a(uδ − Vδ)] = −AaA

∗
a[F(uδ) − F(Vδ) + a(uδ − Vδ)] + ȧuδ. (75)

Denote

v := F(uδ) − F(Vδ) + a(uδ − Vδ), h = ‖v‖.
Multiplying (75) by v and using monotonicity of F , one obtains

hḣ = −〈AaA
∗
av, v〉 + 〈v, ȧ(uδ − Vδ)〉 + ȧ〈v,Vδ〉

≤ −h2a2 + h|ȧ|‖uδ − Vδ‖ + |ȧ|h‖Vδ‖, h ≥ 0. (76)

Again, we have used the inequality AaA
∗
a ≥ a2, which holds for A ≥ 0, i.e., monotone oper-

ators F . Thus,

ḣ ≤ −ha2 + |ȧ|‖uδ − Vδ‖ + |ȧ|‖Vδ‖. (77)

Since 〈F(uδ) − F(Vδ), uδ − Vδ〉 ≥ 0, one obtains two inequalities

a‖uδ − Vδ‖2 ≤ 〈v,uδ − Vδ〉 ≤ ‖uδ − Vδ‖h, (78)

and

‖F(uδ) − F(Vδ)‖2 ≤ 〈v,F (uδ) − F(Vδ)〉 ≤ h‖F(uδ) − F(Vδ)‖. (79)

Inequalities (78) and (79) imply:

a‖uδ − Vδ‖ ≤ h, ‖F(uδ) − F(Vδ)‖ ≤ h. (80)

Inequalities (77) and (80) imply

ḣ ≤ −h

(
a2 − |ȧ|

a

)
+ |ȧ|‖Vδ‖. (81)

Since a2 − |ȧ|
a

≥ 3a2

4 > a2

2 by the last inequality in (56), it follows from inequality (81) that

ḣ ≤ −a2

2
h + |ȧ|‖Vδ‖. (82)

Inequality (82) implies:

h(t) ≤ h(0)e− ∫ t
0

a2(s)
2 ds + e− ∫ t

0
a2(s)

2 ds

∫ t

0
e

∫ s
0

a2(ξ)
2 dξ |ȧ(s)|‖Vδ(s)‖ds. (83)
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Denote

ϕ(t) :=
∫ t

0

a2(s)

2
ds.

From (83) and (80), one gets

‖F(uδ(t)) − F(Vδ(t))‖ ≤ h(0)e−ϕ(t) + e−ϕ(t)

∫ t

0
eϕ(s)|ȧ(s)|‖Vδ(s)‖ds. (84)

Therefore,

‖F(uδ(t)) − fδ‖ ≥ ‖F(Vδ(t)) − fδ‖ − ‖F(Vδ(t)) − F(uδ(t))‖

≥ a(t)‖Vδ(t)‖ − h(0)e−ϕ(t) − e−ϕ(t)

∫ t

0
eϕ(s)|ȧ|‖Vδ‖ds. (85)

From Lemma 9 it follows that there exists an a(t) such that

1

2
a(t)‖Vδ(t)‖ ≥ e−ϕ(t)

∫ t

0
eϕ(s)|ȧ|‖Vδ(s)‖ds. (86)

For example, one can choose

a(t) = c1

(c + t)b
, b ∈

(
0,

1

4

]
, c2

1c
1−2b ≥ 6b, (87)

where c1, c > 0. Moreover, one can always choose u0 such that

h(0) = ‖F(u0) + a(0)u0 − fδ‖ ≤ 1

4
a(0)‖Vδ(0)‖, (88)

because the equation

F(u0) + a(0)u0 − fδ = 0

is solvable.
If (88) holds, then

h(0)e−ϕ(t) ≤ 1

4
a(0)‖Vδ(0)‖e−ϕ(t), t ≥ 0. (89)

If (87) holds, c ≥ 1 and 2b ≤ c2
1, then it follows that

e−ϕ(t)a(0) ≤ a(t). (90)

Indeed, inequality a(0) ≤ a(t)eϕ(t) is obviously true for t = 0, and (a(t)eϕ(t))′
t ≥ 0, provided

that c ≥ 1 and 2b ≤ c2
1.

Inequalities (89) and (50) imply

e−ϕ(t)h(0) ≤ 1

4
a(t)‖Vδ(0)‖ ≤ 1

4
a(t)‖Vδ(t)‖, t ≥ 0. (91)

where we have used the inequality ‖Vδ(t)‖ ≤ ‖Vδ(t
′)‖ for t ≤ t ′, established in Lemma 3.

From (72) and (85)–(91), one gets

Cδζ = ‖F(uδ(tδ)) − fδ‖ ≥ 1

4
a(tδ)‖Vδ(tδ)‖.
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Thus,

lim
δ→0

a(tδ)‖Vδ(tδ)‖ ≤ lim
δ→0

4Cδζ = 0.

Since ‖Vδ(t)‖ is increasing, this implies limδ→0 a(tδ) = 0. Since 0 < a(t) ↘ 0, it follows
that (74) holds.

From the triangle inequality and inequalities (68) and (15) one obtains:

‖uδ(tδ) − y‖ ≤ ‖uδ(tδ) − Vδ‖ + ‖V (tδ) − Vδ(tδ)‖ + ‖V (tδ) − y‖

≤ a2(tδ)

λ
+ δ

a(tδ)
+ ‖V (tδ) − y‖. (92)

From (73), (74), inequality (92) and Lemma 1, one obtains (59). Theorem 17 is proved. �

3.2 An Iterative Scheme

Let Vn,δ solve the equation:

F(Vn,δ) + anVn,δ − fδ = 0.

Denote Vn := Vn,δ .
Consider the following iterative scheme:

un+1 = un − αnA
∗
n[F(un) + anun − fδ], An := F ′(un) + anI, u0 = u0, (93)

where u0 is chosen so that inequality (55) holds, and {αn}∞
n=1 is a positive sequence such

that

0 < α̃ ≤ αn ≤ 2

a2
n + (M1 + an)2

, ||An|| ≤ M1 + an. (94)

It follows from this condition that

‖1 − αnA
∗
an

Aan‖ = sup
a2
n≤λ≤(M1+an)2

|1 − αnλ| ≤ 1 − αna
2
n. (95)

Note that F ′(un) ≥ 0 since F is monotone.
Let an and λ satisfy conditions (40)–(44). Assume that equation F(u) = f has a solution

in B(u0,R), possibly nonunique, and y is the minimal-norm solution to this equation. Let
f be unknown but fδ be given, and ‖fδ − f ‖ ≤ δ. We prove the following result:

Theorem 19 Assume an = d

(c+n)b
where c ≥ 1, 0 < b ≤ 1

4 , and d is sufficiently large so that
conditions (40)–(44) hold. Let un be defined by (93). Assume that u0 is chosen so that (55)
holds. Then there exists a unique nδ such that

‖F(unδ
) − fδ‖ ≤ C1δ

ζ , C1δ
ζ < ‖F(un) − fδ‖, ∀n < nδ, (96)

where C1 > 1, 0 < ζ ≤ 1.
Let 0 < (δm)∞

m=1 be a sequence such that δm → 0. If the sequence {nm := nδm}∞
m=1 is

bounded, and {nmj
}∞
j=1 is a convergent subsequence, then

lim
j→∞

unmj
= ũ, (97)
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where ũ is a solution to the equation F(u) = f . If

lim
m→∞ nm = ∞, (98)

where ζ ∈ (0,1), then

lim
m→∞‖unm − y‖ = 0. (99)

Proof Denote

C := C1 + 1

2
. (100)

Let

zn := un − Vn, gn := ‖zn‖.
We use Taylor’s formula and get:

F(un) − F(Vn) + anzn = Anzn + Kn, ‖Kn‖ ≤ M2

2
‖zn‖2, (101)

where Kn := F(un) − F(Vn) − F ′(un)zn and M2 is the constant from (3). From (93) and
(101) one obtains

zn+1 = zn − αnA
∗
nAnzn − αnA

∗
nK(zn) − (Vn+1 − Vn). (102)

From (102), (101), (95), and the estimate ‖An‖ ≤ M1 + an, one gets

gn+1 ≤ gn‖1 − αnA
∗
nAn‖ + αnM2(M1 + an)

2
g2

n + ‖Vn+1 − Vn‖

≤ gn(1 − αna
2
n) + αnM2(M1 + an)

2
g2

n + ‖Vn+1 − Vn‖. (103)

Since 0 < an ↘ 0, for any fixed δ > 0 there exists n0 such that

δ

an0+1
>

1

C − 1
‖y‖ ≥ δ

an0

, C > 1. (104)

By (40), one has an

an+1
≤ 2, ∀n ≥ 0. This and (104) imply

2

C − 1
‖y‖ ≥ 2δ

an0

>
δ

an0+1
>

1

C − 1
‖y‖ ≥ δ

an0

, C > 1. (105)

Thus,

2

C − 1
‖y‖ >

δ

an

, ∀n ≤ n0 + 1. (106)

The number n0, satisfying (106), exists and is unique since an > 0 monotonically decays to
0 as n → ∞. By Remark 5, there exists a number n1 such that

‖F(Vn1+1) − fδ‖ ≤ Cδ < ‖F(Vn1) − fδ‖, (107)

where Vn solves the equation F(Vn) + anVn − fδ = 0.
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We claim that n1 ∈ [0, n0].
Indeed, one has ‖F(Vn1) − fδ‖ = an1‖Vn1‖, and ‖Vn1‖ ≤ ‖y‖ + δ

an1
(cf. (17)), so

Cδ < an1‖Vn1‖ ≤ an1

(
‖y‖ + δ

an1

)
= an1‖y‖ + δ, C > 1. (108)

Therefore,

δ <
an1‖y‖
C − 1

. (109)

Thus, by (105),

δ

an1

<
‖y‖

C − 1
<

δ

an0+1
. (110)

Here the last inequality is a consequence of (105). Since an decreases monotonically, in-
equality (110) implies n1 ≤ n0. One has

an+1‖Vn − Vn+1‖2 = 〈(an+1 − an)Vn − F(Vn) + F(Vn+1),Vn − Vn+1〉
≤ 〈(an+1 − an)Vn,Vn − Vn+1〉
≤ (an − an+1)‖Vn‖‖Vn − Vn+1‖. (111)

By (17), ‖Vn‖ ≤ ‖y‖ + δ
an

, and, by (106), δ
an

≤ 2‖y‖
C−1 for all n ≤ n0 + 1. Therefore,

‖Vn‖ ≤ ‖y‖
(

1 + 2

C − 1

)
, ∀n ≤ n0 + 1, (112)

and, by (111),

‖Vn − Vn+1‖ ≤ an − an+1

an+1
‖Vn‖ ≤ an − an+1

an+1
‖y‖

(
1 + 2

C − 1

)
, ∀n ≤ n0 + 1. (113)

Inequalities (103) and (113) imply

gn+1 ≤ (1 − αna
2
n)gn + αnc0(M1 + an)g

2
n + an − an+1

an+1
c1, ∀n ≤ n0 + 1, (114)

where the constants c0 and c1 are defined in (67).
By Lemma 4 and Remark 14, the sequence (an)

∞
n=1, satisfies conditions (40)–(44), pro-

vided that a0 is sufficiently large and λ > 0 is chosen so that (46) holds. Let us show by
induction that

gn <
a2

n

λ
, 0 ≤ n ≤ n0 + 1. (115)

Inequality (115) holds for n = 0 by Remark 16. Suppose (115) holds for some n ≥ 0. From
(114), (115) and (44), one gets

gn+1 ≤ (1 − αna
2
n)

a2
n

λ
+ αnc0(M1 + an)

(
a2

n

λ

)2

+ an − an+1

an+1
c1

= a4
n

λ

(
αnc0(M1 + an)

λ
− αn

)
+ a2

n

λ
+ an − an+1

an+1
c1
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≤ −αna
4
n

2λ
+ a2

n

λ
+ an − an+1

an+1
c1

≤ a2
n+1

λ
. (116)

Thus, by induction, inequality (115) holds for all n in the region 0 ≤ n ≤ n0 + 1.
From (17) one has ‖Vn‖ ≤ ‖y‖ + δ

an
. This and the triangle inequality imply

‖u0 − un‖ ≤ ‖u0‖ + ‖zn‖ + ‖Vn‖ ≤ ‖u0‖ + ‖zn‖ + ‖y‖ + δ

an

. (117)

Inequalities (112), (115), and (117) guarantee that the sequence un, generated by the iterative
process (93), remains in the ball B(u0,R) for all n ≤ n0 + 1, where R ≤ a0

λ
+ ‖u0‖ +

‖y‖ + δ
an

. This inequality and the estimate (106) imply that the sequence un, n ≤ n0 + 1,

stays in the ball B(u0,R), where

R ≤ a0

λ
+ ‖u0‖ + ‖y‖ + ‖y‖C + 1

C − 1
. (118)

By Remark 15, one can choose a0 and λ so that a0
λ

is uniformly bounded as δ → 0 even if
M1(R) → ∞ as R → ∞ at an arbitrary fast rate. Thus, the sequence un stays in the ball
B(u0,R) for n ≤ n0 + 1 when δ → 0. An upper bound on R is given above. It does not
depend on δ as δ → 0.

One has:

‖F(un) − fδ‖ ≤ ‖F(un) − F(Vn)‖ + ‖F(Vn) − fδ‖
≤ M1gn + ‖F(Vn) − fδ‖

≤ M1a
2
n

λ
+ ‖F(Vn) − fδ‖, ∀n ≤ n0 + 1, (119)

where (115) was used and M1 is the constant from (3). Since ‖F(Vn) − fδ‖ is decreasing,
by Lemma 3, and n1 ≤ n0, one gets

‖F(Vn0+1) − fδ‖ ≤ ‖F(Vn1+1) − fδ‖ ≤ Cδ. (120)

From (42), (119), (120), the relation (104), and the definition C1 = 2C − 1 (see (100)), one
concludes that

‖F(un0+1) − fδ‖ ≤ M1a
2
n0+1

λ
+ Cδ

≤ M1δ(C − 1)

λ‖y‖ + Cδ ≤ (2C − 1)δ = C1δ. (121)

Thus, if

‖F(u0) − fδ‖ > C1δ
ζ , 0 < ζ ≤ 1,

then one concludes from (121) that there exists nδ , 0 < nδ ≤ n0 + 1, such that

‖F(unδ
) − fδ‖ ≤ C1δ

ζ < ‖F(un) − fδ‖, 0 ≤ n < nδ, (122)
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for any given ζ ∈ (0,1], and any fixed C1 > 1.
Let us prove (97).
If n > 0 is fixed, then uδ,n is a continuous function of fδ . Denote

ũ := ũN = lim
δ→0

uδ,nmj
, (123)

where

lim
j→∞

nmj
= N.

From (123) and the continuity of F , one obtains:

‖F(ũ) − fδ‖ = lim
j→∞

‖F(unmj
) − fδ‖ ≤ lim

δ→0
C1δ

ζ = 0.

Thus, ũ is a solution to the equation F(u) = f , and (97) is proved.
Let us prove (99) assuming that (98) holds.
From (96) and (119) with n = nδ − 1, and from (122), one gets

C1δ
ζ ≤ M1

a2
nδ−1

λ
+ anδ−1‖Vnδ−1‖ ≤ M1

a2
nδ−1

λ
+ ‖y‖anδ−1 + δ.

If δ > 0 is sufficiently small, then the above equation implies

C̃δζ ≤ anδ−1

(
M1a0

λ
+ ‖y‖

)
, C̃ > 0,

where C̃ < C1 is a constant, and the inequality a2
nδ−1 ≤ anδ−1a0 was used. Therefore, by

(40),

lim
δ→0

δ

2anδ

≤ lim
δ→0

δ

anδ−1
≤ lim

δ→0

δ1−ζ

C̃

(
M1a0

λ
+ ‖y‖

)
= 0, 0 < ζ < 1. (124)

In particular, for δ = δm, one gets

lim
δm→0

δm

anm

= 0. (125)

From the triangle inequality and inequalities (15) and (115) one obtains:

‖unm − y‖ ≤ ‖unm − Vnm‖ + ‖Vn − Vnm,0‖ + ‖Vnm,0 − y‖

≤ a2
nm

λ
+ δm

anm

+ ‖Vnm,0 − y‖. (126)

From (98), (125), inequality (126) and Lemma 1, one obtains (99). Theorem 19 is proved. �

4 Numerical Experiments

Let us do a numerical experiment solving nonlinear equation (1) with

F(u) := B(u) + u3

6
:=

∫ 1

0
e−|x−y|u(y)dy + u3

6
, f (x) := 13

6
− e−x − ex

e
. (127)
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Such equation is a model nonlinear equation in Wiener-type filtering theory, see [18].
One can check that u(x) ≡ 1 solves the equation F(u) = f . The operator B is compact

in H = L2[0,1]. The operator u �−→ u3 is defined on a dense subset D of L2[0,1], for
example, on D := C[0,1]. If u,v ∈ D, then

〈u3 − v3, u − v〉 =
∫ 1

0
(u3 − v3)(u − v)dx ≥ 0.

Moreover,

e−|x| = 1

π

∫ ∞

−∞

eiλx

1 + λ2
dλ.

Therefore, 〈B(u − v),u − v〉 ≥ 0, so

〈F(u − v),u − v〉 ≥ 0, ∀u,v ∈ D.

Note that D does not contain subsets, open in H = L2[0,1], i.e., it does not contain
interior points of H . This is a reflection of the fact that the operator G(u) = u3

6 is unbounded
on any open subset of H . For example, in any ball ‖u‖ ≤ C, C = const > 0, where ‖u‖ :=
‖u‖L2[0,1], there is an element u such that ‖u3‖ = ∞. As such an element one can take, for
example, u(x) = c1x

−b, 1
3 < b < 1

2 . here c1 > 0 is a constant chosen so that ‖u‖ ≤ C. The
operator u �−→ F(u) = G(u) + B(u) is maximal monotone on DF := {u : u ∈ H, F(u) ∈
H } (see [1, p.102]), so that (8) is uniquely solvable for any fδ ∈ H .

The Fréchet derivative of F is:

F ′(u)h = u2h

2
+

∫ 1

0
e−|x−y|h(y)dy. (128)

If u(x) vanishes on a set of positive Lebesgue’s measure, then F ′(u) is obviously not bound-
edly invertible. If u ∈ C[0,1] vanishes even at one point x0, then F ′(u) is not boundedly
invertible in H .

Let us use the iterative process (93):

un+1 = un − αn(F
′(un)

∗ + anI)(F (un) + anun − fδ),

u0 = 0. (129)

We stop iterations at n := nδ such that the following inequality holds

‖F(unδ
) − fδ‖ < Cδζ , ‖F(un) − fδ‖ ≥ Cδζ , n < nδ, C > 1, ζ ∈ (0,1). (130)

Integrals of the form
∫ 1

0 e−|x−y|h(y)dy in (127) and (128) are computed by using the trape-
zoidal rule. The noisy function used in the test is

fδ(x) = f (x) + κfnoise(x), κ > 0, κ = κ(δ).

The noise level δ and the relative noise level are determined by

δ = κ‖fnoise‖, δrel := δ

‖f ‖ .
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In the test, κ is computed in such a way that the relative noise level δrel equals to some
desired value, i.e.,

κ = δ

‖fnoise‖ = δrel‖f ‖
‖fnoise‖ .

We have used the relative noise level as an input parameter in the test.
The version of DSM, developed in this paper and denoted by DSMG, is compared with

the version of DSM in [3], denoted by DSMN. Indeed, the DSMN is the following iterative
scheme

un+1 = un − A−1
n (F ′(un) + anun − fδ), u0 = u0, n ≥ 0, (131)

where an = a0
1+n

. This iterative scheme is used with a stopping time nδ defined by (96). The
existence of this stopping time and the convergence of the method is proved in [3].

As we have proved, the DSMG converges when an = a0
(1+n)b

, b ∈ (0, 1
4 ], and a0 is suffi-

ciently large. However, in practice, if we choose a0 too large then the method will use too
many iterations before reaching the stopping time nδ in (130). This means that the compu-
tation time is large. Since

‖F(Vδ) − fδ‖ = a(t)‖Vδ‖,
and ‖Vδ(tδ) − uδ(tδ)‖ = O(a(tδ)), we have

Cδζ = ‖F(uδ(tδ)) − fδ‖ ∼ a(tδ).

Thus, we choose

a0 = C0δ
ζ , C0 > 0.

The parameter a0 used in the DSMN is also chosen by this formula.
In all figures, the x-axis represents the variable x. In all figures, by DSMG we denote the

numerical solutions obtained by the DSMG, by DSMN we denote solutions by the DSMN
and by exact we denote the exact solution.

In experiments, we found that the DSMG works well with a0 = C0δ
ζ , C0 ∈ [0.2,1].

Indeed, in the test the DSMG is implemented with an := C0
δ0.99

(n+1)0.25 , C0 = 0.5 while the

DSMN is implemented with an := C0
δ0.99

(n+1)
, C0 = 1. For C0 > 1 the convergence rate of

DSMG is much slower while the DSMN still works well if C0 ∈ [1,4].
Figure 1 plots the solutions using relative noise levels δ = 0.01 and δ = 0.001. The exact

solution used in these experiments is u = 1. In the test the DSMG is implemented with
αn = 1, C = 1.01, ζ = 0.99 and αn = 1, ∀n ≥ 0. The number of iterations of the DSMG
for δ = 0.01 and δ = 0.001 were 49 and 50 while the number of iteration for the DSMN
are 9 and 9, respectively. The number of nodal points used in computing integrals in (127)
and (128) was n = 100. The noise function fnoise in this experiment is a vector with random
entries normally distributed of mean 0 and variant 1. Figure 1 shows that the solutions by
the DSMN and DSMG are nearly the same in this figure.

Figure 2 presents the numerical results when N = 100 with δ = 0.01 u(x) = sin(2πx),
x ∈ [0,1] (left) and with δ = 0.01, u(x) = sin(πx), x ∈ [0,1] (right). In these cases, the
DSMN took 11 and 7 iterations to give the numerical solutions while the DSMG took 512
and 94 iterations for u(x) = sin(2πx) and u(x) = sin(πx), respectively. Figure 2 show that
the numerical results of the DSMG are better than those of the DSMN.

Numerical experiments agree with the theory that the convergence rate of the DSMG is
slower than that of the DSMN. It is because the rate of decaying of the sequence { 1

(1+n)
1
4
}∞
n=1
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Fig. 1 Plots of solutions obtained by the DSMN and DSMG when N = 100, u = 1, x ∈ [0,1], δrel = 0.01
(left) and N = 100, u = 1, x ∈ [0,1], δrel = 0.001 (right)

Fig. 2 Plots of solutions obtained by the DSMN and DSMG when N = 100, u(x) = sin(2πx), x ∈ [0,1],
δrel = 0.01 (left) and N = 100, u(x) = sin(πx), x ∈ [0,1], δrel = 0.01 (right)

is much slower than that of the sequence { 1
1+n

}∞
n=1. However, if the cost for evaluating F and

F ′ are not counted then the cost of computation at one iteration of the DSMG is of O(N2)

while that of the DSMN in one iteration of the DSMN is of O(N3). Here, n is the dimension
of u. Thus, for large scale problems, the DSMG might be an alternative to the DSMN. Also,
as it is showed in Fig. 2, the DSMG might yield solutions with better accuracy.

Experiments show that the DSMN still works with an = a0
(1+n)b

for 1
4 ≤ b ≤ 1. So in

practice, one might use faster decaying sequence an to reduce the time of computation.
From the numerical results we conclude that the proposed stopping rule yields good

results in this problem.
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